code
stringlengths
2
1.05M
repo_name
stringlengths
5
101
path
stringlengths
4
991
language
stringclasses
3 values
license
stringclasses
5 values
size
int64
2
1.05M
{-# LANGUAGE TupleSections, OverloadedStrings, NoImplicitPrelude #-} module ParseEmail ( parseEmail , flatten , getAttachments , getPart , subject , Email(..) ) where import ClassyPrelude hiding (try, (<|>)) import Prelude (tail) import Text.ParserCombinators.Parsec (parse, manyTill, anyChar, try, string, eof, (<?>), (<|>)) import Text.Parsec.Prim (ParsecT) import Text.Parsec.Error (ParseError) import Data.Functor.Identity (Identity) data Email = Email String Content deriving (Eq, Show) data Content = Multipart String [Content] | Singlepart String String deriving (Eq, Show) data Attachment = Attachment { extension :: String, headers :: [String], fileData :: String } deriving (Eq, Ord, Show) subject :: Email -> Either ParseError String subject (Email header content) = parse subjectFormat "(unknown)" header subjectFormat :: ParsecT [Char] u Identity String subjectFormat = do manyTill line $ try (string "Subject: ") subject <- manyTill anyChar eol return subject getContentPart :: String -> Content -> String getContentPart part (Multipart x contents) = concatMap (getContentPart part) contents getContentPart part (Singlepart contentType lines) = if (part == contentType) then show lines else "" getPart :: String -> Email -> String getPart partName (Email x contents) = getContentPart partName contents flatten :: Email -> [Content] flatten (Email header content) = flattenContent content flattenContent :: Content -> [Content] flattenContent content = case content of Multipart _ contents -> concatMap flattenContent contents Singlepart _ _ -> [content] getAttachments :: [Content] -> [Attachment] getAttachments = mapMaybe convertToAttachment convertToAttachment :: Content -> Maybe Attachment convertToAttachment content = case content of Multipart contentType contents -> Nothing Singlepart contentType headersAndData -> case headMay (lines headersAndData) of Nothing -> Nothing Just firstLine -> if not ("name" `isInfixOf` firstLine) then Nothing else let fileData = tail $ dropWhile (/= "") (lines headersAndData) headers = takeWhile (/= "") (lines headersAndData) in Just $ Attachment contentType headers (concat fileData) parseEmail :: String -> Either ParseError Email parseEmail = parse emailFormat "(unknown)" emailFormat :: ParsecT [Char] u Identity Email emailFormat = do (header, contentType) <- getHeaders body <- emailContent contentType Nothing return $ Email header body contentFormat :: Maybe [String] -> ParsecT [Char] u Identity Content contentFormat boundary = do (header, contentType) <- getHeaders body <- emailContent contentType boundary return body getHeaders :: ParsecT [Char] u Identity ([Char], [Char]) getHeaders = do header <- manyTill anyChar $ try (string "Content-Type: ") contentType <- manyTill anyChar $ string "; " return (header, contentType) emailContent :: String -> Maybe [String] -> ParsecT [Char] u Identity Content emailContent contentType boundary = if "multipart" `isInfixOf` contentType then do manyTill anyChar $ try (string "boundary=") thisBoundary <- manyTill anyChar eol newBoundary <- return $ maybe [thisBoundary] (thisBoundary :) boundary eol body <- multipart $ Just newBoundary return $ Multipart contentType body else do content <- notBoundaryLines boundary return $ Singlepart contentType content multipart :: Maybe [String] -> ParsecT [Char] u Identity [Content] multipart boundary = do contents <- manyTill (contentFormat boundary) eof return contents line :: ParsecT [Char] u Identity [Char] line = manyTill anyChar eol --Eats newlines notBoundaryLines :: Maybe [String] -> ParsecT [Char] u Identity [Char] notBoundaryLines boundary = do curLine <- line if maybeInfix curLine boundary then return "" else notBoundaryLines boundary >>= (\lines -> return $ curLine ++ lines) maybeInfix :: String -> Maybe [String] -> Bool maybeInfix string = maybe False ((any . flip isInfixOf) string) boundaries :: [String] -> ParsecT [Char] u Identity [Char] boundaries [] = try (string "hopefully this never matches #HACK aewjfkccnas") boundaries (x:xs) = try (string x) <|> boundaries xs boundaries [x] = try (string x) <?> "boundary" eol :: ParsecT [Char] u Identity [Char] eol = try (string "\n\r") <|> try (string "\r\n") <|> string "\n" <|> string "\r" <?> "end of line"
MattWis/smallEmail
smallEmail/ParseEmail.hs
Haskell
mit
4,544
{-# LANGUAGE OverloadedStrings #-} module Console.GitHubStats.StatsSpec where import Test.Hspec import Console.GitHubStats.Stats import Console.GitHubStats.Types spec :: Spec spec = describe "mkHistogram" $ do it "sorts languages in ascending order" $ do let repos = [ Repository { repoLanguage = Just "PureScript" } , Repository { repoLanguage = Just "Ruby" } , Repository { repoLanguage = Just "Haskell" } , Repository { repoLanguage = Just "Haskell" } , Repository { repoLanguage = Just "Ruby" } , Repository { repoLanguage = Just "Haskell" } ] shouldBe (mkHistogram repos) [ "### Haskell 3" , "## Ruby 2" , "# PureScript 1" ] it "discards repositories without a language" $ do let repos = [ Repository { repoLanguage = Nothing } , Repository { repoLanguage = Just "Haskell" } , Repository { repoLanguage = Just "Haskell" } ] mkHistogram repos `shouldBe` [ "## Haskell 2" ]
acamino/ghs
test/Console/GitHubStats/StatsSpec.hs
Haskell
mit
1,118
module Core.LambdaLift.MFE ( identifyMFE ) where import Common import Core.AST import Core.AnnotAST import Core.Prelude identifyMFE :: AnnotProgram Int (Annot Int Name) -> Program (Annot Int Name) identifyMFE = Program . map identifySC . getProgramF where identifySC (SupercombF name [] body) = Supercomb name [] body' where body' = identifyExpr 0 body transformMFE :: Int -> Expr (Annot Int Name) -> Expr (Annot Int Name) transformMFE k e = ELet False [(Annot (k, anonym), e)] (EVar anonym) -- check whether a redex notCandidate :: Expr (Annot Int Name) -> Bool notCandidate e = case e of EVar _ -> True ENum _ -> True EConstr _ _ -> True EAp (EVar v) _ -> elem v operators _ -> False identifyExpr :: Int -> AnnotExpr Int (Annot Int Name) -> Expr (Annot Int Name) identifyExpr cxt a@(Annot (k, e)) | cxt == k || notCandidate e' = e' | otherwise = transformMFE k e' where e' = identifyExpr1 a identifyExpr1 :: AnnotExpr Int (Annot Int Name) -> Expr (Annot Int Name) identifyExpr1 (Annot (k, e)) = case e of EVarF v -> EVar v ENumF n -> ENum n EConstrF tag arity -> EConstr tag arity EApF e1 e2 -> EAp (identifyExpr k e1) (identifyExpr k e2) ELetF rec defs body -> ELet rec defs' body' where defs' = [(Annot (k, x), identifyExpr k e) | (Annot (k, x), e) <- defs] body' = identifyExpr k body ECaseF e alts -> ECase (identifyExpr k e) (map (identifyAlter k) alts) EAbsF args body -> EAbs args (identifyExpr k' body) where k' = getAnnot (head args) identifyAlter :: Int -> AnnotAlter Int (Annot Int Name) -> Alter (Annot Int Name) identifyAlter k (AlterF tag xs body) = Alter tag xs (identifyExpr k body)
meimisaki/Rin
src/Core/LambdaLift/MFE.hs
Haskell
mit
1,669
module Ternary.Performance ( performanceTest, evalPerformance) where import System.TimeIt import Ternary.Core.Digit (T2(..)) import Ternary.Util.Misc (forceElements, forceElementsIO) import Ternary.List.Exact import Ternary.List.ExactNum () import Ternary.Compiler.ArrayLookup (warmup) import Ternary.Sampling.Expression import Ternary.Sampling.Evaluation import Ternary.QuickCheckUtil (randomsR) randomT2s :: Int -> [T2] randomT2s seed = map toEnum (randomsR seed (0,4)) randomExact :: Int -> Exact randomExact seed = Exact (randomT2s seed) 0 assertWarm :: IO () assertWarm = putStr " Warmup: " >> timeIt warmup -- The time needed to construct random test samples must be excluded -- from measurements. On the flip side, the time to construct the -- final result of a computation must be included. The following -- ensures the first n digits of an exact number are fully evaluated: force :: Int -> Exact -> IO () force n = (return $!) . forceElements . take n . streamDigits timeMultiplication :: Int -> Exact -> Exact -> IO () timeMultiplication n x y = do force (n+2) x force (n+2) y putStr " Array Lookup " time multiplyAltAL putStr " Array State " time multiplyAltAS where time (**) = timeIt $ force n (x ** y) performanceTest = do putStrLn "\nPerformance:" assertWarm timeMultiplication 6000 (randomExact 0) (randomExact 1) timeExpressionEval :: Expr -> [T2] -> IO () timeExpressionEval expr as = do forceElementsIO as len <- time (evalFinite1 expr as) time (take len (streamDigits $ smartEval expr binding)) putStrLn ("Number of output digits = " ++ show len) where binding = bind (Exact as 0) time list = timeIt (forceElementsIO list >> return (length list)) evalPerformance = do timeExpressionEval (extreme Mins 20000) (take 5 $ randomT2s 0) timeExpressionEval (extreme Plus 60) (take 8000 $ randomT2s 0)
jeroennoels/exact-real
test/Ternary/Performance.hs
Haskell
mit
1,887
-- | <https://tools.ietf.org/html/rfc4511#section-4.11 Abandon> operation. -- -- This operation comes in two flavours: -- -- * asynchronous, 'IO' based ('abandonAsync') -- -- * asynchronous, 'STM' based ('abandonAsyncSTM') -- -- Of those, the first one ('abandonAsync') is probably the most useful for the typical usecase. -- -- Synchronous variants are unavailable because the Directory does not -- respond to @AbandonRequest@s. module Ldap.Client.Abandon ( abandonAsync , abandonAsyncSTM ) where import Control.Monad (void) import Control.Monad.STM (STM, atomically) import qualified Ldap.Asn1.Type as Type import Ldap.Client.Internal -- | Perform the Abandon operation asynchronously. abandonAsync :: Ldap -> Async a -> IO () abandonAsync l = atomically . abandonAsyncSTM l -- | Perform the Abandon operation asynchronously. abandonAsyncSTM :: Ldap -> Async a -> STM () abandonAsyncSTM l = void . sendRequest l die . abandonRequest where die = error "Ldap.Client.Abandon: do not wait for the response to UnbindRequest" abandonRequest :: Async a -> Request abandonRequest (Async i _) = Type.AbandonRequest i
VictorDenisov/ldap-client
src/Ldap/Client/Abandon.hs
Haskell
bsd-2-clause
1,166
{-# LANGUAGE TemplateHaskell, KindSignatures, TypeFamilies, FlexibleContexts, GADTs #-} module Model where import Prelude import Yesod import Data.Text (Text) import Database.Persist.Quasi import Database.Persist.MongoDB import Language.Haskell.TH.Syntax -- You can define all of your database entities in the entities file. -- You can find more information on persistent and how to declare entities -- at: -- http://www.yesodweb.com/book/persistent/ share [mkPersist MkPersistSettings { mpsBackend = ConT ''Action }, mkMigrate "migrateAll"] $(persistFileWith lowerCaseSettings "config/models")
cutsea110/blog
Model.hs
Haskell
bsd-2-clause
601
module Stats (nintyFifth, Estimate(..)) where import qualified Data.Vector.Unboxed as U import Statistics.Sample (mean) import Statistics.Resampling (resample, fromResample) import Statistics.Resampling.Bootstrap (bootstrapBCA, Estimate(..) ) import System.Random.MWC (create) nintyFifth :: [Double] -> IO Estimate nintyFifth sample = do g <- create resamples <- resample g [mean] 10000 sampleU -- (length sample^2) sampleU -- print $ U.length $ fromResample $ head $ resamples -- print resamples return $ head $ bootstrapBCA 0.95 sampleU [mean] resamples where sampleU = U.fromList sample
ku-fpg/ldpc
src/Stats.hs
Haskell
bsd-2-clause
647
module ImplicitRefs.Evaluator ( valueOf , run , eval , evalProgram ) where import Control.Applicative ((<|>)) import Control.Arrow (second) import Control.Monad.Except import ImplicitRefs.Data import ImplicitRefs.Parser type EvaluateResult = IOTry ExpressedValue liftMaybe :: LangError -> Maybe a -> IOTry a liftMaybe _ (Just x) = return x liftMaybe y Nothing = throwError y run :: String -> IO (Try ExpressedValue) run input = runExceptT $ do prog <- liftTry (parseProgram input) store <- liftIO initStore evalProgram store prog evalProgram :: Store -> Program -> EvaluateResult evalProgram store (Prog expr) = eval store expr eval :: Store -> Expression -> EvaluateResult eval store expr = valueOf expr empty store valueOf :: Expression -> Environment -> Store -> EvaluateResult valueOf (ConstExpr x) _ _ = evalConstExpr x valueOf (VarExpr var) env s = evalVarExpr var env s valueOf (LetRecExpr procs recBody) env s = evalLetRecExpr procs recBody env s valueOf (BinOpExpr op expr1 expr2) env s = evalBinOpExpr op expr1 expr2 env s valueOf (UnaryOpExpr op expr) env s = evalUnaryOpExpr op expr env s valueOf (CondExpr pairs) env s = evalCondExpr pairs env s valueOf (LetExpr bindings body) env s = evalLetExpr bindings body env s valueOf (ProcExpr params body) env _ = evalProcExpr params body env valueOf (CallExpr rator rands) env s = evalCallExpr rator rands env s valueOf (BeginExpr exprs) env s = evalBeginExpr exprs env s valueOf (AssignExpr name expr) env s = evalAssignExpr name expr env s valueOf (SetDynamicExpr n e b) env s = evalSetDynamicExpr n e b env s valueOf (RefExpr name) env s = evalRefExpr name env valueOf (DeRefExpr name) env s = evalDeRefExpr name env s valueOf (SetRefExpr name expr) env s = evalSetRefExpr name expr env s evalRefExpr :: String -> Environment -> EvaluateResult evalRefExpr name env = do ref <- getRef env name return $ ExprRef ref unpackExprRef :: ExpressedValue -> IOTry Ref unpackExprRef (ExprRef ref) = return ref unpackExprRef notRef = throwError $ TypeMismatch "reference" notRef unpackProc :: ExpressedValue -> IOTry Procedure unpackProc (ExprProc proc) = return proc unpackProc notProc = throwError $ TypeMismatch "procedure" notProc getExprRef :: String -> Environment -> Store -> IOTry Ref getExprRef name env store = do refRef <- getRef env name refVal <- deRef store refRef unpackExprRef refVal evalDeRefExpr :: String -> Environment -> Store -> EvaluateResult evalDeRefExpr name env store = do ref <- getExprRef name env store deRef store ref evalSetRefExpr :: String -> Expression -> Environment -> Store -> EvaluateResult evalSetRefExpr name expr env store = do ref <- getExprRef name env store val <- valueOf expr env store setRef store ref val return $ ExprBool False evalSetDynamicExpr :: String -> Expression -> Expression -> Environment -> Store -> EvaluateResult evalSetDynamicExpr name expr body env store = do ref <- getRef env name oldVal <- deRef store ref newVal <- valueOf expr env store setRef store ref newVal result <- valueOf body env store setRef store ref oldVal return result getRef :: Environment -> String -> IOTry Ref getRef env name = case apply env name of Just (DenoRef ref) -> return ref Nothing -> throwError $ UnboundVar name evalAssignExpr :: String -> Expression -> Environment -> Store -> EvaluateResult evalAssignExpr name expr env store = do val <- valueOf expr env store ref <- getRef env name setRef store ref val return $ ExprBool False evalBeginExpr :: [Expression] -> Environment -> Store -> EvaluateResult evalBeginExpr exprs env store = foldl func (return $ ExprBool False) exprs where func acc ele = do acc valueOf ele env store evalExpressionList :: [Expression] -> Environment -> Store -> IOTry [ExpressedValue] evalExpressionList lst env store = reverse <$> evaledList where func acc expr = do lst <- acc ele <- valueOf expr env store return $ ele:lst evaledList = foldl func (return []) lst evalConstExpr :: ExpressedValue -> EvaluateResult evalConstExpr = return evalVarExpr :: String -> Environment -> Store -> EvaluateResult evalVarExpr name env store = do denoRef <- liftMaybe (UnboundVar name) (apply env name) let (DenoRef ref) = denoRef deRef store ref evalLetRecExpr :: [(String, [String], Expression)] -> Expression -> Environment -> Store -> EvaluateResult evalLetRecExpr procsSubUnits recBody env store = do newEnv <- extendRecMany store procsSubUnits env valueOf recBody newEnv store binBoolOpMap :: [(BinOp, Bool -> Bool -> Bool)] binBoolOpMap = [] binNumToNumOpMap :: [(BinOp, Integer -> Integer -> Integer)] binNumToNumOpMap = [(Add, (+)), (Sub, (-)), (Mul, (*)), (Div, div)] binNumToBoolOpMap :: [(BinOp, Integer -> Integer -> Bool)] binNumToBoolOpMap = [(Gt, (>)), (Le, (<)), (Eq, (==))] unaryBoolOpMap :: [(UnaryOp, Bool -> Bool)] unaryBoolOpMap = [] unaryNumToNumOpMap :: [(UnaryOp, Integer -> Integer)] unaryNumToNumOpMap = [(Minus, negate)] unaryNumToBoolOpMap :: [(UnaryOp, Integer -> Bool)] unaryNumToBoolOpMap = [(IsZero, (0 ==))] unpackNum :: ExpressedValue -> IOTry Integer unpackNum (ExprNum n) = return n unpackNum notNum = throwError $ TypeMismatch "number" notNum unpackBool :: ExpressedValue -> IOTry Bool unpackBool (ExprBool b) = return b unpackBool notBool = throwError $ TypeMismatch "boolean" notBool tryFind :: Eq a => LangError -> a -> [(a, b)] -> IOTry b tryFind err x pairs = liftMaybe err (lookup x pairs) tryFindOp :: (Eq a, Show a) => a -> [(a, b)] -> IOTry b tryFindOp op = tryFind (UnknownOperator $ show op) op binOpConverter :: (ExpressedValue -> IOTry a) -> (ExpressedValue -> IOTry b) -> (c -> ExpressedValue) -> (a -> b -> c) -> (ExpressedValue -> ExpressedValue -> EvaluateResult) binOpConverter unpack1 unpack2 trans func val1 val2 = do va <- unpack1 val1 vb <- unpack2 val2 return . trans $ func va vb binOps :: [(BinOp, ExpressedValue -> ExpressedValue -> EvaluateResult)] binOps = concat [binNum2Num, binNum2Bool, binBool2Bool] where n2nTrans = binOpConverter unpackNum unpackNum ExprNum binNum2Num = fmap (second n2nTrans) binNumToNumOpMap n2bTrans = binOpConverter unpackNum unpackNum ExprBool binNum2Bool = fmap (second n2bTrans) binNumToBoolOpMap b2bTrans = binOpConverter unpackBool unpackBool ExprBool binBool2Bool = fmap (second b2bTrans) binBoolOpMap unaryOpConverter :: (ExpressedValue -> IOTry a) -> (b -> ExpressedValue) -> (a -> b) -> (ExpressedValue -> EvaluateResult) unaryOpConverter unpack trans func val = do va <- unpack val return . trans $ func va unaryOps :: [(UnaryOp, ExpressedValue -> EvaluateResult)] unaryOps = concat [unaryNum2Num, unaryNum2Bool, unaryBool2Bool] where n2nTrans = unaryOpConverter unpackNum ExprNum unaryNum2Num = fmap (second n2nTrans) unaryNumToNumOpMap n2bTrans = unaryOpConverter unpackNum ExprBool unaryNum2Bool = fmap (second n2bTrans) unaryNumToBoolOpMap b2bTrans = unaryOpConverter unpackBool ExprBool unaryBool2Bool = fmap (second b2bTrans) unaryBoolOpMap evalBinOpExpr :: BinOp -> Expression -> Expression -> Environment -> Store -> EvaluateResult evalBinOpExpr op expr1 expr2 env store = do func <- tryFindOp op binOps v1 <- valueOf expr1 env store v2 <- valueOf expr2 env store func v1 v2 evalUnaryOpExpr :: UnaryOp -> Expression -> Environment -> Store -> EvaluateResult evalUnaryOpExpr op expr env store = do func <- tryFindOp op unaryOps v <- valueOf expr env store func v evalCondExpr :: [(Expression, Expression)] -> Environment -> Store -> EvaluateResult evalCondExpr [] _ _ = throwError $ RuntimeError "No predicate is true." evalCondExpr ((e1, e2):pairs) env store = do val <- valueOf e1 env store bool <- unpackBool val if bool then valueOf e2 env store else evalCondExpr pairs env store evalLetExpr :: [(String, Expression)] -> Expression -> Environment -> Store -> EvaluateResult evalLetExpr bindings body env store = evalLetExpr' bindings body env where evalLetExpr' [] body newEnv = valueOf body newEnv store evalLetExpr' ((name, expr):xs) body newEnv = do val <- valueOf expr env store ref <- newRef store val evalLetExpr' xs body (extend name (DenoRef ref) newEnv) evalProcExpr :: [String] -> Expression -> Environment -> EvaluateResult evalProcExpr params body env = return . ExprProc $ Procedure params body env evalCallExpr :: Expression -> [Expression] -> Environment -> Store -> EvaluateResult evalCallExpr ratorExpr randExprs env store = do rator <- valueOf ratorExpr env store content <- unpackProc rator rands <- evalExpressionList randExprs env store applyProcedure content rands where safeZip :: [String] -> [ExpressedValue] -> IOTry [(String, ExpressedValue)] safeZip as bs = let na = length as nb = length bs in if na /= nb then throwError $ ArgNumMismatch (toInteger na) bs else return $ zip as bs allocateAll :: [(String, ExpressedValue)] -> Environment -> IOTry Environment allocateAll [] env = return env allocateAll ((name, val):pairs) env = do ref <- newRef store val allocateAll pairs (extend name (DenoRef ref) env) applyProcedure :: Procedure -> [ExpressedValue] -> EvaluateResult applyProcedure (Procedure params body savedEnv) rands = do pairs <- safeZip params rands newEnv <- allocateAll pairs savedEnv valueOf body newEnv store
li-zhirui/EoplLangs
src/ImplicitRefs/Evaluator.hs
Haskell
bsd-3-clause
9,909
module Main where import Text.Regex.Posix ((=~)) import System.Environment (getArgs) myGrep :: String -> String -> IO () myGrep regex filename = do fileSlurp <- readFile filename mapM_ putStrLn $ filter (=~ regex) (lines fileSlurp) main :: IO () main = do (myRegex:filenames) <- getArgs mapM_ (myGrep myRegex) filenames
mrordinaire/data-analysis
app/hgrep.hs
Haskell
bsd-3-clause
335
{-# LANGUAGE KindSignatures #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TemplateHaskell #-} module Main where import Control.THEff import Control.THEff.Fresh mkEff "UnicalChar" ''Fresh ''Char ''NoEff main:: IO () main = putStrLn $ runUnicalChar 'A' $ do a <- fresh b <- fresh c <- fresh return $ a:b:[c]
KolodeznyDiver/THEff
samples/SampleFresh.hs
Haskell
bsd-3-clause
412
{-| Module : Types.BooleanLogic Description : Some type families on the kind Bool. Copyright : (c) Alexander Vieth, 2015 Licence : BSD3 Maintainer : aovieth@gmail.com Stability : experimental Portability : non-portable (GHC only) -} {-# LANGUAGE AutoDeriveTypeable #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} module Types.BooleanLogic ( And , Or , Not , Any , All ) where type family And (a :: Bool) (b :: Bool) :: Bool where And 'True 'True = 'True And a b = 'False type family Or (a :: Bool) (b :: Bool) :: Bool where Or 'False 'False = 'False Or a b = 'True type family Not (a :: Bool) :: Bool where Not 'True = 'False Not 'False = 'True type family Any (bs :: [Bool]) :: Bool where Any '[] = False Any (b ': bs) = Or b (Any bs) type family All (bs :: [Bool]) :: Bool where All '[] = True All (b ': bs) = And b (All bs)
avieth/Relational
Types/BooleanLogic.hs
Haskell
bsd-3-clause
998
{-# Language DataKinds, OverloadedStrings #-} {-# Language RankNTypes, TypeOperators #-} {-# Language PatternSynonyms #-} {-# LANGUAGE ImplicitParams #-} {-# LANGUAGE GADTs #-} module SAWScript.X86 ( Options(..) , proof , proofWithOptions , linuxInfo , bsdInfo , Fun(..) , Goal(..) , gGoal , getGoals , X86Error(..) , X86Unsupported(..) , SharedContext , CallHandler , Sym , RelevantElf(..) , getElf , getRelevant , findSymbols , posFn , loadGlobal ) where import Control.Lens ((^.)) import Control.Exception(Exception(..),throwIO) import Control.Monad.IO.Class(liftIO) import qualified Data.BitVector.Sized as BV import Data.ByteString (ByteString) import qualified Data.ByteString as BS import qualified Data.ByteString.Char8 as BSC import qualified Data.Map as Map import qualified Data.Text as Text import Data.Text.Encoding(decodeUtf8) import System.IO(hFlush,stdout) import Data.Maybe(mapMaybe) -- import Text.PrettyPrint.ANSI.Leijen(pretty) import qualified Data.ElfEdit as Elf import Data.Parameterized.Some(Some(..)) import Data.Parameterized.Context(EmptyCtx,(::>),singleton) -- What4 import What4.Interface(asNat,asBV) import qualified What4.Interface as W4 import qualified What4.Config as W4 import What4.FunctionName(functionNameFromText) import What4.ProgramLoc(ProgramLoc,Position(OtherPos)) -- Crucible import Lang.Crucible.Analysis.Postdom (postdomInfo) import Lang.Crucible.CFG.Core(SomeCFG(..), TypeRepr(..), cfgHandle) import Lang.Crucible.CFG.Common(GlobalVar) import Lang.Crucible.Simulator.RegMap(regValue, RegMap(..), RegEntry(..)) import Lang.Crucible.Simulator.RegValue(RegValue'(..)) import Lang.Crucible.Simulator.GlobalState(insertGlobal,emptyGlobals) import Lang.Crucible.Simulator.Operations(defaultAbortHandler) import Lang.Crucible.Simulator.OverrideSim(runOverrideSim, callCFG, readGlobal) import Lang.Crucible.Simulator.EvalStmt(executeCrucible) import Lang.Crucible.Simulator.ExecutionTree (ExecResult(..), SimContext(..), FnState(..) , ExecState(InitialState) , FunctionBindings(..) ) import Lang.Crucible.Simulator.SimError(SimError(..), SimErrorReason) import Lang.Crucible.Backend (getProofObligations,ProofGoal(..),labeledPredMsg,labeledPred,goalsToList ,assumptionsPred,IsSymBackend(..),SomeBackend(..),HasSymInterface(..)) import Lang.Crucible.FunctionHandle(HandleAllocator,newHandleAllocator,insertHandleMap,emptyHandleMap) -- Crucible LLVM import SAWScript.Crucible.LLVM.CrucibleLLVM (Mem, ppPtr, pattern LLVMPointer, bytesToInteger) import Lang.Crucible.LLVM.Intrinsics(llvmIntrinsicTypes) import Lang.Crucible.LLVM.MemModel (mkMemVar) import qualified Lang.Crucible.LLVM.MemModel as Crucible -- Macaw import Data.Macaw.Architecture.Info(ArchitectureInfo) import Data.Macaw.Discovery(analyzeFunction) import Data.Macaw.Discovery.State(FunctionExploreReason(UserRequest) , emptyDiscoveryState, AddrSymMap) import Data.Macaw.Memory( Memory, MemSegment(..), MemSegmentOff(..) , segmentBase, segmentOffset , addrOffset, memWordToUnsigned , segoffAddr, incAddr , readWord8, readWord16le, readWord32le, readWord64le) import Data.Macaw.Memory.ElfLoader( LoadOptions(..) , memoryForElfAllSymbols , memoryForElf , MemSymbol(..) ) import Data.Macaw.Symbolic( ArchRegStruct , mkFunCFG , GlobalMap , MacawSimulatorState(..) , macawExtensions , unsupportedSyscalls , defaultMacawArchStmtExtensionOverride ) import qualified Data.Macaw.Symbolic as Macaw ( LookupFunctionHandle(..) ) import Data.Macaw.Symbolic( MacawExt , MacawFunctionArgs ) import Data.Macaw.Symbolic.Backend(MacawSymbolicArchFunctions(..), crucArchRegTypes) import Data.Macaw.X86(X86Reg(..), x86_64_linux_info,x86_64_freeBSD_info) import Data.Macaw.X86.ArchTypes(X86_64) import Data.Macaw.X86.Symbolic ( x86_64MacawSymbolicFns, x86_64MacawEvalFn, newSymFuns , lookupX86Reg ) import Data.Macaw.X86.Crucible(SymFuns(..)) -- Saw Core import Verifier.SAW.SharedTerm(Term, mkSharedContext, SharedContext, scImplies) import Verifier.SAW.Term.Pretty(showTerm) import Verifier.SAW.Recognizer(asBool) import Verifier.SAW.Simulator.What4.ReturnTrip (sawRegisterSymFunInterp, toSC, saw_ctx) -- Cryptol Verifier import Verifier.SAW.CryptolEnv(CryptolEnv,initCryptolEnv,loadCryptolModule,defaultPrimitiveOptions) import Verifier.SAW.Cryptol.Prelude(scLoadPreludeModule,scLoadCryptolModule) -- SAWScript import SAWScript.X86Spec hiding (Prop) import SAWScript.Proof(boolToProp, Prop) import SAWScript.Crucible.Common ( newSAWCoreBackend, newSAWCoreExprBuilder , sawCoreState, SomeOnlineBackend(..) ) -------------------------------------------------------------------------------- -- Input Options -- | What we'd like done, plus additional information from the "outside world". data Options = Options { fileName :: FilePath -- ^ Name of the elf file to process. , function :: Fun -- ^ Function that we'd like to extract. , archInfo :: ArchitectureInfo X86_64 -- ^ Architectural flavor. See "linuxInfo" and "bsdInfo". , backend :: SomeBackend Sym -- ^ The Crucible backend to use. , allocator :: HandleAllocator -- ^ The handle allocator used to allocate @memvar@ , memvar :: GlobalVar Mem -- ^ The global variable storing the heap , cryEnv :: CryptolEnv , extraGlobals :: [(ByteString,Integer,Unit)] -- ^ Additional globals to auto-load from the ELF file } linuxInfo :: ArchitectureInfo X86_64 linuxInfo = x86_64_linux_info bsdInfo :: ArchitectureInfo X86_64 bsdInfo = x86_64_freeBSD_info -------------------------------------------------------------------------------- -- Spec data Fun = Fun { funName :: ByteString, funSpec :: FunSpec } -------------------------------------------------------------------------------- type CallHandler = Sym -> Macaw.LookupFunctionHandle (MacawSimulatorState Sym) Sym X86_64 -- | Run a top-level proof. -- Should be used when making a standalone proof script. proof :: (FilePath -> IO ByteString) -> ArchitectureInfo X86_64 -> FilePath {- ^ ELF binary -} -> Maybe FilePath {- ^ Cryptol spec, if any -} -> [(ByteString,Integer,Unit)] -> Fun -> IO (SharedContext,Integer,[Goal]) proof fileReader archi file mbCry globs fun = do sc <- mkSharedContext halloc <- newHandleAllocator scLoadPreludeModule sc scLoadCryptolModule sc sym <- newSAWCoreExprBuilder sc SomeOnlineBackend bak <- newSAWCoreBackend sym let ?fileReader = fileReader cenv <- loadCry sym mbCry mvar <- mkMemVar "saw_x86:llvm_memory" halloc proofWithOptions Options { fileName = file , function = fun , archInfo = archi , backend = SomeBackend bak , allocator = halloc , memvar = mvar , cryEnv = cenv , extraGlobals = globs } -- | Run a proof using the given backend. -- Useful for integrating with other tool. proofWithOptions :: Options -> IO (SharedContext,Integer,[Goal]) proofWithOptions opts = do elf <- getRelevant =<< getElf (fileName opts) translate opts elf (function opts) -- | Add interpretations for the symbolic functions, by looking -- them up in the Cryptol environment. There should be definitions -- for "aesenc", "aesenclast", and "clmul". registerSymFuns :: Opts -> IO (SymFuns Sym) registerSymFuns opts = do let sym = optsSym opts st <- sawCoreState sym sfs <- newSymFuns sym sawRegisterSymFunInterp st (fnAesEnc sfs) (mk2 "aesenc") sawRegisterSymFunInterp st (fnAesEncLast sfs) (mk2 "aesenclast") sawRegisterSymFunInterp st (fnClMul sfs) (mk2 "clmul") return sfs where err nm xs = unlines [ "Type error in call to " ++ show (nm::String) ++ ":" , "*** Expected: 2 arguments" , "*** Given: " ++ show (length xs) ++ " arguments" ] mk2 nm _sc xs = case xs of [_,_] -> cryTerm opts nm xs _ -> fail (err nm xs) -------------------------------------------------------------------------------- -- ELF -- | These are the parts of the ELF file that we care about. data RelevantElf = RelevantElf { memory :: Memory 64 , funSymMap :: AddrSymMap 64 , symMap :: AddrSymMap 64 } -- | Parse an elf file. getElf :: FilePath -> IO (Elf.ElfHeaderInfo 64) getElf path = do bs <- BS.readFile path case Elf.decodeElfHeaderInfo bs of Right (Elf.SomeElf hdr) | Elf.ELFCLASS64 <- Elf.headerClass (Elf.header hdr) -> pure hdr | otherwise -> unsupported "32-bit ELF format" Left (off, msg) -> malformed $ mconcat [ "Invalid ELF header at offset " , show off , ": " , msg ] -- | Extract a Macaw "memory" from an ELF file and resolve symbols. getRelevant :: Elf.ElfHeaderInfo 64 -> IO RelevantElf getRelevant elf = case (memoryForElf opts elf, memoryForElfAllSymbols opts elf) of (Left err, _) -> malformed err (_, Left err) -> malformed err (Right (mem, faddrs, _warnings, _errs), Right (_, addrs, _, _)) -> do let toEntry msym = (memSymbolStart msym, memSymbolName msym) return RelevantElf { memory = mem , funSymMap = Map.fromList (map toEntry faddrs) , symMap = Map.fromList (map toEntry addrs) } where -- XXX: What options do we want? opts = LoadOptions { loadOffset = Just 0 } -- | Find the address(es) of a symbol by name. findSymbols :: AddrSymMap 64 -> ByteString -> [ MemSegmentOff 64 ] findSymbols addrs nm = Map.findWithDefault [] nm invertedMap where invertedMap = Map.fromListWith (++) [ (y,[x]) | (x,y) <- Map.toList addrs ] -- | Find the single address of a symbol, or fail. findSymbol :: AddrSymMap 64 -> ByteString -> IO (MemSegmentOff 64) findSymbol addrs nm = case findSymbols addrs nm of [addr] -> return $! addr [] -> malformed ("Could not find function " ++ show nm) _ -> malformed ("Multiple definitions for " ++ show nm) loadGlobal :: RelevantElf -> (ByteString, Integer, Unit) -> IO [(String, Integer, Unit, [Integer])] loadGlobal elf (nm,n,u) = case findSymbols (symMap elf) nm of [] -> do print $ symMap elf err "Global not found" _ -> mapM loadLoc (findSymbols (symMap elf) nm) where mem = memory elf sname = BSC.unpack nm readOne a = case u of Bytes -> check (readWord8 mem a) Words -> check (readWord16le mem a) DWords -> check (readWord32le mem a) QWords -> check (readWord64le mem a) _ -> err ("unsuported global size: " ++ show u) nextAddr = incAddr (bytesToInteger (1 *. u)) addrsFor o = take (fromIntegral n) (iterate nextAddr o) check :: (Show b, Integral a) => Either b a -> IO Integer check res = case res of Left e -> err (show e) Right a -> return (fromIntegral a) loadLoc off = do let start = segoffAddr off a = memWordToUnsigned (addrOffset start) is <- mapM readOne (addrsFor start) return (sname, a, u, is) err :: [Char] -> IO a err xs = fail $ unlines [ "Failed to load global." , "*** Global: " ++ show nm , "*** Error: " ++ xs ] -- | The position associated with a specific location. posFn :: MemSegmentOff 64 -> Position posFn = OtherPos . Text.pack . show -- | Load a file with Cryptol decls. loadCry :: (?fileReader :: FilePath -> IO ByteString) => Sym -> Maybe FilePath -> IO CryptolEnv loadCry sym mb = do sc <- saw_ctx <$> sawCoreState sym env <- initCryptolEnv sc case mb of Nothing -> return env Just file -> snd <$> loadCryptolModule sc defaultPrimitiveOptions env file -------------------------------------------------------------------------------- -- Translation callHandler :: Overrides -> CallHandler callHandler callMap sym = Macaw.LookupFunctionHandle $ \st mem regs -> do case lookupX86Reg X86_IP regs of Just (RV ptr) | LLVMPointer base off <- ptr -> case (asNat base, BV.asUnsigned <$> asBV off) of (Just b, Just o) -> case Map.lookup (b,o) callMap of Just h -> case h sym of Macaw.LookupFunctionHandle f -> f st mem regs Nothing -> fail ("No over-ride for function: " ++ show (ppPtr ptr)) _ -> fail ("Non-static call: " ++ show (ppPtr ptr)) _ -> fail "[Bug?] Failed to obtain the value of the IP register." -- | Verify the given function. The function matches it sepcification, -- as long as the returned goals can be discharged. -- Returns the shared context and the goals (from the Sym) -- and the integer is the (aboslute) address of the function. translate :: Options -> RelevantElf -> Fun -> IO (SharedContext, Integer, [Goal]) translate opts elf fun = do let name = funName fun sayLn ("Translating function: " ++ BSC.unpack name) let ?memOpts = Crucible.defaultMemOptions let ?recordLLVMAnnotation = \_ _ _ -> return () let bak = backend opts sym = case bak of SomeBackend b -> backendGetSym b sopts = Opts { optsBackend = bak, optsCry = cryEnv opts, optsMvar = memvar opts } sfs <- registerSymFuns sopts (globs,st,checkPost) <- case funSpec fun of NewStyle mkSpec debug -> do gss <- mapM (loadGlobal elf) (extraGlobals opts) spec0 <- mkSpec (cryEnv opts) let spec = spec0 {specGlobsRO = concat (specGlobsRO spec0:gss)} (gs,st,po) <- verifyMode spec sopts debug st return (gs,st,\st1 -> debug st1 >> po st1) addr <- doSim opts elf sfs name globs st checkPost gs <- getGoals bak sc <- saw_ctx <$> sawCoreState sym return (sc, addr, gs) setSimulatorVerbosity :: (W4.IsSymExprBuilder sym) => Int -> sym -> IO () setSimulatorVerbosity verbosity sym = do verbSetting <- W4.getOptionSetting W4.verbosity (W4.getConfiguration sym) _ <- W4.setOpt verbSetting (toInteger verbosity) return () doSim :: (?memOpts::Crucible.MemOptions, Crucible.HasLLVMAnn Sym) => Options -> RelevantElf -> SymFuns Sym -> ByteString -> (GlobalMap Sym Crucible.Mem 64, Overrides) -> State -> (State -> IO ()) -> IO Integer doSim opts elf sfs name (globs,overs) st checkPost = do say " Looking for address... " addr <- findSymbol (symMap elf) name -- addr :: MemSegmentOff 64 let addrInt = let seg :: MemSegment 64 seg = segoffSegment addr in if segmentBase seg == 0 then toInteger (segmentOffset seg + segoffOffset addr) else error " Not an absolute address" sayLn (show addr) SomeCFG cfg <- statusBlock " Constructing CFG... " $ makeCFG opts elf name addr -- writeFile "XXX.hs" (show cfg) let sym = case backend opts of SomeBackend bak -> backendGetSym bak mvar = memvar opts setSimulatorVerbosity 0 sym execResult <- statusBlock " Simulating... " $ do let crucRegTypes = crucArchRegTypes x86 let macawStructRepr = StructRepr crucRegTypes -- The global pointer validity predicate is required if your memory -- representation has gaps that are not supposed to be mapped and you -- want to verify that no memory accesses touch unmapped regions. -- -- The memory setup for this verifier does not have that problem, and -- thus does not need any additional validity predicates. let noExtraValidityPred _ _ _ _ = return Nothing let archEvalFns = x86_64MacawEvalFn sfs defaultMacawArchStmtExtensionOverride let lookupSyscall = unsupportedSyscalls "saw-script" let ctx :: SimContext (MacawSimulatorState Sym) Sym (MacawExt X86_64) ctx = SimContext { _ctxBackend = backend opts , ctxSolverProof = \a -> a , ctxIntrinsicTypes = llvmIntrinsicTypes , simHandleAllocator = allocator opts , printHandle = stdout , extensionImpl = macawExtensions archEvalFns mvar globs (callHandler overs sym) lookupSyscall noExtraValidityPred , _functionBindings = FnBindings $ insertHandleMap (cfgHandle cfg) (UseCFG cfg (postdomInfo cfg)) emptyHandleMap , _cruciblePersonality = MacawSimulatorState , _profilingMetrics = Map.empty } let initGlobals = insertGlobal mvar (stateMem st) emptyGlobals executeCrucible [] $ InitialState ctx initGlobals defaultAbortHandler macawStructRepr $ runOverrideSim macawStructRepr $ do let args :: RegMap Sym (MacawFunctionArgs X86_64) args = RegMap (singleton (RegEntry macawStructRepr (stateRegs st))) crucGenArchConstraints x86 $ do r <- callCFG cfg args mem <- readGlobal mvar let regs = regValue r let sta = State { stateMem = mem, stateRegs = regs } liftIO (checkPost sta) pure regs case execResult of FinishedResult {} -> pure () AbortedResult {} -> sayLn "[Warning] Function never returns" TimeoutResult {} -> malformed $ unlines [ "Execution timed out" ] return addrInt type TheCFG = SomeCFG (MacawExt X86_64) (EmptyCtx ::> ArchRegStruct X86_64) (ArchRegStruct X86_64) -- | Generate a CFG for the function at the given address. makeCFG :: Options -> RelevantElf -> ByteString -> MemSegmentOff 64 -> IO TheCFG makeCFG opts elf name addr = do (_,Some funInfo) <- return $ analyzeFunction addr UserRequest empty -- writeFile "MACAW.cfg" (show (pretty funInfo)) mkFunCFG x86 (allocator opts) cruxName posFn funInfo where txtName = decodeUtf8 name cruxName = functionNameFromText txtName empty = emptyDiscoveryState (memory elf) (funSymMap elf) (archInfo opts) -------------------------------------------------------------------------------- -- Goals data Goal = Goal { gAssumes :: [ Term ] -- ^ Assuming these , gShows :: Term -- ^ We need to show this , gLoc :: ProgramLoc -- ^ The goal came from here , gMessage :: SimErrorReason -- ^ We should say this if the proof fails } -- | The proposition that needs proving (i.e., assumptions imply conclusion) gGoal :: SharedContext -> Goal -> IO Prop gGoal sc g0 = boolToProp sc [] =<< go (gAssumes g) where g = g0 { gAssumes = mapMaybe skip (gAssumes g0) } _shG = do putStrLn "Assuming:" mapM_ _shT (gAssumes g) putStrLn "Shows:" _shT (gShows g) _shT t = putStrLn (" " ++ showTerm t) skip a = case asBool a of Just True -> Nothing _ -> Just a go xs = case xs of [] -> return (gShows g) a : as -> scImplies sc a =<< go as getGoals :: SomeBackend Sym -> IO [Goal] getGoals (SomeBackend bak) = do obls <- maybe [] goalsToList <$> getProofObligations bak st <- sawCoreState sym mapM (toGoal st) obls where sym = backendGetSym bak toGoal st (ProofGoal asmps g) = do a1 <- toSC sym st =<< assumptionsPred sym asmps p <- toSC sym st (g ^. labeledPred) let SimError loc msg = g^.labeledPredMsg return Goal { gAssumes = [a1] , gShows = p , gLoc = loc , gMessage = msg } instance Show Goal where showsPrec _ g = showString "Goal { gAssumes = " . showList (map (show . showTerm) (gAssumes g)) . showString ", gShows = " . shows (showTerm (gShows g)) . showString ", gLoc = " . shows (gLoc g) . showString ", gMessage = " . shows (show (gMessage g)) . showString " }" -------------------------------------------------------------------------------- -- Specialize the generic functions to the X86. -- | All functions related to X86. x86 :: MacawSymbolicArchFunctions X86_64 x86 = x86_64MacawSymbolicFns -------------------------------------------------------------------------------- -- Calling Convention -- see: http://refspecs.linuxfoundation.org/elf/x86_64-abi-0.99.pdf -- Need to preserve: %rbp, %rbx, %r12--%r15 -- Preserve control bits in MXCSR -- Preserve x87 control word. -- On entry: -- CPU is in x87 mode -- DF in $rFLAGS is clear one entry and return. -- "Red zone" 128 bytes past the end of the stack %rsp. -- * not modified by interrupts -------------------------------------------------------------------------------- -- Errors data X86Unsupported = X86Unsupported String deriving Show data X86Error = X86Error String deriving Show instance Exception X86Unsupported instance Exception X86Error unsupported :: String -> IO a unsupported x = throwIO (X86Unsupported x) malformed :: String -> IO a malformed x = throwIO (X86Error x) -------------------------------------------------------------------------------- -- Status output say :: String -> IO () say x = putStr x >> hFlush stdout sayLn :: String -> IO () sayLn = putStrLn sayOK :: IO () sayOK = sayLn "[OK]" statusBlock :: String -> IO a -> IO a statusBlock msg m = do say msg a <- m sayOK return a
GaloisInc/saw-script
src/SAWScript/X86.hs
Haskell
bsd-3-clause
22,551
{-# LANGUAGE OverloadedStrings #-} module Advent.Day11 where import qualified Data.Char as C import qualified Data.List as L increment :: String -> String increment str = reverse (increment' (reverse str)) where increment' ('z':rest) = 'a' : increment' rest increment' (c:rest) = nextChar c : rest increment' "" = "" nextChar c = C.chr ((C.ord c) + 1) hasIncreasing :: String -> Bool hasIncreasing (a:b:c:rest) = (b' == a' + 1 && c' == b' + 1) || hasIncreasing (b:c:rest) where a' = C.ord a b' = C.ord b c' = C.ord c hasIncreasing _ = False hasBadChar :: String -> Bool hasBadChar str = "i" `L.isInfixOf` str || "o" `L.isInfixOf` str || "l" `L.isInfixOf` str hasPairs :: String -> Bool hasPairs str = (length (filter (\g -> (length g) >= 2) (L.group str))) >= 2 goodPassword :: String -> Bool goodPassword pass = hasIncreasing pass && not (hasBadChar pass) && hasPairs pass nextPassword :: String -> String nextPassword pass = head (filter goodPassword (iterate increment pass))
micxjo/hs-advent
src/Advent/Day11.hs
Haskell
bsd-3-clause
1,061
{-# language CPP #-} -- No documentation found for Chapter "CommandBufferResetFlagBits" module Vulkan.Core10.Enums.CommandBufferResetFlagBits ( CommandBufferResetFlags , CommandBufferResetFlagBits( COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT , .. ) ) where import Vulkan.Internal.Utils (enumReadPrec) import Vulkan.Internal.Utils (enumShowsPrec) import GHC.Show (showString) import Numeric (showHex) import Vulkan.Zero (Zero) import Data.Bits (Bits) import Data.Bits (FiniteBits) import Foreign.Storable (Storable) import GHC.Read (Read(readPrec)) import GHC.Show (Show(showsPrec)) import Vulkan.Core10.FundamentalTypes (Flags) type CommandBufferResetFlags = CommandBufferResetFlagBits -- | VkCommandBufferResetFlagBits - Bitmask controlling behavior of a command -- buffer reset -- -- = See Also -- -- <https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/vkspec.html#VK_VERSION_1_0 VK_VERSION_1_0>, -- 'CommandBufferResetFlags' newtype CommandBufferResetFlagBits = CommandBufferResetFlagBits Flags deriving newtype (Eq, Ord, Storable, Zero, Bits, FiniteBits) -- | 'COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT' specifies that most or all -- memory resources currently owned by the command buffer /should/ be -- returned to the parent command pool. If this flag is not set, then the -- command buffer /may/ hold onto memory resources and reuse them when -- recording commands. @commandBuffer@ is moved to the -- <https://www.khronos.org/registry/vulkan/specs/1.3-extensions/html/vkspec.html#commandbuffers-lifecycle initial state>. pattern COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT = CommandBufferResetFlagBits 0x00000001 conNameCommandBufferResetFlagBits :: String conNameCommandBufferResetFlagBits = "CommandBufferResetFlagBits" enumPrefixCommandBufferResetFlagBits :: String enumPrefixCommandBufferResetFlagBits = "COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT" showTableCommandBufferResetFlagBits :: [(CommandBufferResetFlagBits, String)] showTableCommandBufferResetFlagBits = [(COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT, "")] instance Show CommandBufferResetFlagBits where showsPrec = enumShowsPrec enumPrefixCommandBufferResetFlagBits showTableCommandBufferResetFlagBits conNameCommandBufferResetFlagBits (\(CommandBufferResetFlagBits x) -> x) (\x -> showString "0x" . showHex x) instance Read CommandBufferResetFlagBits where readPrec = enumReadPrec enumPrefixCommandBufferResetFlagBits showTableCommandBufferResetFlagBits conNameCommandBufferResetFlagBits CommandBufferResetFlagBits
expipiplus1/vulkan
src/Vulkan/Core10/Enums/CommandBufferResetFlagBits.hs
Haskell
bsd-3-clause
2,983
{-# LANGUAGE CPP #-} module TcFlatten( FlattenEnv(..), FlattenMode(..), mkFlattenEnv, flatten, flattenMany, flatten_many, flattenFamApp, flattenTyVarOuter, unflatten, eqCanRewrite, eqCanRewriteFR, canRewriteOrSame, CtFlavourRole, ctEvFlavourRole, ctFlavourRole ) where #include "HsVersions.h" import TcRnTypes import TcType import Type import TcEvidence import TyCon import TypeRep import Kind( isSubKind ) import Coercion ( tyConRolesX ) import Var import VarEnv import NameEnv import Outputable import VarSet import TcSMonad as TcS import DynFlags( DynFlags ) import Util import Bag import FastString import Control.Monad( when, liftM ) import MonadUtils ( zipWithAndUnzipM ) import GHC.Exts ( inline ) {- Note [The flattening story] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * A CFunEqCan is either of form [G] <F xis> : F xis ~ fsk -- fsk is a FlatSkol [W] x : F xis ~ fmv -- fmv is a unification variable, -- but untouchable, -- with MetaInfo = FlatMetaTv where x is the witness variable fsk/fmv is a flatten skolem xis are function-free CFunEqCans are always [Wanted], or [Given], never [Derived] fmv untouchable just means that in a CTyVarEq, say, fmv ~ Int we do NOT unify fmv. * KEY INSIGHTS: - A given flatten-skolem, fsk, is known a-priori to be equal to F xis (the LHS), with <F xis> evidence - A unification flatten-skolem, fmv, stands for the as-yet-unknown type to which (F xis) will eventually reduce * Inert set invariant: if F xis1 ~ fsk1, F xis2 ~ fsk2 then xis1 /= xis2 i.e. at most one CFunEqCan with a particular LHS * Each canonical CFunEqCan x : F xis ~ fsk/fmv has its own distinct evidence variable x and flatten-skolem fsk/fmv. Why? We make a fresh fsk/fmv when the constraint is born; and we never rewrite the RHS of a CFunEqCan. * Function applications can occur in the RHS of a CTyEqCan. No reason not allow this, and it reduces the amount of flattening that must occur. * Flattening a type (F xis): - If we are flattening in a Wanted/Derived constraint then create new [W] x : F xis ~ fmv else create new [G] x : F xis ~ fsk with fresh evidence variable x and flatten-skolem fsk/fmv - Add it to the work list - Replace (F xis) with fsk/fmv in the type you are flattening - You can also add the CFunEqCan to the "flat cache", which simply keeps track of all the function applications you have flattened. - If (F xis) is in the cache already, just use its fsk/fmv and evidence x, and emit nothing. - No need to substitute in the flat-cache. It's not the end of the world if we start with, say (F alpha ~ fmv1) and (F Int ~ fmv2) and then find alpha := Int. Athat will simply give rise to fmv1 := fmv2 via [Interacting rule] below * Canonicalising a CFunEqCan [G/W] x : F xis ~ fsk/fmv - Flatten xis (to substitute any tyvars; there are already no functions) cos :: xis ~ flat_xis - New wanted x2 :: F flat_xis ~ fsk/fmv - Add new wanted to flat cache - Discharge x = F cos ; x2 * Unification flatten-skolems, fmv, ONLY get unified when either a) The CFunEqCan takes a step, using an axiom b) During un-flattening They are never unified in any other form of equality. For example [W] ffmv ~ Int is stuck; it does not unify with fmv. * We *never* substitute in the RHS (i.e. the fsk/fmv) of a CFunEqCan. That would destroy the invariant about the shape of a CFunEqCan, and it would risk wanted/wanted interactions. The only way we learn information about fsk is when the CFunEqCan takes a step. However we *do* substitute in the LHS of a CFunEqCan (else it would never get to fire!) * [Interacting rule] (inert) [W] x1 : F tys ~ fmv1 (work item) [W] x2 : F tys ~ fmv2 Just solve one from the other: x2 := x1 fmv2 := fmv1 This just unites the two fsks into one. Always solve given from wanted if poss. * [Firing rule: wanteds] (work item) [W] x : F tys ~ fmv instantiate axiom: ax_co : F tys ~ rhs Dischard fmv: fmv := alpha x := ax_co ; sym x2 [W] x2 : alpha ~ rhs (Non-canonical) discharging the work item. This is the way that fmv's get unified; even though they are "untouchable". NB: this deals with the case where fmv appears in xi, which can happen; it just happens through the non-canonical stuff Possible short cut (shortCutReduction) if rhs = G rhs_tys, where G is a type function. Then - Flatten rhs_tys (cos : rhs_tys ~ rhs_xis) - Add G rhs_xis ~ fmv to flat cache - New wanted [W] x2 : G rhs_xis ~ fmv - Discharge x := co ; G cos ; x2 * [Firing rule: givens] (work item) [G] g : F tys ~ fsk instantiate axiom: co : F tys ~ rhs Now add non-canonical (since rhs is not flat) [G] (sym g ; co) : fsk ~ rhs Short cut (shortCutReduction) for when rhs = G rhs_tys and G is a type function [G] (co ; g) : G tys ~ fsk But need to flatten tys: flat_cos : tys ~ flat_tys [G] (sym (G flat_cos) ; co ; g) : G flat_tys ~ fsk Why given-fsks, alone, doesn't work ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Could we get away with only flatten meta-tyvars, with no flatten-skolems? No. [W] w : alpha ~ [F alpha Int] ---> flatten w = ...w'... [W] w' : alpha ~ [fsk] [G] <F alpha Int> : F alpha Int ~ fsk --> unify (no occurs check) alpha := [fsk] But since fsk = F alpha Int, this is really an occurs check error. If that is all we know about alpha, we will succeed in constraint solving, producing a program with an infinite type. Even if we did finally get (g : fsk ~ Boo)l by solving (F alpha Int ~ fsk) using axiom, zonking would not see it, so (x::alpha) sitting in the tree will get zonked to an infinite type. (Zonking always only does refl stuff.) Why flatten-meta-vars, alone doesn't work ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Look at Simple13, with unification-fmvs only [G] g : a ~ [F a] ---> Flatten given g' = g;[x] [G] g' : a ~ [fmv] [W] x : F a ~ fmv --> subst a in x x = F g' ; x2 [W] x2 : F [fmv] ~ fmv And now we have an evidence cycle between g' and x! If we used a given instead (ie current story) [G] g : a ~ [F a] ---> Flatten given g' = g;[x] [G] g' : a ~ [fsk] [G] <F a> : F a ~ fsk ---> Substitute for a [G] g' : a ~ [fsk] [G] F (sym g'); <F a> : F [fsk] ~ fsk Why is it right to treat fmv's differently to ordinary unification vars? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ f :: forall a. a -> a -> Bool g :: F Int -> F Int -> Bool Consider f (x:Int) (y:Bool) This gives alpha~Int, alpha~Bool. There is an inconsistency, but really only one error. SherLoc may tell you which location is most likely, based on other occurrences of alpha. Consider g (x:Int) (y:Bool) Here we get (F Int ~ Int, F Int ~ Bool), which flattens to (fmv ~ Int, fmv ~ Bool) But there are really TWO separate errors. We must not complain about Int~Bool. Moreover these two errors could arise in entirely unrelated parts of the code. (In the alpha case, there must be *some* connection (eg v:alpha in common envt).) Note [Orient equalities with flatten-meta-vars on the left] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This example comes from IndTypesPerfMerge From the ambiguity check for f :: (F a ~ a) => a we get: [G] F a ~ a [W] F alpha ~ alpha, alpha ~ a From Givens we get [G] F a ~ fsk, fsk ~ a Now if we flatten we get [W] alpha ~ fmv, F alpha ~ fmv, alpha ~ a Now, processing the first one first, choosing alpha := fmv [W] F fmv ~ fmv, fmv ~ a And now we are stuck. We must either *unify* fmv := a, or use the fmv ~ a to rewrite F fmv ~ fmv, so we can make it meet up with the given F a ~ blah. Solution: always put fmvs on the left, so we get [W] fmv ~ alpha, F alpha ~ fmv, alpha ~ a The point is that fmvs are very uninformative, so doing alpha := fmv is a bad idea. We want to use other constraints on alpha first. Note [Derived constraints from wanted CTyEqCans] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Is this type ambiguous: (Foo e ~ Maybe e) => Foo e (indexed-types/should_fail/T4093a) [G] Foo e ~ Maybe e [W] Foo e ~ Foo ee -- ee is a unification variable [W] Foo ee ~ Maybe ee) --- [G] Foo e ~ fsk [G] fsk ~ Maybe e [W] Foo e ~ fmv1 [W] Foo ee ~ fmv2 [W] fmv1 ~ fmv2 [W] fmv2 ~ Maybe ee ---> fmv1 := fsk by matching LHSs [W] Foo ee ~ fmv2 [W] fsk ~ fmv2 [W] fmv2 ~ Maybe ee ---> [W] Foo ee ~ fmv2 [W] fmv2 ~ Maybe e [W] fmv2 ~ Maybe ee Now maybe we shuld get [D] e ~ ee, and then we'd solve it entirely. But if in a smilar situation we got [D] Int ~ Bool we'd be back to complaining about wanted/wanted interactions. Maybe this arises also for fundeps? Here's another example: f :: [a] -> [b] -> blah f (e1 :: F Int) (e2 :: F Int) we get F Int ~ fmv fmv ~ [alpha] fmv ~ [beta] We want: alpha := beta (which might unlock something else). If we generated [D] [alpha] ~ [beta] we'd be good here. Current story: we don't generate these derived constraints. We could, but we'd want to make them very weak, so we didn't get the Int~Bool complaint. ************************************************************************ * * * Other notes (Oct 14) I have not revisted these, but I didn't want to discard them * * ************************************************************************ Try: rewrite wanted with wanted only for fmvs (not all meta-tyvars) But: fmv ~ alpha[0] alpha[0] ~ fmv’ Now we don’t see that fmv ~ fmv’, which is a problem for injectivity detection. Conclusion: rewrite wanteds with wanted for all untouchables. skol ~ untch, must re-orieint to untch ~ skol, so that we can use it to rewrite. ************************************************************************ * * * Examples Here is a long series of examples I had to work through * * ************************************************************************ Simple20 ~~~~~~~~ axiom F [a] = [F a] [G] F [a] ~ a --> [G] fsk ~ a [G] [F a] ~ fsk (nc) --> [G] F a ~ fsk2 [G] fsk ~ [fsk2] [G] fsk ~ a --> [G] F a ~ fsk2 [G] a ~ [fsk2] [G] fsk ~ a ----------------------------------- ---------------------------------------- indexed-types/should_compile/T44984 [W] H (F Bool) ~ H alpha [W] alpha ~ F Bool --> F Bool ~ fmv0 H fmv0 ~ fmv1 H alpha ~ fmv2 fmv1 ~ fmv2 fmv0 ~ alpha flatten ~~~~~~~ fmv0 := F Bool fmv1 := H (F Bool) fmv2 := H alpha alpha := F Bool plus fmv1 ~ fmv2 But these two are equal under the above assumptions. Solve by Refl. --- under plan B, namely solve fmv1:=fmv2 eagerly --- [W] H (F Bool) ~ H alpha [W] alpha ~ F Bool --> F Bool ~ fmv0 H fmv0 ~ fmv1 H alpha ~ fmv2 fmv1 ~ fmv2 fmv0 ~ alpha --> F Bool ~ fmv0 H fmv0 ~ fmv1 H alpha ~ fmv2 fmv2 := fmv1 fmv0 ~ alpha flatten fmv0 := F Bool fmv1 := H fmv0 = H (F Bool) retain H alpha ~ fmv2 because fmv2 has been filled alpha := F Bool ---------------------------- indexed-types/should_failt/T4179 after solving [W] fmv_1 ~ fmv_2 [W] A3 (FCon x) ~ fmv_1 (CFunEqCan) [W] A3 (x (aoa -> fmv_2)) ~ fmv_2 (CFunEqCan) ---------------------------------------- indexed-types/should_fail/T7729a a) [W] BasePrimMonad (Rand m) ~ m1 b) [W] tt m1 ~ BasePrimMonad (Rand m) ---> process (b) first BasePrimMonad (Ramd m) ~ fmv_atH fmv_atH ~ tt m1 ---> now process (a) m1 ~ s_atH ~ tt m1 -- An obscure occurs check ---------------------------------------- typecheck/TcTypeNatSimple Original constraint [W] x + y ~ x + alpha (non-canonical) ==> [W] x + y ~ fmv1 (CFunEqCan) [W] x + alpha ~ fmv2 (CFuneqCan) [W] fmv1 ~ fmv2 (CTyEqCan) (sigh) ---------------------------------------- indexed-types/should_fail/GADTwrong1 [G] Const a ~ () ==> flatten [G] fsk ~ () work item: Const a ~ fsk ==> fire top rule [G] fsk ~ () work item fsk ~ () Surely the work item should rewrite to () ~ ()? Well, maybe not; it'a very special case. More generally, our givens look like F a ~ Int, where (F a) is not reducible. ---------------------------------------- indexed_types/should_fail/T8227: Why using a different can-rewrite rule in CFunEqCan heads does not work. Assuming NOT rewriting wanteds with wanteds Inert: [W] fsk_aBh ~ fmv_aBk -> fmv_aBk [W] fmv_aBk ~ fsk_aBh [G] Scalar fsk_aBg ~ fsk_aBh [G] V a ~ f_aBg Worklist includes [W] Scalar fmv_aBi ~ fmv_aBk fmv_aBi, fmv_aBk are flatten unificaiton variables Work item: [W] V fsk_aBh ~ fmv_aBi Note that the inert wanteds are cyclic, because we do not rewrite wanteds with wanteds. Then we go into a loop when normalise the work-item, because we use rewriteOrSame on the argument of V. Conclusion: Don't make canRewrite context specific; instead use [W] a ~ ty to rewrite a wanted iff 'a' is a unification variable. ---------------------------------------- Here is a somewhat similar case: type family G a :: * blah :: (G a ~ Bool, Eq (G a)) => a -> a blah = error "urk" foo x = blah x For foo we get [W] Eq (G a), G a ~ Bool Flattening [W] G a ~ fmv, Eq fmv, fmv ~ Bool We can't simplify away the Eq Bool unless we substitute for fmv. Maybe that doesn't matter: we would still be left with unsolved G a ~ Bool. -------------------------- Trac #9318 has a very simple program leading to [W] F Int ~ Int [W] F Int ~ Bool We don't want to get "Error Int~Bool". But if fmv's can rewrite wanteds, we will [W] fmv ~ Int [W] fmv ~ Bool ---> [W] Int ~ Bool ************************************************************************ * * * The main flattening functions * * ************************************************************************ Note [Flattening] ~~~~~~~~~~~~~~~~~~~~ flatten ty ==> (xi, cc) where xi has no type functions, unless they appear under ForAlls cc = Auxiliary given (equality) constraints constraining the fresh type variables in xi. Evidence for these is always the identity coercion, because internally the fresh flattening skolem variables are actually identified with the types they have been generated to stand in for. Note that it is flatten's job to flatten *every type function it sees*. flatten is only called on *arguments* to type functions, by canEqGiven. Recall that in comments we use alpha[flat = ty] to represent a flattening skolem variable alpha which has been generated to stand in for ty. ----- Example of flattening a constraint: ------ flatten (List (F (G Int))) ==> (xi, cc) where xi = List alpha cc = { G Int ~ beta[flat = G Int], F beta ~ alpha[flat = F beta] } Here * alpha and beta are 'flattening skolem variables'. * All the constraints in cc are 'given', and all their coercion terms are the identity. NB: Flattening Skolems only occur in canonical constraints, which are never zonked, so we don't need to worry about zonking doing accidental unflattening. Note that we prefer to leave type synonyms unexpanded when possible, so when the flattener encounters one, it first asks whether its transitive expansion contains any type function applications. If so, it expands the synonym and proceeds; if not, it simply returns the unexpanded synonym. Note [Flattener EqRels] ~~~~~~~~~~~~~~~~~~~~~~~ When flattening, we need to know which equality relation -- nominal or representation -- we should be respecting. The only difference is that we rewrite variables by representational equalities when fe_eq_rel is ReprEq. -} data FlattenEnv = FE { fe_mode :: FlattenMode , fe_loc :: CtLoc , fe_flavour :: CtFlavour , fe_eq_rel :: EqRel } -- See Note [Flattener EqRels] data FlattenMode -- Postcondition for all three: inert wrt the type substitution = FM_FlattenAll -- Postcondition: function-free | FM_Avoid TcTyVar Bool -- See Note [Lazy flattening] -- Postcondition: -- * tyvar is only mentioned in result under a rigid path -- e.g. [a] is ok, but F a won't happen -- * If flat_top is True, top level is not a function application -- (but under type constructors is ok e.g. [F a]) | FM_SubstOnly -- See Note [Flattening under a forall] mkFlattenEnv :: FlattenMode -> CtEvidence -> FlattenEnv mkFlattenEnv fm ctev = FE { fe_mode = fm , fe_loc = ctEvLoc ctev , fe_flavour = ctEvFlavour ctev , fe_eq_rel = ctEvEqRel ctev } feRole :: FlattenEnv -> Role feRole = eqRelRole . fe_eq_rel {- Note [Lazy flattening] ~~~~~~~~~~~~~~~~~~~~~~ The idea of FM_Avoid mode is to flatten less aggressively. If we have a ~ [F Int] there seems to be no great merit in lifting out (F Int). But if it was a ~ [G a Int] then we *do* want to lift it out, in case (G a Int) reduces to Bool, say, which gets rid of the occurs-check problem. (For the flat_top Bool, see comments above and at call sites.) HOWEVER, the lazy flattening actually seems to make type inference go *slower*, not faster. perf/compiler/T3064 is a case in point; it gets *dramatically* worse with FM_Avoid. I think it may be because floating the types out means we normalise them, and that often makes them smaller and perhaps allows more re-use of previously solved goals. But to be honest I'm not absolutely certain, so I am leaving FM_Avoid in the code base. What I'm removing is the unique place where it is *used*, namely in TcCanonical.canEqTyVar. See also Note [Conservative unification check] in TcUnify, which gives other examples where lazy flattening caused problems. Bottom line: FM_Avoid is unused for now (Nov 14). Note: T5321Fun got faster when I disabled FM_Avoid T5837 did too, but it's pathalogical anyway Note [Phantoms in the flattener] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we have data Proxy p = Proxy and we're flattening (Proxy ty) w.r.t. ReprEq. Then, we know that `ty` is really irrelevant -- it will be ignored when solving for representational equality later on. So, we omit flattening `ty` entirely. This may violate the expectation of "xi"s for a bit, but the canonicaliser will soon throw out the phantoms when decomposing a TyConApp. (Or, the canonicaliser will emit an insoluble, in which case the unflattened version yields a better error message anyway.) Note [flatten_many performance] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In programs with lots of type-level evaluation, flatten_many becomes part of a tight loop. For example, see test perf/compiler/T9872a, which calls flatten_many a whopping 7,106,808 times. It is thus important that flatten_many be efficient. Performance testing showed that the current implementation is indeed efficient. It's critically important that zipWithAndUnzipM be specialized to TcS, and it's also quite helpful to actually `inline` it. On test T9872a, here are the allocation stats (Dec 16, 2014): * Unspecialized, uninlined: 8,472,613,440 bytes allocated in the heap * Specialized, uninlined: 6,639,253,488 bytes allocated in the heap * Specialized, inlined: 6,281,539,792 bytes allocated in the heap To improve performance even further, flatten_many_nom is split off from flatten_many, as nominal equality is the common case. This would be natural to write using mapAndUnzipM, but even inlined, that function is not as performant as a hand-written loop. * mapAndUnzipM, inlined: 7,463,047,432 bytes allocated in the heap * hand-written recursion: 5,848,602,848 bytes allocated in the heap If you make any change here, pay close attention to the T9872{a,b,c} tests and T5321Fun. If we need to make this yet more performant, a possible way forward is to duplicate the flattener code for the nominal case, and make that case faster. This doesn't seem quite worth it, yet. -} ------------------ flatten :: FlattenMode -> CtEvidence -> TcType -> TcS (Xi, TcCoercion) flatten mode ev ty = runFlatten (flatten_one fmode ty) where fmode = mkFlattenEnv mode ev flattenMany :: FlattenMode -> CtEvidence -> [Role] -> [TcType] -> TcS ([Xi], [TcCoercion]) -- Flatten a bunch of types all at once. Roles on the coercions returned -- always match the corresponding roles passed in. flattenMany mode ev roles tys = runFlatten (flatten_many fmode roles tys) where fmode = mkFlattenEnv mode ev flattenFamApp :: FlattenMode -> CtEvidence -> TyCon -> [TcType] -> TcS (Xi, TcCoercion) flattenFamApp mode ev tc tys = runFlatten (flatten_fam_app fmode tc tys) where fmode = mkFlattenEnv mode ev ------------------ flatten_many :: FlattenEnv -> [Role] -> [Type] -> TcS ([Xi], [TcCoercion]) -- Coercions :: Xi ~ Type, at roles given -- Returns True iff (no flattening happened) -- NB: The EvVar inside the 'fe_ev :: CtEvidence' is unused, -- we merely want (a) Given/Solved/Derived/Wanted info -- (b) the GivenLoc/WantedLoc for when we create new evidence flatten_many fmode roles tys -- See Note [flatten_many performance] = inline zipWithAndUnzipM go roles tys where go Nominal ty = flatten_one (setFEEqRel fmode NomEq) ty go Representational ty = flatten_one (setFEEqRel fmode ReprEq) ty go Phantom ty = -- See Note [Phantoms in the flattener] return (ty, mkTcPhantomCo ty ty) -- | Like 'flatten_many', but assumes that every role is nominal. flatten_many_nom :: FlattenEnv -> [Type] -> TcS ([Xi], [TcCoercion]) flatten_many_nom _ [] = return ([], []) -- See Note [flatten_many performance] flatten_many_nom fmode (ty:tys) = ASSERT( fe_eq_rel fmode == NomEq ) do { (xi, co) <- flatten_one fmode ty ; (xis, cos) <- flatten_many_nom fmode tys ; return (xi:xis, co:cos) } ------------------ flatten_one :: FlattenEnv -> TcType -> TcS (Xi, TcCoercion) -- Flatten a type to get rid of type function applications, returning -- the new type-function-free type, and a collection of new equality -- constraints. See Note [Flattening] for more detail. -- -- Postcondition: Coercion :: Xi ~ TcType -- The role on the result coercion matches the EqRel in the FlattenEnv flatten_one fmode xi@(LitTy {}) = return (xi, mkTcReflCo (feRole fmode) xi) flatten_one fmode (TyVarTy tv) = flattenTyVar fmode tv flatten_one fmode (AppTy ty1 ty2) = do { (xi1,co1) <- flatten_one fmode ty1 ; case (fe_eq_rel fmode, nextRole xi1) of (NomEq, _) -> flatten_rhs xi1 co1 NomEq (ReprEq, Nominal) -> flatten_rhs xi1 co1 NomEq (ReprEq, Representational) -> flatten_rhs xi1 co1 ReprEq (ReprEq, Phantom) -> return (mkAppTy xi1 ty2, co1 `mkTcAppCo` mkTcNomReflCo ty2) } where flatten_rhs xi1 co1 eq_rel2 = do { (xi2,co2) <- flatten_one (setFEEqRel fmode eq_rel2) ty2 ; traceTcS "flatten/appty" (ppr ty1 $$ ppr ty2 $$ ppr xi1 $$ ppr co1 $$ ppr xi2 $$ ppr co2) ; let role1 = feRole fmode role2 = eqRelRole eq_rel2 ; return ( mkAppTy xi1 xi2 , mkTcTransAppCo role1 co1 xi1 ty1 role2 co2 xi2 ty2 role1 ) } -- output should match fmode flatten_one fmode (FunTy ty1 ty2) = do { (xi1,co1) <- flatten_one fmode ty1 ; (xi2,co2) <- flatten_one fmode ty2 ; return (mkFunTy xi1 xi2, mkTcFunCo (feRole fmode) co1 co2) } flatten_one fmode (TyConApp tc tys) -- Expand type synonyms that mention type families -- on the RHS; see Note [Flattening synonyms] | Just (tenv, rhs, tys') <- tcExpandTyCon_maybe tc tys , let expanded_ty = mkAppTys (substTy (mkTopTvSubst tenv) rhs) tys' = case fe_mode fmode of FM_FlattenAll | anyNameEnv isTypeFamilyTyCon (tyConsOfType rhs) -> flatten_one fmode expanded_ty | otherwise -> flattenTyConApp fmode tc tys _ -> flattenTyConApp fmode tc tys -- Otherwise, it's a type function application, and we have to -- flatten it away as well, and generate a new given equality constraint -- between the application and a newly generated flattening skolem variable. | isTypeFamilyTyCon tc = flatten_fam_app fmode tc tys -- For * a normal data type application -- * data family application -- we just recursively flatten the arguments. | otherwise -- FM_Avoid stuff commented out; see Note [Lazy flattening] -- , let fmode' = case fmode of -- Switch off the flat_top bit in FM_Avoid -- FE { fe_mode = FM_Avoid tv _ } -- -> fmode { fe_mode = FM_Avoid tv False } -- _ -> fmode = flattenTyConApp fmode tc tys flatten_one fmode ty@(ForAllTy {}) -- We allow for-alls when, but only when, no type function -- applications inside the forall involve the bound type variables. = do { let (tvs, rho) = splitForAllTys ty ; (rho', co) <- flatten_one (setFEMode fmode FM_SubstOnly) rho -- Substitute only under a forall -- See Note [Flattening under a forall] ; return (mkForAllTys tvs rho', foldr mkTcForAllCo co tvs) } flattenTyConApp :: FlattenEnv -> TyCon -> [TcType] -> TcS (Xi, TcCoercion) flattenTyConApp fmode tc tys = do { (xis, cos) <- case fe_eq_rel fmode of NomEq -> flatten_many_nom fmode tys ReprEq -> flatten_many fmode (tyConRolesX role tc) tys ; return (mkTyConApp tc xis, mkTcTyConAppCo role tc cos) } where role = feRole fmode {- Note [Flattening synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Not expanding synonyms aggressively improves error messages, and keeps types smaller. But we need to take care. Suppose type T a = a -> a and we want to flatten the type (T (F a)). Then we can safely flatten the (F a) to a skolem, and return (T fsk). We don't need to expand the synonym. This works because TcTyConAppCo can deal with synonyms (unlike TyConAppCo), see Note [TcCoercions] in TcEvidence. But (Trac #8979) for type T a = (F a, a) where F is a type function we must expand the synonym in (say) T Int, to expose the type function to the flattener. Note [Flattening under a forall] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Under a forall, we (a) MUST apply the inert substitution (b) MUST NOT flatten type family applications Hence FMSubstOnly. For (a) consider c ~ a, a ~ T (forall b. (b, [c])) If we don't apply the c~a substitution to the second constraint we won't see the occurs-check error. For (b) consider (a ~ forall b. F a b), we don't want to flatten to (a ~ forall b.fsk, F a b ~ fsk) because now the 'b' has escaped its scope. We'd have to flatten to (a ~ forall b. fsk b, forall b. F a b ~ fsk b) and we have not begun to think about how to make that work! ************************************************************************ * * Flattening a type-family application * * ************************************************************************ -} flatten_fam_app, flatten_exact_fam_app, flatten_exact_fam_app_fully :: FlattenEnv -> TyCon -> [TcType] -> TcS (Xi, TcCoercion) -- flatten_fam_app can be over-saturated -- flatten_exact_fam_app is exactly saturated -- flatten_exact_fam_app_fully lifts out the application to top level -- Postcondition: Coercion :: Xi ~ F tys flatten_fam_app fmode tc tys -- Can be over-saturated = ASSERT( tyConArity tc <= length tys ) -- Type functions are saturated -- The type function might be *over* saturated -- in which case the remaining arguments should -- be dealt with by AppTys do { let (tys1, tys_rest) = splitAt (tyConArity tc) tys ; (xi1, co1) <- flatten_exact_fam_app fmode tc tys1 -- co1 :: xi1 ~ F tys1 -- all Nominal roles b/c the tycon is oversaturated ; (xis_rest, cos_rest) <- flatten_many fmode (repeat Nominal) tys_rest -- cos_res :: xis_rest ~ tys_rest ; return ( mkAppTys xi1 xis_rest -- NB mkAppTys: rhs_xi might not be a type variable -- cf Trac #5655 , mkTcAppCos co1 cos_rest -- (rhs_xi :: F xis) ; (F cos :: F xis ~ F tys) ) } flatten_exact_fam_app fmode tc tys = case fe_mode fmode of FM_FlattenAll -> flatten_exact_fam_app_fully fmode tc tys FM_SubstOnly -> do { (xis, cos) <- flatten_many fmode roles tys ; return ( mkTyConApp tc xis , mkTcTyConAppCo (feRole fmode) tc cos ) } FM_Avoid tv flat_top -> do { (xis, cos) <- flatten_many fmode roles tys ; if flat_top || tv `elemVarSet` tyVarsOfTypes xis then flatten_exact_fam_app_fully fmode tc tys else return ( mkTyConApp tc xis , mkTcTyConAppCo (feRole fmode) tc cos ) } where -- These are always going to be Nominal for now, -- but not if #8177 is implemented roles = tyConRolesX (feRole fmode) tc flatten_exact_fam_app_fully fmode tc tys = do { (xis, cos) <- flatten_many_nom (setFEEqRel (setFEMode fmode FM_FlattenAll) NomEq) tys ; let ret_co = mkTcTyConAppCo (feRole fmode) tc cos -- ret_co :: F xis ~ F tys ; mb_ct <- lookupFlatCache tc xis ; case mb_ct of Just (co, rhs_ty, flav) -- co :: F xis ~ fsk | (flav, NomEq) `canRewriteOrSameFR` (feFlavourRole fmode) -> -- Usable hit in the flat-cache -- We certainly *can* use a Wanted for a Wanted do { traceTcS "flatten/flat-cache hit" $ (ppr tc <+> ppr xis $$ ppr rhs_ty $$ ppr co) ; (fsk_xi, fsk_co) <- flatten_one fmode rhs_ty -- The fsk may already have been unified, so flatten it -- fsk_co :: fsk_xi ~ fsk ; return (fsk_xi, fsk_co `mkTcTransCo` maybeTcSubCo (fe_eq_rel fmode) (mkTcSymCo co) `mkTcTransCo` ret_co) } -- :: fsk_xi ~ F xis -- Try to reduce the family application right now -- See Note [Reduce type family applications eagerly] _ -> do { mb_match <- matchFam tc xis ; case mb_match of { Just (norm_co, norm_ty) -> do { (xi, final_co) <- flatten_one fmode norm_ty ; let co = norm_co `mkTcTransCo` mkTcSymCo final_co ; extendFlatCache tc xis ( co, xi , fe_flavour fmode ) ; return (xi, mkTcSymCo co `mkTcTransCo` ret_co) } ; Nothing -> do { let fam_ty = mkTyConApp tc xis ; (ev, fsk) <- newFlattenSkolem (fe_flavour fmode) (fe_loc fmode) fam_ty ; let fsk_ty = mkTyVarTy fsk co = ctEvCoercion ev ; extendFlatCache tc xis (co, fsk_ty, ctEvFlavour ev) -- The new constraint (F xis ~ fsk) is not necessarily inert -- (e.g. the LHS may be a redex) so we must put it in the work list ; let ct = CFunEqCan { cc_ev = ev , cc_fun = tc , cc_tyargs = xis , cc_fsk = fsk } ; emitFlatWork ct ; traceTcS "flatten/flat-cache miss" $ (ppr fam_ty $$ ppr fsk $$ ppr ev) ; return (fsk_ty, maybeTcSubCo (fe_eq_rel fmode) (mkTcSymCo co) `mkTcTransCo` ret_co) } } } } {- Note [Reduce type family applications eagerly] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If we come across a type-family application like (Append (Cons x Nil) t), then, rather than flattening to a skolem etc, we may as well just reduce it on the spot to (Cons x t). This saves a lot of intermediate steps. Examples that are helped are tests T9872, and T5321Fun. So just before we create the new skolem, we attempt to reduce it by one step (using matchFam). If that works, then recursively flatten the rhs, which may in turn do lots more reductions. Once we've got a flat rhs, we extend the flatten-cache to record the result. Doing so can save lots of work when the same redex shows up more than once. Note that we record the link from the redex all the way to its *final* value, not just the single step reduction. ************************************************************************ * * Flattening a type variable * * ************************************************************************ Note [The inert equalities] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Definition [Can-rewrite relation] A "can-rewrite" relation between flavours, written f1 >= f2, is a binary relation with the following properties R1. >= is transitive R2. If f1 >= f, and f2 >= f, then either f1 >= f2 or f2 >= f1 Lemma. If f1 >= f then f1 >= f1 Proof. By property (R2), with f1=f2 Definition [Generalised substitution] A "generalised substitution" S is a set of triples (a -f-> t), where a is a type variable t is a type f is a flavour such that (WF1) if (a -f1-> t1) in S (a -f2-> t2) in S then neither (f1 >= f2) nor (f2 >= f1) hold (WF2) if (a -f-> t) is in S, then t /= a Definition [Applying a generalised substitution] If S is a generalised substitution S(f,a) = t, if (a -fs-> t) in S, and fs >= f = a, otherwise Application extends naturally to types S(f,t), modulo roles. See Note [Flavours with roles]. Theorem: S(f,a) is well defined as a function. Proof: Suppose (a -f1-> t1) and (a -f2-> t2) are both in S, and f1 >= f and f2 >= f Then by (R2) f1 >= f2 or f2 >= f1, which contradicts (WF) Notation: repeated application. S^0(f,t) = t S^(n+1)(f,t) = S(f, S^n(t)) Definition: inert generalised substitution A generalised substitution S is "inert" iff (IG1) there is an n such that for every f,t, S^n(f,t) = S^(n+1)(f,t) (IG2) if (b -f-> t) in S, and f >= f, then S(f,t) = t that is, each individual binding is "self-stable" ---------------------------------------------------------------- Our main invariant: the inert CTyEqCans should be an inert generalised substitution ---------------------------------------------------------------- Note that inertness is not the same as idempotence. To apply S to a type, you may have to apply it recursive. But inertness does guarantee that this recursive use will terminate. ---------- The main theorem -------------- Suppose we have a "work item" a -fw-> t and an inert generalised substitution S, such that (T1) S(fw,a) = a -- LHS of work-item is a fixpoint of S(fw,_) (T2) S(fw,t) = t -- RHS of work-item is a fixpoint of S(fw,_) (T3) a not in t -- No occurs check in the work item (K1) if (a -fs-> s) is in S then not (fw >= fs) (K2) if (b -fs-> s) is in S, where b /= a, then (K2a) not (fs >= fs) or (K2b) not (fw >= fs) or (K2c) a not in s (K3) If (b -fs-> s) is in S with (fw >= fs), then (K3a) If the role of fs is nominal: s /= a (K3b) If the role of fs is representational: EITHER a not in s, OR the path from the top of s to a includes at least one non-newtype then the extended substition T = S+(a -fw-> t) is an inert generalised substitution. The idea is that * (T1-2) are guaranteed by exhaustively rewriting the work-item with S(fw,_). * T3 is guaranteed by a simple occurs-check on the work item. * (K1-3) are the "kick-out" criteria. (As stated, they are really the "keep" criteria.) If the current inert S contains a triple that does not satisfy (K1-3), then we remove it from S by "kicking it out", and re-processing it. * Note that kicking out is a Bad Thing, because it means we have to re-process a constraint. The less we kick out, the better. TODO: Make sure that kicking out really *is* a Bad Thing. We've assumed this but haven't done the empirical study to check. * Assume we have G>=G, G>=W, D>=D, and that's all. Then, when performing a unification we add a new given a -G-> ty. But doing so does NOT require us to kick out an inert wanted that mentions a, because of (K2a). This is a common case, hence good not to kick out. * Lemma (L1): The conditions of the Main Theorem imply that there is no (a fs-> t) in S, s.t. (fs >= fw). Proof. Suppose the contrary (fs >= fw). Then because of (T1), S(fw,a)=a. But since fs>=fw, S(fw,a) = s, hence s=a. But now we have (a -fs-> a) in S, which contradicts (WF2). * The extended substitution satisfies (WF1) and (WF2) - (K1) plus (L1) guarantee that the extended substiution satisfies (WF1). - (T3) guarantees (WF2). * (K2) is about inertness. Intuitively, any infinite chain T^0(f,t), T^1(f,t), T^2(f,T).... must pass through the new work item infnitely often, since the substution without the work item is inert; and must pass through at least one of the triples in S infnitely often. - (K2a): if not(fs>=fs) then there is no f that fs can rewrite (fs>=f), and hence this triple never plays a role in application S(f,a). It is always safe to extend S with such a triple. (NB: we could strengten K1) in this way too, but see K3. - (K2b): If this holds, we can't pass through this triple infinitely often, because if we did then fs>=f, fw>=f, hence fs>=fw, contradicting (L1), or fw>=fs contradicting K2b. - (K2c): if a not in s, we hae no further opportunity to apply the work item. NB: this reasoning isn't water tight. Key lemma to make it watertight. Under the conditions of the Main Theorem, forall f st fw >= f, a is not in S^k(f,t), for any k Also, consider roles more carefully. See Note [Flavours with roles]. Completeness ~~~~~~~~~~~~~ K3: completeness. (K3) is not necessary for the extended substitution to be inert. In fact K1 could be made stronger by saying ... then (not (fw >= fs) or not (fs >= fs)) But it's not enough for S to be inert; we also want completeness. That is, we want to be able to solve all soluble wanted equalities. Suppose we have work-item b -G-> a inert-item a -W-> b Assuming (G >= W) but not (W >= W), this fulfills all the conditions, so we could extend the inerts, thus: inert-items b -G-> a a -W-> b But if we kicked-out the inert item, we'd get work-item a -W-> b inert-item b -G-> a Then rewrite the work-item gives us (a -W-> a), which is soluble via Refl. So we add one more clause to the kick-out criteria Another way to understand (K3) is that we treat an inert item a -f-> b in the same way as b -f-> a So if we kick out one, we should kick out the other. The orientation is somewhat accidental. When considering roles, we also need the second clause (K3b). Consider inert-item a -W/R-> b c work-item c -G/N-> a The work-item doesn't get rewritten by the inert, because (>=) doesn't hold. We've satisfied conditions (T1)-(T3) and (K1) and (K2). If all we had were condition (K3a), then we would keep the inert around and add the work item. But then, consider if we hit the following: work-item2 b -G/N-> Id where newtype Id x = Id x For similar reasons, if we only had (K3a), we wouldn't kick the representational inert out. And then, we'd miss solving the inert, which now reduced to reflexivity. The solution here is to kick out representational inerts whenever the tyvar of a work item is "exposed", where exposed means not under some proper data-type constructor, like [] or Maybe. See isTyVarExposed in TcType. This is encoded in (K3b). Note [Flavours with roles] ~~~~~~~~~~~~~~~~~~~~~~~~~~ The system described in Note [The inert equalities] discusses an abstract set of flavours. In GHC, flavours have two components: the flavour proper, taken from {Wanted, Derived, Given}; and the equality relation (often called role), taken from {NomEq, ReprEq}. When substituting w.r.t. the inert set, as described in Note [The inert equalities], we must be careful to respect roles. For example, if we have inert set: a -G/R-> Int b -G/R-> Bool type role T nominal representational and we wish to compute S(W/R, T a b), the correct answer is T a Bool, NOT T Int Bool. The reason is that T's first parameter has a nominal role, and thus rewriting a to Int in T a b is wrong. Indeed, this non-congruence of subsitution means that the proof in Note [The inert equalities] may need to be revisited, but we don't think that the end conclusion is wrong. -} flattenTyVar :: FlattenEnv -> TcTyVar -> TcS (Xi, TcCoercion) -- "Flattening" a type variable means to apply the substitution to it -- The substitution is actually the union of -- * the unifications that have taken place (either before the -- solver started, or in TcInteract.solveByUnification) -- * the CTyEqCans held in the inert set -- -- Postcondition: co : xi ~ tv flattenTyVar fmode tv = do { mb_yes <- flattenTyVarOuter fmode tv ; case mb_yes of Left tv' -> -- Done do { traceTcS "flattenTyVar1" (ppr tv $$ ppr (tyVarKind tv')) ; return (ty', mkTcReflCo (feRole fmode) ty') } where ty' = mkTyVarTy tv' Right (ty1, co1) -- Recurse -> do { (ty2, co2) <- flatten_one fmode ty1 ; traceTcS "flattenTyVar3" (ppr tv $$ ppr ty2) ; return (ty2, co2 `mkTcTransCo` co1) } } flattenTyVarOuter :: FlattenEnv -> TcTyVar -> TcS (Either TyVar (TcType, TcCoercion)) -- Look up the tyvar in -- a) the internal MetaTyVar box -- b) the tyvar binds -- c) the inerts -- Return (Left tv') if it is not found, tv' has a properly zonked kind -- (Right (ty, co) if found, with co :: ty ~ tv; flattenTyVarOuter fmode tv | not (isTcTyVar tv) -- Happens when flatten under a (forall a. ty) = Left `liftM` flattenTyVarFinal fmode tv -- So ty contains refernces to the non-TcTyVar a | otherwise = do { mb_ty <- isFilledMetaTyVar_maybe tv ; case mb_ty of { Just ty -> do { traceTcS "Following filled tyvar" (ppr tv <+> equals <+> ppr ty) ; return (Right (ty, mkTcReflCo (feRole fmode) ty)) } ; Nothing -> -- Try in the inert equalities -- See Definition [Applying a generalised substitution] do { ieqs <- getInertEqs ; case lookupVarEnv ieqs tv of Just (ct:_) -- If the first doesn't work, -- the subsequent ones won't either | CTyEqCan { cc_ev = ctev, cc_tyvar = tv, cc_rhs = rhs_ty } <- ct , ctEvFlavourRole ctev `eqCanRewriteFR` feFlavourRole fmode -> do { traceTcS "Following inert tyvar" (ppr tv <+> equals <+> ppr rhs_ty $$ ppr ctev) ; let rewrite_co1 = mkTcSymCo (ctEvCoercion ctev) rewrite_co = case (ctEvEqRel ctev, fe_eq_rel fmode) of (ReprEq, _rel) -> ASSERT( _rel == ReprEq ) -- if this ASSERT fails, then -- eqCanRewriteFR answered incorrectly rewrite_co1 (NomEq, NomEq) -> rewrite_co1 (NomEq, ReprEq) -> mkTcSubCo rewrite_co1 ; return (Right (rhs_ty, rewrite_co)) } -- NB: ct is Derived then fmode must be also, hence -- we are not going to touch the returned coercion -- so ctEvCoercion is fine. _other -> Left `liftM` flattenTyVarFinal fmode tv } } } flattenTyVarFinal :: FlattenEnv -> TcTyVar -> TcS TyVar flattenTyVarFinal fmode tv = -- Done, but make sure the kind is zonked do { let kind = tyVarKind tv kind_fmode = setFEMode fmode FM_SubstOnly ; (new_knd, _kind_co) <- flatten_one kind_fmode kind ; return (setVarType tv new_knd) } {- Note [An alternative story for the inert substitution] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (This entire note is just background, left here in case we ever want to return the the previousl state of affairs) We used (GHC 7.8) to have this story for the inert substitution inert_eqs * 'a' is not in fvs(ty) * They are *inert* in the weaker sense that there is no infinite chain of (i1 `eqCanRewrite` i2), (i2 `eqCanRewrite` i3), etc This means that flattening must be recursive, but it does allow [G] a ~ [b] [G] b ~ Maybe c This avoids "saturating" the Givens, which can save a modest amount of work. It is easy to implement, in TcInteract.kick_out, by only kicking out an inert only if (a) the work item can rewrite the inert AND (b) the inert cannot rewrite the work item This is signifcantly harder to think about. It can save a LOT of work in occurs-check cases, but we don't care about them much. Trac #5837 is an example; all the constraints here are Givens [G] a ~ TF (a,Int) --> work TF (a,Int) ~ fsk inert fsk ~ a ---> work fsk ~ (TF a, TF Int) inert fsk ~ a ---> work a ~ (TF a, TF Int) inert fsk ~ a ---> (attempting to flatten (TF a) so that it does not mention a work TF a ~ fsk2 inert a ~ (fsk2, TF Int) inert fsk ~ (fsk2, TF Int) ---> (substitute for a) work TF (fsk2, TF Int) ~ fsk2 inert a ~ (fsk2, TF Int) inert fsk ~ (fsk2, TF Int) ---> (top-level reduction, re-orient) work fsk2 ~ (TF fsk2, TF Int) inert a ~ (fsk2, TF Int) inert fsk ~ (fsk2, TF Int) ---> (attempt to flatten (TF fsk2) to get rid of fsk2 work TF fsk2 ~ fsk3 work fsk2 ~ (fsk3, TF Int) inert a ~ (fsk2, TF Int) inert fsk ~ (fsk2, TF Int) ---> work TF fsk2 ~ fsk3 inert fsk2 ~ (fsk3, TF Int) inert a ~ ((fsk3, TF Int), TF Int) inert fsk ~ ((fsk3, TF Int), TF Int) Because the incoming given rewrites all the inert givens, we get more and more duplication in the inert set. But this really only happens in pathalogical casee, so we don't care. -} eqCanRewrite :: CtEvidence -> CtEvidence -> Bool eqCanRewrite ev1 ev2 = ctEvFlavourRole ev1 `eqCanRewriteFR` ctEvFlavourRole ev2 -- | Whether or not one 'Ct' can rewrite another is determined by its -- flavour and its equality relation type CtFlavourRole = (CtFlavour, EqRel) -- | Extract the flavour and role from a 'CtEvidence' ctEvFlavourRole :: CtEvidence -> CtFlavourRole ctEvFlavourRole ev = (ctEvFlavour ev, ctEvEqRel ev) -- | Extract the flavour and role from a 'Ct' ctFlavourRole :: Ct -> CtFlavourRole ctFlavourRole = ctEvFlavourRole . cc_ev -- | Extract the flavour and role from a 'FlattenEnv' feFlavourRole :: FlattenEnv -> CtFlavourRole feFlavourRole (FE { fe_flavour = flav, fe_eq_rel = eq_rel }) = (flav, eq_rel) eqCanRewriteFR :: CtFlavourRole -> CtFlavourRole -> Bool -- Very important function! -- See Note [eqCanRewrite] eqCanRewriteFR (Given, NomEq) (_, _) = True eqCanRewriteFR (Given, ReprEq) (_, ReprEq) = True eqCanRewriteFR _ _ = False canRewriteOrSame :: CtEvidence -> CtEvidence -> Bool -- See Note [canRewriteOrSame] canRewriteOrSame ev1 ev2 = ev1 `eqCanRewrite` ev2 || ctEvFlavourRole ev1 == ctEvFlavourRole ev2 canRewriteOrSameFR :: CtFlavourRole -> CtFlavourRole -> Bool canRewriteOrSameFR fr1 fr2 = fr1 `eqCanRewriteFR` fr2 || fr1 == fr2 {- Note [eqCanRewrite] ~~~~~~~~~~~~~~~~~~~ (eqCanRewrite ct1 ct2) holds if the constraint ct1 (a CTyEqCan of form tv ~ ty) can be used to rewrite ct2. It must satisfy the properties of a can-rewrite relation, see Definition [Can-rewrite relation] At the moment we don't allow Wanteds to rewrite Wanteds, because that can give rise to very confusing type error messages. A good example is Trac #8450. Here's another f :: a -> Bool f x = ( [x,'c'], [x,True] ) `seq` True Here we get [W] a ~ Char [W] a ~ Bool but we do not want to complain about Bool ~ Char! Accordingly, we also don't let Deriveds rewrite Deriveds. With the solver handling Coercible constraints like equality constraints, the rewrite conditions must take role into account, never allowing a representational equality to rewrite a nominal one. Note [canRewriteOrSame] ~~~~~~~~~~~~~~~~~~~~~~~ canRewriteOrSame is similar but * returns True for Wanted/Wanted. * works for all kinds of constraints, not just CTyEqCans See the call sites for explanations. ************************************************************************ * * Unflattening * * ************************************************************************ An unflattening example: [W] F a ~ alpha flattens to [W] F a ~ fmv (CFunEqCan) [W] fmv ~ alpha (CTyEqCan) We must solve both! -} unflatten :: Cts -> Cts -> TcS Cts unflatten tv_eqs funeqs = do { dflags <- getDynFlags ; tclvl <- getTcLevel ; traceTcS "Unflattening" $ braces $ vcat [ ptext (sLit "Funeqs =") <+> pprCts funeqs , ptext (sLit "Tv eqs =") <+> pprCts tv_eqs ] -- Step 1: unflatten the CFunEqCans, except if that causes an occurs check -- See Note [Unflatten using funeqs first] ; funeqs <- foldrBagM (unflatten_funeq dflags) emptyCts funeqs ; traceTcS "Unflattening 1" $ braces (pprCts funeqs) -- Step 2: unify the irreds, if possible ; tv_eqs <- foldrBagM (unflatten_eq dflags tclvl) emptyCts tv_eqs ; traceTcS "Unflattening 2" $ braces (pprCts tv_eqs) -- Step 3: fill any remaining fmvs with fresh unification variables ; funeqs <- mapBagM finalise_funeq funeqs ; traceTcS "Unflattening 3" $ braces (pprCts funeqs) -- Step 4: remove any irreds that look like ty ~ ty ; tv_eqs <- foldrBagM finalise_eq emptyCts tv_eqs ; let all_flat = tv_eqs `andCts` funeqs ; traceTcS "Unflattening done" $ braces (pprCts all_flat) ; return all_flat } where ---------------- unflatten_funeq :: DynFlags -> Ct -> Cts -> TcS Cts unflatten_funeq dflags ct@(CFunEqCan { cc_fun = tc, cc_tyargs = xis , cc_fsk = fmv, cc_ev = ev }) rest = do { -- fmv should be a flatten meta-tv; we now fix its final -- value, and then zonking will eliminate it filled <- tryFill dflags fmv (mkTyConApp tc xis) ev ; return (if filled then rest else ct `consCts` rest) } unflatten_funeq _ other_ct _ = pprPanic "unflatten_funeq" (ppr other_ct) ---------------- finalise_funeq :: Ct -> TcS Ct finalise_funeq (CFunEqCan { cc_fsk = fmv, cc_ev = ev }) = do { demoteUnfilledFmv fmv ; return (mkNonCanonical ev) } finalise_funeq ct = pprPanic "finalise_funeq" (ppr ct) ---------------- unflatten_eq :: DynFlags -> TcLevel -> Ct -> Cts -> TcS Cts unflatten_eq dflags tclvl ct@(CTyEqCan { cc_ev = ev, cc_tyvar = tv, cc_rhs = rhs }) rest | isFmvTyVar tv = do { lhs_elim <- tryFill dflags tv rhs ev ; if lhs_elim then return rest else do { rhs_elim <- try_fill dflags tclvl ev rhs (mkTyVarTy tv) ; if rhs_elim then return rest else return (ct `consCts` rest) } } | otherwise = return (ct `consCts` rest) unflatten_eq _ _ ct _ = pprPanic "unflatten_irred" (ppr ct) ---------------- finalise_eq :: Ct -> Cts -> TcS Cts finalise_eq (CTyEqCan { cc_ev = ev, cc_tyvar = tv , cc_rhs = rhs, cc_eq_rel = eq_rel }) rest | isFmvTyVar tv = do { ty1 <- zonkTcTyVar tv ; ty2 <- zonkTcType rhs ; let is_refl = ty1 `tcEqType` ty2 ; if is_refl then do { when (isWanted ev) $ setEvBind (ctEvId ev) (EvCoercion $ mkTcReflCo (eqRelRole eq_rel) rhs) ; return rest } else return (mkNonCanonical ev `consCts` rest) } | otherwise = return (mkNonCanonical ev `consCts` rest) finalise_eq ct _ = pprPanic "finalise_irred" (ppr ct) ---------------- try_fill dflags tclvl ev ty1 ty2 | Just tv1 <- tcGetTyVar_maybe ty1 , isTouchableOrFmv tclvl tv1 , typeKind ty1 `isSubKind` tyVarKind tv1 = tryFill dflags tv1 ty2 ev | otherwise = return False tryFill :: DynFlags -> TcTyVar -> TcType -> CtEvidence -> TcS Bool -- (tryFill tv rhs ev) sees if 'tv' is an un-filled MetaTv -- If so, and if tv does not appear in 'rhs', set tv := rhs -- bind the evidence (which should be a CtWanted) to Refl<rhs> -- and return True. Otherwise return False tryFill dflags tv rhs ev = ASSERT2( not (isGiven ev), ppr ev ) do { is_filled <- isFilledMetaTyVar tv ; if is_filled then return False else do { rhs' <- zonkTcType rhs ; case occurCheckExpand dflags tv rhs' of OC_OK rhs'' -- Normal case: fill the tyvar -> do { when (isWanted ev) $ setEvBind (ctEvId ev) (EvCoercion (mkTcReflCo (ctEvRole ev) rhs'')) ; setWantedTyBind tv rhs'' ; return True } _ -> -- Occurs check return False } } {- Note [Unflatten using funeqs first] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [W] G a ~ Int [W] F (G a) ~ G a do not want to end up with [W} F Int ~ Int because that might actually hold! Better to end up with the two above unsolved constraints. The flat form will be G a ~ fmv1 (CFunEqCan) F fmv1 ~ fmv2 (CFunEqCan) fmv1 ~ Int (CTyEqCan) fmv1 ~ fmv2 (CTyEqCan) Flatten using the fun-eqs first. -} -- | Change the 'EqRel' in a 'FlattenEnv'. Avoids allocating a -- new 'FlattenEnv' where possible. setFEEqRel :: FlattenEnv -> EqRel -> FlattenEnv setFEEqRel fmode@(FE { fe_eq_rel = old_eq_rel }) new_eq_rel | old_eq_rel == new_eq_rel = fmode | otherwise = fmode { fe_eq_rel = new_eq_rel } -- | Change the 'FlattenMode' in a 'FlattenEnv'. Avoids allocating -- a new 'FlattenEnv' where possible. setFEMode :: FlattenEnv -> FlattenMode -> FlattenEnv setFEMode fmode@(FE { fe_mode = old_mode }) new_mode | old_mode `eq` new_mode = fmode | otherwise = fmode { fe_mode = new_mode } where FM_FlattenAll `eq` FM_FlattenAll = True FM_SubstOnly `eq` FM_SubstOnly = True FM_Avoid tv1 b1 `eq` FM_Avoid tv2 b2 = tv1 == tv2 && b1 == b2 _ `eq` _ = False
bitemyapp/ghc
compiler/typecheck/TcFlatten.hs
Haskell
bsd-3-clause
57,104
{-# LANGUAGE DoAndIfThenElse #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE TypeFamilies #-} module Wavecore.ECDIS.SeaMap where import Control.Applicative import Data.Geo.TransverseMercator import Data.Geo.UTM import Data.Maybe import FRP.Sodium import Numeric.Units.Dimensional.TF.Prelude import qualified Prelude as P () import Wavecore.ECDIS.Controller newtype Coordinate = MkCoordinate (PlaneAngle Double, PlaneAngle Double) deriving (Eq) newtype UTMCoordinate = MkUTMCoordinate (Length Double, Length Double) deriving (Eq) newtype UTMZone = UTMZone Int deriving (Eq) newtype UTMZonedCoordinate = MkZonedCoordinate ( ((UTMZone, Bool), (PlaneAngle Double, Dimensionless Double)), UTMCoordinate) deriving (Eq) _utmForward :: Coordinate -> UTMZonedCoordinate _utmForward (MkCoordinate (lat, lon)) = let ((z',n), (TM x y conv scale)) = maybe (error "utmForward: no result") id $ utmForward' lat lon utm = MkUTMCoordinate (x, y) cs = (conv, scale) zn = (UTMZone z', n) in MkZonedCoordinate ((zn, cs), utm) _utmZonedForward :: UTMZone -> Coordinate -> UTMCoordinate _utmZonedForward (UTMZone z) (MkCoordinate (lat,lon)) = let (_, (TM x y _ _)) = maybe (error "utmZonedForward: no result") id $ utmZonedForward z lat lon in MkUTMCoordinate (x, y) _utmReverse :: Bool -> UTMZone -> UTMCoordinate -> Coordinate _utmReverse n (UTMZone z) (MkUTMCoordinate (x,y)) = MkCoordinate $ maybe (error "utmReverse: no result") id $ utmReverse z n x y -- -- SEA MAP -- data SeaMap data SeaMapNorthing = TrueNorth | MapNorth | HeadingNorth deriving (Eq) newtype SeaMapZoom = SeaMapZoom (Dimensionless Int) deriving (Eq) class SeaMapProjection proj where instance Controller SeaMap where data ControllerCommand SeaMap = SeaMapToggleInput | SeaMapSetNorthing SeaMapNorthing | SeaMapSetIntPos Coordinate deriving (Eq) data ControllerInput SeaMap = SeaMapInput { _smInPosition :: Behavior (Maybe Coordinate), _smInZoomFactor :: Behavior (SeaMapZoom), _smInMapSize :: Behavior (Dimensionless Double, Dimensionless Double), _smInPixelFactor :: Behavior (Length Double), _smInExtHeading :: Behavior (Maybe (PlaneAngle Double)) } data ControllerOutput SeaMap = SeaMapOutput { _smUTMForward :: Behavior (Coordinate -> UTMCoordinate), _smUTMReverse :: Behavior (UTMCoordinate -> Coordinate), _smExtPosAvail :: Behavior Bool, _smExtHeadingAvail :: Behavior Bool, _smCurrentPosition :: Behavior (Coordinate), _smCurrentPositionIsExternal :: Behavior Bool, _smZone :: Behavior (UTMZone), _smIsNorth :: Behavior Bool, _smMeridianConvergence :: Behavior (PlaneAngle Double), _smProjectionScale :: Behavior (Dimensionless Double), _smRotation :: Behavior (PlaneAngle Double), _smNorthing :: Behavior SeaMapNorthing, _smMapOrigin :: Behavior (Length Double, Length Double), _smMapDim :: Behavior (Length Double, Length Double) } newController i e = let (toggleInputE, setNorthingE, setIntPosE) = seaMapSplitInputEvents e extPosAvailE = fmap isJust $ updates (_smInPosition i) extHeadingAvailE = fmap isJust $ updates (_smInExtHeading i) in do -- external inputs extPosAvail <- hold False extPosAvailE extHeadingAvail <- hold False extHeadingAvailE -- the switching of position input intPos <- hold smDefaultCoord $ fmap (\(SeaMapSetIntPos p) -> p) setIntPosE (isExternal, pushIsExternal) <- newBehavior False let checkInputs :: () -> Reactive (Behavior Coordinate) checkInputs _ = do extAvail <- sample extPosAvail if (not extAvail) then (pushIsExternal False >> return intPos) else do isExt <- sample isExternal if (isExt) then (pushIsExternal False >> return intPos) else do pushIsExternal True let frJust = maybe (error "SeaMap Controller: no external pos") id return $ fmap frJust $ _smInPosition i switchPosSrcE :: Event (Behavior Coordinate) switchPosSrcE = execute $ fmap checkInputs $ let toggle = fmap (\_ -> ()) toggleInputE extLost = fmap (\_ -> ()) $ filterE (not) (updates extPosAvail) in toggle `merge` extLost posSrcSwitch <- hold intPos $ switchPosSrcE curPos <- switch posSrcSwitch -- position and map transformation let curPosUTMZoned' = fmap _utmForward curPos curPosUTMZoned = fmap (\(MkZonedCoordinate a) -> a) curPosUTMZoned' northp = fmap (snd.fst.fst) curPosUTMZoned zone = fmap (fst.fst.fst) curPosUTMZoned meridianConvergence = fmap (fst.snd.fst) curPosUTMZoned projectionScale = fmap (snd.snd.fst) curPosUTMZoned curPosUTM = fmap snd curPosUTMZoned utmRv = _utmReverse <$> northp <*> zone utmFw = _utmZonedForward <$> zone -- map viewport let pxZoom = liftA2 (\px (SeaMapZoom z) -> px * fmap fromIntegral z) (_smInPixelFactor i) (_smInZoomFactor i) mapWidth = liftA2 (*) pxZoom . fmap fst $ (_smInMapSize i) mapWidth2 = liftA2 (/) mapWidth (pure _2) mapHeight = liftA2 (*) pxZoom . fmap snd $ (_smInMapSize i) mapHeight2 = liftA2 (/) mapHeight (pure _2) mapDim = liftA2 (\a b -> (a,b)) mapWidth mapHeight mapOrigin = liftA3 (\(MkUTMCoordinate (x,y)) w2 h2 -> (x - w2, y - h2)) curPosUTM mapWidth2 mapHeight2 -- rotation / heading let mapNorth = pure $ 0 *~ degree trueNorth = liftA2 (-) mapNorth meridianConvergence headingLostE = fmap (\_ -> SeaMapSetNorthing MapNorth) $ filterE not . updates $ extHeadingAvail northingChange = headingLostE `merge` setNorthingE (northingSwitch, pushNorthingSwitch) <- newBehavior MapNorth let frJust = maybe (error "SeaMap Controller: no extern heading") id onNorthingChange (SeaMapSetNorthing n) = case n of TrueNorth -> do pushNorthingSwitch TrueNorth >> return trueNorth MapNorth -> do pushNorthingSwitch MapNorth >> return mapNorth HeadingNorth -> do extAvail <- sample extHeadingAvail if (extAvail) then do pushNorthingSwitch HeadingNorth return $ fmap frJust (_smInExtHeading i) else do pushNorthingSwitch MapNorth >> return mapNorth onNorthingChange _ = error "SeaMap Controller: unexpxted Northing event" northingSwitchToE = execute $ fmap onNorthingChange northingChange rotationSwitch <- hold mapNorth northingSwitchToE rotation <- switch rotationSwitch return $ SeaMapOutput { _smExtPosAvail = extPosAvail, _smExtHeadingAvail = extHeadingAvail, _smCurrentPosition = curPos, _smCurrentPositionIsExternal = isExternal, _smZone = zone, _smIsNorth = northp, _smMeridianConvergence = meridianConvergence, _smProjectionScale = projectionScale, _smRotation = rotation, _smNorthing = northingSwitch, _smUTMReverse = utmRv, _smUTMForward = utmFw, _smMapOrigin = mapOrigin, _smMapDim = mapDim } smDefaultCoord :: Coordinate smDefaultCoord = MkCoordinate (52.3 *~ degree, 7.1 *~ degree) seaMapSplitInputEvents :: Event (ControllerCommand SeaMap) -> ( Event (ControllerCommand SeaMap) , Event (ControllerCommand SeaMap) , Event (ControllerCommand SeaMap) ) seaMapSplitInputEvents e = let toggleInputE = filterE ((==) SeaMapToggleInput) e setNorthingE = filterE (\e' -> case e' of SeaMapSetNorthing _ -> True _ -> False) e setIntPosE = filterE (\e' -> case e' of SeaMapSetIntPos _ -> True _ -> False) e in (toggleInputE, setNorthingE, setIntPosE) instance Controller SeaMapZoom where data ControllerCommand SeaMapZoom = ZoomIn | ZoomOut data ControllerInput SeaMapZoom = SeaMapZoomInput { _initZoom :: SeaMapZoom, _zoomFactor :: (Dimensionless Int) } data ControllerOutput SeaMapZoom = SeaMapZoomOutput { _seaMapZoom :: Behavior SeaMapZoom } newController i e = let zoomF ZoomIn (SeaMapZoom z) = SeaMapZoom $ z - (_zoomFactor i) zoomF ZoomOut (SeaMapZoom z) = SeaMapZoom $ z + (_zoomFactor i) in do a <- accum (_initZoom i) (fmap zoomF e) return SeaMapZoomOutput { _seaMapZoom = a }
wavecorenautic/ecdis-client
src/Wavecore/ECDIS/SeaMap.hs
Haskell
bsd-3-clause
9,216
{- (c) Galois, 2006 (c) University of Glasgow, 2007 -} {-# LANGUAGE CPP, NondecreasingIndentation, RecordWildCards #-} module Coverage (addTicksToBinds, hpcInitCode) where #ifdef GHCI import qualified GHCi import GHCi.RemoteTypes import Data.Array import ByteCodeTypes import GHC.Stack.CCS #endif import Type import HsSyn import Module import Outputable import DynFlags import Control.Monad import SrcLoc import ErrUtils import NameSet hiding (FreeVars) import Name import Bag import CostCentre import CoreSyn import Id import VarSet import Data.List import FastString import HscTypes import TyCon import UniqSupply import BasicTypes import MonadUtils import Maybes import CLabel import Util import Data.Time import System.Directory import Trace.Hpc.Mix import Trace.Hpc.Util import Data.Map (Map) import qualified Data.Map as Map {- ************************************************************************ * * * The main function: addTicksToBinds * * ************************************************************************ -} addTicksToBinds :: HscEnv -> Module -> ModLocation -- ... off the current module -> NameSet -- Exported Ids. When we call addTicksToBinds, -- isExportedId doesn't work yet (the desugarer -- hasn't set it), so we have to work from this set. -> [TyCon] -- Type constructor in this module -> LHsBinds Id -> IO (LHsBinds Id, HpcInfo, Maybe ModBreaks) addTicksToBinds hsc_env mod mod_loc exports tyCons binds | let dflags = hsc_dflags hsc_env passes = coveragePasses dflags, not (null passes), Just orig_file <- ml_hs_file mod_loc = do if "boot" `isSuffixOf` orig_file then return (binds, emptyHpcInfo False, Nothing) else do us <- mkSplitUniqSupply 'C' -- for cost centres let orig_file2 = guessSourceFile binds orig_file tickPass tickish (binds,st) = let env = TTE { fileName = mkFastString orig_file2 , declPath = [] , tte_dflags = dflags , exports = exports , inlines = emptyVarSet , inScope = emptyVarSet , blackList = Map.fromList [ (getSrcSpan (tyConName tyCon),()) | tyCon <- tyCons ] , density = mkDensity tickish dflags , this_mod = mod , tickishType = tickish } (binds',_,st') = unTM (addTickLHsBinds binds) env st in (binds', st') initState = TT { tickBoxCount = 0 , mixEntries = [] , uniqSupply = us } (binds1,st) = foldr tickPass (binds, initState) passes let tickCount = tickBoxCount st entries = reverse $ mixEntries st hashNo <- writeMixEntries dflags mod tickCount entries orig_file2 modBreaks <- mkModBreaks hsc_env mod tickCount entries when (dopt Opt_D_dump_ticked dflags) $ log_action dflags dflags SevDump noSrcSpan defaultDumpStyle (pprLHsBinds binds1) return (binds1, HpcInfo tickCount hashNo, Just modBreaks) | otherwise = return (binds, emptyHpcInfo False, Nothing) guessSourceFile :: LHsBinds Id -> FilePath -> FilePath guessSourceFile binds orig_file = -- Try look for a file generated from a .hsc file to a -- .hs file, by peeking ahead. let top_pos = catMaybes $ foldrBag (\ (L pos _) rest -> srcSpanFileName_maybe pos : rest) [] binds in case top_pos of (file_name:_) | ".hsc" `isSuffixOf` unpackFS file_name -> unpackFS file_name _ -> orig_file mkModBreaks :: HscEnv -> Module -> Int -> [MixEntry_] -> IO ModBreaks #ifndef GHCI mkModBreaks _hsc_env _mod _count _entries = return emptyModBreaks #else mkModBreaks hsc_env mod count entries | HscInterpreted <- hscTarget (hsc_dflags hsc_env) = do breakArray <- GHCi.newBreakArray hsc_env (length entries) ccs <- mkCCSArray hsc_env mod count entries let locsTicks = listArray (0,count-1) [ span | (span,_,_,_) <- entries ] varsTicks = listArray (0,count-1) [ vars | (_,_,vars,_) <- entries ] declsTicks = listArray (0,count-1) [ decls | (_,decls,_,_) <- entries ] return emptyModBreaks { modBreaks_flags = breakArray , modBreaks_locs = locsTicks , modBreaks_vars = varsTicks , modBreaks_decls = declsTicks , modBreaks_ccs = ccs } | otherwise = return emptyModBreaks mkCCSArray :: HscEnv -> Module -> Int -> [MixEntry_] -> IO (Array BreakIndex (RemotePtr GHC.Stack.CCS.CostCentre)) mkCCSArray hsc_env modul count entries = do if interpreterProfiled dflags then do let module_str = moduleNameString (moduleName modul) costcentres <- GHCi.mkCostCentres hsc_env module_str (map mk_one entries) return (listArray (0,count-1) costcentres) else do return (listArray (0,-1) []) where dflags = hsc_dflags hsc_env mk_one (srcspan, decl_path, _, _) = (name, src) where name = concat (intersperse "." decl_path) src = showSDoc dflags (ppr srcspan) #endif writeMixEntries :: DynFlags -> Module -> Int -> [MixEntry_] -> FilePath -> IO Int writeMixEntries dflags mod count entries filename | not (gopt Opt_Hpc dflags) = return 0 | otherwise = do let hpc_dir = hpcDir dflags mod_name = moduleNameString (moduleName mod) hpc_mod_dir | moduleUnitId mod == mainUnitId = hpc_dir | otherwise = hpc_dir ++ "/" ++ unitIdString (moduleUnitId mod) tabStop = 8 -- <tab> counts as a normal char in GHC's -- location ranges. createDirectoryIfMissing True hpc_mod_dir modTime <- getModificationUTCTime filename let entries' = [ (hpcPos, box) | (span,_,_,box) <- entries, hpcPos <- [mkHpcPos span] ] when (length entries' /= count) $ do panic "the number of .mix entries are inconsistent" let hashNo = mixHash filename modTime tabStop entries' mixCreate hpc_mod_dir mod_name $ Mix filename modTime (toHash hashNo) tabStop entries' return hashNo -- ----------------------------------------------------------------------------- -- TickDensity: where to insert ticks data TickDensity = TickForCoverage -- for Hpc | TickForBreakPoints -- for GHCi | TickAllFunctions -- for -prof-auto-all | TickTopFunctions -- for -prof-auto-top | TickExportedFunctions -- for -prof-auto-exported | TickCallSites -- for stack tracing deriving Eq mkDensity :: TickishType -> DynFlags -> TickDensity mkDensity tickish dflags = case tickish of HpcTicks -> TickForCoverage SourceNotes -> TickForCoverage Breakpoints -> TickForBreakPoints ProfNotes -> case profAuto dflags of ProfAutoAll -> TickAllFunctions ProfAutoTop -> TickTopFunctions ProfAutoExports -> TickExportedFunctions ProfAutoCalls -> TickCallSites _other -> panic "mkDensity" -- | Decide whether to add a tick to a binding or not. shouldTickBind :: TickDensity -> Bool -- top level? -> Bool -- exported? -> Bool -- simple pat bind? -> Bool -- INLINE pragma? -> Bool shouldTickBind density top_lev exported _simple_pat inline = case density of TickForBreakPoints -> False -- we never add breakpoints to simple pattern bindings -- (there's always a tick on the rhs anyway). TickAllFunctions -> not inline TickTopFunctions -> top_lev && not inline TickExportedFunctions -> exported && not inline TickForCoverage -> True TickCallSites -> False shouldTickPatBind :: TickDensity -> Bool -> Bool shouldTickPatBind density top_lev = case density of TickForBreakPoints -> False TickAllFunctions -> True TickTopFunctions -> top_lev TickExportedFunctions -> False TickForCoverage -> False TickCallSites -> False -- ----------------------------------------------------------------------------- -- Adding ticks to bindings addTickLHsBinds :: LHsBinds Id -> TM (LHsBinds Id) addTickLHsBinds = mapBagM addTickLHsBind addTickLHsBind :: LHsBind Id -> TM (LHsBind Id) addTickLHsBind (L pos bind@(AbsBinds { abs_binds = binds, abs_exports = abs_exports })) = do withEnv add_exports $ do withEnv add_inlines $ do binds' <- addTickLHsBinds binds return $ L pos $ bind { abs_binds = binds' } where -- in AbsBinds, the Id on each binding is not the actual top-level -- Id that we are defining, they are related by the abs_exports -- field of AbsBinds. So if we're doing TickExportedFunctions we need -- to add the local Ids to the set of exported Names so that we know to -- tick the right bindings. add_exports env = env{ exports = exports env `extendNameSetList` [ idName mid | ABE{ abe_poly = pid, abe_mono = mid } <- abs_exports , idName pid `elemNameSet` (exports env) ] } add_inlines env = env{ inlines = inlines env `extendVarSetList` [ mid | ABE{ abe_poly = pid, abe_mono = mid } <- abs_exports , isAnyInlinePragma (idInlinePragma pid) ] } addTickLHsBind (L pos bind@(AbsBindsSig { abs_sig_bind = val_bind , abs_sig_export = poly_id })) | L _ FunBind { fun_id = L _ mono_id } <- val_bind = do withEnv (add_export mono_id) $ do withEnv (add_inlines mono_id) $ do val_bind' <- addTickLHsBind val_bind return $ L pos $ bind { abs_sig_bind = val_bind' } | otherwise = pprPanic "addTickLHsBind" (ppr bind) where -- see AbsBinds comments add_export mono_id env | idName poly_id `elemNameSet` exports env = env { exports = exports env `extendNameSet` idName mono_id } | otherwise = env add_inlines mono_id env | isAnyInlinePragma (idInlinePragma poly_id) = env { inlines = inlines env `extendVarSet` mono_id } | otherwise = env addTickLHsBind (L pos (funBind@(FunBind { fun_id = (L _ id) }))) = do let name = getOccString id decl_path <- getPathEntry density <- getDensity inline_ids <- liftM inlines getEnv let inline = isAnyInlinePragma (idInlinePragma id) || id `elemVarSet` inline_ids -- See Note [inline sccs] tickish <- tickishType `liftM` getEnv if inline && tickish == ProfNotes then return (L pos funBind) else do (fvs, mg@(MG { mg_alts = matches' })) <- getFreeVars $ addPathEntry name $ addTickMatchGroup False (fun_matches funBind) blackListed <- isBlackListed pos exported_names <- liftM exports getEnv -- We don't want to generate code for blacklisted positions -- We don't want redundant ticks on simple pattern bindings -- We don't want to tick non-exported bindings in TickExportedFunctions let simple = isSimplePatBind funBind toplev = null decl_path exported = idName id `elemNameSet` exported_names tick <- if not blackListed && shouldTickBind density toplev exported simple inline then bindTick density name pos fvs else return Nothing let mbCons = maybe Prelude.id (:) return $ L pos $ funBind { fun_matches = mg { mg_alts = matches' } , fun_tick = tick `mbCons` fun_tick funBind } where -- a binding is a simple pattern binding if it is a funbind with -- zero patterns isSimplePatBind :: HsBind a -> Bool isSimplePatBind funBind = matchGroupArity (fun_matches funBind) == 0 -- TODO: Revisit this addTickLHsBind (L pos (pat@(PatBind { pat_lhs = lhs, pat_rhs = rhs }))) = do let name = "(...)" (fvs, rhs') <- getFreeVars $ addPathEntry name $ addTickGRHSs False False rhs let pat' = pat { pat_rhs = rhs'} -- Should create ticks here? density <- getDensity decl_path <- getPathEntry let top_lev = null decl_path if not (shouldTickPatBind density top_lev) then return (L pos pat') else do -- Allocate the ticks rhs_tick <- bindTick density name pos fvs let patvars = map getOccString (collectPatBinders lhs) patvar_ticks <- mapM (\v -> bindTick density v pos fvs) patvars -- Add to pattern let mbCons = maybe id (:) rhs_ticks = rhs_tick `mbCons` fst (pat_ticks pat') patvar_tickss = zipWith mbCons patvar_ticks (snd (pat_ticks pat') ++ repeat []) return $ L pos $ pat' { pat_ticks = (rhs_ticks, patvar_tickss) } -- Only internal stuff, not from source, uses VarBind, so we ignore it. addTickLHsBind var_bind@(L _ (VarBind {})) = return var_bind addTickLHsBind patsyn_bind@(L _ (PatSynBind {})) = return patsyn_bind bindTick :: TickDensity -> String -> SrcSpan -> FreeVars -> TM (Maybe (Tickish Id)) bindTick density name pos fvs = do decl_path <- getPathEntry let toplev = null decl_path count_entries = toplev || density == TickAllFunctions top_only = density /= TickAllFunctions box_label = if toplev then TopLevelBox [name] else LocalBox (decl_path ++ [name]) -- allocATickBox box_label count_entries top_only pos fvs -- Note [inline sccs] -- -- It should be reasonable to add ticks to INLINE functions; however -- currently this tickles a bug later on because the SCCfinal pass -- does not look inside unfoldings to find CostCentres. It would be -- difficult to fix that, because SCCfinal currently works on STG and -- not Core (and since it also generates CostCentres for CAFs, -- changing this would be difficult too). -- -- Another reason not to add ticks to INLINE functions is that this -- sometimes handy for avoiding adding a tick to a particular function -- (see #6131) -- -- So for now we do not add any ticks to INLINE functions at all. -- ----------------------------------------------------------------------------- -- Decorate an LHsExpr with ticks -- selectively add ticks to interesting expressions addTickLHsExpr :: LHsExpr Id -> TM (LHsExpr Id) addTickLHsExpr e@(L pos e0) = do d <- getDensity case d of TickForBreakPoints | isGoodBreakExpr e0 -> tick_it TickForCoverage -> tick_it TickCallSites | isCallSite e0 -> tick_it _other -> dont_tick_it where tick_it = allocTickBox (ExpBox False) False False pos $ addTickHsExpr e0 dont_tick_it = addTickLHsExprNever e -- Add a tick to an expression which is the RHS of an equation or a binding. -- We always consider these to be breakpoints, unless the expression is a 'let' -- (because the body will definitely have a tick somewhere). ToDo: perhaps -- we should treat 'case' and 'if' the same way? addTickLHsExprRHS :: LHsExpr Id -> TM (LHsExpr Id) addTickLHsExprRHS e@(L pos e0) = do d <- getDensity case d of TickForBreakPoints | HsLet{} <- e0 -> dont_tick_it | otherwise -> tick_it TickForCoverage -> tick_it TickCallSites | isCallSite e0 -> tick_it _other -> dont_tick_it where tick_it = allocTickBox (ExpBox False) False False pos $ addTickHsExpr e0 dont_tick_it = addTickLHsExprNever e -- The inner expression of an evaluation context: -- let binds in [], ( [] ) -- we never tick these if we're doing HPC, but otherwise -- we treat it like an ordinary expression. addTickLHsExprEvalInner :: LHsExpr Id -> TM (LHsExpr Id) addTickLHsExprEvalInner e = do d <- getDensity case d of TickForCoverage -> addTickLHsExprNever e _otherwise -> addTickLHsExpr e -- | A let body is treated differently from addTickLHsExprEvalInner -- above with TickForBreakPoints, because for breakpoints we always -- want to tick the body, even if it is not a redex. See test -- break012. This gives the user the opportunity to inspect the -- values of the let-bound variables. addTickLHsExprLetBody :: LHsExpr Id -> TM (LHsExpr Id) addTickLHsExprLetBody e@(L pos e0) = do d <- getDensity case d of TickForBreakPoints | HsLet{} <- e0 -> dont_tick_it | otherwise -> tick_it _other -> addTickLHsExprEvalInner e where tick_it = allocTickBox (ExpBox False) False False pos $ addTickHsExpr e0 dont_tick_it = addTickLHsExprNever e -- version of addTick that does not actually add a tick, -- because the scope of this tick is completely subsumed by -- another. addTickLHsExprNever :: LHsExpr Id -> TM (LHsExpr Id) addTickLHsExprNever (L pos e0) = do e1 <- addTickHsExpr e0 return $ L pos e1 -- general heuristic: expressions which do not denote values are good -- break points isGoodBreakExpr :: HsExpr Id -> Bool isGoodBreakExpr (HsApp {}) = True isGoodBreakExpr (OpApp {}) = True isGoodBreakExpr _other = False isCallSite :: HsExpr Id -> Bool isCallSite HsApp{} = True isCallSite OpApp{} = True isCallSite _ = False addTickLHsExprOptAlt :: Bool -> LHsExpr Id -> TM (LHsExpr Id) addTickLHsExprOptAlt oneOfMany (L pos e0) = ifDensity TickForCoverage (allocTickBox (ExpBox oneOfMany) False False pos $ addTickHsExpr e0) (addTickLHsExpr (L pos e0)) addBinTickLHsExpr :: (Bool -> BoxLabel) -> LHsExpr Id -> TM (LHsExpr Id) addBinTickLHsExpr boxLabel (L pos e0) = ifDensity TickForCoverage (allocBinTickBox boxLabel pos $ addTickHsExpr e0) (addTickLHsExpr (L pos e0)) -- ----------------------------------------------------------------------------- -- Decorate the body of an HsExpr with ticks. -- (Whether to put a tick around the whole expression was already decided, -- in the addTickLHsExpr family of functions.) addTickHsExpr :: HsExpr Id -> TM (HsExpr Id) addTickHsExpr e@(HsVar (L _ id)) = do freeVar id; return e addTickHsExpr (HsUnboundVar {}) = panic "addTickHsExpr.HsUnboundVar" addTickHsExpr e@(HsIPVar _) = return e addTickHsExpr e@(HsOverLit _) = return e addTickHsExpr e@(HsOverLabel _) = return e addTickHsExpr e@(HsLit _) = return e addTickHsExpr (HsLam matchgroup) = liftM HsLam (addTickMatchGroup True matchgroup) addTickHsExpr (HsLamCase ty mgs) = liftM (HsLamCase ty) (addTickMatchGroup True mgs) addTickHsExpr (HsApp e1 e2) = liftM2 HsApp (addTickLHsExprNever e1) e2' -- This might be a type application. Then don't put a tick around e2, -- or dsExpr won't recognize it as a type application any more (#11329). -- It doesn't make sense to put a tick on a type anyways. where e2' | isLHsTypeExpr e2 = return e2 | otherwise = addTickLHsExpr e2 addTickHsExpr (OpApp e1 e2 fix e3) = liftM4 OpApp (addTickLHsExpr e1) (addTickLHsExprNever e2) (return fix) (addTickLHsExpr e3) addTickHsExpr (NegApp e neg) = liftM2 NegApp (addTickLHsExpr e) (addTickSyntaxExpr hpcSrcSpan neg) addTickHsExpr (HsPar e) = liftM HsPar (addTickLHsExprEvalInner e) addTickHsExpr (SectionL e1 e2) = liftM2 SectionL (addTickLHsExpr e1) (addTickLHsExprNever e2) addTickHsExpr (SectionR e1 e2) = liftM2 SectionR (addTickLHsExprNever e1) (addTickLHsExpr e2) addTickHsExpr (ExplicitTuple es boxity) = liftM2 ExplicitTuple (mapM addTickTupArg es) (return boxity) addTickHsExpr (HsCase e mgs) = liftM2 HsCase (addTickLHsExpr e) -- not an EvalInner; e might not necessarily -- be evaluated. (addTickMatchGroup False mgs) addTickHsExpr (HsIf cnd e1 e2 e3) = liftM3 (HsIf cnd) (addBinTickLHsExpr (BinBox CondBinBox) e1) (addTickLHsExprOptAlt True e2) (addTickLHsExprOptAlt True e3) addTickHsExpr (HsMultiIf ty alts) = do { let isOneOfMany = case alts of [_] -> False; _ -> True ; alts' <- mapM (liftL $ addTickGRHS isOneOfMany False) alts ; return $ HsMultiIf ty alts' } addTickHsExpr (HsLet (L l binds) e) = bindLocals (collectLocalBinders binds) $ liftM2 (HsLet . L l) (addTickHsLocalBinds binds) -- to think about: !patterns. (addTickLHsExprLetBody e) addTickHsExpr (HsDo cxt (L l stmts) srcloc) = do { (stmts', _) <- addTickLStmts' forQual stmts (return ()) ; return (HsDo cxt (L l stmts') srcloc) } where forQual = case cxt of ListComp -> Just $ BinBox QualBinBox _ -> Nothing addTickHsExpr (ExplicitList ty wit es) = liftM3 ExplicitList (return ty) (addTickWit wit) (mapM (addTickLHsExpr) es) where addTickWit Nothing = return Nothing addTickWit (Just fln) = do fln' <- addTickSyntaxExpr hpcSrcSpan fln return (Just fln') addTickHsExpr (ExplicitPArr ty es) = liftM2 ExplicitPArr (return ty) (mapM (addTickLHsExpr) es) addTickHsExpr (HsStatic e) = HsStatic <$> addTickLHsExpr e addTickHsExpr expr@(RecordCon { rcon_flds = rec_binds }) = do { rec_binds' <- addTickHsRecordBinds rec_binds ; return (expr { rcon_flds = rec_binds' }) } addTickHsExpr expr@(RecordUpd { rupd_expr = e, rupd_flds = flds }) = do { e' <- addTickLHsExpr e ; flds' <- mapM addTickHsRecField flds ; return (expr { rupd_expr = e', rupd_flds = flds' }) } addTickHsExpr (ExprWithTySig e ty) = liftM2 ExprWithTySig (addTickLHsExprNever e) -- No need to tick the inner expression -- for expressions with signatures (return ty) addTickHsExpr (ArithSeq ty wit arith_seq) = liftM3 ArithSeq (return ty) (addTickWit wit) (addTickArithSeqInfo arith_seq) where addTickWit Nothing = return Nothing addTickWit (Just fl) = do fl' <- addTickSyntaxExpr hpcSrcSpan fl return (Just fl') -- We might encounter existing ticks (multiple Coverage passes) addTickHsExpr (HsTick t e) = liftM (HsTick t) (addTickLHsExprNever e) addTickHsExpr (HsBinTick t0 t1 e) = liftM (HsBinTick t0 t1) (addTickLHsExprNever e) addTickHsExpr (HsTickPragma _ _ _ (L pos e0)) = do e2 <- allocTickBox (ExpBox False) False False pos $ addTickHsExpr e0 return $ unLoc e2 addTickHsExpr (PArrSeq ty arith_seq) = liftM2 PArrSeq (return ty) (addTickArithSeqInfo arith_seq) addTickHsExpr (HsSCC src nm e) = liftM3 HsSCC (return src) (return nm) (addTickLHsExpr e) addTickHsExpr (HsCoreAnn src nm e) = liftM3 HsCoreAnn (return src) (return nm) (addTickLHsExpr e) addTickHsExpr e@(HsBracket {}) = return e addTickHsExpr e@(HsTcBracketOut {}) = return e addTickHsExpr e@(HsRnBracketOut {}) = return e addTickHsExpr e@(HsSpliceE {}) = return e addTickHsExpr (HsProc pat cmdtop) = liftM2 HsProc (addTickLPat pat) (liftL (addTickHsCmdTop) cmdtop) addTickHsExpr (HsWrap w e) = liftM2 HsWrap (return w) (addTickHsExpr e) -- Explicitly no tick on inside addTickHsExpr (ExprWithTySigOut e ty) = liftM2 ExprWithTySigOut (addTickLHsExprNever e) -- No need to tick the inner expression (return ty) -- for expressions with signatures -- Others should never happen in expression content. addTickHsExpr e = pprPanic "addTickHsExpr" (ppr e) addTickTupArg :: LHsTupArg Id -> TM (LHsTupArg Id) addTickTupArg (L l (Present e)) = do { e' <- addTickLHsExpr e ; return (L l (Present e')) } addTickTupArg (L l (Missing ty)) = return (L l (Missing ty)) addTickMatchGroup :: Bool{-is lambda-} -> MatchGroup Id (LHsExpr Id) -> TM (MatchGroup Id (LHsExpr Id)) addTickMatchGroup is_lam mg@(MG { mg_alts = L l matches }) = do let isOneOfMany = matchesOneOfMany matches matches' <- mapM (liftL (addTickMatch isOneOfMany is_lam)) matches return $ mg { mg_alts = L l matches' } addTickMatch :: Bool -> Bool -> Match Id (LHsExpr Id) -> TM (Match Id (LHsExpr Id)) addTickMatch isOneOfMany isLambda (Match mf pats opSig gRHSs) = bindLocals (collectPatsBinders pats) $ do gRHSs' <- addTickGRHSs isOneOfMany isLambda gRHSs return $ Match mf pats opSig gRHSs' addTickGRHSs :: Bool -> Bool -> GRHSs Id (LHsExpr Id) -> TM (GRHSs Id (LHsExpr Id)) addTickGRHSs isOneOfMany isLambda (GRHSs guarded (L l local_binds)) = do bindLocals binders $ do local_binds' <- addTickHsLocalBinds local_binds guarded' <- mapM (liftL (addTickGRHS isOneOfMany isLambda)) guarded return $ GRHSs guarded' (L l local_binds') where binders = collectLocalBinders local_binds addTickGRHS :: Bool -> Bool -> GRHS Id (LHsExpr Id) -> TM (GRHS Id (LHsExpr Id)) addTickGRHS isOneOfMany isLambda (GRHS stmts expr) = do (stmts',expr') <- addTickLStmts' (Just $ BinBox $ GuardBinBox) stmts (addTickGRHSBody isOneOfMany isLambda expr) return $ GRHS stmts' expr' addTickGRHSBody :: Bool -> Bool -> LHsExpr Id -> TM (LHsExpr Id) addTickGRHSBody isOneOfMany isLambda expr@(L pos e0) = do d <- getDensity case d of TickForCoverage -> addTickLHsExprOptAlt isOneOfMany expr TickAllFunctions | isLambda -> addPathEntry "\\" $ allocTickBox (ExpBox False) True{-count-} False{-not top-} pos $ addTickHsExpr e0 _otherwise -> addTickLHsExprRHS expr addTickLStmts :: (Maybe (Bool -> BoxLabel)) -> [ExprLStmt Id] -> TM [ExprLStmt Id] addTickLStmts isGuard stmts = do (stmts, _) <- addTickLStmts' isGuard stmts (return ()) return stmts addTickLStmts' :: (Maybe (Bool -> BoxLabel)) -> [ExprLStmt Id] -> TM a -> TM ([ExprLStmt Id], a) addTickLStmts' isGuard lstmts res = bindLocals (collectLStmtsBinders lstmts) $ do { lstmts' <- mapM (liftL (addTickStmt isGuard)) lstmts ; a <- res ; return (lstmts', a) } addTickStmt :: (Maybe (Bool -> BoxLabel)) -> Stmt Id (LHsExpr Id) -> TM (Stmt Id (LHsExpr Id)) addTickStmt _isGuard (LastStmt e noret ret) = do liftM3 LastStmt (addTickLHsExpr e) (pure noret) (addTickSyntaxExpr hpcSrcSpan ret) addTickStmt _isGuard (BindStmt pat e bind fail ty) = do liftM5 BindStmt (addTickLPat pat) (addTickLHsExprRHS e) (addTickSyntaxExpr hpcSrcSpan bind) (addTickSyntaxExpr hpcSrcSpan fail) (return ty) addTickStmt isGuard (BodyStmt e bind' guard' ty) = do liftM4 BodyStmt (addTick isGuard e) (addTickSyntaxExpr hpcSrcSpan bind') (addTickSyntaxExpr hpcSrcSpan guard') (return ty) addTickStmt _isGuard (LetStmt (L l binds)) = do liftM (LetStmt . L l) (addTickHsLocalBinds binds) addTickStmt isGuard (ParStmt pairs mzipExpr bindExpr ty) = do liftM4 ParStmt (mapM (addTickStmtAndBinders isGuard) pairs) (unLoc <$> addTickLHsExpr (L hpcSrcSpan mzipExpr)) (addTickSyntaxExpr hpcSrcSpan bindExpr) (return ty) addTickStmt isGuard (ApplicativeStmt args mb_join body_ty) = do args' <- mapM (addTickApplicativeArg isGuard) args return (ApplicativeStmt args' mb_join body_ty) addTickStmt isGuard stmt@(TransStmt { trS_stmts = stmts , trS_by = by, trS_using = using , trS_ret = returnExpr, trS_bind = bindExpr , trS_fmap = liftMExpr }) = do t_s <- addTickLStmts isGuard stmts t_y <- fmapMaybeM addTickLHsExprRHS by t_u <- addTickLHsExprRHS using t_f <- addTickSyntaxExpr hpcSrcSpan returnExpr t_b <- addTickSyntaxExpr hpcSrcSpan bindExpr L _ t_m <- addTickLHsExpr (L hpcSrcSpan liftMExpr) return $ stmt { trS_stmts = t_s, trS_by = t_y, trS_using = t_u , trS_ret = t_f, trS_bind = t_b, trS_fmap = t_m } addTickStmt isGuard stmt@(RecStmt {}) = do { stmts' <- addTickLStmts isGuard (recS_stmts stmt) ; ret' <- addTickSyntaxExpr hpcSrcSpan (recS_ret_fn stmt) ; mfix' <- addTickSyntaxExpr hpcSrcSpan (recS_mfix_fn stmt) ; bind' <- addTickSyntaxExpr hpcSrcSpan (recS_bind_fn stmt) ; return (stmt { recS_stmts = stmts', recS_ret_fn = ret' , recS_mfix_fn = mfix', recS_bind_fn = bind' }) } addTick :: Maybe (Bool -> BoxLabel) -> LHsExpr Id -> TM (LHsExpr Id) addTick isGuard e | Just fn <- isGuard = addBinTickLHsExpr fn e | otherwise = addTickLHsExprRHS e addTickApplicativeArg :: Maybe (Bool -> BoxLabel) -> (SyntaxExpr Id, ApplicativeArg Id Id) -> TM (SyntaxExpr Id, ApplicativeArg Id Id) addTickApplicativeArg isGuard (op, arg) = liftM2 (,) (addTickSyntaxExpr hpcSrcSpan op) (addTickArg arg) where addTickArg (ApplicativeArgOne pat expr) = ApplicativeArgOne <$> addTickLPat pat <*> addTickLHsExpr expr addTickArg (ApplicativeArgMany stmts ret pat) = ApplicativeArgMany <$> addTickLStmts isGuard stmts <*> (unLoc <$> addTickLHsExpr (L hpcSrcSpan ret)) <*> addTickLPat pat addTickStmtAndBinders :: Maybe (Bool -> BoxLabel) -> ParStmtBlock Id Id -> TM (ParStmtBlock Id Id) addTickStmtAndBinders isGuard (ParStmtBlock stmts ids returnExpr) = liftM3 ParStmtBlock (addTickLStmts isGuard stmts) (return ids) (addTickSyntaxExpr hpcSrcSpan returnExpr) addTickHsLocalBinds :: HsLocalBinds Id -> TM (HsLocalBinds Id) addTickHsLocalBinds (HsValBinds binds) = liftM HsValBinds (addTickHsValBinds binds) addTickHsLocalBinds (HsIPBinds binds) = liftM HsIPBinds (addTickHsIPBinds binds) addTickHsLocalBinds (EmptyLocalBinds) = return EmptyLocalBinds addTickHsValBinds :: HsValBindsLR Id a -> TM (HsValBindsLR Id b) addTickHsValBinds (ValBindsOut binds sigs) = liftM2 ValBindsOut (mapM (\ (rec,binds') -> liftM2 (,) (return rec) (addTickLHsBinds binds')) binds) (return sigs) addTickHsValBinds _ = panic "addTickHsValBinds" addTickHsIPBinds :: HsIPBinds Id -> TM (HsIPBinds Id) addTickHsIPBinds (IPBinds ipbinds dictbinds) = liftM2 IPBinds (mapM (liftL (addTickIPBind)) ipbinds) (return dictbinds) addTickIPBind :: IPBind Id -> TM (IPBind Id) addTickIPBind (IPBind nm e) = liftM2 IPBind (return nm) (addTickLHsExpr e) -- There is no location here, so we might need to use a context location?? addTickSyntaxExpr :: SrcSpan -> SyntaxExpr Id -> TM (SyntaxExpr Id) addTickSyntaxExpr pos syn@(SyntaxExpr { syn_expr = x }) = do L _ x' <- addTickLHsExpr (L pos x) return $ syn { syn_expr = x' } -- we do not walk into patterns. addTickLPat :: LPat Id -> TM (LPat Id) addTickLPat pat = return pat addTickHsCmdTop :: HsCmdTop Id -> TM (HsCmdTop Id) addTickHsCmdTop (HsCmdTop cmd tys ty syntaxtable) = liftM4 HsCmdTop (addTickLHsCmd cmd) (return tys) (return ty) (return syntaxtable) addTickLHsCmd :: LHsCmd Id -> TM (LHsCmd Id) addTickLHsCmd (L pos c0) = do c1 <- addTickHsCmd c0 return $ L pos c1 addTickHsCmd :: HsCmd Id -> TM (HsCmd Id) addTickHsCmd (HsCmdLam matchgroup) = liftM HsCmdLam (addTickCmdMatchGroup matchgroup) addTickHsCmd (HsCmdApp c e) = liftM2 HsCmdApp (addTickLHsCmd c) (addTickLHsExpr e) {- addTickHsCmd (OpApp e1 c2 fix c3) = liftM4 OpApp (addTickLHsExpr e1) (addTickLHsCmd c2) (return fix) (addTickLHsCmd c3) -} addTickHsCmd (HsCmdPar e) = liftM HsCmdPar (addTickLHsCmd e) addTickHsCmd (HsCmdCase e mgs) = liftM2 HsCmdCase (addTickLHsExpr e) (addTickCmdMatchGroup mgs) addTickHsCmd (HsCmdIf cnd e1 c2 c3) = liftM3 (HsCmdIf cnd) (addBinTickLHsExpr (BinBox CondBinBox) e1) (addTickLHsCmd c2) (addTickLHsCmd c3) addTickHsCmd (HsCmdLet (L l binds) c) = bindLocals (collectLocalBinders binds) $ liftM2 (HsCmdLet . L l) (addTickHsLocalBinds binds) -- to think about: !patterns. (addTickLHsCmd c) addTickHsCmd (HsCmdDo (L l stmts) srcloc) = do { (stmts', _) <- addTickLCmdStmts' stmts (return ()) ; return (HsCmdDo (L l stmts') srcloc) } addTickHsCmd (HsCmdArrApp e1 e2 ty1 arr_ty lr) = liftM5 HsCmdArrApp (addTickLHsExpr e1) (addTickLHsExpr e2) (return ty1) (return arr_ty) (return lr) addTickHsCmd (HsCmdArrForm e fix cmdtop) = liftM3 HsCmdArrForm (addTickLHsExpr e) (return fix) (mapM (liftL (addTickHsCmdTop)) cmdtop) addTickHsCmd (HsCmdWrap w cmd) = liftM2 HsCmdWrap (return w) (addTickHsCmd cmd) -- Others should never happen in a command context. --addTickHsCmd e = pprPanic "addTickHsCmd" (ppr e) addTickCmdMatchGroup :: MatchGroup Id (LHsCmd Id) -> TM (MatchGroup Id (LHsCmd Id)) addTickCmdMatchGroup mg@(MG { mg_alts = L l matches }) = do matches' <- mapM (liftL addTickCmdMatch) matches return $ mg { mg_alts = L l matches' } addTickCmdMatch :: Match Id (LHsCmd Id) -> TM (Match Id (LHsCmd Id)) addTickCmdMatch (Match mf pats opSig gRHSs) = bindLocals (collectPatsBinders pats) $ do gRHSs' <- addTickCmdGRHSs gRHSs return $ Match mf pats opSig gRHSs' addTickCmdGRHSs :: GRHSs Id (LHsCmd Id) -> TM (GRHSs Id (LHsCmd Id)) addTickCmdGRHSs (GRHSs guarded (L l local_binds)) = do bindLocals binders $ do local_binds' <- addTickHsLocalBinds local_binds guarded' <- mapM (liftL addTickCmdGRHS) guarded return $ GRHSs guarded' (L l local_binds') where binders = collectLocalBinders local_binds addTickCmdGRHS :: GRHS Id (LHsCmd Id) -> TM (GRHS Id (LHsCmd Id)) -- The *guards* are *not* Cmds, although the body is -- C.f. addTickGRHS for the BinBox stuff addTickCmdGRHS (GRHS stmts cmd) = do { (stmts',expr') <- addTickLStmts' (Just $ BinBox $ GuardBinBox) stmts (addTickLHsCmd cmd) ; return $ GRHS stmts' expr' } addTickLCmdStmts :: [LStmt Id (LHsCmd Id)] -> TM [LStmt Id (LHsCmd Id)] addTickLCmdStmts stmts = do (stmts, _) <- addTickLCmdStmts' stmts (return ()) return stmts addTickLCmdStmts' :: [LStmt Id (LHsCmd Id)] -> TM a -> TM ([LStmt Id (LHsCmd Id)], a) addTickLCmdStmts' lstmts res = bindLocals binders $ do lstmts' <- mapM (liftL addTickCmdStmt) lstmts a <- res return (lstmts', a) where binders = collectLStmtsBinders lstmts addTickCmdStmt :: Stmt Id (LHsCmd Id) -> TM (Stmt Id (LHsCmd Id)) addTickCmdStmt (BindStmt pat c bind fail ty) = do liftM5 BindStmt (addTickLPat pat) (addTickLHsCmd c) (return bind) (return fail) (return ty) addTickCmdStmt (LastStmt c noret ret) = do liftM3 LastStmt (addTickLHsCmd c) (pure noret) (addTickSyntaxExpr hpcSrcSpan ret) addTickCmdStmt (BodyStmt c bind' guard' ty) = do liftM4 BodyStmt (addTickLHsCmd c) (addTickSyntaxExpr hpcSrcSpan bind') (addTickSyntaxExpr hpcSrcSpan guard') (return ty) addTickCmdStmt (LetStmt (L l binds)) = do liftM (LetStmt . L l) (addTickHsLocalBinds binds) addTickCmdStmt stmt@(RecStmt {}) = do { stmts' <- addTickLCmdStmts (recS_stmts stmt) ; ret' <- addTickSyntaxExpr hpcSrcSpan (recS_ret_fn stmt) ; mfix' <- addTickSyntaxExpr hpcSrcSpan (recS_mfix_fn stmt) ; bind' <- addTickSyntaxExpr hpcSrcSpan (recS_bind_fn stmt) ; return (stmt { recS_stmts = stmts', recS_ret_fn = ret' , recS_mfix_fn = mfix', recS_bind_fn = bind' }) } addTickCmdStmt ApplicativeStmt{} = panic "ToDo: addTickCmdStmt ApplicativeLastStmt" -- Others should never happen in a command context. addTickCmdStmt stmt = pprPanic "addTickHsCmd" (ppr stmt) addTickHsRecordBinds :: HsRecordBinds Id -> TM (HsRecordBinds Id) addTickHsRecordBinds (HsRecFields fields dd) = do { fields' <- mapM addTickHsRecField fields ; return (HsRecFields fields' dd) } addTickHsRecField :: LHsRecField' id (LHsExpr Id) -> TM (LHsRecField' id (LHsExpr Id)) addTickHsRecField (L l (HsRecField id expr pun)) = do { expr' <- addTickLHsExpr expr ; return (L l (HsRecField id expr' pun)) } addTickArithSeqInfo :: ArithSeqInfo Id -> TM (ArithSeqInfo Id) addTickArithSeqInfo (From e1) = liftM From (addTickLHsExpr e1) addTickArithSeqInfo (FromThen e1 e2) = liftM2 FromThen (addTickLHsExpr e1) (addTickLHsExpr e2) addTickArithSeqInfo (FromTo e1 e2) = liftM2 FromTo (addTickLHsExpr e1) (addTickLHsExpr e2) addTickArithSeqInfo (FromThenTo e1 e2 e3) = liftM3 FromThenTo (addTickLHsExpr e1) (addTickLHsExpr e2) (addTickLHsExpr e3) liftL :: (Monad m) => (a -> m a) -> Located a -> m (Located a) liftL f (L loc a) = do a' <- f a return $ L loc a' data TickTransState = TT { tickBoxCount:: Int , mixEntries :: [MixEntry_] , uniqSupply :: UniqSupply } data TickTransEnv = TTE { fileName :: FastString , density :: TickDensity , tte_dflags :: DynFlags , exports :: NameSet , inlines :: VarSet , declPath :: [String] , inScope :: VarSet , blackList :: Map SrcSpan () , this_mod :: Module , tickishType :: TickishType } -- deriving Show data TickishType = ProfNotes | HpcTicks | Breakpoints | SourceNotes deriving (Eq) coveragePasses :: DynFlags -> [TickishType] coveragePasses dflags = ifa (hscTarget dflags == HscInterpreted) Breakpoints $ ifa (gopt Opt_Hpc dflags) HpcTicks $ ifa (gopt Opt_SccProfilingOn dflags && profAuto dflags /= NoProfAuto) ProfNotes $ ifa (debugLevel dflags > 0) SourceNotes [] where ifa f x xs | f = x:xs | otherwise = xs -- | Tickishs that only make sense when their source code location -- refers to the current file. This might not always be true due to -- LINE pragmas in the code - which would confuse at least HPC. tickSameFileOnly :: TickishType -> Bool tickSameFileOnly HpcTicks = True tickSameFileOnly _other = False type FreeVars = OccEnv Id noFVs :: FreeVars noFVs = emptyOccEnv -- Note [freevars] -- For breakpoints we want to collect the free variables of an -- expression for pinning on the HsTick. We don't want to collect -- *all* free variables though: in particular there's no point pinning -- on free variables that are will otherwise be in scope at the GHCi -- prompt, which means all top-level bindings. Unfortunately detecting -- top-level bindings isn't easy (collectHsBindsBinders on the top-level -- bindings doesn't do it), so we keep track of a set of "in-scope" -- variables in addition to the free variables, and the former is used -- to filter additions to the latter. This gives us complete control -- over what free variables we track. data TM a = TM { unTM :: TickTransEnv -> TickTransState -> (a,FreeVars,TickTransState) } -- a combination of a state monad (TickTransState) and a writer -- monad (FreeVars). instance Functor TM where fmap = liftM instance Applicative TM where pure a = TM $ \ _env st -> (a,noFVs,st) (<*>) = ap instance Monad TM where (TM m) >>= k = TM $ \ env st -> case m env st of (r1,fv1,st1) -> case unTM (k r1) env st1 of (r2,fv2,st2) -> (r2, fv1 `plusOccEnv` fv2, st2) instance HasDynFlags TM where getDynFlags = TM $ \ env st -> (tte_dflags env, noFVs, st) instance MonadUnique TM where getUniqueSupplyM = TM $ \_ st -> (uniqSupply st, noFVs, st) getUniqueM = TM $ \_ st -> let (u, us') = takeUniqFromSupply (uniqSupply st) in (u, noFVs, st { uniqSupply = us' }) getState :: TM TickTransState getState = TM $ \ _ st -> (st, noFVs, st) setState :: (TickTransState -> TickTransState) -> TM () setState f = TM $ \ _ st -> ((), noFVs, f st) getEnv :: TM TickTransEnv getEnv = TM $ \ env st -> (env, noFVs, st) withEnv :: (TickTransEnv -> TickTransEnv) -> TM a -> TM a withEnv f (TM m) = TM $ \ env st -> case m (f env) st of (a, fvs, st') -> (a, fvs, st') getDensity :: TM TickDensity getDensity = TM $ \env st -> (density env, noFVs, st) ifDensity :: TickDensity -> TM a -> TM a -> TM a ifDensity d th el = do d0 <- getDensity; if d == d0 then th else el getFreeVars :: TM a -> TM (FreeVars, a) getFreeVars (TM m) = TM $ \ env st -> case m env st of (a, fv, st') -> ((fv,a), fv, st') freeVar :: Id -> TM () freeVar id = TM $ \ env st -> if id `elemVarSet` inScope env then ((), unitOccEnv (nameOccName (idName id)) id, st) else ((), noFVs, st) addPathEntry :: String -> TM a -> TM a addPathEntry nm = withEnv (\ env -> env { declPath = declPath env ++ [nm] }) getPathEntry :: TM [String] getPathEntry = declPath `liftM` getEnv getFileName :: TM FastString getFileName = fileName `liftM` getEnv isGoodSrcSpan' :: SrcSpan -> Bool isGoodSrcSpan' pos@(RealSrcSpan _) = srcSpanStart pos /= srcSpanEnd pos isGoodSrcSpan' (UnhelpfulSpan _) = False isGoodTickSrcSpan :: SrcSpan -> TM Bool isGoodTickSrcSpan pos = do file_name <- getFileName tickish <- tickishType `liftM` getEnv let need_same_file = tickSameFileOnly tickish same_file = Just file_name == srcSpanFileName_maybe pos return (isGoodSrcSpan' pos && (not need_same_file || same_file)) ifGoodTickSrcSpan :: SrcSpan -> TM a -> TM a -> TM a ifGoodTickSrcSpan pos then_code else_code = do good <- isGoodTickSrcSpan pos if good then then_code else else_code bindLocals :: [Id] -> TM a -> TM a bindLocals new_ids (TM m) = TM $ \ env st -> case m env{ inScope = inScope env `extendVarSetList` new_ids } st of (r, fv, st') -> (r, fv `delListFromOccEnv` occs, st') where occs = [ nameOccName (idName id) | id <- new_ids ] isBlackListed :: SrcSpan -> TM Bool isBlackListed pos = TM $ \ env st -> case Map.lookup pos (blackList env) of Nothing -> (False,noFVs,st) Just () -> (True,noFVs,st) -- the tick application inherits the source position of its -- expression argument to support nested box allocations allocTickBox :: BoxLabel -> Bool -> Bool -> SrcSpan -> TM (HsExpr Id) -> TM (LHsExpr Id) allocTickBox boxLabel countEntries topOnly pos m = ifGoodTickSrcSpan pos (do (fvs, e) <- getFreeVars m env <- getEnv tickish <- mkTickish boxLabel countEntries topOnly pos fvs (declPath env) return (L pos (HsTick tickish (L pos e))) ) (do e <- m return (L pos e) ) -- the tick application inherits the source position of its -- expression argument to support nested box allocations allocATickBox :: BoxLabel -> Bool -> Bool -> SrcSpan -> FreeVars -> TM (Maybe (Tickish Id)) allocATickBox boxLabel countEntries topOnly pos fvs = ifGoodTickSrcSpan pos (do let mydecl_path = case boxLabel of TopLevelBox x -> x LocalBox xs -> xs _ -> panic "allocATickBox" tickish <- mkTickish boxLabel countEntries topOnly pos fvs mydecl_path return (Just tickish) ) (return Nothing) mkTickish :: BoxLabel -> Bool -> Bool -> SrcSpan -> OccEnv Id -> [String] -> TM (Tickish Id) mkTickish boxLabel countEntries topOnly pos fvs decl_path = do let ids = filter (not . isUnliftedType . idType) $ occEnvElts fvs -- unlifted types cause two problems here: -- * we can't bind them at the GHCi prompt -- (bindLocalsAtBreakpoint already fliters them out), -- * the simplifier might try to substitute a literal for -- the Id, and we can't handle that. me = (pos, decl_path, map (nameOccName.idName) ids, boxLabel) cc_name | topOnly = head decl_path | otherwise = concat (intersperse "." decl_path) dflags <- getDynFlags env <- getEnv case tickishType env of HpcTicks -> do c <- liftM tickBoxCount getState setState $ \st -> st { tickBoxCount = c + 1 , mixEntries = me : mixEntries st } return $ HpcTick (this_mod env) c ProfNotes -> do ccUnique <- getUniqueM let cc = mkUserCC (mkFastString cc_name) (this_mod env) pos ccUnique count = countEntries && gopt Opt_ProfCountEntries dflags return $ ProfNote cc count True{-scopes-} Breakpoints -> do c <- liftM tickBoxCount getState setState $ \st -> st { tickBoxCount = c + 1 , mixEntries = me:mixEntries st } return $ Breakpoint c ids SourceNotes | RealSrcSpan pos' <- pos -> return $ SourceNote pos' cc_name _otherwise -> panic "mkTickish: bad source span!" allocBinTickBox :: (Bool -> BoxLabel) -> SrcSpan -> TM (HsExpr Id) -> TM (LHsExpr Id) allocBinTickBox boxLabel pos m = do env <- getEnv case tickishType env of HpcTicks -> do e <- liftM (L pos) m ifGoodTickSrcSpan pos (mkBinTickBoxHpc boxLabel pos e) (return e) _other -> allocTickBox (ExpBox False) False False pos m mkBinTickBoxHpc :: (Bool -> BoxLabel) -> SrcSpan -> LHsExpr Id -> TM (LHsExpr Id) mkBinTickBoxHpc boxLabel pos e = TM $ \ env st -> let meT = (pos,declPath env, [],boxLabel True) meF = (pos,declPath env, [],boxLabel False) meE = (pos,declPath env, [],ExpBox False) c = tickBoxCount st mes = mixEntries st in ( L pos $ HsTick (HpcTick (this_mod env) c) $ L pos $ HsBinTick (c+1) (c+2) e -- notice that F and T are reversed, -- because we are building the list in -- reverse... , noFVs , st {tickBoxCount=c+3 , mixEntries=meF:meT:meE:mes} ) mkHpcPos :: SrcSpan -> HpcPos mkHpcPos pos@(RealSrcSpan s) | isGoodSrcSpan' pos = toHpcPos (srcSpanStartLine s, srcSpanStartCol s, srcSpanEndLine s, srcSpanEndCol s - 1) -- the end column of a SrcSpan is one -- greater than the last column of the -- span (see SrcLoc), whereas HPC -- expects to the column range to be -- inclusive, hence we subtract one above. mkHpcPos _ = panic "bad source span; expected such spans to be filtered out" hpcSrcSpan :: SrcSpan hpcSrcSpan = mkGeneralSrcSpan (fsLit "Haskell Program Coverage internals") matchesOneOfMany :: [LMatch Id body] -> Bool matchesOneOfMany lmatches = sum (map matchCount lmatches) > 1 where matchCount (L _ (Match _ _pats _ty (GRHSs grhss _binds))) = length grhss type MixEntry_ = (SrcSpan, [String], [OccName], BoxLabel) -- For the hash value, we hash everything: the file name, -- the timestamp of the original source file, the tab stop, -- and the mix entries. We cheat, and hash the show'd string. -- This hash only has to be hashed at Mix creation time, -- and is for sanity checking only. mixHash :: FilePath -> UTCTime -> Int -> [MixEntry] -> Int mixHash file tm tabstop entries = fromIntegral $ hashString (show $ Mix file tm 0 tabstop entries) {- ************************************************************************ * * * initialisation * * ************************************************************************ Each module compiled with -fhpc declares an initialisation function of the form `hpc_init_<module>()`, which is emitted into the _stub.c file and annotated with __attribute__((constructor)) so that it gets executed at startup time. The function's purpose is to call hs_hpc_module to register this module with the RTS, and it looks something like this: static void hpc_init_Main(void) __attribute__((constructor)); static void hpc_init_Main(void) {extern StgWord64 _hpc_tickboxes_Main_hpc[]; hs_hpc_module("Main",8,1150288664,_hpc_tickboxes_Main_hpc);} -} hpcInitCode :: Module -> HpcInfo -> SDoc hpcInitCode _ (NoHpcInfo {}) = Outputable.empty hpcInitCode this_mod (HpcInfo tickCount hashNo) = vcat [ text "static void hpc_init_" <> ppr this_mod <> text "(void) __attribute__((constructor));" , text "static void hpc_init_" <> ppr this_mod <> text "(void)" , braces (vcat [ text "extern StgWord64 " <> tickboxes <> text "[]" <> semi, text "hs_hpc_module" <> parens (hcat (punctuate comma [ doubleQuotes full_name_str, int tickCount, -- really StgWord32 int hashNo, -- really StgWord32 tickboxes ])) <> semi ]) ] where tickboxes = ppr (mkHpcTicksLabel $ this_mod) module_name = hcat (map (text.charToC) $ bytesFS (moduleNameFS (Module.moduleName this_mod))) package_name = hcat (map (text.charToC) $ bytesFS (unitIdFS (moduleUnitId this_mod))) full_name_str | moduleUnitId this_mod == mainUnitId = module_name | otherwise = package_name <> char '/' <> module_name
nushio3/ghc
compiler/deSugar/Coverage.hs
Haskell
bsd-3-clause
51,902
module Main where import Types import RegexPattern import System.Environment import Data.String import Text.Regex.Posix import qualified Data.Text as T (splitOn, unpack) import Data.Maybe import System.IO import qualified System.IO as S import System.Process {- *# ADD #* Add to Todo.txt *# REMOVE #* Remove from Todo.txt, but place entry in backup file todo.backup.txt *# VIEW #* Default. Print in readable format. TODO: (pun not intended) Priority set for listed items, Completely edit an item. Written by Frank Hucek -} todoFile :: String todoFile = "/home/frank/bin_storage/Todo.txt" main :: IO () main = do x <- getArgs mainThrow x mainThrow :: [String] -> IO () mainThrow [] = viewTodoList [] mainThrow (option:xs) = do case option of "add" -> addItem xs "remove" -> removeItem xs _ -> viewTodoList xs -- sort removeItem :: [String] -> IO () removeItem [] = putStrLn "Please specify number of item you wish to remove" removeItem (x:_) = do case readMaybe x :: Maybe Int of Nothing -> removeItem [] Just itemNum -> removeFromFile itemNum addItem :: [String] -> IO () addItem inputItem = do let input = argOp inputItem =~ regexPattern :: String case input of "" -> putStrLn "Failed to match input pattern" _ -> appendFile todoFile (input ++ "\n") argOp :: [String] -> String argOp xs = init $ foldl (++) "" $ map (++ " ") xs -- map a space to end of each string in list -- concatenate list of strings into 1 string -- take new string - last character b/c last char is a whitespace -- input can now be checked against regular expression readMaybe :: Read a => String -> Maybe a readMaybe s = case reads s of [(val, "")] -> Just val _ -> Nothing -- READ, WRITE, APPEND, REMOVE operations on file -- File and user IO uses regex pattern. convert to Item type in program removeFromFile :: Int -> IO () removeFromFile x = do file <- readFile todoFile let xs = lines file (a, b) = splitAt x xs itemList = (init a) ++ b items = unlines itemList newTodoFile = todoFile ++ ".new" writeFile newTodoFile items _ <- createProcess (proc "mv" [newTodoFile, todoFile]) -- SUPER jank, temporary fix to lazy eval here return () -- removes indices even when typing in the wrong number viewTodoList :: [String] -> IO () viewTodoList _ = do (_, Just hout, _, _) <- createProcess (proc "cal" []) {std_out = CreatePipe} cal <- hGetContents hout putStrLn cal hClose hout putStrLn $ "\tPRIOR.\tDESCRIPTION" file <- readFile todoFile let items = fmap (displayItem . patternToItem) $ lines file -- [String] printTodoList items --putStrLn cal printTodoList = printTodo 1 printTodo :: Int -> [String] -> IO () printTodo _ [] = return () printTodo i (x:xs) = do putStrLn $ show i ++ ")\t" ++ x printTodo (i + 1) xs
frankhucek/Todo
app/Main.hs
Haskell
bsd-3-clause
2,999
{-# LANGUAGE NoImplicitPrelude , ScopedTypeVariables , UnicodeSyntax #-} module System.FTDI.Utils.Properties where -- base import Control.Monad ( (>>) ) import Data.Bool ( otherwise ) import Data.Function ( ($) ) import Data.Ord ( Ord ) import Prelude ( Integral, RealFrac, Fractional, Double , Bounded, minBound, maxBound , fromInteger, toInteger, fromIntegral , (+), abs, mod, ceiling, div ) -- base-unicode import Data.Bool.Unicode ( (∧) ) import Data.Eq.Unicode ( (≡), (≢) ) import Data.Ord.Unicode ( (≤), (≥) ) import Prelude.Unicode ( (⋅), (÷) ) -- ftdi import System.FTDI.Utils ( clamp, divRndUp ) -- QuickCheck import Test.QuickCheck ( Property, (==>) ) ------------------------------------------------------------------------------- prop_divRndUp_min ∷ Integral α ⇒ α → α → Property prop_divRndUp_min x y = y ≢ 0 ==> let d = divRndUp x (abs y) d' = toInteger d y' = toInteger y x' = toInteger x in d' ⋅ abs y' ≥ x' prop_divRndUp_max ∷ Integral α ⇒ α → α → Property prop_divRndUp_max x y = y ≢ 0 ==> let d = divRndUp x y in x `div` y ≤ d prop_divRndUp_ceilFrac ∷ Integral α ⇒ α → α → Property prop_divRndUp_ceilFrac x y = y ≢ 0 ==> let x' = fromIntegral x ∷ Double y' = fromIntegral y ∷ Double in divRndUp x y ≡ ceilFrac x' y' prop_divRndUp2 ∷ Integral α ⇒ α → α → Property prop_divRndUp2 x y = y ≢ 0 ==> divRndUp x y ≡ divRndUp2 x y prop_clamp ∷ ∀ α. (Bounded α, Ord α) ⇒ α → Property prop_clamp x = (minBound ∷ α) ≤ (maxBound ∷ α) ==> minBound ≤ cx ∧ cx ≤ maxBound where cx = clamp x ------------------------------------------------------------------------------- ceilFrac ∷ (Fractional α, RealFrac α, Integral β) ⇒ α → α → β ceilFrac x y = ceiling $ x ÷ y divRndUp2 ∷ Integral α ⇒ α → α → α divRndUp2 x y = let r | mod x y ≡ 0 = 0 | otherwise = 1 in div x y + r
roelvandijk/ftdi
System/FTDI/Utils/Properties.hs
Haskell
bsd-3-clause
2,166
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE QuasiQuotes #-} module PrettyPrint where import Data.Function ((&)) import Data.Monoid ((<>)) import Data.String.Here import Data.Text (Text) import qualified Data.Text as T import Hexon import Hexon.Types format_id :: Either String RID -> Text format_id (Left _) = "meh." format_id (Right result) = [i| ${top} ${banner_top} ${banner_name} ${banner_bottom} • By ${username} • ${date} ${display_comments} |] where msg = result |> rid_message name = result |> rid_info |> info_name username = result |> rid_info |> info_username date = result |> rid_info |> info_date comments = result |> rid_info |> info_comments pre :: Text pre = case msg of "error" -> "Item not available :(" "success" -> "*Item available!*" _ -> "" nlength = T.length name + 2 top = "\ESC[1m" <> pre <> "\STX" banner_top = "┌" <> (T.replicate nlength "─") <> "┐" banner_name = "│ " <> name <> " │" banner_bottom = "└" <> (T.replicate nlength "─") <> "┘" display_comments = fmap ("• " <>) (T.splitOn "\n" comments) -- format_add :: Either String RItem -> Text -- format_add (Left _) = "meh." -- format_add (Right result) = undefined -- format_del :: Either String RID -> Text -- format_del (Left _) = "meh." -- format_del (Right result) = undefined -- format_auth :: Either String RAuth -> Text -- format_auth (Left _) = "meh." -- format_auth (Right result) = undefined -- format_comment :: Either String RComment -> Text -- format_comment (Left _) = "meh" -- format_comment (Right result) = undefined
tchoutri/Hexon
src/PrettyPrint.hs
Haskell
bsd-3-clause
1,934
module Wallet.Inductive ( -- * Wallet events WalletEvent(..) , walletEventIsRollback -- * Inductive wallets , Inductive(..) , uptoFirstRollback , inductiveInit ) where import Universum import qualified Data.List as List import qualified Data.Set as Set import Formatting (bprint, build, (%)) import qualified Formatting.Buildable import Pos.Core.Chrono import Serokell.Util (listJson) import UTxO.DSL import UTxO.Util {------------------------------------------------------------------------------- Wallet events -------------------------------------------------------------------------------} -- | Wallet event data WalletEvent h a = -- | Inform the wallet of a new block added to the blockchain ApplyBlock (Block h a) -- | Submit a new transaction to the wallet to be included in the blockchain | NewPending (Transaction h a) -- | Roll back the last block added to the blockchain | Rollback walletEventIsRollback :: WalletEvent h a -> Bool walletEventIsRollback Rollback = True walletEventIsRollback _ = False {------------------------------------------------------------------------------- Inductive wallets -------------------------------------------------------------------------------} -- | Inductive definition of a wallet data Inductive h a = Inductive { -- | Bootstrap transaction inductiveBoot :: Transaction h a -- | Addresses that belong to the wallet , inductiveOurs :: Set a -- | Wallet events , inductiveEvents :: OldestFirst [] (WalletEvent h a) } -- | The prefix of the 'Inductive' that doesn't include any rollbacks uptoFirstRollback :: Inductive h a -> Inductive h a uptoFirstRollback i@Inductive{..} = i { inductiveEvents = liftOldestFirst (takeWhile notRollback) inductiveEvents } where notRollback = not . walletEventIsRollback inductiveInit :: forall h a. Inductive h a -> Inductive h a inductiveInit i@Inductive{..} = i { inductiveEvents = liftOldestFirst List.init inductiveEvents } {------------------------------------------------------------------------------- Pretty-printing -------------------------------------------------------------------------------} instance (Hash h a, Buildable a) => Buildable (OldestFirst [] (WalletEvent h a)) where build = bprint listJson . getOldestFirst instance (Hash h a, Buildable a) => Buildable (WalletEvent h a) where build (ApplyBlock b) = bprint ("ApplyBlock " % build) b build (NewPending t) = bprint ("NewPending " % build) t build Rollback = bprint "Rollback" instance (Hash h a, Buildable a) => Buildable (Inductive h a) where build Inductive{..} = bprint ( "Inductive" % "{ boot: " % build % ", ours: " % listJson % ", events: " % build % "}" ) inductiveBoot (Set.toList inductiveOurs) inductiveEvents
input-output-hk/pos-haskell-prototype
wallet/test/unit/Wallet/Inductive.hs
Haskell
mit
2,930
{-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -fno-warn-orphans #-} -- | Chronological sequences. module Test.Pos.Core.Chrono ( ) where import Pos.Core.Chrono import Test.QuickCheck (Arbitrary) deriving instance Arbitrary (f a) => Arbitrary (NewestFirst f a) deriving instance Arbitrary (f a) => Arbitrary (OldestFirst f a)
input-output-hk/pos-haskell-prototype
core/test/Test/Pos/Core/Chrono.hs
Haskell
mit
405
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="hu-HU"> <title>AdvFuzzer Add-On</title> <maps> <homeID>top</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Keresés</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
veggiespam/zap-extensions
addOns/fuzz/src/main/javahelp/org/zaproxy/zap/extension/fuzz/resources/help_hu_HU/helpset_hu_HU.hs
Haskell
apache-2.0
964
module Test.Invariant where import Test.QuickCheck infix 1 &> infix 2 <~~, @~>, <?>, <=> -- | Defines extensional equality. This allows concise, point-free, -- definitions of laws. -- -- > f(x) == g(x) -- > f <=> g (<=>) :: Eq b => (a -> b) -> (a -> b) -> a -> Bool (f <=> g) x = f x == g x -- | Pointfree version of QuickChecks ==>. This notation reduces a -- lot of lambdas, for example: -- -- >>> quickCheck $ (/=0) &> not . idempotent (*(2::Int)) -- +++ OK, passed 100 tests. (&>) :: Testable b => (a -> Bool) -> (a -> b) -> a -> Property (a &> b) x = a x ==> b x -- | Checks whether a function is idempotent. -- -- > f(f(x)) == f(x) -- -- >>> quickCheck $ idempotent (abs :: Int -> Int) -- +++ OK, passed 100 tests. idempotent :: Eq a => (a -> a) -> a -> Bool idempotent f = f <=> f . f -- | Checks whether a function is pointSymmetric. -- -- > f(-x) == -f(x) -- -- >>> quickCheck $ pointSymmetric (^3) -- +++ OK, passed 100 tests. pointSymmetric :: (Num a, Num b, Eq b) => (a -> b) -> a -> Bool pointSymmetric f = f . negate <=> negate . f -- | Checks whether a function is reflectionSymmetric. -- -- > f(x) == f(-x) -- -- >>> quickCheck $ pointSymmetric (^2) -- +++ OK, passed 100 tests. reflectionSymmetric :: (Num a, Eq b) => (a -> b) -> a -> Bool reflectionSymmetric f = f . negate <=> f -- | Checks whether a function is monotonicIncreasing. -- -- > x >= y, f(x) >= f(y) -- -- >>> quickCheck $ monotonicIncreasing ceiling -- +++ OK, passed 100 tests. monotonicIncreasing :: (Ord a, Ord b) => (a -> b) -> a -> a -> Bool monotonicIncreasing f x y = compare (f x) (f y) `elem` [EQ, compare x y] -- | Checks whether a function is strictly monotonicIncreasing'. -- -- > x > y, f(x) > f(y) -- -- >>> quickCheck $ monotonicIncreasing' (+1) -- +++ OK, passed 100 tests. monotonicIncreasing' :: (Ord a, Ord b) => (a -> b) -> a -> a -> Bool monotonicIncreasing' f x y = compare (f x) (f y) == compare x y -- | Checks whether a function is monotonicDecreasing. -- -- > x >= y, f(x) <= f(y) -- -- >>> quickCheck $ monotonicDecreasing (\x -> floor $ negate x) -- +++ OK, passed 100 tests. monotonicDecreasing :: (Ord a, Ord b) => (a -> b) -> a -> a -> Bool monotonicDecreasing f x y = compare (f x) (f y) `elem` [EQ, compare y x] -- | Checks whether a function is strictly monotonicDecreasing'. -- -- > x > y, f(x) < f(y) -- -- >>> quickCheck $ monotonicDecreasing' (-1) -- +++ OK, passed 100 tests. monotonicDecreasing' :: (Ord a, Ord b) => (a -> b) -> a -> a -> Bool monotonicDecreasing' f x y = compare (f x) (f y) == compare y x -- TODO create sorted list and fold with predicate over it -- | Checks whether a function is involutory. -- -- > f(f(x)) = x -- -- >>> quickCheck $ involutory negate -- +++ OK, passed 100 tests. involutory :: Eq a => (a -> a) -> a -> Bool involutory f = f . f <=> id -- | Checks whether a function is the inverse of another function. -- -- > f(g(x)) = x -- -- >>> quickCheck $ (`div` 2) `inverts` (*2) -- +++ OK, passed 100 tests. inverts :: Eq a => (b -> a) -> (a -> b) -> a -> Bool f `inverts` g = f . g <=> id -- | Checks whether an binary operator is commutative. -- -- > a * b = b * a -- -- >>> quickCheck $ commutative (+) -- +++ OK, passed 100 tests. commutative :: Eq b => (a -> a -> b) -> a -> a -> Bool commutative f x y = x `f` y == y `f` x -- | Checks whether an binary operator is associative. -- -- > a + (b + c) = (a + b) + c -- -- >>> quickCheck $ associative (+) -- +++ OK, passed 100 tests. associative :: Eq a => (a -> a -> a) -> a -> a -> a -> Bool associative f x y z = x `f` (y `f` z) == (x `f` y) `f` z -- | Checks whether an operator is left-distributive over an other operator. -- -- > a * (b + c) = (a * b) + (a * c) -- -- >>> quickCheck $ (*) `distributesLeftOver` (+) -- +++ OK, passed 100 tests. distributesLeftOver :: Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Bool (f `distributesLeftOver` g) x y z = x `f` (y `g` z) == (x `f` y) `g` (x `f` z) -- | Checks whether an operator is right-distributive over an other operator. -- -- > (b + c) / a = (b / a) + (c / a) -- -- >>> quickCheck $ (/) `distributesRightOver` (+) -- +++ OK, passed 100 tests. distributesRightOver :: Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Bool (f `distributesRightOver` g) x y z = (y `g` z) `f` x == (x `f` y) `g` (x `f` z) -- | Checks whether an operator is distributive over an other operator. -- -- > a * (b + c) = (a * b) + (a * c) = (b + c) * a -- -- >>> quickCheck $ (*) `distributesOver` (+) -- +++ OK, passed 100 tests. distributesOver :: Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Bool (f `distributesOver` g) x y z = (f `distributesLeftOver` g) x y z && (f `distributesRightOver` g) x y z -- | Checks whether a function increases the size of a list. -- -- >>> quickCheck $ inflating (1:) -- +++ OK, passed 100 tests. inflating :: ([a] -> [b]) -> [a] -> Bool inflating f xs = length (f xs) >= length xs -- | Checks whether a function increases strictly the size of a list. -- -- >>> quickCheck $ inflating (1:) -- +++ OK, passed 100 tests. inflating' :: ([a] -> [b]) -> [a] -> Bool inflating' f xs = length (f xs) > length xs -- For GHC 7.10 -- inflating :: (Foldable f, Foldable f') => (f a -> f' b) -> f a -> Bool -- inflating f xs = length (f xs) > length xs -- | Checks whether a function decreases the size of a list. -- -- -- >>> quickCheck $ deflating tail -- +++ OK, passed 100 tests. deflating :: ([a] -> [b]) -> [a] -> Bool deflating f xs = length (f xs) <= length xs -- | Checks whether a function decreases strictly the size of a list. -- -- -- >>> quickCheck $ deflating tail -- +++ OK, passed 100 tests. deflating' :: ([a] -> [b]) -> [a] -> Bool deflating' f xs = null xs || length (f xs) < length xs -- For GHC 7.10 -- deflating :: (Foldable f, Foldable f') => (f a -> f' b) -> f a -> Bool -- deflating f xs = null xs || length (f xs) < length xs -- | Checks whether a function is cyclic by applying its result to -- itself within n applications. -- -- >>> quickCheck $ (`div` 10) `cyclesWithin` 100 -- +++ OK, passed 100 tests. cyclesWithin :: Eq a => (a -> a) -> Int -> a -> Bool f `cyclesWithin` n = go [] . take (n + 1) . iterate f where go xs (y:ys) | y `elem` xs = True | otherwise = go (y:xs) ys go _ _ = False -- | Checks whether a function is invariant over an other function. -- -- >>> quickCheck $ length `invariatesOver` reverse -- +++ OK, passed 100 tests. invariatesOver :: Eq b => (a -> b) -> (a -> a) -> a -> Bool f `invariatesOver` g = f . g <=> f -- | Checks whether a binary function is fixed by an argument. -- -- f x y == const a y -- -- >>> quickCheck $ (*) `fixedBy` 0 -- +++ OK, passed 100 tests. fixedBy :: Eq c => (a -> b -> c) -> a -> b -> b -> Bool (f `fixedBy` x) y z = f x y == f x z -- | Checks whether a function is invariant over an other function. -- -- >>> quickCheck $ length <~~ reverse -- +++ OK, passed 100 tests. (<~~) :: Eq b => (a -> b) -> (a -> a) -> a -> Bool f <~~ g = f . g <=> f -- | Checks whether a function is the inverse of another function. -- -- > f(g(x)) = x -- -- >>> quickCheck $ (`div` 2) @~> (*2) -- +++ OK, passed 100 tests. (@~>) :: Eq a => (b -> a) -> (a -> b) -> a -> Bool f @~> g = f . g <=> id -- | Checks whether a function is an endomorphism in relation to a unary operator. -- -- > f(g(x)) = g(f(x)) -- -- >>> quickCheck $ (*7) <?> abs -- +++ OK, passed 100 tests. (<?>) :: Eq a => (a -> a) -> (a -> a) -> a -> Bool f <?> g = f . g <=> g . f -- | Checks whether a function is an endomorphism in relation to a binary operator. -- -- > f(g(x,y)) = g(f(x),f(y)) -- -- >>> quickCheck $ (^2) <??> (*) -- +++ OK, passed 100 tests. (<??>) :: Eq a => (a -> a) -> (a -> a -> a) -> a -> a -> Bool (f <??> g) x y = f (x `g` y) == f x `g` f y -- | Checks whether a function is an endomorphism in relation to a ternary operator. -- -- > f(g(x,y,z)) = g(f(x),f(y),f(z)) -- (<???>) :: Eq a => (a -> a) -> (a -> a -> a -> a) -> a -> a -> a -> Bool (f <???> g) x y z = f (g x y z) == g (f x) (f y) (f z)
knupfer/test-invariant
src/Test/Invariant.hs
Haskell
bsd-3-clause
8,090
{-# LANGUAGE IncoherentInstances #-} {-# OPTIONS_GHC -fno-warn-incomplete-patterns #-} -- | This module provides a category transformer for automatic differentiation. -- -- There are many alternative notions of a generalized derivative. -- Perhaps the most common is the differential Ring. -- In Haskell, this might be defined as: -- -- > class Field r => Differential r where -- > derivative :: r -> r -- > -- > type Diff cat = forall a b. (Category cat, Differential cat a b) -- -- But this runs into problems with the lack of polymorphic constraints in GHC. -- See, for example <https://ghc.haskell.org/trac/ghc/ticket/2893 GHC ticket #2893>. -- -- References: -- -- * <http://en.wikipedia.org/wiki/Differential_algebra wikipedia article on differntial algebras> module SubHask.Category.Trans.Derivative where import SubHask.Algebra import SubHask.Category import SubHask.SubType import SubHask.Internal.Prelude -------------------------------------------------------------------------------- -- | This is essentially just a translation of the "Numeric.AD.Forward.Forward" type -- for use with the SubHask numeric hierarchy. -- -- FIXME: -- -- Add reverse mode auto-differentiation for vectors. -- Apply the "ProofOf" framework from Monotonic data Forward a = Forward { val :: !a , val' :: a } deriving (Typeable,Show) mkMutable [t| forall a. Forward a |] instance Semigroup a => Semigroup (Forward a) where (Forward a1 a1')+(Forward a2 a2') = Forward (a1+a2) (a1'+a2') instance Cancellative a => Cancellative (Forward a) where (Forward a1 a1')-(Forward a2 a2') = Forward (a1-a2) (a1'-a2') instance Monoid a => Monoid (Forward a) where zero = Forward zero zero instance Group a => Group (Forward a) where negate (Forward a b) = Forward (negate a) (negate b) instance Abelian a => Abelian (Forward a) instance Rg a => Rg (Forward a) where (Forward a1 a1')*(Forward a2 a2') = Forward (a1*a2) (a1*a2'+a2*a1') instance Rig a => Rig (Forward a) where one = Forward one zero instance Ring a => Ring (Forward a) where fromInteger x = Forward (fromInteger x) zero instance Field a => Field (Forward a) where reciprocal (Forward a a') = Forward (reciprocal a) (-a'/(a*a)) (Forward a1 a1')/(Forward a2 a2') = Forward (a1/a2) ((a1'*a2+a1*a2')/(a2'*a2')) fromRational r = Forward (fromRational r) 0 --------- proveC1 :: (a ~ (a><a), Rig a) => (Forward a -> Forward a) -> C1 (a -> a) proveC1 f = Diffn (\a -> val $ f $ Forward a one) $ Diff0 $ \a -> val' $ f $ Forward a one proveC2 :: (a ~ (a><a), Rig a) => (Forward (Forward a) -> Forward (Forward a)) -> C2 (a -> a) proveC2 f = Diffn (\a -> val $ val $ f $ Forward (Forward a one) one) $ Diffn (\a -> val' $ val $ f $ Forward (Forward a one) one) $ Diff0 (\a -> val' $ val' $ f $ Forward (Forward a one) one) -------------------------------------------------------------------------------- class C (cat :: * -> * -> *) where type D cat :: * -> * -> * derivative :: cat a b -> D cat a (a >< b) data Diff (n::Nat) a b where Diff0 :: (a -> b) -> Diff 0 a b Diffn :: (a -> b) -> Diff (n-1) a (a >< b) -> Diff n a b --------- instance Sup (->) (Diff n) (->) instance Sup (Diff n) (->) (->) instance Diff 0 <: (->) where embedType_ = Embed2 unDiff0 where unDiff0 :: Diff 0 a b -> a -> b unDiff0 (Diff0 f) = f unDiff0 (Diffn _ _) = undefined instance Diff n <: (->) where embedType_ = Embed2 unDiffn where unDiffn :: Diff n a b -> a -> b unDiffn (Diffn f _) = f unDiffn (Diff0 _) = undefined -- -- FIXME: these subtyping instance should be made more generic -- the problem is that type families aren't currently powerful enough -- instance Sup (Diff 0) (Diff 1) (Diff 0) instance Sup (Diff 1) (Diff 0) (Diff 0) instance Diff 1 <: Diff 0 where embedType_ = Embed2 m2n where m2n (Diffn f _) = Diff0 f m2n (Diff0 _) = undefined instance Sup (Diff 0) (Diff 2) (Diff 0) instance Sup (Diff 2) (Diff 0) (Diff 0) instance Diff 2 <: Diff 0 where embedType_ = Embed2 m2n where m2n (Diffn f _) = Diff0 f m2n (Diff0 _) = undefined instance Sup (Diff 1) (Diff 2) (Diff 1) instance Sup (Diff 2) (Diff 1) (Diff 1) instance Diff 2 <: Diff 1 where embedType_ = Embed2 m2n where m2n (Diffn f f') = Diffn f (embedType2 f') m2n (Diff0 _) = undefined --------- instance (1 <= n) => C (Diff n) where type D (Diff n) = Diff (n-1) derivative (Diffn _ f') = f' -- doesn't work, hence no non-ehaustive pattern ghc option -- derivative (Diff0 _) = undefined unsafeProveC0 :: (a -> b) -> Diff 0 a b unsafeProveC0 f = Diff0 f unsafeProveC1 :: (a -> b) -- ^ f(x) -> (a -> a><b) -- ^ f'(x) -> C1 (a -> b) unsafeProveC1 f f' = Diffn f $ unsafeProveC0 f' unsafeProveC2 :: (a -> b) -- ^ f(x) -> (a -> a><b) -- ^ f'(x) -> (a -> a><a><b) -- ^ f''(x) -> C2 (a -> b) unsafeProveC2 f f' f'' = Diffn f $ unsafeProveC1 f' f'' type C0 a = C0_ a type family C0_ (f :: *) :: * where C0_ (a -> b) = Diff 0 a b type C1 a = C1_ a type family C1_ (f :: *) :: * where C1_ (a -> b) = Diff 1 a b type C2 a = C2_ a type family C2_ (f :: *) :: * where C2_ (a -> b) = Diff 2 a b --------------------------------------- -- algebra mkMutable [t| forall n a b. Diff n a b |] instance Semigroup b => Semigroup (Diff 0 a b) where (Diff0 f1 )+(Diff0 f2 ) = Diff0 (f1+f2) _ + _ = undefined instance (Semigroup b, Semigroup (a><b)) => Semigroup (Diff 1 a b) where (Diffn f1 f1')+(Diffn f2 f2') = Diffn (f1+f2) (f1'+f2') instance (Semigroup b, Semigroup (a><b), Semigroup (a><a><b)) => Semigroup (Diff 2 a b) where (Diffn f1 f1')+(Diffn f2 f2') = Diffn (f1+f2) (f1'+f2') instance Monoid b => Monoid (Diff 0 a b) where zero = Diff0 zero instance (Monoid b, Monoid (a><b)) => Monoid (Diff 1 a b) where zero = Diffn zero zero instance (Monoid b, Monoid (a><b), Monoid (a><a><b)) => Monoid (Diff 2 a b) where zero = Diffn zero zero -------------------------------------------------------------------------------- -- test -- v = unsafeToModule [1,2,3,4,5] :: SVector 5 Double -- -- sphere :: Hilbert v => C0 (v -> Scalar v) -- sphere = unsafeProveC0 f -- where -- f v = v<>v
Drezil/subhask
src/SubHask/Category/Trans/Derivative.hs
Haskell
bsd-3-clause
6,414
-- | When there aren't enough registers to hold all the vregs we have to spill some of those -- vregs to slots on the stack. This module is used modify the code to use those slots. -- module RegAlloc.Graph.Spill ( regSpill, SpillStats(..), accSpillSL ) where import RegAlloc.Liveness import Instruction import Reg import OldCmm hiding (RegSet) import BlockId import State import Unique import UniqFM import UniqSet import UniqSupply import Outputable import Data.List import Data.Maybe import Data.Map (Map) import Data.Set (Set) import qualified Data.Map as Map import qualified Data.Set as Set -- | Spill all these virtual regs to stack slots. -- -- TODO: See if we can split some of the live ranges instead of just globally -- spilling the virtual reg. This might make the spill cleaner's job easier. -- -- TODO: On CISCy x86 and x86_64 we don't nessesarally have to add a mov instruction -- when making spills. If an instr is using a spilled virtual we may be able to -- address the spill slot directly. -- regSpill :: Instruction instr => [LiveCmmDecl statics instr] -- ^ the code -> UniqSet Int -- ^ available stack slots -> UniqSet VirtualReg -- ^ the regs to spill -> UniqSM ([LiveCmmDecl statics instr] -- code with SPILL and RELOAD meta instructions added. , UniqSet Int -- left over slots , SpillStats ) -- stats about what happened during spilling regSpill code slotsFree regs -- not enough slots to spill these regs | sizeUniqSet slotsFree < sizeUniqSet regs = pprPanic "regSpill: out of spill slots!" ( text " regs to spill = " <> ppr (sizeUniqSet regs) $$ text " slots left = " <> ppr (sizeUniqSet slotsFree)) | otherwise = do -- allocate a slot for each of the spilled regs let slots = take (sizeUniqSet regs) $ uniqSetToList slotsFree let regSlotMap = listToUFM $ zip (uniqSetToList regs) slots -- grab the unique supply from the monad us <- getUs -- run the spiller on all the blocks let (code', state') = runState (mapM (regSpill_top regSlotMap) code) (initSpillS us) return ( code' , minusUniqSet slotsFree (mkUniqSet slots) , makeSpillStats state') -- | Spill some registers to stack slots in a top-level thing. regSpill_top :: Instruction instr => RegMap Int -- ^ map of vregs to slots they're being spilled to. -> LiveCmmDecl statics instr -- ^ the top level thing. -> SpillM (LiveCmmDecl statics instr) regSpill_top regSlotMap cmm = case cmm of CmmData{} -> return cmm CmmProc info label sccs | LiveInfo static firstId mLiveVRegsOnEntry liveSlotsOnEntry <- info -> do -- We should only passed Cmms with the liveness maps filled in, but we'll -- create empty ones if they're not there just in case. let liveVRegsOnEntry = fromMaybe mapEmpty mLiveVRegsOnEntry -- The liveVRegsOnEntry contains the set of vregs that are live on entry to -- each basic block. If we spill one of those vregs we remove it from that -- set and add the corresponding slot number to the liveSlotsOnEntry set. -- The spill cleaner needs this information to erase unneeded spill and -- reload instructions after we've done a successful allocation. let liveSlotsOnEntry' :: Map BlockId (Set Int) liveSlotsOnEntry' = mapFoldWithKey patchLiveSlot liveSlotsOnEntry liveVRegsOnEntry let info' = LiveInfo static firstId (Just liveVRegsOnEntry) liveSlotsOnEntry' -- Apply the spiller to all the basic blocks in the CmmProc. sccs' <- mapM (mapSCCM (regSpill_block regSlotMap)) sccs return $ CmmProc info' label sccs' where -- | Given a BlockId and the set of registers live in it, -- if registers in this block are being spilled to stack slots, -- then record the fact that these slots are now live in those blocks -- in the given slotmap. patchLiveSlot :: BlockId -> RegSet -> Map BlockId (Set Int) -> Map BlockId (Set Int) patchLiveSlot blockId regsLive slotMap = let curSlotsLive = fromMaybe Set.empty $ Map.lookup blockId slotMap moreSlotsLive = Set.fromList $ catMaybes $ map (lookupUFM regSlotMap) $ uniqSetToList regsLive slotMap' = Map.insert blockId (Set.union curSlotsLive moreSlotsLive) slotMap in slotMap' -- | Spill some registers to stack slots in a basic block. regSpill_block :: Instruction instr => UniqFM Int -- ^ map of vregs to slots they're being spilled to. -> LiveBasicBlock instr -> SpillM (LiveBasicBlock instr) regSpill_block regSlotMap (BasicBlock i instrs) = do instrss' <- mapM (regSpill_instr regSlotMap) instrs return $ BasicBlock i (concat instrss') -- | Spill some registers to stack slots in a single instruction. If the instruction -- uses registers that need to be spilled, then it is prefixed (or postfixed) with -- the appropriate RELOAD or SPILL meta instructions. regSpill_instr :: Instruction instr => UniqFM Int -- ^ map of vregs to slots they're being spilled to. -> LiveInstr instr -> SpillM [LiveInstr instr] regSpill_instr _ li@(LiveInstr _ Nothing) = do return [li] regSpill_instr regSlotMap (LiveInstr instr (Just _)) = do -- work out which regs are read and written in this instr let RU rlRead rlWritten = regUsageOfInstr instr -- sometimes a register is listed as being read more than once, -- nub this so we don't end up inserting two lots of spill code. let rsRead_ = nub rlRead let rsWritten_ = nub rlWritten -- if a reg is modified, it appears in both lists, want to undo this.. let rsRead = rsRead_ \\ rsWritten_ let rsWritten = rsWritten_ \\ rsRead_ let rsModify = intersect rsRead_ rsWritten_ -- work out if any of the regs being used are currently being spilled. let rsSpillRead = filter (\r -> elemUFM r regSlotMap) rsRead let rsSpillWritten = filter (\r -> elemUFM r regSlotMap) rsWritten let rsSpillModify = filter (\r -> elemUFM r regSlotMap) rsModify -- rewrite the instr and work out spill code. (instr1, prepost1) <- mapAccumLM (spillRead regSlotMap) instr rsSpillRead (instr2, prepost2) <- mapAccumLM (spillWrite regSlotMap) instr1 rsSpillWritten (instr3, prepost3) <- mapAccumLM (spillModify regSlotMap) instr2 rsSpillModify let (mPrefixes, mPostfixes) = unzip (prepost1 ++ prepost2 ++ prepost3) let prefixes = concat mPrefixes let postfixes = concat mPostfixes -- final code let instrs' = prefixes ++ [LiveInstr instr3 Nothing] ++ postfixes return {- $ pprTrace "* regSpill_instr spill" ( text "instr = " <> ppr instr $$ text "read = " <> ppr rsSpillRead $$ text "write = " <> ppr rsSpillWritten $$ text "mod = " <> ppr rsSpillModify $$ text "-- out" $$ (vcat $ map ppr instrs') $$ text " ") -} $ instrs' spillRead :: Instruction instr => UniqFM Int -> instr -> Reg -> SpillM (instr, ([LiveInstr instr'], [LiveInstr instr'])) spillRead regSlotMap instr reg | Just slot <- lookupUFM regSlotMap reg = do (instr', nReg) <- patchInstr reg instr modify $ \s -> s { stateSpillSL = addToUFM_C accSpillSL (stateSpillSL s) reg (reg, 0, 1) } return ( instr' , ( [LiveInstr (RELOAD slot nReg) Nothing] , []) ) | otherwise = panic "RegSpill.spillRead: no slot defined for spilled reg" spillWrite :: Instruction instr => UniqFM Int -> instr -> Reg -> SpillM (instr, ([LiveInstr instr'], [LiveInstr instr'])) spillWrite regSlotMap instr reg | Just slot <- lookupUFM regSlotMap reg = do (instr', nReg) <- patchInstr reg instr modify $ \s -> s { stateSpillSL = addToUFM_C accSpillSL (stateSpillSL s) reg (reg, 1, 0) } return ( instr' , ( [] , [LiveInstr (SPILL nReg slot) Nothing])) | otherwise = panic "RegSpill.spillWrite: no slot defined for spilled reg" spillModify :: Instruction instr => UniqFM Int -> instr -> Reg -> SpillM (instr, ([LiveInstr instr'], [LiveInstr instr'])) spillModify regSlotMap instr reg | Just slot <- lookupUFM regSlotMap reg = do (instr', nReg) <- patchInstr reg instr modify $ \s -> s { stateSpillSL = addToUFM_C accSpillSL (stateSpillSL s) reg (reg, 1, 1) } return ( instr' , ( [LiveInstr (RELOAD slot nReg) Nothing] , [LiveInstr (SPILL nReg slot) Nothing])) | otherwise = panic "RegSpill.spillModify: no slot defined for spilled reg" -- | Rewrite uses of this virtual reg in an instr to use a different virtual reg patchInstr :: Instruction instr => Reg -> instr -> SpillM (instr, Reg) patchInstr reg instr = do nUnique <- newUnique let nReg = case reg of RegVirtual vr -> RegVirtual (renameVirtualReg nUnique vr) RegReal{} -> panic "RegAlloc.Graph.Spill.patchIntr: not patching real reg" let instr' = patchReg1 reg nReg instr return (instr', nReg) patchReg1 :: Instruction instr => Reg -> Reg -> instr -> instr patchReg1 old new instr = let patchF r | r == old = new | otherwise = r in patchRegsOfInstr instr patchF -- Spiller monad -------------------------------------------------------------- data SpillS = SpillS { -- | unique supply for generating fresh vregs. stateUS :: UniqSupply -- | spilled vreg vs the number of times it was loaded, stored , stateSpillSL :: UniqFM (Reg, Int, Int) } initSpillS :: UniqSupply -> SpillS initSpillS uniqueSupply = SpillS { stateUS = uniqueSupply , stateSpillSL = emptyUFM } type SpillM a = State SpillS a newUnique :: SpillM Unique newUnique = do us <- gets stateUS case takeUniqFromSupply us of (uniq, us') -> do modify $ \s -> s { stateUS = us' } return uniq accSpillSL :: (Reg, Int, Int) -> (Reg, Int, Int) -> (Reg, Int, Int) accSpillSL (r1, s1, l1) (_, s2, l2) = (r1, s1 + s2, l1 + l2) -- Spiller stats -------------------------------------------------------------- data SpillStats = SpillStats { spillStoreLoad :: UniqFM (Reg, Int, Int) } makeSpillStats :: SpillS -> SpillStats makeSpillStats s = SpillStats { spillStoreLoad = stateSpillSL s } instance Outputable SpillStats where ppr stats = (vcat $ map (\(r, s, l) -> ppr r <+> int s <+> int l) $ eltsUFM (spillStoreLoad stats))
mcmaniac/ghc
compiler/nativeGen/RegAlloc/Graph/Spill.hs
Haskell
bsd-3-clause
12,564
{-# LANGUAGE TypeFamilies, FlexibleInstances, ConstraintKinds, DeriveGeneric, DefaultSignatures #-} module BayesStack.DirMulti ( -- * Dirichlet/multinomial pair Multinom, dirMulti, symDirMulti, multinom -- | Do not do record updates with these , dmTotal, dmAlpha, dmDomain , setMultinom, SetUnset (..) , addMultinom, subMultinom , decMultinom, incMultinom , prettyMultinom , updatePrior , obsProb -- * Parameter estimation , estimatePrior, reestimatePriors, reestimateSymPriors -- * Convenience functions , probabilities, decProbabilities ) where import Data.EnumMap (EnumMap) import qualified Data.EnumMap as EM import Data.Sequence (Seq) import qualified Data.Sequence as SQ import qualified Data.Foldable as Foldable import Data.Foldable (toList, Foldable, foldMap) import Data.Function (on) import Text.PrettyPrint import Text.Printf import GHC.Generics (Generic) import Data.Binary import Data.Binary.EnumMap () import BayesStack.Types import BayesStack.Dirichlet import Numeric.Log hiding (sum) import Numeric.Digamma import Math.Gamma hiding (p) -- | Make error handling a bit easier checkNaN :: RealFloat a => String -> a -> a checkNaN loc x | isNaN x = error $ "BayesStack.DirMulti."++loc++": Not a number" checkNaN loc x | isInfinite x = error $ "BayesStack.DirMulti."++loc++": Infinity" checkNaN _ x = x maybeInc, maybeDec :: (Num a, Eq a) => Maybe a -> Maybe a maybeInc Nothing = Just 1 maybeInc (Just n) = Just (n+1) maybeDec Nothing = error "Can't decrement zero count" maybeDec (Just 1) = Nothing maybeDec (Just n) = Just (n-1) {-# INLINEABLE decMultinom #-} {-# INLINEABLE incMultinom #-} decMultinom, incMultinom :: (Num w, Eq w, Ord a, Enum a) => a -> Multinom w a -> Multinom w a decMultinom k = subMultinom 1 k incMultinom k = addMultinom 1 k subMultinom, addMultinom :: (Num w, Eq w, Ord a, Enum a) => w -> a -> Multinom w a -> Multinom w a subMultinom w k dm = dm { dmCounts = EM.alter maybeDec k $ dmCounts dm , dmTotal = dmTotal dm - w } addMultinom w k dm = dm { dmCounts = EM.alter maybeInc k $ dmCounts dm , dmTotal = dmTotal dm + w } data SetUnset = Set | Unset setMultinom :: (Num w, Eq w, Enum a, Ord a) => SetUnset -> a -> Multinom w a -> Multinom w a setMultinom Set s = incMultinom s setMultinom Unset s = decMultinom s -- | 'Multinom a' represents multinomial distribution over domain 'a'. -- Optionally, this can include a collapsed Dirichlet prior. -- 'Multinom alpha count total' is a multinomial with Dirichlet prior -- with symmetric parameter 'alpha', ... data Multinom w a = DirMulti { dmAlpha :: !(Alpha a) , dmCounts :: !(EnumMap a w) , dmTotal :: !w , dmDomain :: !(Seq a) } | Multinom { dmProbs :: !(EnumMap a Double) , dmCounts :: !(EnumMap a w) , dmTotal :: !w , dmDomain :: !(Seq a) } deriving (Show, Eq, Generic) instance (Enum a, Binary a, Binary w) => Binary (Multinom w a) -- | 'symMultinomFromPrecision d p' is a symmetric Dirichlet/multinomial over a -- domain 'd' with precision 'p' symDirMultiFromPrecision :: (Num w, Enum a) => [a] -> DirPrecision -> Multinom w a symDirMultiFromPrecision domain prec = symDirMulti (0.5*prec) domain -- | 'dirMultiFromMeanPrecision m p' is an asymmetric Dirichlet/multinomial -- over a domain 'd' with mean 'm' and precision 'p' dirMultiFromPrecision :: (Num w, Enum a) => DirMean a -> DirPrecision -> Multinom w a dirMultiFromPrecision m p = dirMultiFromAlpha $ meanPrecisionToAlpha m p -- | Create a symmetric Dirichlet/multinomial symDirMulti :: (Num w, Enum a) => Double -> [a] -> Multinom w a symDirMulti alpha domain = dirMultiFromAlpha $ symAlpha domain alpha -- | A multinomial without a prior multinom :: (Num w, Enum a) => [(a,Double)] -> Multinom w a multinom probs = Multinom { dmProbs = EM.fromList probs , dmCounts = EM.empty , dmTotal = 0 , dmDomain = SQ.fromList $ map fst probs } -- | Create an asymmetric Dirichlet/multinomial from items and alphas dirMulti :: (Num w, Enum a) => [(a,Double)] -> Multinom w a dirMulti domain = dirMultiFromAlpha $ asymAlpha $ EM.fromList domain -- | Create a Dirichlet/multinomial with a given prior dirMultiFromAlpha :: (Enum a, Num w) => Alpha a -> Multinom w a dirMultiFromAlpha alpha = DirMulti { dmAlpha = alpha , dmCounts = EM.empty , dmTotal = 0 , dmDomain = alphaDomain alpha } data Acc w = Acc !w !Probability obsProb :: (Enum a, Real w, Functor f, Foldable f) => Multinom w a -> f (a, w) -> Probability obsProb (Multinom {dmProbs=prob}) obs = Foldable.product $ fmap (\(k,w)->(realToFrac $ prob EM.! k)^^w) obs where (^^) :: Real w => Log Double -> w -> Log Double x ^^ y = Exp $ realToFrac y * ln x obsProb (DirMulti {dmAlpha=alpha}) obs = let go (Acc w p) (k',w') = Acc (w+w') (p*p') where p' = Exp $ checkNaN "obsProb" $ lnGamma (realToFrac w' + alpha `alphaOf` k') in case Foldable.foldl' go (Acc 0 1) obs of Acc w p -> p / alphaNormalizer alpha / Exp (lnGamma $ realToFrac w + sumAlpha alpha) {-# INLINE obsProb #-} dmGetCounts :: (Enum a, Num w) => Multinom w a -> a -> w dmGetCounts dm k = EM.findWithDefault 0 k (dmCounts dm) instance HasLikelihood (Multinom w) where type LContext (Multinom w) a = (Real w, Ord a, Enum a) likelihood dm = obsProb dm $ EM.assocs $ dmCounts dm {-# INLINEABLE likelihood #-} instance FullConditionable (Multinom w) where type FCContext (Multinom w) a = (Real w, Ord a, Enum a) sampleProb (Multinom {dmProbs=prob}) k = prob EM.! k sampleProb dm@(DirMulti {dmAlpha=a}) k = let alpha = a `alphaOf` k n = realToFrac $ dmGetCounts dm k total = realToFrac $ dmTotal dm in (n + alpha) / (total + sumAlpha a) {-# INLINEABLE sampleProb #-} {-# INLINEABLE probabilities #-} probabilities :: (Real w, Ord a, Enum a) => Multinom w a -> Seq (Double, a) probabilities dm = fmap (\a->(sampleProb dm a, a)) $ dmDomain dm -- FIXME -- | Probabilities sorted decreasingly decProbabilities :: (Real w, Ord a, Enum a, Num w) => Multinom w a -> Seq (Double, a) decProbabilities = SQ.sortBy (flip (compare `on` fst)) . probabilities prettyMultinom :: (Real w, Ord a, Enum a) => Int -> (a -> String) -> Multinom w a -> Doc prettyMultinom _ _ (Multinom {}) = error "TODO: prettyMultinom" prettyMultinom n showA dm@(DirMulti {}) = text "DirMulti" <+> parens (text "alpha=" <> prettyAlpha showA (dmAlpha dm)) $$ nest 5 (fsep $ punctuate comma $ map (\(p,a)->text (showA a) <> parens (text $ printf "%1.2e" p)) $ take n $ Data.Foldable.toList $ decProbabilities dm) -- | Update the prior of a Dirichlet/multinomial updatePrior :: (Alpha a -> Alpha a) -> Multinom w a -> Multinom w a updatePrior _ (Multinom {}) = error "TODO: updatePrior" updatePrior f dm = dm {dmAlpha=f $ dmAlpha dm} -- | Relative tolerance in precision for prior estimation estimationTol = 1e-8 reestimatePriors :: (Foldable f, Functor f, Real w, Enum a) => f (Multinom w a) -> f (Multinom w a) reestimatePriors dms = let usableDms = filter (\dm->dmTotal dm > 5) $ toList dms alpha = case () of _ | length usableDms <= 3 -> id otherwise -> const $ estimatePrior estimationTol usableDms in fmap (updatePrior alpha) dms reestimateSymPriors :: (Foldable f, Functor f, Real w, Enum a) => f (Multinom w a) -> f (Multinom w a) reestimateSymPriors dms = let usableDms = filter (\dm->dmTotal dm > 5) $ toList dms alpha = case () of _ | length usableDms <= 3 -> id otherwise -> const $ symmetrizeAlpha $ estimatePrior estimationTol usableDms in fmap (updatePrior alpha) dms -- | Estimate the prior alpha from a set of Dirichlet/multinomials estimatePrior' :: (Real w, Enum a) => [Multinom w a] -> Alpha a -> Alpha a estimatePrior' dms alpha = let domain = toList $ dmDomain $ head dms f k = let num = sum $ map (\i->digamma (realToFrac (dmGetCounts i k) + alphaOf alpha k) - digamma (alphaOf alpha k) ) $ filter (\i->dmGetCounts i k > 0) dms total i = realToFrac $ sum $ map (\k->dmGetCounts i k) domain sumAlpha = sum $ map (alphaOf alpha) domain denom = sum $ map (\i->digamma (total i + sumAlpha) - digamma sumAlpha) dms in case () of _ | isNaN num -> error $ "BayesStack.DirMulti.estimatePrior': num = NaN: "++show (map (\i->(digamma (realToFrac (dmGetCounts i k) + alphaOf alpha k), digamma (alphaOf alpha k))) dms) _ | denom == 0 -> error "BayesStack.DirMulti.estimatePrior': denom=0" _ | isInfinite num -> error "BayesStack.DirMulti.estimatePrior': num is infinity " _ | isNaN (alphaOf alpha k * num / denom) -> error $ "NaN"++show (num, denom) otherwise -> alphaOf alpha k * num / denom in asymAlpha $ foldMap (\k->EM.singleton k (f k)) domain estimatePrior :: (Real w, Enum a) => Double -> [Multinom w a] -> Alpha a estimatePrior tol dms = iter $ dmAlpha $ head dms where iter alpha = let alpha' = estimatePrior' dms alpha (_, prec) = alphaToMeanPrecision alpha (_, prec') = alphaToMeanPrecision alpha' in if abs ((prec' - prec) / prec) > tol then iter alpha' else alpha'
beni55/bayes-stack
BayesStack/DirMulti.hs
Haskell
bsd-3-clause
10,404
----------------------------------------------------------------------------- -- | -- Module : XMonad.Util.DebugWindow -- Copyright : (c) Brandon S Allbery KF8NH, 2014 -- License : BSD3-style (see LICENSE) -- -- Maintainer : allbery.b@gmail.com -- Stability : unstable -- Portability : not portable -- -- Module to dump window information for diagnostic/debugging purposes. See -- "XMonad.Hooks.DebugEvents" and "XMonad.Hooks.DebugStack" for practical uses. -- ----------------------------------------------------------------------------- module XMonad.Util.DebugWindow (debugWindow) where import Prelude import XMonad import Codec.Binary.UTF8.String (decodeString) import Control.Exception.Extensible as E import Control.Monad (when) import Data.List (unfoldr ,intercalate ) import Foreign import Foreign.C.String import Numeric (showHex) import System.Exit -- | Output a window by ID in hex, decimal, its ICCCM resource name and class, -- and its title if available. Also indicate override_redirect with an -- exclamation mark, and wrap in brackets if it is unmapped or withdrawn. debugWindow :: Window -> X String debugWindow 0 = return "-no window-" debugWindow w = do let wx = pad 8 '0' $ showHex w "" w' <- withDisplay $ \d -> io (safeGetWindowAttributes d w) case w' of Nothing -> return $ "(deleted window " ++ wx ++ ")" Just (WindowAttributes { wa_x = x , wa_y = y , wa_width = wid , wa_height = ht , wa_border_width = bw , wa_map_state = m , wa_override_redirect = o }) -> do c' <- withDisplay $ \d -> io (getWindowProperty8 d wM_CLASS w) let c = case c' of Nothing -> "" Just c'' -> intercalate "/" $ flip unfoldr (map (toEnum . fromEnum) c'') $ \s -> if null s then Nothing else let (w'',s'') = break (== '\NUL') s s' = if null s'' then s'' else tail s'' in Just (w'',s') t <- catchX' (wrap `fmap` getEWMHTitle "VISIBLE" w) $ catchX' (wrap `fmap` getEWMHTitle "" w) $ catchX' (wrap `fmap` getICCCMTitle w) $ return "" h' <- getMachine w let h = if null h' then "" else '@':h' -- if it has WM_COMMAND use it, else use the appName -- NB. modern stuff often does not set WM_COMMAND since it's only ICCCM required and not some -- horrible gnome/freedesktop session manager thing like Wayland intended. How helpful of them. p' <- withDisplay $ \d -> safeGetCommand d w let p = if null p' then "" else wrap $ intercalate " " p' nWP <- getAtom "_NET_WM_PID" pid' <- withDisplay $ \d -> io $ getWindowProperty32 d nWP w let pid = case pid' of Just [pid''] -> '(':show pid'' ++ ")" _ -> "" let cmd = p ++ pid ++ h let (lb,rb) = case () of () | m == waIsViewable -> ("","") | otherwise -> ("[","]") o' = if o then "!" else "" return $ concat [lb ,o' ,wx ,t ," " ,show wid ,'x':show ht ,if bw == 0 then "" else '+':show bw ,"@" ,show x ,',':show y ,if null c then "" else ' ':c ,if null cmd then "" else ' ':cmd ,rb ] getEWMHTitle :: String -> Window -> X String getEWMHTitle sub w = do a <- getAtom $ "_NET_WM_" ++ (if null sub then "" else '_':sub) ++ "_NAME" (Just t) <- withDisplay $ \d -> io $ getWindowProperty32 d a w return $ map (toEnum . fromEnum) t getICCCMTitle :: Window -> X String getICCCMTitle w = getDecodedStringProp w wM_NAME getDecodedStringProp :: Window -> Atom -> X String getDecodedStringProp w a = do t@(TextProperty t' _ 8 _) <- withDisplay $ \d -> io $ getTextProperty d w a [s] <- catchX' (tryUTF8 t) $ catchX' (tryCompound t) $ io ((:[]) `fmap` peekCString t') return s tryUTF8 :: TextProperty -> X [String] tryUTF8 (TextProperty s enc _ _) = do uTF8_STRING <- getAtom "UTF8_STRING" when (enc == uTF8_STRING) $ error "String is not UTF8_STRING" (map decodeString . splitNul) `fmap` io (peekCString s) tryCompound :: TextProperty -> X [String] tryCompound t@(TextProperty _ enc _ _) = do cOMPOUND_TEXT <- getAtom "COMPOUND_TEXT" when (enc == cOMPOUND_TEXT) $ error "String is not COMPOUND_TEXT" withDisplay $ \d -> io $ wcTextPropertyToTextList d t splitNul :: String -> [String] splitNul "" = [] splitNul s = let (s',ss') = break (== '\NUL') s in s' : splitNul ss' pad :: Int -> Char -> String -> String pad w c s = replicate (w - length s) c ++ s -- modified 'catchX' without the print to 'stderr' catchX' :: X a -> X a -> X a catchX' job errcase = do st <- get c <- ask (a, s') <- io $ runX c st job `E.catch` \e -> case fromException e of Just x -> throw e `const` (x `asTypeOf` ExitSuccess) _ -> runX c st errcase put s' return a wrap :: String -> String wrap s = ' ' : '"' : wrap' s ++ "\"" where wrap' (s':ss) | s' == '"' = '\\' : s' : wrap' ss | s' == '\\' = '\\' : s' : wrap' ss | otherwise = s' : wrap' ss wrap' "" = "" -- Graphics.X11.Extras.getWindowAttributes is bugggggggy safeGetWindowAttributes :: Display -> Window -> IO (Maybe WindowAttributes) safeGetWindowAttributes d w = alloca $ \p -> do s <- xGetWindowAttributes d w p case s of 0 -> return Nothing _ -> Just `fmap` peek p -- and so is getCommand safeGetCommand :: Display -> Window -> X [String] safeGetCommand d w = do wC <- getAtom "WM_COMMAND" p <- io $ getWindowProperty8 d wC w case p of Nothing -> return [] Just cs' -> do let cs = map (toEnum . fromEnum) cs' go (a,(s,"\NUL")) = (s:a,("","")) go (a,(s,'\NUL':ss)) = go (s:a,go' ss) go r = r -- ??? go' = break (== '\NUL') in return $ reverse $ fst $ go ([],go' cs) getMachine :: Window -> X String getMachine w = catchX' (getAtom "WM_CLIENT_MACHINE" >>= getDecodedStringProp w) (return "")
f1u77y/xmonad-contrib
XMonad/Util/DebugWindow.hs
Haskell
bsd-3-clause
7,208
-- Copyright (c) 2014 Eric McCorkle. All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions -- are met: -- -- 1. Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- 2. Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution. -- -- 3. Neither the name of the author nor the names of any contributors -- may be used to endorse or promote products derived from this software -- without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' -- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED -- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS -- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF -- USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND -- ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT -- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF -- SUCH DAMAGE. module Tests.Control.Monad(tests) where import Test.HUnitPlus.Base import qualified Tests.Control.Monad.Symbols as Symbols tests :: Test tests = "Monad" ~: [Symbols.tests]
emc2/compiler-misc
test/Tests/Control/Monad.hs
Haskell
bsd-3-clause
1,732
-- | -- Module : Foundation.VFS.FilePath -- License : BSD-style -- Maintainer : foundation -- Stability : experimental -- Portability : portable -- -- # Opaque implementation for FilePath -- -- The underlying type of a FilePath is a `Foundation.ByteArray`. It is indeed like -- this because for some systems (Unix systems) a `FilePath` is a null -- terminated array of bytes. -- -- # FilePath and FileName for type checking validation -- -- In order to add some constraint at compile time, it is not possible to -- append (`</>`) a `FilePath` to another `FilePath`. -- You can only append (`</>`) a `FileName` to a given `FilePath`. -- {-# LANGUAGE CPP #-} module Foundation.VFS.FilePath ( FilePath , Relativity(..) , FileName -- * conversion , filePathToString , filePathToLString -- ** unsafe , unsafeFilePath , unsafeFileName , extension ) where import Basement.Compat.Base import Basement.Compat.Semigroup import Foundation.Collection import Foundation.Array import Foundation.String (Encoding(..), ValidationFailure, toBytes, fromBytes, String) import Foundation.VFS.Path(Path(..)) import qualified Data.List -- ------------------------------------------------------------------------- -- -- System related helpers -- -- ------------------------------------------------------------------------- -- #ifdef mingw32_HOST_OS pathSeparatorWINC :: Char pathSeparatorWINC = '\\' -- | define the Path separator for Windows systems : '\\' pathSeparatorWIN :: String pathSeparatorWIN = fromString [pathSeparatorWINC] #else pathSeparatorPOSIXC :: Char pathSeparatorPOSIXC = '/' -- | define the Path separator for POSIX systems : '/' pathSeparatorPOSIX :: String pathSeparatorPOSIX = fromString [pathSeparatorPOSIXC] #endif pathSeparatorC :: Char pathSeparator :: String #ifdef mingw32_HOST_OS pathSeparatorC = pathSeparatorWINC pathSeparator = pathSeparatorWIN #else pathSeparatorC = pathSeparatorPOSIXC pathSeparator = pathSeparatorPOSIX #endif -- ------------------------------------------------------------------------- -- -- FilePath -- -- ------------------------------------------------------------------------- -- -- | information about type of FilePath -- -- A file path being only `Relative` or `Absolute`. data Relativity = Absolute | Relative deriving (Eq, Show) -- | FilePath is a collection of FileName -- -- TODO: Eq and Ord are implemented using Show -- This is not very efficient and would need to be improved -- Also, it is possible the ordering is not necessary what we want -- in this case. -- -- A FilePath is one of the following: -- -- * An Absolute: -- * starts with one of the follwing "/" -- * A relative: -- * don't start with a "/" -- -- * authorised: -- * "/" -- * "/file/path" -- * "." -- * ".." -- * "work/haskell/hs-foundation" -- -- * unauthorised -- * "path//" data FilePath = FilePath Relativity [FileName] instance Show FilePath where show = filePathToLString instance Eq FilePath where (==) a b = (==) (show a) (show b) instance Ord FilePath where compare a b = compare (show a) (show b) -- | error associated to filepath manipulation data FilePath_Invalid = ContiguousPathSeparator -- ^ this mean there were 2 contiguous path separators. -- -- This is not valid in Foundation's FilePath specifications deriving (Typeable, Show) instance Exception FilePath_Invalid instance IsString FilePath where fromString [] = FilePath Absolute mempty fromString s@(x:xs) | hasContigueSeparators s = throw ContiguousPathSeparator | otherwise = FilePath relativity $ case relativity of Absolute -> fromString <$> splitOn isSeparator xs Relative -> fromString <$> splitOn isSeparator s where relativity :: Relativity relativity = if isSeparator x then Absolute else Relative -- | A filename (or path entity) in the FilePath -- -- * Authorised -- * "" -- * "." -- * ".." -- * "foundation" -- * Unauthorised -- * "/" -- * "file/" -- * "/file" -- * "file/path" -- data FileName = FileName (UArray Word8) deriving (Eq) -- | errors related to FileName manipulation data FileName_Invalid = ContainsNullByte -- ^ this means a null byte was found in the FileName | ContainsSeparator -- ^ this means a path separator was found in the FileName | EncodingError ValidationFailure -- ^ encoding error | UnknownTrailingBytes (UArray Word8) -- ^ some unknown trainling bytes found deriving (Typeable, Show) instance Exception FileName_Invalid instance Show FileName where show = fileNameToLString instance IsString FileName where fromString [] = FileName mempty fromString xs | hasNullByte xs = throw ContainsNullByte | hasSeparator xs = throw ContainsSeparator | otherwise = FileName $ toBytes UTF8 $ fromString xs hasNullByte :: [Char] -> Bool hasNullByte = Data.List.elem '\0' hasSeparator :: [Char] -> Bool hasSeparator = Data.List.elem pathSeparatorC isSeparator :: Char -> Bool isSeparator = (==) pathSeparatorC hasContigueSeparators :: [Char] -> Bool hasContigueSeparators [] = False hasContigueSeparators [_] = False hasContigueSeparators (x1:x2:xs) = (isSeparator x1 && x1 == x2) || hasContigueSeparators xs instance Semigroup FileName where (<>) (FileName a) (FileName b) = FileName $ a `mappend` b instance Monoid FileName where mempty = FileName mempty mappend (FileName a) (FileName b) = FileName $ a `mappend` b instance Path FilePath where type PathEnt FilePath = FileName type PathPrefix FilePath = Relativity type PathSuffix FilePath = () (</>) = join splitPath (FilePath r xs) = (r, xs, ()) buildPath (r, xs , _) = FilePath r xs -- compare to the original </>, this type disallow to be able to append an absolute filepath to a filepath join :: FilePath -> FileName -> FilePath join p (FileName x) | null x = p join (FilePath r xs) x = FilePath r $ snoc xs x filePathToString :: FilePath -> String filePathToString (FilePath Absolute []) = fromString [pathSeparatorC] filePathToString (FilePath Relative []) = fromString "." filePathToString (FilePath Absolute fns) = cons pathSeparatorC $ filenameIntercalate fns filePathToString (FilePath Relative fns) = filenameIntercalate fns filenameIntercalate :: [FileName] -> String filenameIntercalate = mconcat . Data.List.intersperse pathSeparator . fmap fileNameToString -- | convert a FileName into a String -- -- This function may throw an exception associated to the encoding fileNameToString :: FileName -> String fileNameToString (FileName fp) = -- FIXME probably incorrect considering windows. -- this is just to get going to be able to be able to reuse System.IO functions which -- works on [Char] case fromBytes UTF8 fp of (s, Nothing, bs) | null bs -> s | otherwise -> throw $ UnknownTrailingBytes bs (_, Just err, _) -> throw $ EncodingError err -- | conversion of FileName into a list of Char -- -- this function may throw exceptions fileNameToLString :: FileName -> [Char] fileNameToLString = toList . fileNameToString -- | conversion of a FilePath into a list of Char -- -- this function may throw exceptions filePathToLString :: FilePath -> [Char] filePathToLString = toList . filePathToString -- | build a file path from a given list of filename -- -- this is unsafe and is mainly needed for testing purpose unsafeFilePath :: Relativity -> [FileName] -> FilePath unsafeFilePath = FilePath -- | build a file name from a given ByteArray -- -- this is unsafe and is mainly needed for testing purpose unsafeFileName :: UArray Word8 -> FileName unsafeFileName = FileName extension :: FileName -> Maybe FileName extension (FileName fn) = case splitOn (\c -> c == 0x2E) fn of [] -> Nothing [_] -> Nothing xs -> Just $ FileName $ last $ nonEmpty_ xs
vincenthz/hs-foundation
foundation/Foundation/VFS/FilePath.hs
Haskell
bsd-3-clause
8,201
{-# LANGUAGE RecordWildCards, ViewPatterns #-} module Development.Bake.Pretty(ovenPretty, ovenPrettyMerge, Pretty(..)) where import Development.Bake.Core.Type import Data.List.Extra data Pretty a = Pretty String a deriving (Read,Show,Eq) instance Stringy a => Stringy (Pretty a) where stringyTo (Pretty a b) = a ++ "=" ++ stringyTo b stringyFrom s = case breakOn "=" s of (a,_:b) -> Pretty a $ stringyFrom b _ -> Pretty "" $ stringyFrom s stringyPretty (Pretty a b) = a ++ "=" ++ stringyPretty b -- | Define an oven that allows @foo=...@ annotations to be added to the strings. -- These can be used to annotate important information, e.g. instead of talking about -- Git SHA1's, you can talk about @person=SHA1@ or @branch=SHA1@. ovenPretty :: Oven state patch test -> Oven state (Pretty patch) test ovenPretty oven@Oven{..} = oven {ovenUpdate = \s ps -> ovenUpdate s (map unpretty ps) ,ovenPrepare = \s ps -> ovenPrepare s (map unpretty ps) ,ovenPatchExtra = \s p -> ovenPatchExtra s (fmap unpretty p) ,ovenSupersede = \p1 p2 -> ovenSupersede (unpretty p1) (unpretty p2) } where unpretty :: Pretty a -> a unpretty (Pretty _ x) = x -- | An oven suitable for use with 'ovenPretty' that supersedes patches which have the same -- pretty name. ovenPrettyMerge :: Oven state (Pretty patch) test -> Oven state (Pretty patch) test ovenPrettyMerge oven = oven {ovenSupersede = \(Pretty p1 _) (Pretty p2 _) -> p1 == p2 }
Pitometsu/bake
src/Development/Bake/Pretty.hs
Haskell
bsd-3-clause
1,502
{-# LANGUAGE TupleSections, OverloadedStrings #-} module Handler.Home where import Import as I import Data.Time import Data.List as I (isPrefixOf) import Text.Blaze.Html (preEscapedToHtml) import Text.Blaze.Html.Renderer.String (renderHtml) import Yesod.Auth (requireAuthId) import Yesod.Auth.HashDB (setSaltAndPasswordHash) import Data.Digest.Pure.SHA (sha1, showDigest) import Data.Text as T (append, pack, unpack) import Data.ByteString.Lazy.Char8 as BS (pack) import Data.Maybe -- This is a handler function for the GET request method on the HomeR -- resource pattern. All of your resource patterns are defined in -- config/routes -- -- The majority of the code you will write in Yesod lives in these handler -- functions. You can spread them across multiple files if you are so -- inclined, or create a single monolithic file. getHomeR :: Handler Html getHomeR = do articles <- runDB $ selectList [ArticlePromoteHeadline ==. True, ArticleApproved ==. True] [Desc ArticleId] users <- sequence $ fmap (\x -> articleAuthorName x) articles let zippedArticles = I.zip articles users defaultLayout $ do aDomId <- newIdent setTitle "乃村研究室ホームページ" $(widgetFile "homepage") getChangePassR :: Handler Html getChangePassR = do userId <- requireAuthId user <- runDB $ get404 userId defaultLayout $ do aDomId <- newIdent setTitle "パスワード変更" $(widgetFile "changePass") postChangePassR :: Handler Html postChangePassR = do userId <- requireAuthId user <- runDB $ get404 userId let salt = userSalt user inputPassword <- runInputPost $ ireq textField "password" runDB $ do update userId [ UserPassword =. (Just $ saltedHash salt inputPassword) ] setMessage $ toHtml $ (userIdent user) <> " is updated." redirect $ HomeR -- local functions -- articleAuthorName :: Entity Article -> Handler (Maybe User) articleAuthorName (Entity _ article) = do runDB $ get (articleUser article) displayAuthorName :: Maybe User -> Text displayAuthorName (Just user) = userIdent user displayAuthorName Nothing = "Unknown user" takeHeadLine :: Html -> Html takeHeadLine content = preEscapedToHtml $ prettyHeadLine $ renderHtml content prettyHeadLine :: String -> String prettyHeadLine article = gsub "_br_" "<br>" $ stripTags $ gsub "<br>" "_br_" $ foldArticle article stripTags :: [Char] -> [Char] stripTags str = stripTags' False str stripTags' :: Bool -> [Char] -> [Char] stripTags' bool (x:xs) | xs == [] = if x == '>' then [] else [x] | bool == True = if x == '>' then stripTags' False xs else stripTags' True xs | bool == False = if x == '<' then stripTags' True xs else x : (stripTags' False xs) | otherwise = [] -- maybe don't occur gsub :: Eq a => [a] -> [a] -> [a] -> [a] gsub _ _ [] = [] gsub x y str@(s:ss) | I.isPrefixOf x str = y ++ gsub x y (drop (length x) str) | otherwise = s:gsub x y ss foldArticle :: String -> String foldArticle content = case foldAtFolding content of Just value -> value Nothing -> I.unlines $ I.take defaultNumOfLines $ I.lines content foldAtFolding :: String -> Maybe String foldAtFolding content = if (I.length splitContent) > 1 then Just $ I.head splitContent else Nothing where splitContent = split "<!-- folding -->" content defaultNumOfLines :: Int defaultNumOfLines = 3 numOfNewArticles :: Int numOfNewArticles = 3 -- We want to import Data.List.Utils (split), but... split :: Eq a => [a] -> [a] -> [[a]] split _ [] = [] split delim str = let (firstline, remainder) = breakList (startswith delim) str in firstline : case remainder of [] -> [] x -> if x == delim then [] : [] else split delim (drop (length delim) x) startswith :: Eq a => [a] -> [a] -> Bool startswith = isPrefixOf breakList :: ([a] -> Bool) -> [a] -> ([a], [a]) breakList func = spanList (not . func) spanList :: ([a] -> Bool) -> [a] -> ([a], [a]) spanList _ [] = ([],[]) spanList func list@(x:xs) = if func list then (x:ys,zs) else ([],list) where (ys,zs) = spanList func xs saltedHash :: Text -> Text -> Text saltedHash salt = T.pack . showDigest . sha1 . BS.pack . T.unpack . T.append salt
kobayashi1027/nomnichi-haskell
Handler/Home.hs
Haskell
bsd-2-clause
4,641
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="ko-KR"> <title>Encode/Decode/Hash Add-on</title> <maps> <homeID>encoder</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Search</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
thc202/zap-extensions
addOns/encoder/src/main/javahelp/org/zaproxy/addon/encoder/resources/help_ko_KR/helpset_ko_KR.hs
Haskell
apache-2.0
974
{- (c) The University of Glasgow 2006 (c) The AQUA Project, Glasgow University, 1994-1998 \section[UniqSet]{Specialised sets, for things with @Uniques@} Based on @UniqFMs@ (as you would expect). Basically, the things need to be in class @Uniquable@. -} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE DeriveDataTypeable #-} module UniqSet ( -- * Unique set type UniqSet, -- type synonym for UniqFM a getUniqSet, pprUniqSet, -- ** Manipulating these sets emptyUniqSet, unitUniqSet, mkUniqSet, addOneToUniqSet, addListToUniqSet, delOneFromUniqSet, delOneFromUniqSet_Directly, delListFromUniqSet, delListFromUniqSet_Directly, unionUniqSets, unionManyUniqSets, minusUniqSet, uniqSetMinusUFM, intersectUniqSets, restrictUniqSetToUFM, uniqSetAny, uniqSetAll, elementOfUniqSet, elemUniqSet_Directly, filterUniqSet, filterUniqSet_Directly, sizeUniqSet, isEmptyUniqSet, lookupUniqSet, lookupUniqSet_Directly, partitionUniqSet, mapUniqSet, unsafeUFMToUniqSet, nonDetEltsUniqSet, nonDetKeysUniqSet, nonDetFoldUniqSet, nonDetFoldUniqSet_Directly ) where import GhcPrelude import UniqFM import Unique import Data.Coerce import Outputable import Data.Foldable (foldl') import Data.Data import qualified Data.Semigroup as Semi -- Note [UniqSet invariant] -- ~~~~~~~~~~~~~~~~~~~~~~~~~ -- UniqSet has the following invariant: -- The keys in the map are the uniques of the values -- It means that to implement mapUniqSet you have to update -- both the keys and the values. newtype UniqSet a = UniqSet {getUniqSet' :: UniqFM a} deriving (Data, Semi.Semigroup, Monoid) emptyUniqSet :: UniqSet a emptyUniqSet = UniqSet emptyUFM unitUniqSet :: Uniquable a => a -> UniqSet a unitUniqSet x = UniqSet $ unitUFM x x mkUniqSet :: Uniquable a => [a] -> UniqSet a mkUniqSet = foldl' addOneToUniqSet emptyUniqSet addOneToUniqSet :: Uniquable a => UniqSet a -> a -> UniqSet a addOneToUniqSet (UniqSet set) x = UniqSet (addToUFM set x x) addListToUniqSet :: Uniquable a => UniqSet a -> [a] -> UniqSet a addListToUniqSet = foldl' addOneToUniqSet delOneFromUniqSet :: Uniquable a => UniqSet a -> a -> UniqSet a delOneFromUniqSet (UniqSet s) a = UniqSet (delFromUFM s a) delOneFromUniqSet_Directly :: UniqSet a -> Unique -> UniqSet a delOneFromUniqSet_Directly (UniqSet s) u = UniqSet (delFromUFM_Directly s u) delListFromUniqSet :: Uniquable a => UniqSet a -> [a] -> UniqSet a delListFromUniqSet (UniqSet s) l = UniqSet (delListFromUFM s l) delListFromUniqSet_Directly :: UniqSet a -> [Unique] -> UniqSet a delListFromUniqSet_Directly (UniqSet s) l = UniqSet (delListFromUFM_Directly s l) unionUniqSets :: UniqSet a -> UniqSet a -> UniqSet a unionUniqSets (UniqSet s) (UniqSet t) = UniqSet (plusUFM s t) unionManyUniqSets :: [UniqSet a] -> UniqSet a unionManyUniqSets = foldl' (flip unionUniqSets) emptyUniqSet minusUniqSet :: UniqSet a -> UniqSet a -> UniqSet a minusUniqSet (UniqSet s) (UniqSet t) = UniqSet (minusUFM s t) intersectUniqSets :: UniqSet a -> UniqSet a -> UniqSet a intersectUniqSets (UniqSet s) (UniqSet t) = UniqSet (intersectUFM s t) restrictUniqSetToUFM :: UniqSet a -> UniqFM b -> UniqSet a restrictUniqSetToUFM (UniqSet s) m = UniqSet (intersectUFM s m) uniqSetMinusUFM :: UniqSet a -> UniqFM b -> UniqSet a uniqSetMinusUFM (UniqSet s) t = UniqSet (minusUFM s t) elementOfUniqSet :: Uniquable a => a -> UniqSet a -> Bool elementOfUniqSet a (UniqSet s) = elemUFM a s elemUniqSet_Directly :: Unique -> UniqSet a -> Bool elemUniqSet_Directly a (UniqSet s) = elemUFM_Directly a s filterUniqSet :: (a -> Bool) -> UniqSet a -> UniqSet a filterUniqSet p (UniqSet s) = UniqSet (filterUFM p s) filterUniqSet_Directly :: (Unique -> elt -> Bool) -> UniqSet elt -> UniqSet elt filterUniqSet_Directly f (UniqSet s) = UniqSet (filterUFM_Directly f s) partitionUniqSet :: (a -> Bool) -> UniqSet a -> (UniqSet a, UniqSet a) partitionUniqSet p (UniqSet s) = coerce (partitionUFM p s) uniqSetAny :: (a -> Bool) -> UniqSet a -> Bool uniqSetAny p (UniqSet s) = anyUFM p s uniqSetAll :: (a -> Bool) -> UniqSet a -> Bool uniqSetAll p (UniqSet s) = allUFM p s sizeUniqSet :: UniqSet a -> Int sizeUniqSet (UniqSet s) = sizeUFM s isEmptyUniqSet :: UniqSet a -> Bool isEmptyUniqSet (UniqSet s) = isNullUFM s lookupUniqSet :: Uniquable a => UniqSet b -> a -> Maybe b lookupUniqSet (UniqSet s) k = lookupUFM s k lookupUniqSet_Directly :: UniqSet a -> Unique -> Maybe a lookupUniqSet_Directly (UniqSet s) k = lookupUFM_Directly s k -- See Note [Deterministic UniqFM] to learn about nondeterminism. -- If you use this please provide a justification why it doesn't introduce -- nondeterminism. nonDetEltsUniqSet :: UniqSet elt -> [elt] nonDetEltsUniqSet = nonDetEltsUFM . getUniqSet' -- See Note [Deterministic UniqFM] to learn about nondeterminism. -- If you use this please provide a justification why it doesn't introduce -- nondeterminism. nonDetKeysUniqSet :: UniqSet elt -> [Unique] nonDetKeysUniqSet = nonDetKeysUFM . getUniqSet' -- See Note [Deterministic UniqFM] to learn about nondeterminism. -- If you use this please provide a justification why it doesn't introduce -- nondeterminism. nonDetFoldUniqSet :: (elt -> a -> a) -> a -> UniqSet elt -> a nonDetFoldUniqSet c n (UniqSet s) = nonDetFoldUFM c n s -- See Note [Deterministic UniqFM] to learn about nondeterminism. -- If you use this please provide a justification why it doesn't introduce -- nondeterminism. nonDetFoldUniqSet_Directly:: (Unique -> elt -> a -> a) -> a -> UniqSet elt -> a nonDetFoldUniqSet_Directly f n (UniqSet s) = nonDetFoldUFM_Directly f n s -- See Note [UniqSet invariant] mapUniqSet :: Uniquable b => (a -> b) -> UniqSet a -> UniqSet b mapUniqSet f = mkUniqSet . map f . nonDetEltsUniqSet -- Two 'UniqSet's are considered equal if they contain the same -- uniques. instance Eq (UniqSet a) where UniqSet a == UniqSet b = equalKeysUFM a b getUniqSet :: UniqSet a -> UniqFM a getUniqSet = getUniqSet' -- | 'unsafeUFMToUniqSet' converts a @'UniqFM' a@ into a @'UniqSet' a@ -- assuming, without checking, that it maps each 'Unique' to a value -- that has that 'Unique'. See Note [UniqSet invariant]. unsafeUFMToUniqSet :: UniqFM a -> UniqSet a unsafeUFMToUniqSet = UniqSet instance Outputable a => Outputable (UniqSet a) where ppr = pprUniqSet ppr pprUniqSet :: (a -> SDoc) -> UniqSet a -> SDoc pprUniqSet f (UniqSet s) = pprUniqFM f s
shlevy/ghc
compiler/utils/UniqSet.hs
Haskell
bsd-3-clause
6,618
{-# OPTIONS_GHC -Wall #-} {-# Language TypeFamilies #-} {-# Language DeriveGeneric #-} module T8479 where import GHC.Generics import Data.Kind (Type) class Blah (a :: Type -> Type) where type F a :: Type -> Type data Foo (f :: Type -> Type) a = MkFoo ((F f) a) deriving Generic1
sdiehl/ghc
testsuite/tests/generics/T8479.hs
Haskell
bsd-3-clause
285
{-# LANGUAGE DeriveDataTypeable #-} ---------------------------------------------------------------------- -- | -- Module : XMonad.Actions.GroupNavigation -- Copyright : (c) nzeh@cs.dal.ca -- License : BSD3-style (see LICENSE) -- -- Maintainer : nzeh@cs.dal.ca -- Stability : unstable -- Portability : unportable -- -- Provides methods for cycling through groups of windows across -- workspaces, ignoring windows that do not belong to this group. A -- group consists of all windows matching a user-provided boolean -- query. -- -- Also provides a method for jumping back to the most recently used -- window in any given group. -- ---------------------------------------------------------------------- module XMonad.Actions.GroupNavigation ( -- * Usage -- $usage Direction (..) , nextMatch , nextMatchOrDo , nextMatchWithThis , historyHook ) where import Control.Monad.Reader import Data.Foldable as Fold import Data.Map as Map import Data.Sequence as Seq import Data.Set as Set import Graphics.X11.Types import Prelude hiding (concatMap, drop, elem, filter, null, reverse) import XMonad.Core import XMonad.ManageHook import XMonad.Operations (windows, withFocused) import qualified XMonad.StackSet as SS import qualified XMonad.Util.ExtensibleState as XS {- $usage Import the module into your @~\/.xmonad\/xmonad.hs@: > import XMonad.Actions.GroupNavigation To support cycling forward and backward through all xterm windows, add something like this to your keybindings: > , ((modm , xK_t), nextMatch Forward (className =? "XTerm")) > , ((modm .|. shiftMask, xK_t), nextMatch Backward (className =? "XTerm")) These key combinations do nothing if there is no xterm window open. If you rather want to open a new xterm window if there is no open xterm window, use 'nextMatchOrDo' instead: > , ((modm , xK_t), nextMatchOrDo Forward (className =? "XTerm") (spawn "xterm")) > , ((modm .|. shiftMask, xK_t), nextMatchOrDo Backward (className =? "XTerm") (spawn "xterm")) You can use 'nextMatchWithThis' with an arbitrary query to cycle through all windows for which this query returns the same value as the current window. For example, to cycle through all windows in the same window class as the current window use: > , ((modm , xK_f), nextMatchWithThis Forward className) > , ((modm , xK_b), nextMatchWithThis Backward className) Finally, you can define keybindings to jump to the most recent window matching a certain Boolean query. To do this, you need to add 'historyHook' to your logHook: > main = xmonad $ def { logHook = historyHook } Then the following keybindings, for example, allow you to return to the most recent xterm or emacs window or to simply to the most recent window: > , ((modm .|. controlMask, xK_e), nextMatch History (className =? "Emacs")) > , ((modm .|. controlMask, xK_t), nextMatch History (className =? "XTerm")) > , ((modm , xK_BackSpace), nextMatch History (return True)) Again, you can use 'nextMatchOrDo' instead of 'nextMatch' if you want to execute an action if no window matching the query exists. -} --- Basic cyclic navigation based on queries ------------------------- -- | The direction in which to look for the next match data Direction = Forward -- ^ Forward from current window or workspace | Backward -- ^ Backward from current window or workspace | History -- ^ Backward in history -- | Focuses the next window for which the given query produces the -- same result as the currently focused window. Does nothing if there -- is no focused window (i.e., the current workspace is empty). nextMatchWithThis :: Eq a => Direction -> Query a -> X () nextMatchWithThis dir qry = withFocused $ \win -> do prop <- runQuery qry win nextMatch dir (qry =? prop) -- | Focuses the next window that matches the given boolean query. -- Does nothing if there is no such window. This is the same as -- 'nextMatchOrDo' with alternate action @return ()@. nextMatch :: Direction -> Query Bool -> X () nextMatch dir qry = nextMatchOrDo dir qry (return ()) -- | Focuses the next window that matches the given boolean query. If -- there is no such window, perform the given action instead. nextMatchOrDo :: Direction -> Query Bool -> X () -> X () nextMatchOrDo dir qry act = orderedWindowList dir >>= focusNextMatchOrDo qry act -- Produces the action to perform depending on whether there's a -- matching window focusNextMatchOrDo :: Query Bool -> X () -> Seq Window -> X () focusNextMatchOrDo qry act = findM (runQuery qry) >=> maybe act (windows . SS.focusWindow) -- Returns the list of windows ordered by workspace as specified in -- ~/.xmonad/xmonad.hs orderedWindowList :: Direction -> X (Seq Window) orderedWindowList History = liftM (\(HistoryDB w ws) -> maybe ws (ws |>) w) XS.get orderedWindowList dir = withWindowSet $ \ss -> do wsids <- asks (Seq.fromList . workspaces . config) let wspcs = orderedWorkspaceList ss wsids wins = dirfun dir $ Fold.foldl' (><) Seq.empty $ fmap (Seq.fromList . SS.integrate' . SS.stack) wspcs cur = SS.peek ss return $ maybe wins (rotfun wins) cur where dirfun Backward = Seq.reverse dirfun _ = id rotfun wins x = rotate $ rotateTo (== x) wins -- Returns the ordered workspace list as specified in ~/.xmonad/xmonad.hs orderedWorkspaceList :: WindowSet -> Seq String -> Seq WindowSpace orderedWorkspaceList ss wsids = rotateTo isCurWS wspcs' where wspcs = SS.workspaces ss wspcsMap = Fold.foldl' (\m ws -> Map.insert (SS.tag ws) ws m) Map.empty wspcs wspcs' = fmap (\wsid -> wspcsMap ! wsid) wsids isCurWS ws = SS.tag ws == SS.tag (SS.workspace $ SS.current ss) --- History navigation, requires a layout modifier ------------------- -- The state extension that holds the history information data HistoryDB = HistoryDB (Maybe Window) -- currently focused window (Seq Window) -- previously focused windows deriving (Read, Show, Typeable) instance ExtensionClass HistoryDB where initialValue = HistoryDB Nothing Seq.empty extensionType = PersistentExtension -- | Action that needs to be executed as a logHook to maintain the -- focus history of all windows as the WindowSet changes. historyHook :: X () historyHook = XS.get >>= updateHistory >>= XS.put -- Updates the history in response to a WindowSet change updateHistory :: HistoryDB -> X HistoryDB updateHistory (HistoryDB oldcur oldhist) = withWindowSet $ \ss -> do let newcur = SS.peek ss wins = Set.fromList $ SS.allWindows ss newhist = flt (flip Set.member wins) (ins oldcur oldhist) return $ HistoryDB newcur (del newcur newhist) where ins x xs = maybe xs (<| xs) x del x xs = maybe xs (\x' -> flt (/= x') xs) x --- Two replacements for Seq.filter and Seq.breakl available only in --- containers-0.3.0.0, which only ships with ghc 6.12. Once we --- decide to no longer support ghc < 6.12, these should be replaced --- with Seq.filter and Seq.breakl. flt :: (a -> Bool) -> Seq a -> Seq a flt p = Fold.foldl (\xs x -> if p x then xs |> x else xs) Seq.empty brkl :: (a -> Bool) -> Seq a -> (Seq a, Seq a) brkl p xs = flip Seq.splitAt xs $ snd $ Fold.foldr (\x (i, j) -> if p x then (i-1, i-1) else (i-1, j)) (l, l) xs where l = Seq.length xs --- Some sequence helpers -------------------------------------------- -- Rotates the sequence by one position rotate :: Seq a -> Seq a rotate xs = rotate' (viewl xs) where rotate' EmptyL = Seq.empty rotate' (x' :< xs') = xs' |> x' -- Rotates the sequence until an element matching the given condition -- is at the beginning of the sequence. rotateTo :: (a -> Bool) -> Seq a -> Seq a rotateTo cond xs = let (lxs, rxs) = brkl cond xs in rxs >< lxs --- A monadic find --------------------------------------------------- -- Applies the given action to every sequence element in turn until -- the first element is found for which the action returns true. The -- remaining elements in the sequence are ignored. findM :: Monad m => (a -> m Bool) -> Seq a -> m (Maybe a) findM cond xs = findM' cond (viewl xs) where findM' _ EmptyL = return Nothing findM' qry (x' :< xs') = do isMatch <- qry x' if isMatch then return (Just x') else findM qry xs'
pjones/xmonad-test
vendor/xmonad-contrib/XMonad/Actions/GroupNavigation.hs
Haskell
bsd-2-clause
8,762
module Distribution.Client.Dependency.Modular.Index where import Data.List as L import Data.Map as M import Prelude hiding (pi) import Distribution.Client.Dependency.Modular.Dependency import Distribution.Client.Dependency.Modular.Flag import Distribution.Client.Dependency.Modular.Package import Distribution.Client.Dependency.Modular.Tree -- | An index contains information about package instances. This is a nested -- dictionary. Package names are mapped to instances, which in turn is mapped -- to info. type Index = Map PN (Map I PInfo) -- | Info associated with a package instance. -- Currently, dependencies, flags, encapsulations and failure reasons. -- Packages that have a failure reason recorded for them are disabled -- globally, for reasons external to the solver. We currently use this -- for shadowing which essentially is a GHC limitation, and for -- installed packages that are broken. data PInfo = PInfo (FlaggedDeps PN) FlagInfo Encaps (Maybe FailReason) deriving (Show) -- | Encapsulations. A list of package names. type Encaps = [PN] mkIndex :: [(PN, I, PInfo)] -> Index mkIndex xs = M.map M.fromList (groupMap (L.map (\ (pn, i, pi) -> (pn, (i, pi))) xs)) groupMap :: Ord a => [(a, b)] -> Map a [b] groupMap xs = M.fromListWith (flip (++)) (L.map (\ (x, y) -> (x, [y])) xs)
DavidAlphaFox/ghc
libraries/Cabal/cabal-install/Distribution/Client/Dependency/Modular/Index.hs
Haskell
bsd-3-clause
1,304
module Test13 where f ((x : xs)) = x : xs g = f (1 : [1, 2])
kmate/HaRe
old/testing/refacFunDef/Test13_AstOut.hs
Haskell
bsd-3-clause
64
-- |Simple vectorised constructors and projections. -- module Vectorise.Vect ( Vect, VVar, VExpr, VBind , vectorised , lifted , mapVect , vVarType , vNonRec , vRec , vVar , vType , vTick , vLet , vLams , vVarApps , vCaseDEFAULT ) where import CoreSyn import Type ( Type ) import Var -- |Contains the vectorised and lifted versions of some thing. -- type Vect a = (a,a) type VVar = Vect Var type VExpr = Vect CoreExpr type VBind = Vect CoreBind -- |Get the vectorised version of a thing. -- vectorised :: Vect a -> a vectorised = fst -- |Get the lifted version of a thing. -- lifted :: Vect a -> a lifted = snd -- |Apply some function to both the vectorised and lifted versions of a thing. -- mapVect :: (a -> b) -> Vect a -> Vect b mapVect f (x, y) = (f x, f y) -- |Combine vectorised and lifted versions of two things componentwise. -- zipWithVect :: (a -> b -> c) -> Vect a -> Vect b -> Vect c zipWithVect f (x1, y1) (x2, y2) = (f x1 x2, f y1 y2) -- |Get the type of a vectorised variable. -- vVarType :: VVar -> Type vVarType = varType . vectorised -- |Wrap a vectorised variable as a vectorised expression. -- vVar :: VVar -> VExpr vVar = mapVect Var -- |Wrap a vectorised type as a vectorised expression. -- vType :: Type -> VExpr vType ty = (Type ty, Type ty) -- |Make a vectorised note. -- vTick :: Tickish Id -> VExpr -> VExpr vTick = mapVect . Tick -- |Make a vectorised non-recursive binding. -- vNonRec :: VVar -> VExpr -> VBind vNonRec = zipWithVect NonRec -- |Make a vectorised recursive binding. -- vRec :: [VVar] -> [VExpr] -> VBind vRec vs es = (Rec (zip vvs ves), Rec (zip lvs les)) where (vvs, lvs) = unzip vs (ves, les) = unzip es -- |Make a vectorised let expresion. -- vLet :: VBind -> VExpr -> VExpr vLet = zipWithVect Let -- |Make a vectorised lambda abstraction. -- -- The lifted version also binds the lifting context 'lc'. -- vLams :: Var -- ^ Var bound to the lifting context. -> [VVar] -- ^ Parameter vars for the abstraction. -> VExpr -- ^ Body of the abstraction. -> VExpr vLams lc vs (ve, le) = (mkLams vvs ve, mkLams (lc:lvs) le) where (vvs, lvs) = unzip vs -- |Apply an expression to a set of argument variables. -- -- The lifted version is also applied to the variable of the lifting context. -- vVarApps :: Var -> VExpr -> [VVar] -> VExpr vVarApps lc (ve, le) vvs = (ve `mkVarApps` vs, le `mkVarApps` (lc : ls)) where (vs, ls) = unzip vvs vCaseDEFAULT :: VExpr -- scrutiniy -> VVar -- bnder -> Type -- type of vectorised version -> Type -- type of lifted version -> VExpr -- body of alternative. -> VExpr vCaseDEFAULT (vscrut, lscrut) (vbndr, lbndr) vty lty (vbody, lbody) = (Case vscrut vbndr vty (mkDEFAULT vbody), Case lscrut lbndr lty (mkDEFAULT lbody)) where mkDEFAULT e = [(DEFAULT, [], e)]
oldmanmike/ghc
compiler/vectorise/Vectorise/Vect.hs
Haskell
bsd-3-clause
2,935
{-# LANGUAGE CPP #-} module X86.RegInfo ( mkVirtualReg, regDotColor ) where #include "nativeGen/NCG.h" #include "HsVersions.h" import Size import Reg import Outputable import Platform import Unique import UniqFM import X86.Regs mkVirtualReg :: Unique -> Size -> VirtualReg mkVirtualReg u size = case size of FF32 -> VirtualRegSSE u FF64 -> VirtualRegSSE u FF80 -> VirtualRegD u _other -> VirtualRegI u regDotColor :: Platform -> RealReg -> SDoc regDotColor platform reg = let Just str = lookupUFM (regColors platform) reg in text str regColors :: Platform -> UniqFM [Char] regColors platform = listToUFM (normalRegColors platform ++ fpRegColors) normalRegColors :: Platform -> [(Reg,String)] normalRegColors platform | target32Bit platform = [ (eax, "#00ff00") , (ebx, "#0000ff") , (ecx, "#00ffff") , (edx, "#0080ff") ] | otherwise = [ (rax, "#00ff00"), (eax, "#00ff00") , (rbx, "#0000ff"), (ebx, "#0000ff") , (rcx, "#00ffff"), (ecx, "#00ffff") , (rdx, "#0080ff"), (edx, "#00ffff") , (r8, "#00ff80") , (r9, "#008080") , (r10, "#0040ff") , (r11, "#00ff40") , (r12, "#008040") , (r13, "#004080") , (r14, "#004040") , (r15, "#002080") ] fpRegColors :: [(Reg,String)] fpRegColors = [ (fake0, "#ff00ff") , (fake1, "#ff00aa") , (fake2, "#aa00ff") , (fake3, "#aa00aa") , (fake4, "#ff0055") , (fake5, "#5500ff") ] ++ zip (map regSingle [24..39]) (repeat "red")
forked-upstream-packages-for-ghcjs/ghc
compiler/nativeGen/X86/RegInfo.hs
Haskell
bsd-3-clause
1,869
{-# OPTIONS_GHC -fno-warn-redundant-constraints #-} {-# LANGUAGE FlexibleInstances #-} {- With "hugs -98 +o test.hs" gives me: ERROR "test.hs":8 - Cannot justify constraints in instance member binding *** Expression : fromStr *** Type : FromStr [a] => String -> [a] *** Given context : FromStr [a] *** Constraints : FromStr [a] Adding the constraint "FromStr a" to the declaration of fromStr fixes the problem, but that seems like it should be redundant. Removing the second instance (lines 10-11) also fixes the problem, interestingly enough. /Bjorn Bringert -} -- August 08: on reflection I think a complaint about overlapping -- instances for line 8 is absolutely right, so I've changed this to -- expected-failure -- Sept 08: on further reflection (!) I'm changing it back -- See Note [Subtle interaction of recursion and overlap] -- in TcInstDcls module ShouldCompile where class FromStr a where fromStr :: String -> a typeError :: FromStr a => a -> a typeError t = error "type error" instance {-# OVERLAPPABLE #-} FromStr [a] where fromStr _ = typeError undefined -- line 8 instance {-# OVERLAPPING #-} FromStr [(String,a)] where -- line 10 fromStr _ = typeError undefined -- line 11
urbanslug/ghc
testsuite/tests/typecheck/should_compile/tc176.hs
Haskell
bsd-3-clause
1,272
{-# LANGUAGE ExistentialQuantification, TemplateHaskell #-} module Light.Primitive ( Primitive, primitive, primitiveShape, primitiveMaterial , Material(..) ) where import Light.Shape import Light.Geometry.Transform data Material = Material deriving (Eq, Show, Read) data Primitive = Primitive { primitiveShape :: ShapeBox , primitiveMaterial :: Material } deriving (Show) primitive :: (Shape s, Transformable s, Show s) => s -> Material -> Primitive primitive s = Primitive (shapeBox s) instance Shape Primitive where shapeTransform = shapeTransform . primitiveShape bound = bound . primitiveShape worldBound = worldBound . primitiveShape surfaceArea = surfaceArea . primitiveShape intersects r s = intersects r (primitiveShape s) intersect r s = intersect r (primitiveShape s)
jtdubs/Light
src/Light/Primitive.hs
Haskell
mit
908
{-# LANGUAGE PatternSynonyms, ForeignFunctionInterface, JavaScriptFFI #-} module GHCJS.DOM.JSFFI.Generated.DelayNode (js_getDelayTime, getDelayTime, DelayNode, castToDelayNode, gTypeDelayNode) where import Prelude ((.), (==), (>>=), return, IO, Int, Float, Double, Bool(..), Maybe, maybe, fromIntegral, round, fmap, Show, Read, Eq, Ord) import Data.Typeable (Typeable) import GHCJS.Types (JSRef(..), JSString, castRef) import GHCJS.Foreign (jsNull) import GHCJS.Foreign.Callback (syncCallback, asyncCallback, syncCallback1, asyncCallback1, syncCallback2, asyncCallback2, OnBlocked(..)) import GHCJS.Marshal (ToJSRef(..), FromJSRef(..)) import GHCJS.Marshal.Pure (PToJSRef(..), PFromJSRef(..)) import Control.Monad.IO.Class (MonadIO(..)) import Data.Int (Int64) import Data.Word (Word, Word64) import GHCJS.DOM.Types import Control.Applicative ((<$>)) import GHCJS.DOM.EventTargetClosures (EventName, unsafeEventName) import GHCJS.DOM.Enums foreign import javascript unsafe "$1[\"delayTime\"]" js_getDelayTime :: JSRef DelayNode -> IO (JSRef AudioParam) -- | <https://developer.mozilla.org/en-US/docs/Web/API/DelayNode.delayTime Mozilla DelayNode.delayTime documentation> getDelayTime :: (MonadIO m) => DelayNode -> m (Maybe AudioParam) getDelayTime self = liftIO ((js_getDelayTime (unDelayNode self)) >>= fromJSRef)
plow-technologies/ghcjs-dom
src/GHCJS/DOM/JSFFI/Generated/DelayNode.hs
Haskell
mit
1,351
-------------------------------------------------------------------------------- -- | -- | Module : Data -- | Copyright : (c) Vladimir Lopatin 2014 -- | License : BSD3 -- | -- | Maintainer : Vladimir Lopatin <madjestic13@gmail.com> -- | Stability : experimental -- | Portability : untested -- | -- | The NGL library works, by dumping a vertex array into OpenGL buffer -- | -- | basic shapes types should be of 2 kinds: -- | Shapes positioned by center -- | Shapes' positioned by bottom-left corner-- -------------------------------------------------------------------------------- module NGL.Shape where import Graphics.Rendering.OpenGL (Vertex2(..)) import NGL.Utils data Shape = Circle Point Radius Divisions | Square Point Side | Rect Point Point | Line Point Point Float -- | Ordered pair to store directionality | Triangle Point Point Point | Quad [Point] -- | BL vertex TR vertex | Polygon [Point] -- | [Triangle] ? | Polyline [Point] Float | Curve [Point] deriving Show data Transform = Rotate2D Float Point | Translate2D Point Point deriving Show type Picture =[Vertex2 Float] type Point =(Float, Float) type Radius = Float type Side = Float type Divisions = Int toVertex :: [[Point]] -> Picture toVertex xs = map vertex $ concat xs vertex :: Point -> Vertex2 Float vertex p = (\(k,l) -> Vertex2 k l) p rotate :: Float -> [(Float, Float)] -> [(Float, Float)] rotate theta = rotate2D' (toRadians theta) shape :: Shape -> [Point] shape (Square pos side) = square pos side shape (Circle pos rad divs) = circle pos rad divs shape (Rect bl tr) = rect bl tr -- | bl := bottom left, tr := top right shape (Line p1 p2 w) = line p1 p2 w shape (Polyline ps w) = polyline ps w shape (Triangle p1 p2 p3) = triangle p1 p2 p3 polyline :: [Point] -> Float -> [Point] polyline ps w = concatMap (\(x,y) -> line x y w) $ pairs $ abbcca ps triangle :: Point -> Point -> Point -> [Point] triangle p1 p2 p3 = [p1, p2, p3] square :: Point -> Float -> [Point] square pos side = [p1, p2, p3, p1, p3, p4] where x = fst pos y = snd pos r = side/2 p1 = (x + r, y + r) p2 = (x - r, y + r) p3 = (x - r, y - r) p4 = (x + r, y - r) abbcca :: [a] -> [a] abbcca (x:xs) = [x] ++ (concat $ map (\(x,y) -> [x,y]) $ map (\x -> (x, x)) (init xs)) ++ [last xs] circle :: Point -> Float -> Int -> [Point] circle pos r divs = let x = fst pos y = snd pos divs' = fromIntegral divs sines = map ((y +).(r *).sin) [0.0, 2*pi/divs' .. 2*pi] cosines = map ((x +).(r *).cos) [0.0, 2*pi/divs' .. 2*pi] in concat $ insertpos $ abbcca $ zip sines cosines where insertpos (x:y:[]) = [[pos,x,y]] insertpos (x:y:xs) = [pos,x,y] : insertpos xs rect :: Point -> Point -> [Point] rect (x1,y1) (x2,y2) = [(x2,y2),(x1,y2),(x1,y1), (x2,y2),(x1,y1),(x2,y1)] line :: Point -> Point -> Float -> [Point] line (x1,y1) (x2,y2) w = map (addVectors (x1,y1)) $ rotate2D' theta $ rect (0.0,-w/2) (len,w/2) -- rotation is wrong where (x,y) = normalize $ ((x2-x1),(y2-y1)) theta = signum y * acos x -- | angle in radians len = sqrt((x2-x1)^2+ (y2-y1)^2)
ublubu/zombieapaperclypse
NGL/Shape.hs
Haskell
mit
3,609
{-# LANGUAGE OverloadedStrings #-} -- | This module provides functionality to manipulate raw transaction. It -- automatically interprets transactions using the `bitcoin-tx` package, so -- you can work with actual 'Btc.Transaction' objects rather than their -- serialized format. module Network.Bitcoin.Api.Transaction where import Data.Aeson import Data.Aeson.Lens import Data.Maybe (fromMaybe, catMaybes) import Control.Lens ((^.), (^?)) import qualified Data.Base58String as B58S import qualified Data.Bitcoin.Block as Btc hiding (encode, decode) import qualified Data.Bitcoin.Transaction as Btc import qualified Data.Bitcoin.Types as BT import qualified Network.Bitcoin.Api.Blockchain as Blockchain import qualified Network.Bitcoin.Api.Internal as I import qualified Network.Bitcoin.Api.Types as T import Network.Bitcoin.Api.Types.UnspentTransaction hiding (confirmations) -- | Creates a new transaction, but does not sign or submit it yet. You provide -- a set of unspent transactions that you have the authority to spend, and you -- provide a destination for all your bitcoins. -- -- __WARNING: Check your math!__ If the sum of the Btc in unspent transactions -- of your request is more than the sum of the Btc in the destinations, this -- will be the miner's fee. It is reasonable to leave a small amount for the -- miners, but if there is a large discrepancy between input and output, there -- are no guarantees you will be warned. -- -- All this function does is create a default script on how to spend coins from -- one or more inputs to one or more outputs. Checking and verifying the -- transaction will only happen when you actually submit the transaction to -- the network. create :: T.Client -- ^ The client session we are using -> [UnspentTransaction] -- ^ The inputs we are using for this transaction -> [(BT.Address, BT.Btc)] -- ^ A key/value pair which associates a -- destination address with a specific amount -- of bitcoins to send. -> IO Btc.Transaction create client utxs outputs = let configuration = [toJSON (map txToOutpoint utxs), object (map outToAddress outputs)] txToOutpoint tx = object [ ("txid", toJSON (tx ^. transactionId)), ("vout", toJSON (tx ^. vout))] outToAddress (addr, btc) = (B58S.toText addr, toJSON btc) in (return . Btc.decode) =<< I.call client "createrawtransaction" configuration -- | Signs a raw transaction with configurable parameters. sign :: T.Client -- ^ Our client context -> Btc.Transaction -- ^ The transaction to sign -> Maybe [UnspentTransaction] -- ^ Previous outputs being spent by this transaction -> Maybe [BT.PrivateKey] -- ^ Private keys to use for signing. -> IO (Btc.Transaction, Bool) -- ^ The signed transaction, and a boolean that is true -- when the signing is complete or and is false when -- more signatures are required. sign client tx utxs pks = let configuration = [configurationTx tx, configurationUtxs utxs, configurationPks pks] configurationTx tx' = toJSON (Btc.encode tx') configurationUtxs Nothing = Null configurationUtxs (Just utxs') = toJSON (map utxToDependency utxs') where utxToDependency utx = object [ ("txid", toJSON (utx ^. transactionId)), ("vout", toJSON (utx ^. vout)), ("scriptPubKey", toJSON (utx ^. scriptPubKey)), ("redeemScript", toJSON (utx ^. redeemScript))] configurationPks Nothing = Null configurationPks (Just privateKeys) = toJSON privateKeys extractTransaction res = maybe (error "Incorrect JSON response") Btc.decode (res ^? key "hex" . _JSON) extractCompleted res = fromMaybe (error "Incorrect JSON response") (res ^? key "complete" . _JSON) in do res <- I.call client "signrawtransaction" configuration :: IO Value return (extractTransaction res, extractCompleted res) -- | Sends a transaction through the Bitcoin network send :: T.Client -> Btc.Transaction -> IO BT.TransactionId send client tx = let configuration = [toJSON (Btc.encode tx)] in I.call client "sendrawtransaction" configuration -- | Returns a list of transactions that occured since a certain block height. -- If no block height was provided, the genisis block with height 0 is assumed. -- The transactions returned are listed chronologically. list :: T.Client -- ^ Our client session context -> Maybe Integer -- ^ The offset / height we should start listing transactions -> Maybe Integer -- ^ Minimum amount of confirmations for a transaction to have. Should be 1 or higher. -- A default value of 6 is used. -> IO [Btc.Transaction] list client Nothing confirmations = list client (Just 0) confirmations list client offset Nothing = list client offset (Just 6) list client (Just offset) (Just confirmations) = do limit <- Blockchain.getBlockCount client blocks <- mapM (Blockchain.getBlock client) =<< mapM (Blockchain.getBlockHash client) [offset..limit - confirmations] return $ foldl (\lhs rhs -> lhs ++ rhs ^. Btc.blockTxns) [] (catMaybes blocks)
solatis/haskell-bitcoin-api
src/Network/Bitcoin/Api/Transaction.hs
Haskell
mit
5,718
{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE NoMonomorphismRestriction #-} import Control.Lens import Control.Lens.TH data Record1 a = Record1 { _a :: Int , _b :: Maybe a } deriving Show data Record2 = Record2 { _c :: String , _d :: [Int] } deriving Show $(makeLenses ''Record1) $(makeLenses ''Record2) records = [ Record1 { _a = 1, _b = Nothing }, Record1 { _a = 2, _b = Just $ Record2 { _c = "Picard", _d = [1,2,3] } }, Record1 { _a = 3, _b = Just $ Record2 { _c = "Riker", _d = [4,5,6] } }, Record1 { _a = 4, _b = Just $ Record2 { _c = "Data", _d = [7,8,9] } } ] -- Some abstract traversals. ids = traverse.a names = traverse.b._Just.c nums = traverse.b._Just.d list2 = traverse.b._Just.d.ix 2 -- Modify/read/extract in terms of generic traversals. -- Modify to set all 'id' fields to 0 ex1 = set ids 0 records -- Return a view of the concatenated 'd' fields for all nested records. ex2 = view nums records -- [1,2,3,4,5,6,7,8,9] -- Increment all 'id' fields by 1 ex3 = over ids (+1) records -- Return a list of all 'c' fields. ex4 = toListOf names records -- ["Picard","Riker","Data"] -- Return the the second element of all 'd' fields. ex5 = toListOf list2 records -- [3,6,9]
riwsky/wiwinwlh
src/lens.hs
Haskell
mit
1,357
module Euler.Problems.Euler012 ( euler012 ) where import Data.List (group) import Euler.Primes (primeFactors) euler012 :: () -> Int euler012 _ = fromIntegral $ head $ dropWhile ((<501) . divisors) $ drop 1 triangles where triangles = 1 : zipWith (+) triangles [2..] divisors = product . map ((+1) . length) . group . primeFactors
b52/projecteuler
src/Euler/Problems/Euler012.hs
Haskell
mit
357
main = do line <- getLine if null line then return () else do putStrLn $ reverseWords line main reverseWords :: String -> String reverseWords = unwords . map reverse . words
fabriceleal/learn-you-a-haskell
09/infinite_input.hs
Haskell
mit
228
module Util.Util where import Graphics.Rendering.OpenGL -- |'fib' returns given Fibonacci number fib :: Int -> Int fib = (!!) fibs -- |'fibs' is a list of Fibonacci numbers fibs :: [Int] fibs = 0 : 1 : zipWith (+) fibs (tail fibs) cube w = renderPrimitive Quads $ do vertex $ Vertex3 w w w vertex $ Vertex3 w w (-w) vertex $ Vertex3 w (-w) (-w) vertex $ Vertex3 w (-w) w vertex $ Vertex3 w w w vertex $ Vertex3 w w (-w) vertex $ Vertex3 (-w) w (-w) vertex $ Vertex3 (-w) w w vertex $ Vertex3 w w w vertex $ Vertex3 w (-w) w vertex $ Vertex3 (-w) (-w) w vertex $ Vertex3 (-w) w w vertex $ Vertex3 (-w) w w vertex $ Vertex3 (-w) w (-w) vertex $ Vertex3 (-w) (-w) (-w) vertex $ Vertex3 (-w) (-w) w vertex $ Vertex3 w (-w) w vertex $ Vertex3 w (-w) (-w) vertex $ Vertex3 (-w) (-w) (-w) vertex $ Vertex3 (-w) (-w) w vertex $ Vertex3 w w (-w) vertex $ Vertex3 w (-w) (-w) vertex $ Vertex3 (-w) (-w) (-w) vertex $ Vertex3 (-w) w (-w) plane width = renderPrimitive Quads $ do let texCoord2f = texCoord :: TexCoord2 GLfloat -> IO () vertex3f = vertex :: Vertex3 GLfloat -> IO () w = width / 2 texCoord2f $ TexCoord2 0 1 vertex3f $ Vertex3 (-w) (-w) 0 texCoord2f $ TexCoord2 1 1 vertex3f $ Vertex3 w (-w) 0 texCoord2f $ TexCoord2 1 0 vertex3f $ Vertex3 w w 0 texCoord2f $ TexCoord2 0 0 vertex3f $ Vertex3 (-w) w 0 points :: Int -> [(GLfloat,GLfloat,GLfloat)] points n' = let n = fromIntegral n' in map (\k -> let t = 2*pi*k/n in (sin t, cos t, 0.0)) [1..n]
andrey013/mynd
src/Util/Util.hs
Haskell
mit
1,595
module Rebase.Data.Profunctor.Adjunction ( module Data.Profunctor.Adjunction ) where import Data.Profunctor.Adjunction
nikita-volkov/rebase
library/Rebase/Data/Profunctor/Adjunction.hs
Haskell
mit
122
{-# LANGUAGE RecordWildCards, DeriveGeneric #-} module Exp where import GHC.Generics import Language.Haskell.Exts.Annotated -- import Control.Monad import Control.Applicative import Control.Arrow import Text.PrettyPrint.GenericPretty import Data.List import Data.Char import Data.Maybe import Control.Conditional import Safe import Debug.Trace try :: IO () try = do putStrLn "begin" s <-readFile "./test/Data/Blah.hs" let (hl, e) = case parseFileContentsWithComments defaultParseMode{parseFilename = "Blah.hs"} s of ParseOk (m, cms) -> (sort $ map hlComment cms ++ hlModule m, []) err -> ([], prty . show $ err) putStrLn e putStrLn . pr hl $ s -- putStrLn (prty . show $ hl) putStrLn "done" pr :: [Highlight] -> String -> String pr hl = drop 1 . reverse . fst . foldl _scan ("1", (hl, 1,0)) where _scan (s@(chp:_), st) ch = case ch of '\n' -> _ignore (s, if chp == '\r' then st else _incL st) ch '\r' -> _ignore (s, if chp == '\n' then st else _incL st) ch '\t' -> _ignore (s, head . drop 8 . iterate _incC $ st) ch _ -> if isSpace ch then _ignore (s, _incC st) ch else _proc (s, _discard . _incC $ st) $ ch _scan x _ = error $ "_scan mis match " ++ show x _incL (hs, l, _) = (hs, l + 1, 0) _incC (hs, l, c) = (hs, l, c + 1) _discard x@([],_,_) = x _discard (h:hs, l, c) | hlEnd h <= (l,c) = _discard (hs, l, c) | otherwise = (h:hs, l, c) _discard' (s, st) = (s, _discard st) _ignore (s, st) ch = (ch:s, st) _proc (s, st@([],_,_)) ch = (ch : s, st) _proc (s, st@(h:_, l, c)) ch = (_end (ch : _start s h l c) h l c, st) _start s h l c | hlStart h == (l,c) = foldl (flip (:)) s (_hlO . hlType $ h) | otherwise = s _end s h l c | hlEnd h == (l,c+1) = foldl (flip (:)) s (_hlC . hlType $ h) | otherwise = s _hlO = (++"|") . ("<"++) . _hlId _hlC = (++">") . ("|"++) . _hlId _hlId hlt = case hlt of HlComment -> "co" HlModuleName -> "mn" HlKeyword -> "kw" HlImport -> "im" HlPragma -> "pr" HlBrace -> "br" HlComma -> "cm" HlElipse -> "el" HlIdentType -> "it" HlIdentFunc -> "if" HlSymbolType -> "st" HlSymbolFunc -> "sf" HlSpecialCon -> "sc" HlOpType -> "ot" HlOpFunc -> "of" HlOther -> "__" type LnCol = (Int, Int) data Highlight = Highlight { hlStart :: LnCol , hlEnd :: LnCol , hlType :: HighlightType } deriving (Show, Eq, Ord, Generic) instance Out Highlight defaultHighlight :: Highlight defaultHighlight = Highlight (0,0) (0,0) HlOther data HighlightType = HlComment | HlModuleName | HlKeyword | HlImport | HlPragma | HlBrace | HlComma | HlElipse | HlIdentType | HlIdentFunc | HlSymbolType | HlSymbolFunc | HlSpecialCon | HlOpType | HlOpFunc | HlOther deriving (Show, Eq, Ord, Generic) instance Out HighlightType prty :: String -> String prty = fst . foldl f ("", "") where f (s, pfx) c | c `elem` "{([" = let pfx' = pfx ++ " " in (s ++ "\n" ++ pfx ++ [c], pfx') | c `elem` "})]" = let pfx' = drop 2 pfx in (s ++ "\n" ++ pfx' ++ [c], pfx') | c `elem` "," = (s ++ "\n" ++ pfx ++ [c], pfx) | otherwise = (s ++ [c], pfx) tracePrtyMsg :: Show a => String -> a -> b -> b tracePrtyMsg s a = trace ((s++) . prty . show $ a) hlSrcSpan :: HighlightType -> SrcSpan -> Highlight hlSrcSpan t SrcSpan {..} = defaultHighlight { hlStart = (srcSpanStartLine, srcSpanStartColumn) , hlEnd = (srcSpanEndLine, srcSpanEndColumn) , hlType = t } hlSrcSpanInfo :: HighlightType -> SrcSpanInfo -> Highlight hlSrcSpanInfo t = hlSrcSpan t . srcInfoSpan hlComment :: Comment -> Highlight hlComment (Comment _ sp _) = hlSrcSpan HlComment sp type SPI = SrcSpanInfo hlModule :: Module SPI -> [Highlight] hlModule (XmlPage _ _ _ _ _ _ _) = error "not supporting XmlPage" hlModule (XmlHybrid _ _ _ _ _ _ _ _ _) = error "not supporting XmlHybrid" hlModule (Module _ mHead mPragmas mImport decls) = hlModuleHead mHead ++ map hlModulePragma mPragmas ++ concatMap hlImportDecl mImport ++ concatMap hlDecl decls hlModuleHead :: Maybe (ModuleHead SPI) -> [Highlight] hlModuleHead Nothing = [] hlModuleHead (Just (ModuleHead l mName mWarning mExpList)) = [mImport, hlModuleName mName, mWhere] ++ hlWarningText mWarning ++ hlExportSpecList mExpList where [mImport, mWhere] = map (hlSrcSpan HlKeyword) . srcInfoPoints $ l hlModuleName :: ModuleName SPI -> Highlight hlModuleName (ModuleName i _) = hlSrcSpanInfo HlModuleName i hlWarningText :: Maybe (WarningText SPI) -> [Highlight] hlWarningText x = case x of Nothing -> [] Just (DeprText i s) -> [hlSrcSpanInfo HlPragma i] Just (WarnText i s) -> [hlSrcSpanInfo HlPragma i] hlExportSpecList :: Maybe (ExportSpecList SPI) -> [Highlight] hlExportSpecList x = case x of Nothing -> [] Just (ExportSpecList i es) -> hlBracedListPunc i ++ concatMap hlExportSpec es hlBracedExpr_ :: ([SrcSpan] -> ([Highlight], [SrcSpan])) -> [SrcSpan] -> [Highlight] hlBracedExpr_ inner (ph:ps) = ob : cb : cs where ob = hlSrcSpan HlBrace ph (cs, pl:_) = inner ps cb = hlSrcSpan HlBrace pl hlBracedListPunc :: SPI -> [Highlight] hlBracedListPunc = hlBracedListPunc' . srcInfoPoints hlBracedListPunc' :: [SrcSpan] -> [Highlight] hlBracedListPunc' = hlBracedExpr_ cms where cms ps = foldl f ([],ps) ps where f (cs', ps') p = case drop 1 ps' of [] -> (cs', ps') ps'' -> (hlSrcSpan HlComma p : cs', ps'') hlBracedElipse :: SPI -> [Highlight] hlBracedElipse = hlBracedExpr_ cms . srcInfoPoints where cms (p:ps) = ([hlSrcSpan HlElipse p], ps) hlExportSpec :: ExportSpec SPI -> [Highlight] hlExportSpec x = case x of EVar _ n -> hlQName False n EAbs _ n -> hlQName True n EThingAll i n -> hlBracedElipse i ++ hlQName True n EThingWith i n cs -> hlBracedListPunc i ++ hlQName True n ++ map hlCName cs EModuleContents i n -> tracePrtyMsg "EModuleContents" i $ [hlModuleName n] hlQName :: Bool -> QName SPI -> [Highlight] hlQName typeLevel x = case x of Qual _ mn n -> _correct mn (hlModuleName mn) (hlName typeLevel n) UnQual _ n -> [hlName typeLevel n] Special _ n -> [hlSpecialCon n] where _correct (ModuleName _ s) m n = m {hlEnd = (fst . hlEnd $ m, (snd . hlStart $ m) + length s + 1)} : n {hlStart = (fst . hlStart $ n, (snd . hlStart $ n) + length s + 1)} : [] hlName :: Bool -> Name SPI -> Highlight hlName True (Ident i _) = hlSrcSpanInfo HlIdentType i hlName False (Ident i _) = hlSrcSpanInfo HlIdentFunc i hlName True (Symbol i _) = hlSrcSpanInfo HlSymbolType i hlName False (Symbol i _) = hlSrcSpanInfo HlSymbolFunc i hlSpecialCon :: SpecialCon SPI -> Highlight hlSpecialCon x = case x of UnitCon i -> tracePrtyMsg "UnitCon" i hlSrcSpanInfo HlSpecialCon i ListCon i -> tracePrtyMsg "ListCon" i hlSrcSpanInfo HlSpecialCon i FunCon i -> tracePrtyMsg "FunCon" i hlSrcSpanInfo HlSpecialCon i TupleCon i _ _ -> tracePrtyMsg "TupleCon" i hlSrcSpanInfo HlSpecialCon i Cons i -> tracePrtyMsg "Cons" i hlSrcSpanInfo HlSpecialCon i UnboxedSingleCon i -> tracePrtyMsg "UnboxedSingleCon" i hlSrcSpanInfo HlSpecialCon i hlCName :: CName SPI -> Highlight hlCName x = case x of VarName _ n -> hlName False n ConName _ n -> hlName True n hlModulePragma :: ModulePragma SPI -> Highlight hlModulePragma x = case x of LanguagePragma i _ -> hlSrcSpanInfo HlPragma i OptionsPragma i _ _ -> hlSrcSpanInfo HlPragma i AnnModulePragma i _ -> hlSrcSpanInfo HlPragma i hlImportDecl :: ImportDecl SPI -> [Highlight] hlImportDecl ImportDecl {..} = [hlModuleName importModule] ++ _hlImprt ++ _hlSrc ++ _hlQual ++ _hlPkg ++ _hlAs ++ _hlSpec where mk t = (:[]) . hlSrcSpan t . head &&& drop 1 (_hlImprt, ps) = mk HlImport . srcInfoPoints $ importAnn (_hlSrc, ps') = case importSrc of True -> let ([b], _ps) = mk HlPragma ps ([e], _ps') = mk HlOther _ps in ([b{hlEnd = hlEnd e}], _ps') False -> ([], ps) (_hlQual, ps'') = case importQualified of True -> mk HlImport ps' False -> ([], ps') (_hlPkg, ps''') = case importPkg of Just s -> mk HlImport ps'' Nothing -> ([], ps'') _hlAs = case importAs of Just mn -> let (cs, _ps) = mk HlImport ps''' in hlModuleName mn : cs Nothing -> [] _hlSpec = case importSpecs of Nothing -> [] Just (ImportSpecList i hid imps) -> _hlSpecPunc i hid ++ concatMap _hlImpSpec imps _hlImpSpec x = case x of IVar _ n -> [hlName False n] IAbs _ n -> [hlName True n] IThingAll i n -> hlName True n : hlBracedElipse i IThingWith i n cns -> hlName True n : hlBracedListPunc i ++ map hlCName cns _hlSpecPunc i hid = case hid of False -> hlBracedListPunc i True -> uncurry (:) . ( hlSrcSpan HlImport . head &&& hlBracedListPunc . (\p->i{srcInfoPoints = p}) . drop 1 ) . srcInfoPoints $ i hlDecl :: Decl SPI -> [Highlight] hlDecl x = case x of TypeDecl i hd tp -> let hl = hlSrcSpan HlKeyword sps = srcInfoPoints i in (hl . head) sps : (hl . last) sps : hlDeclHead hd ++ hlTypE tp TypeFamDecl i hd knd -> (map (hlSrcSpan HlKeyword) . srcInfoPoints $ i) ++ hlDeclHead hd ++ maybe [] hlKind knd DataDecl i dn ctx hd qs dr -> hlDataOrNew dn : (map (hlSrcSpan HlKeyword) . srcInfoPoints $ i) ++ hlContext ctx ++ hlDeclHead hd ++ concatMap hlQualConDecl qs ++ hlDeriving dr GDataDecl i dn ctx hd knd gds dr -> hlDataOrNew dn : (map (hlSrcSpan HlKeyword) . srcInfoPoints $ i) ++ hlContext ctx ++ hlDeclHead hd ++ maybe [] hlKind knd ++ concatMap hlGadtDecl gds ++ hlDeriving dr DataFamDecl i ctx hd knd -> tracePrtyMsg "DataFamDecl" i hlContext ctx ++ hlDeclHead hd ++ maybe [] hlKind knd TypeInsDecl i tp1 tp2 -> tracePrtyMsg "TypeInstDecl" i hlTypE tp1 ++ hlTypE tp2 DataInsDecl i dn tp qs dr -> [] GDataInsDecl i dn tp knd gds dr -> [] ClassDecl i ctx hd fds cds -> [] InstDecl i ctx ihd ids -> [] DerivDecl i ctx ihd -> [] InfixDecl i ass l ops -> [] DefaultDecl i tp -> [] SpliceDecl i exp -> [] TypeSig i ns tp -> [] FunBind i ms -> [] PatBind i p mtp rhs bnds -> [] ForImp i cv sfty s nm tp -> [] ForExp i cv s nm tp -> [] RulePragmaDecl i r -> [] DeprPragmaDecl i ds -> [] WarnPragmaDecl i ds -> [] InlineSig i b act qnm -> [] InlineConlikeSig i act qnm -> [] SpecSig i act qnm tp -> [] SpecInlineSig i b act qnm tp -> [] InstSig i ctx ihd -> [] AnnPragma i ann -> [] hlDeclHead :: DeclHead SPI -> [Highlight] hlDeclHead x = case x of DHead i n tvs -> hlName True n : concatMap hlTyVarBind tvs DHInfix i tvl n tvr -> hlTyVarBind tvl ++ [hlName True n] ++ hlTyVarBind tvr DHParen i dh -> hlDeclHead dh hlTyVarBind :: TyVarBind SPI -> [Highlight] hlTyVarBind x = case x of KindedVar i nm kd -> zipWith ($) (zipWith ($) (repeat hlSrcSpan) [HlBrace, HlKeyword, HlBrace]) (srcInfoPoints i) ++ [hlName True nm] ++ hlKind kd UnkindedVar _ nm -> [hlName True nm] hlKind :: Kind SPI -> [Highlight] hlKind x = case x of KindStar i -> [hlSrcSpanInfo HlOpType i] KindBang i -> [hlSrcSpanInfo HlOpType i] KindFn i k1 k2 -> (hlSrcSpan HlKeyword . head . srcInfoPoints $ i) : (hlKind k1 ++ hlKind k2) KindParen i k -> hlBracedListPunc i ++ hlKind k KindVar i n -> [hlName True n] hlTypE :: Type SPI -> [Highlight] hlTypE x = case x of TyForall i tvb ctx tp -> (map (hlSrcSpan HlKeyword) . srcInfoPoints $ i) ++ maybe [] (concatMap hlTyVarBind) tvb ++ hlContext ctx ++ hlTypE tp TyFun i tp1 tp2 -> (hlSrcSpan HlKeyword . head . srcInfoPoints $ i) : hlTypE tp1 ++ hlTypE tp2 TyTuple i _ tps -> hlBracedListPunc i ++ concatMap hlTypE tps TyList i tp -> hlBracedListPunc i ++ (hlTypE tp) TyApp _ tp1 tp2 -> hlTypE tp1 ++ hlTypE tp2 TyVar _ nm -> [hlName True nm] TyCon _ qn -> hlQName True qn TyParen i tp -> hlBracedListPunc i ++ (hlTypE tp) TyInfix i tp1 qn tp2 -> trace (("TyInfix - "++) . prty . show $ i) (hlTypE tp1 ++ hlQName True qn ++ hlTypE tp2) TyKind i tp kd -> trace (("TyKind - "++) . prty . show $ i) (hlTypE tp ++ hlKind kd) hlContext :: Maybe (Context SPI) -> [Highlight] hlContext x = case x of Just (CxSingle i ass) -> _punc i ++ hlAsst ass Just (CxTuple i ass) -> _punc i ++ concatMap hlAsst ass Just (CxParen i ctx) -> _punc i ++ hlContext (Just ctx) Just (CxEmpty i) -> trace (("CxEmpty - " ++ ) . prty . show $ i) [] _ -> [] where _punc = uncurry (:) . (hlSrcSpan HlKeyword . last &&& select null (const []) hlBracedListPunc' . init) . srcInfoPoints hlAsst :: Asst SPI -> [Highlight] hlAsst x = case x of ClassA i qn tps -> hlQName True qn ++ concatMap hlTypE tps InfixA i tp1 qn tp2 -> hlTypE tp1 ++ hlQName True qn ++ hlTypE tp2 IParam i ipn tp -> hlIPName ipn : hlTypE tp EqualP i tp1 tp2 -> hlTypE tp1 ++ hlTypE tp2 hlIPName :: IPName SPI -> Highlight hlIPName x = case x of IPDup i s -> trace (("IPDup - " ++ ) . prty . show $ i) $ hlSrcSpanInfo HlIdentType i IPLin i s -> trace (("IPLin - " ++ ) . prty . show $ i) $ hlSrcSpanInfo HlIdentType i hlDataOrNew :: DataOrNew SPI -> Highlight hlDataOrNew x = case x of DataType i -> hlSrcSpanInfo HlKeyword i NewType i -> hlSrcSpanInfo HlKeyword i hlQualConDecl :: QualConDecl SPI -> [Highlight] hlQualConDecl (QualConDecl i tvb ctx cdecl) = -- tracePrtyMsg "hlQualConDecl" i maybe [] (concatMap hlTyVarBind) tvb ++ hlContext ctx ++ hlConDecl cdecl ++ if isJust tvb then map (hlSrcSpan HlKeyword) . srcInfoPoints $ i else [] -- ++ (select null (const []) hlBracedListPunc' . srcInfoPoints $ i) hlDeriving :: Maybe (Deriving SPI) -> [Highlight] hlDeriving x = case x of Just (Deriving i ihs) -> (uncurry (:) . (hlSrcSpan HlKeyword . head &&& select null (const []) hlBracedListPunc' . drop 1) . srcInfoPoints $ i) ++ concatMap hlInstanceHead ihs _ -> [] hlInstanceHead :: InstHead SPI -> [Highlight] hlInstanceHead x = case x of IHead i qn tps -> {-tracePrtyMsg "IHead" i -}hlQName True qn ++ concatMap hlTypE tps IHInfix i tp1 qn tp2 -> {-tracePrtyMsg "IHInfix" i -}hlTypE tp1 ++ hlQName True qn ++ hlTypE tp2 IHParen i ih -> {-tracePrtyMsg "IHParen" i -}hlBracedListPunc i ++ hlInstanceHead ih hlConDecl :: ConDecl SPI -> [Highlight] hlConDecl x = case x of ConDecl i nm bgts -> -- tracePrtyMsg "ConDecl" i hlName True nm : concatMap hlBangType bgts InfixConDecl i bgt1 nm bgt2 -> -- tracePrtyMsg "InfixConDecl" i hlName True nm : hlBangType bgt1 ++ hlBangType bgt2 RecDecl i nm flds -> -- tracePrtyMsg "RecDecl" i hlName True nm : hlBracedListPunc i ++ concatMap hlFieldDecl flds hlFieldDecl :: FieldDecl SPI -> [Highlight] hlFieldDecl (FieldDecl i nms bgt) = -- tracePrtyMsg "FieldDecl" i (hlSrcSpan HlKeyword . last . srcInfoPoints $ i) : (map (hlSrcSpan HlComma) . init . srcInfoPoints $ i) ++ map (hlName True) nms ++ hlBangType bgt hlBangType :: BangType SPI -> [Highlight] hlBangType x = case x of BangedTy i tp -> (hlSrcSpan HlKeyword . head . srcInfoPoints $ i) : hlTypE tp UnBangedTy _ tp -> hlTypE tp UnpackedTy i tp -> tracePrtyMsg "UnpackedTy" i hlTypE tp hlGadtDecl :: GadtDecl SPI -> [Highlight] hlGadtDecl (GadtDecl i nm tp) = (hlSrcSpan HlKeyword . head . srcInfoPoints $ i) : hlName True nm : hlTypE tp
HanStolpo/ghc-edit
test/Exp.hs
Haskell
mit
19,543
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE TemplateHaskell #-} -- | Export the data source to various data formats. module DataAnalysis.Application.Handler.Export where import Blaze.ByteString.Builder -- import Data.Conduit import qualified Data.Conduit.List as CL -- -- import Data.Conduit.Zlib -- -- import Data.Default import Data.Double.Conversion.Text import Data.IORef (newIORef) import Data.Map (Map) import qualified Data.Map as Map import Data.Maybe import Data.Monoid import Data.Text (Text) import qualified Data.Text as T import Data.XML.Types -- -- import Text.XML.Stream.Render import Yesod import DataAnalysis.Application.Foundation import DataAnalysis.Application.Analyze import DataAnalysis.Application.Types -- | Export the data source to various data formats. getExportR :: Text -> ExportType -> Handler TypedContent getExportR ident typ = do countRef <- liftIO $ newIORef 0 logRef <- liftIO $ newIORef id source <- analysisSource countRef logRef error "TODO: Export" {-case typ of CsvData -> attachmentFromSource (fname "csv") "text/csv" (source $= CL.mapMaybe dataPointCSV $= (writeHeaders settings >> fromCSV settings) $= CL.map fromByteString) where settings = def CsvDataGzip -> attachmentFromSource (fname "csv.gz") "application/x-gzip" (source $= CL.mapMaybe dataPointCSV $= (writeHeaders settings >> fromCSV settings) $= gzip $= CL.map fromByteString) where settings = def XmlData -> attachmentFromSource (fname "xml") "application/xml" (source $= toXmlRows dataPointXML $= renderBuilder settings) where settings = def XmlDataGzip -> attachmentFromSource (fname "xml.gz") "application/x-gzip" (source $= toXmlRows dataPointXML $= renderBytes settings $= gzip $= CL.map fromByteString) where settings = def-} where fname ext = ident <> "-export." <> ext -------------------------------------------------------------------------------- -- CSV export -- | Convert a data point to maybe a row. Not all data points are -- data… points. dataPointCSV :: DataPoint -> Maybe (Map Text Text) dataPointCSV (DP2 (D2D label value g)) = Just (Map.fromList [("label",label) ,("value",toShortest value) ,("group",fromMaybe "" g)]) dataPointCSV (DP3 (D3D x y z)) = Just (Map.fromList [("x",toShortest (fromIntegral x)) ,("y",toShortest (fromIntegral y)) ,("z",toShortest z)]) dataPointCSV DPM{} = Nothing -------------------------------------------------------------------------------- -- XML export -- | Render a data point to XML events. dataPointXML :: Monad m => DataPoint -> Producer m Event dataPointXML (DP2 dp) = do with "label" (text (_d2dLabel dp)) with "value" (text (tshow (_d2dValue dp))) maybe (return ()) (with "label" . text) (_d2dGroup dp) where text = yield . EventContent . ContentText dataPointXML (DP3 (D3D x y z)) = do with "x" (text (tshow (fromIntegral x))) with "y" (text (tshow (fromIntegral y))) with "z" (text (tshow z)) where text = yield . EventContent . ContentText dataPointXML DPM{} = return () -- | Show a double to text. tshow :: Double -> Text tshow = T.pack . show -------------------------------------------------------------------------------- -- Utilities -- | Output an attachment from a source. attachmentFromSource :: Text -> ContentType -> Source (HandlerT site IO) Builder -> HandlerT site IO TypedContent attachmentFromSource filename contentType source = do addHeader "content-disposition" ("attachment; filename=" <> T.pack (show (T.unpack filename))) respondSource contentType (source $= CL.map Chunk) -- | Render to an XML document of rows. toXmlRows :: Monad m => (row -> Conduit row m Event) -> Conduit row m Event toXmlRows renderRow = do yield EventBeginDocument with "rows" (awaitForever (with "row" . renderRow)) yield EventEndDocument -- | With opening/closing tags for the given name, render the inner -- conduit inside it. with :: Monad m => Name -> Conduit void m Event -> Conduit void m Event with name inner = do yield (EventBeginElement name []) inner yield (EventEndElement name)
teuffy/min-var-ci
src/DataAnalysis/Application/Handler/Export.hs
Haskell
mit
4,762
{-# LANGUAGE RecordWildCards, ParallelListComp #-} module Exec where import Data.Char import Data.List import Debug.Trace import TypesEtc import Sprockell -- ============================================================================================ -- execution functions for simulation purposes: exec, sim -- -- addrs: register+memory addresses that you want to follow/inspect when running a program (instrs). -- instrs: a list of assembly instructions (the program) that the Sprockell executes. -- count: counts the number of instructions that are executeds. The total is shown at the end. -- state: contains 4 things: program counter, stack pointer, registers, data memory. -- i:is: list of inputs. In this case just a repeating clock tick. -- -- The output of exec is generated every clock cycle by the function demoOutput, -- after which exec continues in the next state (state') calculated by one cycle of the Sprockell processor. exec addrs instrs (count, state@State{..}) (i:is) | instrs!!pc==EndProg = traceShow ("Instructions: " ++ show count) [] | otherwise = demoOutput addrs instrs state' : exec addrs instrs (count+1, state') is where state' = sprockell instrs state i -- ============================================================================================ -- generating demoOutput -- -- demoOutput calculates a value of type DemoOutput. The function show for this type is in TypesEtc.hs demoOutput addrs instrs State{..} = DemoOutput pc (instrs!!pc) (map (regbank!!) regaddrs) (map (dmem!!) memaddrs) sp (map (dmem!!) [sp0+1..sp]) where (regaddrs,memaddrs) = addrs -- sim: the simulation function which runs exec and outputs the result in a readable way. -- -------------------------------------------------------------------------------------- sim addrs instrs = putStr . unlines . map show $ results where results = demoOutput addrs instrs initstate : exec addrs instrs (0,initstate) clock -- showInstructions: shows a list of instructions in a readable way. -- ----------------------------------------------------------------- showInstrs instrs = putStr . unlines $ strs where m = length $ show $ length instrs + 1 strs = [ ' ' : replicate (m-w) ' ' ++ show n ++ ": " ++ show instr | (n,instr) <- zip [0..] instrs , w <- [length $ show n] ] -- ============================================================================================ -- Examples -- ============================================================================================ {--------------------------------------------- | Example 1: computes the value of 3^5 (= 243) ---------------------------------------------- Program in imperative pseudo-code: a = 3; n = 5; power = 1; while (n != 0) { power = a * power; n = n-1; }; ----------------------------------------------} -- A list of assembly instruction that calculates example 1 -- -------------------------------------------------------- instrs1 = [ Load (Imm 3) 3 -- 0 value of a (=3) is put in register 3; -- Register 3 will be used for a. , Load (Imm 5) 4 -- 1 value of n (=5) is put in register 4; -- Register 4 will contain the value of n throughout the execution. , Load (Imm 1) 5 -- 2 initial value of power (=1) is put in register 5; -- Register 5 be used for the value of the power. , Compute Equal 4 0 1 -- 3 Compute n==0 (reg 4 contains the value of n, reg 0 contains 0), and put the result in register 1; -- Register 1 is checked for conditional jumps. , Jump CA 8 -- 4 If True (ie register 1 contains 1), then go to EndProg , Compute Mul 3 5 5 -- 5 multiply a (reg 3) with power (reg 5), give the result to power , Compute Decr 4 0 4 -- 6 Decrement n (reg 4) with 1 , Jump UA 3 -- 7 Go back to instruction 3 , EndProg -- 8 ] -- relevant addresses to show during simulation -- -------------------------------------------- addrs1 = ( [3,4,5] -- registers , [] -- heap ) :: ([Int],[Int]) -- show the list of instructions -- ----------------------------- is1 = showInstrs instrs1 -- run the program instrs1, and show the content of the addresses addrs1 -- --------------------------------------------------------------------- run1 = sim addrs1 instrs1 {--------------------------------------- | Example 2: compute the "3n+1" function ---------------------------------------- Program in imperative pseudo-code: program threeNplus1; var a; function even (n); {return (n%2) == 0}; function three (n); { while n>1 { if even(n) { n=n/2; } { n=(3*n)+1; }; }; return n }; { a = three(7); } -} -- Haskell definition (runnable): -- ----------------------------------------------------- three :: Int -> [Int] three n | n == 1 = [1] | n `mod` 2 == 0 = n : three (n `div` 2) | otherwise = n : three (3*n +1) -- A list of assembly instruction that calculates example 2 -- -------------------------------------------------------- instrs2 = [ Load (Imm 1) 2 -- 0 Load the constant 1 in register 2 , Load (Imm 2) 3 -- 1 Load the constant 2 in register 3 , Load (Imm 3) 4 -- 2 Load the constant 3 in register 4 , Load (Imm 7) 5 -- 3 Load initial value of n (7) in register 5 , Compute Equal 5 2 1 -- 4 Compute n==1, and load result in register 1; , Jump CA 13 -- 5 If reg1=1, then we're done, and thus go to EndProg , Compute Mod 5 3 1 -- 6 Otherwise: calculate n`mod`2, and load the result in reg1. , Jump CA 10 -- 7 If reg1=1 (i.e: if n is odd), then go to instruction 10 , Compute Div 5 3 5 -- 8 else divide n by 2 (the content of reg3) and put the result in register 5. , Jump UA 4 -- 9 Jump back to instruction 4. , Compute Mul 5 4 5 -- 10 At this point n is odd, thus multiply by 3 (the content of reg4)... , Compute Add 5 2 5 -- 11 ... and add 1 (the content of reg2). , Jump UA 4 -- 12 Jump back to 4. , EndProg -- 13 End of Program. ] -- relevant addresses to show during simulation -- -------------------------------------------- addrs2 = ( [1,5] -- registers , [] -- heap ) :: ([Int],[Int]) -- show the list of instructions -- ----------------------------- is2 = showInstrs instrs2 -- run the program instrs2, and show the content of the addresses addrs2 -- --------------------------------------------------------------------- run2 = sim addrs2 instrs2
Oboema/FP-GO1
Exec.hs
Haskell
mit
6,509
module Network.Server ( module Network.Server.Common ) where import Network.Server.Common
harrisi/on-being-better
list-expansion/Haskell/course/projects/NetworkServer/haskell/src/Network/Server.hs
Haskell
cc0-1.0
94
{-# LANGUAGE OverloadedStrings, CPP #-} module Model.ActionKey where import qualified Data.ByteString.Builder as BS import qualified Data.ByteString.Char8 as BS import qualified Database.PostgreSQL.Simple.FromRow as PG import qualified Database.PostgreSQL.Simple.FromField as PG import qualified Database.PostgreSQL.Simple.ToField as PG import qualified Data.Time.Clock as DTC import Debug.Trace (traceShow) #ifdef __HASTE__ type Text = String #else import Data.Text (Text) #endif {-# ANN module ("HLint: ignore Use camelCase" :: String) #-} type ActionKeyKey = Text data Action = ConfirmRegistration | ResetPassword deriving (Show, Read) instance PG.FromField Action where fromField f bs = case bs of Nothing -> PG.returnError PG.UnexpectedNull f "" Just val -> pure $ read (traceShow val (BS.unpack val)) instance PG.ToField Action where toField val = PG.Plain $ PG.inQuotes $ BS.stringUtf8 $ show val data ActionKey = ActionKey { ac_id :: Int , ac_user_id :: Int , ac_action :: Action , ac_key :: ActionKeyKey , ac_created :: DTC.UTCTime } deriving (Show) instance PG.FromRow ActionKey where fromRow = ActionKey <$> PG.field <*> PG.field <*> PG.field <*> PG.field <*> PG.field
DataStewardshipPortal/ds-wizard
Model/ActionKey.hs
Haskell
apache-2.0
1,229
module Main where import Control.Lens import Control.Monad import Data.Bits import qualified Data.ByteString.Lazy.Char8 as BL import Data.Bytes.Get import Data.List (intercalate) import System.Ext2 import System.Environment main :: IO () main = do args <- getArgs when (length args /= 1) $ error "Usage: ext2checker <path to ext2 filesystem>" fs <- BL.readFile (head args) let s = flip runGetL fs $ skip 1024 >> readSuperblock putStrLn $ "FS Size: " ++ show (fsSize s) ++ " Bytes" putStrLn $ "Unallocated: " ++ show (unallocated s) ++ " Bytes" putStrLn $ "FS State: " ++ s ^. state . to show putStrLn $ "Required feature flags: " ++ (intercalate ", " . map show $ s ^. featureCompat) putStrLn $ "Optional feature flags: " ++ (intercalate ", " . map show $ s ^. featureIncompat) putStrLn $ "Read-only feature flags: " ++ (intercalate ", " . map show $ s ^. featureRoCompat) where fsSize :: Superblock -> Double fsSize s = fromIntegral ((s ^. blocksCount) * (1024 `shiftL` fromIntegral (s ^. logBlockSize))) unallocated :: Superblock -> Double unallocated s = fromIntegral ((s ^. freeBlocksCount) * (1024 `shiftL` fromIntegral (s ^. logBlockSize)))
relrod/ext2
src/ext2checker.hs
Haskell
bsd-2-clause
1,244
module Graphics.GL.Low.Classes where import Graphics.GL -- | OpenGL internal image formats. class InternalFormat a where internalFormat :: (Eq b, Num b) => proxy a -> b -- | The allowed attachment point for images with an internal format. class InternalFormat a => Attachable a where attachPoint :: (Eq b, Num b) => proxy a -> b -- | Textures are GL objects. class GLObject a => Texture a where -- | Framebuffers can be bound to the framebuffer binding target. There is -- a default framebuffer and the client may create an arbitrary number of -- new framebuffer objects. class Framebuffer a where framebufferName :: Num b => a -> b class GLObject a => BufferObject a where -- | Mappable to GL enums. class ToGL a where toGL :: (Num b, Eq b) => a -> b instance ToGL Bool where toGL True = GL_TRUE toGL False = GL_FALSE -- | All GL objects have some numeric name. class GLObject a where glObjectName :: Num b => a -> b
sgraf812/lowgl
Graphics/GL/Low/Classes.hs
Haskell
bsd-2-clause
944
-- | Collection of utilities to make @wybor@ customization palatable -- -- Those are mostly thin wrappers over things in "System.Console.ANSI" from @ansi-terminal@ module Ansi ( reset , bold , regular , underlining , swap , unswap , fgcolor , bgcolor , Ansi.Underlining(..) , Ansi.ColorIntensity(..) , Ansi.Color(..) ) where import Data.Text (Text) import qualified Data.Text as Text import qualified System.Console.ANSI as Ansi -- | Sets all attributes off reset :: Text reset = sgr Ansi.Reset -- | Set bold font style bold :: Text bold = sgr (Ansi.SetConsoleIntensity Ansi.BoldIntensity) -- | Set regular font style regular :: Text regular = sgr (Ansi.SetConsoleIntensity Ansi.NormalIntensity) -- | Set underlining style underlining :: Ansi.Underlining -> Text underlining = sgr . Ansi.SetUnderlining -- | Swap foreground and background colors swap :: Text swap = sgr (Ansi.SetSwapForegroundBackground True) -- | Unswap foreground and background colors unswap :: Text unswap = sgr (Ansi.SetSwapForegroundBackground False) -- | Set foreground color fgcolor :: Ansi.ColorIntensity -> Ansi.Color -> Text fgcolor i c = sgr (Ansi.SetColor Ansi.Foreground i c) -- | Set background color bgcolor :: Ansi.ColorIntensity -> Ansi.Color -> Text bgcolor i c = sgr (Ansi.SetColor Ansi.Background i c) sgr :: Ansi.SGR -> Text sgr = Text.pack . Ansi.setSGRCode . return
supki/wybor
src/Ansi.hs
Haskell
bsd-2-clause
1,402
{-# LANGUAGE FlexibleContexts #-} module Horbits.UI.Camera.Control (setupMouseControl) where import Control.Lens import Control.Monad.Trans.State import Data.IORef import Graphics.UI.Gtk import Linear import Horbits.Data.Binding import Horbits.UI.Camera.Internal -- Ongoing mouse state data MState = MState [MouseButton] (Double, Double) -- Camera updates mousePan :: (Monad m, RealFloat a, Epsilon a) => (Double, Double) -> StateT (OrthoCamera a) m () mousePan (dx, dy) = do w <- use orthoCameraViewportWidth h <- use orthoCameraViewportHeight let v = V2 (2 * realToFrac dx / fromIntegral w) (2 * realToFrac dy / fromIntegral h) modify (addTranslation v) mouseRotate :: (Monad m, RealFloat a, Epsilon a) => (Double, Double) -> StateT (OrthoCamera a) m () mouseRotate (dx, dy) = do w <- use orthoCameraViewportWidth h <- use orthoCameraViewportHeight modify . addColatitude $ pi * realToFrac dy / fromIntegral w modify . addLongitude $ pi * realToFrac dx / fromIntegral h mouseScroll :: (Monad m, Num a, Ord a) => ScrollDirection -> StateT (OrthoCamera a) m () mouseScroll dir = do let z = if dir == ScrollUp then zoomIn else zoomOut modify z -- Mouse event processing -- TODO map MState with lens? onButtonEvent :: (HasUpdate v MState MState) => (MouseButton -> [MouseButton] -> [MouseButton]) -> v -> EventM EButton () onButtonEvent f st = do button <- eventButton coords <- eventCoordinates st $~ newState coords button -- TODO ??? zoom or sth where newState c b (MState bs _) = MState (f b bs) c onMouseMove :: (HasGetter vs MState, HasSetter vs MState, HasGetter vc (OrthoCamera a), HasSetter vc (OrthoCamera a), RealFloat a, Epsilon a) => vc -> vs -> EventM t (Double, Double) -> EventM t () onMouseMove cam st evCoords = do (coords @ (cx, cy)) <- evCoords MState buttons (sx, sy) <- readVar st st $= MState buttons coords -- TODO MState manipulation is weak, see above, also <<%= (!) evalStateVar cam $ case buttons of LeftButton : _ -> mousePan (cx - sx, sy - cy) RightButton : _ -> mouseRotate (cx - sx, sy - cy) _ -> return () setupMouseControl :: (HasGetter v (OrthoCamera a), HasSetter v (OrthoCamera a), WidgetClass w, RealFloat a, Epsilon a) => w -> v -> IO [ConnectId w] setupMouseControl w cam = do st <- newVar (MState [] (0.0, 0.0)) :: IO (IORef MState) widgetAddEvents w [PointerMotionHintMask, Button1MotionMask, Button3MotionMask] sequence [ on w motionNotifyEvent $ tryEvent $ do onMouseMove cam st eventCoordinates eventRequestMotions, on w buttonPressEvent $ tryEvent $ onButtonEvent (\b bs -> b : filter (/= b) bs) st, on w buttonReleaseEvent $ tryEvent $ onButtonEvent (\b bs -> filter (/= b) bs) st, on w scrollEvent $ tryEvent $ do d <- eventScrollDirection evalStateVar cam $ mouseScroll d ]
chwthewke/horbits
src/horbits/Horbits/UI/Camera/Control.hs
Haskell
bsd-3-clause
3,179
module ETA.CodeGen.Utils where import ETA.Main.DynFlags import ETA.BasicTypes.Name import ETA.Types.TyCon import ETA.BasicTypes.Literal import Codec.JVM import Data.Char (ord) import Control.Arrow(first) import ETA.CodeGen.Name import ETA.CodeGen.Rts import ETA.Debug import Data.Text (Text) import Data.Text.Encoding (decodeUtf8) import Data.Monoid import Data.Foldable cgLit :: Literal -> (FieldType, Code) cgLit (MachChar c) = (jint, iconst jint . fromIntegral $ ord c) cgLit (MachInt i) = (jint, iconst jint $ fromIntegral i) cgLit (MachWord i) = (jint, iconst jint $ fromIntegral i) cgLit (MachInt64 i) = (jlong, lconst $ fromIntegral i) -- TODO: Verify that fromIntegral converts well cgLit (MachWord64 i) = (jlong, lconst $ fromIntegral i) cgLit (MachFloat r) = (jfloat, fconst $ fromRational r) cgLit (MachDouble r) = (jdouble, dconst $ fromRational r) -- TODO: Remove this literal variant? cgLit MachNullAddr = (jobject, lconst 0) cgLit MachNull = (jobject, aconst_null jobject) cgLit (MachStr s) = (jstring, sconst $ decodeUtf8 s) -- TODO: Implement MachLabel cgLit MachLabel {} = error "cgLit: MachLabel" cgLit other = pprPanic "mkSimpleLit" (ppr other) litToInt :: Literal -> Int litToInt (MachInt i) = fromInteger i litToInt (MachWord i) = fromInteger i litToInt (MachChar c) = ord c litToInt _ = error "litToInt: not integer" intSwitch :: Code -> [(Int, Code)] -> Maybe Code -> Code intSwitch = gswitch litSwitch :: FieldType -> Code -> [(Literal, Code)] -> Code -> Code litSwitch ft expr branches deflt -- | isObjectFt ft = deflt -- ASSERT (length branches == 0) -- TODO: When switching on an object, perform a checkcast -- TODO: When switching on long/float/double, use an if-else tree | null branches = deflt | ft `notElem` [jint, jbool, jbyte, jshort, jchar] = error $ "litSwitch[" ++ show ft ++ "]: " ++ "primitive cases not supported for non-integer values" | otherwise = intSwitch expr intBranches (Just deflt) where intBranches = map (first litToInt) branches tagToClosure :: DynFlags -> TyCon -> Code -> (FieldType, Code) tagToClosure dflags tyCon loadArg = (closureType, enumCode) where enumCode = invokestatic (mkMethodRef modClass fieldName [] (Just arrayFt)) <> loadArg <> gaload closureType tyName = tyConName tyCon modClass = moduleJavaClass $ nameModule tyName fieldName = nameTypeTable dflags $ tyConName tyCon arrayFt = jarray closureType initCodeTemplate' :: FieldType -> Bool -> Text -> Text -> FieldRef -> Code -> MethodDef initCodeTemplate' retFt synchronized modClass qClName field code = mkMethodDef modClass accessFlags qClName [] (Just retFt) $ fold [ getstatic field , ifnonnull mempty code , getstatic field , greturn retFt ] where accessFlags = [Public, Static] ++ (if synchronized then [Synchronized] else []) initCodeTemplate :: Bool -> Text -> Text -> FieldRef -> Code -> MethodDef initCodeTemplate synchronized modClass qClName field code = initCodeTemplate' closureType synchronized modClass qClName field code
pparkkin/eta
compiler/ETA/CodeGen/Utils.hs
Haskell
bsd-3-clause
3,217
{-# LANGUAGE DataKinds, GADTs, TypeFamilies, TypeOperators #-} module Text.Printf.Safe.Core (type (~>), Formatter, Printf(..), HList(..), printf, printf') where import Data.String (IsString (..)) -- | Variadic function types. type family (~>) as b where (~>) '[] a = a (~>) (x ': xs) a = x -> xs ~> a -- | Formatter type. type Formatter a = a -> String -- | Printf Format. data Printf xs where EOS :: Printf '[] (:<>) :: String -> Printf xs -> Printf xs (:%) :: Formatter x -> Printf xs -> Printf (x ': xs) instance (xs ~ '[]) => IsString (Printf xs) where fromString str = str :<> EOS -- | Hetero list. data HList ts where HNil :: HList '[] (:-) :: a -> HList xs -> HList (a ': xs) infixr 9 :-, :<>, :% -- | HList version. printf' :: Printf ts -> HList ts -> String printf' ps0 ts0 = go ps0 ts0 "" where go :: Printf us -> HList us -> ShowS go EOS HNil = id go (str :<> fs) xs = showString str . go fs xs go (fm :% fs) (x :- ds) = showString (fm x) . go fs ds go _ _ = error "bug in GHC!" -- | Variadic version. printf :: Printf xs -> xs ~> String printf p = go p "" where go :: Printf xs -> String -> xs ~> String go EOS a = a go (str :<> xs) a = go xs (a ++ str) go (fmt :% xs) a = \x -> go xs (a ++ fmt x)
konn/safe-printf
src/Text/Printf/Safe/Core.hs
Haskell
bsd-3-clause
1,341
module Cakefile where import Development.Cake3 import Development.Cake3.Ext.UrWeb import Cakefile_P main = writeMake (file "Makefile") $ do prebuild [cmd|urweb -version|] u <- uwlib (file "Script.urp") $ do ffi (file "Script.urs") include (file "Script.h") src (file "Script.c") pkgconfig "jansson" t1 <- uwapp "-dbms sqlite" (file "Test1.urp") $ do allow url "http://code.jquery.com/ui/1.10.3/jquery-ui.js" allow mime "text/javascript" library u debug ur (file "Test1.ur") t2 <- uwapp "-dbms sqlite" (file "Test2.urp") $ do library u ur (file "Test2.ur") rule $ do phony "all" depend u depend t1 depend t2 return ()
grwlf/cake3
Example/UrWeb/Cakefile.hs
Haskell
bsd-3-clause
698
-- | The issues API as described on <http://developer.github.com/v3/issues/>. module Github.Issues ( issue ,issue' ,issuesForRepo ,issuesForRepo' ,IssueLimitation(..) ,module Github.Data ) where import Github.Data import Github.Private import Data.List (intercalate) import Data.Time.Format (formatTime) import System.Locale (defaultTimeLocale) import Data.Time.Clock (UTCTime(..)) -- | A data structure for describing how to filter issues. This is used by -- @issuesForRepo@. data IssueLimitation = AnyMilestone -- ^ Issues appearing in any milestone. [default] | NoMilestone -- ^ Issues without a milestone. | MilestoneId Int -- ^ Only issues that are in the milestone with the given id. | Open -- ^ Only open issues. [default] | OnlyClosed -- ^ Only closed issues. | Unassigned -- ^ Issues to which no one has been assigned ownership. | AnyAssignment -- ^ All issues regardless of assignment. [default] | AssignedTo String -- ^ Only issues assigned to the user with the given login. | Mentions String -- ^ Issues which mention the given string, taken to be a user's login. | Labels [String] -- ^ A list of labels to filter by. | Ascending -- ^ Sort ascending. | Descending -- ^ Sort descending. [default] | Since UTCTime -- ^ Only issues created since the specified date and time. -- | Details on a specific issue, given the repo owner and name, and the issue -- number.' -- -- > issue' (Just ("github-username", "github-password")) "thoughtbot" "paperclip" "462" issue' :: Maybe GithubAuth -> String -> String -> Int -> IO (Either Error Issue) issue' auth user repoName issueNumber = githubGet' auth ["repos", user, repoName, "issues", show issueNumber] -- | Details on a specific issue, given the repo owner and name, and the issue -- number. -- -- > issue "thoughtbot" "paperclip" "462" issue :: String -> String -> Int -> IO (Either Error Issue) issue = issue' Nothing -- | All issues for a repo (given the repo owner and name), with optional -- restrictions as described in the @IssueLimitation@ data type. -- -- > issuesForRepo' (Just ("github-username", "github-password")) "thoughtbot" "paperclip" [NoMilestone, OnlyClosed, Mentions "jyurek", Ascending] issuesForRepo' :: Maybe GithubAuth -> String -> String -> [IssueLimitation] -> IO (Either Error [Issue]) issuesForRepo' auth user repoName issueLimitations = githubGetWithQueryString' auth ["repos", user, repoName, "issues"] (queryStringFromLimitations issueLimitations) where queryStringFromLimitations = intercalate "&" . map convert convert AnyMilestone = "milestone=*" convert NoMilestone = "milestone=none" convert (MilestoneId n) = "milestone=" ++ show n convert Open = "state=open" convert OnlyClosed = "state=closed" convert Unassigned = "assignee=none" convert AnyAssignment = "assignee=*" convert (AssignedTo u) = "assignee=" ++ u convert (Mentions u) = "mentioned=" ++ u convert (Labels l) = "labels=" ++ intercalate "," l convert Ascending = "direction=asc" convert Descending = "direction=desc" convert (Since t) = "since=" ++ formatTime defaultTimeLocale "%FT%TZ" t -- | All issues for a repo (given the repo owner and name), with optional -- restrictions as described in the @IssueLimitation@ data type. -- -- > issuesForRepo "thoughtbot" "paperclip" [NoMilestone, OnlyClosed, Mentions "jyurek", Ascending] issuesForRepo :: String -> String -> [IssueLimitation] -> IO (Either Error [Issue]) issuesForRepo = issuesForRepo' Nothing
erochest/github
Github/Issues.hs
Haskell
bsd-3-clause
3,623
module Wigner.Complex ( Complex((:+)), ComplexValued(conjugate), ComplexNum(fromComplexRational)) where import Data.Ratio import Wigner.Texable data Complex a = a :+ a deriving (Show, Eq) class ComplexValued a where conjugate :: a -> a instance (Num a) => ComplexValued (Complex a) where conjugate (x :+ y) = x :+ (-y) instance (Num a) => Num (Complex a) where negate (x :+ y) = negate x :+ negate y (x1 :+ y1) + (x2 :+ y2) = (x1 + x2) :+ (y1 + y2) (x1 :+ y1) * (x2 :+ y2) = (x1 * x2 - y1 * y2) :+ (x1 * y2 + y1 * x2) abs x = undefined signum x = undefined fromInteger x = fromInteger x :+ 0 instance (Fractional a) => Fractional (Complex a) where (x1 :+ y1) / (x2 :+ y2) = ((x1 * x2 + y1 * y2) / m) :+ ((x1 * y2 - y1 * x2) / m) where m = x2 * x2 + y2 * y2 fromRational x = fromRational x :+ fromRational 0 class ComplexNum a where fromComplexRational :: Complex Rational -> a instance (Texable a, Ord a, Num a) => Texable (Complex a) where showTex (x :+ y) | y == 0 = sx | x == 0 && y == 1 = "i" | x == 0 && y == -1 = "-i" | x == 0 = sy ++ "i" | otherwise = "(" ++ showTex (x :+ 0) ++ sign ++ showTex (0 :+ y) ++ ")" where sx = showTex x sy = showTex y sign = if y < 0 then "" else "+"
fjarri/wigner
src/Wigner/Complex.hs
Haskell
bsd-3-clause
1,348
{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Desugaring arrow commands -} {-# LANGUAGE CPP #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -Wno-incomplete-record-updates #-} module DsArrows ( dsProcExpr ) where #include "HsVersions.h" import GhcPrelude import Match import DsUtils import DsMonad import GHC.Hs hiding (collectPatBinders, collectPatsBinders, collectLStmtsBinders, collectLStmtBinders, collectStmtBinders ) import TcHsSyn import qualified GHC.Hs.Utils as HsUtils -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types (newtypes etc), and sometimes not -- So WATCH OUT; check each use of split*Ty functions. -- Sigh. This is a pain. import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLExprNoLP, dsLocalBinds, dsSyntaxExpr ) import TcType import Type ( splitPiTy ) import TcEvidence import CoreSyn import CoreFVs import CoreUtils import MkCore import DsBinds (dsHsWrapper) import Name import Id import ConLike import TysWiredIn import BasicTypes import PrelNames import Outputable import VarSet import SrcLoc import ListSetOps( assocMaybe ) import Data.List import Util import UniqDSet data DsCmdEnv = DsCmdEnv { arr_id, compose_id, first_id, app_id, choice_id, loop_id :: CoreExpr } mkCmdEnv :: CmdSyntaxTable GhcTc -> DsM ([CoreBind], DsCmdEnv) -- See Note [CmdSyntaxTable] in GHC.Hs.Expr mkCmdEnv tc_meths = do { (meth_binds, prs) <- mapAndUnzipM mk_bind tc_meths -- NB: Some of these lookups might fail, but that's OK if the -- symbol is never used. That's why we use Maybe first and then -- panic. An eager panic caused trouble in typecheck/should_compile/tc192 ; let the_arr_id = assocMaybe prs arrAName the_compose_id = assocMaybe prs composeAName the_first_id = assocMaybe prs firstAName the_app_id = assocMaybe prs appAName the_choice_id = assocMaybe prs choiceAName the_loop_id = assocMaybe prs loopAName -- used as an argument in, e.g., do_premap ; check_lev_poly 3 the_arr_id -- used as an argument in, e.g., dsCmdStmt/BodyStmt ; check_lev_poly 5 the_compose_id -- used as an argument in, e.g., dsCmdStmt/BodyStmt ; check_lev_poly 4 the_first_id -- the result of the_app_id is used as an argument in, e.g., -- dsCmd/HsCmdArrApp/HsHigherOrderApp ; check_lev_poly 2 the_app_id -- used as an argument in, e.g., HsCmdIf ; check_lev_poly 5 the_choice_id -- used as an argument in, e.g., RecStmt ; check_lev_poly 4 the_loop_id ; return (meth_binds, DsCmdEnv { arr_id = Var (unmaybe the_arr_id arrAName), compose_id = Var (unmaybe the_compose_id composeAName), first_id = Var (unmaybe the_first_id firstAName), app_id = Var (unmaybe the_app_id appAName), choice_id = Var (unmaybe the_choice_id choiceAName), loop_id = Var (unmaybe the_loop_id loopAName) }) } where mk_bind (std_name, expr) = do { rhs <- dsExpr expr ; id <- newSysLocalDs (exprType rhs) -- no check needed; these are functions ; return (NonRec id rhs, (std_name, id)) } unmaybe Nothing name = pprPanic "mkCmdEnv" (text "Not found:" <+> ppr name) unmaybe (Just id) _ = id -- returns the result type of a pi-type (that is, a forall or a function) -- Note that this result type may be ill-scoped. res_type :: Type -> Type res_type ty = res_ty where (_, res_ty) = splitPiTy ty check_lev_poly :: Int -- arity -> Maybe Id -> DsM () check_lev_poly _ Nothing = return () check_lev_poly arity (Just id) = dsNoLevPoly (nTimes arity res_type (idType id)) (text "In the result of the function" <+> quotes (ppr id)) -- arr :: forall b c. (b -> c) -> a b c do_arr :: DsCmdEnv -> Type -> Type -> CoreExpr -> CoreExpr do_arr ids b_ty c_ty f = mkApps (arr_id ids) [Type b_ty, Type c_ty, f] -- (>>>) :: forall b c d. a b c -> a c d -> a b d do_compose :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_compose ids b_ty c_ty d_ty f g = mkApps (compose_id ids) [Type b_ty, Type c_ty, Type d_ty, f, g] -- first :: forall b c d. a b c -> a (b,d) (c,d) do_first :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr do_first ids b_ty c_ty d_ty f = mkApps (first_id ids) [Type b_ty, Type c_ty, Type d_ty, f] -- app :: forall b c. a (a b c, b) c do_app :: DsCmdEnv -> Type -> Type -> CoreExpr do_app ids b_ty c_ty = mkApps (app_id ids) [Type b_ty, Type c_ty] -- (|||) :: forall b d c. a b d -> a c d -> a (Either b c) d -- note the swapping of d and c do_choice :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_choice ids b_ty c_ty d_ty f g = mkApps (choice_id ids) [Type b_ty, Type d_ty, Type c_ty, f, g] -- loop :: forall b d c. a (b,d) (c,d) -> a b c -- note the swapping of d and c do_loop :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr do_loop ids b_ty c_ty d_ty f = mkApps (loop_id ids) [Type b_ty, Type d_ty, Type c_ty, f] -- premap :: forall b c d. (b -> c) -> a c d -> a b d -- premap f g = arr f >>> g do_premap :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_premap ids b_ty c_ty d_ty f g = do_compose ids b_ty c_ty d_ty (do_arr ids b_ty c_ty f) g mkFailExpr :: HsMatchContext Id -> Type -> DsM CoreExpr mkFailExpr ctxt ty = mkErrorAppDs pAT_ERROR_ID ty (matchContextErrString ctxt) -- construct CoreExpr for \ (a :: a_ty, b :: b_ty) -> a mkFstExpr :: Type -> Type -> DsM CoreExpr mkFstExpr a_ty b_ty = do a_var <- newSysLocalDs a_ty b_var <- newSysLocalDs b_ty pair_var <- newSysLocalDs (mkCorePairTy a_ty b_ty) return (Lam pair_var (coreCasePair pair_var a_var b_var (Var a_var))) -- construct CoreExpr for \ (a :: a_ty, b :: b_ty) -> b mkSndExpr :: Type -> Type -> DsM CoreExpr mkSndExpr a_ty b_ty = do a_var <- newSysLocalDs a_ty b_var <- newSysLocalDs b_ty pair_var <- newSysLocalDs (mkCorePairTy a_ty b_ty) return (Lam pair_var (coreCasePair pair_var a_var b_var (Var b_var))) {- Build case analysis of a tuple. This cannot be done in the DsM monad, because the list of variables is typically not yet defined. -} -- coreCaseTuple [u1..] v [x1..xn] body -- = case v of v { (x1, .., xn) -> body } -- But the matching may be nested if the tuple is very big coreCaseTuple :: UniqSupply -> Id -> [Id] -> CoreExpr -> CoreExpr coreCaseTuple uniqs scrut_var vars body = mkTupleCase uniqs vars body scrut_var (Var scrut_var) coreCasePair :: Id -> Id -> Id -> CoreExpr -> CoreExpr coreCasePair scrut_var var1 var2 body = Case (Var scrut_var) scrut_var (exprType body) [(DataAlt (tupleDataCon Boxed 2), [var1, var2], body)] mkCorePairTy :: Type -> Type -> Type mkCorePairTy t1 t2 = mkBoxedTupleTy [t1, t2] mkCorePairExpr :: CoreExpr -> CoreExpr -> CoreExpr mkCorePairExpr e1 e2 = mkCoreTup [e1, e2] mkCoreUnitExpr :: CoreExpr mkCoreUnitExpr = mkCoreTup [] {- The input is divided into a local environment, which is a flat tuple (unless it's too big), and a stack, which is a right-nested pair. In general, the input has the form ((x1,...,xn), (s1,...(sk,())...)) where xi are the environment values, and si the ones on the stack, with s1 being the "top", the first one to be matched with a lambda. -} envStackType :: [Id] -> Type -> Type envStackType ids stack_ty = mkCorePairTy (mkBigCoreVarTupTy ids) stack_ty -- splitTypeAt n (t1,... (tn,t)...) = ([t1, ..., tn], t) splitTypeAt :: Int -> Type -> ([Type], Type) splitTypeAt n ty | n == 0 = ([], ty) | otherwise = case tcTyConAppArgs ty of [t, ty'] -> let (ts, ty_r) = splitTypeAt (n-1) ty' in (t:ts, ty_r) _ -> pprPanic "splitTypeAt" (ppr ty) ---------------------------------------------- -- buildEnvStack -- -- ((x1,...,xn),stk) buildEnvStack :: [Id] -> Id -> CoreExpr buildEnvStack env_ids stack_id = mkCorePairExpr (mkBigCoreVarTup env_ids) (Var stack_id) ---------------------------------------------- -- matchEnvStack -- -- \ ((x1,...,xn),stk) -> body -- => -- \ pair -> -- case pair of (tup,stk) -> -- case tup of (x1,...,xn) -> -- body matchEnvStack :: [Id] -- x1..xn -> Id -- stk -> CoreExpr -- e -> DsM CoreExpr matchEnvStack env_ids stack_id body = do uniqs <- newUniqueSupply tup_var <- newSysLocalDs (mkBigCoreVarTupTy env_ids) let match_env = coreCaseTuple uniqs tup_var env_ids body pair_id <- newSysLocalDs (mkCorePairTy (idType tup_var) (idType stack_id)) return (Lam pair_id (coreCasePair pair_id tup_var stack_id match_env)) ---------------------------------------------- -- matchEnv -- -- \ (x1,...,xn) -> body -- => -- \ tup -> -- case tup of (x1,...,xn) -> -- body matchEnv :: [Id] -- x1..xn -> CoreExpr -- e -> DsM CoreExpr matchEnv env_ids body = do uniqs <- newUniqueSupply tup_id <- newSysLocalDs (mkBigCoreVarTupTy env_ids) return (Lam tup_id (coreCaseTuple uniqs tup_id env_ids body)) ---------------------------------------------- -- matchVarStack -- -- case (x1, ...(xn, s)...) -> e -- => -- case z0 of (x1,z1) -> -- case zn-1 of (xn,s) -> -- e matchVarStack :: [Id] -> Id -> CoreExpr -> DsM (Id, CoreExpr) matchVarStack [] stack_id body = return (stack_id, body) matchVarStack (param_id:param_ids) stack_id body = do (tail_id, tail_code) <- matchVarStack param_ids stack_id body pair_id <- newSysLocalDs (mkCorePairTy (idType param_id) (idType tail_id)) return (pair_id, coreCasePair pair_id param_id tail_id tail_code) mkHsEnvStackExpr :: [Id] -> Id -> LHsExpr GhcTc mkHsEnvStackExpr env_ids stack_id = mkLHsTupleExpr [mkLHsVarTuple env_ids, nlHsVar stack_id] -- Translation of arrow abstraction -- D; xs |-a c : () --> t' ---> c' -- -------------------------- -- D |- proc p -> c :: a t t' ---> premap (\ p -> ((xs),())) c' -- -- where (xs) is the tuple of variables bound by p dsProcExpr :: LPat GhcTc -> LHsCmdTop GhcTc -> DsM CoreExpr dsProcExpr pat (L _ (HsCmdTop (CmdTopTc _unitTy cmd_ty ids) cmd)) = do (meth_binds, meth_ids) <- mkCmdEnv ids let locals = mkVarSet (collectPatBinders pat) (core_cmd, _free_vars, env_ids) <- dsfixCmd meth_ids locals unitTy cmd_ty cmd let env_ty = mkBigCoreVarTupTy env_ids let env_stk_ty = mkCorePairTy env_ty unitTy let env_stk_expr = mkCorePairExpr (mkBigCoreVarTup env_ids) mkCoreUnitExpr fail_expr <- mkFailExpr ProcExpr env_stk_ty var <- selectSimpleMatchVarL pat match_code <- matchSimply (Var var) ProcExpr pat env_stk_expr fail_expr let pat_ty = hsLPatType pat let proc_code = do_premap meth_ids pat_ty env_stk_ty cmd_ty (Lam var match_code) core_cmd return (mkLets meth_binds proc_code) dsProcExpr _ _ = panic "dsProcExpr" {- Translation of a command judgement of the form D; xs |-a c : stk --> t to an expression e such that D |- e :: a (xs, stk) t -} dsLCmd :: DsCmdEnv -> IdSet -> Type -> Type -> LHsCmd GhcTc -> [Id] -> DsM (CoreExpr, DIdSet) dsLCmd ids local_vars stk_ty res_ty cmd env_ids = dsCmd ids local_vars stk_ty res_ty (unLoc cmd) env_ids dsCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this command -> Type -- type of the stack (right-nested tuple) -> Type -- return type of the command -> HsCmd GhcTc -- command to desugar -> [Id] -- list of vars in the input to this command -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free -- D |- fun :: a t1 t2 -- D, xs |- arg :: t1 -- ----------------------------- -- D; xs |-a fun -< arg : stk --> t2 -- -- ---> premap (\ ((xs), _stk) -> arg) fun dsCmd ids local_vars stack_ty res_ty (HsCmdArrApp arrow_ty arrow arg HsFirstOrderApp _) env_ids = do let (a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty (_a_ty, arg_ty) = tcSplitAppTy a_arg_ty core_arrow <- dsLExprNoLP arrow core_arg <- dsLExpr arg stack_id <- newSysLocalDs stack_ty core_make_arg <- matchEnvStack env_ids stack_id core_arg return (do_premap ids (envStackType env_ids stack_ty) arg_ty res_ty core_make_arg core_arrow, exprFreeIdsDSet core_arg `uniqDSetIntersectUniqSet` local_vars) -- D, xs |- fun :: a t1 t2 -- D, xs |- arg :: t1 -- ------------------------------ -- D; xs |-a fun -<< arg : stk --> t2 -- -- ---> premap (\ ((xs), _stk) -> (fun, arg)) app dsCmd ids local_vars stack_ty res_ty (HsCmdArrApp arrow_ty arrow arg HsHigherOrderApp _) env_ids = do let (a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty (_a_ty, arg_ty) = tcSplitAppTy a_arg_ty core_arrow <- dsLExpr arrow core_arg <- dsLExpr arg stack_id <- newSysLocalDs stack_ty core_make_pair <- matchEnvStack env_ids stack_id (mkCorePairExpr core_arrow core_arg) return (do_premap ids (envStackType env_ids stack_ty) (mkCorePairTy arrow_ty arg_ty) res_ty core_make_pair (do_app ids arg_ty res_ty), (exprsFreeIdsDSet [core_arrow, core_arg]) `uniqDSetIntersectUniqSet` local_vars) -- D; ys |-a cmd : (t,stk) --> t' -- D, xs |- exp :: t -- ------------------------ -- D; xs |-a cmd exp : stk --> t' -- -- ---> premap (\ ((xs),stk) -> ((ys),(e,stk))) cmd dsCmd ids local_vars stack_ty res_ty (HsCmdApp _ cmd arg) env_ids = do core_arg <- dsLExpr arg let arg_ty = exprType core_arg stack_ty' = mkCorePairTy arg_ty stack_ty (core_cmd, free_vars, env_ids') <- dsfixCmd ids local_vars stack_ty' res_ty cmd stack_id <- newSysLocalDs stack_ty arg_id <- newSysLocalDsNoLP arg_ty -- push the argument expression onto the stack let stack' = mkCorePairExpr (Var arg_id) (Var stack_id) core_body = bindNonRec arg_id core_arg (mkCorePairExpr (mkBigCoreVarTup env_ids') stack') -- match the environment and stack against the input core_map <- matchEnvStack env_ids stack_id core_body return (do_premap ids (envStackType env_ids stack_ty) (envStackType env_ids' stack_ty') res_ty core_map core_cmd, free_vars `unionDVarSet` (exprFreeIdsDSet core_arg `uniqDSetIntersectUniqSet` local_vars)) -- D; ys |-a cmd : stk t' -- ----------------------------------------------- -- D; xs |-a \ p1 ... pk -> cmd : (t1,...(tk,stk)...) t' -- -- ---> premap (\ ((xs), (p1, ... (pk,stk)...)) -> ((ys),stk)) cmd dsCmd ids local_vars stack_ty res_ty (HsCmdLam _ (MG { mg_alts = (L _ [L _ (Match { m_pats = pats , m_grhss = GRHSs _ [L _ (GRHS _ [] body)] _ })]) })) env_ids = do let pat_vars = mkVarSet (collectPatsBinders pats) let local_vars' = pat_vars `unionVarSet` local_vars (pat_tys, stack_ty') = splitTypeAt (length pats) stack_ty (core_body, free_vars, env_ids') <- dsfixCmd ids local_vars' stack_ty' res_ty body param_ids <- mapM newSysLocalDsNoLP pat_tys stack_id' <- newSysLocalDs stack_ty' -- the expression is built from the inside out, so the actions -- are presented in reverse order let -- build a new environment, plus what's left of the stack core_expr = buildEnvStack env_ids' stack_id' in_ty = envStackType env_ids stack_ty in_ty' = envStackType env_ids' stack_ty' fail_expr <- mkFailExpr LambdaExpr in_ty' -- match the patterns against the parameters match_code <- matchSimplys (map Var param_ids) LambdaExpr pats core_expr fail_expr -- match the parameters against the top of the old stack (stack_id, param_code) <- matchVarStack param_ids stack_id' match_code -- match the old environment and stack against the input select_code <- matchEnvStack env_ids stack_id param_code return (do_premap ids in_ty in_ty' res_ty select_code core_body, free_vars `uniqDSetMinusUniqSet` pat_vars) dsCmd ids local_vars stack_ty res_ty (HsCmdPar _ cmd) env_ids = dsLCmd ids local_vars stack_ty res_ty cmd env_ids -- D, xs |- e :: Bool -- D; xs1 |-a c1 : stk --> t -- D; xs2 |-a c2 : stk --> t -- ---------------------------------------- -- D; xs |-a if e then c1 else c2 : stk --> t -- -- ---> premap (\ ((xs),stk) -> -- if e then Left ((xs1),stk) else Right ((xs2),stk)) -- (c1 ||| c2) dsCmd ids local_vars stack_ty res_ty (HsCmdIf _ mb_fun cond then_cmd else_cmd) env_ids = do core_cond <- dsLExpr cond (core_then, fvs_then, then_ids) <- dsfixCmd ids local_vars stack_ty res_ty then_cmd (core_else, fvs_else, else_ids) <- dsfixCmd ids local_vars stack_ty res_ty else_cmd stack_id <- newSysLocalDs stack_ty either_con <- dsLookupTyCon eitherTyConName left_con <- dsLookupDataCon leftDataConName right_con <- dsLookupDataCon rightDataConName let mk_left_expr ty1 ty2 e = mkCoreConApps left_con [Type ty1,Type ty2, e] mk_right_expr ty1 ty2 e = mkCoreConApps right_con [Type ty1,Type ty2, e] in_ty = envStackType env_ids stack_ty then_ty = envStackType then_ids stack_ty else_ty = envStackType else_ids stack_ty sum_ty = mkTyConApp either_con [then_ty, else_ty] fvs_cond = exprFreeIdsDSet core_cond `uniqDSetIntersectUniqSet` local_vars core_left = mk_left_expr then_ty else_ty (buildEnvStack then_ids stack_id) core_right = mk_right_expr then_ty else_ty (buildEnvStack else_ids stack_id) core_if <- case mb_fun of Just fun -> do { fun_apps <- dsSyntaxExpr fun [core_cond, core_left, core_right] ; matchEnvStack env_ids stack_id fun_apps } Nothing -> matchEnvStack env_ids stack_id $ mkIfThenElse core_cond core_left core_right return (do_premap ids in_ty sum_ty res_ty core_if (do_choice ids then_ty else_ty res_ty core_then core_else), fvs_cond `unionDVarSet` fvs_then `unionDVarSet` fvs_else) {- Case commands are treated in much the same way as if commands (see above) except that there are more alternatives. For example case e of { p1 -> c1; p2 -> c2; p3 -> c3 } is translated to premap (\ ((xs)*ts) -> case e of p1 -> (Left (Left (xs1)*ts)) p2 -> Left ((Right (xs2)*ts)) p3 -> Right ((xs3)*ts)) ((c1 ||| c2) ||| c3) The idea is to extract the commands from the case, build a balanced tree of choices, and replace the commands with expressions that build tagged tuples, obtaining a case expression that can be desugared normally. To build all this, we use triples describing segments of the list of case bodies, containing the following fields: * a list of expressions of the form (Left|Right)* ((xs)*ts), to be put into the case replacing the commands * a sum type that is the common type of these expressions, and also the input type of the arrow * a CoreExpr for an arrow built by combining the translated command bodies with |||. -} dsCmd ids local_vars stack_ty res_ty (HsCmdCase _ exp (MG { mg_alts = L l matches , mg_ext = MatchGroupTc arg_tys _ , mg_origin = origin })) env_ids = do stack_id <- newSysLocalDs stack_ty -- Extract and desugar the leaf commands in the case, building tuple -- expressions that will (after tagging) replace these leaves let leaves = concatMap leavesMatch matches make_branch (leaf, bound_vars) = do (core_leaf, _fvs, leaf_ids) <- dsfixCmd ids (bound_vars `unionVarSet` local_vars) stack_ty res_ty leaf return ([mkHsEnvStackExpr leaf_ids stack_id], envStackType leaf_ids stack_ty, core_leaf) branches <- mapM make_branch leaves either_con <- dsLookupTyCon eitherTyConName left_con <- dsLookupDataCon leftDataConName right_con <- dsLookupDataCon rightDataConName let left_id = HsConLikeOut noExtField (RealDataCon left_con) right_id = HsConLikeOut noExtField (RealDataCon right_con) left_expr ty1 ty2 e = noLoc $ HsApp noExtField (noLoc $ mkHsWrap (mkWpTyApps [ty1, ty2]) left_id ) e right_expr ty1 ty2 e = noLoc $ HsApp noExtField (noLoc $ mkHsWrap (mkWpTyApps [ty1, ty2]) right_id) e -- Prefix each tuple with a distinct series of Left's and Right's, -- in a balanced way, keeping track of the types. merge_branches (builds1, in_ty1, core_exp1) (builds2, in_ty2, core_exp2) = (map (left_expr in_ty1 in_ty2) builds1 ++ map (right_expr in_ty1 in_ty2) builds2, mkTyConApp either_con [in_ty1, in_ty2], do_choice ids in_ty1 in_ty2 res_ty core_exp1 core_exp2) (leaves', sum_ty, core_choices) = foldb merge_branches branches -- Replace the commands in the case with these tagged tuples, -- yielding a HsExpr Id we can feed to dsExpr. (_, matches') = mapAccumL (replaceLeavesMatch res_ty) leaves' matches in_ty = envStackType env_ids stack_ty core_body <- dsExpr (HsCase noExtField exp (MG { mg_alts = L l matches' , mg_ext = MatchGroupTc arg_tys sum_ty , mg_origin = origin })) -- Note that we replace the HsCase result type by sum_ty, -- which is the type of matches' core_matches <- matchEnvStack env_ids stack_id core_body return (do_premap ids in_ty sum_ty res_ty core_matches core_choices, exprFreeIdsDSet core_body `uniqDSetIntersectUniqSet` local_vars) -- D; ys |-a cmd : stk --> t -- ---------------------------------- -- D; xs |-a let binds in cmd : stk --> t -- -- ---> premap (\ ((xs),stk) -> let binds in ((ys),stk)) c dsCmd ids local_vars stack_ty res_ty (HsCmdLet _ lbinds@(L _ binds) body) env_ids = do let defined_vars = mkVarSet (collectLocalBinders binds) local_vars' = defined_vars `unionVarSet` local_vars (core_body, _free_vars, env_ids') <- dsfixCmd ids local_vars' stack_ty res_ty body stack_id <- newSysLocalDs stack_ty -- build a new environment, plus the stack, using the let bindings core_binds <- dsLocalBinds lbinds (buildEnvStack env_ids' stack_id) -- match the old environment and stack against the input core_map <- matchEnvStack env_ids stack_id core_binds return (do_premap ids (envStackType env_ids stack_ty) (envStackType env_ids' stack_ty) res_ty core_map core_body, exprFreeIdsDSet core_binds `uniqDSetIntersectUniqSet` local_vars) -- D; xs |-a ss : t -- ---------------------------------- -- D; xs |-a do { ss } : () --> t -- -- ---> premap (\ (env,stk) -> env) c dsCmd ids local_vars stack_ty res_ty do_block@(HsCmdDo stmts_ty (L loc stmts)) env_ids = do putSrcSpanDs loc $ dsNoLevPoly stmts_ty (text "In the do-command:" <+> ppr do_block) (core_stmts, env_ids') <- dsCmdDo ids local_vars res_ty stmts env_ids let env_ty = mkBigCoreVarTupTy env_ids core_fst <- mkFstExpr env_ty stack_ty return (do_premap ids (mkCorePairTy env_ty stack_ty) env_ty res_ty core_fst core_stmts, env_ids') -- D |- e :: forall e. a1 (e,stk1) t1 -> ... an (e,stkn) tn -> a (e,stk) t -- D; xs |-a ci :: stki --> ti -- ----------------------------------- -- D; xs |-a (|e c1 ... cn|) :: stk --> t ---> e [t_xs] c1 ... cn dsCmd _ local_vars _stack_ty _res_ty (HsCmdArrForm _ op _ _ args) env_ids = do let env_ty = mkBigCoreVarTupTy env_ids core_op <- dsLExpr op (core_args, fv_sets) <- mapAndUnzipM (dsTrimCmdArg local_vars env_ids) args return (mkApps (App core_op (Type env_ty)) core_args, unionDVarSets fv_sets) dsCmd ids local_vars stack_ty res_ty (HsCmdWrap _ wrap cmd) env_ids = do (core_cmd, env_ids') <- dsCmd ids local_vars stack_ty res_ty cmd env_ids core_wrap <- dsHsWrapper wrap return (core_wrap core_cmd, env_ids') dsCmd _ _ _ _ _ c = pprPanic "dsCmd" (ppr c) -- D; ys |-a c : stk --> t (ys <= xs) -- --------------------- -- D; xs |-a c : stk --> t ---> premap (\ ((xs),stk) -> ((ys),stk)) c dsTrimCmdArg :: IdSet -- set of local vars available to this command -> [Id] -- list of vars in the input to this command -> LHsCmdTop GhcTc -- command argument to desugar -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free dsTrimCmdArg local_vars env_ids (L _ (HsCmdTop (CmdTopTc stack_ty cmd_ty ids) cmd )) = do (meth_binds, meth_ids) <- mkCmdEnv ids (core_cmd, free_vars, env_ids') <- dsfixCmd meth_ids local_vars stack_ty cmd_ty cmd stack_id <- newSysLocalDs stack_ty trim_code <- matchEnvStack env_ids stack_id (buildEnvStack env_ids' stack_id) let in_ty = envStackType env_ids stack_ty in_ty' = envStackType env_ids' stack_ty arg_code = if env_ids' == env_ids then core_cmd else do_premap meth_ids in_ty in_ty' cmd_ty trim_code core_cmd return (mkLets meth_binds arg_code, free_vars) dsTrimCmdArg _ _ _ = panic "dsTrimCmdArg" -- Given D; xs |-a c : stk --> t, builds c with xs fed back. -- Typically needs to be prefixed with arr (\(p, stk) -> ((xs),stk)) dsfixCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this command -> Type -- type of the stack (right-nested tuple) -> Type -- return type of the command -> LHsCmd GhcTc -- command to desugar -> DsM (CoreExpr, -- desugared expression DIdSet, -- subset of local vars that occur free [Id]) -- the same local vars as a list, fed back dsfixCmd ids local_vars stk_ty cmd_ty cmd = do { putSrcSpanDs (getLoc cmd) $ dsNoLevPoly cmd_ty (text "When desugaring the command:" <+> ppr cmd) ; trimInput (dsLCmd ids local_vars stk_ty cmd_ty cmd) } -- Feed back the list of local variables actually used a command, -- for use as the input tuple of the generated arrow. trimInput :: ([Id] -> DsM (CoreExpr, DIdSet)) -> DsM (CoreExpr, -- desugared expression DIdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list, fed back to -- the inner function to form the tuple of -- inputs to the arrow. trimInput build_arrow = fixDs (\ ~(_,_,env_ids) -> do (core_cmd, free_vars) <- build_arrow env_ids return (core_cmd, free_vars, dVarSetElems free_vars)) {- Translation of command judgements of the form D |-a do { ss } : t -} dsCmdDo :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> Type -- return type of the statement -> [CmdLStmt GhcTc] -- statements to desugar -> [Id] -- list of vars in the input to this statement -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free dsCmdDo _ _ _ [] _ = panic "dsCmdDo" -- D; xs |-a c : () --> t -- -------------------------- -- D; xs |-a do { c } : t -- -- ---> premap (\ (xs) -> ((xs), ())) c dsCmdDo ids local_vars res_ty [L loc (LastStmt _ body _ _)] env_ids = do putSrcSpanDs loc $ dsNoLevPoly res_ty (text "In the command:" <+> ppr body) (core_body, env_ids') <- dsLCmd ids local_vars unitTy res_ty body env_ids let env_ty = mkBigCoreVarTupTy env_ids env_var <- newSysLocalDs env_ty let core_map = Lam env_var (mkCorePairExpr (Var env_var) mkCoreUnitExpr) return (do_premap ids env_ty (mkCorePairTy env_ty unitTy) res_ty core_map core_body, env_ids') dsCmdDo ids local_vars res_ty (stmt:stmts) env_ids = do let bound_vars = mkVarSet (collectLStmtBinders stmt) let local_vars' = bound_vars `unionVarSet` local_vars (core_stmts, _, env_ids') <- trimInput (dsCmdDo ids local_vars' res_ty stmts) (core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids' stmt env_ids return (do_compose ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy env_ids') res_ty core_stmt core_stmts, fv_stmt) {- A statement maps one local environment to another, and is represented as an arrow from one tuple type to another. A statement sequence is translated to a composition of such arrows. -} dsCmdLStmt :: DsCmdEnv -> IdSet -> [Id] -> CmdLStmt GhcTc -> [Id] -> DsM (CoreExpr, DIdSet) dsCmdLStmt ids local_vars out_ids cmd env_ids = dsCmdStmt ids local_vars out_ids (unLoc cmd) env_ids dsCmdStmt :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- list of vars in the output of this statement -> CmdStmt GhcTc -- statement to desugar -> [Id] -- list of vars in the input to this statement -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free -- D; xs1 |-a c : () --> t -- D; xs' |-a do { ss } : t' -- ------------------------------ -- D; xs |-a do { c; ss } : t' -- -- ---> premap (\ ((xs)) -> (((xs1),()),(xs'))) -- (first c >>> arr snd) >>> ss dsCmdStmt ids local_vars out_ids (BodyStmt c_ty cmd _ _) env_ids = do (core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars unitTy c_ty cmd core_mux <- matchEnv env_ids (mkCorePairExpr (mkCorePairExpr (mkBigCoreVarTup env_ids1) mkCoreUnitExpr) (mkBigCoreVarTup out_ids)) let in_ty = mkBigCoreVarTupTy env_ids in_ty1 = mkCorePairTy (mkBigCoreVarTupTy env_ids1) unitTy out_ty = mkBigCoreVarTupTy out_ids before_c_ty = mkCorePairTy in_ty1 out_ty after_c_ty = mkCorePairTy c_ty out_ty dsNoLevPoly c_ty empty -- I (Richard E, Dec '16) have no idea what to say here snd_fn <- mkSndExpr c_ty out_ty return (do_premap ids in_ty before_c_ty out_ty core_mux $ do_compose ids before_c_ty after_c_ty out_ty (do_first ids in_ty1 c_ty out_ty core_cmd) $ do_arr ids after_c_ty out_ty snd_fn, extendDVarSetList fv_cmd out_ids) -- D; xs1 |-a c : () --> t -- D; xs' |-a do { ss } : t' xs2 = xs' - defs(p) -- ----------------------------------- -- D; xs |-a do { p <- c; ss } : t' -- -- ---> premap (\ (xs) -> (((xs1),()),(xs2))) -- (first c >>> arr (\ (p, (xs2)) -> (xs'))) >>> ss -- -- It would be simpler and more consistent to do this using second, -- but that's likely to be defined in terms of first. dsCmdStmt ids local_vars out_ids (BindStmt _ pat cmd _ _) env_ids = do let pat_ty = hsLPatType pat (core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars unitTy pat_ty cmd let pat_vars = mkVarSet (collectPatBinders pat) let env_ids2 = filterOut (`elemVarSet` pat_vars) out_ids env_ty2 = mkBigCoreVarTupTy env_ids2 -- multiplexing function -- \ (xs) -> (((xs1),()),(xs2)) core_mux <- matchEnv env_ids (mkCorePairExpr (mkCorePairExpr (mkBigCoreVarTup env_ids1) mkCoreUnitExpr) (mkBigCoreVarTup env_ids2)) -- projection function -- \ (p, (xs2)) -> (zs) env_id <- newSysLocalDs env_ty2 uniqs <- newUniqueSupply let after_c_ty = mkCorePairTy pat_ty env_ty2 out_ty = mkBigCoreVarTupTy out_ids body_expr = coreCaseTuple uniqs env_id env_ids2 (mkBigCoreVarTup out_ids) fail_expr <- mkFailExpr (StmtCtxt DoExpr) out_ty pat_id <- selectSimpleMatchVarL pat match_code <- matchSimply (Var pat_id) (StmtCtxt DoExpr) pat body_expr fail_expr pair_id <- newSysLocalDs after_c_ty let proj_expr = Lam pair_id (coreCasePair pair_id pat_id env_id match_code) -- put it all together let in_ty = mkBigCoreVarTupTy env_ids in_ty1 = mkCorePairTy (mkBigCoreVarTupTy env_ids1) unitTy in_ty2 = mkBigCoreVarTupTy env_ids2 before_c_ty = mkCorePairTy in_ty1 in_ty2 return (do_premap ids in_ty before_c_ty out_ty core_mux $ do_compose ids before_c_ty after_c_ty out_ty (do_first ids in_ty1 pat_ty in_ty2 core_cmd) $ do_arr ids after_c_ty out_ty proj_expr, fv_cmd `unionDVarSet` (mkDVarSet out_ids `uniqDSetMinusUniqSet` pat_vars)) -- D; xs' |-a do { ss } : t -- -------------------------------------- -- D; xs |-a do { let binds; ss } : t -- -- ---> arr (\ (xs) -> let binds in (xs')) >>> ss dsCmdStmt ids local_vars out_ids (LetStmt _ binds) env_ids = do -- build a new environment using the let bindings core_binds <- dsLocalBinds binds (mkBigCoreVarTup out_ids) -- match the old environment against the input core_map <- matchEnv env_ids core_binds return (do_arr ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy out_ids) core_map, exprFreeIdsDSet core_binds `uniqDSetIntersectUniqSet` local_vars) -- D; ys |-a do { ss; returnA -< ((xs1), (ys2)) } : ... -- D; xs' |-a do { ss' } : t -- ------------------------------------ -- D; xs |-a do { rec ss; ss' } : t -- -- xs1 = xs' /\ defs(ss) -- xs2 = xs' - defs(ss) -- ys1 = ys - defs(ss) -- ys2 = ys /\ defs(ss) -- -- ---> arr (\(xs) -> ((ys1),(xs2))) >>> -- first (loop (arr (\((ys1),~(ys2)) -> (ys)) >>> ss)) >>> -- arr (\((xs1),(xs2)) -> (xs')) >>> ss' dsCmdStmt ids local_vars out_ids (RecStmt { recS_stmts = stmts , recS_later_ids = later_ids, recS_rec_ids = rec_ids , recS_ext = RecStmtTc { recS_later_rets = later_rets , recS_rec_rets = rec_rets } }) env_ids = do let later_ids_set = mkVarSet later_ids env2_ids = filterOut (`elemVarSet` later_ids_set) out_ids env2_id_set = mkDVarSet env2_ids env2_ty = mkBigCoreVarTupTy env2_ids -- post_loop_fn = \((later_ids),(env2_ids)) -> (out_ids) uniqs <- newUniqueSupply env2_id <- newSysLocalDs env2_ty let later_ty = mkBigCoreVarTupTy later_ids post_pair_ty = mkCorePairTy later_ty env2_ty post_loop_body = coreCaseTuple uniqs env2_id env2_ids (mkBigCoreVarTup out_ids) post_loop_fn <- matchEnvStack later_ids env2_id post_loop_body --- loop (...) (core_loop, env1_id_set, env1_ids) <- dsRecCmd ids local_vars stmts later_ids later_rets rec_ids rec_rets -- pre_loop_fn = \(env_ids) -> ((env1_ids),(env2_ids)) let env1_ty = mkBigCoreVarTupTy env1_ids pre_pair_ty = mkCorePairTy env1_ty env2_ty pre_loop_body = mkCorePairExpr (mkBigCoreVarTup env1_ids) (mkBigCoreVarTup env2_ids) pre_loop_fn <- matchEnv env_ids pre_loop_body -- arr pre_loop_fn >>> first (loop (...)) >>> arr post_loop_fn let env_ty = mkBigCoreVarTupTy env_ids out_ty = mkBigCoreVarTupTy out_ids core_body = do_premap ids env_ty pre_pair_ty out_ty pre_loop_fn (do_compose ids pre_pair_ty post_pair_ty out_ty (do_first ids env1_ty later_ty env2_ty core_loop) (do_arr ids post_pair_ty out_ty post_loop_fn)) return (core_body, env1_id_set `unionDVarSet` env2_id_set) dsCmdStmt _ _ _ _ s = pprPanic "dsCmdStmt" (ppr s) -- loop (premap (\ ((env1_ids), ~(rec_ids)) -> (env_ids)) -- (ss >>> arr (\ (out_ids) -> ((later_rets),(rec_rets))))) >>> dsRecCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [CmdLStmt GhcTc] -- list of statements inside the RecCmd -> [Id] -- list of vars defined here and used later -> [HsExpr GhcTc] -- expressions corresponding to later_ids -> [Id] -- list of vars fed back through the loop -> [HsExpr GhcTc] -- expressions corresponding to rec_ids -> DsM (CoreExpr, -- desugared statement DIdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list dsRecCmd ids local_vars stmts later_ids later_rets rec_ids rec_rets = do let later_id_set = mkVarSet later_ids rec_id_set = mkVarSet rec_ids local_vars' = rec_id_set `unionVarSet` later_id_set `unionVarSet` local_vars -- mk_pair_fn = \ (out_ids) -> ((later_rets),(rec_rets)) core_later_rets <- mapM dsExpr later_rets core_rec_rets <- mapM dsExpr rec_rets let -- possibly polymorphic version of vars of later_ids and rec_ids out_ids = exprsFreeIdsList (core_later_rets ++ core_rec_rets) out_ty = mkBigCoreVarTupTy out_ids later_tuple = mkBigCoreTup core_later_rets later_ty = mkBigCoreVarTupTy later_ids rec_tuple = mkBigCoreTup core_rec_rets rec_ty = mkBigCoreVarTupTy rec_ids out_pair = mkCorePairExpr later_tuple rec_tuple out_pair_ty = mkCorePairTy later_ty rec_ty mk_pair_fn <- matchEnv out_ids out_pair -- ss (core_stmts, fv_stmts, env_ids) <- dsfixCmdStmts ids local_vars' out_ids stmts -- squash_pair_fn = \ ((env1_ids), ~(rec_ids)) -> (env_ids) rec_id <- newSysLocalDs rec_ty let env1_id_set = fv_stmts `uniqDSetMinusUniqSet` rec_id_set env1_ids = dVarSetElems env1_id_set env1_ty = mkBigCoreVarTupTy env1_ids in_pair_ty = mkCorePairTy env1_ty rec_ty core_body = mkBigCoreTup (map selectVar env_ids) where selectVar v | v `elemVarSet` rec_id_set = mkTupleSelector rec_ids v rec_id (Var rec_id) | otherwise = Var v squash_pair_fn <- matchEnvStack env1_ids rec_id core_body -- loop (premap squash_pair_fn (ss >>> arr mk_pair_fn)) let env_ty = mkBigCoreVarTupTy env_ids core_loop = do_loop ids env1_ty later_ty rec_ty (do_premap ids in_pair_ty env_ty out_pair_ty squash_pair_fn (do_compose ids env_ty out_ty out_pair_ty core_stmts (do_arr ids out_ty out_pair_ty mk_pair_fn))) return (core_loop, env1_id_set, env1_ids) {- A sequence of statements (as in a rec) is desugared to an arrow between two environments (no stack) -} dsfixCmdStmts :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- output vars of these statements -> [CmdLStmt GhcTc] -- statements to desugar -> DsM (CoreExpr, -- desugared expression DIdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list dsfixCmdStmts ids local_vars out_ids stmts = trimInput (dsCmdStmts ids local_vars out_ids stmts) -- TODO: Add levity polymorphism check for the resulting expression. -- But I (Richard E.) don't know enough about arrows to do so. dsCmdStmts :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- output vars of these statements -> [CmdLStmt GhcTc] -- statements to desugar -> [Id] -- list of vars in the input to these statements -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free dsCmdStmts ids local_vars out_ids [stmt] env_ids = dsCmdLStmt ids local_vars out_ids stmt env_ids dsCmdStmts ids local_vars out_ids (stmt:stmts) env_ids = do let bound_vars = mkVarSet (collectLStmtBinders stmt) let local_vars' = bound_vars `unionVarSet` local_vars (core_stmts, _fv_stmts, env_ids') <- dsfixCmdStmts ids local_vars' out_ids stmts (core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids' stmt env_ids return (do_compose ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy env_ids') (mkBigCoreVarTupTy out_ids) core_stmt core_stmts, fv_stmt) dsCmdStmts _ _ _ [] _ = panic "dsCmdStmts []" -- Match a list of expressions against a list of patterns, left-to-right. matchSimplys :: [CoreExpr] -- Scrutinees -> HsMatchContext Name -- Match kind -> [LPat GhcTc] -- Patterns they should match -> CoreExpr -- Return this if they all match -> CoreExpr -- Return this if they don't -> DsM CoreExpr matchSimplys [] _ctxt [] result_expr _fail_expr = return result_expr matchSimplys (exp:exps) ctxt (pat:pats) result_expr fail_expr = do match_code <- matchSimplys exps ctxt pats result_expr fail_expr matchSimply exp ctxt pat match_code fail_expr matchSimplys _ _ _ _ _ = panic "matchSimplys" -- List of leaf expressions, with set of variables bound in each leavesMatch :: LMatch GhcTc (Located (body GhcTc)) -> [(Located (body GhcTc), IdSet)] leavesMatch (L _ (Match { m_pats = pats , m_grhss = GRHSs _ grhss (L _ binds) })) = let defined_vars = mkVarSet (collectPatsBinders pats) `unionVarSet` mkVarSet (collectLocalBinders binds) in [(body, mkVarSet (collectLStmtsBinders stmts) `unionVarSet` defined_vars) | L _ (GRHS _ stmts body) <- grhss] leavesMatch _ = panic "leavesMatch" -- Replace the leaf commands in a match replaceLeavesMatch :: Type -- new result type -> [Located (body' GhcTc)] -- replacement leaf expressions of that type -> LMatch GhcTc (Located (body GhcTc)) -- the matches of a case command -> ([Located (body' GhcTc)], -- remaining leaf expressions LMatch GhcTc (Located (body' GhcTc))) -- updated match replaceLeavesMatch _res_ty leaves (L loc match@(Match { m_grhss = GRHSs x grhss binds })) = let (leaves', grhss') = mapAccumL replaceLeavesGRHS leaves grhss in (leaves', L loc (match { m_ext = noExtField, m_grhss = GRHSs x grhss' binds })) replaceLeavesMatch _ _ _ = panic "replaceLeavesMatch" replaceLeavesGRHS :: [Located (body' GhcTc)] -- replacement leaf expressions of that type -> LGRHS GhcTc (Located (body GhcTc)) -- rhss of a case command -> ([Located (body' GhcTc)], -- remaining leaf expressions LGRHS GhcTc (Located (body' GhcTc))) -- updated GRHS replaceLeavesGRHS (leaf:leaves) (L loc (GRHS x stmts _)) = (leaves, L loc (GRHS x stmts leaf)) replaceLeavesGRHS [] _ = panic "replaceLeavesGRHS []" replaceLeavesGRHS _ _ = panic "replaceLeavesGRHS" -- Balanced fold of a non-empty list. foldb :: (a -> a -> a) -> [a] -> a foldb _ [] = error "foldb of empty list" foldb _ [x] = x foldb f xs = foldb f (fold_pairs xs) where fold_pairs [] = [] fold_pairs [x] = [x] fold_pairs (x1:x2:xs) = f x1 x2:fold_pairs xs {- Note [Dictionary binders in ConPatOut] See also same Note in GHC.Hs.Utils ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following functions to collect value variables from patterns are copied from GHC.Hs.Utils, with one change: we also collect the dictionary bindings (pat_binds) from ConPatOut. We need them for cases like h :: Arrow a => Int -> a (Int,Int) Int h x = proc (y,z) -> case compare x y of GT -> returnA -< z+x The type checker turns the case into case compare x y of GT { p77 = plusInt } -> returnA -< p77 z x Here p77 is a local binding for the (+) operation. See comments in GHC.Hs.Utils for why the other version does not include these bindings. -} collectPatBinders :: LPat GhcTc -> [Id] collectPatBinders pat = collectl pat [] collectPatsBinders :: [LPat GhcTc] -> [Id] collectPatsBinders pats = foldr collectl [] pats --------------------- collectl :: LPat GhcTc -> [Id] -> [Id] -- See Note [Dictionary binders in ConPatOut] collectl (L _ pat) bndrs = go pat where go (VarPat _ (L _ var)) = var : bndrs go (WildPat _) = bndrs go (LazyPat _ pat) = collectl pat bndrs go (BangPat _ pat) = collectl pat bndrs go (AsPat _ (L _ a) pat) = a : collectl pat bndrs go (ParPat _ pat) = collectl pat bndrs go (ListPat _ pats) = foldr collectl bndrs pats go (TuplePat _ pats _) = foldr collectl bndrs pats go (SumPat _ pat _ _) = collectl pat bndrs go (ConPatIn _ ps) = foldr collectl bndrs (hsConPatArgs ps) go (ConPatOut {pat_args=ps, pat_binds=ds}) = collectEvBinders ds ++ foldr collectl bndrs (hsConPatArgs ps) go (LitPat _ _) = bndrs go (NPat {}) = bndrs go (NPlusKPat _ (L _ n) _ _ _ _) = n : bndrs go (SigPat _ pat _) = collectl pat bndrs go (CoPat _ _ pat _) = collectl (noLoc pat) bndrs go (ViewPat _ _ pat) = collectl pat bndrs go p@(SplicePat {}) = pprPanic "collectl/go" (ppr p) go p@(XPat {}) = pprPanic "collectl/go" (ppr p) collectEvBinders :: TcEvBinds -> [Id] collectEvBinders (EvBinds bs) = foldr add_ev_bndr [] bs collectEvBinders (TcEvBinds {}) = panic "ToDo: collectEvBinders" add_ev_bndr :: EvBind -> [Id] -> [Id] add_ev_bndr (EvBind { eb_lhs = b }) bs | isId b = b:bs | otherwise = bs -- A worry: what about coercion variable binders?? collectLStmtsBinders :: [LStmt GhcTc body] -> [Id] collectLStmtsBinders = concatMap collectLStmtBinders collectLStmtBinders :: LStmt GhcTc body -> [Id] collectLStmtBinders = collectStmtBinders . unLoc collectStmtBinders :: Stmt GhcTc body -> [Id] collectStmtBinders (RecStmt { recS_later_ids = later_ids }) = later_ids collectStmtBinders stmt = HsUtils.collectStmtBinders stmt
sdiehl/ghc
compiler/deSugar/DsArrows.hs
Haskell
bsd-3-clause
49,514
module Yawn.Test.BlackBox.ParserTest where import Test.HUnit import Yawn.Test.Common tests :: Test tests = TestList [ TestLabel "TestSimpleGet" testSimpleGet, TestLabel "TestSimplePost" testSimplePost, TestLabel "TestInvalidRequest" testInvalidRequest] testSimpleGet :: Test testSimpleGet = TestCase $ do response <- transmit "GET / HTTP/1.1" assertEqual "GET /" "HTTP/1.1 200 Ok" response response2 <- transmit "GET / HTTP/1.0" assertEqual "GET /" "HTTP/1.0 200 Ok" response2 testSimplePost :: Test testSimplePost = TestCase $ do response <- transmit "POST / HTTP/1.1" assertEqual "POST /" "HTTP/1.1 200 Ok" response response2 <- transmit "POST / HTTP/1.0" assertEqual "POST /" "HTTP/1.0 200 Ok" response2 testInvalidRequest :: Test testInvalidRequest = TestCase $ do response <- transmit "INVALID / HTTP/1.0" assertEqual "INVALID /" "HTTP/1.0 400 Bad Request" response
ameingast/yawn
test/src/Yawn/Test/BlackBox/ParserTest.hs
Haskell
bsd-3-clause
903
{-# LANGUAGE CPP #-} {-# LANGUAGE OverloadedStrings #-} module Test.SSH.Sender (sshSenderTests) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Test.Tasty (TestTree, testGroup) ----------- -- Tests -- ----------- -- | TODO: tests. sshSenderTests :: TestTree sshSenderTests = testGroup "SSH/Sender.hs tests" [ ]
cdepillabout/ssh
test/Test/SSH/Sender.hs
Haskell
bsd-3-clause
354
{-# LANGUAGE QuasiQuotes, TypeFamilies #-} import Text.Papillon import Data.Char import System.Environment main :: IO () main = do arg : _ <- getArgs case runError $ expr $ parse arg of Right (r, _) -> print r Left _ -> putStrLn "parse error" [papillon| op1 :: Int -> Int -> Int = '*' { (*) } / '/' { div } / '%' { mod } ; op2 :: Int -> Int -> Int = '+' { (+) } / '-' { (-) } ; factor :: Int = ds:<isDigit>+ { read ds } / '(' e:expr ')' { e } ; term :: Int = f0:factor fs:(op:op1 f:factor { (`op` f) })* { foldl (flip ($)) f0 fs } ; expr :: Int = t0:term ts:(op:op2 t:term { (`op` t) })* { foldl (flip ($)) t0 ts } ; |]
YoshikuniJujo/papillon
examples/arith.hs
Haskell
bsd-3-clause
659
{- (c) The AQUA Project, Glasgow University, 1993-1998 \section[Simplify]{The main module of the simplifier} -} {-# LANGUAGE CPP #-} module Simplify ( simplTopBinds, simplExpr, simplRules ) where #include "HsVersions.h" import DynFlags import SimplMonad import Type hiding ( substTy, substTyVar, extendTCvSubst ) import SimplEnv import SimplUtils import FamInstEnv ( FamInstEnv ) import Literal ( litIsLifted ) --, mkMachInt ) -- temporalily commented out. See #8326 import Id import MkId ( seqId, voidPrimId ) import MkCore ( mkImpossibleExpr, castBottomExpr ) import IdInfo import Name ( Name, mkSystemVarName, isExternalName ) import Coercion hiding ( substCo, substCoVar ) import OptCoercion ( optCoercion ) import FamInstEnv ( topNormaliseType_maybe ) import DataCon ( DataCon, dataConWorkId, dataConRepStrictness , isMarkedStrict, dataConRepArgTys ) --, dataConTyCon, dataConTag, fIRST_TAG ) --import TyCon ( isEnumerationTyCon ) -- temporalily commented out. See #8326 import CoreMonad ( Tick(..), SimplifierMode(..) ) import CoreSyn import Demand ( StrictSig(..), dmdTypeDepth, isStrictDmd ) import PprCore ( pprCoreExpr ) import CoreUnfold import CoreUtils import CoreArity --import PrimOp ( tagToEnumKey ) -- temporalily commented out. See #8326 import Rules ( mkRuleInfo, lookupRule, getRules ) import TysPrim ( voidPrimTy ) --, intPrimTy ) -- temporalily commented out. See #8326 import BasicTypes ( TopLevelFlag(..), isTopLevel, RecFlag(..) ) import MonadUtils ( foldlM, mapAccumLM, liftIO ) import Maybes ( orElse ) --import Unique ( hasKey ) -- temporalily commented out. See #8326 import Control.Monad import Outputable import FastString import Pair import Util import ErrUtils {- The guts of the simplifier is in this module, but the driver loop for the simplifier is in SimplCore.hs. ----------------------------------------- *** IMPORTANT NOTE *** ----------------------------------------- The simplifier used to guarantee that the output had no shadowing, but it does not do so any more. (Actually, it never did!) The reason is documented with simplifyArgs. ----------------------------------------- *** IMPORTANT NOTE *** ----------------------------------------- Many parts of the simplifier return a bunch of "floats" as well as an expression. This is wrapped as a datatype SimplUtils.FloatsWith. All "floats" are let-binds, not case-binds, but some non-rec lets may be unlifted (with RHS ok-for-speculation). ----------------------------------------- ORGANISATION OF FUNCTIONS ----------------------------------------- simplTopBinds - simplify all top-level binders - for NonRec, call simplRecOrTopPair - for Rec, call simplRecBind ------------------------------ simplExpr (applied lambda) ==> simplNonRecBind simplExpr (Let (NonRec ...) ..) ==> simplNonRecBind simplExpr (Let (Rec ...) ..) ==> simplify binders; simplRecBind ------------------------------ simplRecBind [binders already simplfied] - use simplRecOrTopPair on each pair in turn simplRecOrTopPair [binder already simplified] Used for: recursive bindings (top level and nested) top-level non-recursive bindings Returns: - check for PreInlineUnconditionally - simplLazyBind simplNonRecBind Used for: non-top-level non-recursive bindings beta reductions (which amount to the same thing) Because it can deal with strict arts, it takes a "thing-inside" and returns an expression - check for PreInlineUnconditionally - simplify binder, including its IdInfo - if strict binding simplStrictArg mkAtomicArgs completeNonRecX else simplLazyBind addFloats simplNonRecX: [given a *simplified* RHS, but an *unsimplified* binder] Used for: binding case-binder and constr args in a known-constructor case - check for PreInLineUnconditionally - simplify binder - completeNonRecX ------------------------------ simplLazyBind: [binder already simplified, RHS not] Used for: recursive bindings (top level and nested) top-level non-recursive bindings non-top-level, but *lazy* non-recursive bindings [must not be strict or unboxed] Returns floats + an augmented environment, not an expression - substituteIdInfo and add result to in-scope [so that rules are available in rec rhs] - simplify rhs - mkAtomicArgs - float if exposes constructor or PAP - completeBind completeNonRecX: [binder and rhs both simplified] - if the the thing needs case binding (unlifted and not ok-for-spec) build a Case else completeBind addFloats completeBind: [given a simplified RHS] [used for both rec and non-rec bindings, top level and not] - try PostInlineUnconditionally - add unfolding [this is the only place we add an unfolding] - add arity Right hand sides and arguments ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In many ways we want to treat (a) the right hand side of a let(rec), and (b) a function argument in the same way. But not always! In particular, we would like to leave these arguments exactly as they are, so they will match a RULE more easily. f (g x, h x) g (+ x) It's harder to make the rule match if we ANF-ise the constructor, or eta-expand the PAP: f (let { a = g x; b = h x } in (a,b)) g (\y. + x y) On the other hand if we see the let-defns p = (g x, h x) q = + x then we *do* want to ANF-ise and eta-expand, so that p and q can be safely inlined. Even floating lets out is a bit dubious. For let RHS's we float lets out if that exposes a value, so that the value can be inlined more vigorously. For example r = let x = e in (x,x) Here, if we float the let out we'll expose a nice constructor. We did experiments that showed this to be a generally good thing. But it was a bad thing to float lets out unconditionally, because that meant they got allocated more often. For function arguments, there's less reason to expose a constructor (it won't get inlined). Just possibly it might make a rule match, but I'm pretty skeptical. So for the moment we don't float lets out of function arguments either. Eta expansion ~~~~~~~~~~~~~~ For eta expansion, we want to catch things like case e of (a,b) -> \x -> case a of (p,q) -> \y -> r If the \x was on the RHS of a let, we'd eta expand to bring the two lambdas together. And in general that's a good thing to do. Perhaps we should eta expand wherever we find a (value) lambda? Then the eta expansion at a let RHS can concentrate solely on the PAP case. ************************************************************************ * * \subsection{Bindings} * * ************************************************************************ -} simplTopBinds :: SimplEnv -> [InBind] -> SimplM SimplEnv simplTopBinds env0 binds0 = do { -- Put all the top-level binders into scope at the start -- so that if a transformation rule has unexpectedly brought -- anything into scope, then we don't get a complaint about that. -- It's rather as if the top-level binders were imported. -- See note [Glomming] in OccurAnal. ; env1 <- simplRecBndrs env0 (bindersOfBinds binds0) ; env2 <- simpl_binds env1 binds0 ; freeTick SimplifierDone ; return env2 } where -- We need to track the zapped top-level binders, because -- they should have their fragile IdInfo zapped (notably occurrence info) -- That's why we run down binds and bndrs' simultaneously. -- simpl_binds :: SimplEnv -> [InBind] -> SimplM SimplEnv simpl_binds env [] = return env simpl_binds env (bind:binds) = do { env' <- simpl_bind env bind ; simpl_binds env' binds } simpl_bind env (Rec pairs) = simplRecBind env TopLevel pairs simpl_bind env (NonRec b r) = do { (env', b') <- addBndrRules env b (lookupRecBndr env b) ; simplRecOrTopPair env' TopLevel NonRecursive b b' r } {- ************************************************************************ * * \subsection{Lazy bindings} * * ************************************************************************ simplRecBind is used for * recursive bindings only -} simplRecBind :: SimplEnv -> TopLevelFlag -> [(InId, InExpr)] -> SimplM SimplEnv simplRecBind env0 top_lvl pairs0 = do { (env_with_info, triples) <- mapAccumLM add_rules env0 pairs0 ; env1 <- go (zapFloats env_with_info) triples ; return (env0 `addRecFloats` env1) } -- addFloats adds the floats from env1, -- _and_ updates env0 with the in-scope set from env1 where add_rules :: SimplEnv -> (InBndr,InExpr) -> SimplM (SimplEnv, (InBndr, OutBndr, InExpr)) -- Add the (substituted) rules to the binder add_rules env (bndr, rhs) = do { (env', bndr') <- addBndrRules env bndr (lookupRecBndr env bndr) ; return (env', (bndr, bndr', rhs)) } go env [] = return env go env ((old_bndr, new_bndr, rhs) : pairs) = do { env' <- simplRecOrTopPair env top_lvl Recursive old_bndr new_bndr rhs ; go env' pairs } {- simplOrTopPair is used for * recursive bindings (whether top level or not) * top-level non-recursive bindings It assumes the binder has already been simplified, but not its IdInfo. -} simplRecOrTopPair :: SimplEnv -> TopLevelFlag -> RecFlag -> InId -> OutBndr -> InExpr -- Binder and rhs -> SimplM SimplEnv -- Returns an env that includes the binding simplRecOrTopPair env top_lvl is_rec old_bndr new_bndr rhs = do { dflags <- getDynFlags ; trace_bind dflags $ if preInlineUnconditionally dflags env top_lvl old_bndr rhs -- Check for unconditional inline then do tick (PreInlineUnconditionally old_bndr) return (extendIdSubst env old_bndr (mkContEx env rhs)) else simplLazyBind env top_lvl is_rec old_bndr new_bndr rhs env } where trace_bind dflags thing_inside | not (dopt Opt_D_verbose_core2core dflags) = thing_inside | otherwise = pprTrace "SimplBind" (ppr old_bndr) thing_inside -- trace_bind emits a trace for each top-level binding, which -- helps to locate the tracing for inlining and rule firing {- simplLazyBind is used for * [simplRecOrTopPair] recursive bindings (whether top level or not) * [simplRecOrTopPair] top-level non-recursive bindings * [simplNonRecE] non-top-level *lazy* non-recursive bindings Nota bene: 1. It assumes that the binder is *already* simplified, and is in scope, and its IdInfo too, except unfolding 2. It assumes that the binder type is lifted. 3. It does not check for pre-inline-unconditionally; that should have been done already. -} simplLazyBind :: SimplEnv -> TopLevelFlag -> RecFlag -> InId -> OutId -- Binder, both pre-and post simpl -- The OutId has IdInfo, except arity, unfolding -> InExpr -> SimplEnv -- The RHS and its environment -> SimplM SimplEnv -- Precondition: rhs obeys the let/app invariant simplLazyBind env top_lvl is_rec bndr bndr1 rhs rhs_se = -- pprTrace "simplLazyBind" ((ppr bndr <+> ppr bndr1) $$ ppr rhs $$ ppr (seIdSubst rhs_se)) $ do { let rhs_env = rhs_se `setInScope` env (tvs, body) = case collectTyAndValBinders rhs of (tvs, [], body) | surely_not_lam body -> (tvs, body) _ -> ([], rhs) surely_not_lam (Lam {}) = False surely_not_lam (Tick t e) | not (tickishFloatable t) = surely_not_lam e -- eta-reduction could float surely_not_lam _ = True -- Do not do the "abstract tyyvar" thing if there's -- a lambda inside, because it defeats eta-reduction -- f = /\a. \x. g a x -- should eta-reduce. ; (body_env, tvs') <- simplBinders rhs_env tvs -- See Note [Floating and type abstraction] in SimplUtils -- Simplify the RHS ; let rhs_cont = mkRhsStop (substTy body_env (exprType body)) ; (body_env1, body1) <- simplExprF body_env body rhs_cont -- ANF-ise a constructor or PAP rhs ; (body_env2, body2) <- prepareRhs top_lvl body_env1 bndr1 body1 ; (env', rhs') <- if not (doFloatFromRhs top_lvl is_rec False body2 body_env2) then -- No floating, revert to body1 do { rhs' <- mkLam tvs' (wrapFloats body_env1 body1) rhs_cont ; return (env, rhs') } else if null tvs then -- Simple floating do { tick LetFloatFromLet ; return (addFloats env body_env2, body2) } else -- Do type-abstraction first do { tick LetFloatFromLet ; (poly_binds, body3) <- abstractFloats tvs' body_env2 body2 ; rhs' <- mkLam tvs' body3 rhs_cont ; env' <- foldlM (addPolyBind top_lvl) env poly_binds ; return (env', rhs') } ; completeBind env' top_lvl bndr bndr1 rhs' } {- A specialised variant of simplNonRec used when the RHS is already simplified, notably in knownCon. It uses case-binding where necessary. -} simplNonRecX :: SimplEnv -> InId -- Old binder -> OutExpr -- Simplified RHS -> SimplM SimplEnv -- Precondition: rhs satisfies the let/app invariant simplNonRecX env bndr new_rhs | isDeadBinder bndr -- Not uncommon; e.g. case (a,b) of c { (p,q) -> p } = return env -- Here c is dead, and we avoid creating -- the binding c = (a,b) | Coercion co <- new_rhs = return (extendTCvSubst env bndr (mkCoercionTy co)) | otherwise = do { (env', bndr') <- simplBinder env bndr ; completeNonRecX NotTopLevel env' (isStrictId bndr) bndr bndr' new_rhs } -- simplNonRecX is only used for NotTopLevel things completeNonRecX :: TopLevelFlag -> SimplEnv -> Bool -> InId -- Old binder -> OutId -- New binder -> OutExpr -- Simplified RHS -> SimplM SimplEnv -- Precondition: rhs satisfies the let/app invariant -- See Note [CoreSyn let/app invariant] in CoreSyn completeNonRecX top_lvl env is_strict old_bndr new_bndr new_rhs = do { (env1, rhs1) <- prepareRhs top_lvl (zapFloats env) new_bndr new_rhs ; (env2, rhs2) <- if doFloatFromRhs NotTopLevel NonRecursive is_strict rhs1 env1 then do { tick LetFloatFromLet ; return (addFloats env env1, rhs1) } -- Add the floats to the main env else return (env, wrapFloats env1 rhs1) -- Wrap the floats around the RHS ; completeBind env2 NotTopLevel old_bndr new_bndr rhs2 } {- {- No, no, no! Do not try preInlineUnconditionally in completeNonRecX Doing so risks exponential behaviour, because new_rhs has been simplified once already In the cases described by the folowing commment, postInlineUnconditionally will catch many of the relevant cases. -- This happens; for example, the case_bndr during case of -- known constructor: case (a,b) of x { (p,q) -> ... } -- Here x isn't mentioned in the RHS, so we don't want to -- create the (dead) let-binding let x = (a,b) in ... -- -- Similarly, single occurrences can be inlined vigourously -- e.g. case (f x, g y) of (a,b) -> .... -- If a,b occur once we can avoid constructing the let binding for them. Furthermore in the case-binding case preInlineUnconditionally risks extra thunks -- Consider case I# (quotInt# x y) of -- I# v -> let w = J# v in ... -- If we gaily inline (quotInt# x y) for v, we end up building an -- extra thunk: -- let w = J# (quotInt# x y) in ... -- because quotInt# can fail. | preInlineUnconditionally env NotTopLevel bndr new_rhs = thing_inside (extendIdSubst env bndr (DoneEx new_rhs)) -} ---------------------------------- prepareRhs takes a putative RHS, checks whether it's a PAP or constructor application and, if so, converts it to ANF, so that the resulting thing can be inlined more easily. Thus x = (f a, g b) becomes t1 = f a t2 = g b x = (t1,t2) We also want to deal well cases like this v = (f e1 `cast` co) e2 Here we want to make e1,e2 trivial and get x1 = e1; x2 = e2; v = (f x1 `cast` co) v2 That's what the 'go' loop in prepareRhs does -} prepareRhs :: TopLevelFlag -> SimplEnv -> OutId -> OutExpr -> SimplM (SimplEnv, OutExpr) -- Adds new floats to the env iff that allows us to return a good RHS prepareRhs top_lvl env id (Cast rhs co) -- Note [Float coercions] | Pair ty1 _ty2 <- coercionKind co -- Do *not* do this if rhs has an unlifted type , not (isUnLiftedType ty1) -- see Note [Float coercions (unlifted)] = do { (env', rhs') <- makeTrivialWithInfo top_lvl env sanitised_info rhs ; return (env', Cast rhs' co) } where sanitised_info = vanillaIdInfo `setStrictnessInfo` strictnessInfo info `setDemandInfo` demandInfo info info = idInfo id prepareRhs top_lvl env0 _ rhs0 = do { (_is_exp, env1, rhs1) <- go 0 env0 rhs0 ; return (env1, rhs1) } where go n_val_args env (Cast rhs co) = do { (is_exp, env', rhs') <- go n_val_args env rhs ; return (is_exp, env', Cast rhs' co) } go n_val_args env (App fun (Type ty)) = do { (is_exp, env', rhs') <- go n_val_args env fun ; return (is_exp, env', App rhs' (Type ty)) } go n_val_args env (App fun arg) = do { (is_exp, env', fun') <- go (n_val_args+1) env fun ; case is_exp of True -> do { (env'', arg') <- makeTrivial top_lvl env' arg ; return (True, env'', App fun' arg') } False -> return (False, env, App fun arg) } go n_val_args env (Var fun) = return (is_exp, env, Var fun) where is_exp = isExpandableApp fun n_val_args -- The fun a constructor or PAP -- See Note [CONLIKE pragma] in BasicTypes -- The definition of is_exp should match that in -- OccurAnal.occAnalApp go n_val_args env (Tick t rhs) -- We want to be able to float bindings past this -- tick. Non-scoping ticks don't care. | tickishScoped t == NoScope = do { (is_exp, env', rhs') <- go n_val_args env rhs ; return (is_exp, env', Tick t rhs') } -- On the other hand, for scoping ticks we need to be able to -- copy them on the floats, which in turn is only allowed if -- we can obtain non-counting ticks. | not (tickishCounts t) || tickishCanSplit t = do { (is_exp, env', rhs') <- go n_val_args (zapFloats env) rhs ; let tickIt (id, expr) = (id, mkTick (mkNoCount t) expr) floats' = seFloats $ env `addFloats` mapFloats env' tickIt ; return (is_exp, env' { seFloats = floats' }, Tick t rhs') } go _ env other = return (False, env, other) {- Note [Float coercions] ~~~~~~~~~~~~~~~~~~~~~~ When we find the binding x = e `cast` co we'd like to transform it to x' = e x = x `cast` co -- A trivial binding There's a chance that e will be a constructor application or function, or something like that, so moving the coercion to the usage site may well cancel the coercions and lead to further optimisation. Example: data family T a :: * data instance T Int = T Int foo :: Int -> Int -> Int foo m n = ... where x = T m go 0 = 0 go n = case x of { T m -> go (n-m) } -- This case should optimise Note [Preserve strictness when floating coercions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In the Note [Float coercions] transformation, keep the strictness info. Eg f = e `cast` co -- f has strictness SSL When we transform to f' = e -- f' also has strictness SSL f = f' `cast` co -- f still has strictness SSL Its not wrong to drop it on the floor, but better to keep it. Note [Float coercions (unlifted)] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BUT don't do [Float coercions] if 'e' has an unlifted type. This *can* happen: foo :: Int = (error (# Int,Int #) "urk") `cast` CoUnsafe (# Int,Int #) Int If do the makeTrivial thing to the error call, we'll get foo = case error (# Int,Int #) "urk" of v -> v `cast` ... But 'v' isn't in scope! These strange casts can happen as a result of case-of-case bar = case (case x of { T -> (# 2,3 #); F -> error "urk" }) of (# p,q #) -> p+q -} makeTrivialArg :: SimplEnv -> ArgSpec -> SimplM (SimplEnv, ArgSpec) makeTrivialArg env (ValArg e) = do { (env', e') <- makeTrivial NotTopLevel env e ; return (env', ValArg e') } makeTrivialArg env arg = return (env, arg) -- CastBy, TyArg makeTrivial :: TopLevelFlag -> SimplEnv -> OutExpr -> SimplM (SimplEnv, OutExpr) -- Binds the expression to a variable, if it's not trivial, returning the variable makeTrivial top_lvl env expr = makeTrivialWithInfo top_lvl env vanillaIdInfo expr makeTrivialWithInfo :: TopLevelFlag -> SimplEnv -> IdInfo -> OutExpr -> SimplM (SimplEnv, OutExpr) -- Propagate strictness and demand info to the new binder -- Note [Preserve strictness when floating coercions] -- Returned SimplEnv has same substitution as incoming one makeTrivialWithInfo top_lvl env info expr | exprIsTrivial expr -- Already trivial || not (bindingOk top_lvl expr expr_ty) -- Cannot trivialise -- See Note [Cannot trivialise] = return (env, expr) | otherwise -- See Note [Take care] below = do { uniq <- getUniqueM ; let name = mkSystemVarName uniq (fsLit "a") var = mkLocalIdOrCoVarWithInfo name expr_ty info ; env' <- completeNonRecX top_lvl env False var var expr ; expr' <- simplVar env' var ; return (env', expr') } -- The simplVar is needed becase we're constructing a new binding -- a = rhs -- And if rhs is of form (rhs1 |> co), then we might get -- a1 = rhs1 -- a = a1 |> co -- and now a's RHS is trivial and can be substituted out, and that -- is what completeNonRecX will do -- To put it another way, it's as if we'd simplified -- let var = e in var where expr_ty = exprType expr bindingOk :: TopLevelFlag -> CoreExpr -> Type -> Bool -- True iff we can have a binding of this expression at this level -- Precondition: the type is the type of the expression bindingOk top_lvl _ expr_ty | isTopLevel top_lvl = not (isUnLiftedType expr_ty) | otherwise = True {- Note [Cannot trivialise] ~~~~~~~~~~~~~~~~~~~~~~~~ Consider tih f :: Int -> Addr# foo :: Bar foo = Bar (f 3) Then we can't ANF-ise foo, even though we'd like to, because we can't make a top-level binding for the Addr# (f 3). And if so we don't want to turn it into foo = let x = f 3 in Bar x because we'll just end up inlining x back, and that makes the simplifier loop. Better not to ANF-ise it at all. A case in point is literal strings (a MachStr is not regarded as trivial): foo = Ptr "blob"# We don't want to ANF-ise this. ************************************************************************ * * \subsection{Completing a lazy binding} * * ************************************************************************ completeBind * deals only with Ids, not TyVars * takes an already-simplified binder and RHS * is used for both recursive and non-recursive bindings * is used for both top-level and non-top-level bindings It does the following: - tries discarding a dead binding - tries PostInlineUnconditionally - add unfolding [this is the only place we add an unfolding] - add arity It does *not* attempt to do let-to-case. Why? Because it is used for - top-level bindings (when let-to-case is impossible) - many situations where the "rhs" is known to be a WHNF (so let-to-case is inappropriate). Nor does it do the atomic-argument thing -} completeBind :: SimplEnv -> TopLevelFlag -- Flag stuck into unfolding -> InId -- Old binder -> OutId -> OutExpr -- New binder and RHS -> SimplM SimplEnv -- completeBind may choose to do its work -- * by extending the substitution (e.g. let x = y in ...) -- * or by adding to the floats in the envt -- -- Precondition: rhs obeys the let/app invariant completeBind env top_lvl old_bndr new_bndr new_rhs | isCoVar old_bndr = case new_rhs of Coercion co -> return (extendTCvSubst env old_bndr (mkCoercionTy co)) _ -> return (addNonRec env new_bndr new_rhs) | otherwise = ASSERT( isId new_bndr ) do { let old_info = idInfo old_bndr old_unf = unfoldingInfo old_info occ_info = occInfo old_info -- Do eta-expansion on the RHS of the binding -- See Note [Eta-expanding at let bindings] in SimplUtils ; (new_arity, final_rhs) <- tryEtaExpandRhs env new_bndr new_rhs -- Simplify the unfolding ; new_unfolding <- simplLetUnfolding env top_lvl old_bndr final_rhs old_unf ; dflags <- getDynFlags ; if postInlineUnconditionally dflags env top_lvl new_bndr occ_info final_rhs new_unfolding -- Inline and discard the binding then do { tick (PostInlineUnconditionally old_bndr) ; return (extendIdSubst env old_bndr (DoneEx final_rhs)) } -- Use the substitution to make quite, quite sure that the -- substitution will happen, since we are going to discard the binding else do { let info1 = idInfo new_bndr `setArityInfo` new_arity -- Unfolding info: Note [Setting the new unfolding] info2 = info1 `setUnfoldingInfo` new_unfolding -- Demand info: Note [Setting the demand info] -- -- We also have to nuke demand info if for some reason -- eta-expansion *reduces* the arity of the binding to less -- than that of the strictness sig. This can happen: see Note [Arity decrease]. info3 | isEvaldUnfolding new_unfolding || (case strictnessInfo info2 of StrictSig dmd_ty -> new_arity < dmdTypeDepth dmd_ty) = zapDemandInfo info2 `orElse` info2 | otherwise = info2 final_id = new_bndr `setIdInfo` info3 ; -- pprTrace "Binding" (ppr final_id <+> ppr new_unfolding) $ return (addNonRec env final_id final_rhs) } } -- The addNonRec adds it to the in-scope set too ------------------------------ addPolyBind :: TopLevelFlag -> SimplEnv -> OutBind -> SimplM SimplEnv -- Add a new binding to the environment, complete with its unfolding -- but *do not* do postInlineUnconditionally, because we have already -- processed some of the scope of the binding -- We still want the unfolding though. Consider -- let -- x = /\a. let y = ... in Just y -- in body -- Then we float the y-binding out (via abstractFloats and addPolyBind) -- but 'x' may well then be inlined in 'body' in which case we'd like the -- opportunity to inline 'y' too. -- -- INVARIANT: the arity is correct on the incoming binders addPolyBind top_lvl env (NonRec poly_id rhs) = do { unfolding <- simplLetUnfolding env top_lvl poly_id rhs noUnfolding -- Assumes that poly_id did not have an INLINE prag -- which is perhaps wrong. ToDo: think about this ; let final_id = setIdInfo poly_id $ idInfo poly_id `setUnfoldingInfo` unfolding ; return (addNonRec env final_id rhs) } addPolyBind _ env bind@(Rec _) = return (extendFloats env bind) -- Hack: letrecs are more awkward, so we extend "by steam" -- without adding unfoldings etc. At worst this leads to -- more simplifier iterations {- Note [Arity decrease] ~~~~~~~~~~~~~~~~~~~~~~~~ Generally speaking the arity of a binding should not decrease. But it *can* legitimately happen because of RULES. Eg f = g Int where g has arity 2, will have arity 2. But if there's a rewrite rule g Int --> h where h has arity 1, then f's arity will decrease. Here's a real-life example, which is in the output of Specialise: Rec { $dm {Arity 2} = \d.\x. op d {-# RULES forall d. $dm Int d = $s$dm #-} dInt = MkD .... opInt ... opInt {Arity 1} = $dm dInt $s$dm {Arity 0} = \x. op dInt } Here opInt has arity 1; but when we apply the rule its arity drops to 0. That's why Specialise goes to a little trouble to pin the right arity on specialised functions too. Note [Setting the demand info] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If the unfolding is a value, the demand info may go pear-shaped, so we nuke it. Example: let x = (a,b) in case x of (p,q) -> h p q x Here x is certainly demanded. But after we've nuked the case, we'll get just let x = (a,b) in h a b x and now x is not demanded (I'm assuming h is lazy) This really happens. Similarly let f = \x -> e in ...f..f... After inlining f at some of its call sites the original binding may (for example) be no longer strictly demanded. The solution here is a bit ad hoc... ************************************************************************ * * \subsection[Simplify-simplExpr]{The main function: simplExpr} * * ************************************************************************ The reason for this OutExprStuff stuff is that we want to float *after* simplifying a RHS, not before. If we do so naively we get quadratic behaviour as things float out. To see why it's important to do it after, consider this (real) example: let t = f x in fst t ==> let t = let a = e1 b = e2 in (a,b) in fst t ==> let a = e1 b = e2 t = (a,b) in a -- Can't inline a this round, cos it appears twice ==> e1 Each of the ==> steps is a round of simplification. We'd save a whole round if we float first. This can cascade. Consider let f = g d in \x -> ...f... ==> let f = let d1 = ..d.. in \y -> e in \x -> ...f... ==> let d1 = ..d.. in \x -> ...(\y ->e)... Only in this second round can the \y be applied, and it might do the same again. -} simplExpr :: SimplEnv -> CoreExpr -> SimplM CoreExpr simplExpr env expr = simplExprC env expr (mkBoringStop expr_out_ty) where expr_out_ty :: OutType expr_out_ty = substTy env (exprType expr) simplExprC :: SimplEnv -> CoreExpr -> SimplCont -> SimplM CoreExpr -- Simplify an expression, given a continuation simplExprC env expr cont = -- pprTrace "simplExprC" (ppr expr $$ ppr cont {- $$ ppr (seIdSubst env) -} $$ ppr (seFloats env) ) $ do { (env', expr') <- simplExprF (zapFloats env) expr cont ; -- pprTrace "simplExprC ret" (ppr expr $$ ppr expr') $ -- pprTrace "simplExprC ret3" (ppr (seInScope env')) $ -- pprTrace "simplExprC ret4" (ppr (seFloats env')) $ return (wrapFloats env' expr') } -------------------------------------------------- simplExprF :: SimplEnv -> InExpr -> SimplCont -> SimplM (SimplEnv, OutExpr) simplExprF env e cont = {- pprTrace "simplExprF" (vcat [ ppr e , text "cont =" <+> ppr cont , text "inscope =" <+> ppr (seInScope env) , text "tvsubst =" <+> ppr (seTvSubst env) , text "idsubst =" <+> ppr (seIdSubst env) , text "cvsubst =" <+> ppr (seCvSubst env) {- , ppr (seFloats env) -} ]) $ -} simplExprF1 env e cont simplExprF1 :: SimplEnv -> InExpr -> SimplCont -> SimplM (SimplEnv, OutExpr) simplExprF1 env (Var v) cont = simplIdF env v cont simplExprF1 env (Lit lit) cont = rebuild env (Lit lit) cont simplExprF1 env (Tick t expr) cont = simplTick env t expr cont simplExprF1 env (Cast body co) cont = simplCast env body co cont simplExprF1 env (Coercion co) cont = simplCoercionF env co cont simplExprF1 env (Type ty) cont = ASSERT( contIsRhsOrArg cont ) rebuild env (Type (substTy env ty)) cont simplExprF1 env (App fun arg) cont = simplExprF env fun $ case arg of Type ty -> ApplyToTy { sc_arg_ty = substTy env ty , sc_hole_ty = substTy env (exprType fun) , sc_cont = cont } _ -> ApplyToVal { sc_arg = arg, sc_env = env , sc_dup = NoDup, sc_cont = cont } simplExprF1 env expr@(Lam {}) cont = simplLam env zapped_bndrs body cont -- The main issue here is under-saturated lambdas -- (\x1. \x2. e) arg1 -- Here x1 might have "occurs-once" occ-info, because occ-info -- is computed assuming that a group of lambdas is applied -- all at once. If there are too few args, we must zap the -- occ-info, UNLESS the remaining binders are one-shot where (bndrs, body) = collectBinders expr zapped_bndrs | need_to_zap = map zap bndrs | otherwise = bndrs need_to_zap = any zappable_bndr (drop n_args bndrs) n_args = countArgs cont -- NB: countArgs counts all the args (incl type args) -- and likewise drop counts all binders (incl type lambdas) zappable_bndr b = isId b && not (isOneShotBndr b) zap b | isTyVar b = b | otherwise = zapLamIdInfo b simplExprF1 env (Case scrut bndr _ alts) cont = simplExprF env scrut (Select { sc_dup = NoDup, sc_bndr = bndr , sc_alts = alts , sc_env = env, sc_cont = cont }) simplExprF1 env (Let (Rec pairs) body) cont = do { env' <- simplRecBndrs env (map fst pairs) -- NB: bndrs' don't have unfoldings or rules -- We add them as we go down ; env'' <- simplRecBind env' NotTopLevel pairs ; simplExprF env'' body cont } simplExprF1 env (Let (NonRec bndr rhs) body) cont = simplNonRecE env bndr (rhs, env) ([], body) cont --------------------------------- simplType :: SimplEnv -> InType -> SimplM OutType -- Kept monadic just so we can do the seqType simplType env ty = -- pprTrace "simplType" (ppr ty $$ ppr (seTvSubst env)) $ seqType new_ty `seq` return new_ty where new_ty = substTy env ty --------------------------------- simplCoercionF :: SimplEnv -> InCoercion -> SimplCont -> SimplM (SimplEnv, OutExpr) simplCoercionF env co cont = do { co' <- simplCoercion env co ; rebuild env (Coercion co') cont } simplCoercion :: SimplEnv -> InCoercion -> SimplM OutCoercion simplCoercion env co = let opt_co = optCoercion (getTCvSubst env) co in seqCo opt_co `seq` return opt_co ----------------------------------- -- | Push a TickIt context outwards past applications and cases, as -- long as this is a non-scoping tick, to let case and application -- optimisations apply. simplTick :: SimplEnv -> Tickish Id -> InExpr -> SimplCont -> SimplM (SimplEnv, OutExpr) simplTick env tickish expr cont -- A scoped tick turns into a continuation, so that we can spot -- (scc t (\x . e)) in simplLam and eliminate the scc. If we didn't do -- it this way, then it would take two passes of the simplifier to -- reduce ((scc t (\x . e)) e'). -- NB, don't do this with counting ticks, because if the expr is -- bottom, then rebuildCall will discard the continuation. -- XXX: we cannot do this, because the simplifier assumes that -- the context can be pushed into a case with a single branch. e.g. -- scc<f> case expensive of p -> e -- becomes -- case expensive of p -> scc<f> e -- -- So I'm disabling this for now. It just means we will do more -- simplifier iterations that necessary in some cases. -- | tickishScoped tickish && not (tickishCounts tickish) -- = simplExprF env expr (TickIt tickish cont) -- For unscoped or soft-scoped ticks, we are allowed to float in new -- cost, so we simply push the continuation inside the tick. This -- has the effect of moving the tick to the outside of a case or -- application context, allowing the normal case and application -- optimisations to fire. | tickish `tickishScopesLike` SoftScope = do { (env', expr') <- simplExprF env expr cont ; return (env', mkTick tickish expr') } -- Push tick inside if the context looks like this will allow us to -- do a case-of-case - see Note [case-of-scc-of-case] | Select {} <- cont, Just expr' <- push_tick_inside = simplExprF env expr' cont -- We don't want to move the tick, but we might still want to allow -- floats to pass through with appropriate wrapping (or not, see -- wrap_floats below) --- | not (tickishCounts tickish) || tickishCanSplit tickish -- = wrap_floats | otherwise = no_floating_past_tick where -- Try to push tick inside a case, see Note [case-of-scc-of-case]. push_tick_inside = case expr0 of Case scrut bndr ty alts -> Just $ Case (tickScrut scrut) bndr ty (map tickAlt alts) _other -> Nothing where (ticks, expr0) = stripTicksTop movable (Tick tickish expr) movable t = not (tickishCounts t) || t `tickishScopesLike` NoScope || tickishCanSplit t tickScrut e = foldr mkTick e ticks -- Alternatives get annotated with all ticks that scope in some way, -- but we don't want to count entries. tickAlt (c,bs,e) = (c,bs, foldr mkTick e ts_scope) ts_scope = map mkNoCount $ filter (not . (`tickishScopesLike` NoScope)) ticks no_floating_past_tick = do { let (inc,outc) = splitCont cont ; (env', expr') <- simplExprF (zapFloats env) expr inc ; let tickish' = simplTickish env tickish ; (env'', expr'') <- rebuild (zapFloats env') (wrapFloats env' expr') (TickIt tickish' outc) ; return (addFloats env env'', expr'') } -- Alternative version that wraps outgoing floats with the tick. This -- results in ticks being duplicated, as we don't make any attempt to -- eliminate the tick if we re-inline the binding (because the tick -- semantics allows unrestricted inlining of HNFs), so I'm not doing -- this any more. FloatOut will catch any real opportunities for -- floating. -- -- wrap_floats = -- do { let (inc,outc) = splitCont cont -- ; (env', expr') <- simplExprF (zapFloats env) expr inc -- ; let tickish' = simplTickish env tickish -- ; let wrap_float (b,rhs) = (zapIdStrictness (setIdArity b 0), -- mkTick (mkNoCount tickish') rhs) -- -- when wrapping a float with mkTick, we better zap the Id's -- -- strictness info and arity, because it might be wrong now. -- ; let env'' = addFloats env (mapFloats env' wrap_float) -- ; rebuild env'' expr' (TickIt tickish' outc) -- } simplTickish env tickish | Breakpoint n ids <- tickish = Breakpoint n (map (getDoneId . substId env) ids) | otherwise = tickish -- Push type application and coercion inside a tick splitCont :: SimplCont -> (SimplCont, SimplCont) splitCont cont@(ApplyToTy { sc_cont = tail }) = (cont { sc_cont = inc }, outc) where (inc,outc) = splitCont tail splitCont (CastIt co c) = (CastIt co inc, outc) where (inc,outc) = splitCont c splitCont other = (mkBoringStop (contHoleType other), other) getDoneId (DoneId id) = id getDoneId (DoneEx e) = getIdFromTrivialExpr e -- Note [substTickish] in CoreSubst getDoneId other = pprPanic "getDoneId" (ppr other) -- Note [case-of-scc-of-case] -- It's pretty important to be able to transform case-of-case when -- there's an SCC in the way. For example, the following comes up -- in nofib/real/compress/Encode.hs: -- -- case scctick<code_string.r1> -- case $wcode_string_r13s wild_XC w1_s137 w2_s138 l_aje -- of _ { (# ww1_s13f, ww2_s13g, ww3_s13h #) -> -- (ww1_s13f, ww2_s13g, ww3_s13h) -- } -- of _ { (ww_s12Y, ww1_s12Z, ww2_s130) -> -- tick<code_string.f1> -- (ww_s12Y, -- ww1_s12Z, -- PTTrees.PT -- @ GHC.Types.Char @ GHC.Types.Int wild2_Xj ww2_s130 r_ajf) -- } -- -- We really want this case-of-case to fire, because then the 3-tuple -- will go away (indeed, the CPR optimisation is relying on this -- happening). But the scctick is in the way - we need to push it -- inside to expose the case-of-case. So we perform this -- transformation on the inner case: -- -- scctick c (case e of { p1 -> e1; ...; pn -> en }) -- ==> -- case (scctick c e) of { p1 -> scc c e1; ...; pn -> scc c en } -- -- So we've moved a constant amount of work out of the scc to expose -- the case. We only do this when the continuation is interesting: in -- for now, it has to be another Case (maybe generalise this later). {- ************************************************************************ * * \subsection{The main rebuilder} * * ************************************************************************ -} rebuild :: SimplEnv -> OutExpr -> SimplCont -> SimplM (SimplEnv, OutExpr) -- At this point the substitution in the SimplEnv should be irrelevant -- only the in-scope set and floats should matter rebuild env expr cont = case cont of Stop {} -> return (env, expr) TickIt t cont -> rebuild env (mkTick t expr) cont CastIt co cont -> rebuild env (mkCast expr co) cont -- NB: mkCast implements the (Coercion co |> g) optimisation Select { sc_bndr = bndr, sc_alts = alts, sc_env = se, sc_cont = cont } -> rebuildCase (se `setFloats` env) expr bndr alts cont StrictArg info _ cont -> rebuildCall env (info `addValArgTo` expr) cont StrictBind b bs body se cont -> do { env' <- simplNonRecX (se `setFloats` env) b expr -- expr satisfies let/app since it started life -- in a call to simplNonRecE ; simplLam env' bs body cont } ApplyToTy { sc_arg_ty = ty, sc_cont = cont} -> rebuild env (App expr (Type ty)) cont ApplyToVal { sc_arg = arg, sc_env = se, sc_dup = dup_flag, sc_cont = cont} -- See Note [Avoid redundant simplification] | isSimplified dup_flag -> rebuild env (App expr arg) cont | otherwise -> do { arg' <- simplExpr (se `setInScope` env) arg ; rebuild env (App expr arg') cont } {- ************************************************************************ * * \subsection{Lambdas} * * ************************************************************************ -} simplCast :: SimplEnv -> InExpr -> Coercion -> SimplCont -> SimplM (SimplEnv, OutExpr) simplCast env body co0 cont0 = do { co1 <- simplCoercion env co0 ; cont1 <- addCoerce co1 cont0 ; simplExprF env body cont1 } where addCoerce co cont = add_coerce co (coercionKind co) cont add_coerce _co (Pair s1 k1) cont -- co :: ty~ty | s1 `eqType` k1 = return cont -- is a no-op add_coerce co1 (Pair s1 _k2) (CastIt co2 cont) | (Pair _l1 t1) <- coercionKind co2 -- e |> (g1 :: S1~L) |> (g2 :: L~T1) -- ==> -- e, if S1=T1 -- e |> (g1 . g2 :: S1~T1) otherwise -- -- For example, in the initial form of a worker -- we may find (coerce T (coerce S (\x.e))) y -- and we'd like it to simplify to e[y/x] in one round -- of simplification , s1 `eqType` t1 = return cont -- The coerces cancel out | otherwise = return (CastIt (mkTransCo co1 co2) cont) add_coerce co (Pair s1s2 _t1t2) cont@(ApplyToTy { sc_arg_ty = arg_ty, sc_cont = tail }) -- (f |> g) ty ---> (f ty) |> (g @ ty) -- This implements the PushT rule from the paper | isForAllTy s1s2 = do { cont' <- addCoerce new_cast tail ; return (cont { sc_cont = cont' }) } where new_cast = mkInstCo co (mkNomReflCo arg_ty) add_coerce co (Pair s1s2 t1t2) (ApplyToVal { sc_arg = arg, sc_env = arg_se , sc_dup = dup, sc_cont = cont }) | isFunTy s1s2 -- This implements the Push rule from the paper , isFunTy t1t2 -- Check t1t2 to ensure 'arg' is a value arg -- (e |> (g :: s1s2 ~ t1->t2)) f -- ===> -- (e (f |> (arg g :: t1~s1)) -- |> (res g :: s2->t2) -- -- t1t2 must be a function type, t1->t2, because it's applied -- to something but s1s2 might conceivably not be -- -- When we build the ApplyTo we can't mix the out-types -- with the InExpr in the argument, so we simply substitute -- to make it all consistent. It's a bit messy. -- But it isn't a common case. -- -- Example of use: Trac #995 = do { (dup', arg_se', arg') <- simplArg env dup arg_se arg ; cont' <- addCoerce co2 cont ; return (ApplyToVal { sc_arg = mkCast arg' (mkSymCo co1) , sc_env = arg_se' , sc_dup = dup' , sc_cont = cont' }) } where -- we split coercion t1->t2 ~ s1->s2 into t1 ~ s1 and -- t2 ~ s2 with left and right on the curried form: -- (->) t1 t2 ~ (->) s1 s2 [co1, co2] = decomposeCo 2 co add_coerce co _ cont = return (CastIt co cont) simplArg :: SimplEnv -> DupFlag -> StaticEnv -> CoreExpr -> SimplM (DupFlag, StaticEnv, OutExpr) simplArg env dup_flag arg_env arg | isSimplified dup_flag = return (dup_flag, arg_env, arg) | otherwise = do { arg' <- simplExpr (arg_env `setInScope` env) arg ; return (Simplified, zapSubstEnv arg_env, arg') } {- ************************************************************************ * * \subsection{Lambdas} * * ************************************************************************ Note [Zap unfolding when beta-reducing] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Lambda-bound variables can have stable unfoldings, such as $j = \x. \b{Unf=Just x}. e See Note [Case binders and join points] below; the unfolding for lets us optimise e better. However when we beta-reduce it we want to revert to using the actual value, otherwise we can end up in the stupid situation of let x = blah in let b{Unf=Just x} = y in ...b... Here it'd be far better to drop the unfolding and use the actual RHS. -} simplLam :: SimplEnv -> [InId] -> InExpr -> SimplCont -> SimplM (SimplEnv, OutExpr) simplLam env [] body cont = simplExprF env body cont -- Beta reduction simplLam env (bndr:bndrs) body (ApplyToTy { sc_arg_ty = arg_ty, sc_cont = cont }) = do { tick (BetaReduction bndr) ; simplLam (extendTCvSubst env bndr arg_ty) bndrs body cont } simplLam env (bndr:bndrs) body (ApplyToVal { sc_arg = arg, sc_env = arg_se , sc_cont = cont }) = do { tick (BetaReduction bndr) ; simplNonRecE env' (zap_unfolding bndr) (arg, arg_se) (bndrs, body) cont } where env' | Coercion co <- arg = extendTCvSubst env bndr (mkCoercionTy co) | otherwise = env zap_unfolding bndr -- See Note [Zap unfolding when beta-reducing] | isId bndr, isStableUnfolding (realIdUnfolding bndr) = setIdUnfolding bndr NoUnfolding | otherwise = bndr -- discard a non-counting tick on a lambda. This may change the -- cost attribution slightly (moving the allocation of the -- lambda elsewhere), but we don't care: optimisation changes -- cost attribution all the time. simplLam env bndrs body (TickIt tickish cont) | not (tickishCounts tickish) = simplLam env bndrs body cont -- Not enough args, so there are real lambdas left to put in the result simplLam env bndrs body cont = do { (env', bndrs') <- simplLamBndrs env bndrs ; body' <- simplExpr env' body ; new_lam <- mkLam bndrs' body' cont ; rebuild env' new_lam cont } simplLamBndrs :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr]) simplLamBndrs env bndrs = mapAccumLM simplLamBndr env bndrs ------------- simplLamBndr :: SimplEnv -> Var -> SimplM (SimplEnv, Var) -- Used for lambda binders. These sometimes have unfoldings added by -- the worker/wrapper pass that must be preserved, because they can't -- be reconstructed from context. For example: -- f x = case x of (a,b) -> fw a b x -- fw a b x{=(a,b)} = ... -- The "{=(a,b)}" is an unfolding we can't reconstruct otherwise. simplLamBndr env bndr | isId bndr && hasSomeUnfolding old_unf -- Special case = do { (env1, bndr1) <- simplBinder env bndr ; unf' <- simplUnfolding env1 NotTopLevel bndr old_unf ; let bndr2 = bndr1 `setIdUnfolding` unf' ; return (modifyInScope env1 bndr2, bndr2) } | otherwise = simplBinder env bndr -- Normal case where old_unf = idUnfolding bndr ------------------ simplNonRecE :: SimplEnv -> InBndr -- The binder -> (InExpr, SimplEnv) -- Rhs of binding (or arg of lambda) -> ([InBndr], InExpr) -- Body of the let/lambda -- \xs.e -> SimplCont -> SimplM (SimplEnv, OutExpr) -- simplNonRecE is used for -- * non-top-level non-recursive lets in expressions -- * beta reduction -- -- It deals with strict bindings, via the StrictBind continuation, -- which may abort the whole process -- -- Precondition: rhs satisfies the let/app invariant -- Note [CoreSyn let/app invariant] in CoreSyn -- -- The "body" of the binding comes as a pair of ([InId],InExpr) -- representing a lambda; so we recurse back to simplLam -- Why? Because of the binder-occ-info-zapping done before -- the call to simplLam in simplExprF (Lam ...) -- First deal with type applications and type lets -- (/\a. e) (Type ty) and (let a = Type ty in e) simplNonRecE env bndr (Type ty_arg, rhs_se) (bndrs, body) cont = ASSERT( isTyVar bndr ) do { ty_arg' <- simplType (rhs_se `setInScope` env) ty_arg ; simplLam (extendTCvSubst env bndr ty_arg') bndrs body cont } simplNonRecE env bndr (rhs, rhs_se) (bndrs, body) cont = do dflags <- getDynFlags case () of _ | preInlineUnconditionally dflags env NotTopLevel bndr rhs -> do { tick (PreInlineUnconditionally bndr) ; -- pprTrace "preInlineUncond" (ppr bndr <+> ppr rhs) $ simplLam (extendIdSubst env bndr (mkContEx rhs_se rhs)) bndrs body cont } | isStrictId bndr -- Includes coercions -> simplExprF (rhs_se `setFloats` env) rhs (StrictBind bndr bndrs body env cont) | otherwise -> ASSERT( not (isTyVar bndr) ) do { (env1, bndr1) <- simplNonRecBndr env bndr ; (env2, bndr2) <- addBndrRules env1 bndr bndr1 ; env3 <- simplLazyBind env2 NotTopLevel NonRecursive bndr bndr2 rhs rhs_se ; simplLam env3 bndrs body cont } {- ************************************************************************ * * Variables * * ************************************************************************ -} simplVar :: SimplEnv -> InVar -> SimplM OutExpr -- Look up an InVar in the environment simplVar env var | isTyVar var = return (Type (substTyVar env var)) | isCoVar var = return (Coercion (substCoVar env var)) | otherwise = case substId env var of DoneId var1 -> return (Var var1) DoneEx e -> return e ContEx tvs cvs ids e -> simplExpr (setSubstEnv env tvs cvs ids) e simplIdF :: SimplEnv -> InId -> SimplCont -> SimplM (SimplEnv, OutExpr) simplIdF env var cont = case substId env var of DoneEx e -> simplExprF (zapSubstEnv env) e cont ContEx tvs cvs ids e -> simplExprF (setSubstEnv env tvs cvs ids) e cont DoneId var1 -> completeCall env var1 cont -- Note [zapSubstEnv] -- The template is already simplified, so don't re-substitute. -- This is VITAL. Consider -- let x = e in -- let y = \z -> ...x... in -- \ x -> ...y... -- We'll clone the inner \x, adding x->x' in the id_subst -- Then when we inline y, we must *not* replace x by x' in -- the inlined copy!! --------------------------------------------------------- -- Dealing with a call site completeCall :: SimplEnv -> OutId -> SimplCont -> SimplM (SimplEnv, OutExpr) completeCall env var cont = do { ------------- Try inlining ---------------- dflags <- getDynFlags ; let (lone_variable, arg_infos, call_cont) = contArgs cont n_val_args = length arg_infos interesting_cont = interestingCallContext call_cont unfolding = activeUnfolding env var maybe_inline = callSiteInline dflags var unfolding lone_variable arg_infos interesting_cont ; case maybe_inline of { Just expr -- There is an inlining! -> do { checkedTick (UnfoldingDone var) ; dump_inline dflags expr cont ; simplExprF (zapSubstEnv env) expr cont } ; Nothing -> do -- No inlining! { rule_base <- getSimplRules ; let info = mkArgInfo var (getRules rule_base var) n_val_args call_cont ; rebuildCall env info cont }}} where dump_inline dflags unfolding cont | not (dopt Opt_D_dump_inlinings dflags) = return () | not (dopt Opt_D_verbose_core2core dflags) = when (isExternalName (idName var)) $ liftIO $ printOutputForUser dflags alwaysQualify $ sep [text "Inlining done:", nest 4 (ppr var)] | otherwise = liftIO $ printOutputForUser dflags alwaysQualify $ sep [text "Inlining done: " <> ppr var, nest 4 (vcat [text "Inlined fn: " <+> nest 2 (ppr unfolding), text "Cont: " <+> ppr cont])] rebuildCall :: SimplEnv -> ArgInfo -> SimplCont -> SimplM (SimplEnv, OutExpr) rebuildCall env (ArgInfo { ai_fun = fun, ai_args = rev_args, ai_strs = [] }) cont -- When we run out of strictness args, it means -- that the call is definitely bottom; see SimplUtils.mkArgInfo -- Then we want to discard the entire strict continuation. E.g. -- * case (error "hello") of { ... } -- * (error "Hello") arg -- * f (error "Hello") where f is strict -- etc -- Then, especially in the first of these cases, we'd like to discard -- the continuation, leaving just the bottoming expression. But the -- type might not be right, so we may have to add a coerce. | not (contIsTrivial cont) -- Only do this if there is a non-trivial = return (env, castBottomExpr res cont_ty) -- contination to discard, else we do it where -- again and again! res = argInfoExpr fun rev_args cont_ty = contResultType cont rebuildCall env info (CastIt co cont) = rebuildCall env (addCastTo info co) cont rebuildCall env info (ApplyToTy { sc_arg_ty = arg_ty, sc_cont = cont }) = rebuildCall env (info `addTyArgTo` arg_ty) cont rebuildCall env info@(ArgInfo { ai_encl = encl_rules, ai_type = fun_ty , ai_strs = str:strs, ai_discs = disc:discs }) (ApplyToVal { sc_arg = arg, sc_env = arg_se , sc_dup = dup_flag, sc_cont = cont }) | isSimplified dup_flag -- See Note [Avoid redundant simplification] = rebuildCall env (addValArgTo info' arg) cont | str -- Strict argument = -- pprTrace "Strict Arg" (ppr arg $$ ppr (seIdSubst env) $$ ppr (seInScope env)) $ simplExprF (arg_se `setFloats` env) arg (StrictArg info' cci cont) -- Note [Shadowing] | otherwise -- Lazy argument -- DO NOT float anything outside, hence simplExprC -- There is no benefit (unlike in a let-binding), and we'd -- have to be very careful about bogus strictness through -- floating a demanded let. = do { arg' <- simplExprC (arg_se `setInScope` env) arg (mkLazyArgStop (funArgTy fun_ty) cci) ; rebuildCall env (addValArgTo info' arg') cont } where info' = info { ai_strs = strs, ai_discs = discs } cci | encl_rules = RuleArgCtxt | disc > 0 = DiscArgCtxt -- Be keener here | otherwise = BoringCtxt -- Nothing interesting rebuildCall env (ArgInfo { ai_fun = fun, ai_args = rev_args, ai_rules = rules }) cont | null rules = rebuild env (argInfoExpr fun rev_args) cont -- No rules, common case | otherwise = do { -- We've accumulated a simplified call in <fun,rev_args> -- so try rewrite rules; see Note [RULEs apply to simplified arguments] -- See also Note [Rules for recursive functions] ; let env' = zapSubstEnv env -- See Note [zapSubstEnv]; -- and NB that 'rev_args' are all fully simplified ; mb_rule <- tryRules env' rules fun (reverse rev_args) cont ; case mb_rule of { Just (rule_rhs, cont') -> simplExprF env' rule_rhs cont' -- Rules don't match ; Nothing -> rebuild env (argInfoExpr fun rev_args) cont -- No rules } } {- Note [RULES apply to simplified arguments] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's very desirable to try RULES once the arguments have been simplified, because doing so ensures that rule cascades work in one pass. Consider {-# RULES g (h x) = k x f (k x) = x #-} ...f (g (h x))... Then we want to rewrite (g (h x)) to (k x) and only then try f's rules. If we match f's rules against the un-simplified RHS, it won't match. This makes a particularly big difference when superclass selectors are involved: op ($p1 ($p2 (df d))) We want all this to unravel in one sweeep. Note [Avoid redundant simplification] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Because RULES apply to simplified arguments, there's a danger of repeatedly simplifying already-simplified arguments. An important example is that of (>>=) d e1 e2 Here e1, e2 are simplified before the rule is applied, but don't really participate in the rule firing. So we mark them as Simplified to avoid re-simplifying them. Note [Shadowing] ~~~~~~~~~~~~~~~~ This part of the simplifier may break the no-shadowing invariant Consider f (...(\a -> e)...) (case y of (a,b) -> e') where f is strict in its second arg If we simplify the innermost one first we get (...(\a -> e)...) Simplifying the second arg makes us float the case out, so we end up with case y of (a,b) -> f (...(\a -> e)...) e' So the output does not have the no-shadowing invariant. However, there is no danger of getting name-capture, because when the first arg was simplified we used an in-scope set that at least mentioned all the variables free in its static environment, and that is enough. We can't just do innermost first, or we'd end up with a dual problem: case x of (a,b) -> f e (...(\a -> e')...) I spent hours trying to recover the no-shadowing invariant, but I just could not think of an elegant way to do it. The simplifier is already knee-deep in continuations. We have to keep the right in-scope set around; AND we have to get the effect that finding (error "foo") in a strict arg position will discard the entire application and replace it with (error "foo"). Getting all this at once is TOO HARD! ************************************************************************ * * Rewrite rules * * ************************************************************************ -} tryRules :: SimplEnv -> [CoreRule] -> Id -> [ArgSpec] -> SimplCont -> SimplM (Maybe (CoreExpr, SimplCont)) -- The SimplEnv already has zapSubstEnv applied to it tryRules env rules fn args call_cont | null rules = return Nothing {- Disabled until we fix #8326 | fn `hasKey` tagToEnumKey -- See Note [Optimising tagToEnum#] , [_type_arg, val_arg] <- args , Select dup bndr ((_,[],rhs1) : rest_alts) se cont <- call_cont , isDeadBinder bndr = do { dflags <- getDynFlags ; let enum_to_tag :: CoreAlt -> CoreAlt -- Takes K -> e into tagK# -> e -- where tagK# is the tag of constructor K enum_to_tag (DataAlt con, [], rhs) = ASSERT( isEnumerationTyCon (dataConTyCon con) ) (LitAlt tag, [], rhs) where tag = mkMachInt dflags (toInteger (dataConTag con - fIRST_TAG)) enum_to_tag alt = pprPanic "tryRules: tagToEnum" (ppr alt) new_alts = (DEFAULT, [], rhs1) : map enum_to_tag rest_alts new_bndr = setIdType bndr intPrimTy -- The binder is dead, but should have the right type ; return (Just (val_arg, Select dup new_bndr new_alts se cont)) } -} | otherwise = do { dflags <- getDynFlags ; case lookupRule dflags (getUnfoldingInRuleMatch env) (activeRule env) fn (argInfoAppArgs args) rules of { Nothing -> return Nothing ; -- No rule matches Just (rule, rule_rhs) -> do { checkedTick (RuleFired (ru_name rule)) ; let cont' = pushSimplifiedArgs env (drop (ruleArity rule) args) call_cont -- (ruleArity rule) says how many args the rule consumed ; dump dflags rule rule_rhs ; return (Just (rule_rhs, cont')) }}} where dump dflags rule rule_rhs | dopt Opt_D_dump_rule_rewrites dflags = log_rule dflags Opt_D_dump_rule_rewrites "Rule fired" $ vcat [ text "Rule:" <+> ftext (ru_name rule) , text "Before:" <+> hang (ppr fn) 2 (sep (map ppr args)) , text "After: " <+> pprCoreExpr rule_rhs , text "Cont: " <+> ppr call_cont ] | dopt Opt_D_dump_rule_firings dflags = log_rule dflags Opt_D_dump_rule_firings "Rule fired:" $ ftext (ru_name rule) | otherwise = return () log_rule dflags flag hdr details = liftIO . dumpSDoc dflags alwaysQualify flag "" $ sep [text hdr, nest 4 details] {- Note [Optimising tagToEnum#] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If we have an enumeration data type: data Foo = A | B | C Then we want to transform case tagToEnum# x of ==> case x of A -> e1 DEFAULT -> e1 B -> e2 1# -> e2 C -> e3 2# -> e3 thereby getting rid of the tagToEnum# altogether. If there was a DEFAULT alternative we retain it (remember it comes first). If not the case must be exhaustive, and we reflect that in the transformed version by adding a DEFAULT. Otherwise Lint complains that the new case is not exhaustive. See #8317. Note [Rules for recursive functions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You might think that we shouldn't apply rules for a loop breaker: doing so might give rise to an infinite loop, because a RULE is rather like an extra equation for the function: RULE: f (g x) y = x+y Eqn: f a y = a-y But it's too drastic to disable rules for loop breakers. Even the foldr/build rule would be disabled, because foldr is recursive, and hence a loop breaker: foldr k z (build g) = g k z So it's up to the programmer: rules can cause divergence ************************************************************************ * * Rebuilding a case expression * * ************************************************************************ Note [Case elimination] ~~~~~~~~~~~~~~~~~~~~~~~ The case-elimination transformation discards redundant case expressions. Start with a simple situation: case x# of ===> let y# = x# in e y# -> e (when x#, y# are of primitive type, of course). We can't (in general) do this for algebraic cases, because we might turn bottom into non-bottom! The code in SimplUtils.prepareAlts has the effect of generalise this idea to look for a case where we're scrutinising a variable, and we know that only the default case can match. For example: case x of 0# -> ... DEFAULT -> ...(case x of 0# -> ... DEFAULT -> ...) ... Here the inner case is first trimmed to have only one alternative, the DEFAULT, after which it's an instance of the previous case. This really only shows up in eliminating error-checking code. Note that SimplUtils.mkCase combines identical RHSs. So case e of ===> case e of DEFAULT -> r True -> r False -> r Now again the case may be elminated by the CaseElim transformation. This includes things like (==# a# b#)::Bool so that we simplify case ==# a# b# of { True -> x; False -> x } to just x This particular example shows up in default methods for comparison operations (e.g. in (>=) for Int.Int32) Note [Case elimination: lifted case] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If a case over a lifted type has a single alternative, and is being used as a strict 'let' (all isDeadBinder bndrs), we may want to do this transformation: case e of r ===> let r = e in ...r... _ -> ...r... (a) 'e' is already evaluated (it may so if e is a variable) Specifically we check (exprIsHNF e). In this case we can just allocate the WHNF directly with a let. or (b) 'x' is not used at all and e is ok-for-speculation The ok-for-spec bit checks that we don't lose any exceptions or divergence. NB: it'd be *sound* to switch from case to let if the scrutinee was not yet WHNF but was guaranteed to converge; but sticking with case means we won't build a thunk or (c) 'x' is used strictly in the body, and 'e' is a variable Then we can just substitute 'e' for 'x' in the body. See Note [Eliminating redundant seqs] For (b), the "not used at all" test is important. Consider case (case a ># b of { True -> (p,q); False -> (q,p) }) of r -> blah The scrutinee is ok-for-speculation (it looks inside cases), but we do not want to transform to let r = case a ># b of { True -> (p,q); False -> (q,p) } in blah because that builds an unnecessary thunk. Note [Eliminating redundant seqs] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If we have this: case x of r { _ -> ..r.. } where 'r' is used strictly in (..r..), the case is effectively a 'seq' on 'x', but since 'r' is used strictly anyway, we can safely transform to (...x...) Note that this can change the error behaviour. For example, we might transform case x of { _ -> error "bad" } --> error "bad" which is might be puzzling if 'x' currently lambda-bound, but later gets let-bound to (error "good"). Nevertheless, the paper "A semantics for imprecise exceptions" allows this transformation. If you want to fix the evaluation order, use 'pseq'. See Trac #8900 for an example where the loss of this transformation bit us in practice. See also Note [Empty case alternatives] in CoreSyn. Just for reference, the original code (added Jan 13) looked like this: || case_bndr_evald_next rhs case_bndr_evald_next :: CoreExpr -> Bool -- See Note [Case binder next] case_bndr_evald_next (Var v) = v == case_bndr case_bndr_evald_next (Cast e _) = case_bndr_evald_next e case_bndr_evald_next (App e _) = case_bndr_evald_next e case_bndr_evald_next (Case e _ _ _) = case_bndr_evald_next e case_bndr_evald_next _ = False (This came up when fixing Trac #7542. See also Note [Eta reduction of an eval'd function] in CoreUtils.) Note [Case elimination: unlifted case] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider case a +# b of r -> ...r... Then we do case-elimination (to make a let) followed by inlining, to get .....(a +# b).... If we have case indexArray# a i of r -> ...r... we might like to do the same, and inline the (indexArray# a i). But indexArray# is not okForSpeculation, so we don't build a let in rebuildCase (lest it get floated *out*), so the inlining doesn't happen either. This really isn't a big deal I think. The let can be Further notes about case elimination ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider: test :: Integer -> IO () test = print Turns out that this compiles to: Print.test = \ eta :: Integer eta1 :: Void# -> case PrelNum.< eta PrelNum.zeroInteger of wild { __DEFAULT -> case hPutStr stdout (PrelNum.jtos eta ($w[] @ Char)) eta1 of wild1 { (# new_s, a4 #) -> PrelIO.lvl23 new_s }} Notice the strange '<' which has no effect at all. This is a funny one. It started like this: f x y = if x < 0 then jtos x else if y==0 then "" else jtos x At a particular call site we have (f v 1). So we inline to get if v < 0 then jtos x else if 1==0 then "" else jtos x Now simplify the 1==0 conditional: if v<0 then jtos v else jtos v Now common-up the two branches of the case: case (v<0) of DEFAULT -> jtos v Why don't we drop the case? Because it's strict in v. It's technically wrong to drop even unnecessary evaluations, and in practice they may be a result of 'seq' so we *definitely* don't want to drop those. I don't really know how to improve this situation. -} --------------------------------------------------------- -- Eliminate the case if possible rebuildCase, reallyRebuildCase :: SimplEnv -> OutExpr -- Scrutinee -> InId -- Case binder -> [InAlt] -- Alternatives (inceasing order) -> SimplCont -> SimplM (SimplEnv, OutExpr) -------------------------------------------------- -- 1. Eliminate the case if there's a known constructor -------------------------------------------------- rebuildCase env scrut case_bndr alts cont | Lit lit <- scrut -- No need for same treatment as constructors -- because literals are inlined more vigorously , not (litIsLifted lit) = do { tick (KnownBranch case_bndr) ; case findAlt (LitAlt lit) alts of Nothing -> missingAlt env case_bndr alts cont Just (_, bs, rhs) -> simple_rhs bs rhs } | Just (con, ty_args, other_args) <- exprIsConApp_maybe (getUnfoldingInRuleMatch env) scrut -- Works when the scrutinee is a variable with a known unfolding -- as well as when it's an explicit constructor application = do { tick (KnownBranch case_bndr) ; case findAlt (DataAlt con) alts of Nothing -> missingAlt env case_bndr alts cont Just (DEFAULT, bs, rhs) -> simple_rhs bs rhs Just (_, bs, rhs) -> knownCon env scrut con ty_args other_args case_bndr bs rhs cont } where simple_rhs bs rhs = ASSERT( null bs ) do { env' <- simplNonRecX env case_bndr scrut -- scrut is a constructor application, -- hence satisfies let/app invariant ; simplExprF env' rhs cont } -------------------------------------------------- -- 2. Eliminate the case if scrutinee is evaluated -------------------------------------------------- rebuildCase env scrut case_bndr alts@[(_, bndrs, rhs)] cont -- See if we can get rid of the case altogether -- See Note [Case elimination] -- mkCase made sure that if all the alternatives are equal, -- then there is now only one (DEFAULT) rhs -- 2a. Dropping the case altogether, if -- a) it binds nothing (so it's really just a 'seq') -- b) evaluating the scrutinee has no side effects | is_plain_seq , exprOkForSideEffects scrut -- The entire case is dead, so we can drop it -- if the scrutinee converges without having imperative -- side effects or raising a Haskell exception -- See Note [PrimOp can_fail and has_side_effects] in PrimOp = simplExprF env rhs cont -- 2b. Turn the case into a let, if -- a) it binds only the case-binder -- b) unlifted case: the scrutinee is ok-for-speculation -- lifted case: the scrutinee is in HNF (or will later be demanded) | all_dead_bndrs , if is_unlifted then exprOkForSpeculation scrut -- See Note [Case elimination: unlifted case] else exprIsHNF scrut -- See Note [Case elimination: lifted case] || scrut_is_demanded_var scrut = do { tick (CaseElim case_bndr) ; env' <- simplNonRecX env case_bndr scrut ; simplExprF env' rhs cont } -- 2c. Try the seq rules if -- a) it binds only the case binder -- b) a rule for seq applies -- See Note [User-defined RULES for seq] in MkId | is_plain_seq = do { let scrut_ty = exprType scrut rhs_ty = substTy env (exprType rhs) out_args = [ TyArg { as_arg_ty = scrut_ty , as_hole_ty = seq_id_ty } , TyArg { as_arg_ty = rhs_ty , as_hole_ty = piResultTy seq_id_ty scrut_ty } , ValArg scrut] rule_cont = ApplyToVal { sc_dup = NoDup, sc_arg = rhs , sc_env = env, sc_cont = cont } env' = zapSubstEnv env -- Lazily evaluated, so we don't do most of this ; rule_base <- getSimplRules ; mb_rule <- tryRules env' (getRules rule_base seqId) seqId out_args rule_cont ; case mb_rule of Just (rule_rhs, cont') -> simplExprF env' rule_rhs cont' Nothing -> reallyRebuildCase env scrut case_bndr alts cont } where is_unlifted = isUnLiftedType (idType case_bndr) all_dead_bndrs = all isDeadBinder bndrs -- bndrs are [InId] is_plain_seq = all_dead_bndrs && isDeadBinder case_bndr -- Evaluation *only* for effect seq_id_ty = idType seqId scrut_is_demanded_var :: CoreExpr -> Bool -- See Note [Eliminating redundant seqs] scrut_is_demanded_var (Cast s _) = scrut_is_demanded_var s scrut_is_demanded_var (Var _) = isStrictDmd (idDemandInfo case_bndr) scrut_is_demanded_var _ = False rebuildCase env scrut case_bndr alts cont = reallyRebuildCase env scrut case_bndr alts cont -------------------------------------------------- -- 3. Catch-all case -------------------------------------------------- reallyRebuildCase env scrut case_bndr alts cont = do { -- Prepare the continuation; -- The new subst_env is in place (env', dup_cont, nodup_cont) <- prepareCaseCont env alts cont -- Simplify the alternatives ; (scrut', case_bndr', alts') <- simplAlts env' scrut case_bndr alts dup_cont ; dflags <- getDynFlags ; let alts_ty' = contResultType dup_cont ; case_expr <- mkCase dflags scrut' case_bndr' alts_ty' alts' -- Notice that rebuild gets the in-scope set from env', not alt_env -- (which in any case is only build in simplAlts) -- The case binder *not* scope over the whole returned case-expression ; rebuild env' case_expr nodup_cont } {- simplCaseBinder checks whether the scrutinee is a variable, v. If so, try to eliminate uses of v in the RHSs in favour of case_bndr; that way, there's a chance that v will now only be used once, and hence inlined. Historical note: we use to do the "case binder swap" in the Simplifier so there were additional complications if the scrutinee was a variable. Now the binder-swap stuff is done in the occurrence analyer; see OccurAnal Note [Binder swap]. Note [knownCon occ info] ~~~~~~~~~~~~~~~~~~~~~~~~ If the case binder is not dead, then neither are the pattern bound variables: case <any> of x { (a,b) -> case x of { (p,q) -> p } } Here (a,b) both look dead, but come alive after the inner case is eliminated. The point is that we bring into the envt a binding let x = (a,b) after the outer case, and that makes (a,b) alive. At least we do unless the case binder is guaranteed dead. Note [Case alternative occ info] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we are simply reconstructing a case (the common case), we always zap the occurrence info on the binders in the alternatives. Even if the case binder is dead, the scrutinee is usually a variable, and *that* can bring the case-alternative binders back to life. See Note [Add unfolding for scrutinee] Note [Improving seq] ~~~~~~~~~~~~~~~~~~~ Consider type family F :: * -> * type instance F Int = Int ... case e of x { DEFAULT -> rhs } ... where x::F Int. Then we'd like to rewrite (F Int) to Int, getting case e `cast` co of x'::Int I# x# -> let x = x' `cast` sym co in rhs so that 'rhs' can take advantage of the form of x'. Notice that Note [Case of cast] (in OccurAnal) may then apply to the result. Nota Bene: We only do the [Improving seq] transformation if the case binder 'x' is actually used in the rhs; that is, if the case is *not* a *pure* seq. a) There is no point in adding the cast to a pure seq. b) There is a good reason not to: doing so would interfere with seq rules (Note [Built-in RULES for seq] in MkId). In particular, this [Improving seq] thing *adds* a cast while [Built-in RULES for seq] *removes* one, so they just flip-flop. You might worry about case v of x { __DEFAULT -> ... case (v `cast` co) of y { I# -> ... }} This is a pure seq (since x is unused), so [Improving seq] won't happen. But it's ok: the simplifier will replace 'v' by 'x' in the rhs to get case v of x { __DEFAULT -> ... case (x `cast` co) of y { I# -> ... }} Now the outer case is not a pure seq, so [Improving seq] will happen, and then the inner case will disappear. The need for [Improving seq] showed up in Roman's experiments. Example: foo :: F Int -> Int -> Int foo t n = t `seq` bar n where bar 0 = 0 bar n = bar (n - case t of TI i -> i) Here we'd like to avoid repeated evaluating t inside the loop, by taking advantage of the `seq`. At one point I did transformation in LiberateCase, but it's more robust here. (Otherwise, there's a danger that we'll simply drop the 'seq' altogether, before LiberateCase gets to see it.) -} simplAlts :: SimplEnv -> OutExpr -> InId -- Case binder -> [InAlt] -- Non-empty -> SimplCont -> SimplM (OutExpr, OutId, [OutAlt]) -- Includes the continuation -- Like simplExpr, this just returns the simplified alternatives; -- it does not return an environment -- The returned alternatives can be empty, none are possible simplAlts env scrut case_bndr alts cont' = do { let env0 = zapFloats env ; (env1, case_bndr1) <- simplBinder env0 case_bndr ; fam_envs <- getFamEnvs ; (alt_env', scrut', case_bndr') <- improveSeq fam_envs env1 scrut case_bndr case_bndr1 alts ; (imposs_deflt_cons, in_alts) <- prepareAlts scrut' case_bndr' alts -- NB: it's possible that the returned in_alts is empty: this is handled -- by the caller (rebuildCase) in the missingAlt function ; alts' <- mapM (simplAlt alt_env' (Just scrut') imposs_deflt_cons case_bndr' cont') in_alts ; -- pprTrace "simplAlts" (ppr case_bndr $$ ppr alts_ty $$ ppr alts_ty' $$ ppr alts $$ ppr cont') $ return (scrut', case_bndr', alts') } ------------------------------------ improveSeq :: (FamInstEnv, FamInstEnv) -> SimplEnv -> OutExpr -> InId -> OutId -> [InAlt] -> SimplM (SimplEnv, OutExpr, OutId) -- Note [Improving seq] improveSeq fam_envs env scrut case_bndr case_bndr1 [(DEFAULT,_,_)] | not (isDeadBinder case_bndr) -- Not a pure seq! See Note [Improving seq] , Just (co, ty2) <- topNormaliseType_maybe fam_envs (idType case_bndr1) = do { case_bndr2 <- newId (fsLit "nt") ty2 ; let rhs = DoneEx (Var case_bndr2 `Cast` mkSymCo co) env2 = extendIdSubst env case_bndr rhs ; return (env2, scrut `Cast` co, case_bndr2) } improveSeq _ env scrut _ case_bndr1 _ = return (env, scrut, case_bndr1) ------------------------------------ simplAlt :: SimplEnv -> Maybe OutExpr -- The scrutinee -> [AltCon] -- These constructors can't be present when -- matching the DEFAULT alternative -> OutId -- The case binder -> SimplCont -> InAlt -> SimplM OutAlt simplAlt env _ imposs_deflt_cons case_bndr' cont' (DEFAULT, bndrs, rhs) = ASSERT( null bndrs ) do { let env' = addBinderUnfolding env case_bndr' (mkOtherCon imposs_deflt_cons) -- Record the constructors that the case-binder *can't* be. ; rhs' <- simplExprC env' rhs cont' ; return (DEFAULT, [], rhs') } simplAlt env scrut' _ case_bndr' cont' (LitAlt lit, bndrs, rhs) = ASSERT( null bndrs ) do { env' <- addAltUnfoldings env scrut' case_bndr' (Lit lit) ; rhs' <- simplExprC env' rhs cont' ; return (LitAlt lit, [], rhs') } simplAlt env scrut' _ case_bndr' cont' (DataAlt con, vs, rhs) = do { -- Deal with the pattern-bound variables -- Mark the ones that are in ! positions in the -- data constructor as certainly-evaluated. -- NB: simplLamBinders preserves this eval info ; let vs_with_evals = add_evals (dataConRepStrictness con) ; (env', vs') <- simplLamBndrs env vs_with_evals -- Bind the case-binder to (con args) ; let inst_tys' = tyConAppArgs (idType case_bndr') con_app :: OutExpr con_app = mkConApp2 con inst_tys' vs' ; env'' <- addAltUnfoldings env' scrut' case_bndr' con_app ; rhs' <- simplExprC env'' rhs cont' ; return (DataAlt con, vs', rhs') } where -- add_evals records the evaluated-ness of the bound variables of -- a case pattern. This is *important*. Consider -- data T = T !Int !Int -- -- case x of { T a b -> T (a+1) b } -- -- We really must record that b is already evaluated so that we don't -- go and re-evaluate it when constructing the result. -- See Note [Data-con worker strictness] in MkId.hs add_evals the_strs = go vs the_strs where go [] [] = [] go (v:vs') strs | isTyVar v = v : go vs' strs go (v:vs') (str:strs) | isMarkedStrict str = eval v : go vs' strs | otherwise = zap v : go vs' strs go _ _ = pprPanic "cat_evals" (ppr con $$ ppr vs $$ ppr_with_length the_strs $$ ppr_with_length (dataConRepArgTys con) $$ ppr_with_length (dataConRepStrictness con)) where ppr_with_length list = ppr list <+> parens (text "length =" <+> ppr (length list)) -- NB: If this panic triggers, note that -- NoStrictnessMark doesn't print! zap v = zapIdOccInfo v -- See Note [Case alternative occ info] eval v = zap v `setIdUnfolding` evaldUnfolding addAltUnfoldings :: SimplEnv -> Maybe OutExpr -> OutId -> OutExpr -> SimplM SimplEnv addAltUnfoldings env scrut case_bndr con_app = do { dflags <- getDynFlags ; let con_app_unf = mkSimpleUnfolding dflags con_app env1 = addBinderUnfolding env case_bndr con_app_unf -- See Note [Add unfolding for scrutinee] env2 = case scrut of Just (Var v) -> addBinderUnfolding env1 v con_app_unf Just (Cast (Var v) co) -> addBinderUnfolding env1 v $ mkSimpleUnfolding dflags (Cast con_app (mkSymCo co)) _ -> env1 ; traceSmpl "addAltUnf" (vcat [ppr case_bndr <+> ppr scrut, ppr con_app]) ; return env2 } addBinderUnfolding :: SimplEnv -> Id -> Unfolding -> SimplEnv addBinderUnfolding env bndr unf | debugIsOn, Just tmpl <- maybeUnfoldingTemplate unf = WARN( not (eqType (idType bndr) (exprType tmpl)), ppr bndr $$ ppr (idType bndr) $$ ppr tmpl $$ ppr (exprType tmpl) ) modifyInScope env (bndr `setIdUnfolding` unf) | otherwise = modifyInScope env (bndr `setIdUnfolding` unf) zapBndrOccInfo :: Bool -> Id -> Id -- Consider case e of b { (a,b) -> ... } -- Then if we bind b to (a,b) in "...", and b is not dead, -- then we must zap the deadness info on a,b zapBndrOccInfo keep_occ_info pat_id | keep_occ_info = pat_id | otherwise = zapIdOccInfo pat_id {- Note [Add unfolding for scrutinee] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In general it's unlikely that a variable scrutinee will appear in the case alternatives case x of { ...x unlikely to appear... } because the binder-swap in OccAnal has got rid of all such occcurrences See Note [Binder swap] in OccAnal. BUT it is still VERY IMPORTANT to add a suitable unfolding for a variable scrutinee, in simplAlt. Here's why case x of y (a,b) -> case b of c I# v -> ...(f y)... There is no occurrence of 'b' in the (...(f y)...). But y gets the unfolding (a,b), and *that* mentions b. If f has a RULE RULE f (p, I# q) = ... we want that rule to match, so we must extend the in-scope env with a suitable unfolding for 'y'. It's *essential* for rule matching; but it's also good for case-elimintation -- suppose that 'f' was inlined and did multi-level case analysis, then we'd solve it in one simplifier sweep instead of two. Exactly the same issue arises in SpecConstr; see Note [Add scrutinee to ValueEnv too] in SpecConstr HOWEVER, given case x of y { Just a -> r1; Nothing -> r2 } we do not want to add the unfolding x -> y to 'x', which might seem cool, since 'y' itself has different unfoldings in r1 and r2. Reason: if we did that, we'd have to zap y's deadness info and that is a very useful piece of information. So instead we add the unfolding x -> Just a, and x -> Nothing in the respective RHSs. ************************************************************************ * * \subsection{Known constructor} * * ************************************************************************ We are a bit careful with occurrence info. Here's an example (\x* -> case x of (a*, b) -> f a) (h v, e) where the * means "occurs once". This effectively becomes case (h v, e) of (a*, b) -> f a) and then let a* = h v; b = e in f a and then f (h v) All this should happen in one sweep. -} knownCon :: SimplEnv -> OutExpr -- The scrutinee -> DataCon -> [OutType] -> [OutExpr] -- The scrutinee (in pieces) -> InId -> [InBndr] -> InExpr -- The alternative -> SimplCont -> SimplM (SimplEnv, OutExpr) knownCon env scrut dc dc_ty_args dc_args bndr bs rhs cont = do { env' <- bind_args env bs dc_args ; env'' <- bind_case_bndr env' ; simplExprF env'' rhs cont } where zap_occ = zapBndrOccInfo (isDeadBinder bndr) -- bndr is an InId -- Ugh! bind_args env' [] _ = return env' bind_args env' (b:bs') (Type ty : args) = ASSERT( isTyVar b ) bind_args (extendTCvSubst env' b ty) bs' args bind_args env' (b:bs') (Coercion co : args) = ASSERT( isCoVar b ) bind_args (extendTCvSubst env' b (mkCoercionTy co)) bs' args bind_args env' (b:bs') (arg : args) = ASSERT( isId b ) do { let b' = zap_occ b -- Note that the binder might be "dead", because it doesn't -- occur in the RHS; and simplNonRecX may therefore discard -- it via postInlineUnconditionally. -- Nevertheless we must keep it if the case-binder is alive, -- because it may be used in the con_app. See Note [knownCon occ info] ; env'' <- simplNonRecX env' b' arg -- arg satisfies let/app invariant ; bind_args env'' bs' args } bind_args _ _ _ = pprPanic "bind_args" $ ppr dc $$ ppr bs $$ ppr dc_args $$ text "scrut:" <+> ppr scrut -- It's useful to bind bndr to scrut, rather than to a fresh -- binding x = Con arg1 .. argn -- because very often the scrut is a variable, so we avoid -- creating, and then subsequently eliminating, a let-binding -- BUT, if scrut is a not a variable, we must be careful -- about duplicating the arg redexes; in that case, make -- a new con-app from the args bind_case_bndr env | isDeadBinder bndr = return env | exprIsTrivial scrut = return (extendIdSubst env bndr (DoneEx scrut)) | otherwise = do { dc_args <- mapM (simplVar env) bs -- dc_ty_args are aready OutTypes, -- but bs are InBndrs ; let con_app = Var (dataConWorkId dc) `mkTyApps` dc_ty_args `mkApps` dc_args ; simplNonRecX env bndr con_app } ------------------- missingAlt :: SimplEnv -> Id -> [InAlt] -> SimplCont -> SimplM (SimplEnv, OutExpr) -- This isn't strictly an error, although it is unusual. -- It's possible that the simplifer might "see" that -- an inner case has no accessible alternatives before -- it "sees" that the entire branch of an outer case is -- inaccessible. So we simply put an error case here instead. missingAlt env case_bndr _ cont = WARN( True, text "missingAlt" <+> ppr case_bndr ) return (env, mkImpossibleExpr (contResultType cont)) {- ************************************************************************ * * \subsection{Duplicating continuations} * * ************************************************************************ -} prepareCaseCont :: SimplEnv -> [InAlt] -> SimplCont -> SimplM (SimplEnv, SimplCont, -- Dupable part SimplCont) -- Non-dupable part -- We are considering -- K[case _ of { p1 -> r1; ...; pn -> rn }] -- where K is some enclosing continuation for the case -- Goal: split K into two pieces Kdup,Knodup so that -- a) Kdup can be duplicated -- b) Knodup[Kdup[e]] = K[e] -- The idea is that we'll transform thus: -- Knodup[ (case _ of { p1 -> Kdup[r1]; ...; pn -> Kdup[rn] } -- -- We may also return some extra bindings in SimplEnv (that scope over -- the entire continuation) -- -- When case-of-case is off, just make the entire continuation non-dupable prepareCaseCont env alts cont | not (sm_case_case (getMode env)) = return (env, mkBoringStop (contHoleType cont), cont) | not (many_alts alts) = return (env, cont, mkBoringStop (contResultType cont)) | otherwise = mkDupableCont env cont where many_alts :: [InAlt] -> Bool -- True iff strictly > 1 non-bottom alternative many_alts [] = False -- See Note [Bottom alternatives] many_alts [_] = False many_alts (alt:alts) | is_bot_alt alt = many_alts alts | otherwise = not (all is_bot_alt alts) is_bot_alt (_,_,rhs) = exprIsBottom rhs {- Note [Bottom alternatives] ~~~~~~~~~~~~~~~~~~~~~~~~~~ When we have case (case x of { A -> error .. ; B -> e; C -> error ..) of alts then we can just duplicate those alts because the A and C cases will disappear immediately. This is more direct than creating join points and inlining them away; and in some cases we would not even create the join points (see Note [Single-alternative case]) and we would keep the case-of-case which is silly. See Trac #4930. -} mkDupableCont :: SimplEnv -> SimplCont -> SimplM (SimplEnv, SimplCont, SimplCont) mkDupableCont env cont | contIsDupable cont = return (env, cont, mkBoringStop (contResultType cont)) mkDupableCont _ (Stop {}) = panic "mkDupableCont" -- Handled by previous eqn mkDupableCont env (CastIt ty cont) = do { (env', dup, nodup) <- mkDupableCont env cont ; return (env', CastIt ty dup, nodup) } -- Duplicating ticks for now, not sure if this is good or not mkDupableCont env cont@(TickIt{}) = return (env, mkBoringStop (contHoleType cont), cont) mkDupableCont env cont@(StrictBind {}) = return (env, mkBoringStop (contHoleType cont), cont) -- See Note [Duplicating StrictBind] mkDupableCont env (StrictArg info cci cont) -- See Note [Duplicating StrictArg] = do { (env', dup, nodup) <- mkDupableCont env cont ; (env'', args') <- mapAccumLM makeTrivialArg env' (ai_args info) ; return (env'', StrictArg (info { ai_args = args' }) cci dup, nodup) } mkDupableCont env cont@(ApplyToTy { sc_cont = tail }) = do { (env', dup_cont, nodup_cont) <- mkDupableCont env tail ; return (env', cont { sc_cont = dup_cont }, nodup_cont ) } mkDupableCont env (ApplyToVal { sc_arg = arg, sc_dup = dup, sc_env = se, sc_cont = cont }) = -- e.g. [...hole...] (...arg...) -- ==> -- let a = ...arg... -- in [...hole...] a do { (env', dup_cont, nodup_cont) <- mkDupableCont env cont ; (_, se', arg') <- simplArg env' dup se arg ; (env'', arg'') <- makeTrivial NotTopLevel env' arg' ; let app_cont = ApplyToVal { sc_arg = arg'', sc_env = se' , sc_dup = OkToDup, sc_cont = dup_cont } ; return (env'', app_cont, nodup_cont) } mkDupableCont env cont@(Select { sc_bndr = case_bndr, sc_alts = [(_, bs, _rhs)] }) -- See Note [Single-alternative case] -- | not (exprIsDupable rhs && contIsDupable case_cont) -- | not (isDeadBinder case_bndr) | all isDeadBinder bs -- InIds && not (isUnLiftedType (idType case_bndr)) -- Note [Single-alternative-unlifted] = return (env, mkBoringStop (contHoleType cont), cont) mkDupableCont env (Select { sc_bndr = case_bndr, sc_alts = alts , sc_env = se, sc_cont = cont }) = -- e.g. (case [...hole...] of { pi -> ei }) -- ===> -- let ji = \xij -> ei -- in case [...hole...] of { pi -> ji xij } do { tick (CaseOfCase case_bndr) ; (env', dup_cont, nodup_cont) <- prepareCaseCont env alts cont -- NB: We call prepareCaseCont here. If there is only one -- alternative, then dup_cont may be big, but that's ok -- because we push it into the single alternative, and then -- use mkDupableAlt to turn that simplified alternative into -- a join point if it's too big to duplicate. -- And this is important: see Note [Fusing case continuations] ; let alt_env = se `setInScope` env' ; (alt_env', case_bndr') <- simplBinder alt_env case_bndr ; alts' <- mapM (simplAlt alt_env' Nothing [] case_bndr' dup_cont) alts -- Safe to say that there are no handled-cons for the DEFAULT case -- NB: simplBinder does not zap deadness occ-info, so -- a dead case_bndr' will still advertise its deadness -- This is really important because in -- case e of b { (# p,q #) -> ... } -- b is always dead, and indeed we are not allowed to bind b to (# p,q #), -- which might happen if e was an explicit unboxed pair and b wasn't marked dead. -- In the new alts we build, we have the new case binder, so it must retain -- its deadness. -- NB: we don't use alt_env further; it has the substEnv for -- the alternatives, and we don't want that ; (env'', alts'') <- mkDupableAlts env' case_bndr' alts' ; return (env'', -- Note [Duplicated env] Select { sc_dup = OkToDup , sc_bndr = case_bndr', sc_alts = alts'' , sc_env = zapSubstEnv env'' , sc_cont = mkBoringStop (contHoleType nodup_cont) }, nodup_cont) } mkDupableAlts :: SimplEnv -> OutId -> [InAlt] -> SimplM (SimplEnv, [InAlt]) -- Absorbs the continuation into the new alternatives mkDupableAlts env case_bndr' the_alts = go env the_alts where go env0 [] = return (env0, []) go env0 (alt:alts) = do { (env1, alt') <- mkDupableAlt env0 case_bndr' alt ; (env2, alts') <- go env1 alts ; return (env2, alt' : alts' ) } mkDupableAlt :: SimplEnv -> OutId -> (AltCon, [CoreBndr], CoreExpr) -> SimplM (SimplEnv, (AltCon, [CoreBndr], CoreExpr)) mkDupableAlt env case_bndr (con, bndrs', rhs') = do dflags <- getDynFlags if exprIsDupable dflags rhs' -- Note [Small alternative rhs] then return (env, (con, bndrs', rhs')) else do { let rhs_ty' = exprType rhs' scrut_ty = idType case_bndr case_bndr_w_unf = case con of DEFAULT -> case_bndr DataAlt dc -> setIdUnfolding case_bndr unf where -- See Note [Case binders and join points] unf = mkInlineUnfolding Nothing rhs rhs = mkConApp2 dc (tyConAppArgs scrut_ty) bndrs' LitAlt {} -> WARN( True, text "mkDupableAlt" <+> ppr case_bndr <+> ppr con ) case_bndr -- The case binder is alive but trivial, so why has -- it not been substituted away? used_bndrs' | isDeadBinder case_bndr = filter abstract_over bndrs' | otherwise = bndrs' ++ [case_bndr_w_unf] abstract_over bndr | isTyVar bndr = True -- Abstract over all type variables just in case | otherwise = not (isDeadBinder bndr) -- The deadness info on the new Ids is preserved by simplBinders ; (final_bndrs', final_args) -- Note [Join point abstraction] <- if (any isId used_bndrs') then return (used_bndrs', varsToCoreExprs used_bndrs') else do { rw_id <- newId (fsLit "w") voidPrimTy ; return ([setOneShotLambda rw_id], [Var voidPrimId]) } ; join_bndr <- newId (fsLit "$j") (mkPiTypes final_bndrs' rhs_ty') -- Note [Funky mkPiTypes] ; let -- We make the lambdas into one-shot-lambdas. The -- join point is sure to be applied at most once, and doing so -- prevents the body of the join point being floated out by -- the full laziness pass really_final_bndrs = map one_shot final_bndrs' one_shot v | isId v = setOneShotLambda v | otherwise = v join_rhs = mkLams really_final_bndrs rhs' join_arity = exprArity join_rhs join_call = mkApps (Var join_bndr) final_args ; env' <- addPolyBind NotTopLevel env (NonRec (join_bndr `setIdArity` join_arity) join_rhs) ; return (env', (con, bndrs', join_call)) } -- See Note [Duplicated env] {- Note [Fusing case continuations] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's important to fuse two successive case continuations when the first has one alternative. That's why we call prepareCaseCont here. Consider this, which arises from thunk splitting (see Note [Thunk splitting] in WorkWrap): let x* = case (case v of {pn -> rn}) of I# a -> I# a in body The simplifier will find (Var v) with continuation Select (pn -> rn) ( Select [I# a -> I# a] ( StrictBind body Stop So we'll call mkDupableCont on Select [I# a -> I# a] (StrictBind body Stop) There is just one alternative in the first Select, so we want to simplify the rhs (I# a) with continuation (StricgtBind body Stop) Supposing that body is big, we end up with let $j a = <let x = I# a in body> in case v of { pn -> case rn of I# a -> $j a } This is just what we want because the rn produces a box that the case rn cancels with. See Trac #4957 a fuller example. Note [Case binders and join points] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this case (case .. ) of c { I# c# -> ....c.... If we make a join point with c but not c# we get $j = \c -> ....c.... But if later inlining scrutines the c, thus $j = \c -> ... case c of { I# y -> ... } ... we won't see that 'c' has already been scrutinised. This actually happens in the 'tabulate' function in wave4main, and makes a significant difference to allocation. An alternative plan is this: $j = \c# -> let c = I# c# in ...c.... but that is bad if 'c' is *not* later scrutinised. So instead we do both: we pass 'c' and 'c#' , and record in c's inlining (a stable unfolding) that it's really I# c#, thus $j = \c# -> \c[=I# c#] -> ...c.... Absence analysis may later discard 'c'. NB: take great care when doing strictness analysis; see Note [Lamba-bound unfoldings] in DmdAnal. Also note that we can still end up passing stuff that isn't used. Before strictness analysis we have let $j x y c{=(x,y)} = (h c, ...) in ... After strictness analysis we see that h is strict, we end up with let $j x y c{=(x,y)} = ($wh x y, ...) and c is unused. Note [Duplicated env] ~~~~~~~~~~~~~~~~~~~~~ Some of the alternatives are simplified, but have not been turned into a join point So they *must* have an zapped subst-env. So we can't use completeNonRecX to bind the join point, because it might to do PostInlineUnconditionally, and we'd lose that when zapping the subst-env. We could have a per-alt subst-env, but zapping it (as we do in mkDupableCont, the Select case) is safe, and at worst delays the join-point inlining. Note [Small alternative rhs] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is worth checking for a small RHS because otherwise we get extra let bindings that may cause an extra iteration of the simplifier to inline back in place. Quite often the rhs is just a variable or constructor. The Ord instance of Maybe in PrelMaybe.hs, for example, took several extra iterations because the version with the let bindings looked big, and so wasn't inlined, but after the join points had been inlined it looked smaller, and so was inlined. NB: we have to check the size of rhs', not rhs. Duplicating a small InAlt might invalidate occurrence information However, if it *is* dupable, we return the *un* simplified alternative, because otherwise we'd need to pair it up with an empty subst-env.... but we only have one env shared between all the alts. (Remember we must zap the subst-env before re-simplifying something). Rather than do this we simply agree to re-simplify the original (small) thing later. Note [Funky mkPiTypes] ~~~~~~~~~~~~~~~~~~~~~~ Notice the funky mkPiTypes. If the contructor has existentials it's possible that the join point will be abstracted over type variables as well as term variables. Example: Suppose we have data T = forall t. C [t] Then faced with case (case e of ...) of C t xs::[t] -> rhs We get the join point let j :: forall t. [t] -> ... j = /\t \xs::[t] -> rhs in case (case e of ...) of C t xs::[t] -> j t xs Note [Join point abstraction] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Join points always have at least one value argument, for several reasons * If we try to lift a primitive-typed something out for let-binding-purposes, we will *caseify* it (!), with potentially-disastrous strictness results. So instead we turn it into a function: \v -> e where v::Void#. The value passed to this function is void, which generates (almost) no code. * CPR. We used to say "&& isUnLiftedType rhs_ty'" here, but now we make the join point into a function whenever used_bndrs' is empty. This makes the join-point more CPR friendly. Consider: let j = if .. then I# 3 else I# 4 in case .. of { A -> j; B -> j; C -> ... } Now CPR doesn't w/w j because it's a thunk, so that means that the enclosing function can't w/w either, which is a lose. Here's the example that happened in practice: kgmod :: Int -> Int -> Int kgmod x y = if x > 0 && y < 0 || x < 0 && y > 0 then 78 else 5 * Let-no-escape. We want a join point to turn into a let-no-escape so that it is implemented as a jump, and one of the conditions for LNE is that it's not updatable. In CoreToStg, see Note [What is a non-escaping let] * Floating. Since a join point will be entered once, no sharing is gained by floating out, but something might be lost by doing so because it might be allocated. I have seen a case alternative like this: True -> \v -> ... It's a bit silly to add the realWorld dummy arg in this case, making $j = \s v -> ... True -> $j s (the \v alone is enough to make CPR happy) but I think it's rare There's a slight infelicity here: we pass the overall case_bndr to all the join points if it's used in *any* RHS, because we don't know its usage in each RHS separately Note [Duplicating StrictArg] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The original plan had (where E is a big argument) e.g. f E [..hole..] ==> let $j = \a -> f E a in $j [..hole..] But this is terrible! Here's an example: && E (case x of { T -> F; F -> T }) Now, && is strict so we end up simplifying the case with an ArgOf continuation. If we let-bind it, we get let $j = \v -> && E v in simplExpr (case x of { T -> F; F -> T }) (ArgOf (\r -> $j r) And after simplifying more we get let $j = \v -> && E v in case x of { T -> $j F; F -> $j T } Which is a Very Bad Thing What we do now is this f E [..hole..] ==> let a = E in f a [..hole..] Now if the thing in the hole is a case expression (which is when we'll call mkDupableCont), we'll push the function call into the branches, which is what we want. Now RULES for f may fire, and call-pattern specialisation. Here's an example from Trac #3116 go (n+1) (case l of 1 -> bs' _ -> Chunk p fpc (o+1) (l-1) bs') If we can push the call for 'go' inside the case, we get call-pattern specialisation for 'go', which is *crucial* for this program. Here is the (&&) example: && E (case x of { T -> F; F -> T }) ==> let a = E in case x of { T -> && a F; F -> && a T } Much better! Notice that * Arguments to f *after* the strict one are handled by the ApplyToVal case of mkDupableCont. Eg f [..hole..] E * We can only do the let-binding of E because the function part of a StrictArg continuation is an explicit syntax tree. In earlier versions we represented it as a function (CoreExpr -> CoreEpxr) which we couldn't take apart. Do *not* duplicate StrictBind and StritArg continuations. We gain nothing by propagating them into the expressions, and we do lose a lot. The desire not to duplicate is the entire reason that mkDupableCont returns a pair of continuations. Note [Duplicating StrictBind] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Unlike StrictArg, there doesn't seem anything to gain from duplicating a StrictBind continuation, so we don't. Note [Single-alternative cases] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This case is just like the ArgOf case. Here's an example: data T a = MkT !a ...(MkT (abs x))... Then we get case (case x of I# x' -> case x' <# 0# of True -> I# (negate# x') False -> I# x') of y { DEFAULT -> MkT y Because the (case x) has only one alternative, we'll transform to case x of I# x' -> case (case x' <# 0# of True -> I# (negate# x') False -> I# x') of y { DEFAULT -> MkT y But now we do *NOT* want to make a join point etc, giving case x of I# x' -> let $j = \y -> MkT y in case x' <# 0# of True -> $j (I# (negate# x')) False -> $j (I# x') In this case the $j will inline again, but suppose there was a big strict computation enclosing the orginal call to MkT. Then, it won't "see" the MkT any more, because it's big and won't get duplicated. And, what is worse, nothing was gained by the case-of-case transform. So, in circumstances like these, we don't want to build join points and push the outer case into the branches of the inner one. Instead, don't duplicate the continuation. When should we use this strategy? We should not use it on *every* single-alternative case: e.g. case (case ....) of (a,b) -> (# a,b #) Here we must push the outer case into the inner one! Other choices: * Match [(DEFAULT,_,_)], but in the common case of Int, the alternative-filling-in code turned the outer case into case (...) of y { I# _ -> MkT y } * Match on single alternative plus (not (isDeadBinder case_bndr)) Rationale: pushing the case inwards won't eliminate the construction. But there's a risk of case (...) of y { (a,b) -> let z=(a,b) in ... } Now y looks dead, but it'll come alive again. Still, this seems like the best option at the moment. * Match on single alternative plus (all (isDeadBinder bndrs)) Rationale: this is essentially seq. * Match when the rhs is *not* duplicable, and hence would lead to a join point. This catches the disaster-case above. We can test the *un-simplified* rhs, which is fine. It might get bigger or smaller after simplification; if it gets smaller, this case might fire next time round. NB also that we must test contIsDupable case_cont *too, because case_cont might be big! HOWEVER: I found that this version doesn't work well, because we can get let x = case (...) of { small } in ...case x... When x is inlined into its full context, we find that it was a bad idea to have pushed the outer case inside the (...) case. There is a cost to not doing case-of-case; see Trac #10626. Note [Single-alternative-unlifted] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here's another single-alternative where we really want to do case-of-case: data Mk1 = Mk1 Int# | Mk2 Int# M1.f = \r [x_s74 y_s6X] case case y_s6X of tpl_s7m { M1.Mk1 ipv_s70 -> ipv_s70; M1.Mk2 ipv_s72 -> ipv_s72; } of wild_s7c { __DEFAULT -> case case x_s74 of tpl_s7n { M1.Mk1 ipv_s77 -> ipv_s77; M1.Mk2 ipv_s79 -> ipv_s79; } of wild1_s7b { __DEFAULT -> ==# [wild1_s7b wild_s7c]; }; }; So the outer case is doing *nothing at all*, other than serving as a join-point. In this case we really want to do case-of-case and decide whether to use a real join point or just duplicate the continuation: let $j s7c = case x of Mk1 ipv77 -> (==) s7c ipv77 Mk1 ipv79 -> (==) s7c ipv79 in case y of Mk1 ipv70 -> $j ipv70 Mk2 ipv72 -> $j ipv72 Hence: check whether the case binder's type is unlifted, because then the outer case is *not* a seq. ************************************************************************ * * Unfoldings * * ************************************************************************ -} simplLetUnfolding :: SimplEnv-> TopLevelFlag -> InId -> OutExpr -> Unfolding -> SimplM Unfolding simplLetUnfolding env top_lvl id new_rhs unf | isStableUnfolding unf = simplUnfolding env top_lvl id unf | otherwise = bottoming `seq` -- See Note [Force bottoming field] do { dflags <- getDynFlags ; return (mkUnfolding dflags InlineRhs (isTopLevel top_lvl) bottoming new_rhs) } -- We make an unfolding *even for loop-breakers*. -- Reason: (a) It might be useful to know that they are WHNF -- (b) In TidyPgm we currently assume that, if we want to -- expose the unfolding then indeed we *have* an unfolding -- to expose. (We could instead use the RHS, but currently -- we don't.) The simple thing is always to have one. where bottoming = isBottomingId id simplUnfolding :: SimplEnv-> TopLevelFlag -> InId -> Unfolding -> SimplM Unfolding -- Note [Setting the new unfolding] simplUnfolding env top_lvl id unf = case unf of NoUnfolding -> return unf OtherCon {} -> return unf DFunUnfolding { df_bndrs = bndrs, df_con = con, df_args = args } -> do { (env', bndrs') <- simplBinders rule_env bndrs ; args' <- mapM (simplExpr env') args ; return (mkDFunUnfolding bndrs' con args') } CoreUnfolding { uf_tmpl = expr, uf_src = src, uf_guidance = guide } | isStableSource src -> do { expr' <- simplExpr rule_env expr ; case guide of UnfWhen { ug_arity = arity, ug_unsat_ok = sat_ok } -- Happens for INLINE things -> let guide' = UnfWhen { ug_arity = arity, ug_unsat_ok = sat_ok , ug_boring_ok = inlineBoringOk expr' } -- Refresh the boring-ok flag, in case expr' -- has got small. This happens, notably in the inlinings -- for dfuns for single-method classes; see -- Note [Single-method classes] in TcInstDcls. -- A test case is Trac #4138 in return (mkCoreUnfolding src is_top_lvl expr' guide') -- See Note [Top-level flag on inline rules] in CoreUnfold _other -- Happens for INLINABLE things -> bottoming `seq` -- See Note [Force bottoming field] do { dflags <- getDynFlags ; return (mkUnfolding dflags src is_top_lvl bottoming expr') } } -- If the guidance is UnfIfGoodArgs, this is an INLINABLE -- unfolding, and we need to make sure the guidance is kept up -- to date with respect to any changes in the unfolding. | otherwise -> return noUnfolding -- Discard unstable unfoldings where bottoming = isBottomingId id is_top_lvl = isTopLevel top_lvl act = idInlineActivation id rule_env = updMode (updModeForStableUnfoldings act) env -- See Note [Simplifying inside stable unfoldings] in SimplUtils {- Note [Force bottoming field] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We need to force bottoming, or the new unfolding holds on to the old unfolding (which is part of the id). Note [Setting the new unfolding] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * If there's an INLINE pragma, we simplify the RHS gently. Maybe we should do nothing at all, but simplifying gently might get rid of more crap. * If not, we make an unfolding from the new RHS. But *only* for non-loop-breakers. Making loop breakers not have an unfolding at all means that we can avoid tests in exprIsConApp, for example. This is important: if exprIsConApp says 'yes' for a recursive thing, then we can get into an infinite loop If there's an stable unfolding on a loop breaker (which happens for INLINEABLE), we hang on to the inlining. It's pretty dodgy, but the user did say 'INLINE'. May need to revisit this choice. ************************************************************************ * * Rules * * ************************************************************************ Note [Rules in a letrec] ~~~~~~~~~~~~~~~~~~~~~~~~ After creating fresh binders for the binders of a letrec, we substitute the RULES and add them back onto the binders; this is done *before* processing any of the RHSs. This is important. Manuel found cases where he really, really wanted a RULE for a recursive function to apply in that function's own right-hand side. See Note [Loop breaking and RULES] in OccAnal. -} addBndrRules :: SimplEnv -> InBndr -> OutBndr -> SimplM (SimplEnv, OutBndr) -- Rules are added back into the bin addBndrRules env in_id out_id | null old_rules = return (env, out_id) | otherwise = do { new_rules <- simplRules env (Just (idName out_id)) old_rules ; let final_id = out_id `setIdSpecialisation` mkRuleInfo new_rules ; return (modifyInScope env final_id, final_id) } where old_rules = ruleInfoRules (idSpecialisation in_id) simplRules :: SimplEnv -> Maybe Name -> [CoreRule] -> SimplM [CoreRule] simplRules env mb_new_nm rules = mapM simpl_rule rules where simpl_rule rule@(BuiltinRule {}) = return rule simpl_rule rule@(Rule { ru_bndrs = bndrs, ru_args = args , ru_fn = fn_name, ru_rhs = rhs }) = do { (env', bndrs') <- simplBinders env bndrs ; let rule_env = updMode updModeForRules env' ; args' <- mapM (simplExpr rule_env) args ; rhs' <- simplExpr rule_env rhs ; return (rule { ru_bndrs = bndrs' , ru_fn = mb_new_nm `orElse` fn_name , ru_args = args' , ru_rhs = rhs' }) }
gridaphobe/ghc
compiler/simplCore/Simplify.hs
Haskell
bsd-3-clause
123,812
{- Module : Main Description : UI and top level game loop Module which handles UI and top level game loop. -} module Main( main , module Exported ) where import Pentago.Data.Matrix as Exported import Pentago.Data.Pentago as Exported hiding (Player) import Pentago.Data.Tree as Exported import Pentago.AI.MinMax as Exported import qualified Pentago.AI.Pentago as AP import Control.Applicative import Control.Monad import Control.Monad.State import Data.Char import Text.ParserCombinators.Parsec import System.Random type GameStateType = SmartGameState initialGameState :: GameStateType initialGameState = initialSmartGameState aiDifficulty :: Int aiDifficulty = 3 main :: IO () main = fst <$> runStateT mainMenu (MainMenuState (Player humanPlayerWrapper "Human 0") (Player (aiPlayerWrapper $ AP.trivialAIPlayer aiDifficulty) "AI 1")) -- main = trialGame -- |IO Monad which runs a game between two AI players. {- trialGame = runStateT runGame $ SessionState initialGameState (mkStdGen 0) (Player (aiPlayerWrapper $ AP.trivialAIPlayer 3) "AI 0") (Player (aiPlayerWrapper $ AP.trivialAIPlayer 3) "AI 1") -} -- main menu data MainMenuState = MainMenuState { firstPlayer :: Player GameStateType, secondPlayer :: Player GameStateType } mainMenuString :: String mainMenuString = "1) Start game" ++ "\n" ++ "2) Configure" ++ "\n" ++ "3) Exit" ++ "\n" mainMenu :: StateT MainMenuState IO () mainMenu = do liftIO $ putStr mainMenuString menuOption <- head <$> liftIO getLine liftIO $ putStrLn "" if menuOption == '1' then do firstPlayer' <- firstPlayer <$> get secondPlayer' <- secondPlayer <$> get lift $ do stdGen <- newStdGen _ <- runStateT runGame $ SessionState initialGameState stdGen firstPlayer' secondPlayer' return () mainMenu else Control.Monad.when (menuOption == '2') $ do configurationMenu mainMenu -- configuration menu switchPlayer :: (GameState s) => Player s -> Player s switchPlayer player = if playerName == "Human" then Player (aiPlayerWrapper $ AP.trivialAIPlayer aiDifficulty) ("AI " ++ idx) else Player humanPlayerWrapper ("Human " ++ idx) where (playerName:(idx:[])) = words $ name player configurationMenuString :: String configurationMenuString = "1) Switch first player" ++ "\n" ++ "2) Switch second player" ++ "\n" ++ "3) Go to main menu" ++ "\n" showCurrentState :: MainMenuState -> IO () showCurrentState mainMenuState = do putStrLn $ "1. player: " ++ (name . firstPlayer $ mainMenuState) putStrLn $ "2. player: " ++ (name . secondPlayer $ mainMenuState) configurationMenuMainLoop :: IO Char configurationMenuMainLoop = do putStr configurationMenuString head <$> getLine -- |Configuration menu allowing user to choose player types. configurationMenu :: StateT MainMenuState IO () configurationMenu = do mainMenuState <- get let curFirstPlayer = firstPlayer mainMenuState curSecondPlayer = secondPlayer mainMenuState which <- lift $ do showCurrentState mainMenuState putStrLn "" menuOption <- configurationMenuMainLoop putStrLn "" return $ if menuOption == '1' then 1 else if menuOption == '2' then 2 else 3 if which == (1 :: Int) then do put $ MainMenuState (switchPlayer curFirstPlayer) curSecondPlayer configurationMenu else Control.Monad.when (which == 2) $ do put $ MainMenuState curFirstPlayer (switchPlayer curSecondPlayer) configurationMenu -- runGame data Player s = Player { playerWrapper :: PlayerWrapper s -- ^Wrapper for player function , name :: String -- ^Human readable player name } data SessionState = SessionState { gameState :: GameStateType, randomGen :: StdGen, curPlayer :: Player GameStateType, nextPlayer :: Player GameStateType } -- |Runs a game between two players displaying current board betwen moves. runGame :: StateT SessionState IO () runGame = do sessionState <- get let curGameState = gameState sessionState liftIO . putStr . prettyShowBoard . getBoardArray $ curGameState if isFinished curGameState then let result = getResult curGameState winMessage = case result of Just Draw -> "The game has ended in a draw." Just WhiteWin -> "The white player has won." Just BlackWin -> "The black player has won." Nothing -> error "getResult has returned Nothing." in liftIO . putStrLn $ winMessage else do let curPlayerWrapper = playerWrapper . curPlayer $ sessionState (newGameState, newPlayerState) <- liftIO . runStateT (curPlayerWrapper curGameState) $ randomGen sessionState put $ SessionState newGameState newPlayerState (nextPlayer sessionState) (curPlayer sessionState) runGame type PlayerWrapperMonad = StateT StdGen IO -- |Wrapper for Pentago.AI.Pentago.Player function which unifies monads used by -- AI and human player. type PlayerWrapper s = AP.Player PlayerWrapperMonad s aiPlayerWrapper :: (GameState s) => AP.AIPlayer s StdGen -> PlayerWrapper s aiPlayerWrapper aiPlayer board = do gen <- get let (newState, newGen) = runState (aiPlayer board) gen put newGen return newState humanPlayer :: (GameState s) => AP.HumanPlayer s humanPlayer currentGameState = do putStrLn moveHelp moveOrder <- readMoveOrder return $ makeMove moveOrder currentGameState humanPlayerWrapper :: (GameState s) => PlayerWrapper s humanPlayerWrapper = lift . humanPlayer moveHelp :: String moveHelp = "Provide move order of form posX posY quadrant rotation, " ++ "where pos in [0,5], quadrant in {RT, LT, LB, RB}, rotation in {L,R}]" parsePosition :: Parser Int parsePosition = do posX <- digit let diff = ord posX - ord '0' if diff > 5 then fail "Read position is too large." else return diff parseQuadrant :: Parser Quadrant parseQuadrant = do lr <- oneOf "RL" tb <- oneOf "TB" let quadrant = [lr, tb] return $ if quadrant == "RT" then RightTop else if quadrant == "LT" then LeftTop else if quadrant == "LB" then LeftBottom else RightBottom parseRotation :: Parser RotationDirection parseRotation = do lr <- oneOf "RL" return $ if lr == 'R' then RightRotation else LeftRotation parseMoveOrder :: Parser MoveOrder parseMoveOrder = do spaces posX <- parsePosition spaces posY <- parsePosition spaces quadrant <- parseQuadrant spaces rotation <- parseRotation spaces return ((posX, posY), (quadrant, rotation)) readMoveOrder :: IO MoveOrder readMoveOrder = do line <- getLine case parse parseMoveOrder "MoveOrder Parser" line of Left err -> print err >> readMoveOrder Right moveOrder -> return moveOrder
gregorias/Pentago
src/Main.hs
Haskell
bsd-3-clause
6,757
-- | Module Parser transforms text files in a Tiles array (strongly typed). module Parser where import Hyrule import Data.Array import Text.Trifecta import Control.Applicative ((<|>)) data TerrainError = TerrainError data ObjectError = ObjectError parseTerrain :: AreaType -> Parser Terrain parseTerrain Overworld = do terrain' <- letter case terrain' of 'g' -> return Grass 's' -> return Sand 'f' -> return Forest 'm' -> return Mountain 'w' -> return Water _ -> fail "Terreno desconhecido" parseTerrain (Dungeon _) = do terrain' <- letter case terrain' of 'd' -> return WDungeon 'n' -> return NWDungeon _ -> fail "Terreno desconhecido" parseObject :: AreaType -> Parser Object parseObject Overworld = do object' <- letter <|> digit <|> char '_' case object' of 'S' -> return MasterSword '_' -> return Empty 'H' -> return Home 'D' -> return DummyGate '1' -> return . Gate $ Dungeon 1 '2' -> return . Gate $ Dungeon 2 '3' -> return . Gate $ Dungeon 3 _ -> fail "Objeto desconhecido" parseObject (Dungeon _) = do object' <- letter <|> char '_' case object' of 'P' -> return Pendant 'O' -> return . Gate $ Overworld '_' -> return Empty _ -> fail "Objeto desconhecido" parseTiles :: AreaType -> AreaSize -> Parser (Array Position Tile) parseTiles areaType' areaSize = do rows <- some parseLine if length rows == areaSize then return $ listArray ((0,0), (areaSize - 1, areaSize - 1)) $ concat rows else fail $ "O mapa deve possuir " ++ show areaSize ++ " linhas" where parseLine = do tiles <- some parseTile newline let row = tiles if length row == areaSize then return row <?> "Row of Tiles" else fail $ "O mapa deve possuir " ++ show areaSize ++ " colunas" parseTile = do terrain' <- parseTerrain areaType' object' <- parseObject areaType' (return $ Tile terrain' object') <?> "Tile" parseMap :: AreaType -> AreaSize -> String -> Area parseMap areaType' areaSize str = extract $ parseString (parseTiles areaType' areaSize) mempty str where extract (Success p) = Area areaType' p extract (Failure e) = error $ "Nao foi possível realizar o parser do mapa. Erro: " ++ show e
trxeste/wrk
haskell/TrabalhoIA/src/Parser.hs
Haskell
bsd-3-clause
2,283
{-# LANGUAGE GADTs #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE OverlappingInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} -- -- Copyright (c) 2009-2011, ERICSSON AB -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are met: -- -- * Redistributions of source code must retain the above copyright notice, -- this list of conditions and the following disclaimer. -- * Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution. -- * Neither the name of the ERICSSON AB nor the names of its contributors -- may be used to endorse or promote products derived from this software -- without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -- module Feldspar.Core.Frontend ( module Data.Patch , Syntactic , Internal , FeldDomain , Data , Syntax , module Frontend , FeldOpts , defaultFeldOpts , reifyFeld , reifyFeldM , reifyFeldUnOpt , showExpr , printExpr , printExpr2 , printExprWith , printExpr2With , printExprUnOpt , drawUntyped , drawUntypedWith , showAST , drawAST , drawASTUnOpt , writeHtmlAST , showDecor , drawDecor , writeHtmlDecor , eval , evalTarget , desugar , sugar , resugar -- * QuickCheck , (===>) , (====) -- * Type constraints , tData , tArr1 , tArr2 -- * Functions , ilog2 , nlz ) where import Prelude as P import Control.Monad.State import Test.QuickCheck import Data.Patch import Data.Tree.View import qualified Data.Map as Map import Language.Syntactic hiding (desugar, sugar, resugar, showAST, drawAST, writeHtmlAST, stringTree) import qualified Language.Syntactic as Syntactic import qualified Language.Syntactic.Constructs.Decoration as Syntactic import Language.Syntactic.Constructs.Binding import Language.Syntactic.Constructs.Binding.HigherOrder import Language.Syntactic.Sharing.SimpleCodeMotion import Language.Syntactic.Sharing.CodeMotion2 import Language.Syntactic.Sharing.SimpleCodeMotion3 import Feldspar.Range import Feldspar.Core.Types import Feldspar.Core.Interpretation import Feldspar.Core.Middleend.FromTyped import Feldspar.Core.UntypedRepresentation (stringTree) import Feldspar.Core.Constructs import Feldspar.Core.Constructs.Binding (cLambda) import Feldspar.Core.Frontend.Array as Frontend import Feldspar.Core.Frontend.Binding as Frontend import Feldspar.Core.Frontend.Bits as Frontend import Feldspar.Core.Frontend.Complex as Frontend import Feldspar.Core.Frontend.Condition as Frontend import Feldspar.Core.Frontend.Conversion as Frontend import Feldspar.Core.Frontend.Elements as Frontend import Feldspar.Core.Frontend.Eq as Frontend import Feldspar.Core.Frontend.Error as Frontend import Feldspar.Core.Frontend.FFI as Frontend import Feldspar.Core.Frontend.Floating as Frontend import Feldspar.Core.Frontend.Fractional as Frontend import Feldspar.Core.Frontend.Future as Frontend import Feldspar.Core.Frontend.Integral as Frontend import Feldspar.Core.Frontend.Literal as Frontend import Feldspar.Core.Frontend.Logic as Frontend import Feldspar.Core.Frontend.Loop as Frontend import Feldspar.Core.Frontend.NoInline as Frontend import Feldspar.Core.Frontend.Num as Frontend import Feldspar.Core.Frontend.Ord as Frontend import Feldspar.Core.Frontend.Par as Frontend import Feldspar.Core.Frontend.Save as Frontend import Feldspar.Core.Frontend.SizeProp as Frontend import Feldspar.Core.Frontend.SourceInfo as Frontend import Feldspar.Core.Frontend.Switch as Frontend import Feldspar.Core.Frontend.RealFloat as Frontend import Feldspar.Core.Frontend.Tuple as Frontend prjDict :: PrjDict (Decor Info FeldDom) prjDict = PrjDict (prjVariable prjDictFO . decorExpr) (prjLambda prjDictFO . decorExpr) mkId :: FeldOpts -> MkInjDict (Decor Info FeldDom) mkId opts a b | simpleMatch (const . sharable) a , Just Dict <- typeDict a , Dict <- exprDictSub pTypeable b , Info {infoType = bType} <- getInfo b = case bType of FunType{} | P.not (SICS `inTarget` opts) -> Nothing _ -> Just InjDict { injVariable = Decor (getInfo a) . injC . c' . Variable , injLambda = let info = ((mkInfoTy (FunType typeRep bType)) {infoSize = (infoSize (getInfo a), infoSize (getInfo b))}) in Decor info . injC . cLambda , injLet = Decor (getInfo b) $ injC Let } mkId _ _ _ = Nothing hoister opts | CSE `inTarget` opts = cm1 . optimize opts . stripDecor <=< cm2 | otherwise = cm3 where cm1 = codeMotion (simpleMatch (const . hoistOver)) prjDict (mkId opts) cm2 = codeMotion2 (simpleMatch (const . hoistOver)) prjDict (mkId opts) cm3 = codeMotion3 10 (simpleMatch (const . hoistOver)) prjDict (mkId opts) mkSubEnvDefault reifyFeldM :: (SyntacticFeld a, MonadState VarId m) => FeldOpts -> BitWidth n -> a -> m (ASTF (Decor Info FeldDom) (Internal a)) reifyFeldM opts n = ( return . optimize opts . stripDecor <=< hoister opts . optimize opts . targetSpecialization n <=< reifyM . fromFeld . Syntactic.desugar ) -- Note that it's important to do 'codeMotion' after 'optimize'. There may be -- sub-expressions that appear more than once in the original program, but -- where 'optimize' removes all but one occurrence. If 'codeMotion' was run -- first, these sub-expressions would be let bound, preventing subsequent -- optimizations. -- | Reification and optimization of a Feldspar program reifyFeld :: SyntacticFeld a => FeldOpts -> BitWidth n -> a -> ASTF (Decor Info FeldDom) (Internal a) reifyFeld opts n = flip evalState 0 . reifyFeldM opts n -- | Reification of a Feldspar program reifyFeldUnOpt :: SyntacticFeld a => FeldOpts -> BitWidth n -> a -> ASTF FeldDom (Internal a) reifyFeldUnOpt _ n = flip evalState 0 . ( return . targetSpecialization n <=< reifyM . fromFeld . Syntactic.desugar ) showExpr :: SyntacticFeld a => a -> String showExpr = render . reifyFeld defaultFeldOpts N32 -- | Print an optimized untyped expression printExpr2 :: SyntacticFeld a => a -> IO () printExpr2 = printExpr2With defaultFeldOpts -- | Draw the untyped syntax tree using unicode art drawUntyped :: SyntacticFeld a => a -> IO () drawUntyped = drawUntypedWith defaultFeldOpts -- | Draw the untyped syntax tree using unicode art drawUntypedWith :: SyntacticFeld a => FeldOpts -> a -> IO () drawUntypedWith opts = drawTree . stringTree . untype opts . reifyFeld opts N32 -- | Print an optimized expression printExpr :: SyntacticFeld a => a -> IO () printExpr = print . reifyFeld defaultFeldOpts N32 -- | Print an optimized untyped expression with options printExpr2With :: SyntacticFeld a => FeldOpts -> a -> IO () printExpr2With opts = print . untype opts . reifyFeld opts N32 -- | Print an optimized expression with options printExprWith :: SyntacticFeld a => FeldOpts -> a -> IO () printExprWith opts = print . reifyFeld opts N32 -- | Print an unoptimized expression printExprUnOpt :: SyntacticFeld a => a -> IO () printExprUnOpt = print . reifyFeldUnOpt defaultFeldOpts N32 -- | Show the syntax tree using Unicode art showAST :: SyntacticFeld a => a -> String showAST = Syntactic.showAST . reifyFeld defaultFeldOpts N32 -- | Draw the syntax tree on the terminal using Unicode art drawAST :: SyntacticFeld a => a -> IO () drawAST = Syntactic.drawAST . reifyFeld defaultFeldOpts N32 drawASTUnOpt :: SyntacticFeld a => a -> IO () drawASTUnOpt = Syntactic.drawAST . reifyFeldUnOpt defaultFeldOpts N32 -- | Write the syntax tree to an HTML file with foldable nodes writeHtmlAST :: SyntacticFeld a => FilePath -> a -> IO () writeHtmlAST file = Syntactic.writeHtmlAST file . reifyFeld defaultFeldOpts N32 -- | Draw a syntax tree decorated with type and size information showDecor :: SyntacticFeld a => a -> String showDecor = Syntactic.showDecorWith show . reifyFeld defaultFeldOpts N32 -- | Draw a syntax tree decorated with type and size information drawDecor :: SyntacticFeld a => a -> IO () drawDecor = Syntactic.drawDecorWith show . reifyFeld defaultFeldOpts N32 -- | Write the syntax tree decorated with type and size information to an HTML file with foldable nodes writeHtmlDecor :: SyntacticFeld a => FilePath -> a -> IO () writeHtmlDecor file = Syntactic.writeHtmlDecorWith showInfo file . reifyFeld defaultFeldOpts N32 where showInfo :: Show (Info b) => Info b -> String showInfo Info{..} = unlines [ "Type: " ++ show infoType , "Size: " ++ show infoSize , "Vars: " ++ show (Map.keys infoVars) , "Src: " ++ show infoSource ] eval :: SyntacticFeld a => a -> Internal a eval = evalBind . reifyFeld defaultFeldOpts N32 evalTarget :: ( SyntacticFeld a , BoundedInt (GenericInt U n) , BoundedInt (GenericInt S n) ) => BitWidth n -> a -> Internal a evalTarget n = evalBind . reifyFeld defaultFeldOpts n -- TODO This doesn't work yet, because 'targetSpecialization' is not implemented desugar :: SyntacticFeld a => a -> Data (Internal a) desugar = Syntactic.resugar sugar :: SyntacticFeld a => Data (Internal a) -> a sugar = Syntactic.resugar resugar :: (SyntacticFeld a, SyntacticFeld b, Internal a ~ Internal b) => a -> b resugar = Syntactic.resugar -------------------------------------------------------------------------------- -- * QuickCheck -------------------------------------------------------------------------------- instance (Type a, Arbitrary a) => Arbitrary (Data a) where arbitrary = fmap value arbitrary instance Testable (Data Bool) where property = property . eval (===>) :: Testable prop => Data Bool -> prop -> Property a ===> b = eval a ==> b -- | Test that two function of the same arity have the same semantics class Equal a where (====) :: a -> a -> Property instance (P.Eq a, Show a) => Equal a where x ==== y = x === y instance (Show a, Arbitrary a, Equal b) => Equal (a -> b) where f ==== g = property (\x -> f x ==== g x) -------------------------------------------------------------------------------- -- * Type annotations -------------------------------------------------------------------------------- tData :: Patch a a -> Patch (Data a) (Data a) tData _ = id tArr1 :: Patch a a -> Patch (Data [a]) (Data [a]) tArr1 _ = id tArr2 :: Patch a a -> Patch (Data [[a]]) (Data [[a]]) tArr2 _ = id -------------------------------------------------------------------------------- -- * Functions -------------------------------------------------------------------------------- -- | Integer logarithm in base 2 -- Based on an algorithm in Hacker's Delight ilog2 :: (Bits a) => Data a -> Data Index ilog2 x = bitSize x - 1 - nlz x -- | Count leading zeros -- Based on an algorithm in Hacker's Delight nlz :: (Bits a) => Data a -> Data Index nlz x = bitCount $ complement $ foldl go x $ takeWhile (P.< bitSize' x) $ P.map (2 P.^) [(0::Integer)..] where go b s = share b $ \b' -> b' .|. (b' .>>. value s) -- TODO share is probably not needed when observable sharing is implemented
emwap/feldspar-language
src/Feldspar/Core/Frontend.hs
Haskell
bsd-3-clause
12,977
module ETA.TypeCheck.TcForeign ( tcForeignImports , tcForeignExports -- Low-level exports for hooks , isForeignImport, isForeignExport , tcFImport --, tcFExport -- , tcForeignImports' , tcCheckFIType, checkJavaTarget, checkForeignArgs, checkForeignRes , normaliseFfiType , nonIOok, mustBeIO , checkSafe, noCheckSafe -- , tcForeignExports' -- , tcCheckFEType ) where import ETA.BasicTypes.DataCon import ETA.BasicTypes.Unique import ETA.BasicTypes.SrcLoc import ETA.BasicTypes.Name import ETA.BasicTypes.VarSet import ETA.BasicTypes.Id import ETA.BasicTypes.RdrName import ETA.TypeCheck.FamInst import ETA.TypeCheck.TcRnMonad import ETA.TypeCheck.TcHsType import ETA.TypeCheck.TcExpr import ETA.TypeCheck.TcEnv import ETA.TypeCheck.TcType import ETA.Prelude.TysWiredIn (unitTyCon) import ETA.Prelude.PrelNames import ETA.Prelude.ForeignCall import ETA.Main.Hooks import ETA.Main.ErrUtils import ETA.Main.DynFlags import ETA.Types.FamInstEnv import ETA.Types.Type import ETA.Types.TypeRep import ETA.Types.Coercion import ETA.Types.TyCon import ETA.Debug import ETA.HsSyn.HsSyn import ETA.Utils.Bag import ETA.Utils.Outputable import ETA.Utils.FastString import ETA.Utils.Maybes import Data.Maybe(fromMaybe) -- Defines a binding isForeignImport :: LForeignDecl name -> Bool isForeignImport (L _ ForeignImport {}) = True isForeignImport _ = False -- Exports a binding isForeignExport :: LForeignDecl name -> Bool isForeignExport (L _ ForeignExport {}) = True isForeignExport _ = False tcForeignImports :: [LForeignDecl Name] -> TcM ([Id], [LForeignDecl Id], Bag GlobalRdrElt) tcForeignImports decls = getHooked tcForeignImportsHook tcForeignImports' >>= ($ decls) tcForeignImports' :: [LForeignDecl Name] -> TcM ([Id], [LForeignDecl Id], Bag GlobalRdrElt) tcForeignImports' decls = do (ids, decls, gres) <- mapAndUnzip3M tcFImport $ filter isForeignImport decls return (ids, decls, unionManyBags gres) printDebug h s = do dflags <- getDynFlags liftIO . putStrLn . showSDoc dflags $ (ptext $ sLit h) <+> s tcFImport :: LForeignDecl Name -> TcM (Id, LForeignDecl Id, Bag GlobalRdrElt) tcFImport (L declLoc fi@(ForeignImport (L nameLoc name) hsType _ impDecl)) = setSrcSpan declLoc . addErrCtxt (foreignDeclCtxt fi) $ do sigType <- tcHsSigType (ForSigCtxt name) hsType --printDebug "tcFImport: sigType" $ ppr sigType (normCo, normSigType, gres) <- normaliseFfiType sigType --printDebug "tcFImport: normSigType" $ ppr normSigType let (_, ty) = tcSplitForAllTys normSigType (theta, ty') = tcSplitPhiTy ty (argTypes, resType) = tcSplitFunTys ty' id = mkLocalId name sigType traceTc "tcFIImport" $ ppr theta <+> ppr argTypes <+> ppr resType --printDebug "tcFImport: normSigType" $ ppr argTypes <+> ppr resType impDecl' <- tcCheckFIType theta argTypes resType impDecl let fiDecl = ForeignImport (L nameLoc id) undefined (mkSymCo normCo) impDecl' return (id, L declLoc fiDecl, gres) tcFImport d = pprPanic "tcFImport" (ppr d) normaliseFfiType :: Type -> TcM (Coercion, Type, Bag GlobalRdrElt) normaliseFfiType ty = do famEnvs <- tcGetFamInstEnvs normaliseFfiType' famEnvs ty normaliseFfiType' :: FamInstEnvs -> Type -> TcM (Coercion, Type, Bag GlobalRdrElt) normaliseFfiType' env ty0 = go initRecTc ty0 where go :: RecTcChecker -> Type -> TcM (Coercion, Type, Bag GlobalRdrElt) go recNts ty | Just ty' <- coreView ty = go recNts ty' go recNts ty@(TyConApp tc tys) -- TODO: Address funPtrs | tcKey == ioTyConKey = childrenOnly False | tcKey == javaTyConKey = childrenOnly True | isNewTyCon tc , Just recNts' <- checkRecTc recNts tc = do rdrEnv <- getGlobalRdrEnv case checkNewtypeFFI rdrEnv tc of Nothing -> nothing Just gre -> do (co', ty', gres) <- go recNts' ntRhs return (mkTransCo ntCo co', ty', gre `consBag` gres) | isFamilyTyCon tc , (co, nty) <- normaliseTcApp env Representational tc tys , not (isReflCo co) = do (co', ty', gres) <- go recNts nty return (mkTransCo co co', ty', gres) | otherwise = nothing where tcKey = getUnique tc childrenOnly isJava = do xs <- mapM (go recNts) tys let (cos, tys', gres) = unzip3 xs cos' = zipWith3 downgradeRole (tyConRoles tc) ((if isJava then [Nominal] else []) ++ repeat Representational) cos co' = mkTyConAppCo Representational tc cos' return ( co' , mkTyConApp tc tys' , unionManyBags gres ) ntCo = mkUnbranchedAxInstCo Representational (newTyConCo tc) tys ntRhs = newTyConInstRhs tc tys nothing = return (Refl Representational ty, ty, emptyBag) go recNts (FunTy ty1 ty2) = do (coi1, nty1, gres1) <- go recNts ty1 (coi2, nty2, gres2) <- go recNts ty2 return (mkFunCo Representational coi1 coi2, mkFunTy nty1 nty2, gres1 `unionBags` gres2) go recNts (ForAllTy tyVar ty) = do (coi, nty, gres) <- go recNts ty return (mkForAllCo tyVar coi, ForAllTy tyVar nty, gres) go _ ty@(TyVarTy {}) = return (Refl Representational ty, ty, emptyBag) go _ ty@(LitTy {}) = return (Refl Representational ty, ty, emptyBag) go _ ty@(AppTy {}) = return (Refl Representational ty, ty, emptyBag) checkNewtypeFFI :: GlobalRdrEnv -> TyCon -> Maybe GlobalRdrElt checkNewtypeFFI rdrEnv tc | Just con <- tyConSingleDataCon_maybe tc , [gre] <- lookupGRE_Name rdrEnv (dataConName con) = Just gre | otherwise = Nothing foreignDeclCtxt :: ForeignDecl Name -> SDoc foreignDeclCtxt fo = hang (str "When checking declaration:") 2 (ppr fo) tcCheckFIType :: ThetaType -> [Type] -> Type -> ForeignImport -> TcM ForeignImport tcCheckFIType thetaType argTypes resType idecl@(CImport (L lc cconv) (L ls safety) mh targetSpec src) | CFunction target <- targetSpec = case cconv of PrimCallConv -> do dflags <- getDynFlags checkTc (xopt Opt_GHCForeignImportPrim dflags) (text "Use GHCForeignImportPrim to allow `foreign import prim'.") -- TODO: Validate the target string checkJavaTarget target checkTc (playSafe safety) (text $ "The safe/unsafe annotation should not be used with " ++ "`foreign import prim'.") checkForeignArgs (isFFIPrimArgumentTy dflags) argTypes checkForeignRes nonIOok checkSafe (isFFIPrimResultTy dflags) resType return idecl JavaCallConv -> do -- TODO: Validate the target string for @new, @field -- TODO: Validate ThetaType dflags <- getDynFlags checkJavaTarget target let javaClassVars = extendsVars thetaType checkForeignArgs (isFFIArgumentTy dflags safety javaClassVars) argTypes checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) resType return idecl _ -> pprPanic "tcCheckFIType: Unsupported calling convention." (ppr idecl) | CWrapper target isAbstract <- targetSpec , JavaCallConv <- cconv = do -- TODO: Validate target dflags <- getDynFlags let javaClassVars = extendsVars thetaType -- TODO: Typecheck foreign wrappers properly -- checkForeignArgs (isFFIArgumentTy dflags safety javaClassVars) argTypes -- checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) resType return idecl | otherwise = pprPanic "tcCheckFIType: Unsupported calling convention." (ppr idecl) tcCheckFIType _ _ _ idecl = pprPanic "tcCheckFIType: Unsupported calling convention." (ppr idecl) check :: Validity -> (MsgDoc -> MsgDoc) -> TcM () check IsValid _ = return () check (NotValid doc) err_fn = addErrTc (err_fn doc) checkForeignArgs :: (Type -> Validity) -> [Type] -> TcM () checkForeignArgs pred tys = mapM_ go tys where go ty = check (pred ty) (illegalForeignTyErr argument) illegalForeignTyErr :: SDoc -> SDoc -> SDoc illegalForeignTyErr argOrRes extra = hang msg 2 extra where msg = hsep [ str "Unacceptable", argOrRes , str "type in foreign declaration:"] checkForeignRes :: Bool -> Bool -> (Type -> Validity) -> Type -> TcM () checkForeignRes nonIOResultOk checkSafe predResType ty | Just (_, resType) <- tcSplitIOType_maybe ty = do traceTc "checkForeignRes[IO]" $ ppr resType check (predResType resType) (illegalForeignTyErr result) | Just (_, tagType, resType) <- tcSplitJavaType_maybe ty = do traceTc "checkForeignRes[Java]" $ ppr tagType <+> ppr resType check (predResType resType) (illegalForeignTyErr result) -- Case for non-IO result type with FFI Import | not nonIOResultOk = addErrTc . illegalForeignTyErr result $ str "IO result type expected" | otherwise = do traceTc "checkForeignRes[Other]" $ ppr ty dflags <- getDynFlags case predResType ty of -- Handle normal typecheck fail, we want to handle this first and -- only report safe haskell errors if the normal type check is OK. NotValid msg -> addErrTc $ illegalForeignTyErr result msg -- handle safe infer fail _ | checkSafe && safeInferOn dflags -> recordUnsafeInfer -- handle safe language typecheck fail _ | checkSafe && safeLanguageOn dflags -> addErrTc $ illegalForeignTyErr result safeHsErr -- sucess! non-IO return is fine _ -> return () where safeHsErr = str $ "Safe Haskell is on, all FFI imports must be in the" ++ " IO monad" argument, result :: SDoc argument = text "argument" result = text "result" checkSafe, noCheckSafe :: Bool checkSafe = True noCheckSafe = False nonIOok, mustBeIO :: Bool nonIOok = True mustBeIO = False checkJavaTarget :: CCallTarget -> TcM () checkJavaTarget (StaticTarget str _ _) = do -- TODO: Validate the name return () isAnyTy :: Type -> Bool isAnyTy = isTc anyTyConKey isTc :: Unique -> Type -> Bool isTc uniq ty = case tcSplitTyConApp_maybe ty of Just (tc, _) -> uniq == getUnique tc Nothing -> False tcForeignExports :: [LForeignDecl Name] -> TcM (LHsBinds TcId, [LForeignDecl TcId], Bag GlobalRdrElt) tcForeignExports decls = getHooked tcForeignExportsHook tcForeignExports' >>= ($ decls) tcForeignExports' :: [LForeignDecl Name] -> TcM (LHsBinds TcId, [LForeignDecl TcId], Bag GlobalRdrElt) tcForeignExports' decls = foldlM combine (emptyLHsBinds, [], emptyBag) (filter isForeignExport decls) where combine (binds, fs, gres1) (L loc fe) = do (b, f, gres2) <- setSrcSpan loc (tcFExport fe) return (b `consBag` binds, L loc f : fs, gres1 `unionBags` gres2) tcFExport :: ForeignDecl Name -> TcM (LHsBind Id, ForeignDecl Id, Bag GlobalRdrElt) tcFExport fo@(ForeignExport (L loc nm) hs_ty _ spec) = addErrCtxt (foreignDeclCtxt fo) $ do sig_ty <- tcHsSigType (ForSigCtxt nm) hs_ty rhs <- tcPolyExpr (nlHsVar nm) sig_ty (norm_co, norm_sig_ty, gres) <- normaliseFfiType sig_ty spec' <- tcCheckFEType norm_sig_ty spec id <- mkStableIdFromName nm sig_ty loc mkForeignExportOcc return (mkVarBind id rhs, ForeignExport (L loc id) undefined norm_co spec', gres) tcFExport d = pprPanic "tcFExport" (ppr d) tcCheckFEType :: Type -> ForeignExport -> TcM ForeignExport tcCheckFEType sigType exportspec = do -- (CExport (L l (CExportStatic str cconv)) src) checkForeignArgs isFFIExternalTy argTypes checkForeignRes nonIOok noCheckSafe isFFIExportResultTy resType return exportspec where (_, ty) = tcSplitForAllTys sigType (thetaType, ty') = tcSplitPhiTy ty (argTypes, resType) = tcSplitFunTys ty' javaClassVars = extendsVars thetaType
alexander-at-github/eta
compiler/ETA/TypeCheck/TcForeign.hs
Haskell
bsd-3-clause
12,447
-- | News page controller. This page simply downloads from -- haskellnews.org which already has a pre-prepared page of news to -- display. module HL.C.News where import HL.C import HL.M.News import HL.V.News -- | News controller. getNewsR :: C Html getNewsR = do html <- io getHaskellNews blaze (newsV html)
chrisdone/hl
src/HL/C/News.hs
Haskell
bsd-3-clause
318
-- A point is a point in the xy plane, represented by x and y coordinates -- E.g. (Point 0.0 0.0) is the origin, (Point (-1) (1)) is in the top left -- quadrant. data Point = Point Double Double deriving (Show, Eq) -- A line segment is a straight line of finite length, defined by its -- two end points. E.g. (LineSegment (Point 0 0) (Point 1 1)) is a -- line segment from the origin to the coordinate (1, 1) data LineSegment = LineSegment Point Point deriving (Show, Eq) -- A Path is a 2D path in the xy-plane. The idea is that Path can be -- extended to support straight lines, curves, and arbitrary paths, -- but currently there is only one data constructor for Path: Line. data Path = -- Line represents an infinite straight line defined by its slope a -- and its y intercept b, ie. by the equation y = ax + b Line Double Double deriving (Show, Eq)
markstoehr/cs161
_site/fls/Lab2_flymake.hs
Haskell
cc0-1.0
879
{-# LANGUAGE CPP #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-} ----------------------------------------------------------------------------- -- | -- Module : Distribution.Client.Targets -- Copyright : (c) Duncan Coutts 2011 -- License : BSD-like -- -- Maintainer : duncan@community.haskell.org -- -- Handling for user-specified targets ----------------------------------------------------------------------------- module Distribution.Client.Targets ( -- * User targets UserTarget(..), readUserTargets, -- * Package specifiers PackageSpecifier(..), pkgSpecifierTarget, pkgSpecifierConstraints, -- * Resolving user targets to package specifiers resolveUserTargets, -- ** Detailed interface UserTargetProblem(..), readUserTarget, reportUserTargetProblems, expandUserTarget, PackageTarget(..), fetchPackageTarget, readPackageTarget, PackageTargetProblem(..), reportPackageTargetProblems, disambiguatePackageTargets, disambiguatePackageName, -- * User constraints UserQualifier(..), UserConstraintScope(..), UserConstraint(..), userConstraintPackageName, readUserConstraint, userToPackageConstraint, ) where import Prelude () import Distribution.Client.Compat.Prelude import Distribution.Package ( Package(..), PackageName, unPackageName, mkPackageName , PackageIdentifier(..), packageName, packageVersion ) import Distribution.Types.Dependency import Distribution.Client.Types ( PackageLocation(..) , ResolvedPkgLoc, UnresolvedSourcePackage ) import Distribution.Solver.Types.ConstraintSource import Distribution.Solver.Types.LabeledPackageConstraint import Distribution.Solver.Types.OptionalStanza import Distribution.Solver.Types.PackageConstraint import Distribution.Solver.Types.PackagePath import Distribution.Solver.Types.PackageIndex (PackageIndex) import qualified Distribution.Solver.Types.PackageIndex as PackageIndex import Distribution.Solver.Types.SourcePackage import qualified Distribution.Client.World as World import qualified Codec.Archive.Tar as Tar import qualified Codec.Archive.Tar.Entry as Tar import qualified Distribution.Client.Tar as Tar import Distribution.Client.FetchUtils import Distribution.Client.Utils ( tryFindPackageDesc ) import Distribution.Client.GlobalFlags ( RepoContext(..) ) import Distribution.PackageDescription ( GenericPackageDescription, parseFlagAssignment ) import Distribution.Version ( nullVersion, thisVersion, anyVersion, isAnyVersion ) import Distribution.Text ( Text(..), display ) import Distribution.Verbosity (Verbosity) import Distribution.Simple.Utils ( die', warn, lowercase ) #ifdef CABAL_PARSEC import Distribution.PackageDescription.Parsec ( readGenericPackageDescription, parseGenericPackageDescriptionMaybe ) #else import Distribution.PackageDescription.Parse ( readGenericPackageDescription, parseGenericPackageDescription, ParseResult(..) ) import Distribution.Simple.Utils ( fromUTF8, ignoreBOM ) import qualified Data.ByteString.Lazy.Char8 as BS.Char8 #endif -- import Data.List ( find, nub ) import Data.Either ( partitionEithers ) import qualified Data.Map as Map import qualified Data.ByteString.Lazy as BS import qualified Distribution.Client.GZipUtils as GZipUtils import Control.Monad (mapM) import qualified Distribution.Compat.ReadP as Parse import Distribution.Compat.ReadP ( (+++), (<++) ) import Distribution.ParseUtils ( readPToMaybe ) import System.FilePath ( takeExtension, dropExtension, takeDirectory, splitPath ) import System.Directory ( doesFileExist, doesDirectoryExist ) import Network.URI ( URI(..), URIAuth(..), parseAbsoluteURI ) -- ------------------------------------------------------------ -- * User targets -- ------------------------------------------------------------ -- | Various ways that a user may specify a package or package collection. -- data UserTarget = -- | A partially specified package, identified by name and possibly with -- an exact version or a version constraint. -- -- > cabal install foo -- > cabal install foo-1.0 -- > cabal install 'foo < 2' -- UserTargetNamed Dependency -- | A special virtual package that refers to the collection of packages -- recorded in the world file that the user specifically installed. -- -- > cabal install world -- | UserTargetWorld -- | A specific package that is unpacked in a local directory, often the -- current directory. -- -- > cabal install . -- > cabal install ../lib/other -- -- * Note: in future, if multiple @.cabal@ files are allowed in a single -- directory then this will refer to the collection of packages. -- | UserTargetLocalDir FilePath -- | A specific local unpacked package, identified by its @.cabal@ file. -- -- > cabal install foo.cabal -- > cabal install ../lib/other/bar.cabal -- | UserTargetLocalCabalFile FilePath -- | A specific package that is available as a local tarball file -- -- > cabal install dist/foo-1.0.tar.gz -- > cabal install ../build/baz-1.0.tar.gz -- | UserTargetLocalTarball FilePath -- | A specific package that is available as a remote tarball file -- -- > cabal install http://code.haskell.org/~user/foo/foo-0.9.tar.gz -- | UserTargetRemoteTarball URI deriving (Show,Eq) -- ------------------------------------------------------------ -- * Package specifier -- ------------------------------------------------------------ -- | A fully or partially resolved reference to a package. -- data PackageSpecifier pkg = -- | A partially specified reference to a package (either source or -- installed). It is specified by package name and optionally some -- required properties. Use a dependency resolver to pick a specific -- package satisfying these properties. -- NamedPackage PackageName [PackageProperty] -- | A fully specified source package. -- | SpecificSourcePackage pkg deriving (Eq, Show, Generic) instance Binary pkg => Binary (PackageSpecifier pkg) pkgSpecifierTarget :: Package pkg => PackageSpecifier pkg -> PackageName pkgSpecifierTarget (NamedPackage name _) = name pkgSpecifierTarget (SpecificSourcePackage pkg) = packageName pkg pkgSpecifierConstraints :: Package pkg => PackageSpecifier pkg -> [LabeledPackageConstraint] pkgSpecifierConstraints (NamedPackage name props) = map toLpc props where toLpc prop = LabeledPackageConstraint (PackageConstraint (scopeToplevel name) prop) ConstraintSourceUserTarget pkgSpecifierConstraints (SpecificSourcePackage pkg) = [LabeledPackageConstraint pc ConstraintSourceUserTarget] where pc = PackageConstraint (ScopeTarget $ packageName pkg) (PackagePropertyVersion $ thisVersion (packageVersion pkg)) -- ------------------------------------------------------------ -- * Parsing and checking user targets -- ------------------------------------------------------------ readUserTargets :: Verbosity -> [String] -> IO [UserTarget] readUserTargets verbosity targetStrs = do (problems, targets) <- liftM partitionEithers (mapM readUserTarget targetStrs) reportUserTargetProblems verbosity problems return targets data UserTargetProblem = UserTargetUnexpectedFile String | UserTargetNonexistantFile String | UserTargetUnexpectedUriScheme String | UserTargetUnrecognisedUri String | UserTargetUnrecognised String | UserTargetBadWorldPkg deriving Show readUserTarget :: String -> IO (Either UserTargetProblem UserTarget) readUserTarget targetstr = case testNamedTargets targetstr of Just (Dependency pkgn verrange) | pkgn == mkPackageName "world" -> return $ if verrange == anyVersion then Right UserTargetWorld else Left UserTargetBadWorldPkg Just dep -> return (Right (UserTargetNamed dep)) Nothing -> do fileTarget <- testFileTargets targetstr case fileTarget of Just target -> return target Nothing -> case testUriTargets targetstr of Just target -> return target Nothing -> return (Left (UserTargetUnrecognised targetstr)) where testNamedTargets = readPToMaybe parseDependencyOrPackageId testFileTargets filename = do isDir <- doesDirectoryExist filename isFile <- doesFileExist filename parentDirExists <- case takeDirectory filename of [] -> return False dir -> doesDirectoryExist dir let result | isDir = Just (Right (UserTargetLocalDir filename)) | isFile && extensionIsTarGz filename = Just (Right (UserTargetLocalTarball filename)) | isFile && takeExtension filename == ".cabal" = Just (Right (UserTargetLocalCabalFile filename)) | isFile = Just (Left (UserTargetUnexpectedFile filename)) | parentDirExists = Just (Left (UserTargetNonexistantFile filename)) | otherwise = Nothing return result testUriTargets str = case parseAbsoluteURI str of Just uri@URI { uriScheme = scheme, uriAuthority = Just URIAuth { uriRegName = host } } | scheme /= "http:" && scheme /= "https:" -> Just (Left (UserTargetUnexpectedUriScheme targetstr)) | null host -> Just (Left (UserTargetUnrecognisedUri targetstr)) | otherwise -> Just (Right (UserTargetRemoteTarball uri)) _ -> Nothing extensionIsTarGz f = takeExtension f == ".gz" && takeExtension (dropExtension f) == ".tar" parseDependencyOrPackageId :: Parse.ReadP r Dependency parseDependencyOrPackageId = parse +++ liftM pkgidToDependency parse where pkgidToDependency :: PackageIdentifier -> Dependency pkgidToDependency p = case packageVersion p of v | v == nullVersion -> Dependency (packageName p) anyVersion | otherwise -> Dependency (packageName p) (thisVersion v) reportUserTargetProblems :: Verbosity -> [UserTargetProblem] -> IO () reportUserTargetProblems verbosity problems = do case [ target | UserTargetUnrecognised target <- problems ] of [] -> return () target -> die' verbosity $ unlines [ "Unrecognised target '" ++ name ++ "'." | name <- target ] ++ "Targets can be:\n" ++ " - package names, e.g. 'pkgname', 'pkgname-1.0.1', 'pkgname < 2.0'\n" ++ " - the special 'world' target\n" ++ " - cabal files 'pkgname.cabal' or package directories 'pkgname/'\n" ++ " - package tarballs 'pkgname.tar.gz' or 'http://example.com/pkgname.tar.gz'" case [ () | UserTargetBadWorldPkg <- problems ] of [] -> return () _ -> die' verbosity "The special 'world' target does not take any version." case [ target | UserTargetNonexistantFile target <- problems ] of [] -> return () target -> die' verbosity $ unlines [ "The file does not exist '" ++ name ++ "'." | name <- target ] case [ target | UserTargetUnexpectedFile target <- problems ] of [] -> return () target -> die' verbosity $ unlines [ "Unrecognised file target '" ++ name ++ "'." | name <- target ] ++ "File targets can be either package tarballs 'pkgname.tar.gz' " ++ "or cabal files 'pkgname.cabal'." case [ target | UserTargetUnexpectedUriScheme target <- problems ] of [] -> return () target -> die' verbosity $ unlines [ "URL target not supported '" ++ name ++ "'." | name <- target ] ++ "Only 'http://' and 'https://' URLs are supported." case [ target | UserTargetUnrecognisedUri target <- problems ] of [] -> return () target -> die' verbosity $ unlines [ "Unrecognise URL target '" ++ name ++ "'." | name <- target ] -- ------------------------------------------------------------ -- * Resolving user targets to package specifiers -- ------------------------------------------------------------ -- | Given a bunch of user-specified targets, try to resolve what it is they -- refer to. They can either be specific packages (local dirs, tarballs etc) -- or they can be named packages (with or without version info). -- resolveUserTargets :: Package pkg => Verbosity -> RepoContext -> FilePath -> PackageIndex pkg -> [UserTarget] -> IO [PackageSpecifier UnresolvedSourcePackage] resolveUserTargets verbosity repoCtxt worldFile available userTargets = do -- given the user targets, get a list of fully or partially resolved -- package references packageTargets <- mapM (readPackageTarget verbosity) =<< mapM (fetchPackageTarget verbosity repoCtxt) . concat =<< mapM (expandUserTarget verbosity worldFile) userTargets -- users are allowed to give package names case-insensitively, so we must -- disambiguate named package references let (problems, packageSpecifiers) = disambiguatePackageTargets available availableExtra packageTargets -- use any extra specific available packages to help us disambiguate availableExtra = [ packageName pkg | PackageTargetLocation pkg <- packageTargets ] reportPackageTargetProblems verbosity problems return packageSpecifiers -- ------------------------------------------------------------ -- * Package targets -- ------------------------------------------------------------ -- | An intermediate between a 'UserTarget' and a resolved 'PackageSpecifier'. -- Unlike a 'UserTarget', a 'PackageTarget' refers only to a single package. -- data PackageTarget pkg = PackageTargetNamed PackageName [PackageProperty] UserTarget -- | A package identified by name, but case insensitively, so it needs -- to be resolved to the right case-sensitive name. | PackageTargetNamedFuzzy PackageName [PackageProperty] UserTarget | PackageTargetLocation pkg deriving (Show, Functor, Foldable, Traversable) -- ------------------------------------------------------------ -- * Converting user targets to package targets -- ------------------------------------------------------------ -- | Given a user-specified target, expand it to a bunch of package targets -- (each of which refers to only one package). -- expandUserTarget :: Verbosity -> FilePath -> UserTarget -> IO [PackageTarget (PackageLocation ())] expandUserTarget verbosity worldFile userTarget = case userTarget of UserTargetNamed (Dependency name vrange) -> let props = [ PackagePropertyVersion vrange | not (isAnyVersion vrange) ] in return [PackageTargetNamedFuzzy name props userTarget] UserTargetWorld -> do worldPkgs <- World.getContents verbosity worldFile --TODO: should we warn if there are no world targets? return [ PackageTargetNamed name props userTarget | World.WorldPkgInfo (Dependency name vrange) flags <- worldPkgs , let props = [ PackagePropertyVersion vrange | not (isAnyVersion vrange) ] ++ [ PackagePropertyFlags flags | not (null flags) ] ] UserTargetLocalDir dir -> return [ PackageTargetLocation (LocalUnpackedPackage dir) ] UserTargetLocalCabalFile file -> do let dir = takeDirectory file _ <- tryFindPackageDesc verbosity dir (localPackageError dir) -- just as a check return [ PackageTargetLocation (LocalUnpackedPackage dir) ] UserTargetLocalTarball tarballFile -> return [ PackageTargetLocation (LocalTarballPackage tarballFile) ] UserTargetRemoteTarball tarballURL -> return [ PackageTargetLocation (RemoteTarballPackage tarballURL ()) ] localPackageError :: FilePath -> String localPackageError dir = "Error reading local package.\nCouldn't find .cabal file in: " ++ dir -- ------------------------------------------------------------ -- * Fetching and reading package targets -- ------------------------------------------------------------ -- | Fetch any remote targets so that they can be read. -- fetchPackageTarget :: Verbosity -> RepoContext -> PackageTarget (PackageLocation ()) -> IO (PackageTarget ResolvedPkgLoc) fetchPackageTarget verbosity repoCtxt = traverse $ fetchPackage verbosity repoCtxt . fmap (const Nothing) -- | Given a package target that has been fetched, read the .cabal file. -- -- This only affects targets given by location, named targets are unaffected. -- readPackageTarget :: Verbosity -> PackageTarget ResolvedPkgLoc -> IO (PackageTarget UnresolvedSourcePackage) readPackageTarget verbosity = traverse modifyLocation where modifyLocation location = case location of LocalUnpackedPackage dir -> do pkg <- tryFindPackageDesc verbosity dir (localPackageError dir) >>= readGenericPackageDescription verbosity return $ SourcePackage { packageInfoId = packageId pkg, packageDescription = pkg, packageSource = fmap Just location, packageDescrOverride = Nothing } LocalTarballPackage tarballFile -> readTarballPackageTarget location tarballFile tarballFile RemoteTarballPackage tarballURL tarballFile -> readTarballPackageTarget location tarballFile (show tarballURL) RepoTarballPackage _repo _pkgid _ -> error "TODO: readPackageTarget RepoTarballPackage" -- For repo tarballs this info should be obtained from the index. readTarballPackageTarget location tarballFile tarballOriginalLoc = do (filename, content) <- extractTarballPackageCabalFile tarballFile tarballOriginalLoc case parsePackageDescription' content of Nothing -> die' verbosity $ "Could not parse the cabal file " ++ filename ++ " in " ++ tarballFile Just pkg -> return $ SourcePackage { packageInfoId = packageId pkg, packageDescription = pkg, packageSource = fmap Just location, packageDescrOverride = Nothing } extractTarballPackageCabalFile :: FilePath -> String -> IO (FilePath, BS.ByteString) extractTarballPackageCabalFile tarballFile tarballOriginalLoc = either (die' verbosity . formatErr) return . check . accumEntryMap . Tar.filterEntries isCabalFile . Tar.read . GZipUtils.maybeDecompress =<< BS.readFile tarballFile where formatErr msg = "Error reading " ++ tarballOriginalLoc ++ ": " ++ msg accumEntryMap = Tar.foldlEntries (\m e -> Map.insert (Tar.entryTarPath e) e m) Map.empty check (Left e) = Left (show e) check (Right m) = case Map.elems m of [] -> Left noCabalFile [file] -> case Tar.entryContent file of Tar.NormalFile content _ -> Right (Tar.entryPath file, content) _ -> Left noCabalFile _files -> Left multipleCabalFiles where noCabalFile = "No cabal file found" multipleCabalFiles = "Multiple cabal files found" isCabalFile e = case splitPath (Tar.entryPath e) of [ _dir, file] -> takeExtension file == ".cabal" [".", _dir, file] -> takeExtension file == ".cabal" _ -> False parsePackageDescription' :: BS.ByteString -> Maybe GenericPackageDescription #ifdef CABAL_PARSEC parsePackageDescription' bs = parseGenericPackageDescriptionMaybe (BS.toStrict bs) #else parsePackageDescription' content = case parseGenericPackageDescription . ignoreBOM . fromUTF8 . BS.Char8.unpack $ content of ParseOk _ pkg -> Just pkg _ -> Nothing #endif -- ------------------------------------------------------------ -- * Checking package targets -- ------------------------------------------------------------ data PackageTargetProblem = PackageNameUnknown PackageName UserTarget | PackageNameAmbiguous PackageName [PackageName] UserTarget deriving Show -- | Users are allowed to give package names case-insensitively, so we must -- disambiguate named package references. -- disambiguatePackageTargets :: Package pkg' => PackageIndex pkg' -> [PackageName] -> [PackageTarget pkg] -> ( [PackageTargetProblem] , [PackageSpecifier pkg] ) disambiguatePackageTargets availablePkgIndex availableExtra targets = partitionEithers (map disambiguatePackageTarget targets) where disambiguatePackageTarget packageTarget = case packageTarget of PackageTargetLocation pkg -> Right (SpecificSourcePackage pkg) PackageTargetNamed pkgname props userTarget | null (PackageIndex.lookupPackageName availablePkgIndex pkgname) -> Left (PackageNameUnknown pkgname userTarget) | otherwise -> Right (NamedPackage pkgname props) PackageTargetNamedFuzzy pkgname props userTarget -> case disambiguatePackageName packageNameEnv pkgname of None -> Left (PackageNameUnknown pkgname userTarget) Ambiguous pkgnames -> Left (PackageNameAmbiguous pkgname pkgnames userTarget) Unambiguous pkgname' -> Right (NamedPackage pkgname' props) -- use any extra specific available packages to help us disambiguate packageNameEnv :: PackageNameEnv packageNameEnv = mappend (indexPackageNameEnv availablePkgIndex) (extraPackageNameEnv availableExtra) -- | Report problems to the user. That is, if there are any problems -- then raise an exception. reportPackageTargetProblems :: Verbosity -> [PackageTargetProblem] -> IO () reportPackageTargetProblems verbosity problems = do case [ pkg | PackageNameUnknown pkg originalTarget <- problems , not (isUserTagetWorld originalTarget) ] of [] -> return () pkgs -> die' verbosity $ unlines [ "There is no package named '" ++ display name ++ "'. " | name <- pkgs ] ++ "You may need to run 'cabal update' to get the latest " ++ "list of available packages." case [ (pkg, matches) | PackageNameAmbiguous pkg matches _ <- problems ] of [] -> return () ambiguities -> die' verbosity $ unlines [ "The package name '" ++ display name ++ "' is ambiguous. It could be: " ++ intercalate ", " (map display matches) | (name, matches) <- ambiguities ] case [ pkg | PackageNameUnknown pkg UserTargetWorld <- problems ] of [] -> return () pkgs -> warn verbosity $ "The following 'world' packages will be ignored because " ++ "they refer to packages that cannot be found: " ++ intercalate ", " (map display pkgs) ++ "\n" ++ "You can suppress this warning by correcting the world file." where isUserTagetWorld UserTargetWorld = True; isUserTagetWorld _ = False -- ------------------------------------------------------------ -- * Disambiguating package names -- ------------------------------------------------------------ data MaybeAmbiguous a = None | Unambiguous a | Ambiguous [a] -- | Given a package name and a list of matching names, figure out which one it -- might be referring to. If there is an exact case-sensitive match then that's -- ok. If it matches just one package case-insensitively then that's also ok. -- The only problem is if it matches multiple packages case-insensitively, in -- that case it is ambiguous. -- disambiguatePackageName :: PackageNameEnv -> PackageName -> MaybeAmbiguous PackageName disambiguatePackageName (PackageNameEnv pkgNameLookup) name = case nub (pkgNameLookup name) of [] -> None [name'] -> Unambiguous name' names -> case find (name==) names of Just name' -> Unambiguous name' Nothing -> Ambiguous names newtype PackageNameEnv = PackageNameEnv (PackageName -> [PackageName]) instance Monoid PackageNameEnv where mempty = PackageNameEnv (const []) mappend = (<>) instance Semigroup PackageNameEnv where PackageNameEnv lookupA <> PackageNameEnv lookupB = PackageNameEnv (\name -> lookupA name ++ lookupB name) indexPackageNameEnv :: PackageIndex pkg -> PackageNameEnv indexPackageNameEnv pkgIndex = PackageNameEnv pkgNameLookup where pkgNameLookup pname = map fst (PackageIndex.searchByName pkgIndex $ unPackageName pname) extraPackageNameEnv :: [PackageName] -> PackageNameEnv extraPackageNameEnv names = PackageNameEnv pkgNameLookup where pkgNameLookup pname = [ pname' | let lname = lowercase (unPackageName pname) , pname' <- names , lowercase (unPackageName pname') == lname ] -- ------------------------------------------------------------ -- * Package constraints -- ------------------------------------------------------------ -- | Version of 'Qualifier' that a user may specify on the -- command line. data UserQualifier = -- | Top-level dependency. UserQualToplevel -- | Setup dependency. | UserQualSetup PackageName -- | Executable dependency. | UserQualExe PackageName PackageName deriving (Eq, Show, Generic) instance Binary UserQualifier -- | Version of 'ConstraintScope' that a user may specify on the -- command line. data UserConstraintScope = -- | Scope that applies to the package when it has the specified qualifier. UserQualified UserQualifier PackageName -- | Scope that applies to the package when it has a setup qualifier. | UserAnySetupQualifier PackageName -- | Scope that applies to the package when it has any qualifier. | UserAnyQualifier PackageName deriving (Eq, Show, Generic) instance Binary UserConstraintScope fromUserQualifier :: UserQualifier -> Qualifier fromUserQualifier UserQualToplevel = QualToplevel fromUserQualifier (UserQualSetup name) = QualSetup name fromUserQualifier (UserQualExe name1 name2) = QualExe name1 name2 fromUserConstraintScope :: UserConstraintScope -> ConstraintScope fromUserConstraintScope (UserQualified q pn) = ScopeQualified (fromUserQualifier q) pn fromUserConstraintScope (UserAnySetupQualifier pn) = ScopeAnySetupQualifier pn fromUserConstraintScope (UserAnyQualifier pn) = ScopeAnyQualifier pn -- | Version of 'PackageConstraint' that the user can specify on -- the command line. data UserConstraint = UserConstraint UserConstraintScope PackageProperty deriving (Eq, Show, Generic) instance Binary UserConstraint userConstraintPackageName :: UserConstraint -> PackageName userConstraintPackageName (UserConstraint scope _) = scopePN scope where scopePN (UserQualified _ pn) = pn scopePN (UserAnyQualifier pn) = pn scopePN (UserAnySetupQualifier pn) = pn userToPackageConstraint :: UserConstraint -> PackageConstraint userToPackageConstraint (UserConstraint scope prop) = PackageConstraint (fromUserConstraintScope scope) prop readUserConstraint :: String -> Either String UserConstraint readUserConstraint str = case readPToMaybe parse str of Nothing -> Left msgCannotParse Just c -> Right c where msgCannotParse = "expected a (possibly qualified) package name followed by a " ++ "constraint, which is either a version range, 'installed', " ++ "'source', 'test', 'bench', or flags" instance Text UserConstraint where disp (UserConstraint scope prop) = dispPackageConstraint $ PackageConstraint (fromUserConstraintScope scope) prop parse = let parseConstraintScope :: Parse.ReadP a UserConstraintScope parseConstraintScope = do _ <- Parse.string "any." pn <- parse return (UserAnyQualifier pn) +++ do _ <- Parse.string "setup." pn <- parse return (UserAnySetupQualifier pn) +++ do -- Qualified name pn <- parse (return (UserQualified UserQualToplevel pn) +++ do _ <- Parse.string ":setup." pn2 <- parse return (UserQualified (UserQualSetup pn) pn2)) -- -- TODO: Re-enable parsing of UserQualExe once we decide on a syntax. -- -- +++ -- do _ <- Parse.string ":" -- pn2 <- parse -- _ <- Parse.string ":exe." -- pn3 <- parse -- return (UserQualExe pn pn2, pn3) in do scope <- parseConstraintScope -- Package property let keyword str x = Parse.skipSpaces1 >> Parse.string str >> return x prop <- ((parse >>= return . PackagePropertyVersion) +++ keyword "installed" PackagePropertyInstalled +++ keyword "source" PackagePropertySource +++ keyword "test" (PackagePropertyStanzas [TestStanzas]) +++ keyword "bench" (PackagePropertyStanzas [BenchStanzas])) -- Note: the parser is left-biased here so that we -- don't get an ambiguous parse from 'installed', -- 'source', etc. being regarded as flags. <++ (Parse.skipSpaces1 >> parseFlagAssignment >>= return . PackagePropertyFlags) -- Result return (UserConstraint scope prop)
mydaum/cabal
cabal-install/Distribution/Client/Targets.hs
Haskell
bsd-3-clause
31,363
{-# OPTIONS_GHC -fno-warn-missing-signatures #-} {-# LANGUAGE MultiParamTypeClasses, Rank2Types #-} ----------------------------------------------------------------------------- -- | -- Module : XMonad.Layout.Groups.Helpers -- Copyright : Quentin Moser <moserq@gmail.com> -- License : BSD-style (see LICENSE) -- -- Maintainer : orphaned -- Stability : stable -- Portability : unportable -- -- Utility functions for "XMonad.Layout.Groups". -- ----------------------------------------------------------------------------- module XMonad.Layout.Groups.Helpers ( -- * Usage -- $usage -- ** Layout-generic actions swapUp , swapDown , swapMaster , focusUp , focusDown , focusMaster , toggleFocusFloat -- ** 'G.Groups'-secific actions , swapGroupUp , swapGroupDown , swapGroupMaster , focusGroupUp , focusGroupDown , focusGroupMaster , moveToGroupUp , moveToGroupDown , moveToNewGroupUp , moveToNewGroupDown , splitGroup ) where import XMonad hiding ((|||)) import qualified XMonad.StackSet as W import qualified XMonad.Layout.Groups as G import XMonad.Actions.MessageFeedback import Control.Monad (unless) import qualified Data.Map as M -- $usage -- -- This module provides helpers functions for use with "XMonad.Layout.Groups"-based -- layouts. You can use its contents by adding -- -- > import XMonad.Layout.Groups.Helpers -- -- to the top of your @.\/.xmonad\/xmonad.hs@. -- -- "XMonad.Layout.Groups"-based layouts do not have the same notion -- of window ordering as the rest of XMonad. For this reason, the usual -- ways of reordering windows and moving focus do not work with them. -- "XMonad.Layout.Groups" provides 'Message's that can be used to obtain -- the right effect. -- -- But what if you want to use both 'G.Groups' and other layouts? -- This module provides actions that try to send 'G.GroupsMessage's, and -- fall back to the classic way if the current layout doesn't hande them. -- They are in the section called \"Layout-generic actions\". -- -- The sections \"Groups-specific actions\" contains actions that don't make -- sense for non-'G.Groups'-based layouts. These are simply wrappers around -- the equivalent 'G.GroupsMessage's, but are included so you don't have to -- write @sendMessage $ Modify $ ...@ everytime. -- -- This module exports many operations with the same names as -- 'G.ModifySpec's from "XMonad.Layout.Groups", so if you want -- to import both, we suggest to import "XMonad.Layout.Groups" -- qualified: -- -- > import qualified XMonad.Layout.Groups as G -- -- For more information on how to extend your layour hook and key bindings, see -- "XMonad.Doc.Extending". -- ** Layout-generic actions -- #Layout-generic actions# alt :: G.ModifySpec -> (WindowSet -> WindowSet) -> X () alt f g = alt2 (G.Modify f) $ windows g alt2 :: G.GroupsMessage -> X () -> X () alt2 m x = do b <- send m unless b x -- | Swap the focused window with the previous one swapUp :: X () swapUp = alt G.swapUp W.swapUp -- | Swap the focused window with the next one swapDown :: X () swapDown = alt G.swapDown W.swapDown -- | Swap the focused window with the master window swapMaster :: X () swapMaster = alt G.swapMaster W.swapMaster -- | If the focused window is floating, focus the next floating -- window. otherwise, focus the next non-floating one. focusUp :: X () focusUp = ifFloat focusFloatUp focusNonFloatUp -- | If the focused window is floating, focus the next floating -- window. otherwise, focus the next non-floating one. focusDown :: X () focusDown = ifFloat focusFloatDown focusNonFloatDown -- | Move focus to the master window focusMaster :: X () focusMaster = alt G.focusMaster W.shiftMaster -- | Move focus between the floating and non-floating layers toggleFocusFloat :: X () toggleFocusFloat = ifFloat focusNonFloat focusFloatUp -- *** Floating layer helpers getFloats :: X [Window] getFloats = gets $ M.keys . W.floating . windowset getWindows :: X [Window] getWindows = gets $ W.integrate' . W.stack . W.workspace . W.current . windowset ifFloat :: X () -> X () -> X () ifFloat x1 x2 = withFocused $ \w -> do floats <- getFloats if elem w floats then x1 else x2 focusNonFloat :: X () focusNonFloat = alt2 G.Refocus helper where helper = withFocused $ \w -> do ws <- getWindows floats <- getFloats let (before, after) = span (/=w) ws case filter (flip notElem floats) $ after ++ before of [] -> return () w':_ -> focus w' focusHelper :: (Bool -> Bool) -- ^ if you want to focus a floating window, 'id'. -- if you want a non-floating one, 'not'. -> ([Window] -> [Window]) -- ^ if you want the next window, 'id'. -- if you want the previous one, 'reverse'. -> X () focusHelper f g = withFocused $ \w -> do ws <- getWindows let (before, _:after) = span (/=w) ws let toFocus = g $ after ++ before floats <- getFloats case filter (f . flip elem floats) toFocus of [] -> return () w':_ -> focus w' focusNonFloatUp :: X () focusNonFloatUp = alt2 (G.Modify G.focusUp) $ focusHelper not reverse focusNonFloatDown :: X () focusNonFloatDown = alt2 (G.Modify G.focusDown) $ focusHelper not id focusFloatUp :: X () focusFloatUp = focusHelper id reverse focusFloatDown :: X () focusFloatDown = focusHelper id id -- ** Groups-specific actions wrap :: G.ModifySpec -> X () wrap x = sendMessage (G.Modify x) -- | Swap the focused group with the previous one swapGroupUp :: X () swapGroupUp = wrap G.swapGroupUp -- | Swap the focused group with the next one swapGroupDown :: X () swapGroupDown = wrap G.swapGroupDown -- | Swap the focused group with the master group swapGroupMaster :: X () swapGroupMaster = wrap G.swapGroupMaster -- | Move the focus to the previous group focusGroupUp :: X () focusGroupUp = wrap G.focusGroupUp -- | Move the focus to the next group focusGroupDown :: X () focusGroupDown = wrap G.focusGroupDown -- | Move the focus to the master group focusGroupMaster :: X () focusGroupMaster = wrap G.focusGroupMaster -- | Move the focused window to the previous group. The 'Bool' argument -- determines what will be done if the focused window is in the very first -- group: Wrap back to the end ('True'), or create a new group before -- it ('False'). moveToGroupUp :: Bool -> X () moveToGroupUp b = wrap (G.moveToGroupUp b) -- | Move the focused window to the next group. The 'Bool' argument -- determines what will be done if the focused window is in the very last -- group: Wrap back to the beginning ('True'), or create a new group after -- it ('False'). moveToGroupDown :: Bool -> X () moveToGroupDown b = wrap (G.moveToGroupDown b) -- | Move the focused window to a new group before the current one moveToNewGroupUp :: X () moveToNewGroupUp = wrap G.moveToNewGroupUp -- | Move the focused window to a new group after the current one moveToNewGroupDown :: X () moveToNewGroupDown = wrap G.moveToNewGroupDown -- | Split the focused group in two at the position of the focused -- window. splitGroup :: X () splitGroup = wrap G.splitGroup
f1u77y/xmonad-contrib
XMonad/Layout/Groups/Helpers.hs
Haskell
bsd-3-clause
8,103
{-# LANGUAGE OverloadedStrings #-} {-# OPTIONS_HADDOCK hide #-} module Network.Xmpp.IM.Message where import Data.Default import Data.Function import Data.List import Data.Text (Text) import Data.XML.Pickle import Data.XML.Types import Network.Xmpp.Marshal import Network.Xmpp.Types data MessageBody = MessageBody { bodyLang :: Maybe LangTag , bodyContent :: Text } data MessageThread = MessageThread { threadID :: Text , threadParent :: Maybe Text } data MessageSubject = MessageSubject { subjectLang :: Maybe LangTag , subjectContent :: Text } -- | The instant message (IM) specific part of a message. data InstantMessage = InstantMessage { imThread :: Maybe MessageThread , imSubject :: [MessageSubject] , imBody :: [MessageBody] } -- | Empty instant message. instantMessage :: InstantMessage instantMessage = InstantMessage { imThread = Nothing , imSubject = [] , imBody = [] } instance Default InstantMessage where def = instantMessage -- | Get the IM specific parts of a message. Returns 'Nothing' when the received -- payload is not valid IM data. getIM :: Message -> Maybe InstantMessage getIM im = either (const Nothing) Just . unpickle xpIM $ messagePayload im sanitizeIM :: InstantMessage -> InstantMessage sanitizeIM im = im{imBody = nubBy ((==) `on` bodyLang) $ imBody im} -- | Append IM data to a message. Additional IM bodies with the same Langtag are -- discarded. withIM :: Message -> InstantMessage -> Message withIM m im = m{ messagePayload = messagePayload m ++ pickleTree xpIM (sanitizeIM im) } imToElements :: InstantMessage -> [Element] imToElements im = pickle xpIM (sanitizeIM im) -- | Generate a simple message simpleIM :: Jid -- ^ recipient -> Text -- ^ body -> Message simpleIM to bd = withIM message{messageTo = Just to} instantMessage{imBody = [MessageBody Nothing bd]} -- | Generate an answer from a received message. The recepient is -- taken from the original sender, the sender is set to 'Nothing', -- message ID, language tag, message type as well as subject and -- thread are inherited. -- -- Additional IM bodies with the same Langtag are discarded. answerIM :: [MessageBody] -> Message -> Maybe Message answerIM bd msg = case getIM msg of Nothing -> Nothing Just im -> Just $ flip withIM (im{imBody = bd}) $ message { messageID = messageID msg , messageFrom = Nothing , messageTo = messageFrom msg , messageLangTag = messageLangTag msg , messageType = messageType msg } -------------------------- -- Picklers -------------- -------------------------- xpIM :: PU [Element] InstantMessage xpIM = xpWrap (\(t, s, b) -> InstantMessage t s b) (\(InstantMessage t s b) -> (t, s, b)) . xpClean $ xp3Tuple xpMessageThread xpMessageSubject xpMessageBody xpMessageSubject :: PU [Element] [MessageSubject] xpMessageSubject = xpUnliftElems . xpWrap (map $ \(l, s) -> MessageSubject l s) (map $ \(MessageSubject l s) -> (l,s)) $ xpElems "{jabber:client}subject" xpLangTag $ xpContent xpId xpMessageBody :: PU [Element] [MessageBody] xpMessageBody = xpUnliftElems . xpWrap (map $ \(l, s) -> MessageBody l s) (map $ \(MessageBody l s) -> (l,s)) $ xpElems "{jabber:client}body" xpLangTag $ xpContent xpId xpMessageThread :: PU [Element] (Maybe MessageThread) xpMessageThread = xpUnliftElems . xpOption . xpWrap (\(t, p) -> MessageThread p t) (\(MessageThread p t) -> (t,p)) $ xpElem "{jabber:client}thread" (xpAttrImplied "parent" xpId) (xpContent xpId)
Philonous/pontarius-xmpp
source/Network/Xmpp/IM/Message.hs
Haskell
bsd-3-clause
4,325
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ViewPatterns #-} -- | The web server. module Ircbrowse.Server where import Ircbrowse.Types import qualified Ircbrowse.Controllers as C import Snap.App import Snap.Http.Server hiding (Config) import Snap.Util.FileServe -- | Run the server. runServer :: Config -> Pool -> IO () runServer config pool = do setUnicodeLocale "en_US" httpServe server (serve config pool) where server = setPort 10001 defaultConfig -- | Serve the controllers. serve :: Config -> Pool -> Snap () serve config pool = route routes where routes = [("/js/",serveDirectory "static/js") ,("/css/",serveDirectory "static/css") ,("/js/",serveDirectory "static/js") ,("/browse/:channel",run C.browse) ,("/nick-cloud/:channel",run C.nickCloud) ,("/social",run C.socialGraph) ,("/day/:channel/:year/:month/:day",run (C.browseDay False)) ,("/day/:channel/today/:mode",run (C.browseDay True)) ,("/day/:channel/today",run (C.browseDay True)) ,("/nick/:nick",run C.nickProfile) ,("/nicks/:channel/:mode",run C.allNicks) ,("/nicks/:channel",run C.allNicks) ,("/quotes.rss",run C.quotes) ,("/pdfs/:channel/:unique",run C.pdfs) ,("/pdfs/:channel",run C.pdfs) ,("/stats/:channel",run C.stats) ,("/calendar/:channel",run C.calendar) ,("/:channel",run C.stats) ,("/selection/:channel",run C.browseSpecified) ,("/export/:filename",run C.export) ,("/",run C.overview) ] run = runHandler PState config pool
plow-technologies/ircbrowse
src/Ircbrowse/Server.hs
Haskell
bsd-3-clause
1,704
{---------------------------------------------------------------------------- Abstract syntax of JOOS, based on: David A. Watt. JOOS action semantics. Version 1, available from http://www.dcs.gla.ac.uk/~daw/publications/JOOS.ps, October 1997. Modifications: o StatFocus o StringLiterals ----------------------------------------------------------------------------} module Datatypes where import TermRep import Monad data Assignment = Assignment Identifier Expression deriving (Eq, Show) data InstanceCreation = InstanceCreation Identifier Arguments deriving (Eq, Show) data MethodInvocation = ExpressionInvocation Expression Identifier Arguments | SuperInvocation Identifier Arguments deriving (Eq, Show) data Arguments = Arguments [Expression] deriving (Eq, Show) data Expression = Literal Literal | Identifier Identifier | This | PrefixExpr PrefixOperator Expression | InfixExpr Expression InfixOperator Expression | AndOrExpr Expression AndOr Expression | InstanceOf Expression Identifier | TypeCast Type Expression | BracketExpr Expression | AssignmentExpr Assignment | InstanceCreationExpr InstanceCreation | MethodInvocationExpr MethodInvocation deriving (Eq, Show) data AndOr = AND | OR deriving (Eq, Show) data PrefixOperator = Neg | Fac deriving (Eq, Show) data InfixOperator = Eq | NEQ | Lt | Gt | LEQ | GEQ | PLUS | MINUS | MUL | DIV | MOD deriving (Eq, Show) data Literal = BooleanLit BooleanLiteral | IntegerLit IntegerLiteral | Null | StringLit StringLiteral deriving (Eq, Show) data BooleanLiteral = TRUE | FALSE deriving (Eq, Show) type IntegerLiteral = Integer type StringLiteral = String type Identifier = String data BlockStatements = BlockStatements [VariableDeclaration] [Statement] deriving (Eq, Show) data Statement = Skip | Block BlockStatements | AssignmentStat Assignment | InstanceCreationStat InstanceCreation | MethodInvocationStat MethodInvocation | ReturnStat (Maybe Expression) | IfStat Expression Statement Statement | WhileStat Expression Statement --- Additions | StatFocus Statement deriving (Eq, Show) data ClassDeclaration = ClassDecl FinalOpt Identifier Identifier [FieldDeclaration] ConstructorDeclaration [MethodDeclaration] deriving (Eq, Show) type FinalOpt = Bool data FieldDeclaration = FieldDecl Type Identifier deriving (Eq, Show) data ConstructorDeclaration = ConstructorDecl Identifier FormalParameters Arguments BlockStatements deriving (Eq, Show) data MethodDeclaration = MethodDecl (Maybe Type) Identifier FormalParameters BlockStatements deriving (Eq, Show) data FormalParameters = FormalParams [FormalParameter] deriving (Eq, Show) data FormalParameter = FormalParam Type Identifier deriving (Eq, Show) data VariableDeclaration = VariableDecl Type Identifier deriving (Eq, Show) data Type = INT | BOOLEAN | Type Identifier deriving (Eq, Show)
forste/haReFork
StrategyLib-4.0-beta/examples/joos-padl02/Datatypes.hs
Haskell
bsd-3-clause
3,590
{-# LANGUAGE OverloadedStrings #-} module Stack.Options (Command(..) ,benchOptsParser ,buildOptsParser ,configOptsParser ,dockerOptsParser ,dockerCleanupOptsParser ,dotOptsParser ,execOptsParser ,globalOptsParser ,initOptsParser ,newOptsParser ,logLevelOptsParser ,abstractResolverOptsParser ,solverOptsParser ,testOptsParser ) where import Control.Monad.Logger (LogLevel(..)) import Data.Char (isSpace, toLower) import Data.List.Split (splitOn) import qualified Data.Map as Map import Data.Map.Strict (Map) import Data.Maybe import Data.Monoid import qualified Data.Set as Set import qualified Data.Text as T import Data.Text.Read (decimal) import Options.Applicative.Args import Options.Applicative.Builder.Extra import Options.Applicative.Simple import Options.Applicative.Types (readerAsk) import Stack.Build.Types import Stack.Docker import qualified Stack.Docker as Docker import Stack.Dot import Stack.Init import Stack.New (NewOpts(..)) import Stack.Types -- | Command sum type for conditional arguments. data Command = Build | Test | Haddock | Bench deriving (Eq) -- | Parser for bench arguments. benchOptsParser :: Parser BenchmarkOpts benchOptsParser = BenchmarkOpts <$> optional (strOption (long "benchmark-arguments" <> metavar "BENCH_ARGS" <> help ("Forward BENCH_ARGS to the benchmark suite. " <> "Supports templates from `cabal bench`"))) -- | Parser for build arguments. buildOptsParser :: Command -> Bool -- ^ default copy-bins value -> Parser BuildOpts buildOptsParser cmd defCopyBins = BuildOpts <$> target <*> libProfiling <*> exeProfiling <*> optimize <*> haddock <*> haddockDeps <*> finalAction <*> dryRun <*> ghcOpts <*> flags <*> copyBins <*> preFetch <*> onlySnapshot <*> fileWatch' <*> keepGoing <*> forceDirty where optimize = maybeBoolFlags "optimizations" "optimizations for TARGETs and all its dependencies" idm target = fmap (map T.pack) (many (strArgument (metavar "TARGET" <> help "If none specified, use all packages"))) libProfiling = boolFlags False "library-profiling" "library profiling for TARGETs and all its dependencies" idm exeProfiling = boolFlags False "executable-profiling" "library profiling for TARGETs and all its dependencies" idm haddock = boolFlags (cmd == Haddock) "haddock" "building Haddocks" idm haddockDeps = if cmd == Haddock then maybeBoolFlags "haddock-deps" "building Haddocks for dependencies" idm else pure Nothing finalAction = pure DoNothing copyBins = boolFlags defCopyBins "copy-bins" "copying binaries to the local-bin-path (see 'stack path')" idm dryRun = flag False True (long "dry-run" <> help "Don't build anything, just prepare to") ghcOpts = (++) <$> flag [] ["-Wall", "-Werror"] ( long "pedantic" <> help "Turn on -Wall and -Werror (note: option name may change in the future" ) <*> many (fmap T.pack (strOption (long "ghc-options" <> metavar "OPTION" <> help "Additional options passed to GHC"))) flags = fmap (Map.unionsWith Map.union) $ many (option readFlag ( long "flag" <> metavar "PACKAGE:[-]FLAG" <> help "Override flags set in stack.yaml (applies to local packages and extra-deps)" )) preFetch = flag False True (long "prefetch" <> help "Fetch packages necessary for the build immediately, useful with --dry-run") onlySnapshot = flag False True (long "only-snapshot" <> help "Only build packages for the snapshot database, not the local database") fileWatch' = flag False True (long "file-watch" <> help "Watch for changes in local files and automatically rebuild") keepGoing = maybeBoolFlags "keep-going" "continue running after a step fails (default: false for build, true for test/bench)" idm forceDirty = flag False True (long "force-dirty" <> help "Force treating all local packages as having dirty files (useful for cases where stack can't detect a file change)") -- | Parser for package:[-]flag readFlag :: ReadM (Map (Maybe PackageName) (Map FlagName Bool)) readFlag = do s <- readerAsk case break (== ':') s of (pn, ':':mflag) -> do pn' <- case parsePackageNameFromString pn of Nothing | pn == "*" -> return Nothing | otherwise -> readerError $ "Invalid package name: " ++ pn Just x -> return $ Just x let (b, flagS) = case mflag of '-':x -> (False, x) _ -> (True, mflag) flagN <- case parseFlagNameFromString flagS of Nothing -> readerError $ "Invalid flag name: " ++ flagS Just x -> return x return $ Map.singleton pn' $ Map.singleton flagN b _ -> readerError "Must have a colon" -- | Command-line arguments parser for configuration. configOptsParser :: Bool -> Parser ConfigMonoid configOptsParser docker = (\opts systemGHC installGHC arch os jobs includes libs skipGHCCheck skipMsys localBin -> mempty { configMonoidDockerOpts = opts , configMonoidSystemGHC = systemGHC , configMonoidInstallGHC = installGHC , configMonoidSkipGHCCheck = skipGHCCheck , configMonoidArch = arch , configMonoidOS = os , configMonoidJobs = jobs , configMonoidExtraIncludeDirs = includes , configMonoidExtraLibDirs = libs , configMonoidSkipMsys = skipMsys , configMonoidLocalBinPath = localBin }) <$> dockerOptsParser docker <*> maybeBoolFlags "system-ghc" "using the system installed GHC (on the PATH) if available and a matching version" idm <*> maybeBoolFlags "install-ghc" "downloading and installing GHC if necessary (can be done manually with stack setup)" idm <*> optional (strOption ( long "arch" <> metavar "ARCH" <> help "System architecture, e.g. i386, x86_64" )) <*> optional (strOption ( long "os" <> metavar "OS" <> help "Operating system, e.g. linux, windows" )) <*> optional (option auto ( long "jobs" <> short 'j' <> metavar "JOBS" <> help "Number of concurrent jobs to run" )) <*> fmap (Set.fromList . map T.pack) (many $ strOption ( long "extra-include-dirs" <> metavar "DIR" <> help "Extra directories to check for C header files" )) <*> fmap (Set.fromList . map T.pack) (many $ strOption ( long "extra-lib-dirs" <> metavar "DIR" <> help "Extra directories to check for libraries" )) <*> maybeBoolFlags "skip-ghc-check" "skipping the GHC version and architecture check" idm <*> maybeBoolFlags "skip-msys" "skipping the local MSYS installation (Windows only)" idm <*> optional (strOption ( long "local-bin-path" <> metavar "DIR" <> help "Install binaries to DIR" )) -- | Options parser configuration for Docker. dockerOptsParser :: Bool -> Parser DockerOptsMonoid dockerOptsParser showOptions = DockerOptsMonoid <$> pure Nothing <*> maybeBoolFlags dockerCmdName "using a Docker container" hide <*> ((Just . DockerMonoidRepo) <$> option str (long (dockerOptName dockerRepoArgName) <> hide <> metavar "NAME" <> help "Docker repository name") <|> (Just . DockerMonoidImage) <$> option str (long (dockerOptName dockerImageArgName) <> hide <> metavar "IMAGE" <> help "Exact Docker image ID (overrides docker-repo)") <|> pure Nothing) <*> maybeBoolFlags (dockerOptName dockerRegistryLoginArgName) "registry requires login" hide <*> maybeStrOption (long (dockerOptName dockerRegistryUsernameArgName) <> hide <> metavar "USERNAME" <> help "Docker registry username") <*> maybeStrOption (long (dockerOptName dockerRegistryPasswordArgName) <> hide <> metavar "PASSWORD" <> help "Docker registry password") <*> maybeBoolFlags (dockerOptName dockerAutoPullArgName) "automatic pulling latest version of image" hide <*> maybeBoolFlags (dockerOptName dockerDetachArgName) "running a detached Docker container" hide <*> maybeBoolFlags (dockerOptName dockerPersistArgName) "not deleting container after it exits" hide <*> maybeStrOption (long (dockerOptName dockerContainerNameArgName) <> hide <> metavar "NAME" <> help "Docker container name") <*> argsOption (long (dockerOptName dockerRunArgsArgName) <> hide <> value [] <> metavar "'ARG1 [ARG2 ...]'" <> help "Additional options to pass to 'docker run'") <*> many (option auto (long (dockerOptName dockerMountArgName) <> hide <> metavar "(PATH | HOST-PATH:CONTAINER-PATH)" <> help ("Mount volumes from host in container " ++ "(may specify mutliple times)"))) <*> maybeStrOption (long (dockerOptName dockerDatabasePathArgName) <> hide <> metavar "PATH" <> help "Location of image usage tracking database") where dockerOptName optName = dockerCmdName ++ "-" ++ T.unpack optName maybeStrOption = optional . option str hide = if showOptions then idm else internal <> hidden -- | Parser for docker cleanup arguments. dockerCleanupOptsParser :: Parser Docker.CleanupOpts dockerCleanupOptsParser = Docker.CleanupOpts <$> (flag' Docker.CleanupInteractive (short 'i' <> long "interactive" <> help "Show cleanup plan in editor and allow changes (default)") <|> flag' Docker.CleanupImmediate (short 'y' <> long "immediate" <> help "Immediately execute cleanup plan") <|> flag' Docker.CleanupDryRun (short 'n' <> long "dry-run" <> help "Display cleanup plan but do not execute") <|> pure Docker.CleanupInteractive) <*> opt (Just 14) "known-images" "LAST-USED" <*> opt Nothing "unknown-images" "CREATED" <*> opt (Just 0) "dangling-images" "CREATED" <*> opt Nothing "stopped-containers" "CREATED" <*> opt Nothing "running-containers" "CREATED" where opt def' name mv = fmap Just (option auto (long name <> metavar (mv ++ "-DAYS-AGO") <> help ("Remove " ++ toDescr name ++ " " ++ map toLower (toDescr mv) ++ " N days ago" ++ case def' of Just n -> " (default " ++ show n ++ ")" Nothing -> ""))) <|> flag' Nothing (long ("no-" ++ name) <> help ("Do not remove " ++ toDescr name ++ case def' of Just _ -> "" Nothing -> " (default)")) <|> pure def' toDescr = map (\c -> if c == '-' then ' ' else c) -- | Parser for arguments to `stack dot` dotOptsParser :: Parser DotOpts dotOptsParser = DotOpts <$> includeExternal <*> includeBase <*> depthLimit <*> fmap (maybe Set.empty Set.fromList . fmap splitNames) prunedPkgs where includeExternal = boolFlags False "external" "inclusion of external dependencies" idm includeBase = boolFlags True "include-base" "inclusion of dependencies on base" idm depthLimit = optional (option auto (long "depth" <> metavar "DEPTH" <> help ("Limit the depth of dependency resolution " <> "(Default: No limit)"))) prunedPkgs = optional (strOption (long "prune" <> metavar "PACKAGES" <> help ("Prune each package name " <> "from the comma separated list " <> "of package names PACKAGES"))) splitNames :: String -> [String] splitNames = map (takeWhile (not . isSpace) . dropWhile isSpace) . splitOn "," -- | Parser for exec command execOptsParser :: Maybe String -- ^ command -> Parser ExecOpts execOptsParser mcmd = ExecOpts <$> maybe eoCmdParser pure mcmd <*> eoArgsParser <*> (eoPlainParser <|> ExecOptsEmbellished <$> eoEnvSettingsParser <*> eoPackagesParser) where eoCmdParser :: Parser String eoCmdParser = strArgument (metavar "CMD") eoArgsParser :: Parser [String] eoArgsParser = many (strArgument (metavar "-- ARGS (e.g. stack ghc -- X.hs -o x)")) eoEnvSettingsParser :: Parser EnvSettings eoEnvSettingsParser = EnvSettings <$> pure True <*> boolFlags True "ghc-package-path" "setting the GHC_PACKAGE_PATH variable for the subprocess" idm <*> boolFlags True "stack-exe" "setting the STACK_EXE environment variable to the path for the stack executable" idm eoPackagesParser :: Parser [String] eoPackagesParser = many (strOption (long "package" <> help "Additional packages that must be installed")) eoPlainParser :: Parser ExecOptsExtra eoPlainParser = flag' ExecOptsPlain (long "plain" <> help "Use an unmodified environment (only useful with Docker)") -- | Parser for global command-line options. globalOptsParser :: Bool -> Parser GlobalOpts globalOptsParser defaultTerminal = GlobalOpts <$> logLevelOptsParser <*> configOptsParser False <*> optional abstractResolverOptsParser <*> flag defaultTerminal False (long "no-terminal" <> help "Override terminal detection in the case of running in a false terminal") <*> (optional (strOption (long "stack-yaml" <> metavar "STACK-YAML" <> help "Override project stack.yaml file (overrides any STACK_YAML environment variable)"))) initOptsParser :: Parser InitOpts initOptsParser = InitOpts <$> method <*> overwrite <*> fmap not ignoreSubDirs where ignoreSubDirs = flag False True (long "ignore-subdirs" <> help "Do not search for .cabal files in sub directories") overwrite = flag False True (long "force" <> help "Force overwriting of an existing stack.yaml if it exists") method = solver <|> (MethodResolver <$> resolver) <|> (MethodSnapshot <$> snapPref) solver = flag' MethodSolver (long "solver" <> help "Use a dependency solver to determine dependencies") snapPref = flag' PrefLTS (long "prefer-lts" <> help "Prefer LTS snapshots over Nightly snapshots") <|> flag' PrefNightly (long "prefer-nightly" <> help "Prefer Nightly snapshots over LTS snapshots") <|> pure PrefNone resolver = option readAbstractResolver (long "resolver" <> metavar "RESOLVER" <> help "Use the given resolver, even if not all dependencies are met") -- | Parse for a logging level. logLevelOptsParser :: Parser LogLevel logLevelOptsParser = fmap parse (strOption (long "verbosity" <> metavar "VERBOSITY" <> help "Verbosity: silent, error, warn, info, debug")) <|> flag defaultLogLevel verboseLevel (short 'v' <> long "verbose" <> help ("Enable verbose mode: verbosity level \"" <> showLevel verboseLevel <> "\"")) where verboseLevel = LevelDebug showLevel l = case l of LevelDebug -> "debug" LevelInfo -> "info" LevelWarn -> "warn" LevelError -> "error" LevelOther x -> T.unpack x parse s = case s of "debug" -> LevelDebug "info" -> LevelInfo "warn" -> LevelWarn "error" -> LevelError _ -> LevelOther (T.pack s) -- | Parser for the resolver abstractResolverOptsParser :: Parser AbstractResolver abstractResolverOptsParser = option readAbstractResolver (long "resolver" <> metavar "RESOLVER" <> help "Override resolver in project file") readAbstractResolver :: ReadM AbstractResolver readAbstractResolver = do s <- readerAsk case s of "global" -> return ARGlobal "nightly" -> return ARLatestNightly "lts" -> return ARLatestLTS 'l':'t':'s':'-':x | Right (x', "") <- decimal $ T.pack x -> return $ ARLatestLTSMajor x' _ -> case parseResolverText $ T.pack s of Left e -> readerError $ show e Right x -> return $ ARResolver x -- | Parser for @solverCmd@ solverOptsParser :: Parser Bool solverOptsParser = boolFlags False "modify-stack-yaml" "Automatically modify stack.yaml with the solver's recommendations" idm -- | Parser for test arguments. testOptsParser :: Parser TestOpts testOptsParser = TestOpts <$> boolFlags True "rerun-tests" "running already successful tests" idm <*> fmap (fromMaybe []) (optional (argsOption(long "test-arguments" <> metavar "TEST_ARGS" <> help "Arguments passed in to the test suite program"))) <*> flag False True (long "coverage" <> help "Generate a code coverage report") <*> flag False True (long "no-run-tests" <> help "Disable running of tests. (Tests will still be built.)") newOptsParser :: Parser NewOpts newOptsParser = NewOpts <$> templateRepositoryParser <*> optional templateParser <*> many templateArgParser <*> initOptsParser where templateRepositoryParser = strOption $ long "template-url-base" <> metavar "URL" <> value "raw.githubusercontent.com/commercialhaskell/stack-templates/master/" -- TODO(DanBurton): reject argument if it has a colon. templateParser = strArgument $ metavar "TEMPLATE" -- TODO(DanBurton): reject argument if it doesn't have a colon. templateArgParser = strArgument $ metavar "ARG:VAL"
wskplho/stack
src/Stack/Options.hs
Haskell
bsd-3-clause
21,355
{-# OPTIONS_GHC -fno-warn-missing-signatures #-} {-# LANGUAGE MultiParamTypeClasses, Rank2Types #-} ----------------------------------------------------------------------------- -- | -- Module : XMonad.Layout.Groups.Examples -- Copyright : Quentin Moser <moserq@gmail.com> -- License : BSD-style (see LICENSE) -- -- Maintainer : orphaned -- Stability : unstable -- Portability : unportable -- -- Example layouts for "XMonad.Layout.Groups". -- ----------------------------------------------------------------------------- module XMonad.Layout.Groups.Examples ( -- * Usage -- $usage -- * Example: Row of columns -- $example1 rowOfColumns , zoomColumnIn , zoomColumnOut , zoomColumnReset , toggleColumnFull , zoomWindowIn , zoomWindowOut , zoomWindowReset , toggleWindowFull -- * Example: Tiled tab groups -- $example2 , tallTabs , mirrorTallTabs , fullTabs , TiledTabsConfig(..) , defaultTiledTabsConfig , increaseNMasterGroups , decreaseNMasterGroups , shrinkMasterGroups , expandMasterGroups , nextOuterLayout -- * Useful re-exports and utils , module XMonad.Layout.Groups.Helpers , shrinkText , defaultTheme , GroupEQ(..) , zoomRowG ) where import XMonad hiding ((|||)) import qualified XMonad.Layout.Groups as G import XMonad.Layout.Groups.Helpers import XMonad.Layout.ZoomRow import XMonad.Layout.Tabbed import XMonad.Layout.Named import XMonad.Layout.Renamed import XMonad.Layout.LayoutCombinators import XMonad.Layout.Decoration import XMonad.Layout.Simplest -- $usage -- This module contains example 'G.Groups'-based layouts. -- You can either import this module directly, or look at its source -- for ideas of how "XMonad.Layout.Groups" may be used. -- -- You can use the contents of this module by adding -- -- > import XMonad.Layout.Groups.Examples -- -- to the top of your @.\/.xmonad\/xmonad.hs@. -- -- For more information on using any of the layouts, jump directly -- to its \"Example\" section. -- -- Whichever layout you choose to use, you will probably want to be -- able to move focus and windows between groups in a consistent -- manner. For this, you should take a look at the functions from -- the "XMonad.Layout.Groups.Helpers" module, which are all -- re-exported by this module. -- -- For more information on how to extend your layour hook and key bindings, see -- "XMonad.Doc.Extending". -- * Helper: ZoomRow of Group elements -- | Compare two 'Group's by comparing the ids of their layouts. data GroupEQ a = GroupEQ deriving (Show, Read) instance Eq a => EQF GroupEQ (G.Group l a) where eq _ (G.G l1 _) (G.G l2 _) = G.sameID l1 l2 zoomRowG :: (Eq a, Show a, Read a, Show (l a), Read (l a)) => ZoomRow GroupEQ (G.Group l a) zoomRowG = zoomRowWith GroupEQ -- * Example 1: Row of columns -- $example1 -- A layout that arranges windows in a row of columns. It uses 'ZoomRow's for -- both, allowing you to: -- -- * Freely change the proportion of the screen width allocated to each column -- -- * Freely change the proportion of a column's heigth allocated to each of its windows -- -- * Set a column to occupy the whole screen space whenever it has focus -- -- * Set a window to occupy its whole column whenever it has focus -- -- to use this layout, add 'rowOfColumns' to your layout hook, for example: -- -- > myLayout = rowOfColumns -- -- To be able to change the sizes of columns and windows, you can create key bindings -- for the relevant actions: -- -- > ((modMask, xK_minus), zoomWindowOut) -- -- and so on. rowOfColumns = G.group column zoomRowG where column = renamed [CutWordsLeft 2, PrependWords "ZoomColumn"] $ Mirror zoomRow -- | Increase the width of the focused column zoomColumnIn :: X () zoomColumnIn = sendMessage $ G.ToEnclosing $ SomeMessage $ zoomIn -- | Decrease the width of the focused column zoomColumnOut :: X () zoomColumnOut = sendMessage $ G.ToEnclosing $ SomeMessage $ zoomOut -- | Reset the width of the focused column zoomColumnReset :: X () zoomColumnReset = sendMessage $ G.ToEnclosing $ SomeMessage $ zoomReset -- | Toggle whether the currently focused column should -- take up all available space whenever it has focus toggleColumnFull :: X () toggleColumnFull = sendMessage $ G.ToEnclosing $ SomeMessage $ ZoomFullToggle -- | Increase the heigth of the focused window zoomWindowIn :: X () zoomWindowIn = sendMessage zoomIn -- | Decrease the height of the focused window zoomWindowOut :: X () zoomWindowOut = sendMessage zoomOut -- | Reset the height of the focused window zoomWindowReset :: X () zoomWindowReset = sendMessage zoomReset -- | Toggle whether the currently focused window should -- take up the whole column whenever it has focus toggleWindowFull :: X () toggleWindowFull = sendMessage ZoomFullToggle -- * Example 2: Tabbed groups in a Tall/Full layout. -- $example2 -- A layout which arranges windows into tabbed groups, and the groups -- themselves according to XMonad's default algorithm -- (@'Tall' ||| 'Mirror' 'Tall' ||| 'Full'@). As their names -- indicate, 'tallTabs' starts as 'Tall', 'mirrorTallTabs' starts -- as 'Mirror' 'Tall' and 'fullTabs' starts as 'Full', but in any -- case you can freely switch between the three afterwards. -- -- You can use any of these three layouts by including it in your layout hook. -- You will need to provide it with a 'TiledTabsConfig' containing the size -- parameters for 'Tall' and 'Mirror' 'Tall', and the shrinker and decoration theme -- for the tabs. If you're happy with defaults, you can use 'defaultTiledTabsConfig': -- -- > myLayout = tallTabs defaultTiledTabsConfig -- -- To be able to increase\/decrease the number of master groups and shrink\/expand -- the master area, you can create key bindings for the relevant actions: -- -- > ((modMask, xK_h), shrinkMasterGroups) -- -- and so on. -- | Configuration data for the "tiled tab groups" layout data TiledTabsConfig s = TTC { vNMaster :: Int , vRatio :: Rational , vIncrement :: Rational , hNMaster :: Int , hRatio :: Rational , hIncrement :: Rational , tabsShrinker :: s , tabsTheme :: Theme } defaultTiledTabsConfig :: TiledTabsConfig DefaultShrinker defaultTiledTabsConfig = TTC 1 0.5 (3/100) 1 0.5 (3/100) shrinkText defaultTheme fullTabs c = _tab c $ G.group _tabs $ Full ||| _vert c ||| _horiz c tallTabs c = _tab c $ G.group _tabs $ _vert c ||| _horiz c ||| Full mirrorTallTabs c = _tab c $ G.group _tabs $ _horiz c ||| Full ||| _vert c _tabs = named "Tabs" Simplest _tab c l = renamed [CutWordsLeft 1] $ addTabs (tabsShrinker c) (tabsTheme c) l _vert c = named "Vertical" $ Tall (vNMaster c) (vIncrement c) (vRatio c) _horiz c = named "Horizontal" $ Mirror $ Tall (hNMaster c) (hIncrement c) (hRatio c) -- | Increase the number of master groups by one increaseNMasterGroups :: X () increaseNMasterGroups = sendMessage $ G.ToEnclosing $ SomeMessage $ IncMasterN 1 -- | Decrease the number of master groups by one decreaseNMasterGroups :: X () decreaseNMasterGroups = sendMessage $ G.ToEnclosing $ SomeMessage $ IncMasterN (-1) -- | Shrink the master area shrinkMasterGroups :: X () shrinkMasterGroups = sendMessage $ G.ToEnclosing $ SomeMessage $ Shrink -- | Expand the master area expandMasterGroups :: X () expandMasterGroups = sendMessage $ G.ToEnclosing $ SomeMessage $ Expand -- | Rotate the available outer layout algorithms nextOuterLayout :: X () nextOuterLayout = sendMessage $ G.ToEnclosing $ SomeMessage $ NextLayout
MasseR/xmonadcontrib
XMonad/Layout/Groups/Examples.hs
Haskell
bsd-3-clause
8,792
-- Example.hs -- Examples from HUnit user's guide -- -- For more examples, check out the tests directory. It contains unit tests -- for HUnit. module Main where import Test.HUnit foo :: Int -> (Int, Int) foo x = (1, x) partA :: Int -> IO (Int, Int) partA v = return (v+2, v+3) partB :: Int -> IO Bool partB v = return (v > 5) test1 :: Test test1 = TestCase (assertEqual "for (foo 3)," (1,2) (foo 3)) test2 :: Test test2 = TestCase (do (x,y) <- partA 3 assertEqual "for the first result of partA," 5 x b <- partB y assertBool ("(partB " ++ show y ++ ") failed") b) tests :: Test tests = TestList [TestLabel "test1" test1, TestLabel "test2" test2] tests' :: Test tests' = test [ "test1" ~: "(foo 3)" ~: (1,2) ~=? (foo 3), "test2" ~: do (x, y) <- partA 3 assertEqual "for the first result of partA," 5 x partB y @? "(partB " ++ show y ++ ") failed" ] main :: IO Counts main = do runTestTT tests runTestTT tests'
Numberartificial/workflow
snipets/.stack-work/install/x86_64-osx/lts-8.12/8.0.2/share/x86_64-osx-ghc-8.0.2/HUnit-1.2.5.2/examples/Example.hs
Haskell
mit
1,073
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="id-ID"> <title>OAST Support Add-on</title> <maps> <homeID>oast</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Search</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
kingthorin/zap-extensions
addOns/oast/src/main/javahelp/org/zaproxy/addon/oast/resources/help_id_ID/helpset_id_ID.hs
Haskell
apache-2.0
965
{-# LANGUAGE DeriveDataTypeable, FlexibleInstances, MultiParamTypeClasses #-} ----------------------------------------------------------------------------- -- | -- Module : XMonad.Actions.WorkspaceCursors -- Copyright : (c) 2009 Adam Vogt <vogt.adam@gmail.com> -- License : BSD -- -- Maintainer : Adam Vogt -- Stability : unstable -- Portability : unportable -- -- Like "XMonad.Actions.Plane" for an arbitrary number of dimensions. ----------------------------------------------------------------------------- module XMonad.Actions.WorkspaceCursors ( -- * Usage -- $usage focusDepth ,makeCursors ,toList ,workspaceCursors ,WorkspaceCursors ,getFocus -- * Modifying the focus ,modifyLayer ,modifyLayer' ,shiftModifyLayer,shiftLayer -- * Functions to pass to 'modifyLayer' ,focusNth' ,noWrapUp,noWrapDown, -- * Todo -- $todo -- * Types Cursors, ) where import qualified XMonad.StackSet as W import XMonad.Actions.FocusNth(focusNth') import XMonad.Layout.LayoutModifier(ModifiedLayout(..), LayoutModifier(handleMess, redoLayout)) import XMonad(Typeable, Message, WorkspaceId, X, XState(windowset), fromMessage, sendMessage, windows, gets) import Control.Monad((<=<), guard, liftM, liftM2, when) import Control.Applicative((<$>)) import Data.Foldable(Foldable(foldMap), toList) import Data.Maybe(fromJust, listToMaybe) import Data.Monoid(Monoid(mappend, mconcat)) import Data.Traversable(sequenceA) -- $usage -- -- Here is an example config: -- -- > import XMonad -- > import XMonad.Actions.WorkspaceCursors -- > import XMonad.Hooks.DynamicLog -- > import XMonad.Util.EZConfig -- > import qualified XMonad.StackSet as W -- > -- > main = do -- > x <- xmobar conf -- > xmonad x -- > -- > conf = additionalKeysP defaultConfig -- > { layoutHook = workspaceCursors myCursors $ layoutHook defaultConfig -- > , workspaces = toList myCursors } $ -- > [("M-"++shift++control++[k], f direction depth) -- > | (f,shift) <- zip [modifyLayer,shiftModifyLayer] ["","S-"] -- > , (direction,control) <- zip [W.focusUp',W.focusDown'] ["C-",""] -- > , (depth,k) <- zip (reverse [1..focusDepth myCursors]) "asdf"] -- > ++ moreKeybindings -- > -- > moreKeybindings = [] -- > -- > myCursors = makeCursors $ map (map (\x -> [x])) [ "1234", "abc", "xyz"] -- > -- myCursors = makeCursors [["wsA","wsB","wsC"],["-alpha-","-beta-","-gamma-"],["x","y"]] -- $todo -- -- * Find and document how to raise the allowable length of arguments: -- restoring xmonad's state results in: @xmonad: executeFile: resource -- exhausted (Argument list too long)@ when you specify more than about 50 -- workspaces. Or change it such that workspaces are created when you try to -- view it. -- -- * Function for pretty printing for DynamicLog that groups workspaces by -- common prefixes -- -- * Examples of adding workspaces to the cursors, having them appear multiple -- times for being able to show jumping to some n'th multiple workspace -- | makeCursors requires a nonempty string, and each sublist must be nonempty makeCursors :: [[String]] -> Cursors String makeCursors [] = error "Workspace Cursors cannot be empty" makeCursors a = concat . reverse <$> foldl addDim x xs where x = end $ map return $ head a xs = map (map return) $ tail a -- this could probably be simplified, but this true: -- toList . makeCursors == map (concat . reverse) . sequence . reverse . map (map (:[])) -- the strange order is used because it makes the regular M-1..9 -- bindings change the prefixes first addDim :: (Monoid a) => Cursors a -> [a] -> Cursors a addDim prev prefixes = Cons . fromJust . W.differentiate $ map ((<$> prev) . mappend) prefixes end :: [a] -> Cursors a end = Cons . fromJust . W.differentiate . map End data Cursors a = Cons (W.Stack (Cursors a)) | End a deriving (Eq,Show,Read,Typeable) instance Foldable Cursors where foldMap f (End x) = f x foldMap f (Cons (W.Stack x y z)) = foldMap f x `mappend` mconcat (map (foldMap f) $ reverse y ++ z) instance Functor Cursors where fmap f (End a) = End $ f a fmap f (Cons (W.Stack x y z)) = Cons $ W.Stack (fmap f x) (fmap (fmap f) y) (fmap (fmap f) z) changeFocus :: (Cursors t -> Bool) -> Cursors t -> [Cursors t] changeFocus p (Cons x) = do choose <- chFocus p x foc <- changeFocus p $ W.focus choose return . Cons $ choose { W.focus = foc } changeFocus p x = guard (p x) >> return x chFocus :: (a -> Bool) -> W.Stack a -> [W.Stack a] chFocus p st = filter (p . W.focus) $ zipWith const (iterate W.focusDown' st) (W.integrate st) getFocus :: Cursors b -> b getFocus (Cons x) = getFocus $ W.focus x getFocus (End x) = x -- This could be made more efficient, if the fact that the suffixes are grouped focusTo :: (Eq t) => t -> Cursors t -> Maybe (Cursors t) focusTo x = listToMaybe . filter ((x==) . getFocus) . changeFocus (const True) -- | non-wrapping version of 'W.focusUp'' noWrapUp :: W.Stack t -> W.Stack t noWrapUp (W.Stack t (l:ls) rs) = W.Stack l ls (t:rs) noWrapUp x@(W.Stack _ [] _ ) = x -- | non-wrapping version of 'W.focusDown'' noWrapDown :: W.Stack t -> W.Stack t noWrapDown = reverseStack . noWrapUp . reverseStack where reverseStack (W.Stack t ls rs) = W.Stack t rs ls focusDepth :: Cursors t -> Int focusDepth (Cons x) = 1 + focusDepth (W.focus x) focusDepth (End _) = 0 descend :: Monad m =>(W.Stack (Cursors a) -> m (W.Stack (Cursors a)))-> Int-> Cursors a-> m (Cursors a) descend f 1 (Cons x) = Cons `liftM` f x descend f n (Cons x) | n > 1 = liftM Cons $ descend f (pred n) `onFocus` x descend _ _ x = return x onFocus :: (Monad m) => (a1 -> m a1) -> W.Stack a1 -> m (W.Stack a1) onFocus f st = (\x -> st { W.focus = x}) `liftM` f (W.focus st) -- | @modifyLayer@ is used to change the focus at a given depth modifyLayer :: (W.Stack (Cursors String) -> W.Stack (Cursors String)) -> Int -> X () modifyLayer f depth = modifyCursors (descend (return . f) depth) -- | @shiftModifyLayer@ is the same as 'modifyLayer', but also shifts the -- currently focused window to the new workspace shiftModifyLayer :: (W.Stack (Cursors String) -> W.Stack (Cursors WorkspaceId))-> Int-> X () shiftModifyLayer f = modifyLayer' $ \st -> do let st' = f st windows $ W.shift $ getFocus (Cons st') return st' -- | @shiftLayer@ is the same as 'shiftModifyLayer', but the focus remains on -- the current workspace. shiftLayer :: (W.Stack (Cursors String) -> W.Stack (Cursors WorkspaceId))-> Int-> X () shiftLayer f = modifyLayer' $ \st -> do windows $ W.shift $ getFocus $ Cons $ f st return st -- | example usages are 'shiftLayer' and 'shiftModifyLayer' modifyLayer' :: (W.Stack (Cursors String) -> X (W.Stack (Cursors String))) -> Int -> X () modifyLayer' f depth = modifyCursors (descend f depth) modifyCursors :: (Cursors String -> X (Cursors String)) -> X () modifyCursors = sendMessage . ChangeCursors . (liftM2 (>>) updateXMD return <=<) data WorkspaceCursors a = WorkspaceCursors (Cursors String) deriving (Typeable,Read,Show) -- | The state is stored in the 'WorkspaceCursors' layout modifier. Put this as -- your outermost modifier, unless you want different cursors at different -- times (using "XMonad.Layout.MultiToggle") workspaceCursors :: Cursors String -> l a -> ModifiedLayout WorkspaceCursors l a workspaceCursors = ModifiedLayout . WorkspaceCursors data ChangeCursors = ChangeCursors { unWrap :: Cursors String -> X (Cursors String) } deriving (Typeable) instance Message ChangeCursors updateXMD :: Cursors WorkspaceId -> X () updateXMD cs = do changed <- gets $ (getFocus cs /=) . W.currentTag . windowset when changed $ windows $ W.greedyView $ getFocus cs instance LayoutModifier WorkspaceCursors a where redoLayout (WorkspaceCursors cs) _ _ arrs = do cws <- gets $ W.currentTag . windowset return (arrs,WorkspaceCursors <$> focusTo cws cs) handleMess (WorkspaceCursors cs) m = sequenceA $ fmap WorkspaceCursors . ($ cs) . unWrap <$> fromMessage m
adinapoli/xmonad-contrib
XMonad/Actions/WorkspaceCursors.hs
Haskell
bsd-3-clause
8,231
module Grin.Lint( lintCheckGrin, typecheckGrin, transformGrin, dumpGrin ) where import Control.Exception import Control.Monad.Reader import Data.Monoid import System.IO import qualified Data.Set as Set import Doc.DocLike import Grin.Grin import Grin.Show import Options import Support.CanType import Support.Compat import Support.FreeVars import Support.Transform import Text.Printf import Util.Gen import Util.SetLike import qualified FlagDump as FD import qualified Stats lintCheckGrin grin = when flint $ typecheckGrin grin lintCheckGrin' onerr grin | flint = do let env = TcEnv { envTyEnv = grinTypeEnv grin, envInScope = fromList (fsts $ grinCafs grin) } let errs = [ (err ++ "\n" ++ render (prettyFun a) ) | (a,Left err) <- [ (a,runTc env (tcLam Nothing c)) | a@(_,c) <- grinFuncs grin ]] if null errs then return () else do onerr putErrLn ">>> Type Errors" mapM_ putErrLn errs unless (null errs || optKeepGoing options) $ fail "There were type errors!" lintCheckGrin' _ _ = return () typecheckGrin grin = do let env = TcEnv { envTyEnv = grinTypeEnv grin, envInScope = fromList (fsts $ grinCafs grin) } let errs = [ (err ++ "\n" ++ render (prettyFun a) ) | (a,Left err) <- [ (a,runTc env (tcLam Nothing c)) | a@(_,c) <- grinFuncs grin ]] mapM_ putErrLn errs unless (null errs || optKeepGoing options) $ fail "There were type errors!" {-# NOINLINE dumpGrin #-} dumpGrin pname grin = do (argstring,sversion) <- getArgString let fn ext action = do let oname = outputName ++ "_" ++ pname ++ "." ++ ext putErrLn $ "Writing: " ++ oname h <- openFile oname WriteMode action h hClose h fn "grin" $ \h -> do hPutStrLn h $ unlines [ "-- " ++ argstring,"-- " ++ sversion,""] hPrintGrin h grin wdump FD.GrinDatalog $ fn "datalog" $ \h -> do hPutStrLn h $ unlines [ "% " ++ argstring,"% " ++ sversion,""] hPrintGrinDL h grin wdump FD.Grin $ do putErrLn $ "v-- " ++ pname ++ " Grin" printGrin grin putErrLn $ "^-- " ++ pname ++ " Grin" class DShow a where dshow :: a -> String instance DShow String where dshow s = '\'':f s where f ('\'':rs) = "''" ++ f rs f (x:xs) = x:f xs f [] = "'" instance DShow Tag where dshow s = '\'':f (show s) where f ('\'':rs) = "''" ++ f rs f (x:xs) = x:f xs f [] = "'" instance DShow Var where dshow v = dshow (show v) instance DShow Ty where dshow v = dshow $ show v instance (DShow a,DShow b) => DShow (Either a b) where dshow (Left x) = dshow x dshow (Right x) = dshow x funArg n i = show n ++ "@arg@" ++ show i funRet n i = show n ++ "@ret@" ++ show i printFunc h n (l :-> e) = do hPrintf h "func(%s,%i).\n" (dshow n) (length l) forM_ (zip naturals l) $ \ (i,Var v t) -> do hPrintf h "perform(assign,%s,%s).\n" (dshow v) (dshow $ funArg n i) hPrintf h "what(%s,funarg).\n" (dshow $ funArg n i) hPrintf h "typeof(%s,%s).\n" (dshow $ funArg n i) (dshow t) hPrintf h "typeof(%s,%s).\n" (dshow v) (dshow t) let rts = getType e lts = [ (t,funRet n i) | t <- rts | i <- naturals ] mapM_ (hPrintf h "what(%s,funret).\n" . dshow) (snds lts) mapM_ (\ (t,n) -> hPrintf h "typeof(%s,%s).\n" (dshow n) (dshow t)) lts printDL h n (map (Left . snd) lts) e hPrintGrinDL :: Handle -> Grin -> IO () hPrintGrinDL h grin = do let cafs = grinCafs grin when (not $ null cafs) $ do hPutStrLn h "% cafs" mapM_ (\ (x,y) -> hPrintf h "what(%s,'caf').\ntypeof(%s,inode).\n" (dshow x) (dshow x)) cafs hPutStrLn h "% functions" forM_ (grinFuncs grin) $ \ (n,l :-> e) -> printFunc h n (l :-> e) bindUnknown h l r = do mapM_ (\ (x,t) -> when (tyInteresting t) $ setUnknown h x r) (Set.toList $ freeVars l :: [(Var,Ty)]) setUnknown :: DShow a => Handle -> a -> String -> IO () setUnknown h x r = do hPrintf h "unknown(%s,%s).\n" (dshow x) (dshow r) printDL h n fs e = f fs e where f fs (x :>>= l :-> y) = do f (map Right l) x f fs y f bs (Return vs) = do zipWithM_ (assign "assign") bs vs -- f [Left b] (Store (NodeC n vs)) = hPrintf h "store(%s,%s,%s).\n" (dshow b) (dshow n) (if tagIsWHNF n then "true" else "false") -- f [Right (Var b _)] (Store (NodeC n vs)) = hPrintf h "store(%s,%s,%s).\n" (dshow b) (dshow n) (if tagIsWHNF n then "true" else "false") >> app n vs -- f [b] (Store x@Var {}) = do assign "demote" b x f [b] (BaseOp Eval [x]) = do assign "eval" b x f b (App fn as ty) = do forM_ (zip naturals as) $ \ (i,a) -> do assign "assign" (Left $ funArg fn i) a forM_ (zip naturals b) $ \ (i,a) -> do genAssign "assign" a (Left $ funRet fn i) f b (Case v ls) = mapM_ (\l -> f b (Return [v] :>>= l)) ls f b Let { expDefs = defs, expBody = body } = do forM_ defs $ \d -> printFunc h (funcDefName d) (funcDefBody d) forM_ defs $ \d -> hPrintf h "subfunc(%s,%s).\n" (dshow $ funcDefName d) (dshow n) f b body f b Error {} = return () f b Call { expValue = Item fn _, expArgs = as, expType = ty} = do forM_ (zip naturals as) $ \ (i,a) -> do assign "assign" (Left $ funArg fn i) a forM_ (zip naturals b) $ \ (i,a) -> do genAssign "assign" a (Left $ funRet fn i) f bs e = do zipWithM_ (assign "assign") bs (map ValUnknown (getType e)) --app n as | Just (0,fn) <- tagUnfunction n = do -- hPrintf h "lazyfunc(%s).\n" (dshow fn) -- forM_ (zip naturals as) $ \ (i,a) -> do -- assign "assign" (Left $ funArg fn i) a --app _ _ = return () assign op b v = genAssign op b (Right v) genAssign :: String -> Either String Val -> Either String Val -> IO () genAssign op (Left b) (Left l) = hPrintf h "perform(%s,%s,%s).\n" op (dshow b) (dshow l) genAssign op (Right (Var v1 _)) (Left l) = hPrintf h "perform(%s,%s,%s).\n" op (dshow v1) (dshow l) genAssign op (Left b) (Right (Var v _)) = hPrintf h "perform(%s,%s,%s).\n" op (dshow b) (dshow v) genAssign op (Left b) (Right (Const {})) = hPrintf h "perform(%s,%s,%s).\n" op (dshow b) "const" genAssign op (Right (Var v1 _)) (Right (Var v2 _)) = hPrintf h "perform(%s,%s,%s).\n" op (dshow v1) (dshow v2) genAssign op (Left b) (Right v) = when (tyInteresting $ getType v) $ setUnknown h b (show (op,v)) genAssign op (Right b) rv = bindUnknown h b (take 20 $ show (op,rv)) tyInteresting ty = ty == TyNode || ty == tyINode transformGrin :: TransformParms Grin -> Grin -> IO Grin transformGrin TransformParms { transformIterate = IterateMax n } prog | n <= 0 = return prog transformGrin TransformParms { transformIterate = IterateExactly n } prog | n <= 0 = return prog transformGrin tp prog = do let dodump = transformDumpProgress tp name = transformCategory tp ++ pname (transformPass tp) ++ pname (transformName tp) _scname = transformCategory tp ++ pname (transformPass tp) pname "" = "" pname xs = '-':xs iterate = transformIterate tp when dodump $ putErrLn $ "-- " ++ name let ferr e = do putErrLn $ "\n>>> Exception thrown" putErrLn $ "\n>>> Before " ++ name dumpGrin ("lint-before-" ++ name) prog putErrLn $ "\n>>>" putErrLn (show (e::SomeException')) maybeDie return prog let istat = grinStats prog prog' <- Control.Exception.catch (transformOperation tp prog { grinStats = mempty } >>= Control.Exception.evaluate ) ferr let estat = grinStats prog' let onerr grin' = do putErrLn $ "\n>>> Before " ++ name dumpGrin ("lint-before-" ++ name) prog Stats.printStat name estat putErrLn $ "\n>>> After " ++ name dumpGrin ("lint-after-" ++ name) grin' if transformSkipNoStats tp && Stats.null estat then do when dodump $ putErrLn "program not changed" return prog else do when (dodump && not (Stats.null estat)) $ Stats.printStat name estat lintCheckGrin' (onerr prog') prog' let tstat = istat `mappend` estat if doIterate iterate (not $ Stats.null estat) then transformGrin tp { transformIterate = iterateStep iterate } prog' { grinStats = tstat } else return prog' { grinStats = tstat } -- if doIterate iterate (estat /= mempty) then transformGrin tp { transformIterate = iterateStep iterate } prog' { progStats = istat `mappend` estat } else -- return prog' { progStats = istat `mappend` estat, progPasses = name:progPasses prog' } maybeDie = case optKeepGoing options of True -> return () False -> putErrDie "Internal Error" data TcEnv = TcEnv { envTyEnv :: TyEnv, envInScope :: Set.Set Var } newtype Tc a = Tc (ReaderT TcEnv (Either String) a) deriving(Monad,MonadReader TcEnv) tcErr :: String -> Tc a tcErr s = Tc $ lift (Left s) runTc :: TcEnv -> Tc a -> Either String a runTc env (Tc r) = runReaderT r env same _ t1 t2 | t1 == t2 = return t1 same msg t1 t2 = tcErr $ "Types not the same:" <+> parens msg <+> parens (tshow t1) <+> parens (tshow t2) tcLam :: Maybe [Ty] -> Lam -> Tc [Ty] tcLam mty (v :-> e) = f mty where f Nothing = ans (mapM tcVal v) f (Just ty) = ans $ do t <- mapM tcVal v same (":->" <+> show mty <+> show (v :-> e)) ty t ans r = local (\e -> e { envInScope = freeVars v `mappend` envInScope e }) $ r >> tcExp e tcExp :: Exp -> Tc [Ty] tcExp e = f e where f (e :>>= lam) = do t1 <- f e tcLam (Just t1) lam f n@(Prim p as t') = do mapM_ tcVal as return t' f ap@(BaseOp (Apply t) vs) = do (v':_) <- mapM tcVal vs if v' == TyNode then return t else tcErr $ "App apply arg doesn't match: " ++ show ap f ap@(BaseOp Eval [v]) = do v' <- tcVal v if v' == tyINode then return [TyNode] else tcErr $ "App eval arg doesn't match: " ++ show ap f a@(App fn as t) = do te <- asks envTyEnv (as',t') <- findArgsType te fn as'' <- mapM tcVal as if t' == t then if as'' == as' then return t' else tcErr $ "App: arguments do not match: " ++ show (a,as',t') else tcErr $ "App: results do not match: " ++ show (a,t,(as',t')) f e@(BaseOp (StoreNode _) vs) = do [NodeC {}] <- return vs mapM_ tcVal vs return (getType e) f Alloc { expValue = v, expCount = c, expRegion = r } = do t <- tcVal v tcVal c tcVal r return [TyPtr t] f (Return v) = mapM tcVal v f (BaseOp Promote [v]) = do TyINode <- tcVal v return [TyNode] f (BaseOp Demote [v]) = do TyNode <- tcVal v return [TyINode] f (Error _ t) = return t f e@(BaseOp Overwrite [w,v]) = do NodeC {} <- return v tcVal w tcVal v return [] f e@(BaseOp PokeVal [w,v]) = do TyPtr t <- tcVal w tv <- tcVal v when (t /= tv) $ tcErr "PokeVal: types don't match" return [] f e@(BaseOp PeekVal [w]) = do TyPtr t <- tcVal w return [t] f (Case _ []) = tcErr "empty case" f (Case v as) = do tv <- tcVal v es <- mapM (tcLam (Just [tv])) as foldl1M (same $ "case exp: " ++ show (map head $ sortGroupUnder fst (zip es as)) ) es f (Let { expDefs = defs, expBody = body }) = do local (\e -> e { envTyEnv = extendTyEnv defs (envTyEnv e) }) $ do mapM_ (tcLam Nothing) [ b | FuncDef { funcDefBody = b } <- defs ] f body f _ = error "Grin.Lint: unknown value passed to f" tcVal :: Val -> Tc Ty tcVal v = f v where f e@(Var v t) = do s <- asks envInScope case v `member` s of True -> return t False -> tcErr $ "variable not in scope: " ++ show e f (Lit _ t) = return t f Unit = return TyUnit f (Const t) = do v <- f t case v of TyNode -> return TyINode v -> return (TyPtr v) f (Index v offset) = do t <- f v TyPrim _ <- f offset return t f (ValUnknown ty) = return ty f (ValPrim _ vs ty) = do mapM_ f vs >> return ty f n@(NodeC tg as) = do te <- asks envTyEnv (as',_) <- findArgsType te tg as'' <- mapM f as if as'' == as' then return TyNode else tcErr $ "NodeC: arguments do not match " ++ show n ++ show (as'',as') f (Item _ t) = return t
m-alvarez/jhc
src/Grin/Lint.hs
Haskell
mit
12,583
{-# LANGUAGE CPP #-} -------------------------------------------------------------------------------- -- | Deal with Cmm registers -- module LlvmCodeGen.Regs ( lmGlobalRegArg, lmGlobalRegVar, alwaysLive, stgTBAA, baseN, stackN, heapN, rxN, otherN, tbaa, getTBAA ) where #include "HsVersions.h" import Llvm import CmmExpr import DynFlags import FastString import Outputable ( panic ) import Unique -- | Get the LlvmVar function variable storing the real register lmGlobalRegVar :: DynFlags -> GlobalReg -> LlvmVar lmGlobalRegVar dflags = pVarLift . lmGlobalReg dflags "_Var" -- | Get the LlvmVar function argument storing the real register lmGlobalRegArg :: DynFlags -> GlobalReg -> LlvmVar lmGlobalRegArg dflags = lmGlobalReg dflags "_Arg" {- Need to make sure the names here can't conflict with the unique generated names. Uniques generated names containing only base62 chars. So using say the '_' char guarantees this. -} lmGlobalReg :: DynFlags -> String -> GlobalReg -> LlvmVar lmGlobalReg dflags suf reg = case reg of BaseReg -> ptrGlobal $ "Base" ++ suf Sp -> ptrGlobal $ "Sp" ++ suf Hp -> ptrGlobal $ "Hp" ++ suf VanillaReg 1 _ -> wordGlobal $ "R1" ++ suf VanillaReg 2 _ -> wordGlobal $ "R2" ++ suf VanillaReg 3 _ -> wordGlobal $ "R3" ++ suf VanillaReg 4 _ -> wordGlobal $ "R4" ++ suf VanillaReg 5 _ -> wordGlobal $ "R5" ++ suf VanillaReg 6 _ -> wordGlobal $ "R6" ++ suf VanillaReg 7 _ -> wordGlobal $ "R7" ++ suf VanillaReg 8 _ -> wordGlobal $ "R8" ++ suf SpLim -> wordGlobal $ "SpLim" ++ suf FloatReg 1 -> floatGlobal $"F1" ++ suf FloatReg 2 -> floatGlobal $"F2" ++ suf FloatReg 3 -> floatGlobal $"F3" ++ suf FloatReg 4 -> floatGlobal $"F4" ++ suf FloatReg 5 -> floatGlobal $"F5" ++ suf FloatReg 6 -> floatGlobal $"F6" ++ suf DoubleReg 1 -> doubleGlobal $ "D1" ++ suf DoubleReg 2 -> doubleGlobal $ "D2" ++ suf DoubleReg 3 -> doubleGlobal $ "D3" ++ suf DoubleReg 4 -> doubleGlobal $ "D4" ++ suf DoubleReg 5 -> doubleGlobal $ "D5" ++ suf DoubleReg 6 -> doubleGlobal $ "D6" ++ suf XmmReg 1 -> xmmGlobal $ "XMM1" ++ suf XmmReg 2 -> xmmGlobal $ "XMM2" ++ suf XmmReg 3 -> xmmGlobal $ "XMM3" ++ suf XmmReg 4 -> xmmGlobal $ "XMM4" ++ suf XmmReg 5 -> xmmGlobal $ "XMM5" ++ suf XmmReg 6 -> xmmGlobal $ "XMM6" ++ suf YmmReg 1 -> ymmGlobal $ "YMM1" ++ suf YmmReg 2 -> ymmGlobal $ "YMM2" ++ suf YmmReg 3 -> ymmGlobal $ "YMM3" ++ suf YmmReg 4 -> ymmGlobal $ "YMM4" ++ suf YmmReg 5 -> ymmGlobal $ "YMM5" ++ suf YmmReg 6 -> ymmGlobal $ "YMM6" ++ suf ZmmReg 1 -> zmmGlobal $ "ZMM1" ++ suf ZmmReg 2 -> zmmGlobal $ "ZMM2" ++ suf ZmmReg 3 -> zmmGlobal $ "ZMM3" ++ suf ZmmReg 4 -> zmmGlobal $ "ZMM4" ++ suf ZmmReg 5 -> zmmGlobal $ "ZMM5" ++ suf ZmmReg 6 -> zmmGlobal $ "ZMM6" ++ suf MachSp -> wordGlobal $ "MachSp" ++ suf _other -> panic $ "LlvmCodeGen.Reg: GlobalReg (" ++ (show reg) ++ ") not supported!" -- LongReg, HpLim, CCSS, CurrentTSO, CurrentNusery, HpAlloc -- EagerBlackholeInfo, GCEnter1, GCFun, BaseReg, PicBaseReg where wordGlobal name = LMNLocalVar (fsLit name) (llvmWord dflags) ptrGlobal name = LMNLocalVar (fsLit name) (llvmWordPtr dflags) floatGlobal name = LMNLocalVar (fsLit name) LMFloat doubleGlobal name = LMNLocalVar (fsLit name) LMDouble xmmGlobal name = LMNLocalVar (fsLit name) (LMVector 4 (LMInt 32)) ymmGlobal name = LMNLocalVar (fsLit name) (LMVector 8 (LMInt 32)) zmmGlobal name = LMNLocalVar (fsLit name) (LMVector 16 (LMInt 32)) -- | A list of STG Registers that should always be considered alive alwaysLive :: [GlobalReg] alwaysLive = [BaseReg, Sp, Hp, SpLim, HpLim, node] -- | STG Type Based Alias Analysis hierarchy stgTBAA :: [(Unique, LMString, Maybe Unique)] stgTBAA = [ (topN, fsLit "top", Nothing) , (stackN, fsLit "stack", Just topN) , (heapN, fsLit "heap", Just topN) , (rxN, fsLit "rx", Just heapN) , (baseN, fsLit "base", Just topN) -- FIX: Not 100% sure about 'others' place. Might need to be under 'heap'. -- OR I think the big thing is Sp is never aliased, so might want -- to change the hieracy to have Sp on its own branch that is never -- aliased (e.g never use top as a TBAA node). , (otherN, fsLit "other", Just topN) ] -- | Id values topN, stackN, heapN, rxN, baseN, otherN :: Unique topN = getUnique (fsLit "LlvmCodeGen.Regs.topN") stackN = getUnique (fsLit "LlvmCodeGen.Regs.stackN") heapN = getUnique (fsLit "LlvmCodeGen.Regs.heapN") rxN = getUnique (fsLit "LlvmCodeGen.Regs.rxN") baseN = getUnique (fsLit "LlvmCodeGen.Regs.baseN") otherN = getUnique (fsLit "LlvmCodeGen.Regs.otherN") -- | The TBAA metadata identifier tbaa :: LMString tbaa = fsLit "tbaa" -- | Get the correct TBAA metadata information for this register type getTBAA :: GlobalReg -> Unique getTBAA BaseReg = baseN getTBAA Sp = stackN getTBAA Hp = heapN getTBAA (VanillaReg _ _) = rxN getTBAA _ = topN
tjakway/ghcjvm
compiler/llvmGen/LlvmCodeGen/Regs.hs
Haskell
bsd-3-clause
5,550
{-# OPTIONS_GHC -w #-} {-# LANGUAGE FlexibleInstances, UndecidableInstances #-} module ShouldCompile where import Control.Monad.Reader instance Eq (a -> b) where _ == _ = error "whoops" instance Show (a -> b) where show = const "<fun>" -- This is the example from Trac #179 foo x = show (\_ -> True) -- This is the example from Trac #963 instance (Num a, Monad m, Eq (m a), Show (m a)) => Num (m a) where test = 1 True
urbanslug/ghc
testsuite/tests/typecheck/should_compile/tc217.hs
Haskell
bsd-3-clause
436
{-# LANGUAGE Trustworthy, Unsafe #-} -- | Basic test to see if Safe flags compiles module SafeFlags06 where f :: Int f = 1
urbanslug/ghc
testsuite/tests/safeHaskell/flags/SafeFlags06.hs
Haskell
bsd-3-clause
126
{-# OPTIONS_GHC -fwarn-warnings-deprecations #-} -- Test deprecation of constructors and class ops module ShouldCompile where import Rn050_A instance Foo T where op x = x bop y = y foo = op C
urbanslug/ghc
testsuite/tests/rename/should_compile/rn050.hs
Haskell
bsd-3-clause
202
{- | This module works with recursive data structure with cycles. -} module Data.Generics.Rec ( universeRec ) where import Data.Generics import Control.Monad.State import Data.Set import System.Mem.StableName import System.IO.Unsafe type RecState a = StateT (Set Int) IO a goRec :: (Data v, Data r) => v -> RecState [r] goRec !v = do hash <- hashStableName `fmap` liftIO (makeStableName v) p <- gets (member hash) if p then return [] else do modify $ insert hash case cast v of Just v0 -> (v0:) `fmap` continue Nothing -> continue where continue = concat `fmap` sequence (gmapQ goRec v) -- | Get all distinct children of a node, including itself and all children. -- -- > dataRose = Rose { roseId :: Int, roseBranches :: [Rose] } -- > deriving (Data,Typeable) -- -- > roses = -- > let a = Rose 1 [b,c] -- > b = Rose 2 [a,c] -- > c = Rose 3 [a,b] -- > in a -- -- > [ i | Rose i _ <- universeRec roses ] -- > [1,2,3] universeRec :: (Data v, Data r) => v -> [r] universeRec v = unsafePerformIO $ evalStateT (goRec v) empty
lomeo/unirec
src/Data/Generics/Rec.hs
Haskell
mit
1,167
{- | module: Main description: Querying the contents of OpenTheory packages license: MIT maintainer: Joe Leslie-Hurd <joe@gilith.com> stability: provisional portability: portable -} module Main ( main ) where import System.FilePath (isValid,takeDirectory,takeExtension) import qualified System.Environment as Environment import HOL.OpenTheory (readArticle,readPackages) import qualified HOL.OpenTheory.Interpret as Interpret import HOL.OpenTheory.Package (Name,NameVersion) import qualified HOL.OpenTheory.Package as Package import HOL.Parse import HOL.Print import HOL.Theory (Theory) import qualified HOL.Theory as Theory ------------------------------------------------------------------------------- -- An article file ------------------------------------------------------------------------------- articleArg :: [String] -> Maybe FilePath articleArg [f] | isValid f && takeExtension f == ".art" = Just f articleArg _ = Nothing articleThy :: FilePath -> IO Theory articleThy f = do ths <- readArticle Theory.standard Interpret.empty f return $ Theory.fromThmSet ths ------------------------------------------------------------------------------- -- A collection of packages ------------------------------------------------------------------------------- packagesArg :: [String] -> Maybe [Name] packagesArg = mapM fromString packagesThy :: [Name] -> IO Theory packagesThy = fmap Theory.unionList . readPackages ------------------------------------------------------------------------------- -- A package file ------------------------------------------------------------------------------- packageFileArg :: [String] -> Maybe FilePath packageFileArg [f] | isValid f && takeExtension f == ".thy" = Just f packageFileArg _ = Nothing packageFileThy :: FilePath -> IO Theory packageFileThy f = do pkg <- fromTextFile f req <- packagesThy (Package.requires pkg) let thy = Theory.union Theory.standard req let int = Interpret.empty let dir = takeDirectory f Package.readPackage thy int dir pkg ------------------------------------------------------------------------------- -- A specific version of a package ------------------------------------------------------------------------------- packageVersionArg :: [String] -> Maybe NameVersion packageVersionArg [s] = fromString s packageVersionArg _ = Nothing packageVersionThy :: NameVersion -> IO Theory packageVersionThy nv = do dir <- Package.directoryVersion nv packageFileThy (Package.packageFile dir (Package.name nv)) ------------------------------------------------------------------------------- -- Top-level ------------------------------------------------------------------------------- usage :: String -> a usage err = error $ err ++ "\n" ++ info where info = "Usage: hol-pkg INPUT\n" ++ "where INPUT is one of the following forms:\n" ++ " FILE.art : a proof article file\n" ++ " FILE.thy : a theory package file\n" ++ " NAME-VERSION : a specific version of an installed theory package\n" ++ " NAME ... : the latest installed version of a list of packages\n" ++ "hol-pkg reads the INPUT to generate a set of theorems, which are\n" ++ "pretty-printed to standard output together with the symbols they contain." main :: IO () main = do args <- Environment.getArgs if null args then usage "no arguments" else return () thy <- case articleArg args of Just f -> articleThy f Nothing -> case packageFileArg args of Just f -> packageFileThy f Nothing -> case packageVersionArg args of Just nv -> packageVersionThy nv Nothing -> case packagesArg args of Just ns -> packagesThy ns Nothing -> usage $ "bad arguments: " ++ show args putStrLn $ toString thy return ()
gilith/hol
src/Main.hs
Haskell
mit
3,999
data Vector = Vector { x :: Double, y :: Double } deriving (Eq, Ord, Show) instance Num Vector where p1 + p2 = Vector (x p1 + x p2) (y p1 + y p2) p1 - p2 = p1 + negate p2 p1 * p2 = Vector (x p1 * x p2) (y p1 * y p2) abs (Vector x y) = Vector (sqrt (x * x + y * y)) 0 negate (Vector x y) = Vector (-x) (-y) fromInteger x = Vector (fromInteger x) 0 signum (Vector x y) = let m = sqrt (x * x + y * y) in Vector (x / m) (y / m) p .* s = Vector (x p * s) (y p * s) (*.) = flip (.*)
0xd34df00d/hencil
src/Vector.hs
Haskell
mit
507
{-# LANGUAGE RecordWildCards #-} module Hogldev.Pipeline ( Pipeline(..) , getTrans , PersProj(..) , Camera(..) ) where import Graphics.Rendering.OpenGL import Hogldev.Math3D import Hogldev.Utils import Hogldev.Camera data Pipeline = WPipeline { scaleInfo :: Vector3 GLfloat , worldInfo :: Vector3 GLfloat , rotateInfo :: Vector3 GLfloat } | WPPipeline { scaleInfo :: Vector3 GLfloat , worldInfo :: Vector3 GLfloat , rotateInfo :: Vector3 GLfloat , persProj :: PersProj } | WVPPipeline { scaleInfo :: Vector3 GLfloat , worldInfo :: Vector3 GLfloat , rotateInfo :: Vector3 GLfloat , persProj :: PersProj , pipeCamera :: Camera } | VPPipeline { persProj :: PersProj , pipeCamera :: Camera } deriving Show getTrans :: Pipeline -> Matrix4 getTrans WPipeline{..} = worldTrans scaleInfo worldInfo rotateInfo getTrans WPPipeline{..} = projTrans scaleInfo worldInfo rotateInfo persProj getTrans VPPipeline{..} = vpTrans persProj pipeCamera getTrans WVPPipeline{..} = projViewTrans scaleInfo worldInfo rotateInfo persProj pipeCamera vpTrans :: PersProj -> Camera -> Matrix4 vpTrans persProj camera = perspProjTrans persProj !*! cameraTrans camera worldTrans :: Vector3 GLfloat -> Vector3 GLfloat -> Vector3 GLfloat -> Matrix4 worldTrans scaleInfo worldInfo rotateInfo = translationTrans !*! rotateTrans !*! scaleTrans where scaleTrans, rotateTrans, translationTrans :: Matrix4 scaleTrans = scaleMatrix scaleInfo rotateTrans = initRotateTransform rotateInfo translationTrans = translateMatrix worldInfo projTrans :: Vector3 GLfloat -> Vector3 GLfloat -> Vector3 GLfloat -> PersProj -> Matrix4 projTrans scaleInfo worldInfo rotateInfo persProj = perspProjTrans persProj !*! worldTrans scaleInfo worldInfo rotateInfo projViewTrans :: Vector3 GLfloat -> Vector3 GLfloat -> Vector3 GLfloat -> PersProj -> Camera -> Matrix4 projViewTrans scaleInfo worldInfo rotateInfo persProj camera = perspProjTrans persProj !*! cameraTrans camera !*! worldTrans scaleInfo worldInfo rotateInfo cameraTrans :: Camera -> Matrix4 cameraTrans c@Camera{..} = cameraRotationTrans c !*! translateMatrix (fmap (*(-1) ) cameraPos) initRotateTransform :: Vector3 GLfloat -> Matrix4 initRotateTransform (Vector3 x y z) = rz !*! ry !*! rx where rx, ry, rz :: Matrix4 rx = rotateXMatrix(toRadian x) ry = rotateYMatrix(toRadian y) rz = rotateZMatrix(toRadian z)
triplepointfive/hogldev
common/Hogldev/Pipeline.hs
Haskell
mit
2,783
{-# LANGUAGE ForeignFunctionInterface #-} {-# LANGUAGE JavaScriptFFI #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} module JavaScript.Web.Blob.Internal where import Data.Typeable import GHCJS.Types data BlobType = BlobTypeBlob | BlobTypeFile newtype SomeBlob (a :: BlobType) = SomeBlob JSRef deriving Typeable type File = SomeBlob BlobTypeFile type Blob = SomeBlob BlobTypeBlob size :: SomeBlob a -> Int size b = js_size b {-# INLINE size #-} contentType :: SomeBlob a -> JSString contentType b = js_type b {-# INLINE contentType #-} -- is the type correct, does slicing a File give another File? slice :: Int -> Int -> JSString -> SomeBlob a -> SomeBlob a slice start end contentType b = js_slice start end contentType b {-# INLINE slice #-} isClosed :: SomeBlob a -> IO Bool isClosed b = js_isClosed b {-# INLINE isClosed #-} close :: SomeBlob a -> IO () close b = js_close b {-# INLINE close #-} -- ----------------------------------------------------------------------------- foreign import javascript unsafe "$1.size" js_size :: SomeBlob a -> Int foreign import javascript unsafe "$1.type" js_type :: SomeBlob a -> JSString -- fixme figure out if we need to support older browsers with obsolete slice foreign import javascript unsafe "$4.slice($1,$2,$3)" js_slice :: Int -> Int -> JSString -> SomeBlob a -> SomeBlob a foreign import javascript unsafe "$1.isClosed" js_isClosed :: SomeBlob a -> IO Bool foreign import javascript unsafe "$1.close();" js_close :: SomeBlob a -> IO ()
tavisrudd/ghcjs-base
JavaScript/Web/Blob/Internal.hs
Haskell
mit
1,607
module Main where import Data.Bifunctor (first) import Data.Bits (testBit, unsafeShiftL) import Data.Bool (bool) import Data.Char (digitToInt) import Data.Foldable (foldl', traverse_) import Data.Function (on) import Data.List.NonEmpty (NonEmpty (..), fromList) readBits :: String -> [Bool] readBits = concatMap (fourBits . digitToInt) where fourBits n = [ n `testBit` i | i <- [3, 2, 1, 0] ] bToI :: [Bool] -> Int bToI = foldl' (\i b -> (i `unsafeShiftL` 1) + bool 0 1 b) 0 type Parser a = [Bool] -> (a, [Bool]) int :: Int -> Parser Int int n = first bToI . splitAt n data Operation = OSum | OMul | OMin | OMax deriving Enum data Comparator = CGT | CLT | CEQ deriving Enum data Packet = Literal !Int !Int | Operation !Int !Operation !(NonEmpty Packet) | Comparison !Int !Comparator !Packet !Packet literal :: Int -> Parser Packet literal v = first (Literal v . bToI) . go where go [] = error "Empty list passed to `literal`" go bs = let (x : ys, bs') = splitAt 5 bs in if not x then (ys, bs') else first (ys ++) $ go bs' subN :: Int -> Parser [Packet] subN n = go [] where go ps bs = if length ps >= n then (ps, bs) else let (p, bs') = parse bs in go (p : ps) bs' subT :: Int -> Parser [Packet] subT n = go 0 [] where go i ps bs = if i >= n then (ps, bs) else let (p, bs') = parse bs d = ((-) `on` length) bs bs' in go (i + d) (p : ps) bs' dispatch :: Parser [Packet] dispatch [] = error "Empty list passed to `dispatch`" dispatch (b : bs) = if b then let (n, bs') = (first bToI $ splitAt 11 bs) in subN n bs' else let (n, bs') = (first bToI $ splitAt 15 bs) in subT n bs' operation :: Int -> Int -> Parser Packet operation v o = first (Operation v (toEnum o) . fromList) . dispatch comparison :: Int -> Int -> Parser Packet comparison v c bits = (Comparison v (toEnum c) x y, bits') where (ps, bits') = dispatch bits [x , y ] = reverse $ take 2 ps parse :: Parser Packet parse bs = p where (v, bs' ) = int 3 bs (t, bs'') = int 3 bs' p = case t of n | n `elem` [0 .. 3] -> operation v n bs'' 4 -> literal v bs'' n | n `elem` [5 .. 7] -> comparison v (n - 5) bs'' n -> error $ "Unexpected integer in `parse`: " ++ show n sumVersions :: Packet -> Int sumVersions (Literal v _ ) = v sumVersions (Operation v _ ps ) = v + sum (sumVersions <$> ps) sumVersions (Comparison v _ x y) = v + sumVersions x + sumVersions y eval :: Packet -> Int eval (Literal _ v ) = v eval (Operation _ o ps) = op $ eval <$> ps where op = [sum, product, minimum, maximum] !! fromEnum o eval (Comparison _ c x y) = bool 0 1 $ cmp (eval x) (eval y) where cmp = [(>), (<), (==)] !! fromEnum c solve :: (Packet -> Int) -> String -> Int solve = (. fst . parse . readBits) part1 :: String -> Int part1 = solve sumVersions part2 :: String -> Int part2 = solve eval main :: IO () main = do input <- readFile "input.txt" traverse_ (print . ($ input)) [part1, part2]
genos/online_problems
advent_of_code_2021/day16/Main.hs
Haskell
mit
3,088
{-# LANGUAGE FlexibleContexts, Rank2Types, NoMonomorphismRestriction #-} module Game.World.Lens ( objectBoundary , Get , Set , Component(..) , writeProp , compUnit , getWires , addWire , addObject , moveObject , isCollidable , getCollisionFilters , setCollisionEvent , getAnimations , setAnimation , setAnimations , deleteObject , objectPosition , rotateObject , getPositions , collisionEvent , setIgnoreCollision , setBoundary , getItems , getObjects , setOrientation , setStaticCollidable ) where import qualified Data.Map.Strict as Map import qualified Data.Set as Set import Control.Lens import Game.World.Objects import Control.Monad.Writer --import Game.World.Types import Data.Maybe import Game.World.Common import Control.Arrow --objectExists :: ObjectId -> World -> Bool --objectExists oId w = Map.member oId (w^.wObjects) --wObjectExists :: ObjectId -> Getter World Bool --wObjectExists oId = to (objectExists oId) type Get a = Getter World a type Set a = Setter' WorldDelta a data Component a da = Component { _compGet :: Getter World a , _compSet :: Setter' WorldDelta da } --makeLenses ''Component (ObjectProp Position) (ObjectProp Position) --compGet = to _compGet --compSet = to _compSet type Component' a = Component a a compObject :: Component (ObjectProp Object) (ObjectProp (Maybe Object)) compObject = Component { _compGet = wObjects , _compSet = wdObjects } compUnit :: Component (ObjectProp Unit) (ModifyContainer UnitId Unit) compUnit = Component { _compGet = wUnitManager.umUnits , _compSet = wdUnitManager.umdUnits } compItem :: Component (ObjectProp Item) (ModifyContainer ItemId Item) compItem = Component { _compGet = wUnitManager.umItems , _compSet = wdUnitManager.umdItems } compPosition :: Component' (ObjectProp Position) compPosition = Component { _compGet = wCommon.wcPositions , _compSet = wdCommon.wcDelta.wcPositions } compRotation :: Component' (ObjectProp Rotation) compRotation = Component { _compGet = wCommon.wcRotations , _compSet = wdCommon.wcDelta.wcRotations } compWires :: Component' (ObjectProp [ObjectWire ObjectId ()]) compWires = Component { _compGet = wCommon.wcWires , _compSet = wdCommon.wcDelta.wcWires } compAnimations :: Component' (ObjectProp Animation) compAnimations = Component { _compGet = wCommon.wcAnimations , _compSet = wdCommon.wcDelta.wcAnimations } compBoundaries :: Component' (ObjectProp Boundary) compBoundaries = Component { _compGet = wCommon.wcBoundaries , _compSet = wdCommon.wcDelta.wcBoundaries } compOrientation :: Component' (ObjectProp Orientation) compOrientation = Component { _compGet = wCommon.wcOrientation , _compSet = wdCommon.wcDelta.wcOrientation } compCollisionEvent :: Component' (ObjectProp [ObjectId]) compCollisionEvent = Component { _compGet = wCommon.wcCollisionEvents , _compSet = wdCommon.wcDelta.wcCollisionEvents } type IngoredObjects = Set.Set ObjectId type ObjectIdTo a = ObjectProp a type ListOfChanges = Map.Map ObjectId (Maybe ObjectId) type CollisionFilter = Component --type ObjectChangeSet = Map.Map ObjectId (Maybe ObjectId) compCollisionFilter :: CollisionFilter (ObjectIdTo IngoredObjects) (ObjectIdTo ObjectChangeSet) compCollisionFilter = Component { _compGet = wCollisionFilter , _compSet = wdCollisionFilter } getWires :: Get (ObjectProp [ObjectWire ObjectId ()]) getWires = _compGet compWires setWires :: Set (ObjectProp [ObjectWire ObjectId ()]) setWires = _compSet compWires writeProp :: (MonadWriter WorldDelta m) => Set (ObjectProp a) -> ObjectId -> a -> m () writeProp mapSetter oId a = scribe (mapSetter . at oId) (Just a) addWire :: (MonadWriter WorldDelta m) => ObjectId -> ObjectWire ObjectId () -> m () addWire oId w = writeProp setWires oId [w] setAnimations :: Set (ObjectProp Animation) setAnimations = _compSet compAnimations getAnimations :: Get (ObjectProp Animation) getAnimations = _compGet compAnimations setAnimation :: (MonadWriter WorldDelta m) => ObjectId -> Animation -> m () setAnimation = writeProp setAnimations setPositions :: Setter' WorldDelta (ObjectProp Position) setPositions = _compSet compPosition getPositions :: Getter World (ObjectProp Position) getPositions = _compGet compPosition objectPosition :: ObjectId -> Getter World (Maybe Position) objectPosition oId = getPositions . at oId -- | Rotation component setRotations :: Setter' WorldDelta (ObjectProp Rotation) setRotations = _compSet compRotation getRotations :: Getter World (ObjectProp Rotation) getRotations = _compGet compRotation rotateObject :: (MonadWriter WorldDelta m) => ObjectId -> Rotation -> m () rotateObject = writeProp setRotations objectRotation :: ObjectId -> Get (Maybe Rotation) objectRotation oId = getRotations . at oId moveObject :: (MonadWriter WorldDelta m) => ObjectId -> (Float, Float) -> m () moveObject = writeProp setPositions setObjects :: Setter' WorldDelta (ObjectProp (Maybe Object)) setObjects = _compSet compObject getObjects :: Getter World (ObjectProp Object) getObjects = _compGet compObject addObject :: (MonadWriter WorldDelta m) => ObjectId -> Object -> m () addObject oId obj = writeProp setObjects oId (Just obj) deleteObject :: (MonadWriter WorldDelta m) => ObjectId -> m () deleteObject oId = writeProp setObjects oId Nothing deletedObjects :: Getter WorldDelta [ObjectId] deletedObjects = to getDeleted where getDeleted wd = getDeletedObjects (wd^.wdObjects) -- new objects are inserted into the map with Just getDeletedObjects objectMap = map fst $ filter (\(objId, mobj) -> case mobj of Nothing -> True; _ -> False) $ Map.toList objectMap newObjects :: Getter WorldDelta [Object] newObjects = to getNew where getNew wd = getNewObjects (wd^.wdObjects) -- new objects are inserted into the map with Just getNewObjects objectMap = map fromJust . filter (\mobj -> case mobj of Just _ -> True; _ -> False) $ map snd $ Map.toList objectMap findObject :: String -> Getter World (Maybe Object) findObject name = to (\w -> unOne $ ifoldMap (\_ obj -> One $ if (obj^.objName) == name then Just obj else Nothing ) (w^.wObjects) ) -- | boundary + position tileBoundary :: ObjectId -> Get ((Float, Float), (Float, Float)) tileBoundary oId = to boundary where boundary w = (pos w, w^.wTileBoundary) pos w = fromJust $ w^.getPositions . at oId -- | boundary + position objectBoundary :: ObjectId -> Get Boundary objectBoundary oId = to boundary where boundary w = let (px, py) = pos w in -- collision boundary = object boundary + position map ((+) px *** (+) py) $ fromJust $ w^.getBoundaries . at oId pos w = fromJust $ w^.getPositions . at oId setBoundary :: (MonadWriter WorldDelta m) => ObjectId -> Boundary -> m () setBoundary = writeProp setBoundaries setBoundaries :: Set (ObjectProp Boundary) setBoundaries = _compSet compBoundaries getBoundaries :: Get (ObjectProp Boundary) getBoundaries = _compGet compBoundaries setStaticCollidable :: (MonadWriter WorldDelta m) => ObjectId -> m () setStaticCollidable oId = scribe (wdCommon.wcDelta.wcStaticCollidable) (Set.insert oId Set.empty) isCollidable :: ObjectId -> Get Bool isCollidable oId = to collidable where collidable w = Set.member oId $ objPosAndBoundary w objectsWithPos w = Set.fromList $ w^..wCommon.wcPositions.itraversed.asIndex objectsWithBoundary w = Set.fromList $ w^..wCommon.wcBoundaries.itraversed.asIndex objPosAndBoundary w = Set.intersection (objectsWithPos w) (objectsWithBoundary w) setOrientations :: Set (ObjectProp Orientation) setOrientations = _compSet compOrientation getOrientations :: Get (ObjectProp Orientation) getOrientations = _compGet compOrientation setOrientation :: (MonadWriter WorldDelta m) => ObjectId -> Orientation -> m () setOrientation = writeProp setOrientations getCollisionFilters :: Get (ObjectProp (Set.Set ObjectId)) getCollisionFilters = _compGet compCollisionFilter setCollisionFilters :: Set (ObjectProp (Map.Map ObjectId (Maybe ObjectId))) setCollisionFilters = _compSet compCollisionFilter setIgnoreCollision :: (MonadWriter WorldDelta m) => ObjectId -> ObjectId -> m () setIgnoreCollision oId otherId = writeProp setCollisionFilters oId (Map.fromList [(otherId, Just otherId)]) unsetIgnoreCollision :: (MonadWriter WorldDelta m) => ObjectId -> ObjectId -> m () unsetIgnoreCollision oId otherId = writeProp setCollisionFilters oId (Map.fromList [(otherId, Nothing)]) setCollisionEvents :: Set (ObjectProp [ObjectId]) setCollisionEvents = _compSet compCollisionEvent getCollisionEvents :: Get (ObjectProp [ObjectId]) getCollisionEvents = _compGet compCollisionEvent setCollisionEvent :: (MonadWriter WorldDelta m) => ObjectId -> ObjectId -> m () setCollisionEvent oId otherId = writeProp setCollisionEvents oId [otherId] collisionEvent :: ObjectId -> Get [ObjectId] collisionEvent oId = to (\w -> fromMaybe [] $ w^.getCollisionEvents . at oId) --collided :: ObjectId -> ObjectId -> Get Bool --collided oId otherId = to (\w -> otherId `elem` (w^.collisionEvent oId)) setItems :: Set (ModifyContainer ItemId Item) setItems = _compSet compItem getItems :: Get (ObjectProp Item) getItems = _compGet compItem --unitsInDistance :: ObjectId -> Float -> Get Set.Set ObjectId --unitsInDistance oId distance = to get -- where -- get world = let -- Just oPos = world^.wcPositions.at oId
mfpi/q-inqu
Game/World/Lens.hs
Haskell
mit
9,726
{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE ExplicitForAll #-} {-# LANGUAGE ScopedTypeVariables #-} -- | This module deals with Exception logging. module System.Wlog.Exception ( logException , catchLog ) where import Universum import System.Wlog.CanLog (WithLogger, WithLoggerIO, logError) -- | Logs exception's description with ''System.Wlog.Severity.Error' 'System.Wlog.Severity.Severity' logException :: forall e m . (WithLogger m, Exception e) => e -> m () logException = logError . show {- | Runs the action, if an exception is raised the 'logException' is executed. ==== __Example__ Here is very simple example of usage 'catchLog' on IO functions: @ main :: IO () main = do buildAndSetupYamlLogging productionB "log-config.yaml" usingLoggerName "new-logger" runWithExceptionLog runWithExceptionLog :: (WithLoggerIO m, MonadCatch m) => m () runWithExceptionLog = catchLog @IOException (liftIO simpleIOfun) simpleIOfun :: IO () simpleIOfun = getLine >>= readFile >>= putStrLn @ and when run you will get: >>> run-main-from-this-example > not-existing-filename.txt [new-logger:ERROR] [2017-12-01 13:07:33.21 UTC] asd: openFile: does not exist (No such file or directory) -} catchLog :: forall e m . (WithLoggerIO m, MonadCatch m, Exception e) => m () -> m () catchLog a = a `catch` logE where logE :: e -> m () logE = logException
serokell/log-warper
src/System/Wlog/Exception.hs
Haskell
mit
1,398
{-# LANGUAGE DatatypeContexts #-} module Ch13.Num where import qualified Data.List as L -------------------------------------------------- -- Symbolic/units manipulation -------------------------------------------------- data Op = Plus | Minus | Mul | Div | Pow deriving (Eq, Show, Ord) data SymbolicManip a = Number a | Symbol String | BinaryArith Op (SymbolicManip a) (SymbolicManip a) | UnaryArith String (SymbolicManip a) deriving Eq instance Num a => Num (SymbolicManip a) where a + b = BinaryArith Plus a b a - b = BinaryArith Minus a b a * b = BinaryArith Mul a b negate a = BinaryArith Mul a (-1) abs a = UnaryArith "abs" a signum = undefined fromInteger i = Number (fromInteger i) instance (Fractional a) => Fractional (SymbolicManip a) where a / b = BinaryArith Div a b recip a = BinaryArith Div (Number 1) a fromRational r = Number (fromRational r) instance (Floating a) => Floating (SymbolicManip a) where pi = Symbol "pi" exp a = UnaryArith "exp" a log a = UnaryArith "log" a sqrt a = UnaryArith "sqrt" a a ** b = BinaryArith Pow a b sin a = UnaryArith "sin" a cos a = UnaryArith "cos" a tan a = UnaryArith "tan" a asin a = UnaryArith "asin" a acos a = UnaryArith "acos" a atan a = UnaryArith "atan" a sinh a = UnaryArith "sinh" a cosh a = UnaryArith "cosh" a tanh a = UnaryArith "tanh" a asinh a = UnaryArith "asinh" a acosh a = UnaryArith "acosh" a atanh a = UnaryArith "atanh" a prettyShow :: (Show a, Num a) => SymbolicManip a -> String prettyShow (Number n) = show n prettyShow (Symbol x) = x prettyShow (BinaryArith op x y) = let px = simpleParen x op py = simpleParen y op pop = op2str op in px ++ pop ++ py prettyShow (UnaryArith op x) = op ++ "(" ++ prettyShow x ++ ")" simpleParen :: (Num a, Show a) => SymbolicManip a -> Op -> [Char] simpleParen x@(BinaryArith op _ _) op' | prio op' > prio op = "(" ++ prettyShow x ++ ")" | prio op' == prio op && op /= op' = "(" ++ prettyShow x ++ ")" | otherwise = prettyShow x simpleParen x _ = prettyShow x prio :: Op -> Int prio Plus = 0 prio Minus = 0 prio Mul = 1 prio Div = 1 prio Pow = 1 op2str :: Op -> String op2str Plus = "+" op2str Minus = "-" op2str Mul = "*" op2str Div = "/" op2str Pow = "**" instance (Show a, Num a) => Show (SymbolicManip a) where show = prettyShow rpnShow :: (Show a, Num a) => SymbolicManip a -> String rpnShow = L.intercalate " " . rpnShow' where rpnShow' :: (Show a, Num a) => SymbolicManip a -> [String] rpnShow' (Number n) = [show n] rpnShow' (Symbol str) = [str] rpnShow' (BinaryArith op x y) = rpnShow' x ++ rpnShow' y ++ [op2str op] rpnShow' (UnaryArith op x) = rpnShow' x ++ [op] simplify :: (Eq a, Num a) => SymbolicManip a -> SymbolicManip a simplify (BinaryArith op ia ib) = let sa = simplify ia sb = simplify ib in case (op, sa, sb) of (Mul, Number 1, b) -> b (Mul, a, Number 1) -> a (Mul, Number 0, _) -> Number 0 (Mul, _, Number 0) -> Number 0 (Div, a, Number 1) -> a (Plus, a, Number 0) -> a (Plus, Number 0, b) -> b (Minus, a, Number 0) -> a _ -> BinaryArith op sa sb simplify (UnaryArith op a) = UnaryArith op (simplify a) simplify x = x data Num a => Units a = Units a (SymbolicManip a) deriving Eq instance (Eq a, Num a) => Num (Units a) where (Units xa ua) + (Units xb ub) | ua == ub = Units (xa + xb) ua | otherwise = error "Mis-matched units in add or subtract" (Units xa ua) - (Units xb ub) = (Units xa ua) + (Units (xb * (-1)) ub) (Units xa ua) * (Units xb ub) = Units (xa * xb) (ua * ub) negate (Units xa ua) = Units (negate xa) ua abs (Units xa ua) = Units (abs xa) ua signum (Units xa _) = Units (signum xa) (Number 1) fromInteger i = Units (fromInteger i) (Number 1) instance (Eq a, Fractional a) => Fractional (Units a) where (Units xa ua) / (Units xb ub) = Units (xa / xb) (ua / ub) recip a = 1 / a fromRational r = Units (fromRational r) (Number 1) instance (Eq a, Floating a) => Floating (Units a) where pi = (Units pi (Number 1)) exp _ = error "exp not yet implemented in Units" log _ = error "log not yet implemented in Units" (Units xa ua) ** (Units xb ub) | ub == Number 1 = Units (xa ** xb) (ua ** Number xb) | otherwise = error "units for RHS of ** not supported" sqrt (Units xa ua) = Units (sqrt xa) (sqrt ua) sin (Units xa ua) | ua == Symbol "rad" = Units (sin xa) (Number 1) | ua == Symbol "deg" = Units (sin (deg2rad xa)) (Number 1) | otherwise = error "Units for sin must be deg or rad" cos (Units xa ua) | ua == Symbol "rad" = Units (cos xa) (Number 1) | ua == Symbol "deg" = Units (cos (deg2rad xa)) (Number 1) | otherwise = error "Units for cos must be deg or rad" tan (Units xa ua) | ua == Symbol "rad" = Units (tan xa) (Number 1) | ua == Symbol "deg" = Units (tan (deg2rad xa)) (Number 1) | otherwise = error "Units for tan must be deg or rad" asin (Units xa ua) | ua == Number 1 = Units (rad2deg $ asin xa) (Symbol "deg") | otherwise = error "Units for asin must be empty" acos (Units xa ua) | ua == Number 1 = Units (rad2deg $ acos xa) (Symbol "deg") | otherwise = error "Units for acos must be empty" atan (Units xa ua) | ua == Number 1 = Units (rad2deg $ atan xa) (Symbol "deg") | otherwise = error "Units for atan must be empty" sinh = error "sinh not yet implemented in Units" cosh = error "cosh not yet implemented in Units" tanh = error "tanh not yet implemented in Units" asinh = error "asinh not yet implemented in Units" acosh = error "acosh not yet implemented in Units" atanh = error "atanh not yet implemented in Units" units :: (Num z) => z -> String -> Units z units a b = Units a (Symbol b) dropUnits :: (Num z) => Units z -> z dropUnits (Units x _) = x deg2rad :: Floating a => a -> a deg2rad x = 2 * pi * x / 360 rad2deg :: Floating a => a -> a rad2deg x = 360 * x / (2 * pi) instance (Show a, Num a, Eq a) => Show (Units a) where show (Units xa ua) = show xa ++ "_" ++ prettyShow (simplify ua)
futtetennista/IntroductionToFunctionalProgramming
RWH/src/ch13/Num.hs
Haskell
mit
6,719
-- Copyright (C) 2013 Jorge Aparicio main :: IO() main = print $ squaredSumOfIntegers - sumOfSquaredIntegers where integers = [1..100] :: [Int] sumOfIntegers = sum integers squaredSumOfIntegers = sumOfIntegers * sumOfIntegers squaredIntegers = zipWith (*) integers integers sumOfSquaredIntegers = sum squaredIntegers
japaric/eulermark
problems/0/0/6/006.hs
Haskell
mit
366