code
stringlengths
2
1.05M
repo_name
stringlengths
5
101
path
stringlengths
4
991
language
stringclasses
3 values
license
stringclasses
5 values
size
int64
2
1.05M
{-# OPTIONS_GHC -fno-warn-type-defaults -fno-warn-orphans -fno-warn-missing-fields #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE DeriveDataTypeable #-} module Yage.Prelude ( module ClassyPrelude , io, pass , traceShowS, traceShowS', ioTime, printIOTime, traceWith, traceStack , globFp -- list functions , zipWithTF , offset0 , eqType, descending , (<?), (?>) , isLeft, isRight , Identity() , qStr , module Text.Show , module FilePath , module DeepSeq , module Default , module Prelude , module Proxy , module Printf ) where import qualified Prelude as Prelude import ClassyPrelude import Text.Printf as Printf (printf) import Data.Typeable import Data.Data import Data.Proxy as Proxy import Data.Traversable as Trav import Data.Foldable as Fold import Data.Functor.Identity () import Data.Default as Default import Control.DeepSeq as DeepSeq import Control.DeepSeq.Generics as DeepSeq import Filesystem.Path.CurrentOS as FilePath (decodeString, encodeString) import Foreign.Ptr import System.CPUTime import System.FilePath.Glob import Text.Printf import Text.Show import Language.Haskell.TH import Language.Haskell.TH.Quote import Debug.Trace (traceStack) io :: (MonadIO m) => IO a -> m a io = liftIO pass :: IO () pass = return () traceShowS :: Show a => ShowS -> a -> a traceShowS sf a = traceShow (sf $ show a) a traceShowS' :: Show a => String -> a -> a traceShowS' msg = traceShowS (msg Prelude.++) traceWith :: Show b => (a -> b) -> a -> a traceWith f a = traceShow (f a) a -- | time a monadic action in seconds, the monadic value is strict evaluated ioTime :: MonadIO m => m a -> m (a, Double) ioTime action = do start <- io $! getCPUTime v <- action end <- v `seq` io $! getCPUTime let diff = (fromIntegral (end - start)) / (10^(12::Int)) return $! (v, diff) printIOTime :: MonadIO m => m a -> m a printIOTime f = do (res, t) <- ioTime f _ <- io $! printf "Computation time: %0.5f sec\n" t return res -- stolen from: Graphics-GLUtil-BufferObjects -- |A zero-offset 'Ptr'. offset0 :: Ptr a offset0 = offsetPtr 0 -- |Produce a 'Ptr' value to be used as an offset of the given number -- of bytes. offsetPtr :: Int -> Ptr a offsetPtr = wordPtrToPtr . fromIntegral eqType :: (Typeable r, Typeable t) => Proxy r -> Proxy t -> Bool eqType r t = (typeOf r) == (typeOf t) (?>) :: a -> Maybe a -> a l ?> mr = maybe l id mr (<?) :: Maybe a -> a -> a (<?) = flip (?>) descending :: (a -> a -> Ordering) -> (a -> a -> Ordering) descending cmp = flip cmp isLeft :: Either a b -> Bool isLeft (Left _) = True isLeft _ = False isRight :: Either a b -> Bool isRight (Right _)= True isRight _ = False zipWithTF :: (Traversable t, Foldable f) => (a -> b -> c) -> t a -> f b -> t c zipWithTF g t f = snd (Trav.mapAccumL map_one (Fold.toList f) t) where map_one (x:xs) y = (xs, g y x) map_one _ _ = error "Yage.Prelude.zipWithTF" qStr :: QuasiQuoter qStr = QuasiQuoter { quoteExp = stringE } -- | utility function to glob with a 'Filesystem.Path.FilePath' -- -- > globFp ( "foo" </> "bar" </> "*<->.jpg" ) -- > ["foo/bar/image01.jpg", "foo/bar/image02.jpg"] globFp :: MonadIO m => FilePath -> m [FilePath] globFp = io . fmap (map fpFromString) . glob . fpToString {-# INLINE globFp #-} deriving instance Data Zero deriving instance Typeable Zero deriving instance Data a => Data (Succ a) deriving instance Typeable Succ
MaxDaten/yage-contrib
src/Yage/Prelude.hs
Haskell
mit
3,837
{-# LANGUAGE TemplateHaskell #-} module PeaCoq where import Control.Lens (makeLenses) import Data.IORef (IORef) import Data.IntMap (IntMap) import Snap (Snaplet) import Snap.Snaplet.Session (SessionManager) import System.IO import System.Process (ProcessHandle) type Handles = (Handle, Handle, Handle, ProcessHandle) data SessionState = SessionState Bool -- True while the session is alive Handles -- I/O handles -- Global state must be used in thread-safe way data GlobalState = GlobalState { gNextSession :: Int -- number to assign to the next session , gActiveSessions :: IntMap SessionState , gCoqtop :: String -- the command to use to run coqtop } type PeaCoqGlobRef = (IORef GlobalState) type PeaCoqHash = String type PeaCoqSession = SessionManager -- Each thread gets a separate copy of this, fields must be read-only data PeaCoq = PeaCoq { _lGlobRef :: Snaplet PeaCoqGlobRef , _lHash :: Snaplet PeaCoqHash , _lSession :: Snaplet PeaCoqSession } -- Fields are lenses to separate concerns, use "Handler PeaCoq <Lens> a" makeLenses ''PeaCoq
Ptival/peacoq-server
lib/PeaCoq.hs
Haskell
mit
1,192
{-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif -- | Reexports "Test.Hspec" from a @Trustworthy@ module. module TestHspecTrustworthy (module Test.Hspec) where import Test.Hspec
haskell-compat/base-compat
base-compat-batteries/test/TestHspecTrustworthy.hs
Haskell
mit
218
{-#LANGUAGE ScopedTypeVariables #-} {-#LANGUAGe DataKinds #-} {-#LANGUAGE DeriveGeneric #-} {-#LANGUAGE DeriveAnyClass #-} {-#LANGUAGE FlexibleContexts #-} module Foreign.Storable.Generic.Internal.GStorableSpec where -- Test tools import Test.Hspec import Test.QuickCheck import GenericType -- Tested modules import Foreign.Storable.Generic.Internal -- Additional data import Foreign.Storable.Generic -- overlapping Storable import Foreign.Storable.Generic.Instances import Data.Int import Data.Word import GHC.Generics import Foreign.Ptr (Ptr, plusPtr) import Foreign.Marshal.Alloc (malloc, mallocBytes, free) import Foreign.Marshal.Array (peekArray,pokeArray) data TestData = TestData Int Int64 Int8 Int8 deriving (Show, Generic, GStorable, Eq) instance Arbitrary TestData where arbitrary = TestData <$> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary data TestData2 = TestData2 Int8 TestData Int32 Int64 deriving (Show, Generic, GStorable, Eq) instance Arbitrary TestData2 where arbitrary = TestData2 <$> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary data TestData3 = TestData3 Int64 TestData2 Int16 TestData Int8 deriving (Show, Generic, GStorable, Eq) instance Arbitrary TestData3 where arbitrary = TestData3 <$> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary <*> arbitrary sizeEquality a = do gsizeOf a `shouldBe` internalSizeOf (from a) alignmentEquality a = do gsizeOf a `shouldBe` internalSizeOf (from a) pokeEquality a = do let size = gsizeOf a off <- generate $ suchThat arbitrary (>=0) ptr <- mallocBytes (off + size) -- First poke gpokeByteOff ptr off a bytes1 <- peekArray (off+size) ptr :: IO [Word8] internalPokeByteOff ptr off (from a) bytes2 <- peekArray (off+size) ptr :: IO [Word8] free ptr bytes1 `shouldBe` bytes2 peekEquality (a :: t) = do let size = gsizeOf a off <- generate $ suchThat arbitrary (>=0) ptr <- mallocBytes (off + size) bytes <- generate $ ok_vector (off+size) :: IO [Word8] -- Save random stuff to memory pokeArray ptr bytes -- Take a peek v1 <- gpeekByteOff ptr off :: IO t v2 <- internalPeekByteOff ptr off :: IO (Rep t p) free ptr v1 `shouldBe` to v2 peekAndPoke (a :: t)= do ptr <- malloc :: IO (Ptr t) gpokeByteOff ptr 0 a (gpeekByteOff ptr 0) `shouldReturn` a spec :: Spec spec = do describe "gsizeOf" $ do it "is equal to: internalSizeOf (from a)" $ property $ do test1 <- generate $ arbitrary :: IO TestData test2 <- generate $ arbitrary :: IO TestData2 test3 <- generate $ arbitrary :: IO TestData3 sizeEquality test1 sizeEquality test2 sizeEquality test3 describe "galignment" $ do it "is equal to: internalAlignment (from a)" $ property $ do test1 <- generate $ arbitrary :: IO TestData test2 <- generate $ arbitrary :: IO TestData2 test3 <- generate $ arbitrary :: IO TestData3 alignmentEquality test1 alignmentEquality test2 alignmentEquality test3 describe "gpokeByteOff" $ do it "is equal to: internalPokeByteOff ptr off (from a)" $ property $ do test1 <- generate $ arbitrary :: IO TestData test2 <- generate $ arbitrary :: IO TestData2 test3 <- generate $ arbitrary :: IO TestData3 pokeEquality test1 pokeEquality test2 pokeEquality test3 describe "gpeekByteOff" $ do it "is equal to: to <$> internalPeekByteOff ptr off" $ property $ do test1 <- generate $ arbitrary :: IO TestData test2 <- generate $ arbitrary :: IO TestData2 test3 <- generate $ arbitrary :: IO TestData3 peekEquality test1 peekEquality test2 peekEquality test3 describe "Other tests:" $ do it "gpokeByteOff ptr 0 val >> gpeekByteOff ptr 0 == val" $ property $ do test1 <- generate $ arbitrary :: IO TestData test2 <- generate $ arbitrary :: IO TestData2 test3 <- generate $ arbitrary :: IO TestData3 peekAndPoke test1 peekAndPoke test2 peekAndPoke test3
mkloczko/derive-storable
test/Spec/Foreign/Storable/Generic/Internal/GStorableSpec.hs
Haskell
mit
4,354
module Drifter ( -- * Managing Migrations resolveDependencyOrder , changeSequence , migrate -- * Types , Drifter(..) , ChangeName(..) , Change(..) , Description , Method , DBConnection ) where ------------------------------------------------------------------------------- import Data.List ------------------------------------------------------------------------------- import Drifter.Graph import Drifter.Types ------------------------------------------------------------------------------- -- | This is a helper for the common case of where you just want -- dependencies to run in list order. This will take the input list -- and set their dependencies to run in the given sequence. changeSequence :: [Change a] -> [Change a] changeSequence [] = [] changeSequence (x:xs) = reverse $ snd $ foldl' go (x, [x]) xs where go :: (Change a, [Change a]) -> Change a -> (Change a, [Change a]) go (lastChange, xs') c = let c' = c { changeDependencies = [changeName lastChange] } in (c', c':xs')
AndrewRademacher/drifter
src/Drifter.hs
Haskell
mit
1,097
{-# LANGUAGE PatternSynonyms, ForeignFunctionInterface, JavaScriptFFI #-} module GHCJS.DOM.JSFFI.Generated.SVGZoomAndPan (pattern SVG_ZOOMANDPAN_UNKNOWN, pattern SVG_ZOOMANDPAN_DISABLE, pattern SVG_ZOOMANDPAN_MAGNIFY, js_setZoomAndPan, setZoomAndPan, js_getZoomAndPan, getZoomAndPan, SVGZoomAndPan, castToSVGZoomAndPan, gTypeSVGZoomAndPan) where import Prelude ((.), (==), (>>=), return, IO, Int, Float, Double, Bool(..), Maybe, maybe, fromIntegral, round, fmap, Show, Read, Eq, Ord) import Data.Typeable (Typeable) import GHCJS.Types (JSVal(..), JSString) import GHCJS.Foreign (jsNull) import GHCJS.Foreign.Callback (syncCallback, asyncCallback, syncCallback1, asyncCallback1, syncCallback2, asyncCallback2, OnBlocked(..)) import GHCJS.Marshal (ToJSVal(..), FromJSVal(..)) import GHCJS.Marshal.Pure (PToJSVal(..), PFromJSVal(..)) import Control.Monad.IO.Class (MonadIO(..)) import Data.Int (Int64) import Data.Word (Word, Word64) import GHCJS.DOM.Types import Control.Applicative ((<$>)) import GHCJS.DOM.EventTargetClosures (EventName, unsafeEventName) import GHCJS.DOM.JSFFI.Generated.Enums pattern SVG_ZOOMANDPAN_UNKNOWN = 0 pattern SVG_ZOOMANDPAN_DISABLE = 1 pattern SVG_ZOOMANDPAN_MAGNIFY = 2 foreign import javascript unsafe "$1[\"zoomAndPan\"] = $2;" js_setZoomAndPan :: SVGZoomAndPan -> Word -> IO () -- | <https://developer.mozilla.org/en-US/docs/Web/API/SVGZoomAndPan.zoomAndPan Mozilla SVGZoomAndPan.zoomAndPan documentation> setZoomAndPan :: (MonadIO m) => SVGZoomAndPan -> Word -> m () setZoomAndPan self val = liftIO (js_setZoomAndPan (self) val) foreign import javascript unsafe "$1[\"zoomAndPan\"]" js_getZoomAndPan :: SVGZoomAndPan -> IO Word -- | <https://developer.mozilla.org/en-US/docs/Web/API/SVGZoomAndPan.zoomAndPan Mozilla SVGZoomAndPan.zoomAndPan documentation> getZoomAndPan :: (MonadIO m) => SVGZoomAndPan -> m Word getZoomAndPan self = liftIO (js_getZoomAndPan (self))
manyoo/ghcjs-dom
ghcjs-dom-jsffi/src/GHCJS/DOM/JSFFI/Generated/SVGZoomAndPan.hs
Haskell
mit
1,960
{-# LANGUAGE TypeFamilies #-} module Agent.PingPong.Role.Ask where import AgentSystem.Generic import Agent.PingPong import qualified Agent.PingPong.Simple.Ask as Ask import Data.IORef -------------------------------------------------------------------------------- data PingRole = PingRole data PongRole = PongRole -------------------------------------------------------------------------------- instance RoleName PingRole where roleName _ = "Ping" instance AgentRole PingRole where type RoleState PingRole = (IORef Integer, IORef SomeAgentRef) type RoleResult PingRole = () type RoleSysArgs PingRole = () type RoleArgs PingRole = (Integer, IORef SomeAgentRef) instance RoleName PongRole where roleName _ = "Pong" instance AgentRole PongRole where type RoleState PongRole = () type RoleResult PongRole = () type RoleSysArgs PongRole = () type RoleArgs PongRole = () -------------------------------------------------------------------------------- pingRoleDescriptor = genericRoleDescriptor PingRole (const $ return . uncurry Ask.pingDescriptor) pongRoleDescriptor = genericRoleDescriptor PongRole (const . const $ return Ask.pongDescriptor) -------------------------------------------------------------------------------- runPingPong nPings = do pongRef <- newIORef undefined putStrLn "<< CreateAgentOfRole >> " let pingC = CreateAgentOfRole pingRoleDescriptor (return ()) (return (nPings, pongRef)) pongC = CreateAgentOfRole pongRoleDescriptor (return ()) (return ()) ping <- createAgentRef pingC pong <- createAgentRef pongC pongRef `writeIORef` someAgentRef pong putStrLn "Starting PING" agentStart ping putStrLn "Starting PONG" agentStart pong putStrLn "Waiting PING termination" agentWaitTermination ping
fehu/h-agents
test/Agent/PingPong/Role/Ask.hs
Haskell
mit
2,150
module JoScript.Util.Text (foldlM, readFloat, readInt) where import Prelude (read) import Protolude hiding (foldlM) import qualified Data.Text as T foldlM :: Monad m => (b -> Char -> m b) -> b -> Text -> m b foldlM f init bsInit = impl (pure init) bsInit where impl acc bs | T.null bs = acc | otherwise = impl (acc >>= \acc' -> f acc' (T.head bs)) (T.tail bs) readInt :: Text -> Integer readInt = read . T.unpack readFloat :: Text -> Double readFloat = read . T.unpack
AKST/jo
source/lib/JoScript/Util/Text.hs
Haskell
mit
486
module GHCJS.TypeScript.Convert.Types where import Language.TypeScript import Data.Monoid data Config = Config { outputDir :: FilePath } data Decl = InterfaceDecl Interface deriving (Show) data OutputModule = OutputModule { omImports :: [String] , omDecls :: [String] } deriving (Show) instance Monoid OutputModule where mempty = OutputModule [] [] mappend (OutputModule imports1 decls1) (OutputModule imports2 decls2) = OutputModule (imports1 <> imports2) (decls1 <> decls2)
mgsloan/ghcjs-typescript
ghcjs-typescript-convert/GHCJS/TypeScript/Convert/Types.hs
Haskell
mit
530
module Interpreter (Val(..), Expr(..), interpret) where import Debug.Trace data Val = IntVal Integer | StringVal String | BooleanVal Bool -- since we are implementing a Functional language, functions are -- first class citizens. | FunVal [String] Expr Env deriving (Show, Eq) ----------------------------------------------------------- data Expr = Const Val -- represents a variable | Var String -- integer multiplication | Expr :*: Expr -- integer addition and string concatenation | Expr :+: Expr -- equality test. Defined for all Val except FunVal | Expr :==: Expr -- semantically equivalent to a Haskell `if` | If Expr Expr Expr -- binds a Var (the first `Expr`) to a value (the second `Expr`), -- and makes that binding available in the third expression | Let Expr Expr Expr -- creates an anonymous function with an arbitrary number of parameters | Lambda [Expr] Expr -- calls a function with an arbitrary number values for parameters | Apply Expr [Expr] deriving (Show, Eq) ----------------------------------------------------------- data Env = EmptyEnv | ExtendEnv String Val Env deriving (Show, Eq) ----------------------------------------------------------- -- the evaluate function takes an environment, which holds variable -- bindings; i.e. it stores information like `x = 42` -- the trace there will print out the values with which the function was called, -- you can easily uncomment it if you don't need it for debugging anymore. evaluate:: Expr -> Env -> Val evaluate expr env = trace("expr= " ++ (show expr) ++ "\n env= " ++ (show env)) $ case expr of Const v -> v lhs :+: rhs -> let valLhs = evaluate lhs env valRhs = evaluate rhs env in (IntVal $ (valToInteger valRhs) + (valToInteger valLhs)) _ -> error $ "unimplemented expression: " ++ (show expr) ----------------------------------------------------------- valError s v = error $ "expected: " ++ s ++ "; got: " ++ (show v) -- helper function to remove some of the clutter in the evaluate function valToInteger:: Val -> Integer valToInteger (IntVal n) = n valToInteger v = valError "IntVal" v ----------------------------------------------------------- -- the function that we test. since we always start out with an EmptyEnv. interpret :: Expr -> Val interpret expr = evaluate expr EmptyEnv --------------------------------------------------------------------- --------------------------------------------------------------------- ---------------------------- Tests ---------------------------------- --------------------------------------------------------------------- --------------------------------------------------------------------- testConstant = assert result (IntVal 2) "testConstant" where result = interpret expr expr = Const (IntVal 2) --------------------------------------------------------------------- testAddition = assert result (IntVal 2) "testAddition" where result = interpret expr expr = (Const (IntVal 1)) :+: (Const (IntVal 1)) --------------------------------------------------------------------- testComplexAddition = assert result (IntVal 9) "testComplexAddition" where result = interpret expr expr = (lhs :+: rhs) lhs = (Const (IntVal 1)) :+: (Const (IntVal 1)) rhs = (Const (IntVal 3)) :+: (Const (IntVal 4)) --------------------------------------------------------------------- testEvenMoreComplexAddition = assert result (IntVal 18) "testEvenMoreComplexAddition" where result = interpret expr expr = (l :+: r) l = lhs :+: rhs r = rhs :+: lhs lhs = (Const (IntVal 1)) :+: (Const (IntVal 1)) rhs = (Const (IntVal 3)) :+: (Const (IntVal 4)) --------------------------------------------------------------------- testMultiplication = assert result (IntVal 42) "testMultiplication" where result = interpret expr expr = (Const (IntVal 7)) :*: (Const (IntVal 6)) --------------------------------------------------------------------- testConcatenation = assert result (StringVal "12") "testConcatenation" where result = interpret expr expr = (Const (StringVal "1")) :+: (Const (StringVal "2")) --------------------------------------------------------------------- testEqualString = assert resultPositive (BooleanVal True) "testEqualStringPos" && assert resultNegative (BooleanVal False) "testEqualStringNeg" where resultPositive = interpret exprPositive exprPositive = (Const (StringVal "1")) :==: (Const (StringVal "1")) resultNegative = interpret exprNegative exprNegative = (Const (StringVal "1")) :==: (Const (StringVal "2")) --------------------------------------------------------------------- testEqualInt = assert resultPositive (BooleanVal True) "testEqualIntPos" && assert resultNegative (BooleanVal False) "testEqualIntNeg" where resultPositive = interpret exprPositive exprPositive = (Const (IntVal 1)) :==: (Const (IntVal 1)) resultNegative = interpret exprNegative exprNegative = (Const (IntVal 1)) :==: (Const (IntVal 2)) --------------------------------------------------------------------- testEqualBool = assert resultPositive (BooleanVal True) "testEqualBoolPos" && assert resultNegative (BooleanVal False) "testEqualBoolNeg" where resultPositive = interpret exprPositive exprPositive = (Const (BooleanVal True)) :==: (Const (BooleanVal True)) resultNegative = interpret exprNegative exprNegative = (Const (BooleanVal True)) :==: (Const (BooleanVal False)) --------------------------------------------------------------------- testIf = assert resultThen (IntVal 42) "testIfThen" && assert resultElse (StringVal "42") "testIfElse" where resultThen = interpret exprThen exprThen = (If (Const (IntVal 1) :==: Const (IntVal 1)) (Const (IntVal 42)) (Const (StringVal "42")) ) resultElse = interpret exprElse exprElse = (If (Const (IntVal 1) :==: Const (IntVal 2)) (Const (IntVal 42)) (Const (StringVal "42"))) --------------------------------------------------------------------- testLet = assert result (IntVal 42) "testLet" && assert resultShadow (IntVal 84) "testLetShadow" where result = interpret expr -- ~(let x=42 in x) expr = Let (Var "x") (Const (IntVal 42)) (Var "x") -- ~ (let x=42 in (let x=84 in x)) -- the second redefinition of x shadows the first one exprShadow = (Let (Var "x") (Const (IntVal 42)) (Let (Var "x") (Const (IntVal 84)) (Var "x")) ) resultShadow = interpret exprShadow --------------------------------------------------------------------- testLambdaAndApply = assert result (IntVal 42) "testLambdaAndApply" where result = interpret expr -- equivalent to: (\x y -> x * y) 6 7 expr = (Apply (Lambda [Var "x", Var "y"] ((Var "x") :*: (Var "y")) ) [Const (IntVal 6), Const (IntVal 7)] ) --------------------------------------------------------------------- testCurrying = assert result (IntVal 42) "testCurrying" where result = interpret expr --equivalent to: ((\x -> \y -> x * y) 6) 7 expr = (Apply (Apply (Lambda [Var "x"] (Lambda [Var "y"] ((Var "x") :*: (Var "y")) ) ) ([Const (IntVal 6)]) ) ([Const (IntVal 7)]) ) --------------------------------------------------------------------- testAll = if (allPassed) then "All tests passed." else error "Failed tests." where allPassed = testConstant && testAddition && testComplexAddition && testEvenMoreComplexAddition && testMultiplication && testConcatenation && testEqualString && testEqualInt && testEqualBool && testIf && testLet && testLambdaAndApply && testCurrying --------------------------------------------------------------------- assert :: Val -> Val -> String -> Bool assert expected received message = if (expected == received) then True else error $ message ++ " -> expected: `" ++ (show expected) ++ "`; received: `" ++ (show received) ++ "`"
2015-Fall-UPT-PLDA/homework
02/your_full_name_here.hs
Haskell
mit
8,926
-------------------------------------------------------------------- -- | -- Module : My.Data.Maybe -- Copyright : 2009 (c) Dmitry Antonyuk -- License : MIT -- -- Maintainer: Dmitry Antonyuk <lomeo.nuke@gmail.com> -- Stability : experimental -- Portability: portable -- -- 'Maybe' related utilities. -- -------------------------------------------------------------------- module My.Data.Maybe where import Control.Applicative (Applicative, pure, (<$>)) boolToMaybe, (?) :: Bool -> a -> Maybe a boolToMaybe True x = Just x boolToMaybe _ _ = Nothing (?) = boolToMaybe boolToMaybeM :: (Applicative f) => Bool -> f a -> f (Maybe a) boolToMaybeM True m = Just <$> m boolToMaybeM _ _ = pure Nothing tryMaybe :: IO a -> IO (Maybe a) tryMaybe act = fmap Just act `catch` (\_ -> return Nothing)
lomeo/my
src/My/Data/Maybe.hs
Haskell
mit
810
{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} module Main where import Test.Tasty import Test.Tasty.QuickCheck as QC import Test.QuickCheck.Monadic (assert, monadicIO, run) import Control.Applicative import qualified Data.ByteString as BR import qualified Data.ByteString.Builder as BB import qualified Data.ByteString.Lazy.Char8 as B import Data.Digest.CRC16 import Data.Typeable import Data.Word import Foreign.C.String import Foreign.C.Types import GHC.Generics newtype ITA2String = ITA2String String deriving (Eq, Generic, Ord, Show, Typeable) instance Arbitrary ITA2String where arbitrary = ita2String where ita2Char = oneof (map return "QWERTYUIOPASDFGHJKLZXCVBNM\r\n 1234567890-!&#'()\"/:;?,.") ita2String = ITA2String <$> listOf ita2Char foreign import ccall "crc16.h crc16" c_crc16 :: CString -> CInt -> CInt crcReference :: ITA2String -> IO Word16 crcReference (ITA2String s) = (\x -> fromIntegral $ c_crc16 x (fromIntegral . length $ s)) <$> newCString s crcHaskellF :: Word16 -> Bool -> Word16 -> [Word8] -> Word16 crcHaskellF poly inverse initial = BR.foldl (crc16Update poly inverse) initial . BR.pack crcHaskell :: ITA2String -> IO Word16 crcHaskell (ITA2String s) = return $ crcHaskellF 0x1021 False 0xffff [fromIntegral (fromEnum x) :: Word8 | x <- s] toHex :: Word16 -> B.ByteString toHex n = BB.toLazyByteString . BB.word16Hex $ n prop_hask_c_crc16 :: ITA2String -> Property prop_hask_c_crc16 s = monadicIO $ do c <- run (toHex <$> crcReference s) hask <- run (toHex <$> crcHaskell s) assert $ c == hask main :: IO () main = defaultMain tests tests :: TestTree tests = testGroup "Tests" [properties] properties :: TestTree properties = testGroup "Properties" [qcProps] qcProps :: TestTree qcProps = testGroup "(checked by QuickCheck)" [ QC.testProperty "crcReference === crcHaskell ∀ ita2 strings" prop_hask_c_crc16 ]
noexc/mapview
tests/test.hs
Haskell
mit
1,907
module Main where import Control.Arrow (first) import Control.Monad (liftM) import qualified Crypto.Cipher as Cipher import qualified Crypto.Cipher.AES as AES import qualified Crypto.Cipher.Types as CipherTypes import qualified Cryptopals.Set1 as Set1 import Cryptopals.Set2 import Data.Bits (popCount, xor) import qualified Data.ByteString as BS import qualified Data.ByteString.Base16 as B16 import qualified Data.ByteString.Base64 as B64 import qualified Data.ByteString.Char8 as C8 import Data.Char (ord) import Data.List (group, sort, transpose, unfoldr) import qualified Data.List.Key as K import Data.List.Split (chunksOf) import qualified Data.Map as M import qualified Data.Set as S import qualified Data.Word8 as W8 main :: IO () main = putStrLn "hi"
charlescharles/cryptopals
src/Main.hs
Haskell
mit
982
module ReaderT where newtype ReaderT r m a = ReaderT { runReaderT :: r -> m a } instance Functor m => Functor (ReaderT r m) where fmap f (ReaderT rma) = ReaderT $ fmap f . rma instance Applicative m => Applicative (ReaderT r m) where pure a = ReaderT $ \_ -> pure a -- fab :: r -> m (a -> b) -- a :: r -> m a -- f <*> x :: ReaderT r m b (ReaderT fmab) <*> (ReaderT rma) = ReaderT $ (<*>) <$> fmab <*> rma instance Monad m => Monad (ReaderT r m) where return = pure (ReaderT rma) >>= f = ReaderT $ \r -> (rma r >>= (\a -> runReaderT (f a) r))
JoshuaGross/haskell-learning-log
Code/Haskellbook/ComposeTypes/src/ReaderT.hs
Haskell
mit
563
module Colors.SolarizedDark where colorScheme = "solarized-dark" colorBack = "#002b36" colorFore = "#839496" -- Black color00 = "#073642" color08 = "#002b36" -- Red color01 = "#dc322f" color09 = "#cb4b16" -- Green color02 = "#859900" color10 = "#586e75" -- Yellow color03 = "#b58900" color11 = "#657b83" -- Blue color04 = "#268bd2" color12 = "#839496" -- Magenta color05 = "#d33682" color13 = "#6c71c4" -- Cyan color06 = "#2aa198" color14 = "#93a1a1" -- White color07 = "#eee8d5" color15 = "#fdf6e3" colorTrayer :: String colorTrayer = "--tint 0x002b36"
phdenzel/dotfiles
.config/xmonad/lib/Colors/SolarizedDark.hs
Haskell
mit
558
module SpaceAge (Planet(..), ageOn) where data Planet ageOn :: Planet -> Float -> Float ageOn planet seconds = undefined
parkertm/exercism
haskell/space-age/src/SpaceAge.hs
Haskell
mit
123
module Chain where import UU.Parsing import Data.Char main = do let tokens = "s*s*C" resultado <- parseIO pSE tokens putStrLn . show $ resultado instance Symbol Char -- Sintaxis concreta data Class = Class deriving Show {- pRE :: Parser Char RE pRE = pChainl pOp pClass pSE :: Parser Char RE pSE = SE <$ pSym 's' pOp :: Parser Char (RE -> Class -> RE) pOp = (:*:) <$ pSym '*' pClass :: Parser Char Class pClass = Class <$ pSym 'C' data RE = SE | RE :*: Class deriving Show -} pRE = pChainl pOp pSE -- pClass pSE :: Parser Char RE pSE = SE <$ pSym 's' -- pOp :: Parser Char (RE -> Class -> RE) pOp = (:*:) <$ pSym '*' pClass :: Parser Char Class pClass = Class <$ pSym 'C' data RE = SE | RE :*: RE deriving Show
andreagenso/java2scala
src/J2s/Chain.hs
Haskell
apache-2.0
855
{-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RoleAnnotations #-} {-# LANGUAGE ScopedTypeVariables #-} -- | -- Module : Data.Map.Justified -- Copyright : (c) Matt Noonan 2017 -- License : BSD-style -- Maintainer : matt.noonan@gmail.com -- Portability : portable -- -- = Description -- -- Have you ever /known/ that a key could be found in a certain map? Were you tempted to -- reach for @'fromJust'@ or @'error'@ to handle the "impossible" case, when you knew that -- @'lookup'@ should give @'Just' v@? (and did shifting requirements ever make the impossible -- become possible after all?) -- -- "Data.Map.Justified" provides a zero-cost @newtype@ wrapper around "Data.Map"'s @'Data.Map.Map'@ that enables you -- to separate the /proof that a key is present/ from the /operations using the key/. Once -- you prove that a key is present, you can use it @Maybe@-free in any number of other -- operations -- sometimes even operations on other maps! -- -- None of the functions in this module can cause a run-time error, and very few -- of the operations return a @'Maybe'@ value. -- -- See the "Data.Map.Justified.Tutorial" module for usage examples. -- -- === Example -- @ -- withMap test_table $ \\table -> do -- -- case member 1 table of -- -- Nothing -> putStrLn "Sorry, I couldn\'t prove that the key is present." -- -- Just key -> do -- -- -- We have proven that the key is present, and can now use it Maybe-free... -- putStrLn ("Found key: " ++ show key) -- putStrLn ("Value for key: " ++ lookup key table) -- -- -- ...even in certain other maps! -- let table\' = reinsert key "howdy" table -- putStrLn ("Value for key in updated map: " ++ lookup key table\') -- @ -- Output: -- -- @ -- Found key: Key 1 -- Value for key: hello -- Value for key in updated map: howdy -- @ -- -- == Motivation: "Data.Map" and @'Maybe'@ values -- -- Suppose you have a key-value mapping using "Data.Map"'s type @'Data.Map.Map' k v@. Anybody making -- use of @'Data.Map.Map' k v@ to look up or modify a value must take into account the possibility -- that the given key is not present. -- -- In "Data.Map", there are two strategies for dealing with absent keys: -- -- 1. Cause a runtime error (e.g. "Data.Map"'s @'Data.Map.!'@ when the key is absent) -- -- 2. Return a @'Maybe'@ value (e.g. "Data.Map"'s @'Data.Map.lookup'@) -- -- The first option introduces partial functions, so is not very palatable. But what is -- wrong with the second option? -- -- To understand the problem with returning a @'Maybe'@ value, let's ask what returning -- @Maybe v@ from @'Data.Map.lookup' :: k -> Map k v -> Maybe v@ really does for us. By returning -- a @Maybe v@ value, @lookup key table@ is saying "Your program must account -- for the possibility that @key@ cannot be found in @table@. I will ensure that you -- account for this possibility by forcing you to handle the @'Nothing'@ case." -- In effect, "Data.Map" is requiring the user to prove they have handled the -- possibility that a key is absent whenever they use the @'Data.Map.lookup'@ function. -- -- == Laziness (the bad kind) -- -- Every programmer has probably had the experience of knowing, somehow, that a certain -- key is going to be present in a map. In this case, the @'Maybe' v@ feels like a burden: -- I already /know/ that this key is in the map, why should I have to handle the @'Nothing'@ case? -- -- In this situation, it is tempting to reach for the partial function @'Data.Maybe.fromJust'@, -- or a pattern match like @'Nothing' -> 'error' "The impossible happened!"@. But as parts of -- the program are changed over time, you may find the impossible has become possible after -- all (or perhaps you'll see the dreaded and unhelpful @*** Exception: Maybe.fromJust: Nothing@) -- -- It is tempting to reach for partial functions or "impossible" runtime errors here, because -- the programmer has proven that the key is a member of the map in some other way. They -- know that @'Data.Map.lookup'@ should return a @'Just' v@ --- but the /compiler/ doesn't know this! -- -- The idea behind "Data.Map.Justified" is to encode the programmer's knowledge that a key -- is present /within the type system/, where it can be checked at compile-time. Once a key -- is known to be present, @'Data.Map.Justified.lookup'@ will never fail. Your justification -- removes the @'Just'@! -- -- == How it works -- -- Evidence that a key can indeed be found in a map is carried by a phantom type parameter @ph@ -- shared by both the @'Data.Map.Justified.Map'@ and @'Data.Map.Justified.Key'@ types. If you are -- able to get your hands on a value of type @'Key' ph k@, then you must have already proven that -- the key is present in /any/ value of type @'Map' ph k v@. -- -- The @'Key' ph k@ type is simply a @newtype@ wrapper around @k@, but the phantom type @ph@ allows -- @'Key' ph k@ to represent both /a key of type @k@/ __and__ /a proof that the key is present in/ -- /all maps of type @'Map' ph k v@/. -- -- There are several ways to prove that a key belongs to a map, but the simplest is to just use -- "Data.Map.Justified"'s @'Data.Map.Justified.member'@ function. In "Data.Map", @'Data.Map.member'@ -- has the type -- -- @'Data.Map.member' :: 'Ord' k => k -> 'Data.Map.Map' k v -> 'Bool'@ -- -- and reports whether or not the key can be found in the map. In "Data.Map.Justified", -- @'Data.Map.Member'@ has the type -- -- @'member' :: 'Ord' k => k -> 'Map' ph k v -> 'Maybe' ('Key' ph k)@ -- -- Instead of a boolean, @'Data.Map.Justified.member'@ either says "the key is not present" -- (@'Nothing'@), or gives back the same key, /augmented with evidence that they key/ -- /is present/. This key-plus-evidence can then be used to do any number of @'Maybe'@-free -- operations on the map. -- -- "Data.Map.Justified" uses the same rank-2 polymorphism trick used in the @'Control.Monad.ST'@ monad to -- ensure that the @ph@ phantom type can not be extracted; in effect, the proof that a key is -- present can't leak to contexts where the proof would no longer be valid. -- module Data.Map.Justified ( -- * Map and Key types Map , Key , Index , theMap , theKey , theIndex -- * Evaluation , withMap , withSingleton , KeyInfo(..) , MissingReference , withRecMap -- * Gathering evidence , member , keys , lookupMay , lookupLT , lookupLE , lookupGT , lookupGE -- * Safe lookup , lookup , (!) -- * Preserving key sets -- ** Localized updates , adjust , adjustWithKey , reinsert -- ** Mapping values , mapWithKey , traverseWithKey , mapAccum , mapAccumWithKey -- ** Zipping , zip , zipWith , zipWithKey -- * Enlarging key sets -- ** Inserting new keys , inserting , insertingWith -- ** Unions , unioning , unioningWith , unioningWithKey -- * Reducing key sets -- ** Removing keys , deleting , subtracting -- ** Filtering , filtering , filteringWithKey -- ** Intersections , intersecting , intersectingWith , intersectingWithKey -- * Mapping key sets , mappingKeys , mappingKnownKeys , mappingKeysWith , mappingKnownKeysWith -- * Indexing , findIndex , elemAt -- * Utilities , tie ) where import Control.Arrow ((&&&)) import Data.List (partition) import qualified Data.Map as M import Prelude hiding (lookup, zip, zipWith) import Data.Roles import Data.Type.Coercion {-------------------------------------------------------------------- Map and Key types --------------------------------------------------------------------} -- | A "Data.Map" @'Data.Map.Map'@ wrapper that allows direct lookup of keys that -- are known to exist in the map. -- -- Here, "direct lookup" means that once a key has been proven -- to exist in the map, it can be used to extract a value directly -- from the map, rather than requiring a @'Maybe'@ layer. -- -- @'Map'@ allows you to shift the burden of proof that a key exists -- in a map from "prove at every lookup" to "prove once per key". newtype Map ph k v = Map (M.Map k v) deriving (Eq, Ord, Show, Functor, Foldable, Traversable) type role Map nominal nominal representational -- | A key that knows it can be found in certain @'Map'@s. -- -- The evidence that the key can be found in a map is carried by -- the type system via the phantom type parameter @ph@. Certain -- operations such as lookup will only type-check if the @'Key'@ -- and the @'Map'@ have the same phantom type parameter. newtype Key ph k = Key k deriving (Eq, Ord, Show) type role Key nominal representational -- | An index that knows it is valid in certain @'Map'@s. -- -- The evidence that the index is valid for a map is carried by -- the type system via the phantom type parameter @ph@. Indexing -- operations such as `elemAt` will only type-check if the @'Index'@ -- and the @'Map'@ have the same phantom type parameter. newtype Index ph = Index Int deriving (Eq, Ord, Show) type role Index nominal -- | Get the underlying "Data.Map" @'Data.Map'@ out of a @'Map'@. theMap :: Map ph k v -> M.Map k v theMap (Map m) = m -- | Get a bare key out of a key-plus-evidence by forgetting -- what map the key can be found in. theKey :: Key ph k -> k theKey (Key k) = k -- | Get a bare index out of an index-plus-evidence by forgetting -- what map the index is valid for. theIndex :: Index ph -> Int theIndex (Index n) = n {-------------------------------------------------------------------- Evaluation --------------------------------------------------------------------} -- | Evaluate an expression using justified key lookups into the given map. -- -- > import qualified Data.Map as M -- > -- > withMap (M.fromList [(1,"A"), (2,"B")]) $ \m -> do -- > -- > -- prints "Found Key 1 with value A" -- > case member 1 m of -- > Nothing -> putStrLn "Missing key 1." -- > Just k -> putStrLn ("Found " ++ show k ++ " with value " ++ lookup k m) -- > -- > -- prints "Missing key 3." -- > case member 3 m of -- > Nothing -> putStrLn "Missing key 3." -- > Just k -> putStrLn ("Found " ++ show k ++ " with value " ++ lookup k m) withMap :: M.Map k v -- ^ The map to use as input -> (forall ph. Map ph k v -> t) -- ^ The computation to apply -> t -- ^ The resulting value withMap m cont = cont (Map m) -- | Like @'withMap'@, but begin with a singleton map taking @k@ to @v@. -- -- The continuation is passed a pair consisting of: -- -- 1. Evidence that @k@ is in the map, and -- -- 2. The singleton map itself, of type @'Map' ph k v@. -- -- > withSingleton 1 'a' (uncurry lookup) == 'a' withSingleton :: k -> v -> (forall ph. (Key ph k, Map ph k v) -> t) -> t withSingleton k v cont = cont (Key k, Map (M.singleton k v)) -- | Information about whether a key is present or missing. -- See @'Data.Map.Justified.withRecMap'@ and "Data.Map.Justified.Tutorial"'s @'Data.Map.Justified.Tutorial.example5'@. data KeyInfo = Present | Missing deriving (Show, Eq, Ord) -- | A description of what key/value-containing-keys pairs failed to be found. -- See @'Data.Map.Justified.withRecMap'@ and "Data.Map.Justified.Tutorial"'s @'Data.Map.Justified.Tutorial.example5'@. type MissingReference k f = (k, f (k, KeyInfo)) -- | Evaluate an expression using justified key lookups into the given map, -- when the values can contain references back to keys in the map. -- -- Each referenced key is checked to ensure that it can be found in the map. -- If all referenced keys are found, they are augmented with evidence and the -- given function is applied. -- If some referenced keys are missing, information about the missing references -- is generated instead. -- -- > import qualified Data.Map as M -- > -- > data Cell ptr = Nil | Cons ptr ptr deriving (Functor, Foldable, Traversable) -- > -- > memory1 = M.fromList [(1, Cons 2 1), (2, Nil)] -- > withRecMap memory1 (const ()) -- Right () -- > -- > memory2 = M.fromList [(1, Cons 2 3), (2, Nil)] -- > withRecMap memory2 (const ()) -- Left [(1, Cons (2,Present) (3,Missing))] -- -- See @'Data.Map.Justified.Tutorial.example5'@ for more usage examples. withRecMap :: forall k f t . (Ord k, Traversable f, Representational f) => M.Map k (f k) -- ^ A map with key references -> (forall ph. Map ph k (f (Key ph k)) -> t) -- ^ The checked continuation -> Either [MissingReference k f] t -- ^ Resulting value, or failure report. withRecMap m cont = case snd (partition (allKeysPresent . snd) $ M.toList m) of -- All referenced keys are found in the map; coerce the map's type. [] -> Right $ cont (Map $ (coerceWith mapCoercion) m) -- There were some dangling key references; report them. bads -> Left (map (\(k,v) -> (k, fmap (id &&& locate) v)) bads) where allKeysPresent = all ((== Present) . locate) locate k = if M.member k m then Present else Missing nestedValueCoercion :: Coercion (f k) (f (Key ph0 k)) nestedValueCoercion = rep Coercion mapCoercion :: Coercion (M.Map k (f k)) (M.Map k (f (Key ph0 k))) mapCoercion = rep nestedValueCoercion {-------------------------------------------------------------------- Gathering evidence --------------------------------------------------------------------} -- | /O(log n)/. Obtain evidence that the key is a member of the map. -- -- Where "Data.Map" generally requires evidence that a key exists in a map -- at every use of some functions (e.g. "Data.Map"'s @'Data.Map.lookup'@), -- @'Map'@ requires the evidence up-front. After it is known that a key can be -- found, there is no need for @'Maybe'@ types or run-time errors. -- -- The @Maybe value@ that has to be checked at every lookup in "Data.Map" -- is then shifted to a @Maybe (Key ph k)@ that has to be checked in order -- to obtain evidence that a key is in the map. -- -- Note that the "evidence" only exists at the type level, during compilation; -- there is no runtime distinction between keys and keys-plus-evidence. -- -- > withMap (M.fromList [(5,'a'), (3,'b')]) (isJust . member 1) == False -- > withMap (M.fromList [(5,'a'), (3,'b')]) (isJust . member 5) == True member :: Ord k => k -> Map ph k v -> Maybe (Key ph k) member k (Map m) = fmap (const $ Key k) (M.lookup k m) -- | A list of all of the keys in a map, along with proof -- that the keys exist within the map. keys :: Map ph k v -> [Key ph k] keys (Map m) = map Key (M.keys m) {-------------------------------------------------------------------- Lookup and update --------------------------------------------------------------------} -- | /O(log n)/. Find the value at a key. Unlike -- "Data.Map"'s @'Data.Map.!'@, this function is total and can not fail at runtime. (!) :: Ord k => Map ph k v -> Key ph k -> v (!) = flip lookup -- | /O(log n)/. Lookup the value at a key, known to be in the map. -- -- The result is a @v@ rather than a @Maybe v@, because the -- proof obligation that the key is in the map must already -- have been discharged to obtain a value of type @Key ph k@. -- lookup :: Ord k => Key ph k -> Map ph k v -> v lookup (Key k) (Map m) = case M.lookup k m of Just value -> value Nothing -> error "Data.Map.Justified has been subverted!" -- | /O(log n)/. Lookup the value at a key that is /not/ already known -- to be in the map. Return @Just@ the value /and/ the key-with-evidence -- if the key was present, or @Nothing@ otherwise. lookupMay :: Ord k => k -> Map ph k v -> Maybe (Key ph k, v) lookupMay k (Map m) = fmap (\v -> (Key k, v)) (M.lookup k m) -- | /O(log n)/. Find the largest key smaller than the given one -- and return the corresponding (key,value) pair, with evidence for the key. -- -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupLT 3 table == Nothing -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupLT 4 table == Just (Key 3, 'a') lookupLT :: Ord k => k -> Map ph k v -> Maybe (Key ph k, v) lookupLT k (Map m) = fmap (\(key, v) -> (Key key, v)) (M.lookupLT k m) -- | /O(log n)/. Find the smallest key greater than the given one -- and return the corresponding (key,value) pair, with evidence for the key. -- -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupGT 4 table == Just (Key 5, 'b') -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupGT 5 table == Nothing lookupGT :: Ord k => k -> Map ph k v -> Maybe (Key ph k, v) lookupGT k (Map m) = fmap (\(key, v) -> (Key key, v)) (M.lookupGT k m) -- | /O(log n)/. Find the largest key smaller than or equal to the given one -- and return the corresponding (key,value) pair, with evidence for the key. -- -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupLE 2 table == Nothing -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupLE 4 table == Just (Key 3, 'a') -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupLE 5 table == Just (Key 5, 'b') lookupLE :: Ord k => k -> Map ph k v -> Maybe (Key ph k, v) lookupLE k (Map m) = fmap (\(key, v) -> (Key key, v)) (M.lookupLE k m) -- | /O(log n)/. Find the smallest key greater than or equal to the given one -- and return the corresponding (key,value) pair, with evidence for the key. -- -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupGE 3 table == Just (Key 3, 'a') -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupGE 4 table == Just (Key 5, 'b') -- > withMap (M.fromList [(3,'a'), (5,'b')]) $ \table -> lookupGE 6 table == Nothing lookupGE :: Ord k => k -> Map ph k v -> Maybe (Key ph k, v) lookupGE k (Map m) = fmap (\(key, v) -> (Key key, v)) (M.lookupGE k m) -- | Adjust the valid at a key, known to be in the map, -- using the given function. -- -- Since the set of valid keys in the input map and output map -- are the same, keys that were valid for the input map remain -- valid for the output map. adjust :: Ord k => (v -> v) -> Key ph k -> Map ph k v -> Map ph k v adjust f (Key k) = mmap (M.adjust f k) -- | Adjust the valid at a key, known to be in the map, -- using the given function. -- -- Since the set of valid keys in the input map and output map -- are the same, keys that were valid for the input map remain -- valid for the output map. adjustWithKey :: Ord k => (Key ph k -> v -> v) -> Key ph k -> Map ph k v -> Map ph k v adjustWithKey f (Key k) = mmap (M.adjustWithKey f' k) where f' key = f (Key key) -- | Replace the value at a key, known to be in the map. -- -- Since the set of valid keys in the input map and output map -- are the same, keys that were valid for the input map remain -- valid for the output map. reinsert :: Ord k => Key ph k -> v -> Map ph k v -> Map ph k v reinsert (Key k) v = mmap (M.insert k v) -- | Insert a value for a key that is /not/ known to be in the map, -- evaluating the updated map with the given continuation. -- -- The continuation is given three things: -- -- 1. A proof that the inserted key exists in the new map, -- -- 2. A function that can be used to convert evidence that a key -- exists in the original map, to evidence that the key exists in -- the updated map, and -- -- 3. The updated @'Data.Map.Justified.Map'@, with a /different phantom type/. -- -- > withMap (M.fromList [(5,'a'), (3,'b')]) (\table -> inserting 5 'x' table $ \(_,_,table') -> theMap table') == M.fromList [(3, 'b'), (5, 'x')] -- > withMap (M.fromList [(5,'a'), (3,'b')]) (\table -> inserting 7 'x' table $ \(_,_,table') -> theMap table') == M.fromList [(3, 'b'), (5, 'b'), (7, 'x')] -- -- See @'Data.Map.Justified.Tutorial.example4'@ for more usage examples. inserting :: Ord k => k -- ^ key to insert at -> v -- ^ value to insert -> Map ph k v -- ^ initial map -> (forall ph'. (Key ph' k, Key ph k -> Key ph' k, Map ph' k v) -> t) -- ^ continuation -> t inserting k v m cont = cont (Key k, qed, mmap (M.insert k v) m) -- | /O(log n)/. Insert with a function, combining new value and old value. -- @'insertingWith' f key value mp cont@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key /does/ exist, the function will -- insert the pair @(key, f new_value old_value)@. -- -- The continuation is given three things (as in @'inserting'@): -- -- 1. A proof that the inserted key exists in the new map, -- -- 2. A function that can be used to convert evidence that a key -- exists in the original map, to evidence that the key exists in -- the updated map, and -- -- 3. The updated @'Data.Map.Justified.Map'@, with a /different phantom type/. -- -- > withMap (M.fromList [(5,"a"), (3,"b")]) (theMap . insertingWith (++) 5) == M.fromList [(3,"b"), (5,"xxxa")] -- > withMap (M.fromList [(5,"a"), (3,"b")]) (theMap . insertingWith (++) 7) == M.fromList [(3,"b"), (5,"a"), (7,"xxx")] insertingWith :: Ord k => (v -> v -> v) -- ^ combining function for existing keys -> k -- ^ key to insert at -> v -- ^ value to insert -> Map ph k v -- ^ initial map -> (forall ph'. (Key ph' k, Key ph k -> Key ph' k, Map ph' k v) -> t) -- ^ continuation -> t insertingWith f k v m cont = cont (Key k, qed, mmap (M.insertWith f k v) m) -- | /O(log n)/. Delete a key and its value from the map. -- -- The continuation is given two things: -- -- 1. A function that can be used to convert evidence that a key -- exists in the /updated/ map, to evidence that the key exists -- in the /original/ map. (contrast with 'inserting') -- -- 2. The updated map itself. -- deleting :: Ord k => k -- ^ key to remove -> Map ph k v -- ^ initial map -> (forall ph'. (Key ph' k -> Key ph k, Map ph' k v) -> t) -- ^ continuation -> t deleting k m cont = cont (qed, mmap (M.delete k) m) -- | /O(log n)/. Difference of two maps. -- Return elements of the first map not existing in the second map. -- -- The continuation is given two things: -- -- 1. A function that can be used to convert evidence that a key -- exists in the difference, to evidence that the key exists -- in the original left-hand map. -- -- 2. The updated map itself. -- subtracting :: Ord k => Map phL k a -- ^ the left-hand map -> Map phR k b -- ^ the right-hand map -> (forall ph'. (Key ph' k -> Key phL k, Map ph' k a) -> t) -- ^ continuation -> t subtracting mapL mapR cont = cont (qed, mmap2 M.difference mapL mapR) {-------------------------------------------------------------------- Unions --------------------------------------------------------------------} -- | Take the left-biased union of two @'Data.Map.Justified.Map'@s, as in "Data.Map"'s -- @'Data.Map.union'@, evaluating the unioned map with the given continuation. -- -- The continuation is given three things: -- -- 1. A function that can be used to convert evidence that a key exists in the left -- map to evidence that the key exists in the union, -- -- 2. A function that can be used to convert evidence that a key exists in the right -- map to evidence that the key exists in the union, and -- -- 3. The updated @'Data.Map.Justified.Map'@, with a /different phantom type/. -- unioning :: Ord k => Map phL k v -- ^ left-hand map -> Map phR k v -- ^ right-hand map -> (forall ph'. (Key phL k -> Key ph' k, Key phR k -> Key ph' k, Map ph' k v) -> t) -- ^ continuation -> t unioning mapL mapR cont = cont (qed, qed, mmap2 M.union mapL mapR) -- | @'unioningWith' f@ is the same as @'unioning'@, except that @f@ is used to -- combine values that correspond to keys found in both maps. unioningWith :: Ord k => (v -> v -> v) -- ^ combining function for intersection -> Map phL k v -- ^ left-hand map -> Map phR k v -- ^ right-hand map -> (forall ph'. (Key phL k -> Key ph' k, Key phR k -> Key ph' k, Map ph' k v) -> t) -- ^ continuation -> t unioningWith f mapL mapR cont = cont (qed, qed, mmap2 (M.unionWith f) mapL mapR) -- | @'unioningWithKey' f@ is the same as @'unioningWith' f@, except that @f@ also -- has access to the key and evidence that it is present in both maps. unioningWithKey :: Ord k => (Key phL k -> Key phR k -> v -> v -> v) -- ^ combining function for intersection, using key evidence -> Map phL k v -- ^ left-hand map -> Map phR k v -- ^ right-hand map -> (forall ph'. (Key phL k -> Key ph' k, Key phR k -> Key ph' k, Map ph' k v) -> t) -- ^ continuation -> t unioningWithKey f mapL mapR cont = cont (qed, qed, mmap2 (M.unionWithKey f') mapL mapR) where f' k = f (Key k) (Key k) {-------------------------------------------------------------------- Filtering --------------------------------------------------------------------} -- | Keep only the keys and associated values in a map that satisfy -- the predicate. -- -- The continuation is given two things: -- -- 1. A function that converts evidence that a key is present in -- the filtered map into evidence that the key is present in -- the original map, and -- -- 2. The filtered map itself, with a new phantom type parameter. -- filtering :: (v -> Bool) -- ^ predicate on values -> Map ph k v -- ^ original map -> (forall ph'. (Key ph' k -> Key ph k, Map ph' k v) -> t) -- ^ continuation -> t filtering f m cont = cont (qed, mmap (M.filter f) m) -- | As 'filtering', except the filtering function also has access to -- the key and existence evidence. filteringWithKey :: (Key ph k -> v -> Bool) -- ^ predicate on keys and values -> Map ph k v -- ^ original map -> (forall ph'. (Key ph' k -> Key ph k, Map ph' k v) -> t) -- ^ continuation -> t filteringWithKey f m cont = cont (qed, mmap (M.filterWithKey (f . Key)) m) {-------------------------------------------------------------------- Mapping and traversing --------------------------------------------------------------------} -- | /O(n)/. Map a function over all keys and values in the map. -- mapWithKey :: (Key ph k -> a -> b) -> Map ph k a -> Map ph k b mapWithKey f = mmap (M.mapWithKey f') where f' k = f (Key k) -- | /O(n)/. As in @'Data.Map.traverse'@: traverse the map, but give the -- traversing function access to the key associated with each value. traverseWithKey :: Applicative t => (Key ph k -> a -> t b) -- ^ traversal function -> Map ph k a -- ^ the map to traverse -> t (Map ph k b) traverseWithKey f (Map m) = fmap Map (M.traverseWithKey f' m) where f' k = f (Key k) -- | /O(n)/. The function @'mapAccum'@ threads an accumulating -- argument through the map in ascending order of keys. -- mapAccum :: (a -> b -> (a,c)) -> a -> Map ph k b -> (a, Map ph k c) mapAccum f a (Map m) = fmap Map (M.mapAccum f a m) -- | /O(n)/. The function @'mapAccumWithKey'@ threads an accumulating -- argument through the map in ascending order of keys. -- mapAccumWithKey :: (a -> Key ph k -> b -> (a,c)) -> a -> Map ph k b -> (a, Map ph k c) mapAccumWithKey f a (Map m) = fmap Map (M.mapAccumWithKey f' a m) where f' x k = f x (Key k) -- | /O(n*log n)/. -- @'mappingKeys'@ evaluates a continuation with the map obtained by applying -- @f@ to each key of @s@. -- -- The size of the resulting map may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the value at the greatest of the -- original keys is retained. -- -- The continuation is passed two things: -- -- 1. A function that converts evidence that a key belongs to the original map -- into evidence that a key belongs to the new map. -- -- 2. The new, possibly-smaller map. -- -- mappingKeys :: Ord k2 => (k1 -> k2) -- ^ key-mapping function -> Map ph k1 v -- ^ initial map -> (forall ph'. (Key ph k1 -> Key ph' k2, Map ph' k2 v) -> t) -- ^ continuation -> t mappingKeys f m cont = cont (via f, mmap (M.mapKeys f) m) -- | /O(n*log n)/. -- Same as @'mappingKeys'@, but the key-mapping function can make use of -- evidence that the input key belongs to the original map. -- mappingKnownKeys :: Ord k2 => (Key ph k1 -> k2) -- ^ key-and-evidence-mapping function -> Map ph k1 v -- ^ initial map -> (forall ph'. (Key ph k1 -> Key ph' k2, Map ph' k2 v) -> t) -- ^ continuation -> t mappingKnownKeys f m cont = cont (Key . f, mmap (M.mapKeys f') m) where f' k = f (Key k) -- | /O(n*log n)/. -- Same as @'mappingKeys'@, except a function is used to combine values when -- two or more keys from the original map correspond to the same key in the -- final map. mappingKeysWith :: Ord k2 => (v -> v -> v) -- ^ value-combining function -> (k1 -> k2) -- ^ key-mapping function -> Map ph k1 v -- ^ initial map -> (forall ph'. (Key ph k1 -> Key ph' k2, Map ph' k2 v) -> t) -- ^ continuation -> t mappingKeysWith op f m cont = cont (via f, mmap (M.mapKeysWith op f) m) -- | /O(n*log n)/. -- Same as @'mappingKnownKeys'@, except a function is used to combine values when -- two or more keys from the original map correspond to the same key in the -- final map. mappingKnownKeysWith :: Ord k2 => (v -> v -> v) -- ^ value-combining function -> (Key ph k1 -> k2) -- ^ key-plus-evidence-mapping function -> Map ph k1 v -- ^ initial map -> (forall ph'. (Key ph k1 -> Key ph' k2, Map ph' k2 v) -> t) -- ^ continuation -> t mappingKnownKeysWith op f m cont = cont (Key . f, mmap (M.mapKeysWith op f') m) where f' k = f (Key k) {-------------------------------------------------------------------- Intersections --------------------------------------------------------------------} -- | Take the left-biased intersections of two @'Data.Map.Justified.Map'@s, as in "Data.Map"'s -- @'Data.Map.intersection'@, evaluating the intersection map with the given continuation. -- -- The continuation is given two things: -- -- 1. A function that can be used to convert evidence that a key exists in the intersection -- to evidence that the key exists in each original map, and -- -- 2. The updated @'Data.Map.Justified.Map'@, with a /different phantom type/. -- intersecting :: Ord k => Map phL k a -- ^ left-hand map -> Map phR k b -- ^ right-hand map -> (forall ph'. (Key ph' k -> (Key phL k, Key phR k), Map ph' k a) -> t) -- ^ continuation -> t intersecting mapL mapR cont = cont (qed2, mmap2 M.intersection mapL mapR) -- | As @'intersecting'@, but uses the combining function to merge mapped values on the intersection. intersectingWith :: Ord k => (a -> b -> c) -- ^ combining function -> Map phL k a -- ^ left-hand map -> Map phR k b -- ^ right-hand map -> (forall ph'. (Key ph' k -> (Key phL k, Key phR k), Map ph' k c) -> t) -- ^ continuation -> t intersectingWith f mapL mapR cont = cont (qed2, mmap2 (M.intersectionWith f) mapL mapR) -- | As @'intersectingWith'@, but the combining function has access to the map keys. intersectingWithKey :: Ord k => (Key phL k -> Key phR k -> a -> b -> c) -- ^ combining function -> Map phL k a -- ^ left-hand map -> Map phR k b -- ^ right-hand map -> (forall ph'. (Key ph' k -> (Key phL k, Key phR k), Map ph' k c) -> t) -- ^ continuation -> t intersectingWithKey f mapL mapR cont = cont (qed2, mmap2 (M.intersectionWithKey f') mapL mapR) where f' k = f (Key k) (Key k) {-------------------------------------------------------------------- Zipping --------------------------------------------------------------------} -- | Zip the values in two maps together. The phantom type @ph@ ensures -- that the two maps have the same set of keys, so no elements are left out. -- zip :: Ord k => Map ph k a -> Map ph k b -> Map ph k (a,b) zip = zipWith (,) -- | Combine the values in two maps together. The phantom type @ph@ ensures -- that the two maps have the same set of keys, so no elements are left out. zipWith :: Ord k => (a -> b -> c) -> Map ph k a -> Map ph k b -> Map ph k c zipWith f m1 m2 = mapWithKey (\k x -> f x (m2 ! k)) m1 -- | Combine the values in two maps together, using the key and values. -- The phantom type @ph@ ensures that the two maps have the same set of -- keys. zipWithKey :: Ord k => (Key ph k -> a -> b -> c) -> Map ph k a -> Map ph k b -> Map ph k c zipWithKey f m1 m2 = mapWithKey (\k x -> f k x (m2 ! k)) m1 {-------------------------------------------------------------------- Indexing --------------------------------------------------------------------} -- | /O(log n)/. Return the /index/ of a key, which is its zero-based index in -- the sequence sorted by keys. The index is a number from /0/ up to, but not -- including, the size of the map. The index also carries a proof that it is -- valid for the map. -- -- Unlike "Data.Map"'s @'Data.Map.findIndex'@, this function can not fail at runtime. findIndex :: Ord k => Key ph k -> Map ph k a -> Index ph findIndex (Key k) (Map m) = Index (M.findIndex k m) -- | /O(log n)/. Retrieve an element by its /index/, i.e. by its zero-based -- index in the sequence sorted by keys. -- -- Unlike "Data.Map"'s @'Data.Map.elemAt'@, this function can not fail at runtime. elemAt :: Index ph -> Map ph k v -> (Key ph k, v) elemAt (Index n) (Map m) = let (k,v) = M.elemAt n m in (Key k, v) {-------------------------------------------------------------------- Utilities --------------------------------------------------------------------} -- | Build a value by "tying the knot" according to the references in the map. tie :: (Functor f, Ord k) => (f a -> a) -- ^ folding function -> Map ph k (f (Key ph k)) -- ^ map with recursive key references -> Key ph k -> a tie phi m = go where go = (`lookup` table) table = fmap (phi . fmap go) m {-------------------------------------------------------------------- INTERNAL ONLY These functions are used to inform the type system about invariants of Data.Map. They cannot be available outside of this module. --------------------------------------------------------------------} -- | Coerce key-existence evidence qed :: Key ph k -> Key ph' k qed (Key k) = Key k -- | Coerce key-existence evidence qed2 :: Key ph k -> (Key phL k, Key phR k) qed2 (Key k) = (Key k, Key k) -- | Coerce key-existence evidence transported along a function via :: (k1 -> k2) -> Key ph k1 -> Key ph' k2 via f (Key k) = Key (f k) -- | Coerce one map type to another, using a function on "Data.Map"'s @'Data.Map.Map'@. mmap :: (M.Map k1 v1 -> M.Map k2 v2) -> Map ph1 k1 v1 -> Map ph2 k2 v2 mmap f (Map m) = Map (f m) -- | Coerce one map type to another, using a binary function on "Data.Map"'s @'Data.Map.Map'@. mmap2 :: (M.Map k1 v1 -> M.Map k2 v2 -> M.Map k3 v3) -> Map ph1 k1 v1 -> Map ph2 k2 v2 -> Map ph3 k3 v3 mmap2 f (Map m1) (Map m2) = Map (f m1 m2)
matt-noonan/justified-containers
src/Data/Map/Justified.hs
Haskell
bsd-2-clause
35,649
{-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# OPTIONS_HADDOCK not-home #-} ----------------------------------------------------------------------------- -- | -- Copyright : (C) 2015 Edward Kmett and Ted Cooper -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Ted Cooper <anthezium@gmail.com> -- Stability : experimental -- Portability : non-portable -- -- STM-based RCU with concurrent writers ----------------------------------------------------------------------------- module Control.Concurrent.RCU.STM.Internal ( SRef(..) , RCUThread(..) , RCU(..) , runRCU , ReadingRCU(..) , WritingRCU(..) ) where import Control.Applicative import Control.Concurrent import Control.Concurrent.STM import Control.Concurrent.RCU.Class import Control.Monad import Control.Monad.IO.Class import Data.Coerce import Data.Int import Prelude hiding (read, Read) -------------------------------------------------------------------------------- -- * Shared References -------------------------------------------------------------------------------- -- | Shared references newtype SRef s a = SRef { unSRef :: TVar a } deriving Eq -------------------------------------------------------------------------------- -- * Read-Side Critical Sections -------------------------------------------------------------------------------- -- | This is the basic read-side critical section for an RCU computation newtype ReadingRCU s a = ReadingRCU { runReadingRCU :: IO a } deriving (Functor, Applicative, Monad) instance MonadNew (SRef s) (ReadingRCU s) where newSRef = r where r :: forall a. a -> ReadingRCU s (SRef s a) r = coerce (newTVarIO :: a -> IO (TVar a)) instance MonadReading (SRef s) (ReadingRCU s) where readSRef = r where r :: forall a. SRef s a -> ReadingRCU s a r = coerce (readTVarIO :: TVar a -> IO a) {-# INLINE readSRef #-} -------------------------------------------------------------------------------- -- * Write-Side Critical Sections -------------------------------------------------------------------------------- -- | This is the basic write-side critical section for an RCU computation newtype WritingRCU s a = WritingRCU { runWritingRCU :: TVar Int64 -> STM a } deriving Functor instance Applicative (WritingRCU s) where pure a = WritingRCU $ \ _ -> pure a WritingRCU mf <*> WritingRCU ma = WritingRCU $ \c -> mf c <*> ma c instance Monad (WritingRCU s) where return a = WritingRCU $ \ _ -> pure a WritingRCU m >>= f = WritingRCU $ \ c -> do a <- m c runWritingRCU (f a) c fail s = WritingRCU $ \ _ -> fail s instance Alternative (WritingRCU s) where empty = WritingRCU $ \ _ -> empty WritingRCU ma <|> WritingRCU mb = WritingRCU $ \c -> ma c <|> mb c instance MonadPlus (WritingRCU s) where mzero = WritingRCU $ \ _ -> mzero WritingRCU ma `mplus` WritingRCU mb = WritingRCU $ \c -> ma c `mplus` mb c instance MonadNew (SRef s) (WritingRCU s) where newSRef a = WritingRCU $ \_ -> SRef <$> newTVar a instance MonadReading (SRef s) (WritingRCU s) where readSRef (SRef r) = WritingRCU $ \ _ -> readTVar r {-# INLINE readSRef #-} instance MonadWriting (SRef s) (WritingRCU s) where writeSRef (SRef r) a = WritingRCU $ \ _ -> writeTVar r a synchronize = WritingRCU $ \ c -> modifyTVar' c (+1) -------------------------------------------------------------------------------- -- * RCU Context -------------------------------------------------------------------------------- -- | This is an RCU computation. It can use 'forking' and 'joining' to form -- new threads, and then you can use 'reading' and 'writing' to run classic -- read-side and write-side RCU computations. Contention between multiple -- write-side computations is managed by STM. newtype RCU s a = RCU { unRCU :: TVar Int64 -> IO a } deriving Functor instance Applicative (RCU s) where pure = return (<*>) = ap instance Monad (RCU s) where return a = RCU $ \ _ -> return a RCU m >>= f = RCU $ \s -> do a <- m s unRCU (f a) s instance MonadNew (SRef s) (RCU s) where newSRef a = RCU $ \_ -> SRef <$> newTVarIO a -- | This is a basic 'RCU' thread. It may be embellished when running in a more -- exotic context. data RCUThread s a = RCUThread { rcuThreadId :: {-# UNPACK #-} !ThreadId , rcuThreadVar :: {-# UNPACK #-} !(MVar a) } instance MonadRCU (SRef s) (RCU s) where type Reading (RCU s) = ReadingRCU s type Writing (RCU s) = WritingRCU s type Thread (RCU s) = RCUThread s forking (RCU m) = RCU $ \ c -> do result <- newEmptyMVar tid <- forkIO $ do x <- m c putMVar result x return (RCUThread tid result) joining (RCUThread _ m) = RCU $ \ _ -> readMVar m reading (ReadingRCU m) = RCU $ \ _ -> m writing (WritingRCU m) = RCU $ \ c -> atomically $ do _ <- readTVar c -- deliberately incur a data dependency! m c {-# INLINE forking #-} {-# INLINE joining #-} {-# INLINE reading #-} {-# INLINE writing #-} instance MonadIO (RCU s) where liftIO m = RCU $ \ _ -> m {-# INLINE liftIO #-} -- | Run an RCU computation. runRCU :: (forall s. RCU s a) -> IO a runRCU m = do c <- newTVarIO 0 unRCU m c {-# INLINE runRCU #-}
anthezium/rcu
src/Control/Concurrent/RCU/STM/Internal.hs
Haskell
bsd-2-clause
5,541
module Handler.PostNew where import Import import Yesod.Form.Bootstrap3 import Yesod.Text.Markdown blogPostNewForm :: AForm Handler BlogPost blogPostNewForm = BlogPost <$> areq textField (bfs ("Title" :: Text)) Nothing <*> lift (liftIO getCurrentTime) <*> lift (liftIO getCurrentTime) <*> areq markdownField (bfs ("Article" :: Text)) Nothing getPostNewR :: Handler Html getPostNewR = do (widget, enctype) <- generateFormPost $ renderBootstrap3 BootstrapBasicForm blogPostNewForm defaultLayout $ do $(widgetFile "posts/new") -- YesodPersist master => YesodPersistBackend master ~ SqlBackend => … postPostNewR :: Handler Html postPostNewR = do ((res, widget), enctype) <- runFormPostNoToken $ renderBootstrap3 BootstrapBasicForm blogPostNewForm case res of FormSuccess blogPost -> do blogPostId <- runDB $ insert blogPost redirect $ PostDetailsR blogPostId FormFailure errorMsgs -> defaultLayout $(widgetFile "errorpage") _ -> defaultLayout $(widgetFile "posts/new")
roggenkamps/steveroggenkamp.com
Handler/PostNew.hs
Haskell
bsd-3-clause
1,115
{-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverlappingInstances #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} module Pack7 where import Data.Set (Set) import qualified Data.Set as Set import GHC.Exts (Constraint) -- type class for abstract sets class ISet s where type ISetCxt (s :: * -> *) a :: Constraint fromList :: ISetCxt s a => [a] -> s a instance ISet [] where type ISetCxt [] a = () fromList = id instance ISet Set where type ISetCxt Set a = Ord a fromList = Set.fromList -- type class for mapping sets in containers class ISet g => SetMap s t g | t -> g where setMap :: s -> t instance (ISet g, ISetCxt g a, ISetCxt g b) => SetMap ([a], [b]) (g a, g b) g where setMap (a, b) = (fromList a, fromList b) p1 :: ([Int], [Bool]) p1 = ([1, 2], [True, False]) {-| >>> testSetMap (fromList [1,2],fromList [False,True]) -} testSetMap :: (Set Int, Set Bool) testSetMap = setMap p1 -- TBD: replace ISet to a type variable
notae/haskell-exercise
pack/Pack7.hs
Haskell
bsd-3-clause
1,188
module Util.Command where import System.Exit import Data.Tuple import Data.Map (Map, (!)) import qualified Data.Map as M import Data.Char import Genome.Dna.Kmer import Genome.Dna.Dna data Command = Command {utility :: String, arguments :: Map String String } instance Show Command where show (Command name args) = foldl addArg ("command" ++ name) (M.toList args) where addArg = \s xy -> s ++ " -" ++ (fst xy) ++ "=" ++ (snd xy) emptyCommand = Command "empty" M.empty readCommand :: [String] -> Command readCommand [] = emptyCommand readCommand (u:args) = if (allowedWord u) then Command u (readArgs args) else Command "illegal" M.empty where allowedWord :: String -> Bool allowedWord [] = False allowedWord (x:xs) = (isAlphaNum x) && all allowedChar xs allowedChar = \c -> (c == '-') || (isAlphaNum c) readArgs :: [String] -> Map String String readArgs = M.fromList . (map readOneArg) where readOneArg s = (tail $ takeWhile (/= '=') s, tail $ dropWhile (/= '=') s) availableCommands = M.fromList [ ("ptrn-count", "-f=<file-name> -p=<ptrn>"), ("most-frequent-kmers", "-f=<file-name> -k=<kmer-size> -n=<number>") ] usage u = if M.notMember u availableCommands then "Exception: " ++ u ++ " is not a valid command." else "Usage: " ++ u ++ " " ++ (availableCommands ! u) execute :: Command -> IO() execute (Command "hello" _) = do putStrLn "Hello jee! What may bioalgo tool-kit do for you?" putStrLn "Please call me with a command" putStrLn "" putStrLn "!!! BYE for now !!!" execute (Command "ptrn-count" argMap) = do text <- readFile (argMap ! "f") pcounts <- return $ ptrnCount (argMap ! "p") text putStr "number of appearances of " putStr (argMap ! "p") putStr ": " putStrLn (show pcounts) execute (Command "most-frequent-kmers" argMap) = do text <- readFile f kcounts <- return $ kmerCounts k text putStr (show (sum kcounts)) putStr (" total ") putStr (show k) putStrLn "-mers found." putStr " of which " putStr (show (length kcounts)) putStrLn " are unique." putStrLn $ "Top " ++ (show n) ++ " " ++ (show k) ++ "-mers: " mapM_ (\(s, m) -> putStrLn ((show m) ++ ": " ++ s))(topFrequentKmers n kcounts) where k = read (argMap ! "k") :: Int n = read (argMap ! "n") :: Int f = argMap ! "f" execute (Command "reverse-complement" argMap) = do putStrLn (if (isDNA seq) then reverseComplement seq else "Not a DNA sequence") where seq = argMap ! "s" execute (Command "illegal" _) = do putStrLn "Exception: illegal utility name." cltoolsUsage >> exitWith ExitSuccess execute (Command "empty" _) = do putStrLn "Exception: utility not specified." cltoolsUsage >> exitWith ExitSuccess -- last case, when every other case unmet execute (Command s _) = do putStrLn $ "Exception: unknown utility " ++ s ++ "." cltoolsUsage >> exitWith ExitSuccess cltoolsUsage = do putStrLn "Usage: [-vh] <utility> <arguments>" putStrLn "Available utilities: " mapM pcmd (M.toList availableCommands) where pcmd = (\ua -> putStrLn ((fst ua) ++ " " ++ (snd ua)))
visood/bioalgo
src/lib/Util/Command.hs
Haskell
bsd-3-clause
3,189
{-# Language ScopedTypeVariables #-} module Pipes.Formats where import Control.Monad as M import Data.Array.Accelerate as A import Data.Array.Accelerate.IO as A import qualified Data.Vector.Storable as S import qualified Data.Vector.Storable.Mutable as SM import Pipes import Prelude as P vectorToArray :: (Int,Int,Int) -> Pipe (S.Vector Word8) (Array DIM3 Word8) IO () vectorToArray (h,w,d) = let dim = Z :. h :. w :. d in forever $ do v <- await yield $ fromVectors dim v -- | Takes in vectors and 'chunks' them out as int x dim size vectors -- vectorsToChunks :: forall m. MonadIO m => Int -> (Int,Int,Int) -> Pipe (S.Vector Word8) (S.Vector Word8) m () vectorsToChunks limit (h,w,d) = let maxCubeSize = limit * imageSize imageSize = (h*w*d) cubeAggregator :: Pipe (S.Vector Word8) (S.Vector Word8) m () cubeAggregator = do mem <- liftIO $ SM.new maxCubeSize M.forM_ (P.init [0..limit]) $ (\i -> do arr <- await let sliced = SM.unsafeSlice (i*imageSize) (imageSize) mem thawed <- liftIO $ S.unsafeThaw arr liftIO $ SM.copy sliced thawed ) liftIO (S.unsafeFreeze mem) >>= yield in forever $ cubeAggregator -- | Takes in chunks and slices them out as int number of dim vectors -- chunksToVectors :: MonadIO m => Int -> (Int,Int,Int) -> Pipe (S.Vector Word8) (S.Vector Word8) m () chunksToVectors limit (h,w,d) = let imageSize = h*w*d slicer = do chunk <- await mapM_ yield $ P.map (\i -> S.slice (i*imageSize) imageSize chunk) $ P.init [0..limit] in forever slicer
cpdurham/accelerate-camera-sandbox
src/Pipes/Formats.hs
Haskell
bsd-3-clause
1,722
{-# LANGUAGE QuasiQuotes #-} module System.Console.CmdArgs.Test.SplitJoin(test) where import System.Console.CmdArgs.Explicit import System.Console.CmdArgs.Test.Util import Control.Monad test = do forM_ tests $ \(src,parsed) -> do let a = splitArgs src b1 = joinArgs parsed b2 = joinArgs $ splitArgs b1 if a == parsed then return () else failure "splitArgs" [("Given ",src),("Expected",show parsed),("Found ",show a)] if b1 == b2 then return () else failure "joinArgs" [("Given ",show parsed),("Expected",b1),("Found ",b2)] success {- newtype CmdLine = CmdLine String deriving Show instance Arbitrary CmdLine where arbitrary = fmap CmdLine $ listOf $ elements "abcd \\/\'\"" generateTests :: IO () generateTests = withTempFile $ \src -> do writeFile src "import System.Environment\nmain = print =<< getArgs\n" quickCheckWith stdArgs{chatty=False} $ \(CmdLine x) -> unsafePerformIO $ do putStr $ ",(,) " ++ (show x) ++ " " system $ "runghc \"" ++ src ++ "\" " ++ x return True withTempFile :: (FilePath -> IO a) -> IO a withTempFile f = bracket (do (file,h) <- openTempFile "." "cmdargs.hs"; hClose h; return file) removeFile f -} -- Pregenerate the QuickCheck tests and run them through the system console -- Not done each time for three reasons -- * Avoids an extra dependency on QuickCheck + process -- * Slow to run through the command line -- * Can't figure out how to read the output, without adding more escaping (which breaks the test) tests = [f "" [] ,f "c" ["c"] ,f "b" ["b"] ,f "\\" ["\\"] ,f "'//" ["'//"] ,f "a" ["a"] ,f "cda" ["cda"] ,f "b'" ["b'"] ,f "" [] ,f " " [] ,f "/b" ["/b"] ,f "\"b/\"d a'b'b" ["b/d","a'b'b"] ,f "d'c a\"/\\" ["d'c","a/\\"] ,f "d" ["d"] ,f "bb' " ["bb'"] ,f "b'\\" ["b'\\"] ,f "\"\\ac" ["\\ac"] ,f "\\'\"abbb\"c/''' \\ c" ["\\'abbbc/'''","\\","c"] ,f "/bbdbb a " ["/bbdbb","a"] ,f "b\" d" ["b d"] ,f "" [] ,f "\\cc/''\\b\\ccc\\'\\b\\" ["\\cc/''\\b\\ccc\\'\\b\\"] ,f "/" ["/"] ,f "///\"b\\c/b\"cd//c'\"" ["///b\\c/bcd//c'"] ,f "\\\"d\\\\' /d\\\\/bb'a /\\d" ["\"d\\\\'","/d\\\\/bb'a","/\\d"] ,f "c/ \\''/c b\\'" ["c/","\\''/c","b\\'"] ,f "dd'b\\\\\\' /c'aaa\"" ["dd'b\\\\\\'","/c'aaa"] ,f "b'd''\\/ b\\'b'db/'cd " ["b'd''\\/","b\\'b'db/'cd"] ,f "a\"ba\\/\\ " ["aba\\/\\ "] ,f "b\"'dd'c /b/c\"bbd \"\"\\ad'\"c\\\"" ["b'dd'c /b/cbbd","\\ad'c\""] ,f "da 'c\\\\acd/'dbaaa///dccbc a \\" ["da","'c\\\\acd/'dbaaa///dccbc","a","\\"] ,f "a'ac \"da\"" ["a'ac","da"] ,f "\"'\\\"/\"\"b\\b \"'\"\"ccd'a\"/c /da " ["'\"/\"b\\b","'\"ccd'a/c /da "] ,f "d\"\\c\\\\cb c/\"aa' b\"\\/d \"'c c/" ["d\\c\\\\cb c/aa'","b\\/d 'c","c/"] ,f "dbc\\/\"\"//c/\"accda" ["dbc\\///c/accda"] ,f "aca a'' \\ c b'\\/d\\" ["aca","a''","\\","c","b'\\/d\\"] ,f "dc\"bc/a\\ccdd\\\\aad\\c'ab '\\cddcdba" ["dcbc/a\\ccdd\\\\aad\\c'ab '\\cddcdba"] ,f " c'\"ba \"b\\dc\"" ["c'ba b\\dc"] ,f "a\\acd/a \"'c /'c'" ["a\\acd/a","'c /'c'"] ,f " ac ddc/\"\"a/\\bd\\d c'cac\"c\\a/a''c" ["ac","ddc/a/\\bd\\d","c'cacc\\a/a''c"] ,f "b/cd\"//bb\"/daaab/ b b \"' d\"a\" 'd b" ["b/cd//bb/daaab/","b","b","' da 'd b"] ,f "a\"cc'cd\"\\'ad '\"dcc acb\"\\\\" ["acc'cd\\'ad","'dcc acb\\\\"] ,f "/bc/bc'/\"d \"a/\"\\ad aba\\da" ["/bc/bc'/d a/\\ad aba\\da"] ,f "b\\a" ["b\\a"] ,f "/dc ''c'a\"'/'\\ /'cd\\'d/'db/b\"' cabacaaa\"\"dd" ["/dc","''c'a'/'\\ /'cd\\'d/'db/b'","cabacaaadd"] ,f "\"ac\\\"c'/c'b\"b\"b'd\"c\"\"" ["ac\"c'/c'bbb'dc"] ,f "/ 'ccc\"d\\dc'\"'\\ b" ["/","'cccd\\dc''\\","b"] ,f " '\"/\\cc\\/c '\\\\" ["'/\\cc\\/c '\\\\"] ,f "\\ \\' ' /d \"cc\\\\//da\"d'a/a\"ca\\\\\"\\cb c\"d'b 'acb" ["\\","\\'","'","/d","cc\\\\//dad'a/aca\\\\cb","cd'b 'acb"] ,f "a\"\"d'\"a\"\\ \\c db'da/d\\c\"a/ aa c/db" ["ad'a\\","\\c","db'da/d\\ca/ aa c/db"] ,f " d\\" ["d\\"] ,f "d c b'/\\/'\"/'a'aa\"a\"/ad\\/" ["d","c","b'/\\/'/'a'aaa/ad\\/"] ,f " a \\' /" ["a","\\'","/"] ,f "'/ c" ["'/","c"] ,f "acd 'bcab /ba'daa'/ba/\"dcdadbcacb" ["acd","'bcab","/ba'daa'/ba/dcdadbcacb"] ,f "a\\\"dd'a c\"a\"\"ac\\" ["a\"dd'a","ca\"ac\\"] ,f "\"dba /'bb\\ d ba '/c' \"dd\\' cbcd c /b/\\b///" ["dba /'bb\\ d ba '/c' dd\\'","cbcd","c","/b/\\b///"] ,f "a'c/c \"ccb '/d\\abd/bc " ["a'c/c","ccb '/d\\abd/bc "] ,f "\\da\"\\//add\\\\ c" ["\\da\\//add\\\\ c"] ,f "c/\\\"// a/\"ac\"//''ba\"c/\\bc\\\"d\"bc/d" ["c/\"//","a/ac//''bac/\\bc\"dbc/d"] ,f "/d/ a dc'\\ \"" ["/d/","a","dc'\\",""] ,f " \"dc//b\\cd/ \\ac\"b\"b\"d\"\"\"dd\"\" ' a\\'/ \"/'/\\a/abd\\ddd" ["dc//b\\cd/ \\acbbd\"dd","'","a\\'/","/'/\\a/abd\\ddd"] ,f "\\' ' d\"b bbc" ["\\'","'","db bbc"] ,f "'ba\\a'db/bd d\\'b\\ \\/a'da' " ["'ba\\a'db/bd","d\\'b\\","\\/a'da'"] ,f "\\b\\cc\"\"d' dd ddcb\"d" ["\\b\\ccd'","dd","ddcbd"] ,f "d\"dc'\\d\"/'\\\"b\\c'c\" db' \\'b/\"a' / da'\"/ab'\\ c\\bc\\//dbcb\\" ["ddc'\\d/'\"b\\c'c db' \\'b/a'","/","da'/ab'\\ c\\bc\\//dbcb\\"] ,f " b ddbbbbc\"da\\c\"'\\" ["b","ddbbbbcda\\c'\\"] ,f "b/\"d dacd'/'\\\"''a a /'\\c'b ab\\ dda\\c'abdd'a\"//d \\\\\\ d\"\"" ["b/d dacd'/'\"''a a /'\\c'b ab\\ dda\\c'abdd'a//d","\\\\\\","d"] ,f "/c\"\" dd'a'/b\\/'\"'/" ["/c","dd'a'/b\\/''/"] ,f "/\"'\"\"'cc a a\\dd''\\'b" ["/'\"'cc","a","a\\dd''\\'b"] ,f "c\"dcd''aba\" \" /'" ["cdcd''aba"," /'"] ,f "'\"/''\\\\d'/ad\\baadabdca\\ /\\'''bd\\/\"'/' aca \\ \\a'\\ cd\"d /bdcd''cac" ["'/''\\\\d'/ad\\baadabdca\\ /\\'''bd\\/'/'","aca","\\","\\a'\\","cdd /bdcd''cac"] ,f "\" /\"da" [" /da"] ,f "'\"ca/'d/d/d\\ca\"/\"\" ddac cc\" ''a c''bd\"bc'dc\\/\"b\"a\\\"\"a/\\ " ["'ca/'d/d/d\\ca/","ddac","cc ''a c''bdbc'dc\\/ba\"a/\\ "] ,f "\\\\d'ad ' ''\"cd/a \"\"\\'\\\"'dc\\" ["\\\\d'ad","'","''cd/a \"\\'\"'dc\\"] ,f " ab c'\\a" ["ab","c'\\a"] ,f "b" ["b"] ,f "''c dc c\\'d'ab'd\"\\\"cca\"b'da\"dbcdbd\"cd'/d \\cd'\"d \"\"b cdc''/\\\"b'" ["''c","dc","c\\'d'ab'd\"ccab'dadbcdbdcd'/d","\\cd'd \"b","cdc''/\"b'"] ,f " \"'cb dbddbdd/" ["'cb dbddbdd/"] ,f "a/\"d// dd/cc/\"cc\"d\" d\\/a a \\c\" \\\\/\"\\ bcc'ac'\"\\c//d\"da/\\aac\\b\"c/'b\"\"bbd/\\" ["a/d// dd/cc/ccd","d\\/a","a","\\c \\\\/\\","bcc'ac'\\c//dda/\\aac\\bc/'b\"bbd/\\"] ,f "b\"ddccd\"a\"/ba\"" ["bddccda/ba"] ,f " \" c/b/'/bdd cb d'c a'\"'a d\\\\db//\\\"' c'/'c\\/aa" [" c/b/'/bdd cb d'c a''a","d\\\\db//\"'","c'/'c\\/aa"] ,f "\\caab" ["\\caab"] ,f "bb\"'\"/d'bad 'd\\/'\\b//\\\\ \\d''c\"c b\\b/\\" ["bb'/d'bad","'d\\/'\\b//\\\\","\\d''cc b\\b/\\"] ,f " c'a\" \\cab\"bd\"dcd\"/cb/\"\"b\"b'\"d" ["c'a \\cabbddcd/cb/bb'd"] ,f "\\/ \"c'ca" ["\\/","c'ca"] ,f " d' /c'bc\"'/'\\\\dca'cc\"'\"''/d cb//'a \"bd ab\"dcaadc\\\"'d\\\"/a\"a\\\"ba//b/ d/dbac/d\\caa\"bc/ " ["d'","/c'bc'/'\\\\dca'cc'''/d cb//'a bd","abdcaadc\"'d\"/aa\"ba//b/","d/dbac/d\\caabc/ "] ,f "/\"\\db'd/ ca\"ad b\\\\\"cd/a bbc\\ " ["/\\db'd/ caad","b\\cd/a bbc\\ "] ,f "cdc bd'/\"c''c d \\\"aa \\d\\ bb'b/ /b/a/c'acda\\'\"\"c \"bbbaa/'/a \\aca\"'/ac' " ["cdc","bd'/c''c d \"aa \\d\\ bb'b/ /b/a/c'acda\\'\"c","bbbaa/'/a \\aca'/ac'"] ,f "ad/'b\\d /cc\"\"ab \\ \"' ''b\\\"/\\ a\"'d\"\\ddacdbbabb b b //' acd\"c\\d'd\\b\"'\\\"aaba/bda/c'// \\b" ["ad/'b\\d","/ccab","\\","' ''b\"/\\ a'd\\ddacdbbabb b b //' acdc\\d'd\\b'\"aaba/bda/c'// \\b"] ,f "bac cc \"ac\"/ca/ '\"\" b/b d /cd'\\'bb\" \\ \"b '/ b c ' c''\"a/ad\\ " ["bac","cc","ac/ca/","'","b/b","d","/cd'\\'bb \\ b","'/","b","c","'","c''a/ad\\ "] ,f "baa' b'b''\\dab/'c" ["baa'","b'b''\\dab/'c"] ,f "cb\\\\ " ["cb\\\\"] ,f "/b'a''d\"b\" 'c'b ba\\'b\" bb" ["/b'a''db","'c'b","ba\\'b bb"] ,f "b /\"ca\\cbac " ["b","/ca\\cbac "] ,f " \"\"/\"bcaa\"\"a' \\/bb \"a\\\"'\"" ["/bcaa\"a'","\\/bb","a\"'"] ,f "\"c /''c\"\\badc/\\daa/\\ c\"a c\\ \\/cab \"b\"\\ ba\"\"/d/cd'a ad'c/ad\"' a\\d/d\\c\\'cdccd/\"a'/\"b///ac\"" ["c /''c\\badc/\\daa/\\","ca c\\ \\/cab b\\ ba\"/d/cd'a","ad'c/ad' a\\d/d\\c\\'cdccd/a'/b///ac"] ,f "/cbbd\"/b' /dd\"/c\\ca/'\"\\ cc \\d\"aca/\"b caa\\d\\'\"b'b dc\"cd\\'c\" 'd/ac\"cacc\"" ["/cbbd/b' /dd/c\\ca/'\\ cc \\daca/b caa\\d\\'b'b","dccd\\'c","'d/accacc"] ,f "bc/bd\\ca\\bcacca\"\"\\c/\\ /\"\"a/\"c'//b'\\d/a/'ab/cbd/cacb//b \\d\"aac\\d'\"/" ["bc/bd\\ca\\bcacca\\c/\\","/a/c'//b'\\d/a/'ab/cbd/cacb//b \\daac\\d'/"] ,f "bbac bdc/d\\\"/db\"dbdb\"a \" /\"/'a\\acacbcc c'//\\//b\"ca\"bcca c\\/aaa/c/bccbccaa \"\" cdccc/bddcbc c''" ["bbac","bdc/d\"/dbdbdba"," //'a\\acacbcc","c'//\\//bcabcca","c\\/aaa/c/bccbccaa","","cdccc/bddcbc","c''"] ] where f = (,)
ndmitchell/cmdargs
System/Console/CmdArgs/Test/SplitJoin.hs
Haskell
bsd-3-clause
8,627
{-# LANGUAGE BangPatterns #-} {-# LANGUAGE OverloadedStrings #-} ------------------------------------------------------------------------------ -- | This module is where all the routes and handlers are defined for your -- site. The 'app' function is the initializer that combines everything -- together and is exported by this module. module Site ( app ) where ------------------------------------------------------------------------------ import Control.Applicative import Control.Concurrent import Control.Concurrent.Async import Control.Concurrent.MVar import Control.Lens import Control.Monad import Control.Monad.Reader (asks) import Control.Monad.IO.Class (liftIO) import qualified Data.Acid as AS import Data.ByteString (ByteString) import Data.Default (def) import Data.List (groupBy) import Data.Maybe import qualified Data.Map as M import qualified Data.Text as T import qualified Data.Text.Encoding as TE import Data.Time.Clock import Data.Time.Clock.POSIX import qualified Network.Gravatar as G import Snap import Snap.Core import Snap.Snaplet import Snap.Snaplet.AcidState (Update, Query, update, query, acidInitManual) import Snap.Snaplet.Auth import Snap.Snaplet.Auth.Backends.JsonFile import Snap.Snaplet.Heist import Snap.Snaplet.Session.Backends.CookieSession import Snap.Util.FileServe import Heist import qualified Heist.Interpreted as I import qualified Text.XmlHtml as X import Web.Bugzilla ------------------------------------------------------------------------------ import Application import Bugzilla ------------------------------------------------------------------------------ -- | Render login form handleLogin :: Maybe T.Text -> Handler App (AuthManager App) () handleLogin authError = heistLocal (I.bindSplices errs) $ render "login" where errs = maybe noSplices splice authError splice err = "loginError" ## I.textSplice err ------------------------------------------------------------------------------ -- | Handle login submit handleLoginSubmit :: Handler App (AuthManager App) () handleLoginSubmit = do mUser <- getParam "login" mPass <- getParam "password" case (mUser, mPass) of (Just user, Just pass) -> loginUser "login" "password" Nothing (\_ -> handleLogin err) (loginSuccess user pass) _ -> handleLogin invalidErr where err = Just "Unknown user or password." invalidErr = Just "Invalid request. Try again." loginSuccess user pass = do let userText = TE.decodeUtf8 user passText = TE.decodeUtf8 pass -- Create a Bugzilla session for this user. session <- liftIO $ newBzSession userText (Just passText) mvSessions <- withTop' id $ gets $ _bzSessions liftIO $ modifyMVar_ mvSessions $ return . M.insert userText session -- Synchronously update requests if there are none stored. mReqs <- query $ GetRequests userText when (isNothing mReqs) $ do reqs <- liftIO $ bzRequests session userText update $ UpdateRequests userText reqs -- We're now ready to display the dashboard. redirect "/dashboard" ------------------------------------------------------------------------------ -- | Logs out and redirects the user to the site index. handleLogout :: Handler App (AuthManager App) () handleLogout = logout >> redirect "/" ------------------------------------------------------------------------------ -- | Handle new user form submit handleNewUser :: Handler App (AuthManager App) () handleNewUser = method GET handleForm <|> method POST handleFormSubmit where handleForm = render "new_user" handleFormSubmit = do mUser <- getParam "login" case mUser of (Just user) -> do let newTime = posixSecondsToUTCTime 0 userText = TE.decodeUtf8 user update $ AddUser userText (UserInfo newTime) registerUser "login" "password" redirect "/" _ -> redirect "/new_user" ------------------------------------------------------------------------------ -- | Handle dashboard handleDashboard :: Handler App (AuthManager App) () handleDashboard = do mUser <- currentUser case mUser of Just user -> do let login = userLogin user curTime <- liftIO $ getCurrentTime mUserInfo <- query $ GetUser login update $ UpdateUser login (UserInfo curTime) mReqs <- query $ GetRequests login case (mUserInfo, mReqs) of (Just ui, Just reqs) -> renderDashboard curTime (ui ^. uiLastSeen) reqs (Nothing, _) -> handleLogin $ Just "You don't exist." _ -> handleLogin $ Just "You've been logged out. Please log in again." Nothing -> handleLogin $ Just "You need to be logged in for that." renderDashboard :: UTCTime -> UTCTime -> [BzRequest] -> Handler App (AuthManager App) () renderDashboard curTime lastSeen requests = do let (nis, rs, fs, as, ps, rds) = countRequests requests splices = do "dashboardItems" ## I.mapSplices (dashboardItemSplice lastSeen curTime) requests "needinfoCount" ## (return [X.TextNode . T.pack . show $ nis]) "reviewCount" ## (return [X.TextNode . T.pack . show $ rs]) "feedbackCount" ## (return [X.TextNode . T.pack . show $ fs]) "assignedCount" ## (return [X.TextNode . T.pack . show $ as]) "pendingCount" ## (return [X.TextNode . T.pack . show $ ps]) "reviewedCount" ## (return [X.TextNode . T.pack . show $ rds]) heistLocal (I.bindSplices splices) $ render "dashboard" dashboardItemSplice :: UTCTime -> UTCTime -> BzRequest -> I.Splice (Handler App App) dashboardItemSplice lastSeen curTime req = return $ [divNode ["item", containerClass req] $ [ divNode [reqClass req] $ titleBadge req ++ [X.Element "h1" [classes ["card-title", reqClass req]] [title req]] ] ++ extended req ++ [ divNode ["summary"] [X.Element "p" [] [bugLink req]] ] ++ details req ++ [ lastComment req , comments req ] ] where containerClass (NeedinfoRequest _ _ _) = "needinfo-container" containerClass (ReviewRequest _ _ _) = "review-container" containerClass (FeedbackRequest _ _ _) = "feedback-container" containerClass (AssignedRequest _ _ _) = "assigned-container" containerClass (PendingRequest _ _ _) = "pending-container" containerClass (ReviewedRequest _ _ _) = "reviewed-container" title r = linkNode (url r) [T.toUpper . reqClass $ r] where url (NeedinfoRequest _ _ _) = bugURL r url (ReviewRequest _ _ att) = attURL r att url (FeedbackRequest _ _ att) = attURL r att url (AssignedRequest _ _ _) = bugURL r url (PendingRequest _ _ _) = bugURL r url (ReviewedRequest _ _ _) = bugURL r titleBadge (NeedinfoRequest _ cs flag) = timeBadgeNode lastSeen cs curTime (flagCreationDate flag) titleBadge (ReviewRequest _ cs att) = timeBadgeNode lastSeen cs curTime (attachmentCreationTime att) titleBadge (FeedbackRequest _ cs att) = timeBadgeNode lastSeen cs curTime (attachmentCreationTime att) titleBadge (AssignedRequest bug cs _) = timeBadgeNode lastSeen cs curTime (bugCreationTime bug) titleBadge (PendingRequest bug cs _) = timeBadgeNode lastSeen cs curTime (bugCreationTime bug) titleBadge (ReviewedRequest bug cs _) = timeBadgeNode lastSeen cs curTime (bugCreationTime bug) reqClass (NeedinfoRequest _ _ _) = "needinfo" reqClass (ReviewRequest _ _ _) = "review" reqClass (FeedbackRequest _ _ _) = "feedback" reqClass (AssignedRequest _ _ _) = "assigned" reqClass (PendingRequest _ _ _) = "pending" reqClass (ReviewedRequest _ _ _) = "reviewed" bugLink r = linkNode (bugURL r) [bugIdText r, ": ", bugSummary . reqBug $ r] details (NeedinfoRequest bug _ flag) = [] details (ReviewRequest bug _ att) = [ divNode ["detail"] (attachmentNode att) ] details (FeedbackRequest bug _ att) = [ divNode ["detail"] (attachmentNode att) ] details (AssignedRequest bug _ atts) = [ divNode ["detail"] (concatMap attachmentNode atts) ] details (PendingRequest bug _ atts) = [ divNode ["detail"] (concatMap attachmentNode atts) ] details (ReviewedRequest bug _ atts) = [ divNode ["detail"] (concatMap attachmentNode atts) ] attachmentNode att = [ X.Element "hr" [] [] , divNode ["attachment"] $ [ divNode ["attachment-icon"] [] , pNode' ["attachment-summary"] [attachmentSummary att] ] ++ map attachmentFlagNode (attachmentFlags att) ] attachmentFlagNode f = divNode ["attachment-flag"] $ [ maybe noSmallGravatar smallGravatarImg (flagRequestee f) , X.Element "p" [] $ [ flagNameNode [flagName f, flagStatus f] , textNode [" " , fromMaybe "" (flagRequestee f)] ] ] extended (NeedinfoRequest bug _ flag) = [ divNode ["extended"] [ gravatarImg (flagSetter flag) , pNode [flagSetter flag] , timeNode curTime (flagCreationDate flag) ] ] extended (ReviewRequest bug _ att) = [ divNode ["extended"] [ gravatarImg (attachmentCreator att) , pNode [attachmentCreator att] , timeNode curTime (attachmentCreationTime att) ] ] extended (FeedbackRequest bug _ att) = [ divNode ["extended"] [ gravatarImg (attachmentCreator att) , pNode [attachmentCreator att] , timeNode curTime (attachmentCreationTime att) ] ] extended (AssignedRequest bug _ _) = [] extended (PendingRequest bug _ _) = [] extended (ReviewedRequest bug _ _) = [] lastComment r = divNode ["last-comment-wrapper"] $ map (commentNode r 200) (take 1 . reqComments $ r) comments r = divNode ["comments-wrapper"] $ [ divNode ["comments-inner-wrapper"] $ [ divNode ["comments"] $ map (commentNode r 0) (reqComments r)]] commentNode r limit c = divNode ["comment"] $ [ divNode (commentHeaderClasses lastSeen $ commentCreationTime c) $ [ gravatarImg (commentCreator c) , pNode [commentCreator c] , X.Element "p" [] $ [ linkNode (commentURL r c) ["#", T.pack . show $ commentCount c] , textNode [" (", T.pack . show $ commentCreationTime c, ")"] ] ] ] ++ (mergedComments . T.lines . applyLimit limit . commentText $ c) mergedComments = concatMap mergeQuotes . groupBy (same numQuotes) where mergeQuotes [] = [] mergeQuotes ls@(l:_) | isQuote l = if any (";" `T.isSuffixOf`) ls then map (pQuoteNode . (:[])) ls else [pQuoteNode [T.intercalate " " . map stripQuotes $ ls]] | otherwise = map (pNode . (:[])) ls commentTextNode line | ">" `T.isPrefixOf` line = X.Element "p" [classes ["quote"]] [X.TextNode line] | otherwise = pNode [line] gravatarImg email = divNode ["gravatar"] [X.Element "img" [("src", url)] []] where url = T.pack $ G.gravatar settings email settings = def { G.gDefault = Just G.Retro, G.gSize = Just $ G.Size 48 } smallGravatarImg email = divNode ["small-gravatar"] [X.Element "img" [("src", url)] []] where url = T.pack $ G.gravatar settings email settings = def { G.gDefault = Just G.Retro, G.gSize = Just $ G.Size 32 } noGravatar = divNode ["no-gravatar"] [] noSmallGravatar = divNode ["no-small-gravatar"] [] attURL :: BzRequest -> Attachment -> T.Text attURL r att = T.concat [ "https://bugzilla.mozilla.org/page.cgi?id=splinter.html&bug=" , bugIdText r , "&attachment=" , attachmentIdText att ] bugURL :: BzRequest -> T.Text bugURL r = T.concat ["https://bugzilla.mozilla.org/show_bug.cgi?id=", bugIdText r] commentURL :: BzRequest -> Comment -> T.Text commentURL r c = T.concat [ "https://bugzilla.mozilla.org/show_bug.cgi?id=" , bugIdText r , "#c" , commentIdText c ] attachmentIdText :: Attachment -> T.Text attachmentIdText = T.pack . show . attachmentId bugIdText :: BzRequest -> T.Text bugIdText = T.pack . show . bugId . reqBug commentIdText :: Comment -> T.Text commentIdText = T.pack . show . commentCount classes :: [T.Text] -> (T.Text, T.Text) classes cs = ("class", T.intercalate " " cs) textNode :: [T.Text] -> X.Node textNode = X.TextNode . T.concat linkNode :: T.Text -> [T.Text] -> X.Node linkNode url ts = X.Element "a" [("href", url)] [textNode ts] pNode :: [T.Text] -> X.Node pNode ts = X.Element "p" [] [textNode ts] flagNameNode :: [T.Text] -> X.Node flagNameNode ts = X.Element "span" [classes ["flag-name"]] [textNode ts] pNode' :: [T.Text] -> [T.Text] -> X.Node pNode' cs ts = X.Element "p" [classes cs] [textNode ts] pQuoteNode :: [T.Text] -> X.Node pQuoteNode ts = X.Element "p" [classes ["quote"]] [textNode ts] isQuote :: T.Text -> Bool isQuote = (">" `T.isPrefixOf`) divNode :: [T.Text] -> [X.Node] -> X.Node divNode cs es = X.Element "div" [classes cs] es oneWeek, twoWeeks, oneMonth :: NominalDiffTime oneWeek = fromIntegral $ 1 * 604800 twoWeeks = fromIntegral $ 2 * 604800 oneMonth = fromIntegral $ 4 * 604800 timeNode :: UTCTime -> UTCTime -> X.Node timeNode curTime itemTime | timeDiff > oneWeek = node ["overdue"] | otherwise = node [] where timeDiff = curTime `diffUTCTime` itemTime node cs = X.Element "p" [classes cs] [textNode [T.pack . show $ itemTime]] timeBadgeNode :: UTCTime -> [Comment] -> UTCTime -> UTCTime -> [X.Node] timeBadgeNode lastSeen cs curTime itemTime = newComment cs ++ overdue where newComment (c:_) | commentTimeDiff > 0 = [divNode ["left-badge"] [textNode ["+"]]] | otherwise = [] where commentTimeDiff = (commentCreationTime c) `diffUTCTime` lastSeen newComment _ = [] overdue | overdueTimeDiff > oneMonth = [overdueNode ["!!!"]] | overdueTimeDiff > twoWeeks = [overdueNode ["!!"]] | overdueTimeDiff > oneWeek = [overdueNode ["!"]] | otherwise = [] where overdueTimeDiff = curTime `diffUTCTime` itemTime overdueNode ts = divNode ["right-badge"] [textNode ts] commentHeaderClasses :: UTCTime -> UTCTime -> [T.Text] commentHeaderClasses lastSeen itemTime | timeDiff > 0 = ["comment-header", "new-comment"] | otherwise = ["comment-header"] where timeDiff = itemTime `diffUTCTime` lastSeen same :: Eq b => (a -> b) -> a -> a -> Bool same f a b = f a == f b numQuotes :: T.Text -> Int numQuotes = length . takeWhile (== "> ") . T.chunksOf 2 stripQuotes :: T.Text -> T.Text stripQuotes = T.concat . dropWhile (== "> ") . T.chunksOf 2 applyLimit :: Int -> T.Text -> T.Text applyLimit 0 = id applyLimit n = (`T.append` "...") . T.take n countRequests :: [BzRequest] -> (Int, Int, Int, Int, Int, Int) countRequests rs = go (0, 0, 0, 0, 0, 0) rs where go !count [] = count go (!nis, !rvs, !fbs, !as, !ps, !rds) ((NeedinfoRequest _ _ _) : rs) = go (nis + 1, rvs, fbs, as, ps, rds) rs go (!nis, !rvs, !fbs, !as, !ps, !rds) ((ReviewRequest _ _ _) : rs) = go (nis, rvs + 1, fbs, as, ps, rds) rs go (!nis, !rvs, !fbs, !as, !ps, !rds) ((FeedbackRequest _ _ _) : rs) = go (nis, rvs, fbs + 1, as, ps, rds) rs go (!nis, !rvs, !fbs, !as, !ps, !rds) ((AssignedRequest _ _ _) : rs) = go (nis, rvs, fbs, as + 1, ps, rds) rs go (!nis, !rvs, !fbs, !as, !ps, !rds) ((PendingRequest _ _ _) : rs) = go (nis, rvs, fbs, as, ps + 1, rds) rs go (!nis, !rvs, !fbs, !as, !ps, !rds) ((ReviewedRequest _ _ _) : rs) = go (nis, rvs, fbs, as, ps, rds + 1) rs ------------------------------------------------------------------------------ -- | The application's routes. routes :: [(ByteString, Handler App App ())] routes = [ ("/login", with auth handleLoginSubmit) , ("/logout", with auth handleLogout) , ("/new_user", with auth handleNewUser) , ("/dashboard", with auth handleDashboard) , ("", serveDirectory "static") ] ------------------------------------------------------------------------------ -- | The application initializer. app :: SnapletInit App App app = makeSnaplet "app" "An snaplet example application." Nothing $ do h <- nestSnaplet "" heist $ heistInit "templates" s <- nestSnaplet "sess" sess $ initCookieSessionManager "site_key.txt" "sess" (Just 3600) -- NOTE: We're using initJsonFileAuthManager here because it's easy and -- doesn't require any kind of database server to run. In practice, -- you'll probably want to change this to a more robust auth backend. a <- nestSnaplet "auth" auth $ initJsonFileAuthManager defAuthSettings sess "users.json" state <- liftIO $ AS.openLocalState (AppState M.empty M.empty) onUnload (AS.closeAcidState state) acid <- nestSnaplet "acid" acid $ acidInitManual state addRoutes routes addAuthSplices h auth mvSessions <- liftIO $ newMVar M.empty t <- liftIO $ async $ pollBugzilla mvSessions state 15 return $ App h s a acid t mvSessions pollBugzilla :: MVar (M.Map UserLogin BugzillaSession) -> AS.AcidState AppState -> Int -> IO () pollBugzilla !mvSessions !state !intervalMin = do -- Wait appropriately. let intervalUs = 60000000 * intervalMin threadDelay intervalUs -- Update all users with current sessions. sessions <- readMVar mvSessions forM_ (M.toList sessions) $ \(user, session) -> do putStrLn $ "Updating requests from Bugzilla for user " ++ show user reqs <- bzRequests session user AS.update state $ UpdateRequests user reqs -- Do it again. pollBugzilla mvSessions state intervalMin
sethfowler/bzbeaver
src/Site.hs
Haskell
bsd-3-clause
19,014
module Del.Parser where import Control.Applicative import Control.Exception import qualified Data.Set as S import qualified Data.MultiSet as MS import Data.Typeable import Text.Trifecta import Del.Syntax eomParser :: Parser EOM eomParser = many equationParser equationParser :: Parser Equation equationParser = do spaces l <- symParser spaces char '=' spaces r <- expParser spaces return $ Equation l r expParser :: Parser Exp expParser = expr -- この実装は正しくない -- `*`, `/` よりも `**` のほうが結合性が高くなっているが -- `-c**2` を `-(c**2)` ではなく `(-c)**2` と解釈してしまう。 expr :: Parser Exp expr = (factor `chainl1` powop) `chainl1` mulop `chainl1` addop where addop = infixOp "+" Add <|> infixOp "-" Sub mulop = infixOp "*" Mul <|> infixOp "/" Div powop = infixOp "**" Pow infixOp :: String -> (a -> a -> a) -> Parser (a -> a -> a) infixOp op f = f <$ symbol op factor :: Parser Exp factor = parens expr <|> neg <|> symParser <|> numParser neg :: Parser Exp neg = symbol "-" >> Neg <$> factor numParser :: Parser Exp numParser = Num . either fromIntegral id <$> integerOrDouble symParser :: Parser Exp symParser = do n <- (:) <$> letter <*> many alphaNum as <- option S.empty $ brackets args ds <- option MS.empty $ MS.fromList <$> (char '_' *> some coord) return $ Sym n as ds args :: Parser Arg args = S.fromList <$> some (coord <* optional comma) coord :: Parser Coord coord = (char 't' *> pure T) <|> (char 'x' *> pure X) <|> (char 'y' *> pure Y) <|> (char 'z' *> pure Z) parseEOM :: String -> Either ErrInfo EOM parseEOM str = case parseString eomParser mempty $ filter (/=' ') str of Success eom -> Right eom Failure err -> Left err getEOMFromFile :: String -> IO EOM getEOMFromFile fn = do str <- readFile fn case parseEOM str of Right eom -> return eom Left err -> throwIO $ ParseException err data ParseException = ParseException ErrInfo deriving Typeable instance Show ParseException where show (ParseException e) = show e instance Exception ParseException
ishiy1993/mk-sode1
src/Del/Parser.hs
Haskell
bsd-3-clause
2,197
module Trans where import Control.Monad.Trans.Reader import Control.Monad.Trans.State import Data.Functor.Identity import Control.Monad.Trans import Control.Monad.Trans.Maybe import Control.Monad rDec :: Num a => Reader a a rDec = fmap (flip (-) 1) ask rShow :: Show a => ReaderT a Identity String rShow = show <$> ask rPrintAndInc :: (Num a, Show a) => ReaderT a IO a rPrintAndInc = do a <- ask liftIO $ print ("Hi: " ++ show a) return (a + 1) sPrintIncAccum :: (Num a, Show a) => StateT a IO String sPrintIncAccum = do state <- get liftIO $ print ("Hi: " ++ show state) put (state + 1) return (show state) isValid :: String -> Bool isValid v = '!' `elem` v maybeExcite :: MaybeT IO String maybeExcite = do v <- liftIO getLine guard $ isValid v return v doExcite :: IO () doExcite = do putStrLn "Say something excite!" excite <- runMaybeT maybeExcite case excite of Nothing -> putStrLn "MOAR EXCITE" Just e -> putStrLn ("Good, was very excite: " ++ e)
nicklawls/haskellbook
src/Trans.hs
Haskell
bsd-3-clause
998
module Logic.ProofNet where
digitalheir/net-prove
src/Logic/ProofNet.hs
Haskell
bsd-3-clause
27
{-# LANGUAGE LambdaCase #-} {-# LANGUAGE NamedFieldPuns #-} module Language.Epilog.AST.Program ( Program (..) ) where -------------------------------------------------------------------------------- import Language.Epilog.AST.Procedure import Language.Epilog.Epilog (Strings, Types) import Language.Epilog.SymbolTable import Language.Epilog.Treelike -------------------------------------------------------------------------------- import qualified Data.Map as Map (keys) import Prelude hiding (Either, null) -------------------------------------------------------------------------------- data Program = Program { types :: Types , procs :: Procedures , scope :: Scope , strings :: Strings } instance Treelike Program where toTree Program { types, procs, scope, strings } = Node "Program" [ Node "Types" (toForest' $ fst <$> types) , Node "Procs" (toForest procs) , Node "Scope" [toTree scope] , Node "Strings" (leaf <$> Map.keys strings) ]
adgalad/Epilog
src/Haskell/Language/Epilog/AST/Program.hs
Haskell
bsd-3-clause
1,113
{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE TemplateHaskell #-} -- Load information on package sources module Stack.Build.Source ( loadSourceMap , SourceMap , PackageSource (..) ) where import Network.HTTP.Client.Conduit (HasHttpManager) import Control.Monad import Control.Monad.Catch (MonadCatch) import Control.Monad.IO.Class import Control.Monad.Logger import Control.Monad.Reader (MonadReader, asks) import Control.Monad.Trans.Resource import Data.Either import Data.Function import Data.List import qualified Data.Map as Map import Data.Map.Strict (Map) import Data.Maybe import Data.Monoid ((<>)) import qualified Data.Set as Set import qualified Data.Text as T import Path import Prelude hiding (FilePath, writeFile) import Stack.Build.Cache import Stack.Build.Types import Stack.BuildPlan (loadMiniBuildPlan, shadowMiniBuildPlan) import Stack.Package import Stack.Types import System.Directory hiding (findExecutable, findFiles) type SourceMap = Map PackageName PackageSource data PackageSource = PSLocal LocalPackage | PSUpstream Version Location (Map FlagName Bool) instance PackageInstallInfo PackageSource where piiVersion (PSLocal lp) = packageVersion $ lpPackage lp piiVersion (PSUpstream v _ _) = v piiLocation (PSLocal _) = Local piiLocation (PSUpstream _ loc _) = loc loadSourceMap :: (MonadIO m, MonadCatch m, MonadReader env m, HasBuildConfig env, MonadBaseControl IO m, HasHttpManager env, MonadLogger m) => BuildOpts -> m (MiniBuildPlan, [LocalPackage], SourceMap) loadSourceMap bopts = do bconfig <- asks getBuildConfig mbp0 <- case bcResolver bconfig of ResolverSnapshot snapName -> do $logDebug $ "Checking resolver: " <> renderSnapName snapName mbp <- loadMiniBuildPlan snapName return mbp ResolverGhc ghc -> return MiniBuildPlan { mbpGhcVersion = fromMajorVersion ghc , mbpPackages = Map.empty } locals <- loadLocals bopts let shadowed = Set.fromList (map (packageName . lpPackage) locals) <> Map.keysSet (bcExtraDeps bconfig) (mbp, extraDeps0) = shadowMiniBuildPlan mbp0 shadowed -- Add the extra deps from the stack.yaml file to the deps grabbed from -- the snapshot extraDeps1 = Map.union (Map.map (\v -> (v, Map.empty)) (bcExtraDeps bconfig)) (Map.map (\mpi -> (mpiVersion mpi, mpiFlags mpi)) extraDeps0) -- Overwrite any flag settings with those from the config file extraDeps2 = Map.mapWithKey (\n (v, f) -> PSUpstream v Local $ fromMaybe f $ Map.lookup n $ bcFlags bconfig) extraDeps1 let sourceMap = Map.unions [ Map.fromList $ flip map locals $ \lp -> let p = lpPackage lp in (packageName p, PSLocal lp) , extraDeps2 , flip fmap (mbpPackages mbp) $ \mpi -> (PSUpstream (mpiVersion mpi) Snap (mpiFlags mpi)) ] return (mbp, locals, sourceMap) loadLocals :: (MonadReader env m, HasBuildConfig env, MonadIO m, MonadLogger m, MonadThrow m, MonadCatch m) => BuildOpts -> m [LocalPackage] loadLocals bopts = do targets <- mapM parseTarget $ case boptsTargets bopts of Left [] -> ["."] Left x -> x Right _ -> [] (dirs, names0) <- case partitionEithers targets of ([], targets') -> return $ partitionEithers targets' (bad, _) -> throwM $ Couldn'tParseTargets bad let names = Set.fromList names0 bconfig <- asks getBuildConfig lps <- forM (Set.toList $ bcPackages bconfig) $ \dir -> do cabalfp <- getCabalFileName dir name <- parsePackageNameFromFilePath cabalfp let wanted = isWanted dirs names dir name pkg <- readPackage PackageConfig { packageConfigEnableTests = wanted && boptsFinalAction bopts == DoTests , packageConfigEnableBenchmarks = wanted && boptsFinalAction bopts == DoBenchmarks , packageConfigFlags = localFlags bopts bconfig name , packageConfigGhcVersion = bcGhcVersion bconfig , packageConfigPlatform = configPlatform $ getConfig bconfig } cabalfp when (packageName pkg /= name) $ throwM $ MismatchedCabalName cabalfp (packageName pkg) mbuildCache <- tryGetBuildCache dir mconfigCache <- tryGetConfigCache dir fileModTimes <- getPackageFileModTimes pkg cabalfp return LocalPackage { lpPackage = pkg , lpWanted = wanted , lpLastConfigOpts = mconfigCache , lpDirtyFiles = maybe True ((/= fileModTimes) . buildCacheTimes) mbuildCache , lpCabalFile = cabalfp , lpDir = dir } let known = Set.fromList $ map (packageName . lpPackage) lps unknown = Set.difference names known unless (Set.null unknown) $ throwM $ UnknownTargets $ Set.toList unknown return lps where parseTarget t = do let s = T.unpack t isDir <- liftIO $ doesDirectoryExist s if isDir then liftM (Right . Left) $ liftIO (canonicalizePath s) >>= parseAbsDir else return $ case parsePackageNameFromString s of Left _ -> Left t Right pname -> Right $ Right pname isWanted dirs names dir name = name `Set.member` names || any (`isParentOf` dir) dirs || any (== dir) dirs -- | All flags for a local package localFlags :: BuildOpts -> BuildConfig -> PackageName -> Map FlagName Bool localFlags bopts bconfig name = Map.union (fromMaybe Map.empty $ Map.lookup name $ boptsFlags bopts) (fromMaybe Map.empty $ Map.lookup name $ bcFlags bconfig)
mietek/stack
src/Stack/Build/Source.hs
Haskell
bsd-3-clause
6,444
{-# LANGUAGE BangPatterns #-} module Atomo.Environment where import Control.Monad.Cont import Control.Monad.State import Data.IORef import Atomo.Method import Atomo.Pattern import Atomo.Pretty import Atomo.Types -- | Evaluate an expression, yielding a value. eval :: Expr -> VM Value eval (EDefine { emPattern = p, eExpr = ev }) = do define p ev return (particle "ok") eval (ESet { ePattern = PMessage p, eExpr = ev }) = do v <- eval ev define p (EPrimitive (eLocation ev) v) return v eval (ESet { ePattern = p, eExpr = ev }) = do v <- eval ev set p v eval (EDispatch { eMessage = Single i n t [] }) = do v <- eval t dispatch (Single i n v []) eval (EDispatch { eMessage = Single i n t os }) = do v <- eval t nos <- forM os $ \(Option oi on oe) -> do ov <- eval oe return (Option oi on ov) dispatch (Single i n v nos) eval (EDispatch { eMessage = Keyword i ns ts [] }) = do vs <- mapM eval ts dispatch (Keyword i ns vs []) eval (EDispatch { eMessage = Keyword i ns ts os }) = do vs <- mapM eval ts nos <- forM os $ \(Option oi on e) -> do ov <- eval e return (Option oi on ov) dispatch (Keyword i ns vs nos) eval (EOperator { eNames = ns, eAssoc = a, ePrec = p }) = do forM_ ns $ \n -> modify $ \s -> s { parserState = (parserState s) { psOperators = (n, (a, p)) : psOperators (parserState s) } } return (particle "ok") eval (EPrimitive { eValue = v }) = return v eval (EBlock { eArguments = as, eContents = es }) = do t <- gets top return (Block t as es) eval (EList { eContents = es }) = do vs <- mapM eval es return (list vs) eval (ETuple { eContents = es }) = do vs <- mapM eval es return (tuple vs) eval (EMacro {}) = return (particle "ok") eval (EForMacro {}) = return (particle "ok") eval (EParticle { eParticle = Single i n mt os }) = do nos <- forM os $ \(Option oi on me) -> liftM (Option oi on) (maybe (return Nothing) (liftM Just . eval) me) nmt <- maybe (return Nothing) (liftM Just . eval) mt return (Particle $ Single i n nmt nos) eval (EParticle { eParticle = Keyword i ns mts os }) = do nmts <- forM mts $ maybe (return Nothing) (liftM Just . eval) nos <- forM os $ \(Option oi on me) -> liftM (Option oi on) (maybe (return Nothing) (liftM Just . eval) me) return (Particle $ Keyword i ns nmts nos) eval (ETop {}) = gets top eval (EVM { eAction = x }) = x eval (EUnquote { eExpr = e }) = raise ["out-of-quote"] [Expression e] eval (EQuote { eExpr = qe }) = do unquoted <- unquote 0 qe return (Expression unquoted) where unquote :: Int -> Expr -> VM Expr unquote 0 (EUnquote { eExpr = e }) = do r <- eval e case r of Expression e' -> return e' _ -> return (EPrimitive Nothing r) unquote n u@(EUnquote { eExpr = e }) = do ne <- unquote (n - 1) e return (u { eExpr = ne }) unquote n q@(EQuote { eExpr = e }) = do ne <- unquote (n + 1) e return q { eExpr = ne } unquote n d@(EDefine { eExpr = e }) = do ne <- unquote n e return (d { eExpr = ne }) unquote n s@(ESet { eExpr = e }) = do ne <- unquote n e return (s { eExpr = ne }) unquote n d@(EDispatch { eMessage = em }) = case em of Keyword { mTargets = ts } -> do nts <- mapM (unquote n) ts return d { eMessage = em { mTargets = nts } } Single { mTarget = t } -> do nt <- unquote n t return d { eMessage = em { mTarget = nt } } unquote n b@(EBlock { eContents = es }) = do nes <- mapM (unquote n) es return b { eContents = nes } unquote n l@(EList { eContents = es }) = do nes <- mapM (unquote n) es return l { eContents = nes } unquote n t@(ETuple { eContents = es }) = do nes <- mapM (unquote n) es return t { eContents = nes } unquote n m@(EMacro { eExpr = e }) = do ne <- unquote n e return m { eExpr = ne } unquote n p@(EParticle { eParticle = ep }) = case ep of Keyword { mNames = ns, mTargets = mes } -> do nmes <- forM mes $ \me -> case me of Nothing -> return Nothing Just e -> liftM Just (unquote n e) return p { eParticle = keyword ns nmes } _ -> return p unquote n d@(ENewDynamic { eExpr = e }) = do ne <- unquote n e return d { eExpr = ne } unquote n d@(EDefineDynamic { eExpr = e }) = do ne <- unquote n e return d { eExpr = ne } unquote n d@(ESetDynamic { eExpr = e }) = do ne <- unquote n e return d { eExpr = ne } unquote n p@(EPrimitive { eValue = Expression e }) = do ne <- unquote n e return p { eValue = Expression ne } unquote n m@(EMatch { eTarget = t, eBranches = bs }) = do nt <- unquote n t nbs <- forM bs $ \(p, e) -> do ne <- unquote n e return (p, ne) return m { eTarget = nt, eBranches = nbs } unquote _ p@(EPrimitive {}) = return p unquote _ t@(ETop {}) = return t unquote _ v@(EVM {}) = return v unquote _ o@(EOperator {}) = return o unquote _ f@(EForMacro {}) = return f unquote _ g@(EGetDynamic {}) = return g unquote _ q@(EMacroQuote {}) = return q eval (ENewDynamic { eBindings = bes, eExpr = e }) = do bvs <- forM bes $ \(n, b) -> do v <- eval b return (n, v) dynamicBind bvs (eval e) eval (EDefineDynamic { eName = n, eExpr = e }) = do v <- eval e modify $ \env -> env { dynamic = newDynamic n v (dynamic env) } return v eval (ESetDynamic { eName = n, eExpr = e }) = do v <- eval e d <- gets dynamic if isBound n d then modify $ \env -> env { dynamic = setDynamic n v d } else raise ["unbound-dynamic"] [string n] return v eval (EGetDynamic { eName = n }) = do mv <- gets (getDynamic n . dynamic) maybe (raise ["unknown-dynamic"] [string n]) return mv eval (EMacroQuote { eName = n, eRaw = r, eFlags = fs }) = do t <- gets (psEnvironment . parserState) dispatch $ keyword' ["quote", "as"] [t, string r, particle n] [option "flags" (list (map Character fs))] eval (EMatch { eTarget = t, eBranches = bs }) = do v <- eval t ids <- gets primitives matchBranches ids bs v matchBranches :: IDs -> [(Pattern, Expr)] -> Value -> VM Value matchBranches _ [] v = raise ["no-match-for"] [v] matchBranches ids ((p, e):ps) v = do p' <- matchable' p if match ids Nothing p' v then newScope $ set p' v >> eval e else matchBranches ids ps v -- | Evaluate multiple expressions, returning the last result. evalAll :: [Expr] -> VM Value evalAll [] = throwError NoExpressions evalAll [e] = eval e evalAll (e:es) = eval e >> evalAll es -- | Create a new empty object, passing a function to initialize it. newObject :: Delegates -> (MethodMap, MethodMap) -> VM Value newObject ds mm = do ms <- liftIO (newIORef mm) return (Object ds ms) -- | Run x with t as its toplevel object. withTop :: Value -> VM a -> VM a withTop !t x = do o <- gets top modify (\e -> e { top = t }) res <- x modify (\e -> e { top = o }) return res -- | Execute an action with the given dynamic bindings. dynamicBind :: [(String, Value)] -> VM a -> VM a dynamicBind bs x = do modify $ \e -> e { dynamic = foldl (\m (n, v) -> bindDynamic n v m) (dynamic e) bs } res <- x modify $ \e -> e { dynamic = foldl (\m (n, _) -> unbindDynamic n m) (dynamic e) bs } return res -- | Execute an action with a new toplevel delegating to the old one. newScope :: VM a -> VM a newScope x = do t <- gets top nt <- newObject [t] noMethods withTop nt x ----------------------------------------------------------------------------- -- Define ------------------------------------------------------------------- ----------------------------------------------------------------------------- -- | Insert a method on a single value. defineOn :: Value -> Method -> VM () defineOn v m' = liftIO $ do (oss, oks) <- readIORef (oMethods v) writeIORef (oMethods v) $ case mPattern m of Single {} -> (addMethod m oss, oks) Keyword {} -> (oss, addMethod m oks) where m = m' { mPattern = setSelf v (mPattern m') } -- | Define a method on all roles involved in its pattern. define :: Message Pattern -> Expr -> VM () define !p !e = do is <- gets primitives newp <- matchable p m <- method newp e os <- targets is newp forM_ os (flip defineOn m) where method p' (EPrimitive _ v) = return (Slot p' v) method p' e' = gets top >>= \t -> return (Responder p' t e') -- | Swap out a reference match with PThis, for inserting on an object. setSelf :: Value -> Message Pattern -> Message Pattern setSelf v (Keyword i ns ps os) = Keyword i ns (map (setSelf' v) ps) os setSelf v (Single i n t os) = Single i n (setSelf' v t) os setSelf' :: Value -> Pattern -> Pattern setSelf' v (PMatch x) | v == x = PThis setSelf' v (PMessage m) = PMessage $ setSelf v m setSelf' v (PNamed n p') = PNamed n (setSelf' v p') setSelf' v (PInstance p) = PInstance (setSelf' v p) setSelf' v (PStrict p) = PStrict (setSelf' v p) setSelf' _ p' = p' -- | Pattern-match a value, inserting bindings into the current toplevel. set :: Pattern -> Value -> VM Value set p v = do is <- gets primitives if match is Nothing p v then do forM_ (bindings' p v) $ \(p', v') -> define p' (EPrimitive Nothing v') return v else throwError (Mismatch p v) -- | Turn any PObject patterns into PMatches. matchable :: Message Pattern -> VM (Message Pattern) matchable p'@(Single { mTarget = t }) = do t' <- matchable' t return p' { mTarget = t' } matchable p'@(Keyword { mTargets = ts }) = do ts' <- mapM matchable' ts return p' { mTargets = ts' } matchable' :: Pattern -> VM Pattern matchable' PThis = liftM PMatch (gets top) matchable' (PObject oe) = liftM PMatch (eval oe) matchable' (PInstance p) = liftM PInstance (matchable' p) matchable' (PStrict p) = liftM PStrict (matchable' p) matchable' (PVariable p) = liftM PVariable (matchable' p) matchable' (PNamed n p') = liftM (PNamed n) (matchable' p') matchable' (PMessage m) = liftM PMessage (matchable m) matchable' p' = return p' -- | Find the target objects for a message pattern. targets :: IDs -> Message Pattern -> VM [Value] targets is (Single { mTarget = p }) = targets' is p targets is (Keyword { mTargets = ps }) = targets' is (head ps) -- | Find the target objects for a pattern. targets' :: IDs -> Pattern -> VM [Value] targets' _ (PMatch v) = liftM (: []) (objectFor v) targets' is (PNamed _ p) = targets' is p targets' is PAny = return [idObject is] targets' is (PList _) = return [idList is] targets' is (PTuple _) = return [idTuple is] targets' is (PHeadTail h t) = do ht <- targets' is h tt <- targets' is t if idCharacter is `elem` ht || idString is `elem` tt then return [idList is, idString is] else return [idList is] targets' is (PPMKeyword {}) = return [idParticle is] targets' is (PExpr _) = return [idExpression is] targets' is (PInstance p) = targets' is p targets' is (PStrict p) = targets' is p targets' is (PVariable _) = return [idObject is] targets' is (PMessage m) = targets is m targets' _ p = error $ "no targets for " ++ show p ----------------------------------------------------------------------------- -- Dispatch ----------------------------------------------------------------- ----------------------------------------------------------------------------- -- | Dispatch a message to all roles and return a value. -- -- If the message is not understood, @\@did-not-understand:(at:)@ is sent to all -- roles until one responds to it. If none of them handle it, a -- @\@did-not-understand:@ error is raised. dispatch :: Message Value -> VM Value dispatch !m = do find <- findMethod (target m) m case find of Just method -> runMethod method m Nothing -> case m of Single { mTarget = t } -> sendDNU t Keyword { mTargets = ts } -> sendDNUs ts 0 where target (Single { mTarget = t }) = t target (Keyword { mTargets = ts }) = head ts sendDNU v = do find <- findMethod v (dnuSingle v) case find of Nothing -> throwError $ DidNotUnderstand m Just method -> runMethod method (dnuSingle v) sendDNUs [] _ = throwError $ DidNotUnderstand m sendDNUs (v:vs') n = do find <- findMethod v (dnu v n) case find of Nothing -> sendDNUs vs' (n + 1) Just method -> runMethod method (dnu v n) dnu v n = keyword ["did-not-understand", "at"] [v, Message m, Integer n] dnuSingle v = keyword ["did-not-understand"] [v, Message m] -- | Find a method on an object that responds to a given message, searching -- its delegates if necessary. findMethod :: Value -> Message Value -> VM (Maybe Method) findMethod v m = do is <- gets primitives o <- objectFor v ms <- liftIO (readIORef (oMethods o)) case relevant is o ms m of Nothing -> findFirstMethod m (oDelegates o) mt -> return mt -- | Find the first value that has a method defiend for a given message. findFirstMethod :: Message Value -> [Value] -> VM (Maybe Method) findFirstMethod _ [] = return Nothing findFirstMethod m (v:vs) = do r <- findMethod v m case r of Nothing -> findFirstMethod m vs _ -> return r -- | Find a method on an object that responds to a given message. relevant :: IDs -> Value -> (MethodMap, MethodMap) -> Message Value -> Maybe Method relevant ids o ms m = lookupMap (mID m) (methods m) >>= firstMatch ids (Just o) m where methods (Single {}) = fst ms methods (Keyword {}) = snd ms firstMatch _ _ _ [] = Nothing firstMatch ids' r' m' (mt:mts) | match ids' r' (PMessage (mPattern mt)) (Message m') = Just mt | otherwise = firstMatch ids' r' m' mts -- | Evaluate a method. -- -- Responder methods: evaluates its expression in a scope with the pattern's -- bindings, delegating to the method's context. -- -- Slot methods: simply returns the value. -- -- Macro methods: evaluates its expression in a scope with the pattern's -- bindings. runMethod :: Method -> Message Value -> VM Value runMethod (Slot { mValue = v }) _ = return v runMethod (Responder { mPattern = p, mContext = c, mExpr = e }) m = do nt <- newObject [c] (bindings p m, emptyMap) forM_ (mOptionals p) $ \(Option i n (PObject oe)) -> case filter (\(Option x _ _) -> x == i) (mOptionals m) of [] -> do d <- withTop nt (eval oe) define (Single i n (PMatch nt) []) (EPrimitive Nothing d) (Option oi on ov:_) -> define (Single oi on (PMatch nt) []) (EPrimitive Nothing ov) withTop nt $ eval e runMethod (Macro { mPattern = p, mExpr = e }) m = do t <- gets (psEnvironment . parserState) nt <- newObject [t] (bindings p m, emptyMap) forM_ (mOptionals p) $ \(Option i n (PExpr d)) -> case filter (\(Option x _ _) -> x == i) (mOptionals m) of [] -> define (Single i n (PMatch nt) []) (EPrimitive Nothing (Expression d)) (Option oi on ov:_) -> define (Single oi on (PMatch nt) []) (EPrimitive Nothing ov) withTop nt $ eval e -- | Get the object for a value. objectFor :: Value -> VM Value {-# INLINE objectFor #-} objectFor !v = gets primitives >>= \is -> return $ objectFrom is v -- | Raise a keyword particle as an error. raise :: [String] -> [Value] -> VM a {-# INLINE raise #-} raise ns vs = throwError . Error $ keyParticleN ns vs -- | Raise a single particle as an error. raise' :: String -> VM a {-# INLINE raise' #-} raise' = throwError . Error . particle -- | Convert an AtomoError into a value and raise it as an error. throwError :: AtomoError -> VM a {-throwError e = error ("panic: " ++ show (pretty e))-} throwError e = gets top >>= \t -> do r <- dispatch (keyword ["responds-to?"] [t, particle "Error"]) if r == Boolean True then do dispatch (msg t) error ("panic: error returned normally for: " ++ show e) else error ("panic: " ++ show (pretty e)) where msg t = keyword ["error"] [t, asValue e]
vito/atomo
src/Atomo/Environment.hs
Haskell
bsd-3-clause
16,982
module Test where test :: Int -> Int -> IO () test a b = putStrLn $ mconcat [ "Addition: " , show addition , ", Subtraction: " , show subtraction ] where addition = a + b subtraction = a - b main :: IO () main = output 1 where output 0 = test 0 0 output a = test a 2
hecrj/haskell-format
test/specs/where/output.hs
Haskell
bsd-3-clause
436
{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveGeneric #-} -- | A pool of handles module Data.Concurrent.Queue.Roq.HandlePool ( -- * Starting the server hroq_handle_pool_server , hroq_handle_pool_server_closure , hroq_handle_pool_server_pid -- * API , append -- * Types -- , CallbackFun -- * Debug , ping , safeOpenFile -- * Remote Table , Data.Concurrent.Queue.Roq.HandlePool.__remoteTable ) where import Control.Distributed.Process hiding (call) import Control.Distributed.Process.Closure import Control.Distributed.Process.Platform.ManagedProcess hiding (runProcess) import Control.Distributed.Process.Platform.Time import Control.Distributed.Process.Serializable() import Control.Exception hiding (try,catch) import Data.Binary import Data.Concurrent.Queue.Roq.Logger import Data.List import Data.Typeable (Typeable) import GHC.Generics import System.Directory import System.IO import System.IO.Error import qualified Data.ByteString.Lazy.Char8 as B import qualified Data.Map as Map -------------------------------------------------------------------------------- -- Types -- -------------------------------------------------------------------------------- {- -define(MONITOR_INTERVAL_MS, 30000). -} mONITOR_INTERVAL_MS :: Delay -- mONITOR_INTERVAL_MS = Delay $ milliSeconds 30000 mONITOR_INTERVAL_MS = Delay $ milliSeconds 9000 ------------------------------------------------------------------------ -- Data Types ------------------------------------------------------------------------ -- Call operations data AppendFile = AppendFile FilePath B.ByteString deriving (Show,Typeable,Generic) instance Binary AppendFile where data CloseAppend = CloseAppend FilePath deriving (Show,Typeable,Generic) instance Binary CloseAppend where -- Cast operations data Ping = Ping deriving (Typeable, Generic, Eq, Show) instance Binary Ping where -- --------------------------------------------------------------------- data State = ST { stAppends :: Map.Map FilePath Handle } deriving (Show) emptyState :: State emptyState = ST Map.empty -------------------------------------------------------------------------------- -- API -- -------------------------------------------------------------------------------- hroq_handle_pool_server :: Process () hroq_handle_pool_server = do logm $ "HroqHandlePool:hroq_handle_pool_server entered" start_handle_pool_server hroq_handle_pool_server_pid :: Process ProcessId hroq_handle_pool_server_pid = getServerPid -- --------------------------------------------------------------------- append :: ProcessId -> FilePath -> B.ByteString -> Process () append pid filename val = call pid (AppendFile filename val) closeAppend :: ProcessId -> FilePath -> Process () closeAppend pid filename = call pid (CloseAppend filename) ping :: Process () ping = do pid <- getServerPid cast pid Ping -- --------------------------------------------------------------------- getServerPid :: Process ProcessId getServerPid = do mpid <- whereis hroqHandlePoolServerProcessName case mpid of Just pid -> return pid Nothing -> do logm "HroqHandlePool:getServerPid failed" error "HroqHandlePool:blow up" -- ------------------------------------- hroqHandlePoolServerProcessName :: String hroqHandlePoolServerProcessName = "HroqHandlePool" -- --------------------------------------------------------------------- start_handle_pool_server :: Process () start_handle_pool_server = do logm $ "HroqHandlePool:start_handle_pool_server entered" self <- getSelfPid register hroqHandlePoolServerProcessName self serve () initFunc serverDefinition where initFunc :: InitHandler () State initFunc _ = do logm $ "HroqHandlePool:start.initFunc" return $ InitOk emptyState mONITOR_INTERVAL_MS serverDefinition :: ProcessDefinition State serverDefinition = defaultProcess { apiHandlers = [ handleCall handleAppendFileCall , handleCall handleCloseAppendCall -- , handleCast handlePublishConsumerStatsCast , handleCast (\s Ping -> do {logm $ "HroqHandlePool:ping"; continue s }) ] , infoHandlers = [ handleInfo handleInfoProcessMonitorNotification ] , timeoutHandler = handleTimeout , shutdownHandler = \_ reason -> do { logm $ "HroqHandlePool terminateHandler:" ++ (show reason) } } :: ProcessDefinition State -- --------------------------------------------------------------------- -- Implementation -- --------------------------------------------------------------------- -- --------------------------------------------------------------------- handleAppendFileCall :: State -> AppendFile -> Process (ProcessReply () State) handleAppendFileCall st (AppendFile fileName val) = do -- logm $ "HroqHandlePool.handleAppendFileCall entered for :" ++ show fileName (st',h) <- case Map.lookup fileName (stAppends st) of Just h -> do -- logm $ "HroqHandlePool.handleAppendFileCall re-using handle" return (st,h) Nothing -> do logm $ "HroqHandlePool.handleAppendFileCall opening file:" ++ show fileName h <- liftIO $ safeOpenFile fileName AppendMode return (st { stAppends = Map.insert fileName h (stAppends st) },h) -- logm $ "HroqHandlePool.handleAppendFileCall writing:" ++ show val liftIO $ B.hPut h val -- >> hFlush h reply () st' -- --------------------------------------------------------------------- handleCloseAppendCall :: State -> CloseAppend -> Process (ProcessReply () State) handleCloseAppendCall st (CloseAppend fileName) = do logm $ "HroqHandlePool.handleCloseAppendCall entered for :" ++ show fileName st' <- case Map.lookup fileName (stAppends st) of Just h -> do liftIO $ hClose h return st { stAppends = Map.delete fileName (stAppends st) } Nothing -> do return st reply () st' -- --------------------------------------------------------------------- -- |Try to open a file in the given mode, creating any required -- directory structure if necessary safeOpenFile :: FilePath -> IOMode -> IO Handle safeOpenFile filename mode = handle handler (openBinaryFile filename mode) where handler e | isDoesNotExistError e = do createDirectoryIfMissing True $ take (1+(last $ elemIndices '/' filename)) filename -- maybe the path does not exist safeOpenFile filename mode | otherwise= if ("invalid" `isInfixOf` ioeGetErrorString e) then error $ "writeResource: " ++ show e ++ " defPath and/or keyResource are not suitable for a file path" else do hPutStrLn stderr $ "defaultWriteResource: " ++ show e ++ " in file: " ++ filename ++ " retrying" safeOpenFile filename mode -- --------------------------------------------------------------------- handleTimeout :: TimeoutHandler State handleTimeout st currDelay = do logm $ "HroqHandlePool:handleTimeout entered" mapM_ (\h -> liftIO $ hClose h) $ Map.elems (stAppends st) timeoutAfter currDelay (st {stAppends = Map.empty }) -- timeoutAfter currDelay st -- --------------------------------------------------------------------- handleShutdown :: ShutdownHandler State handleShutdown st reason = do logm $ "HroqHandlePool.handleShutdown called for:" ++ show reason return () -- --------------------------------------------------------------------- handleInfoProcessMonitorNotification :: State -> ProcessMonitorNotification -> Process (ProcessAction State) handleInfoProcessMonitorNotification st n@(ProcessMonitorNotification ref _pid _reason) = do logm $ "HroqHandlePool:handleInfoProcessMonitorNotification called with: " ++ show n let m = stAppends st {- case Map.lookup ref m of Just key -> continue st { stMdict = Map.delete ref m , stGdict = Map.delete key g } Nothing -> continue st -} continue st -- --------------------------------------------------------------------- -- NOTE: the TH crap has to be a the end, as it can only see the stuff lexically before it in the file $(remotable [ 'hroq_handle_pool_server ]) hroq_handle_pool_server_closure :: Closure (Process ()) hroq_handle_pool_server_closure = ( $(mkStaticClosure 'hroq_handle_pool_server)) -- EOF
alanz/hroq
src/Data/Concurrent/Queue/Roq/HandlePool.hs
Haskell
bsd-3-clause
8,601
-- -- An AST format for generated code in imperative languages -- module SyntaxImp -- Uncomment the below line to expose all top level symbols for -- repl testing {- () -- -} where data IId = IId [String] (Maybe Int) deriving( Show ) data IAnnTy = INoAnn ITy | IMut ITy -- things are immutable by default deriving( Show ) data ITy = IBool | IArr IAnnTy (Maybe Int) | IByte | IPtr IAnnTy | IStruct IId deriving( Show ) -- Id, type pair data IAnnId = IAnnId IId IAnnTy deriving( Show ) data IDecl = IFun IId [IAnnId] IAnnTy [IStmt] | IStructure IId [IAnnId] deriving( Show ) data IStmt = IReturn IId deriving( Show )
ethanpailes/bbc
src/SyntaxImp.hs
Haskell
bsd-3-clause
707
{-# LANGUAGE DeriveGeneric #-} -- | This is a wrapper around IO that permits SMT queries module Language.Fixpoint.Solver.Monad ( -- * Type SolveM -- * Execution , runSolverM -- * Get Binds , getBinds -- * SMT Query , filterValid -- * Debug , Stats , tickIter , stats , numIter ) where import Control.DeepSeq import GHC.Generics import Language.Fixpoint.Utils.Progress import Language.Fixpoint.Misc (groupList) import Language.Fixpoint.Types.Config (Config, solver, real) import qualified Language.Fixpoint.Types as F import qualified Language.Fixpoint.Types.Errors as E import qualified Language.Fixpoint.Smt.Theories as Thy import Language.Fixpoint.Types.PrettyPrint import Language.Fixpoint.Smt.Interface import Language.Fixpoint.Solver.Validate import Language.Fixpoint.Solver.Solution import Data.Maybe (isJust, catMaybes) import Text.PrettyPrint.HughesPJ (text) import Control.Monad.State.Strict import qualified Data.HashMap.Strict as M --------------------------------------------------------------------------- -- | Solver Monadic API --------------------------------------------------- --------------------------------------------------------------------------- type SolveM = StateT SolverState IO data SolverState = SS { ssCtx :: !Context -- ^ SMT Solver Context , ssBinds :: !F.BindEnv -- ^ All variables and types , ssStats :: !Stats -- ^ Solver Statistics } data Stats = Stats { numCstr :: !Int -- ^ # Horn Constraints , numIter :: !Int -- ^ # Refine Iterations , numBrkt :: !Int -- ^ # smtBracket calls (push/pop) , numChck :: !Int -- ^ # smtCheckUnsat calls , numVald :: !Int -- ^ # times SMT said RHS Valid } deriving (Show, Generic) instance NFData Stats stats0 :: F.GInfo c b -> Stats stats0 fi = Stats nCs 0 0 0 0 where nCs = M.size $ F.cm fi instance PTable Stats where ptable s = DocTable [ (text "# Constraints" , pprint (numCstr s)) , (text "# Refine Iterations" , pprint (numIter s)) , (text "# SMT Push & Pops" , pprint (numBrkt s)) , (text "# SMT Queries (Valid)" , pprint (numVald s)) , (text "# SMT Queries (Total)" , pprint (numChck s)) ] --------------------------------------------------------------------------- runSolverM :: Config -> F.GInfo c b -> Int -> SolveM a -> IO a --------------------------------------------------------------------------- runSolverM cfg fi t act = do ctx <- makeContext (not $ real cfg) (solver cfg) file fst <$> runStateT (declare fi >> act) (SS ctx be $ stats0 fi) where be = F.bs fi file = F.fileName fi -- (inFile cfg) --------------------------------------------------------------------------- getBinds :: SolveM F.BindEnv --------------------------------------------------------------------------- getBinds = ssBinds <$> get --------------------------------------------------------------------------- getIter :: SolveM Int --------------------------------------------------------------------------- getIter = numIter . ssStats <$> get --------------------------------------------------------------------------- incIter, incBrkt :: SolveM () --------------------------------------------------------------------------- incIter = modifyStats $ \s -> s {numIter = 1 + numIter s} incBrkt = modifyStats $ \s -> s {numBrkt = 1 + numBrkt s} --------------------------------------------------------------------------- incChck, incVald :: Int -> SolveM () --------------------------------------------------------------------------- incChck n = modifyStats $ \s -> s {numChck = n + numChck s} incVald n = modifyStats $ \s -> s {numVald = n + numVald s} withContext :: (Context -> IO a) -> SolveM a withContext k = (lift . k) =<< getContext getContext :: SolveM Context getContext = ssCtx <$> get modifyStats :: (Stats -> Stats) -> SolveM () modifyStats f = modify $ \s -> s { ssStats = f (ssStats s) } --------------------------------------------------------------------------- -- | SMT Interface -------------------------------------------------------- --------------------------------------------------------------------------- filterValid :: F.Pred -> Cand a -> SolveM [a] --------------------------------------------------------------------------- filterValid p qs = do qs' <- withContext $ \me -> smtBracket me $ filterValid_ p qs me -- stats incBrkt incChck (length qs) incVald (length qs') return qs' filterValid_ :: F.Pred -> Cand a -> Context -> IO [a] filterValid_ p qs me = catMaybes <$> do smtAssert me p forM qs $ \(q, x) -> smtBracket me $ do smtAssert me (F.PNot q) valid <- smtCheckUnsat me return $ if valid then Just x else Nothing --------------------------------------------------------------------------- declare :: F.GInfo c a -> SolveM () --------------------------------------------------------------------------- declare fi = withContext $ \me -> do xts <- either E.die return $ declSymbols fi let ess = declLiterals fi forM_ xts $ uncurry $ smtDecl me forM_ ess $ smtDistinct me declLiterals :: F.GInfo c a -> [[F.Expr]] declLiterals fi = [es | (_, es) <- tess ] where notFun = not . F.isFunctionSortedReft . (`F.RR` F.trueReft) tess = groupList [(t, F.expr x) | (x, t) <- F.toListSEnv $ F.lits fi, notFun t] declSymbols :: F.GInfo c a -> Either E.Error [(F.Symbol, F.Sort)] declSymbols = fmap dropThy . symbolSorts where dropThy = filter (not . isThy . fst) isThy = isJust . Thy.smt2Symbol --------------------------------------------------------------------------- stats :: SolveM Stats --------------------------------------------------------------------------- stats = ssStats <$> get --------------------------------------------------------------------------- tickIter :: Bool -> SolveM Int --------------------------------------------------------------------------- tickIter newScc = progIter newScc >> incIter >> getIter progIter :: Bool -> SolveM () progIter newScc = lift $ when newScc progressTick
gridaphobe/liquid-fixpoint
src/Language/Fixpoint/Solver/Monad.hs
Haskell
bsd-3-clause
6,560
{-# LANGUAGE OverloadedStrings #-} module TW.Utils where import Data.Char import qualified Data.Text as T capitalizeText :: T.Text -> T.Text capitalizeText = T.pack . go . T.unpack where go (x:xs) = toUpper x : xs go [] = [] uncapitalizeText :: T.Text -> T.Text uncapitalizeText = T.pack . go . T.unpack where go (x:xs) = toLower x : xs go [] = [] makeSafePrefixedFieldName :: T.Text -> T.Text makeSafePrefixedFieldName = T.filter isAlphaNum
typed-wire/typed-wire
src/TW/Utils.hs
Haskell
mit
490
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="ru-RU"> <title>ViewState</title> <maps> <homeID>viewstate</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Search</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
denniskniep/zap-extensions
addOns/viewstate/src/main/javahelp/help_ru_RU/helpset_ru_RU.hs
Haskell
apache-2.0
960
{-# LANGUAGE Haskell98 #-} {-# LINE 1 "Data/Streaming/Zlib.hs" #-} {-# LANGUAGE DeriveDataTypeable #-} -- | This is a middle-level wrapper around the zlib C API. It allows you to -- work fully with bytestrings and not touch the FFI at all, but is still -- low-level enough to allow you to implement high-level abstractions such as -- enumerators. Significantly, it does not use lazy IO. -- -- You'll probably need to reference the docs a bit to understand the -- WindowBits parameters below, but a basic rule of thumb is 15 is for zlib -- compression, and 31 for gzip compression. -- -- A simple streaming compressor in pseudo-code would look like: -- -- > def <- initDeflate ... -- > popper <- feedDeflate def rawContent -- > pullPopper popper -- > ... -- > finishDeflate def sendCompressedData -- -- You can see a more complete example is available in the included -- file-test.hs. module Data.Streaming.Zlib ( -- * Inflate Inflate , initInflate , initInflateWithDictionary , feedInflate , finishInflate , flushInflate , getUnusedInflate , isCompleteInflate -- * Deflate , Deflate , initDeflate , initDeflateWithDictionary , feedDeflate , finishDeflate , flushDeflate , fullFlushDeflate -- * Data types , WindowBits (..) , defaultWindowBits , ZlibException (..) , Popper , PopperRes (..) ) where import Data.Streaming.Zlib.Lowlevel import Foreign.ForeignPtr import Foreign.C.Types import Data.ByteString.Unsafe import Codec.Compression.Zlib (WindowBits(WindowBits), defaultWindowBits) import qualified Data.ByteString as S import Data.ByteString.Lazy.Internal (defaultChunkSize) import Data.Typeable (Typeable) import Control.Exception (Exception) import Control.Monad (when) import Data.IORef type ZStreamPair = (ForeignPtr ZStreamStruct, ForeignPtr CChar) -- | The state of an inflation (eg, decompression) process. All allocated -- memory is automatically reclaimed by the garbage collector. -- Also can contain the inflation dictionary that is used for decompression. data Inflate = Inflate ZStreamPair (IORef S.ByteString) -- last ByteString fed in, needed for getUnusedInflate (IORef Bool) -- set True when zlib indicates that inflation is complete (Maybe S.ByteString) -- dictionary -- | The state of a deflation (eg, compression) process. All allocated memory -- is automatically reclaimed by the garbage collector. newtype Deflate = Deflate ZStreamPair -- | Exception that can be thrown from the FFI code. The parameter is the -- numerical error code from the zlib library. Quoting the zlib.h file -- directly: -- -- * #define Z_OK 0 -- -- * #define Z_STREAM_END 1 -- -- * #define Z_NEED_DICT 2 -- -- * #define Z_ERRNO (-1) -- -- * #define Z_STREAM_ERROR (-2) -- -- * #define Z_DATA_ERROR (-3) -- -- * #define Z_MEM_ERROR (-4) -- -- * #define Z_BUF_ERROR (-5) -- -- * #define Z_VERSION_ERROR (-6) data ZlibException = ZlibException Int deriving (Show, Typeable) instance Exception ZlibException -- | Some constants for the error codes, used internally zStreamEnd :: CInt zStreamEnd = 1 zNeedDict :: CInt zNeedDict = 2 zBufError :: CInt zBufError = -5 -- | Initialize an inflation process with the given 'WindowBits'. You will need -- to call 'feedInflate' to feed compressed data to this and -- 'finishInflate' to extract the final chunk of decompressed data. initInflate :: WindowBits -> IO Inflate initInflate w = do zstr <- zstreamNew inflateInit2 zstr w fzstr <- newForeignPtr c_free_z_stream_inflate zstr fbuff <- mallocForeignPtrBytes defaultChunkSize withForeignPtr fbuff $ \buff -> c_set_avail_out zstr buff $ fromIntegral defaultChunkSize lastBS <- newIORef S.empty complete <- newIORef False return $ Inflate (fzstr, fbuff) lastBS complete Nothing -- | Initialize an inflation process with the given 'WindowBits'. -- Unlike initInflate a dictionary for inflation is set which must -- match the one set during compression. initInflateWithDictionary :: WindowBits -> S.ByteString -> IO Inflate initInflateWithDictionary w bs = do zstr <- zstreamNew inflateInit2 zstr w fzstr <- newForeignPtr c_free_z_stream_inflate zstr fbuff <- mallocForeignPtrBytes defaultChunkSize withForeignPtr fbuff $ \buff -> c_set_avail_out zstr buff $ fromIntegral defaultChunkSize lastBS <- newIORef S.empty complete <- newIORef False return $ Inflate (fzstr, fbuff) lastBS complete (Just bs) -- | Initialize a deflation process with the given compression level and -- 'WindowBits'. You will need to call 'feedDeflate' to feed uncompressed -- data to this and 'finishDeflate' to extract the final chunks of compressed -- data. initDeflate :: Int -- ^ Compression level -> WindowBits -> IO Deflate initDeflate level w = do zstr <- zstreamNew deflateInit2 zstr level w 8 StrategyDefault fzstr <- newForeignPtr c_free_z_stream_deflate zstr fbuff <- mallocForeignPtrBytes defaultChunkSize withForeignPtr fbuff $ \buff -> c_set_avail_out zstr buff $ fromIntegral defaultChunkSize return $ Deflate (fzstr, fbuff) -- | Initialize an deflation process with the given compression level and -- 'WindowBits'. -- Unlike initDeflate a dictionary for deflation is set. initDeflateWithDictionary :: Int -- ^ Compression level -> S.ByteString -- ^ Deflate dictionary -> WindowBits -> IO Deflate initDeflateWithDictionary level bs w = do zstr <- zstreamNew deflateInit2 zstr level w 8 StrategyDefault fzstr <- newForeignPtr c_free_z_stream_deflate zstr fbuff <- mallocForeignPtrBytes defaultChunkSize unsafeUseAsCStringLen bs $ \(cstr, len) -> do c_call_deflate_set_dictionary zstr cstr $ fromIntegral len withForeignPtr fbuff $ \buff -> c_set_avail_out zstr buff $ fromIntegral defaultChunkSize return $ Deflate (fzstr, fbuff) -- | Feed the given 'S.ByteString' to the inflater. Return a 'Popper', -- an IO action that returns the decompressed data a chunk at a time. -- The 'Popper' must be called to exhaustion before using the 'Inflate' -- object again. -- -- Note that this function automatically buffers the output to -- 'defaultChunkSize', and therefore you won't get any data from the popper -- until that much decompressed data is available. After you have fed all of -- the compressed data to this function, you can extract your final chunk of -- decompressed data using 'finishInflate'. feedInflate :: Inflate -> S.ByteString -> IO Popper feedInflate (Inflate (fzstr, fbuff) lastBS complete inflateDictionary) bs = do -- Write the BS to lastBS for use by getUnusedInflate. This is -- theoretically unnecessary, since we could just grab the pointer from the -- fzstr when needed. However, in that case, we wouldn't be holding onto a -- reference to the ForeignPtr, so the GC may decide to collect the -- ByteString in the interim. writeIORef lastBS bs withForeignPtr fzstr $ \zstr -> unsafeUseAsCStringLen bs $ \(cstr, len) -> c_set_avail_in zstr cstr $ fromIntegral len return $ drain fbuff fzstr (Just bs) inflate False where inflate zstr = do res <- c_call_inflate_noflush zstr res2 <- if (res == zNeedDict) then maybe (return zNeedDict) (\dict -> (unsafeUseAsCStringLen dict $ \(cstr, len) -> do c_call_inflate_set_dictionary zstr cstr $ fromIntegral len c_call_inflate_noflush zstr)) inflateDictionary else return res when (res2 == zStreamEnd) (writeIORef complete True) return res2 -- | An IO action that returns the next chunk of data, returning 'Nothing' when -- there is no more data to be popped. type Popper = IO PopperRes data PopperRes = PRDone | PRNext !S.ByteString | PRError !ZlibException deriving (Show, Typeable) -- | Ensure that the given @ByteString@ is not deallocated. keepAlive :: Maybe S.ByteString -> IO a -> IO a keepAlive Nothing = id keepAlive (Just bs) = unsafeUseAsCStringLen bs . const drain :: ForeignPtr CChar -> ForeignPtr ZStreamStruct -> Maybe S.ByteString -> (ZStream' -> IO CInt) -> Bool -> Popper drain fbuff fzstr mbs func isFinish = withForeignPtr fzstr $ \zstr -> keepAlive mbs $ do res <- func zstr if res < 0 && res /= zBufError then return $ PRError $ ZlibException $ fromIntegral res else do avail <- c_get_avail_out zstr let size = defaultChunkSize - fromIntegral avail toOutput = avail == 0 || (isFinish && size /= 0) if toOutput then withForeignPtr fbuff $ \buff -> do bs <- S.packCStringLen (buff, size) c_set_avail_out zstr buff $ fromIntegral defaultChunkSize return $ PRNext bs else return PRDone -- | As explained in 'feedInflate', inflation buffers your decompressed -- data. After you call 'feedInflate' with your last chunk of compressed -- data, you will likely have some data still sitting in the buffer. This -- function will return it to you. finishInflate :: Inflate -> IO S.ByteString finishInflate (Inflate (fzstr, fbuff) _ _ _) = withForeignPtr fzstr $ \zstr -> withForeignPtr fbuff $ \buff -> do avail <- c_get_avail_out zstr let size = defaultChunkSize - fromIntegral avail bs <- S.packCStringLen (buff, size) c_set_avail_out zstr buff $ fromIntegral defaultChunkSize return bs -- | Flush the inflation buffer. Useful for interactive application. -- -- This is actually a synonym for 'finishInflate'. It is provided for its more -- semantic name. -- -- Since 0.0.3 flushInflate :: Inflate -> IO S.ByteString flushInflate = finishInflate -- | Retrieve any data remaining after inflating. For more information on motivation, see: -- -- <https://github.com/fpco/streaming-commons/issues/20> -- -- Since 0.1.11 getUnusedInflate :: Inflate -> IO S.ByteString getUnusedInflate (Inflate (fzstr, _) ref _ _) = do bs <- readIORef ref len <- withForeignPtr fzstr c_get_avail_in return $ S.drop (S.length bs - fromIntegral len) bs -- | Returns True if the inflater has reached end-of-stream, or False if -- it is still expecting more data. -- -- Since 0.1.18 isCompleteInflate :: Inflate -> IO Bool isCompleteInflate (Inflate _ _ complete _) = readIORef complete -- | Feed the given 'S.ByteString' to the deflater. Return a 'Popper', -- an IO action that returns the compressed data a chunk at a time. -- The 'Popper' must be called to exhaustion before using the 'Deflate' -- object again. -- -- Note that this function automatically buffers the output to -- 'defaultChunkSize', and therefore you won't get any data from the popper -- until that much compressed data is available. After you have fed all of the -- decompressed data to this function, you can extract your final chunks of -- compressed data using 'finishDeflate'. feedDeflate :: Deflate -> S.ByteString -> IO Popper feedDeflate (Deflate (fzstr, fbuff)) bs = do withForeignPtr fzstr $ \zstr -> unsafeUseAsCStringLen bs $ \(cstr, len) -> do c_set_avail_in zstr cstr $ fromIntegral len return $ drain fbuff fzstr (Just bs) c_call_deflate_noflush False -- | As explained in 'feedDeflate', deflation buffers your compressed -- data. After you call 'feedDeflate' with your last chunk of uncompressed -- data, use this to flush the rest of the data and signal end of input. finishDeflate :: Deflate -> Popper finishDeflate (Deflate (fzstr, fbuff)) = drain fbuff fzstr Nothing c_call_deflate_finish True -- | Flush the deflation buffer. Useful for interactive application. -- Internally this passes Z_SYNC_FLUSH to the zlib library. -- -- Unlike 'finishDeflate', 'flushDeflate' does not signal end of input, -- meaning you can feed more uncompressed data afterward. -- -- Since 0.0.3 flushDeflate :: Deflate -> Popper flushDeflate (Deflate (fzstr, fbuff)) = drain fbuff fzstr Nothing c_call_deflate_flush True -- | Full flush the deflation buffer. Useful for interactive -- applications where previously streamed data may not be -- available. Using `fullFlushDeflate` too often can seriously degrade -- compression. Internally this passes Z_FULL_FLUSH to the zlib -- library. -- -- Like 'flushDeflate', 'fullFlushDeflate' does not signal end of input, -- meaning you can feed more uncompressed data afterward. -- -- Since 0.1.5 fullFlushDeflate :: Deflate -> Popper fullFlushDeflate (Deflate (fzstr, fbuff)) = drain fbuff fzstr Nothing c_call_deflate_full_flush True
phischu/fragnix
tests/packages/scotty/Data.Streaming.Zlib.hs
Haskell
bsd-3-clause
12,910
----------------------------------------------------------------------------- -- | -- Module : Distribution.ParseUtils -- Copyright : (c) The University of Glasgow 2004 -- -- Maintainer : libraries@haskell.org -- Stability : alpha -- Portability : portable -- -- Utilities for parsing PackageDescription and InstalledPackageInfo. {- All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University nor the names of other contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -} module UnitTest.Distribution.ParseUtils where import Distribution.ParseUtils import Distribution.Compiler (CompilerFlavor, parseCompilerFlavorCompat) import Distribution.License (License) import Distribution.Version import Distribution.Package ( parsePackageName ) import Distribution.Compat.ReadP as ReadP hiding (get) import Distribution.Simple.Utils (intercalate) import Language.Haskell.Extension (Extension) import Text.PrettyPrint hiding (braces) import Data.Char (isSpace, isUpper, toLower, isAlphaNum, isSymbol, isDigit) import Data.Maybe (fromMaybe) import Data.Tree as Tree (Tree(..), flatten) import Test.HUnit (Test(..), assertBool, Assertion, runTestTT, Counts, assertEqual) import IO import System.Environment ( getArgs ) import Control.Monad ( zipWithM_ ) ------------------------------------------------------------------------------ -- TESTING test_readFields = case readFields testFile of ParseOk _ x -> x == expectedResult _ -> False where testFile = unlines $ [ "Cabal-version: 3" , "" , "Description: This is a test file " , " with a description longer than two lines. " , "if os(windows) {" , " License: You may not use this software" , " ." , " If you do use this software you will be seeked and destroyed." , "}" , "if os(linux) {" , " Main-is: foo1 " , "}" , "" , "if os(vista) {" , " executable RootKit {" , " Main-is: DRMManager.hs" , " }" , "} else {" , " executable VistaRemoteAccess {" , " Main-is: VCtrl" , "}}" , "" , "executable Foo-bar {" , " Main-is: Foo.hs" , "}" ] expectedResult = [ F 1 "cabal-version" "3" , F 3 "description" "This is a test file\nwith a description longer than two lines." , IfBlock 5 "os(windows) " [ F 6 "license" "You may not use this software\n\nIf you do use this software you will be seeked and destroyed." ] [] , IfBlock 10 "os(linux) " [ F 11 "main-is" "foo1" ] [ ] , IfBlock 14 "os(vista) " [ Section 15 "executable" "RootKit " [ F 16 "main-is" "DRMManager.hs"] ] [ Section 19 "executable" "VistaRemoteAccess " [F 20 "main-is" "VCtrl"] ] , Section 23 "executable" "Foo-bar " [F 24 "main-is" "Foo.hs"] ] test_readFieldsCompat' = case test_readFieldsCompat of ParseOk _ fs -> mapM_ (putStrLn . show) fs x -> putStrLn $ "Failed: " ++ show x test_readFieldsCompat = readFields testPkgDesc where testPkgDesc = unlines [ "-- Required", "Name: Cabal", "Version: 0.1.1.1.1-rain", "License: LGPL", "License-File: foo", "Copyright: Free Text String", "Cabal-version: >1.1.1", "-- Optional - may be in source?", "Author: Happy Haskell Hacker", "Homepage: http://www.haskell.org/foo", "Package-url: http://www.haskell.org/foo", "Synopsis: a nice package!", "Description: a really nice package!", "Category: tools", "buildable: True", "CC-OPTIONS: -g -o", "LD-OPTIONS: -BStatic -dn", "Frameworks: foo", "Tested-with: GHC", "Stability: Free Text String", "Build-Depends: haskell-src, HUnit>=1.0.0-rain", "Other-Modules: Distribution.Package, Distribution.Version,", " Distribution.Simple.GHCPackageConfig", "Other-files: file1, file2", "Extra-Tmp-Files: file1, file2", "C-Sources: not/even/rain.c, such/small/hands", "HS-Source-Dirs: src, src2", "Exposed-Modules: Distribution.Void, Foo.Bar", "Extensions: OverlappingInstances, TypeSynonymInstances", "Extra-Libraries: libfoo, bar, bang", "Extra-Lib-Dirs: \"/usr/local/libs\"", "Include-Dirs: your/slightest, look/will", "Includes: /easily/unclose, /me, \"funky, path\\\\name\"", "Install-Includes: /easily/unclose, /me, \"funky, path\\\\name\"", "GHC-Options: -fTH -fglasgow-exts", "Hugs-Options: +TH", "Nhc-Options: ", "Jhc-Options: ", "", "-- Next is an executable", "Executable: somescript", "Main-is: SomeFile.hs", "Other-Modules: Foo1, Util, Main", "HS-Source-Dir: scripts", "Extensions: OverlappingInstances", "GHC-Options: ", "Hugs-Options: ", "Nhc-Options: ", "Jhc-Options: " ] {- test' = do h <- openFile "../Cabal.cabal" ReadMode s <- hGetContents h let r = readFields s case r of ParseOk _ fs -> mapM_ (putStrLn . show) fs x -> putStrLn $ "Failed: " ++ show x putStrLn "===================" mapM_ (putStrLn . show) $ merge . zip [1..] . lines $ s hClose h -} -- ghc -DDEBUG --make Distribution/ParseUtils.hs -o test main :: IO () main = do inputFiles <- getArgs ok <- mapM checkResult inputFiles zipWithM_ summary inputFiles ok putStrLn $ show (length (filter not ok)) ++ " out of " ++ show (length ok) ++ " failed" where summary f True = return () summary f False = putStrLn $ f ++ " failed :-(" checkResult :: FilePath -> IO Bool checkResult inputFile = do file <- readTextFile inputFile case readFields file of ParseOk _ result -> do hPutStrLn stderr $ inputFile ++ " parses ok :-)" return True ParseFailed err -> do hPutStrLn stderr $ inputFile ++ " parse failed:" hPutStrLn stderr $ show err return False
IreneKnapp/Faction
libfaction/tests/UnitTest/Distribution/ParseUtils.hs
Haskell
bsd-3-clause
7,904
-- Helper script to shadow that automatically generated by cabal, but pointing -- to our local development directory. -- module Paths_accelerate_cuda where import Data.Version import System.Directory version :: Version version = Version {versionBranch = [0,14,0,0], versionTags = ["dev"]} getDataDir :: IO FilePath getDataDir = getCurrentDirectory
kumasento/accelerate-cuda
utils/Paths_accelerate_cuda.hs
Haskell
bsd-3-clause
353
{-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveDataTypeable #-} ----------------------------------------------------------------------------- -- | -- Module : Distribution.Simple.Compiler -- Copyright : Isaac Jones 2003-2004 -- License : BSD3 -- -- Maintainer : cabal-devel@haskell.org -- Portability : portable -- -- This should be a much more sophisticated abstraction than it is. Currently -- it's just a bit of data about the compiler, like it's flavour and name and -- version. The reason it's just data is because currently it has to be in -- 'Read' and 'Show' so it can be saved along with the 'LocalBuildInfo'. The -- only interesting bit of info it contains is a mapping between language -- extensions and compiler command line flags. This module also defines a -- 'PackageDB' type which is used to refer to package databases. Most compilers -- only know about a single global package collection but GHC has a global and -- per-user one and it lets you create arbitrary other package databases. We do -- not yet fully support this latter feature. module Distribution.Simple.Compiler ( -- * Haskell implementations module Distribution.Compiler, Compiler(..), showCompilerId, showCompilerIdWithAbi, compilerFlavor, compilerVersion, compilerCompatFlavor, compilerCompatVersion, compilerInfo, -- * Support for package databases PackageDB(..), PackageDBStack, registrationPackageDB, absolutePackageDBPaths, absolutePackageDBPath, -- * Support for optimisation levels OptimisationLevel(..), flagToOptimisationLevel, -- * Support for debug info levels DebugInfoLevel(..), flagToDebugInfoLevel, -- * Support for language extensions Flag, languageToFlags, unsupportedLanguages, extensionsToFlags, unsupportedExtensions, parmakeSupported, reexportedModulesSupported, renamingPackageFlagsSupported, unifiedIPIDRequired, packageKeySupported, unitIdSupported, coverageSupported, profilingSupported, backpackSupported, arResponseFilesSupported, libraryDynDirSupported, -- * Support for profiling detail levels ProfDetailLevel(..), knownProfDetailLevels, flagToProfDetailLevel, showProfDetailLevel, ) where import Prelude () import Distribution.Compat.Prelude import Distribution.Compiler import Distribution.Version import Distribution.Text import Language.Haskell.Extension import Distribution.Simple.Utils import qualified Data.Map as Map (lookup) import System.Directory (canonicalizePath) data Compiler = Compiler { compilerId :: CompilerId, -- ^ Compiler flavour and version. compilerAbiTag :: AbiTag, -- ^ Tag for distinguishing incompatible ABI's on the same -- architecture/os. compilerCompat :: [CompilerId], -- ^ Other implementations that this compiler claims to be -- compatible with. compilerLanguages :: [(Language, Flag)], -- ^ Supported language standards. compilerExtensions :: [(Extension, Flag)], -- ^ Supported extensions. compilerProperties :: Map String String -- ^ A key-value map for properties not covered by the above fields. } deriving (Eq, Generic, Typeable, Show, Read) instance Binary Compiler showCompilerId :: Compiler -> String showCompilerId = display . compilerId showCompilerIdWithAbi :: Compiler -> String showCompilerIdWithAbi comp = display (compilerId comp) ++ case compilerAbiTag comp of NoAbiTag -> [] AbiTag xs -> '-':xs compilerFlavor :: Compiler -> CompilerFlavor compilerFlavor = (\(CompilerId f _) -> f) . compilerId compilerVersion :: Compiler -> Version compilerVersion = (\(CompilerId _ v) -> v) . compilerId -- | Is this compiler compatible with the compiler flavour we're interested in? -- -- For example this checks if the compiler is actually GHC or is another -- compiler that claims to be compatible with some version of GHC, e.g. GHCJS. -- -- > if compilerCompatFlavor GHC compiler then ... else ... -- compilerCompatFlavor :: CompilerFlavor -> Compiler -> Bool compilerCompatFlavor flavor comp = flavor == compilerFlavor comp || flavor `elem` [ flavor' | CompilerId flavor' _ <- compilerCompat comp ] -- | Is this compiler compatible with the compiler flavour we're interested in, -- and if so what version does it claim to be compatible with. -- -- For example this checks if the compiler is actually GHC-7.x or is another -- compiler that claims to be compatible with some GHC-7.x version. -- -- > case compilerCompatVersion GHC compiler of -- > Just (Version (7:_)) -> ... -- > _ -> ... -- compilerCompatVersion :: CompilerFlavor -> Compiler -> Maybe Version compilerCompatVersion flavor comp | compilerFlavor comp == flavor = Just (compilerVersion comp) | otherwise = listToMaybe [ v | CompilerId fl v <- compilerCompat comp, fl == flavor ] compilerInfo :: Compiler -> CompilerInfo compilerInfo c = CompilerInfo (compilerId c) (compilerAbiTag c) (Just . compilerCompat $ c) (Just . map fst . compilerLanguages $ c) (Just . map fst . compilerExtensions $ c) -- ------------------------------------------------------------ -- * Package databases -- ------------------------------------------------------------ -- |Some compilers have a notion of a database of available packages. -- For some there is just one global db of packages, other compilers -- support a per-user or an arbitrary db specified at some location in -- the file system. This can be used to build isloated environments of -- packages, for example to build a collection of related packages -- without installing them globally. -- data PackageDB = GlobalPackageDB | UserPackageDB | SpecificPackageDB FilePath deriving (Eq, Generic, Ord, Show, Read) instance Binary PackageDB -- | We typically get packages from several databases, and stack them -- together. This type lets us be explicit about that stacking. For example -- typical stacks include: -- -- > [GlobalPackageDB] -- > [GlobalPackageDB, UserPackageDB] -- > [GlobalPackageDB, SpecificPackageDB "package.conf.inplace"] -- -- Note that the 'GlobalPackageDB' is invariably at the bottom since it -- contains the rts, base and other special compiler-specific packages. -- -- We are not restricted to using just the above combinations. In particular -- we can use several custom package dbs and the user package db together. -- -- When it comes to writing, the top most (last) package is used. -- type PackageDBStack = [PackageDB] -- | Return the package that we should register into. This is the package db at -- the top of the stack. -- registrationPackageDB :: PackageDBStack -> PackageDB registrationPackageDB [] = error "internal error: empty package db set" registrationPackageDB dbs = last dbs -- | Make package paths absolute absolutePackageDBPaths :: PackageDBStack -> NoCallStackIO PackageDBStack absolutePackageDBPaths = traverse absolutePackageDBPath absolutePackageDBPath :: PackageDB -> NoCallStackIO PackageDB absolutePackageDBPath GlobalPackageDB = return GlobalPackageDB absolutePackageDBPath UserPackageDB = return UserPackageDB absolutePackageDBPath (SpecificPackageDB db) = SpecificPackageDB `liftM` canonicalizePath db -- ------------------------------------------------------------ -- * Optimisation levels -- ------------------------------------------------------------ -- | Some compilers support optimising. Some have different levels. -- For compilers that do not the level is just capped to the level -- they do support. -- data OptimisationLevel = NoOptimisation | NormalOptimisation | MaximumOptimisation deriving (Bounded, Enum, Eq, Generic, Read, Show) instance Binary OptimisationLevel flagToOptimisationLevel :: Maybe String -> OptimisationLevel flagToOptimisationLevel Nothing = NormalOptimisation flagToOptimisationLevel (Just s) = case reads s of [(i, "")] | i >= fromEnum (minBound :: OptimisationLevel) && i <= fromEnum (maxBound :: OptimisationLevel) -> toEnum i | otherwise -> error $ "Bad optimisation level: " ++ show i ++ ". Valid values are 0..2" _ -> error $ "Can't parse optimisation level " ++ s -- ------------------------------------------------------------ -- * Debug info levels -- ------------------------------------------------------------ -- | Some compilers support emitting debug info. Some have different -- levels. For compilers that do not the level is just capped to the -- level they do support. -- data DebugInfoLevel = NoDebugInfo | MinimalDebugInfo | NormalDebugInfo | MaximalDebugInfo deriving (Bounded, Enum, Eq, Generic, Read, Show) instance Binary DebugInfoLevel flagToDebugInfoLevel :: Maybe String -> DebugInfoLevel flagToDebugInfoLevel Nothing = NormalDebugInfo flagToDebugInfoLevel (Just s) = case reads s of [(i, "")] | i >= fromEnum (minBound :: DebugInfoLevel) && i <= fromEnum (maxBound :: DebugInfoLevel) -> toEnum i | otherwise -> error $ "Bad debug info level: " ++ show i ++ ". Valid values are 0..3" _ -> error $ "Can't parse debug info level " ++ s -- ------------------------------------------------------------ -- * Languages and Extensions -- ------------------------------------------------------------ unsupportedLanguages :: Compiler -> [Language] -> [Language] unsupportedLanguages comp langs = [ lang | lang <- langs , isNothing (languageToFlag comp lang) ] languageToFlags :: Compiler -> Maybe Language -> [Flag] languageToFlags comp = filter (not . null) . catMaybes . map (languageToFlag comp) . maybe [Haskell98] (\x->[x]) languageToFlag :: Compiler -> Language -> Maybe Flag languageToFlag comp ext = lookup ext (compilerLanguages comp) -- |For the given compiler, return the extensions it does not support. unsupportedExtensions :: Compiler -> [Extension] -> [Extension] unsupportedExtensions comp exts = [ ext | ext <- exts , isNothing (extensionToFlag comp ext) ] type Flag = String -- |For the given compiler, return the flags for the supported extensions. extensionsToFlags :: Compiler -> [Extension] -> [Flag] extensionsToFlags comp = nub . filter (not . null) . catMaybes . map (extensionToFlag comp) extensionToFlag :: Compiler -> Extension -> Maybe Flag extensionToFlag comp ext = lookup ext (compilerExtensions comp) -- | Does this compiler support parallel --make mode? parmakeSupported :: Compiler -> Bool parmakeSupported = ghcSupported "Support parallel --make" -- | Does this compiler support reexported-modules? reexportedModulesSupported :: Compiler -> Bool reexportedModulesSupported = ghcSupported "Support reexported-modules" -- | Does this compiler support thinning/renaming on package flags? renamingPackageFlagsSupported :: Compiler -> Bool renamingPackageFlagsSupported = ghcSupported "Support thinning and renaming package flags" -- | Does this compiler have unified IPIDs (so no package keys) unifiedIPIDRequired :: Compiler -> Bool unifiedIPIDRequired = ghcSupported "Requires unified installed package IDs" -- | Does this compiler support package keys? packageKeySupported :: Compiler -> Bool packageKeySupported = ghcSupported "Uses package keys" -- | Does this compiler support unit IDs? unitIdSupported :: Compiler -> Bool unitIdSupported = ghcSupported "Uses unit IDs" -- | Does this compiler support Backpack? backpackSupported :: Compiler -> Bool backpackSupported = ghcSupported "Support Backpack" -- | Does this compiler support a package database entry with: -- "dynamic-library-dirs"? libraryDynDirSupported :: Compiler -> Bool libraryDynDirSupported comp = case compilerFlavor comp of GHC -> -- Not just v >= mkVersion [8,0,1,20161022], as there -- are many GHC 8.1 nightlies which don't support this. ((v >= mkVersion [8,0,1,20161022] && v < mkVersion [8,1]) || v >= mkVersion [8,1,20161021]) _ -> False where v = compilerVersion comp -- | Does this compiler's "ar" command supports response file -- arguments (i.e. @file-style arguments). arResponseFilesSupported :: Compiler -> Bool arResponseFilesSupported = ghcSupported "ar supports at file" -- | Does this compiler support Haskell program coverage? coverageSupported :: Compiler -> Bool coverageSupported comp = case compilerFlavor comp of GHC -> True GHCJS -> True _ -> False -- | Does this compiler support profiling? profilingSupported :: Compiler -> Bool profilingSupported comp = case compilerFlavor comp of GHC -> True GHCJS -> True LHC -> True _ -> False -- | Utility function for GHC only features ghcSupported :: String -> Compiler -> Bool ghcSupported key comp = case compilerFlavor comp of GHC -> checkProp GHCJS -> checkProp _ -> False where checkProp = case Map.lookup key (compilerProperties comp) of Just "YES" -> True _ -> False -- ------------------------------------------------------------ -- * Profiling detail level -- ------------------------------------------------------------ -- | Some compilers (notably GHC) support profiling and can instrument -- programs so the system can account costs to different functions. There are -- different levels of detail that can be used for this accounting. -- For compilers that do not support this notion or the particular detail -- levels, this is either ignored or just capped to some similar level -- they do support. -- data ProfDetailLevel = ProfDetailNone | ProfDetailDefault | ProfDetailExportedFunctions | ProfDetailToplevelFunctions | ProfDetailAllFunctions | ProfDetailOther String deriving (Eq, Generic, Read, Show) instance Binary ProfDetailLevel flagToProfDetailLevel :: String -> ProfDetailLevel flagToProfDetailLevel "" = ProfDetailDefault flagToProfDetailLevel s = case lookup (lowercase s) [ (name, value) | (primary, aliases, value) <- knownProfDetailLevels , name <- primary : aliases ] of Just value -> value Nothing -> ProfDetailOther s knownProfDetailLevels :: [(String, [String], ProfDetailLevel)] knownProfDetailLevels = [ ("default", [], ProfDetailDefault) , ("none", [], ProfDetailNone) , ("exported-functions", ["exported"], ProfDetailExportedFunctions) , ("toplevel-functions", ["toplevel", "top"], ProfDetailToplevelFunctions) , ("all-functions", ["all"], ProfDetailAllFunctions) ] showProfDetailLevel :: ProfDetailLevel -> String showProfDetailLevel dl = case dl of ProfDetailNone -> "none" ProfDetailDefault -> "default" ProfDetailExportedFunctions -> "exported-functions" ProfDetailToplevelFunctions -> "toplevel-functions" ProfDetailAllFunctions -> "all-functions" ProfDetailOther other -> other
themoritz/cabal
Cabal/Distribution/Simple/Compiler.hs
Haskell
bsd-3-clause
15,692
{-# LANGUAGE Safe #-} ----------------------------------------------------------------------------- -- | -- Module : Text.ParserCombinators.Parsec.Char -- Copyright : (c) Paolo Martini 2007 -- License : BSD-style (see the LICENSE file) -- -- Maintainer : derek.a.elkins@gmail.com -- Stability : provisional -- Portability : portable -- -- Parsec compatibility module -- ----------------------------------------------------------------------------- module Text.ParserCombinators.Parsec.Char ( CharParser, spaces, space, newline, tab, upper, lower, alphaNum, letter, digit, hexDigit, octDigit, char, string, anyChar, oneOf, noneOf, satisfy ) where import Text.Parsec.Char import Text.Parsec.String type CharParser st = GenParser Char st
aslatter/parsec
src/Text/ParserCombinators/Parsec/Char.hs
Haskell
bsd-2-clause
870
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="bs-BA"> <title>Advanced SQLInjection Scanner</title> <maps> <homeID>sqliplugin</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Search</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
thc202/zap-extensions
addOns/sqliplugin/src/main/javahelp/help_bs_BA/helpset_bs_BA.hs
Haskell
apache-2.0
981
{- Refactoring: move the definiton 'fringe' to module C1. This example aims to test the moving of the definition and the modification of export/import -} module D1(fringe, sumSquares) where import C1 fringe :: Tree a -> [a] fringe p |isLeaf p = [(leaf1 p)] fringe p |isBranch p = fringe (branch1 p) ++ fringe (branch2 p) sumSquares (x:xs) = sq x + sumSquares xs sumSquares [] = 0 sq x = x ^pow pow = 2
kmate/HaRe
old/testing/fromConcreteToAbstract/D1_TokOut.hs
Haskell
bsd-3-clause
481
{-# LANGUAGE Trustworthy #-} {-# LANGUAGE NoImplicitPrelude #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Fix -- Copyright : (c) Andy Gill 2001, -- (c) Oregon Graduate Institute of Science and Technology, 2002 -- License : BSD-style (see the file libraries/base/LICENSE) -- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : portable -- -- Monadic fixpoints. -- -- For a detailed discussion, see Levent Erkok's thesis, -- /Value Recursion in Monadic Computations/, Oregon Graduate Institute, 2002. -- ----------------------------------------------------------------------------- module Control.Monad.Fix ( MonadFix(mfix), fix ) where import Data.Either import Data.Function ( fix ) import Data.Maybe import Data.Monoid ( Dual(..), Sum(..), Product(..) , First(..), Last(..), Alt(..) ) import GHC.Base ( Monad, error, (.) ) import GHC.List ( head, tail ) import GHC.ST import System.IO -- | Monads having fixed points with a \'knot-tying\' semantics. -- Instances of 'MonadFix' should satisfy the following laws: -- -- [/purity/] -- @'mfix' ('return' . h) = 'return' ('fix' h)@ -- -- [/left shrinking/ (or /tightening/)] -- @'mfix' (\\x -> a >>= \\y -> f x y) = a >>= \\y -> 'mfix' (\\x -> f x y)@ -- -- [/sliding/] -- @'mfix' ('Control.Monad.liftM' h . f) = 'Control.Monad.liftM' h ('mfix' (f . h))@, -- for strict @h@. -- -- [/nesting/] -- @'mfix' (\\x -> 'mfix' (\\y -> f x y)) = 'mfix' (\\x -> f x x)@ -- -- This class is used in the translation of the recursive @do@ notation -- supported by GHC and Hugs. class (Monad m) => MonadFix m where -- | The fixed point of a monadic computation. -- @'mfix' f@ executes the action @f@ only once, with the eventual -- output fed back as the input. Hence @f@ should not be strict, -- for then @'mfix' f@ would diverge. mfix :: (a -> m a) -> m a -- Instances of MonadFix for Prelude monads instance MonadFix Maybe where mfix f = let a = f (unJust a) in a where unJust (Just x) = x unJust Nothing = error "mfix Maybe: Nothing" instance MonadFix [] where mfix f = case fix (f . head) of [] -> [] (x:_) -> x : mfix (tail . f) instance MonadFix IO where mfix = fixIO instance MonadFix ((->) r) where mfix f = \ r -> let a = f a r in a instance MonadFix (Either e) where mfix f = let a = f (unRight a) in a where unRight (Right x) = x unRight (Left _) = error "mfix Either: Left" instance MonadFix (ST s) where mfix = fixST -- Instances of Data.Monoid wrappers instance MonadFix Dual where mfix f = Dual (fix (getDual . f)) instance MonadFix Sum where mfix f = Sum (fix (getSum . f)) instance MonadFix Product where mfix f = Product (fix (getProduct . f)) instance MonadFix First where mfix f = First (mfix (getFirst . f)) instance MonadFix Last where mfix f = Last (mfix (getLast . f)) instance MonadFix f => MonadFix (Alt f) where mfix f = Alt (mfix (getAlt . f))
urbanslug/ghc
libraries/base/Control/Monad/Fix.hs
Haskell
bsd-3-clause
3,227
{-# LANGUAGE MagicHash #-} module ShouldFail where import GHC.Base my_undefined :: a -- This one has kind *, not OpenKind my_undefined = undefined die :: Int -> ByteArray# die _ = my_undefined
urbanslug/ghc
testsuite/tests/typecheck/should_fail/tcfail090.hs
Haskell
bsd-3-clause
198
module Main where newtype T = C { f :: String } {- hugs (Sept 2006) gives "bc" Program error: Prelude.undefined hugs trac #48 -} main = do print $ case C "abc" of C { f = v } -> v print $ case undefined of C {} -> True
olsner/ghc
testsuite/tests/codeGen/should_run/cgrun062.hs
Haskell
bsd-3-clause
270
{-| Module: Itchy.Routes Description: Web app routes License: MIT -} {-# LANGUAGE BangPatterns, LambdaCase, MultiParamTypeClasses, OverloadedLists, OverloadedStrings, QuasiQuotes, RankNTypes, TemplateHaskell, TypeFamilies, ViewPatterns #-} module Itchy.Routes ( App(..) ) where import Control.Monad import Control.Monad.IO.Class import Data.Bits import qualified Data.ByteArray.Encoding as BA import qualified Data.HashMap.Strict as HM import Data.Int import Data.List import qualified Data.Map.Strict as M import Data.Maybe import qualified Data.Serialize as S import qualified Data.Text as T import qualified Data.Text.Encoding as T import qualified Data.Text.Lazy as TL import qualified Data.Vector as V import Data.Word import Foreign.C.Types import qualified Network.HTTP.Types as HT import System.Posix.Time import qualified Text.Blaze.Html5 as H import Text.Blaze.Html5((!)) import qualified Text.Blaze.Html5.Attributes as A import qualified Text.Blaze.Html.Renderer.Text as H(renderHtml) import qualified Wai.Routes as W import qualified Web.Cookie as W import Itchy.ItchInvestigator import Itchy.Itch import Itchy.ItchCache import Itchy.Localization import Itchy.Localization.En import Itchy.Localization.RichText import Itchy.Localization.Ru import Itchy.Report import Itchy.Report.Analysis import Itchy.Report.Record import Itchy.Static data App = App { appItchApi :: !ItchApi , appItchCache :: !ItchCache , appItchInvestigator :: !ItchInvestigator , appItchInvestigationStalePeriod :: {-# UNPACK #-} !Int64 } localizations :: [(T.Text, Localization)] localizations = [ ("en", localizationEn) , ("ru", localizationRu) ] getLocalization :: W.HandlerM App master Localization getLocalization = do maybeNewLocale <- W.getParam "locale" locale <- case maybeNewLocale of Just newLocale -> do W.setCookie W.def { W.setCookieName ="locale" , W.setCookieValue = T.encodeUtf8 newLocale , W.setCookiePath = Just "/" , W.setCookieMaxAge = Just $ 365 * 24 * 3600 } return newLocale Nothing -> fromMaybe "en" <$> W.getCookie "locale" return $ fromMaybe localizationEn $ lookup locale localizations W.mkRoute "App" [W.parseRoutes| / HomeR GET /game/#Word64 GameR GET /upload/#Word64 UploadR GET /upload/#Word64/download UploadDownloadR GET /investigateUpload/#Word64 InvestigateUploadR POST /auth AuthR POST /search SearchR GET /gamebyurl GameByUrlR GET |] getHomeR :: W.Handler App getHomeR = W.runHandlerM $ do showRoute <- W.showRouteSub loc <- getLocalization page (locHome loc) [(locHome loc, HomeR)] $ do H.p $ H.toHtml $ locWelcome loc H.form ! A.method "GET" ! A.action (H.toValue $ showRoute SearchR) $ do H.label ! A.type_ "text" ! A.for "searchtext" $ H.toHtml $ locSearchGameByName loc H.br H.input ! A.type_ "text" ! A.id "searchtext" ! A.name "s" H.input ! A.type_ "submit" ! A.value (H.toValue $ locSearch loc) H.form ! A.method "GET" ! A.action (H.toValue $ showRoute GameByUrlR) $ do H.label ! A.type_ "text" ! A.for "urltext" $ H.toHtml $ locGoToGameByUrl loc H.br H.input ! A.type_ "text" ! A.id "urltext" ! A.name "url" ! A.placeholder "[https://]creator[.itch.io]/game[/]" H.input ! A.type_ "submit" ! A.value (H.toValue $ locGo loc) getGameR :: Word64 -> W.Handler App getGameR gameId = W.runHandlerM $ do App { appItchCache = itchCache , appItchInvestigator = itchInvestigator , appItchInvestigationStalePeriod = investigationStalePeriod } <- W.sub showRoute <- W.showRouteSub loc <- getLocalization maybeGameWithUploads <- liftIO $ itchCacheGetGame itchCache (ItchGameId gameId) case maybeGameWithUploads of Just (game@ItchGame { itchGame_title = gameTitle , itchGame_url = gameUrl , itchGame_cover_url = maybeGameCoverUrl , itchGame_user = ItchUser { itchUser_username = creatorUserName } , itchGame_can_be_bought = gameCanBeBought , itchGame_in_press_system = gameInPressSystem , itchGame_short_text = fromMaybe "" -> gameShortText , itchGame_has_demo = gameHasDemo , itchGame_min_price = ((* (0.01 :: Float)) . fromIntegral) -> gameMinPrice , itchGame_p_windows = gameWindows , itchGame_p_linux = gameLinux , itchGame_p_osx = gameMacOS , itchGame_p_android = gameAndroid }, gameUploads) -> do let gameByAuthor = locGameByAuthor loc gameTitle creatorUserName let uploadsById = HM.fromList $ V.toList $ flip fmap gameUploads $ \(upload@ItchUpload { itchUpload_id = uploadId }, _maybeBuild) -> (uploadId, upload) let uploadName uploadId = case HM.lookup uploadId uploadsById of Just ItchUpload { itchUpload_display_name = maybeDisplayName , itchUpload_filename = fileName } -> Just $ fromMaybe fileName maybeDisplayName Nothing -> Nothing investigations <- liftIO $ forM gameUploads $ \(ItchUpload { itchUpload_id = uploadId , itchUpload_filename = uploadFileName }, _maybeBuild) -> investigateItchUpload itchInvestigator uploadId uploadFileName False CTime currentTime <- liftIO epochTime let reinvestigateTimeCutoff = currentTime - investigationStalePeriod page gameByAuthor [(locHome loc, HomeR), (gameByAuthor, GameR gameId)] $ H.div ! A.class_ "game_info" $ do case maybeGameCoverUrl of Just coverUrl -> H.img ! A.class_ "cover" ! A.src (H.toValue coverUrl) Nothing -> mempty H.p $ H.toHtml $ locLink loc gameUrl H.p $ H.toHtml $ locDescription loc gameShortText H.p $ H.toHtml (locPlatforms loc) <> ": " <> (if gameWindows then H.span ! A.class_ "tag" $ "windows" else mempty) <> (if gameLinux then H.span ! A.class_ "tag" $ "linux" else mempty) <> (if gameMacOS then H.span ! A.class_ "tag" $ "macos" else mempty) <> (if gameAndroid then H.span ! A.class_ "tag" $ "android" else mempty) H.p $ H.toHtml $ if gameHasDemo then locHasDemo loc else locNoDemo loc H.p $ H.toHtml $ if gameCanBeBought then if gameMinPrice <= 0 then locFreeDonationsAllowed loc else locMinimumPrice loc <> ": $" <> T.pack (show gameMinPrice) else locFreePaymentsDisabled loc H.p $ H.toHtml $ if gameInPressSystem then locOptedInPressSystem loc else locNotOptedInPressSystem loc H.h2 $ H.toHtml $ locUploads loc H.table $ do H.tr $ do H.th $ H.toHtml $ locDisplayName loc H.th $ H.toHtml $ locFileName loc H.th $ H.toHtml $ locSize loc H.th $ H.toHtml $ locTags loc H.th "Butler" H.th $ H.toHtml $ locReportStatus loc forM_ (V.zip gameUploads investigations) $ \((ItchUpload { itchUpload_id = ItchUploadId uploadId , itchUpload_display_name = fromMaybe "" -> uploadDisplayName , itchUpload_filename = uploadFileName , itchUpload_demo = uploadDemo , itchUpload_preorder = uploadPreorder , itchUpload_size = uploadSize , itchUpload_p_windows = uploadWindows , itchUpload_p_linux = uploadLinux , itchUpload_p_osx = uploadMacOS , itchUpload_p_android = uploadAndroid }, maybeBuild), investigation) -> H.tr ! A.class_ "upload" $ do H.td ! A.class_ "name" $ H.toHtml uploadDisplayName H.td ! A.class_ "filename" $ {- a ! A.href (H.toValue $ showRoute $ UploadR uploadId) $ -} H.toHtml uploadFileName H.td $ H.toHtml $ locSizeInBytes loc uploadSize H.td $ do if uploadWindows then H.span ! A.class_ "tag" $ "windows" else mempty if uploadLinux then H.span ! A.class_ "tag" $ "linux" else mempty if uploadMacOS then H.span ! A.class_ "tag" $ "macos" else mempty if uploadAndroid then H.span ! A.class_ "tag" $ "android" else mempty if uploadDemo then H.span ! A.class_ "tag" $ "demo" else mempty if uploadPreorder then H.span ! A.class_ "tag" $ "preorder" else mempty H.td $ case maybeBuild of Just ItchBuild { itchBuild_version = T.pack . show -> buildVersion , itchBuild_user_version = fromMaybe (locNoUserVersion loc) -> buildUserVersion } -> H.toHtml $ locBuildVersion loc buildVersion buildUserVersion Nothing -> H.toHtml $ locDoesntUseButler loc H.td $ case investigation of ItchStartedInvestigation -> H.toHtml $ locInvestigationStarted loc ItchQueuedInvestigation n -> H.toHtml $ locInvestigationQueued loc $ n + 1 ItchProcessingInvestigation -> H.toHtml $ locInvestigationProcessing loc ItchInvestigation { itchInvestigationMaybeReport = maybeReport , itchInvestigationTime = t } -> do if isJust maybeReport then H.a ! A.href (H.toValue $ showRoute $ UploadR uploadId) ! A.target "_blank" $ H.toHtml $ locInvestigationSucceeded loc else H.toHtml $ locInvestigationFailed loc when (t < reinvestigateTimeCutoff) $ H.form ! A.class_ "formreprocess" ! A.action (H.toValue $ showRoute $ InvestigateUploadR uploadId) ! A.method "POST" $ H.input ! A.type_ "submit" ! A.value (H.toValue $ locReinvestigate loc) H.h2 $ H.toHtml $ locReport loc let reportsCount = foldr (\investigation !c -> case investigation of ItchInvestigation {} -> c + 1 _ -> c ) 0 investigations in when (reportsCount < V.length gameUploads) $ H.p $ (H.toHtml $ locReportNotComplete loc reportsCount (V.length gameUploads)) <> " " <> (H.a ! A.href (H.toValue $ showRoute $ GameR gameId) $ H.toHtml $ locRefresh loc) let AnalysisGame { analysisGame_uploads = analysisUploads , analysisGame_release = AnalysisUploadGroup { analysisUploadGroup_records = releaseGroupRecords } , analysisGame_preorder = AnalysisUploadGroup { analysisUploadGroup_records = preorderGroupRecords } , analysisGame_demo = AnalysisUploadGroup { analysisUploadGroup_records = demoGroupRecords } , analysisGame_records = gameRecords } = analyseGame loc game $ concat $ flip fmap (V.toList $ V.zip gameUploads investigations) $ \((u, _), inv) -> case inv of ItchInvestigation { itchInvestigationMaybeReport = Just r } -> [(u, r)] _ -> [] let uploadsRecords = concat $ Prelude.map analysisUpload_records analysisUploads let records = flip sortOn ( gameRecords <> releaseGroupRecords <> preorderGroupRecords <> demoGroupRecords <> uploadsRecords ) $ \Record { recordScope = scope , recordSeverity = severity , recordName = name , recordMessage = message } -> (severity, scope, name, message) H.table $ do H.tr $ do H.th $ H.toHtml $ locRecordSeverity loc H.th ! A.class_ "scope" $ H.toHtml $ locRecordScope loc H.th ! A.class_ "name" $ H.toHtml $ locRecordName loc H.th ! A.class_ "name" $ H.toHtml $ locRecordMessage loc forM_ records $ \Record { recordScope = scope , recordSeverity = severity , recordName = name , recordMessage = message } -> let (cls, ttl) = case severity of SeverityOk -> ("ok", locSeverityOk loc) SeverityInfo -> ("info", locSeverityInfo loc) SeverityTip -> ("tip", locSeverityTip loc) SeverityWarn -> ("warn", locSeverityWarn loc) SeverityBad -> ("bad", locSeverityBad loc) SeverityErr -> ("err", locSeverityErr loc) in H.tr ! A.class_ cls $ do H.td ! A.class_ "status" $ H.div $ H.toHtml ttl H.td $ H.toHtml $ case scope of ProjectScope -> locScopeProject loc UploadGroupScope uploadGroup -> locScopeUploadGroup loc uploadGroup UploadScope uploadId -> locScopeUpload loc (uploadName uploadId) EntryScope uploadId entryPath -> locScopeEntry loc (uploadName uploadId) (T.intercalate "/" entryPath) H.td $ H.div ! A.class_ "record" $ H.toHtml name H.td $ unless (message == RichText []) $ H.div ! A.class_ "message" $ H.toHtml message Nothing -> do let gameByAuthor = locUnknownGame loc W.header "Refresh" "3" page gameByAuthor [(locHome loc, HomeR), (gameByAuthor, GameR gameId)] $ do H.p $ H.toHtml $ locGameNotCached loc H.p $ H.a ! A.href (H.toValue $ showRoute $ GameR gameId) $ H.toHtml $ locRefresh loc getUploadR :: Word64 -> W.Handler App getUploadR uploadId = W.runHandlerM $ do App { appItchCache = itchCache , appItchInvestigator = itchInvestigator } <- W.sub loc <- getLocalization maybeUpload <- liftIO $ itchCacheGetUpload itchCache $ ItchUploadId uploadId case maybeUpload of Just (ItchUpload { itchUpload_filename = uploadFileName , itchUpload_game_id = ItchGameId gameId }, _maybeBuild) -> do maybeGameWithUploads <- liftIO $ itchCacheGetGame itchCache $ ItchGameId gameId case maybeGameWithUploads of Just (ItchGame { itchGame_title = gameTitle , itchGame_user = ItchUser { itchUser_username = creatorUserName } }, _) -> do let gameByAuthor = locGameByAuthor loc gameTitle creatorUserName investigation <- liftIO $ investigateItchUpload itchInvestigator (ItchUploadId uploadId) uploadFileName False case investigation of ItchInvestigation { itchInvestigationMaybeReport = maybeReport } -> page uploadFileName [(locHome loc, HomeR), (gameByAuthor, GameR gameId), (uploadFileName, UploadR uploadId)] $ do case maybeReport of Just Report { report_unpack = ReportUnpack_succeeded rootEntries } -> H.table ! A.class_ "entries" $ do H.tr $ do H.th $ H.toHtml $ locFileName loc H.th $ H.toHtml $ locSize loc H.th $ H.toHtml $ locAccessMode loc H.th $ H.toHtml $ locTags loc let tag = H.span ! A.class_ "tag" tagArch = \case ReportArch_unknown -> mempty ReportArch_x86 -> tag "x86" ReportArch_x64 -> tag "x64" printEntries level = mapM_ (printEntry level) . M.toAscList printEntry level (entryName, entry) = do H.tr $ do H.td ! A.style ("padding-left: " <> (H.toValue $ 5 + level * 20) <> "px") $ H.toHtml entryName H.td $ case entry of ReportEntry_file { reportEntry_size = entrySize } -> H.toHtml $ locSizeInBytes loc $ toInteger entrySize _ -> mempty H.td $ do let entryMode = reportEntry_mode entry let isDir = case entry of ReportEntry_directory {} -> True _ -> False tag $ H.toHtml $ (if isDir then 'd' else '.') : (if (entryMode .&. 0x100) > 0 then 'r' else '.') : (if (entryMode .&. 0x80) > 0 then 'w' else '.') : (if (entryMode .&. 0x40) > 0 then 'x' else '.') : (if (entryMode .&. 0x20) > 0 then 'r' else '.') : (if (entryMode .&. 0x10) > 0 then 'w' else '.') : (if (entryMode .&. 0x8) > 0 then 'x' else '.') : (if (entryMode .&. 0x4) > 0 then 'r' else '.') : (if (entryMode .&. 0x2) > 0 then 'w' else '.') : (if (entryMode .&. 0x1) > 0 then 'x' else '.') : [] H.td $ case entry of ReportEntry_unknown {} -> mempty ReportEntry_file { reportEntry_parses = entryParses } -> forM_ entryParses $ \case ReportParse_itchToml {} -> tag ".itch.toml" ReportParse_binaryPe ReportBinaryPe { reportBinaryPe_arch = arch , reportBinaryPe_isCLR = isCLR } -> do tag "PE" when isCLR $ tag "CLR" tagArch arch ReportParse_binaryElf ReportBinaryElf { reportBinaryElf_arch = arch } -> do tag "ELF" tagArch arch ReportParse_binaryMachO ReportBinaryMachO { reportBinaryMachO_binaries = subBinaries } -> do tag "Mach-O" forM_ subBinaries $ \ReportMachOSubBinary { reportMachoSubBinary_arch = arch } -> tagArch arch ReportParse_archive {} -> mempty ReportParse_msi {} -> tag "msi" ReportEntry_directory {} -> mempty ReportEntry_symlink { reportEntry_link = entryLink } -> do tag $ H.toHtml $ locSymlink loc H.toHtml entryLink case entry of ReportEntry_file { reportEntry_parses = parses } -> forM_ parses $ \case ReportParse_archive ReportArchive { reportArchive_entries = entryEntries } -> printEntries (level + 1) entryEntries ReportParse_msi ReportMsi { reportMsi_entries = entryEntries } -> printEntries (level + 1) entryEntries _ -> mempty ReportEntry_directory { reportEntry_entries = entryEntries } -> printEntries (level + 1) entryEntries _ -> mempty printEntries (0 :: Int) rootEntries _ -> return () _ -> W.status HT.notFound404 Nothing -> W.status HT.notFound404 Nothing -> W.status HT.notFound404 getUploadDownloadR :: Word64 -> W.Handler App getUploadDownloadR (ItchUploadId -> uploadId) = W.runHandlerM $ do App { appItchApi = itchApi } <- W.sub maybeDownloadKeyId <- W.getParam "downloadKey" url <- liftIO $ itchDownloadUpload itchApi uploadId (ItchDownloadKeyId . read . T.unpack <$> maybeDownloadKeyId) W.header "Location" $ T.encodeUtf8 url W.status HT.seeOther303 postInvestigateUploadR :: Word64 -> W.Handler App postInvestigateUploadR (ItchUploadId -> uploadId) = W.runHandlerM $ do App { appItchCache = itchCache , appItchInvestigator = itchInvestigator } <- W.sub showRoute <- W.showRouteSub maybeUpload <- liftIO $ itchCacheGetUpload itchCache uploadId case maybeUpload of Just (ItchUpload { itchUpload_filename = uploadFileName , itchUpload_game_id = ItchGameId gameId }, _maybeBuild) -> do void $ liftIO $ investigateItchUpload itchInvestigator uploadId uploadFileName True W.header "Location" (T.encodeUtf8 $ showRoute $ GameR gameId) W.status HT.seeOther303 Nothing -> W.status HT.notFound404 postAuthR :: W.Handler App postAuthR = W.runHandlerM $ do App { appItchApi = itchApi } <- W.sub maybeToken <- W.getPostParam "token" maybeUser <- case maybeToken of Just token -> liftIO $ Just <$> itchJwtMe itchApi token Nothing -> return Nothing case maybeUser of Just user -> do W.setCookie W.def { W.setCookieName = "user" , W.setCookieValue = BA.convertToBase BA.Base64URLUnpadded $ S.encode user , W.setCookiePath = Just "/" } showRoute <- W.showRouteSub W.header "Location" (T.encodeUtf8 $ showRoute HomeR) W.status HT.seeOther303 Nothing -> W.status HT.notFound404 getSearchR :: W.Handler App getSearchR = W.runHandlerM $ do App { appItchApi = itchApi } <- W.sub showRoute <- W.showRouteSub loc <- getLocalization searchText <- fromMaybe "" <$> W.getParam "s" Right games <- if T.null searchText then return $ Right V.empty else liftIO $ itchSearchGame itchApi searchText page (locSearch loc) [(locHome loc, HomeR), (locSearch loc, SearchR)] $ do H.form ! A.method "GET" ! A.action (H.toValue $ showRoute SearchR) $ do H.input ! A.type_ "text" ! A.name "s" ! A.value (H.toValue searchText) H.input ! A.type_ "submit" ! A.value (H.toValue $ locSearch loc) H.div ! A.class_ "searchresults" $ forM_ games $ \ItchGameShort { itchGameShort_id = ItchGameId gameId , itchGameShort_title = gameTitle , itchGameShort_cover_url = maybeGameCoverUrl } -> H.a ! A.class_ "game" ! A.href (H.toValue $ showRoute $ GameR gameId) ! A.target "_blank" $ do case maybeGameCoverUrl of Just gameCoverUrl -> H.img ! A.src (H.toValue gameCoverUrl) Nothing -> mempty H.span $ H.toHtml gameTitle getGameByUrlR :: W.Handler App getGameByUrlR = W.runHandlerM $ do App { appItchApi = itchApi } <- W.sub showRoute <- W.showRouteSub searchText <- fromMaybe "" <$> W.getParam "url" -- strip various stuff, and parse let pref p s = fromMaybe s $ T.stripPrefix p s suf q s = fromMaybe s $ T.stripSuffix q s case T.splitOn "/" $ T.replace ".itch.io/" "/" $ suf "/" $ pref "https://" $ pref "http://" $ searchText of [creator, game] -> do maybeGameId <- liftIO $ itchGameGetByUrl itchApi creator game case maybeGameId of Just (ItchGameId gameId) -> do W.header "Location" $ T.encodeUtf8 $ showRoute $ GameR gameId W.status HT.seeOther303 Nothing -> W.status HT.notFound404 _ -> W.status HT.notFound404 page :: W.RenderRoute master => T.Text -> [(T.Text, W.Route App)] -> H.Html -> W.HandlerM App master () page titleText pieces bodyHtml = do W.header HT.hCacheControl "public, max-age=1" maybeUserCookie <- W.getCookie "user" let maybeUser = case maybeUserCookie of Just (BA.convertFromBase BA.Base64URLUnpadded . T.encodeUtf8 -> Right (S.decode -> Right user)) -> Just user _ -> Nothing showRoute <- W.showRouteSub loc <- getLocalization W.html $ TL.toStrict $ H.renderHtml $ H.docTypeHtml $ do H.head $ do H.meta ! A.charset "utf-8" H.meta ! A.name "robots" ! A.content "index,follow" H.link ! A.rel "stylesheet" ! A.href [staticPath|static-stylus/itchy.css|] H.link ! A.rel "icon" ! A.type_ "image/png" ! A.href [staticPath|static/itchio.svg|] H.script ! A.src [staticPath|static/jquery-2.1.4.min.js|] $ mempty H.script ! A.src [staticPath|static-js/itchy.js|] $ mempty H.title $ H.toHtml $ titleText <> " - " <> "itch.io Developer's Sanity Keeper" H.body $ do H.div ! A.class_ "header" $ do H.div ! A.class_ "pieces" $ forM_ pieces $ \(pieceName, pieceRoute) -> do void "/ " H.a ! A.href (H.toValue $ showRoute pieceRoute) $ H.toHtml pieceName void " " case maybeUser of Just ItchUser { itchUser_username = userName , itchUser_url = userUrl , itchUser_cover_url = userMaybeCoverUrl } -> H.div ! A.class_ "user" $ do H.a ! A.href (H.toValue userUrl) $ do case userMaybeCoverUrl of Just userCoverUrl -> H.img ! A.src (H.toValue userCoverUrl) Nothing -> mempty H.toHtml userName Nothing -> mempty H.h1 $ H.toHtml titleText bodyHtml H.div ! A.class_ "footer" $ do H.div $ H.toHtml $ locNoAffiliation loc H.div $ do H.span ! A.class_ "localizations" $ forM_ localizations $ \(locale, localization) -> H.a ! A.href ("?locale=" <> H.toValue locale) $ H.toHtml $ locLanguageName localization H.span " | " H.a ! A.href "https://github.com/quyse/itchy" ! A.target "_blank" $ "Github"
quyse/itchy
Itchy/Routes.hs
Haskell
mit
22,676
module Ch1010ex1 ( stops , vowels , nouns , verbs , allWords , allWordsPrefixP ) where import Combinatorial (comboOfN) import Data.Monoid stops :: [Char] stops = "pbtdkg" vowels :: [Char] vowels = "aeiou" nouns :: [String] nouns = ["bird", "dog", "cat", "car", "Elon Musk", "the dying of the light", "my cousin vinny"] verbs :: [String] verbs = ["hits", "runs", "starts", "stops", "kills", "shouts at", "calls", "rolls eyes at"] -- returns all three-character combinations of stop-vowel-stop -- zip all beginnings with each ending vowels allWords :: [String] allWords = comboOfN mempty (map (map return) [stops, vowels, stops]) allWordsPrefixP :: [String] allWordsPrefixP = filter (\(x:xs) -> x == 'p') allWords -- returns all sentences composed of noun-verb-noun allSentences :: [String] allSentences = comboOfN " " [nouns, verbs, nouns] -- get all combos of N lists of elements -- From Combinatorial.hs comboOfN :: Monoid a => a -> [[a]] -> [a] comboOfN sep (z:zs) = foldl ((joinCombinations .) . makeCombinations) z zs where makeCombinations x y = zip (take (length y) (repeat x)) y joinCombinations = concatMap $ \(xs, y) -> map (\x -> x <> sep <> y) xs
JoshuaGross/haskell-learning-log
Code/Haskellbook/ch10.10ex1.hs
Haskell
mit
1,214
{-# LANGUAGE RecordWildCards, TypeFamilies #-} import Control.Monad import qualified Data.Map as M import Text.Printf type FieldName = String type Point = M.Map FieldName (Maybe Double) type Label = Double class DataPass a where type Init a create :: (Init a) -> a update :: a -> [(Point, Label)] -> a apply1 :: a -> Point -> Point apply :: a -> [Point] -> [Point] data MeanImputer = MI {fieldNames :: [FieldName], moments :: [(Double, Int)]} instance DataPass MeanImputer where type Init MeanImputer = [String] create = createMI update = updateMI apply datapass points = map (apply1 datapass) points apply1 = imputeMean imputeMean :: MeanImputer -> Point -> Point imputeMean mi point = foldr update point (zip (fieldNames mi) (moments mi)) where update (fname, (d, n)) pt = case M.lookup fname pt of (Just (Just v)) -> pt _ -> M.insert fname (Just (d / fromIntegral n)) pt createMI :: [FieldName] -> MeanImputer createMI fieldNames = MI fieldNames $ replicate (length fieldNames) (0.0, 0) updateMI1 :: MeanImputer -> (Point, Label) -> MeanImputer updateMI1 mi@(MI {..}) (point, _) = mi {moments = moments'} where moments' = zipWith update fieldNames moments update fname (d, n) = case M.lookup fname point of Just (Just value) -> (d + value, n + 1) _ -> (d , n) updateMI :: MeanImputer -> [(Point, Label)] -> MeanImputer updateMI mi labeledPoints = foldl updateMI1 mi labeledPoints testData :: [Point] testData = [M.fromList [("A", Just 0), ("B", Just 1), ("C", Nothing), ("D", Just 4)], M.fromList [("A", Nothing), ("B", Just 2), ("C", Just 14), ("D", Just 8)], M.fromList [("A", Just 1), ("B", Nothing), ("C", Nothing) ], M.fromList [("A", Nothing), ("B", Just 4), ("C", Just 22), ("D", Just 3)], M.fromList [("A", Just 0), ("B", Just 5), ("C", Just 11), ("D", Just 1)]] testDataWithLabels :: [(Point, Label)] testDataWithLabels = zip testData (repeat 0.0) -- labels not used here. printDF :: [Point] -> IO () printDF = mapM_ printPoint where printPoint pt = line pt >> putStrLn "" line pt = forM_ (M.toList pt) $ \(fname, maybeVal) -> do putStr $ fname ++ "= " case maybeVal of Just v -> printf "%6.2f" v Nothing -> putStr " NA " putStr "; " demo :: IO () demo = do let dpEmpty = create ["A", "B", "D"] :: MeanImputer dpFull = update dpEmpty testDataWithLabels putStrLn "Before imputation:" printDF testData putStrLn "After imputation: " printDF $ apply dpFull testData main :: IO () main = demo
michaelochurch/stats-haskell-talk-201509
Main.hs
Haskell
mit
2,739
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE TypeSynonymInstances #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Test.Unit.Connection where import qualified Test.Framework as Framework import Test.Framework import Test.HUnit import Test.Framework.Providers.HUnit import Web.SocketIO.Server import Web.SocketIO.Types import Web.SocketIO.Channel import Web.SocketIO.Connection -------------------------------------------------------------------------------- testConfig :: Configuration testConfig = defaultConfig { transports = [XHRPolling] , logLevel = 3 , logTo = stderr , heartbeats = True , closeTimeout = 2 , heartbeatTimeout = 60 , heartbeatInterval = 25 , pollingDuration = 20 } makeEnvironment :: IO Env makeEnvironment = do tableRef <- newSessionTableRef let handler = return () logChhannel <- newLogChannel globalChannel <- newGlobalChannel return $ Env tableRef handler testConfig logChhannel globalChannel -------------------------------------------------------------------------------- testHandshake :: Assertion testHandshake = do env <- makeEnvironment MsgHandshake _ a b t <- runConnection env Handshake assertEqual "respond with " (expectedResponse env) (MsgHandshake "" a b t) where expectedResponse env = MsgHandshake "" heartbeatTimeout' closeTimeout' transports' where config = envConfiguration env heartbeatTimeout' = if heartbeats config then heartbeatTimeout config else 0 closeTimeout' = closeTimeout config transports' = transports config -------------------------------------------------------------------------------- testConnect :: Assertion testConnect = do env <- makeEnvironment MsgHandshake sessionID _ _ _ <- runConnection env Handshake res <- runConnection env (Connect sessionID) assertEqual "respond with (MsgConnect NoEndpoint)" (MsgConnect NoEndpoint) res -------------------------------------------------------------------------------- testRequest :: Assertion testRequest = do env <- makeEnvironment MsgHandshake sessionID _ _ _ <- runConnection env Handshake runConnection env (Connect sessionID) res <- runConnection env (Request sessionID (MsgEvent NoID NoEndpoint (Event "event name" (Payload ["payload"])))) assertEqual "respond with (MsgConnect NoEndpoint)" (MsgConnect NoEndpoint) (res) -------------------------------------------------------------------------------- testDisconnect :: Assertion testDisconnect = do env <- makeEnvironment MsgHandshake sessionID _ _ _ <- runConnection env Handshake runConnection env (Connect sessionID) res <- runConnection env (Disconnect sessionID) assertEqual "respond with MsgNoop" MsgNoop res -------------------------------------------------------------------------------- test :: Framework.Test test = testGroup "Connection" [ testCase "Handshake" testHandshake , testCase "Connect" testConnect , testCase "Request" testRequest , testCase "Disconnect" testDisconnect ]
banacorn/socket.io-haskell
test/Test/Unit/Connection.hs
Haskell
mit
3,318
module StupidBot.Bot (stupidBot) where import Vindinium.Types import Utils import StupidBot.Goal import qualified Data.Graph.AStar as AS import Data.Maybe (fromMaybe, fromJust) import Data.List (find) stupidBot :: Bot stupidBot = directionTo whereToGo directionTo :: GPS -> State -> Dir directionTo gps s = let from = heroPos $ stateHero s path = shortestPathTo s $ gps s in case path of (p:_) -> dirFromPos from p [] -> Stay shortestPathTo :: State -> Goal -> [Pos] shortestPathTo s goal = let board = gameBoard $ stateGame s hero = stateHero s path = AS.aStar (adjacentTiles board) (stepCost s goal) (distanceEstimateTo goal s) (isGoal goal s) (heroPos hero) in fromMaybe [] path distanceEstimateTo :: Goal -> State -> Pos -> Int distanceEstimateTo Heal s pos = minimum $ map (manhattan pos) (taverns (gameBoard $ stateGame s)) distanceEstimateTo (Capture _) s pos = let board = gameBoard $ stateGame s in minimum $ map (\p -> let heroid = heroId $ stateHero s Just m = tileAt board p in if canCaptureMine m heroid then manhattan pos p else 999) (mines board) distanceEstimateTo (Kill hid) s pos = let heroes = gameHeroes $ stateGame s Just h = find (\e -> heroId e == hid) heroes in manhattan pos $ heroPos h distanceEstimateTo Survive _ _ = 1 distanceEstimateTo _ _ _ = error "not implemented!" stepCost :: State -> Goal -> Distance stepCost s goal from to = let board = gameBoard $ stateGame s in case fromJust $ tileAt board to of FreeTile -> dangerLevelWithin 3 s from to _ -> if isGoal goal s to then 1 else 999
flyrry/phonypony
src/StupidBot/Bot.hs
Haskell
mit
1,712
{-# LANGUAGE MonadComprehensions #-} module Main where import Data.Foldable (traverse_) import Data.Maybe (fromMaybe, listToMaybe, maybe) import System.Environment (getArgs) fizzbuzz :: (Integral a, Show a) => a -> String fizzbuzz i = fromMaybe (show i) $ [ "fizz" | i `rem` 3 == 0 ] <> [ "buzz" | i `rem` 5 == 0 ] <> [ "bazz" | i `rem` 7 == 0 ] main :: IO () main = do upTo <- fmap (maybe 100 read . listToMaybe) getArgs traverse_ putStrLn [ fizzbuzz i | i <- [1 .. upTo] ]
genos/Programming
workbench/fizzbuzzMonadComprehensions.hs
Haskell
mit
511
{-# LANGUAGE ImplicitParams #-} -- | Based on Cruise control system from -- http://www.cds.caltech.edu/~murray/amwiki/index.php/Cruise_control module CruiseControl where import Zelus data Gear = One | Two | Three | Four | Five deriving (Eq, Show) run :: Double -- ^ Initial speed, m/s -> S Double -- ^ Cruise control speed setting, m/s -> S Double -- ^ Road slope (disturbance), rad -> S Double -- ^ Resulting speed,m/s run v0 ref road_slope = let (u_a, u_b) = controller (pre v_stable) ref acc = vehicle (pre v_stable) u_a u_b road_slope v = integ (acc `in1t` val v0) v_stable = (v <? 0.005) ? (0,v) in v_stable where ?h = 0.01 vehicle :: S Double -- ^ Velocity, m/s -> S Double -- ^ Accelerator ratio, [0, 1] -> S Double -- ^ Decelerator ratio, [0, 1] -> S Double -- ^ Road slope, rad -> S Double -- ^ Resulting acceleration, m/s^2 vehicle v u_a u_b road_slope = acc where t_m = 400 -- engine torque constant, Nm omega_m = 400 -- peak torque rate, rad/sec beta = 0.4 -- torque coefficient cr = 0.03 -- coefficient of rolling friction rho = 1.29 -- density of air, kg/m^3 cd = 0.28 -- drag coefficient a = 2.8 -- car area, m^2 g = 9.81 -- gravitational constant m = 1700 -- vehicle mass, kg t_m_b = 2800 -- maximum brake torque, Nm wheel_radius = 0.381 -- m gear_ratio One = 13.52 gear_ratio Two = 7.6 gear_ratio Three = 5.08 gear_ratio Four = 3.8 gear_ratio Five = 3.08 -- engine speed, rad/s omega = (v * map gear_ratio gear) / (wheel_radius * pi) * 60 / 9.55 t_e = u_a * t_m * (1 - beta*(omega/omega_m - 1)^2) -- engine tourque t_b = u_b * t_m_b -- brake tourque -- friction f_fric = ((t_e * map gear_ratio gear) - (t_b * signum v)) / wheel_radius f_g = m * g * sin road_slope -- gravitation f_r = m * g * cr * signum v -- rolling resistance f_a = 0.5 * rho * cd * a * v^2 -- air drag acc = (f_fric - f_g - f_r - f_a) / m up_shift = 3000 / 9.55 -- rad/s down_shift = 1000 / 9.55 -- rad/s gear = automaton [ One >-- omega >? up_shift --> Two , Two >-- omega <? down_shift --> One , Two >-- omega >? up_shift --> Three , Three >-- omega <? down_shift --> Two , Three >-- omega >? up_shift --> Four , Four >-- omega <? down_shift --> Three , Four >-- omega >? up_shift --> Five , Five >-- omega <? down_shift --> Four ] controller :: (?h :: Double) => S Double -> S Double -> (S Double, S Double) controller v ref = (u_a, u_b) where kp = 0.8 ki = 0.04 kd = 0.0 err = ref - v i_err = integ $ ((abs (pre pid) >? 1) ? (0, err)) `in1t` 0 d_err = deriv err pid = kp*err + ki*i_err + kd*d_err -- accelerate when positive and break when negative u_a = pid >? 0 ? (mn pid 1, 0) u_b = pid <? 0 ? (mn (-pid) 1, 0)
koengit/cyphy
src/CruiseControl.hs
Haskell
mit
2,996
{-# LANGUAGE OverloadedStrings #-} module Network.API.Mandrill.SubaccountsSpec where import Test.Hspec import Test.Hspec.Expectations.Contrib import Network.API.Mandrill.Types import Network.API.Mandrill.Utils import qualified Data.Text as Text import qualified Network.API.Mandrill.Subaccounts as Subaccounts import System.Environment spec :: Spec spec = do test_list test_add test_info test_update test_delete test_pause test_resume test_resume :: Spec test_resume = describe "/subaccounts/resume.json" $ it "should resume a paused subaccount" $ do raw <- getEnv "MANDRILL_API_KEY" resp <- runMandrill (ApiKey $ Text.pack raw) $ do _ <- Subaccounts.add "acc-1" "My Acc" "yes, indeed." 50 Subaccounts.resume "acc-1" resp `shouldSatisfy` isRight test_pause :: Spec test_pause = describe "/subaccounts/pause.json" $ it "should pause a subaccount" $ do raw <- getEnv "MANDRILL_API_KEY" resp <- runMandrill (ApiKey $ Text.pack raw) $ do _ <- Subaccounts.add "acc-1" "My Acc" "yes, indeed." 50 Subaccounts.pause "acc-1" resp `shouldSatisfy` isRight test_delete :: Spec test_delete = describe "/subaccounts/delete.json" $ it "should delete a subaccount" $ do raw <- getEnv "MANDRILL_API_KEY" resp <- runMandrill (ApiKey $ Text.pack raw) $ Subaccounts.delete "acc-1" resp `shouldSatisfy` isRight test_update :: Spec test_update = describe "/subaccounts/update.json" $ it "update a subaccount" $ do raw <- getEnv "MANDRILL_API_KEY" resp <- runMandrill (ApiKey $ Text.pack raw) $ Subaccounts.update "acc-1" "My Acc" "yes, indeed." 50 resp `shouldSatisfy` isRight test_info :: Spec test_info = describe "/subaccounts/info.json" $ it "should return some info about a subaccount" $ do raw <- getEnv "MANDRILL_API_KEY" resp <- runMandrill (ApiKey $ Text.pack raw) $ do _ <- Subaccounts.add "acc-1" "My Acc" "yes, indeed." 50 Subaccounts.info "acc-1" resp `shouldSatisfy` isRight test_add :: Spec test_add = describe "/subaccounts/add.json" $ it "should add a subaccount" $ do raw <- getEnv "MANDRILL_API_KEY" resp <- runMandrill (ApiKey $ Text.pack raw) $ Subaccounts.add "acc-1" "My Acc" "yes, indeed." 50 resp `shouldSatisfy` isRight test_list :: Spec test_list = describe "/subaccounts/list.json" $ it "should list all subaccounts" $ do raw <- getEnv "MANDRILL_API_KEY" resp <- runMandrill (ApiKey $ Text.pack raw) $ Subaccounts.list "acc-1" resp `shouldSatisfy` isRight
krgn/hamdrill
test/Network/API/Mandrill/SubaccountsSpec.hs
Haskell
mit
2,692
{-# LANGUAGE ScopedTypeVariables #-} {-| Module : Labyrinth.Machine2d Description : labyrinth state machine Copyright : (c) deweyvm 2014 License : MIT Maintainer : deweyvm Stability : experimental Portability : unknown 2d state machine automata generating functions. -} module Labyrinth.Machine2d( (<.>), occuCount, negate, vertStrip, clearBorder ) where import Prelude hiding(foldr, negate) import Data.Maybe import Data.Foldable import Control.Applicative import Labyrinth.Data.Array2d import Labyrinth.Util -- | Apply a list of endomorphisms to an initial value (<.>) :: Foldable t => a -> t (a -> a) -> a (<.>) = flip (foldr (.) id) getOccupants :: Array2d a -> Point -> [a] getOccupants arr (i, j) = extract [ (i + x, j + y) | x <- [-1..1], y <- [-1..1] ] where extract = catMaybes . map (geti arr) countOccupants :: (a -> Bool) -> Array2d a -> Point -> Int countOccupants f = (count f) .: (getOccupants) -- | Maps to True iff the number of occupants of a given node is >= k. occuCount :: Int -> Array2d Bool -> Array2d Bool occuCount k arr = (\pt _ -> (countOccupants id arr pt) >= k) <$*> arr -- | Negates the entire array. negate :: Array2d Bool -> Array2d Bool negate = (<$>) not -- | Clears vertical strips with a regular spacing. vertStrip :: Bool -> Int -> Array2d Bool -> Array2d Bool vertStrip b mods = (<$*>) (\(i, j) p -> select p b (modZero i || modZero j)) where modZero k = k `mod` mods == 0 -- | Clears a border around the edge of the array. clearBorder :: Int -> Array2d Bool -> Array2d Bool clearBorder thick arr@(Array2d cols rows _) = (\(i, j) p -> i < thick || j < thick || i > cols - thick - 1 || j > rows - thick - 1 || p) <$*> arr
deweyvm/labyrinth
src/Labyrinth/Machine2d.hs
Haskell
mit
1,724
module Main where import System.Environment import Text.ParserCombinators.Parsec hiding (spaces) main :: IO() main = do args <- getArgs putStrLn (readExpr (args !! 0)) symbol :: Parser Char symbol = oneOf "!$%&|*+-/:<=?>@^_~#" readExpr :: String -> String readExpr input = case parse (spaces >> symbol) "lisp" input of Left err -> "No match: " ++ show err Right val -> "Found value" spaces :: Parser () spaces = skipMany1 space
brianj-za/wyas
simpleparser1.hs
Haskell
mit
440
{-| Module : Language.GoLite.Monad.Traverse Description : Traversing annotated syntax trees with class Copyright : (c) Jacob Errington and Frederic Lafrance, 2016 License : MIT Maintainer : goto@mail.jerrington.me Stability : experimental Defines a type family based approach for traversing general annotated syntax trees. -} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE TypeFamilies #-} module Language.Common.Monad.Traverse ( module Control.Monad.Except , module Control.Monad.Identity , module Control.Monad.State , MonadTraversal (..) , Traversal (..) ) where import Control.Monad.Except import Control.Monad.Identity import Control.Monad.State -- | The class of monads that perform traversals of syntax trees. class ( Monad m , MonadState (TraversalState m) m , MonadError (TraversalException m) m ) => MonadTraversal m where -- | Fatal errors that can occur during the traversal. type TraversalException m :: * -- | Non-fatal errors that can occur during the traversal. type TraversalError m :: * -- | The state of the traversal. type TraversalState m :: * -- | Issues a non-fatal error, but continues the traversal. -- -- The non-fatal errors are accumulated in the state. reportError :: TraversalError m -> m () -- | Extracts the non-fatal errors from the traversal state. getErrors :: TraversalState m -> [TraversalError m] -- | Helper for common types of traversals. newtype Traversal e s a = Traversal { runTraversal :: ExceptT e ( StateT s Identity ) a -- ^ Extract the transformer stack from the 'Traversal' wrapper. } deriving ( Functor , Applicative , Monad , MonadError e , MonadState s )
djeik/goto
libgoto/Language/Common/Monad/Traverse.hs
Haskell
mit
1,882
{- H-99 Problems Copyright 2015 (c) Adrian Nwankwo (Arcaed0x) Problem : 14 Description : Duplicate the elements of a list. License : MIT (See LICENSE file) -} copyTwice :: [a] -> [a] copyTwice [] = [] copyTwice (x:xs) = x : x : copyTwice xs
Arcaed0x/H-99-Solutions
src/prob14.hs
Haskell
mit
274
module Parser where import Lambda import Type import Control.Monad import Data.Char import Text.Parsec import Text.Parsec.Expr import Text.Parsec.Language import qualified Text.Parsec.Token as Token lexer = Token.makeTokenParser style where operators = ["+", "-", "*", "/", "==", ">=", "<=", "<", ">", "/=", ","] words = ["if", "then", "else", "case", "of", "true", "false", "-|>", "let", "in"] style = haskellStyle {Token.reservedOpNames = operators, Token.reservedNames = words} reservedWords = Token.reserved lexer reservedOpera = Token.reservedOp lexer identifiers = Token.identifier lexer parens = Token.parens lexer idNumbers = Token.natural lexer wSpace x = do Token.whiteSpace lexer r <- x eof return r expLambda = do reservedOpera "\\" lam <- many1 identifiers reservedOpera "." ex1 <- build return $ foldr Lam ex1 lam variable = do x <- identifiers return (Var x) variable2 = do x <- identifiers return x numbers = do n <- idNumbers return (Lit (LInt (fromIntegral n))) boolean = do reservedWords "true" return (Lit (LBool True)) <|> do reservedWords "false" return (Lit (LBool False)) ifTE = do reservedWords "if" ex1 <- build reservedWords "then" ex2 <- build reservedWords "else" ex3 <- build return (If ex1 ex2 ex3) caOf = do reservedWords "case" ex1 <- build reservedWords "of" pats <- sepBy aPats $ reservedOpera ";" return (Case ex1 pats) aPats = do pat1 <- patterns reservedWords "-|>" ex2 <- build return (pat1, ex2) <|> do pat2 <- patterns reservedWords "-|>" ex3 <- build return (pat2, ex3) patterns = do xxx <- parens bPats return xxx <|> do x <- variable2 return (PVar x) <|> do n <- idNumbers return (PLit (LInt (fromIntegral n))) <|> do reservedWords "true" return (PLit (LBool True)) <|> do reservedWords "false" return (PLit (LBool False)) bPats = do x <- identifC patx <- many patterns return (PCon x patx) identifC = do a <- upper id <- variable2 return $ (a:id) operator = [[Postfix ((reservedOpera "+") >> return (App (Var "+")))], [Postfix ((reservedOpera "-") >> return (App (Var "-")))], [Postfix ((reservedOpera "*") >> return (App (Var "*")))], [Postfix ((reservedOpera "/") >> return (App (Var "/")))], [Postfix ((reservedOpera "<") >> return (App (Var "<")))], [Postfix ((reservedOpera ">") >> return (App (Var ">")))], [Postfix ((reservedOpera "==") >> return (App (Var "==")))], [Postfix ((reservedOpera "=<") >> return (App (Var "=<")))], [Postfix ((reservedOpera "=>") >> return (App (Var "=>")))], [Postfix ((reservedOpera "/=") >> return (App (Var "/=")))], [Infix (return ((App))) AssocNone]] build = buildExpressionParser operator build2 build2 = parens build <|> boolean <|> ifTE <|> variable <|> numbers <|> expLambda <|> caOf convert = destroy . parsing parsing iN = parse (wSpace build) "error" iN destroy (Right o) = o destroy (Left o) = error "verify the syntax of the expression"
LeonardoRigon/TypeInfer-LambdaExpressions-in-Haskell
Parser.hs
Haskell
mit
4,099
module Nodes.Expression where import Data.Tree (Tree (Node)) import Nodes data Expr = Op { operator :: String, left :: Expr, right :: Expr } | StrLit { str :: String } | IntLit { int :: Int } | FloatLit { float :: Double } instance AstNode Expr where ast (Op operator left right) = Node operator [ast left, ast right] ast (StrLit str) = Node ("\"" ++ str ++ "\"") [] ast (IntLit int) = Node (show int) [] ast (FloatLit float) = Node (show float) []
milankinen/cbhs
src/nodes/Expression.hs
Haskell
mit
507
{-# OPTIONS_GHC -fno-warn-orphans #-} import Application.Types import Handler.Admin import Handler.Block import Handler.Room import Handler.Snapshot import Handler.Socket import Handler.Instances import Import import Control.Concurrent.STM import Control.Monad.Logger (runStderrLoggingT) import Control.Monad.Trans.Resource (runResourceT) import Data.Map import Database.Persist.Postgresql import Yesod.Static mkYesodDispatch "App" resourcesApp openConnectionCount :: Int openConnectionCount = 10 connectionString :: ConnectionString connectionString = "host=localhost port=5432 user=creek dbname=creek password=creek" main :: IO () main = runStderrLoggingT $ withPostgresqlPool connectionString openConnectionCount $ \pool -> liftIO $ do runResourceT $ flip runSqlPool pool $ runMigration migrateAll state <- atomically $ newTVar myState channel <- atomically newBroadcastTChan socketStates' <- atomically $ newTVar $ singleton (InstanceId "0") (SocketState state channel) s <- static "static" --warpEnv requires $PORT to be set warpEnv $ App pool socketStates' s
kRITZCREEK/FROST-Backend
src/Main.hs
Haskell
mit
1,248
module HaskovSpec where import Haskov (fromList,imap,hmatrix,walk,walkFrom,steady,steadyState,statesI) import System.Random import Test.Hspec import qualified Data.Set as Set import qualified Numeric.LinearAlgebra.Data as Dat import Data.List (intercalate) import Control.Monad (unless,when) testTransitions = [ (("A", "B"), 0.3) , (("A", "A"), 0.7) , (("B", "C"), 1.0) , (("C", "A"), 1.0) ] spec :: Spec spec = describe "haskov" $ do -- describe "steadyState" $ do -- -- it "should always contain positive numbers" $ do -- let -- transitions = [ (("A", "B"), 1.0), (("B", "C"), 1.0), (("C", "A"), 1.0)] -- haskov = fromList transitions -- s = steadyState haskov -- --mapM (\(s, p) -> s `shouldSatisfy` (> 0)) -- print s -- True `shouldBe` True describe "A haskov walk" $ do -- could use quickcheck for better tests it "should never do invalid transitions when transitions are ordered" $ do let transitions = [(("A", "B"), 1.0), (("B", "C"), 1.0), (("C", "A"), 1.0)] valid = map fst transitions markov = fromList transitions gen <- getStdGen res <- walk 10 markov gen expectOnlyValidTransitions transitions res it "should never do invalid transitions when transtions are not ordered" $ do let transitions = [ (("C", "A"), 1.0), (("A", "B"), 1.0), (("B", "C"), 1.0)] valid = map fst transitions haskov = fromList transitions gen <- getStdGen res <- walk 3 haskov gen expectOnlyValidTransitions transitions res describe "A haskov walkFrom" $ do it "starts with the head initial state" $ do let markov = fromList testTransitions gen <- getStdGen res <- walkFrom "B" 10 markov gen head res `shouldBe` "B" it "just some test" $ do let markov = fromList testTransitions index = imap markov matrix = hmatrix markov start = "A" gen <- getStdGen res <- walkFrom "B" 10 markov gen --putStrLn $ "index: " ++ ( show index) --putStrLn $ "matrix: " ++ ( show matrix) --putStrLn $ "result from " ++ start ++ ": " ++ ( show res) return () expectTrue :: HasCallStack => String -> Bool -> Expectation expectTrue msg b = unless b (expectationFailure msg) expectOnlyValidTransitions transitions actual = do let valid = map fst transitions actualTransitions = zip actual (drop 1 actual) actualUnique = Set.fromList actualTransitions invalid = Set.filter (\e -> not $ elem e valid) actualUnique len = length invalid invalidMsg inv = "invalid transitions encountered: " ++ ( intercalate ", " (Set.toList (Set.map (\(a,b) -> a ++ "->" ++ b) inv))) expectTrue (invalidMsg invalid) $ len == 0
mazuschlag/haskov
test/HaskovSpec.hs
Haskell
mit
2,899
-- The solution of exercise 1.12 -- The following pattern of numbers is called Pascal's triangle. -- -- 1 -- 1 1 -- 1 2 1 -- 1 3 3 1 -- 1 4 6 4 1 -- -- The numbers at the edge of the triangle are all 1, and each number -- inside the triangle is the sum of the two numbers above it. Write a -- procedure that computes elements of Pascal's triangle by means of a -- recursive process. -- -- Run 'cabal install vector' first! import qualified Data.Vector as V -- Compute combinarotial number by means of a recursive process recursive_pascal :: (Eq a, Integral a) => a -> a -> a recursive_pascal m 0 = 1 recursive_pascal m n | m < 0 || n < 0 || m < n = error "wrong number in pascal triangle." | n == m = 1 | otherwise = recursive_pascal (m - 1) (n - 1) + recursive_pascal (m - 1) n -- The procedure computes factorial numbers by means of an iterative -- process, with linear complexity. fact_iter product counter maxc = if counter > maxc then product else fact_iter (counter * product) (counter + 1) maxc factorial n = fact_iter 1 1 n -- -- We can use the mathematical definition of combinatorial numbers to -- simply computes them: -- -- m! factorial(m) -- C(m, n) = ------------- = ------------------------------- -- n! (m - n)! factorial(n) * factorial(m - n) -- -- m * (m - 1) * ... * (m - n + 1) -- = --------------------------------- -- factorial(n) -- -- Thus we can write a new procedure in scheme and it is very simple. -- Notice that: -- -- fact_iter 1 a b = a * (a + 1) * ... * (b - 1) * b -- -- We have: C(m, n) = fact-iter(1, m - n + 1, m) / fact-iter(1, 1, n) -- This formula only does (2 * n - 1) times of multiplication / division. -- -- Computes the combinatorial numbers combinatorial :: (Eq a, Integral a) => a -> a -> a combinatorial m n = if (n * 2) > m then (fact_iter 1 (n + 1) m) `div` (fact_iter 1 1 (m - n)) else (fact_iter 1 (m - n + 1) m) `div` (fact_iter 1 1 n) -- -- There also exists another algorithm, according to the formula given by -- the Pascal's triangle: -- -- C(m, n) = C(m - 1, n - 1) + C(m - 1, n) (m, n >= 1) -- -- We make a vector v with init value #(1, 0, 0, ... , 0) with length = -- n + 1. and then make a new vector v': -- -- v'(n) = v(n) + v(n - 1) (1 <= n <= count) -- -- where the variable `count` means the number of non-zero elements in the -- vector v. After this operation, we get v' = #(1, 1, 0, ... , 0) with -- length = n + 1. Continue doing such an operation on v', we get v'' = -- #(1, 2, 1, ... , 0) and v''' = #(1, 3, 3, 1, ... , 0). We can get all -- the elements on m th row in Pascal's triangle, using this algorithm. -- Besides, the algorithm behaves well on complexity analysis, for we only -- do O(m ^ 2) times of addition to compute all numbers C(m, k). -- -- Now we realize this algorithm in Haskell... -- -- _ _____ _____ _____ _ _ _____ ___ ___ _ _ -- / \|_ _|_ _| ____| \ | |_ _|_ _/ _ \| \ | | -- / _ \ | | | | | _| | \| | | | | | | | | \| | -- / ___ \| | | | | |___| |\ | | | | | |_| | |\ | -- /_/ \_\_| |_| |_____|_| \_| |_| |___\___/|_| \_| -- -- The vector package is needed here! Run -- -- cabal install vector -- -- first and use Vector package. -- -- This function computes the next line (vector) in Pascal's triangle. -- For example, it returns [1,5,10,10,5,1] if the input is [1,4,6,4,1]. pascal_updateVec :: (Eq a, Integral a) => V.Vector a -> V.Vector a pascal_updateVec vector = V.zipWith (+) (V.snoc vector 0) (V.cons 0 vector) -- This function computes the (n+1)-th line (vector) in Pascal's Triangle. -- For example, it returns [1,5,10,10,5,1] if the input is 5. pascalList :: (Eq a, Integral a) => a -> V.Vector a pascalList n = let nextVec vector 0 = vector nextVec vector count = nextVec (pascal_updateVec vector) (count - 1) v0 = V.fromList [1 :: Integral a => a] in nextVec v0 n -- The pascal number pascal n m = (pascalList n) V.! m
perryleo/sicp
ch1/sicpc1e12.hs
Haskell
mit
4,245
{-# LANGUAGE DeriveGeneric, StandaloneDeriving, DeriveDataTypeable, FlexibleInstances, Rank2Types, FlexibleContexts #-} module Language.Erlang.Modules where import Language.CoreErlang.Parser as P import Language.CoreErlang.Pretty as PP import Language.CoreErlang.Syntax as S import qualified Data.Map as M import qualified Data.List as L import Data.Char as C import Data.Either.Utils import Control.Monad.RWS (gets, ask) import Control.Monad.Error (throwError) import Control.Monad.IO.Class (MonadIO, liftIO) import Control.Monad.State ( put, get, modify) import Control.Concurrent.MVar (readMVar, modifyMVarMasked) import Language.Erlang.Core import Language.Erlang.Lang getModTable :: ErlProcess ModTable getModTable = do Left mvar <- gets mod_table liftIO $ readMVar mvar ensureModule :: ModName -> ErlProcess ErlModule ensureModule moduleName = do Left m <- gets mod_table emodule <- liftIO $ modifyMVarMasked m $ \mt -> case M.lookup moduleName mt of Just emodule -> return (mt, emodule) Nothing -> do Right (emodule, modTable') <- liftIO $ loadEModule mt moduleName return (modTable', emodule) return emodule safeGetModule :: ModName -> ErlPure ErlModule safeGetModule moduleName = do Right modTable <- gets mod_table case M.lookup moduleName modTable of Just emodule -> return emodule Nothing -> do s <- ask throwError (ErlException { exc_type = ExcUnknown, reason = ErlAtom "module_not_found", stack = s}) loadEModule :: ModTable -> String -> IO (Either String (ErlModule, ModTable)) loadEModule modTable moduleName = do res <- loadEModule0 moduleName case res of Left er -> return $ Left er Right m -> do let m' = EModule moduleName m let modTable' = M.insert moduleName m' modTable return $ Right (m', modTable') loadEModule0 :: String -> IO (Either String S.Module) loadEModule0 moduleName = do fileContent <- readFile ("samples/" ++ moduleName ++ ".core") case P.parseModule fileContent of Left er -> do return $ Left $ show er Right m -> do -- putStrLn $ prettyPrint m return $ Right (unann m)
gleber/erlhask
src/Language/Erlang/Modules.hs
Haskell
apache-2.0
2,233
module Main (main) where import Language.Haskell.HLint (hlint) import System.Exit (exitFailure, exitSuccess) arguments :: [String] arguments = [ "puzzles/0-easy/onboarding/solution.hs" , "puzzles/0-easy/kirks-quest-the-descent/solution.hs" , "puzzles/0-easy/ragnarok-power-of-thor/solution.hs" , "puzzles/0-easy/skynet-the-chasm/solution.hs" , "puzzles/0-easy/temperatures/solution.hs" , "puzzles/0-easy/mars-lander/solution.hs" ] main :: IO () main = do hints <- hlint arguments if null hints then exitSuccess else exitFailure
lpenz/codingame-haskell-solutions
hlint.hs
Haskell
apache-2.0
568
module Helpers.GridPolytopes (countPolygons, Polygon (..)) where import Helpers.ListHelpers (cartesianProduct) import Helpers.Subsets (choose) import Data.List (genericTake, nub) import Math.NumberTheory.Powers.Squares (exactSquareRoot) import Data.Set (Set) import qualified Data.Set as Set data Polygon = Triangle | Square | Hexagon deriving Eq type PVector = [Integer] type VertexSet = Set PVector magnitudeSquared :: [Integer] -> Integer magnitudeSquared = sum . map (^2) magSolutions :: Integer -> [[Integer]] magSolutions n = magSolutionsList !! fromIntegral n magSolutionsList = map magSolutions' [0..] -- solutions to x^2 + y^2 + z^2 = n. magSolutions' :: Integer -> [[Integer]] magSolutions' = recurse 3 where -- recurse :: Int -> Int -> [[Int]] recurse 1 n = case exactSquareRoot n of (Just rootN) -> [[rootN]] Nothing -> [] recurse k n = concatMap (\p -> map (p:) $ recurse (k-1) (n-p^2)) validParts where validParts = takeWhile ((<=n) . (^2)) [0..] -- This reverses; probably this can be fixed with a fold. -- allSigns [0,1,2] = [[-2,-1,0],[2,-1,0],[-2,1,0],[2,1,0]] -- allSigns :: [Int] -> [[Int]] allSigns :: (Eq a, Num a) => [a] -> [[a]] allSigns ns = recurse ns [[]] where recurse [] known = known recurse (0:ks) known = recurse ks $ map (0:) known recurse (k:ks) known = recurse ks $ concatMap (\i -> [-k:i, k:i]) known isValid :: Polygon -> PVector -> PVector -> Bool isValid polygon v u = magnitudesMatch && correctAngle where magnitudesMatch = magnitudeSquared u == magnitudeSquared v dotProduct = sum $ zipWith (*) u v correctAngle | polygon == Triangle = 2 * dotProduct == magnitudeSquared v | polygon == Square = dotProduct == 0 | polygon == Hexagon = -2 * dotProduct == magnitudeSquared v adjacentSides :: Polygon -> Integer -> [[[Integer]]] adjacentSides polygon = filter (\[v,u] -> isValid polygon v u) . choose 2 . concatMap allSigns . magSolutions makeShape :: Polygon -> (PVector -> PVector -> Set PVector) makeShape Triangle = makePolygon (\u v -> [[], [u], [v]]) makeShape Square = makePolygon (\u v -> [[], [u], [v], [u,v]]) makeShape Hexagon = makePolygon (\u v -> [[], [u], [v], [u,u,v], [u,v,v], [u,u,v,v]]) makePolygon :: (PVector -> PVector -> [[PVector]]) -> PVector -> PVector -> VertexSet makePolygon vectorCombinations u v = Set.fromList $ map (\c -> zipWith (-) c maxCoords) coords where maxCoords = foldr1 (zipWith min) coords coords = map (foldr (zipWith (+)) [0,0,0]) $ vectorCombinations u v boundingBox :: VertexSet -> [Integer] boundingBox polygon = foldr1 (zipWith max) $ Set.toList polygon -- Hexagons with side length k, all nonnegative coordinates, and touching the coordinate planes normalized :: Polygon -> Integer -> [VertexSet] normalized polygon k = nub $ map (\[v,u] -> makeShape polygon v u) $ adjacentSides polygon k -- Bounding boxes for hexagons with side length sqrt(k) boundingBoxes :: Polygon -> Integer -> [[Integer]] boundingBoxes shape = map boundingBox . normalized shape allBoundingBoxes :: Polygon -> [[[Integer]]] allBoundingBoxes Square = allSquareBoundingBoxes allBoundingBoxes Triangle = allTriangleBoundingBoxes allBoundingBoxes Hexagon = allHexagonBoundingBoxes allSquareBoundingBoxes :: [[[Integer]]] allSquareBoundingBoxes = map (boundingBoxes Square) [1..] allTriangleBoundingBoxes :: [[[Integer]]] allTriangleBoundingBoxes = map (boundingBoxes Triangle) [1..] allHexagonBoundingBoxes :: [[[Integer]]] allHexagonBoundingBoxes = map (boundingBoxes Hexagon) [1..] countPolygons :: Polygon -> Integer -> Integer countPolygons polygon n = sum $ map countShifts validBoundingBoxes where countShifts = product . map (`subtract` n) validBoundingBoxes = filter ((<n) . maximum) $ concat $ genericTake upperBound (allBoundingBoxes polygon) upperBound | polygon == Triangle = 3 * n^2 | polygon == Square = 3 * n^2 -- improve this bound! | polygon == Hexagon = (3 * n^2) `div` 4 + 1
peterokagey/haskellOEIS
src/Helpers/GridPolytopes.hs
Haskell
apache-2.0
3,988
{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} module Openshift.V1.ProjectStatus where import GHC.Generics import Data.Text import qualified Data.Aeson -- | data ProjectStatus = ProjectStatus { phase :: Maybe Text -- ^ phase is the current lifecycle phase of the project } deriving (Show, Eq, Generic) instance Data.Aeson.FromJSON ProjectStatus instance Data.Aeson.ToJSON ProjectStatus
minhdoboi/deprecated-openshift-haskell-api
openshift/lib/Openshift/V1/ProjectStatus.hs
Haskell
apache-2.0
521
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE helpset PUBLIC "-//Sun Microsystems Inc.//DTD JavaHelp HelpSet Version 2.0//EN" "http://java.sun.com/products/javahelp/helpset_2_0.dtd"> <helpset version="2.0" xml:lang="ru-RU"> <title>Bug Tracker</title> <maps> <homeID>top</homeID> <mapref location="map.jhm"/> </maps> <view> <name>TOC</name> <label>Contents</label> <type>org.zaproxy.zap.extension.help.ZapTocView</type> <data>toc.xml</data> </view> <view> <name>Index</name> <label>Index</label> <type>javax.help.IndexView</type> <data>index.xml</data> </view> <view> <name>Search</name> <label>Search</label> <type>javax.help.SearchView</type> <data engine="com.sun.java.help.search.DefaultSearchEngine"> JavaHelpSearch </data> </view> <view> <name>Favorites</name> <label>Favorites</label> <type>javax.help.FavoritesView</type> </view> </helpset>
secdec/zap-extensions
addOns/bugtracker/src/main/javahelp/org/zaproxy/zap/extension/bugtracker/resources/help_ru_RU/helpset_ru_RU.hs
Haskell
apache-2.0
956
{-# LANGUAGE TemplateHaskell #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Controller ( withFoundation ) where -- standard libraries import Control.Monad import Control.Concurrent.MVar import System.Directory import System.FilePath -- friends import Foundation import Settings import Yesod.Helpers.Static -- Import all relevant handler modules here. import Handler.Root import Handler.Effects import Handler.Images -- This line actually creates our YesodSite instance. It is the second half -- of the call to mkYesodData which occurs in Foundation.hs. Please see -- the comments there for more details. mkYesodDispatch "Foundation" resourcesFoundation -- Some default handlers that ship with the Yesod site template. You will -- very rarely need to modify this. getFaviconR :: Handler () getFaviconR = sendFile "image/x-icon" "favicon.ico" getRobotsR :: Handler RepPlain getRobotsR = return $ RepPlain $ toContent "User-agent: *" -- This function allocates resources (such as a database connection pool), -- performs initialization and creates a WAI application. This is also the -- place to put your migrate statements to have automatic database -- migrations handled by Yesod. withFoundation :: (Application -> IO a) -> IO a withFoundation f = Settings.withConnectionPool $ \p -> do lock <- newMVar () wrapper <- readFile "EffectWrapper.hs" cache <- createCache let static = fileLookupDir Settings.staticdir typeByExt foundation = Foundation { getStatic = static , connPool = p , cudaLock = lock , effectCodeWrapper = wrapper , cacheDir = cache } toWaiApp foundation >>= f where -- Temporary directory where images and code are stored createCache = do cache <- getAppUserDataDirectory "funky-foto-cache" exists <- doesDirectoryExist cache when exists (removeDirectoryRecursive cache) createDirectory cache createDirectory $ cache </> "images" createDirectory $ cache </> "code" return cache
sseefried/funky-foto
Controller.hs
Haskell
bsd-2-clause
2,165
module Cologne.ParseNFF (parseNFF) where import Text.ParserCombinators.Parsec import qualified Text.ParserCombinators.Parsec.Token as PT import Text.ParserCombinators.Parsec.Language (emptyDef) import Data.Vect import Graphics.Formats.Assimp (Camera(Camera)) import Control.Arrow (left) import Control.Applicative hiding ((<|>), many) import Control.Monad (ap) import Cologne.Primitives import qualified Cologne.Primitives.Sphere as S import Cologne.Accel.List {- Parser for NFF (Neutral File Format). This is the first scene description - language Cologne supports. The language is not very expressive. It's like - training wheels, really. - - NOTE: We're using a modified version of nff, more suited to our ray tracer. - We may decide to implement the exact spec in the future. - - TODO: Expressions would be very helpful - Comments - - More info on NFF: - http://tog.acm.org/resources/Sfloat/NFF.TXT -} {- Let's make an instance of Applicative for GenParser like they do in Real - World Haskell: - http://book.realworldhaskell.org/read/using-parsec.html -} -- instance Applicative (GenParser s a) where -- pure = return -- (<*>) = ap type ColorInfo = (Vec3, Vec3, ReflectionType) type ObjParser a = GenParser Char ColorInfo a type ContextType = Context [Primitive ColorInfo] ColorInfo {- - Use some predefined helpers from parsec for ints and floats. The only - interesting bit is that their float parser doesn't like negatives so we have - to be a bit more careful there. -} lexer :: PT.TokenParser st lexer = PT.makeTokenParser emptyDef int = PT.integer lexer uFloat = PT.float lexer float' = try (negate <$ char '-' <*> uFloat) <|> try uFloat <|> fromIntegral <$> int float = realToFrac <$> float' {- light - format l %g %g %g [%g %g %g] - X Y Z R G B - - e.g. l 3 7 8 0.9 0.8 0.7 - l 3 7 8 - - This represents a point light source, which we just represent as a tiny - sphere with emission. - - First strip off the 'l' then build the light in an applicative manner. <$> - just lifts light to the functor level then we apply it to the parsed - doubles. -} light :: ObjParser (Primitive ColorInfo) light = char 'l' *> spaces *> (light' <$> float <*> float <*> float <*> float <*> float <*> float) <* spaces where light' x y z r g b = S.sphere (Vec3 x y z) 0.0000001 ((Vec3 0 0 0), (Vec3 r g b), Diffuse) {- sphere - format: s %g %g %g %g - center.x center.y center.z radius - - A difficulty here is that this format doesn't include the color information - with the primitives. They're supposed to take on whatever color most - recently preceded them, thus we must keep the previous color as state. - - One potentially tricky thing here is that 'spaces' reads in the end-of-line - characters of well. This is because it's defined using isSpace from - Data.Char, which returns true on ' ', '\t', '\n', and '\r', and possibly - others. -} sphere :: ObjParser (Primitive ColorInfo) sphere = char 's' *> spaces *> (sph <$> float <*> float <*> float <*> float <*> getState) <* spaces where sph x y z r c = S.sphere (Vec3 x y z) r c {- color - format f %g %g %g %g %g %g %s - R G B R G B spec|diff|refr - - All of the floats should be between 0 and 1. The first triple represents the - color and the second represents the color of the emitted light, if any. - - I'm sticking to this format for now, since the way it's defined in the nff - spec doesn't suit us very well. -} color :: ObjParser () color = do info <- (char 'f' *> spaces *> (clr <$> float <*> float <*> float <*> float <*> float <*> float <*> reflT) <* spaces) setState info where clr r1 g1 b1 r2 g2 b2 r = (Vec3 r1 g1 b1, Vec3 r2 g2 b2, r) reflT = spaces *> (Refractive <$ string "refr" <|> Specular <$ string "spec" <|> Diffuse <$ string "diff" <?> "reflection type") background :: ObjParser Vec3 background = char 'b' *> (Vec3 <$> float <*> float <*> float) <* spaces --background = char 'b' *> (Vec3 <$> count 3 float) --background = char 'b' *> (Vec3 <$> (chainr1 float (<*>))) --nToken 1 comb1 comb2 = comb1 <$> comb2 --nToken n comb1 comb2 = (nToken (n-1) comb1 comb2) <*> comb2 {- viewpoint - - Where the camera is located and where it points. We expect - it at the beginning of the file. -} viewpoint :: ObjParser (Vec3, Vec3) viewpoint = do char 'v' >> spaces from <- string "from " *> (Vec3 <$> float <*> float <*> float) <* spaces at <- string "at " *> (Vec3 <$> float <*> float <*> float) <* spaces return (from, normalize at) -- If we were complying fully to the nff spec we would implement these but we -- have no need for them yet -- up <- string "up " *> (Vec3 <$> float <*> float <*> float) <* spaces -- angle <- string "angle " *> float <* spaces -- hither <- string "hither " *> float -- return (from, at, up, angle, hither) file :: ObjParser ContextType file = do (at, look) <- viewpoint objs <- many $ (skipMany color) *> objects eof let camera = Camera "" at (Vec3 0 0 1) look 60 1 1000000000 1 pos <- getPosition return $ Context defaultOptions [camera] objs where objects = sphere <|> light parseNFF :: String -> String -> Either String ContextType parseNFF input filename = (flip left) (runParser file noState filename input) show where noState = ((Vec3 0 0 0), (Vec3 0 0 0), (Diffuse))
joelburget/Cologne
Cologne/ParseNFF.hs
Haskell
bsd-3-clause
5,595
-------------------------------------------------------------------------------- -- | -- Module : Graphics.Rendering.OpenGL.Raw.NV.TextureExpandNormal -- Copyright : (c) Sven Panne 2015 -- License : BSD3 -- -- Maintainer : Sven Panne <svenpanne@gmail.com> -- Stability : stable -- Portability : portable -- -- The <https://www.opengl.org/registry/specs/NV/texture_expand_normal.txt NV_texture_expand_normal> extension. -- -------------------------------------------------------------------------------- module Graphics.Rendering.OpenGL.Raw.NV.TextureExpandNormal ( -- * Enums gl_TEXTURE_UNSIGNED_REMAP_MODE_NV ) where import Graphics.Rendering.OpenGL.Raw.Tokens
phaazon/OpenGLRaw
src/Graphics/Rendering/OpenGL/Raw/NV/TextureExpandNormal.hs
Haskell
bsd-3-clause
688
-------------------------------------------------------------------------------- -- Chip16 Assembler written in Haskell -------------------------------------------------------------------------------- module HC.Ops where import Data.Bits import Data.Int import Data.List import Data.Maybe import Data.Word import Control.Applicative data Parameter = Bit Int | Imm4 Int | Imm8 Int | Imm16 | RegX | RegY | RegZ | SP deriving (Eq, Show) type Op = ( String, Int, [ Parameter ] ) jump :: [ ( String, Int ) ] jump = [ ( "z", 0x0 ) , ( "mz", 0x0 ) , ( "nz", 0x1 ) , ( "n", 0x2 ) , ( "nn", 0x3 ) , ( "p", 0x4 ) , ( "o", 0x5 ) , ( "no", 0x6 ) , ( "a", 0x7 ) , ( "ae", 0x8 ) , ( "nc", 0x8 ) , ( "b", 0x9 ) , ( "c", 0x9 ) , ( "mc", 0x9 ) , ( "be", 0xA ) , ( "g", 0xB ) , ( "ge", 0xC ) , ( "l", 0xD ) , ( "le", 0xE ) , ( "f", 0xF ) -- Reserved ] operators :: [ Op ] operators = [ ( "nop", 0x00, [ ] ) , ( "cls", 0x01, [ ] ) , ( "vblnk", 0x02, [ ] ) , ( "bgc", 0x03, [ Imm4 4 ] ) , ( "spr", 0x04, [ Imm16 ] ) , ( "drw", 0x05, [ RegX, RegY, Imm16 ] ) , ( "drw", 0x06, [ RegX, RegY, RegZ ] ) , ( "rnd", 0x07, [ RegX, Imm16 ] ) , ( "flip", 0x08, [ Bit 25, Bit 24] ) , ( "snd0", 0x09, [ ] ) , ( "snd1", 0x0A, [ Imm16 ] ) , ( "snd2", 0x0B, [ Imm16 ] ) , ( "snd3", 0x0C, [ Imm16 ] ) , ( "snp", 0x0D, [ RegX, Imm16 ] ) , ( "sng", 0x0E, [ Imm8 1, Imm16 ] ) , ( "jmp", 0x10, [ Imm16 ] ) , ( "", 0x12, [ Imm16 ] ) -- special , ( "jme", 0x13, [ RegX, RegY, Imm16 ] ) , ( "call", 0x14, [ Imm16 ] ) , ( "ret", 0x15, [ ] ) , ( "jmp", 0x16, [ RegX ] ) , ( "", 0x17, [ Imm16 ] ) -- special , ( "call", 0x18, [ Imm16 ] ) , ( "ldi", 0x20, [ RegX, Imm16 ] ) , ( "ldi", 0x21, [ SP, Imm16 ] ) , ( "ldm", 0x22, [ RegX, Imm16] ) , ( "ldm", 0x23, [ RegX, RegY ] ) , ( "mov", 0x24, [ RegX, RegY ] ) , ( "stm", 0x30, [ RegX, Imm16 ] ) , ( "stm", 0x31, [ RegX, RegY ] ) , ( "addi", 0x40, [ RegX, Imm16 ] ) , ( "add", 0x41, [ RegX, RegY ] ) , ( "add", 0x42, [ RegX, RegY, RegZ ] ) , ( "subi", 0x50, [ RegX, Imm16 ] ) , ( "sub", 0x51, [ RegX, RegY ] ) , ( "sub", 0x52, [ RegX, RegY, RegZ ] ) , ( "cmpi", 0x53, [ RegX, Imm16 ] ) , ( "cmp", 0x54, [ RegX, RegY ] ) , ( "andi", 0x60, [ RegX, Imm16 ] ) , ( "and", 0x61, [ RegX, RegY ] ) , ( "and", 0x62, [ RegX, RegY, RegZ ] ) , ( "tsti", 0x63, [ RegX, Imm16 ] ) , ( "tst", 0x64, [ RegX, RegY ] ) , ( "ori", 0x70, [ RegX, Imm16] ) , ( "or", 0x71, [ RegX, RegY ] ) , ( "or", 0x72, [ RegX, RegY, RegZ ] ) , ( "xori", 0x80, [ RegX, Imm16 ] ) , ( "xor", 0x81, [ RegX, RegY ] ) , ( "xor", 0x82, [ RegX, RegY, RegZ ] ) , ( "muli", 0x90, [ RegX, Imm16 ] ) , ( "mul", 0x91, [ RegX, RegY ] ) , ( "mul", 0x92, [ RegX, RegY, RegZ ] ) , ( "divi", 0xA0, [ RegX, Imm16 ] ) , ( "div", 0xA1, [ RegX, RegY] ) , ( "div", 0xA2, [ RegX, RegY, RegZ ] ) , ( "shl", 0xB0, [ RegX, Imm4 4 ] ) , ( "shr", 0xB1, [ RegX, Imm4 4 ] ) , ( "sar", 0xB2, [ RegX, Imm4 4 ] ) , ( "shl", 0xB3, [ RegX, RegY ] ) , ( "shr", 0xB4, [ RegX, RegY ] ) , ( "sar", 0xB5, [ RegX, RegY ] ) , ( "push", 0xC0, [ RegX ] ) , ( "pop", 0xC1, [ RegX ] ) , ( "pushall", 0xC2, [ ] ) , ( "popall", 0xC3, [ ] ) , ( "pushf", 0xC4, [ ] ) , ( "popf", 0xC5, [ ] ) , ( "pal", 0xD0, [ Imm16 ] ) , ( "pal", 0xD1, [ RegX ] ) ] getOperatorByName :: String -> [ Op ] getOperatorByName name = filter (\( name', _, _ ) -> name == name') operators getOperatorByCode :: Int -> Maybe Op getOperatorByCode n = find (\( _, n', _ ) -> n == n' ) operators getJumpByCode :: Int -> String getJumpByCode n = fst . fromJust $ find (\( j, n' ) -> n' == n ) jump getJumpByName :: String -> Maybe Int getJumpByName j = snd <$> find (\( j', n ) -> j' == j ) jump
nandor/hcasm
HC/Ops.hs
Haskell
bsd-3-clause
4,323
module Main where import qualified Language.Modelica.Test.Lexer as Lexer import qualified Language.Modelica.Test.Expression as Expr import qualified Language.Modelica.Test.Modification as Mod import qualified Language.Modelica.Test.Basic as Basic import qualified Language.Modelica.Test.ClassDefinition as ClassDef import qualified Language.Modelica.Test.Equation as Equation import qualified Language.Modelica.Test.ComponentClause as CompClause import qualified Language.Modelica.Test.Programme as Prog import qualified Language.Modelica.Test.Utility as Utility import Control.Monad (when) main :: IO () main = do Utility.banner "Lexer" as <- Lexer.test Utility.banner "Basic" bs <- Basic.test Utility.banner "Expression" cs <- Expr.test Utility.banner "Modification" ds <- Mod.test Utility.banner "Equation" es <- Equation.test Utility.banner "Component Clause" fs <- CompClause.test Utility.banner "Class Definition" gs <- ClassDef.test Utility.banner "Comment" hs <- Prog.test Utility.banner "QuickCheck tests" i <- Prog.runTests let tests = as ++ bs ++ cs ++ ds ++ es ++ fs ++ gs ++ hs ++ [i] testsLen = length tests passedLen = length $ filter (== True) tests Utility.banner "Final Result" putStrLn $ "Have we successfully passed all " ++ (show testsLen) ++ " tests? " when (testsLen /= passedLen) (putStrLn $ "Passed only " ++ show passedLen ++ " tests!") Utility.printBoolOrExit (and tests) putStrLn ""
xie-dongping/modelicaparser
test/Main.hs
Haskell
bsd-3-clause
1,500
------------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.Supply -- Copyright : (C) 2013 Merijn Verstraaten -- License : BSD-style (see the file LICENSE) -- Maintainer : Merijn Verstraaten <merijn@inconsistent.nl> -- Stability : experimental -- Portability : non-portable -- -- [Computation type:] Computations that require a supply of values. -- -- [Binding strategy:] Applicative values are functions that consume an input -- from a supply to produce a value. -- -- [Useful for:] Providing a supply of unique names or other values to -- computations needing them. -- -- [Zero and plus:] Identical to the underlying implementations (if any) of -- 'empty', '<|>', 'mzero' and 'mplus'. -- -- The @'Supply' s a@ monad represents a computation that consumes a supply of -- @s@'s to produce a value of type @a@. One example use is to simplify -- computations that require the generation of unique names. The 'Supply' monad -- can be used to provide a stream of unique names to such a computation. ------------------------------------------------------------------------------- module Control.Monad.Supply ( -- * The MonadSupply Class MonadSupply (..) , demand -- * The Supply Monad , Supply , withSupply , runSupply , runListSupply , runMonadSupply -- * The Supply Monad Transformer , SupplyT , withSupplyT , runSupplyT , runListSupplyT , runMonadSupplyT , module Control.Monad , module Control.Monad.Trans ) where import Control.Monad.Supply.Class import Control.Monad.Trans.Supply ( Supply , SupplyT , withSupply , withSupplyT , runSupply , runSupplyT , runListSupply , runListSupplyT , runMonadSupply , runMonadSupplyT ) import Control.Monad import Control.Monad.Trans
merijn/transformers-supply
Control/Monad/Supply.hs
Haskell
bsd-3-clause
1,868
module Text.Velocity ( defaultVelocityState , Vstate(..) , render , pretty_ast -- * Parsing , parseVelocityM , parseVelocity , parseVelocityFile ) where import Control.Applicative hiding ((<|>), many) import Control.Arrow import Control.Monad import Control.Monad.IO.Class import Data.Maybe import Control.Monad.State import qualified Control.Monad.State.Class as State import Text.Velocity.Context import Text.Velocity.Parse import Text.Velocity.Types data Vstate = Vstate { vs_template_root :: FilePath , vs_stack :: Stack Context } vs_add_macro :: Macbind -> Vstate -> Vstate vs_add_macro binding state_ = state_ { vs_stack = stack_map_top (addMacro binding) (vs_stack state_) } stack_map_top :: (a -> a) -> Stack a -> Stack a stack_map_top f stack = case stack of [] -> [] x : xs -> f x : xs defaultVelocityState :: Vstate defaultVelocityState = Vstate "/home/john/sender/templates/" [] v_get_var :: (Functor m, Monad m) => String -> StateT Vstate m (Maybe VarBind) v_get_var name = State.gets $ vs_stack >>> concatMap co_vars >>> filter (varName >>> (name ==)) >>> listToMaybe v_get_macro :: (Functor m, Monad m) => String -> StateT Vstate m (Maybe Macbind) v_get_macro name = State.gets $ vs_stack >>> concatMap co_macs >>> filter (macroName >>> (name ==)) >>> listToMaybe render :: [Node] -> StateT Vstate IO String render = phase1 >=> phase_2 pretty_ast :: [Node] -> String pretty_ast nodes = case nodes of [] -> "" node : tail_ -> pretty 0 node ++ pretty_ast tail_ where pretty level node = let level' = succ level indent = replicate (4 * level) ' ' in indent ++ case node of Fragment nodes_ -> "Fragment\n" ++ concatMap (pretty level') nodes_ Call name args -> "Call " ++ name ++ "\n" ++ concatMap (pretty level') args -- MacroDef name args body -> "MacroDef " ++ name ++ " " ++ show args ++ "\n" ++ concatMap (pretty level') body _ -> show node ++ "\n" -- | You can use a macro before its definition. phase1 :: [Node] -> StateT Vstate IO [Node] phase1 nodes = case nodes of [] -> return [] node : tail_ -> do replacements <- case node of BlockComment _ -> return [] LineComment _ -> return [] MacroDef name args body -> do State.modify $ vs_add_macro (Macbind name args body) return [] _ -> return [node] (replacements ++) <$> phase1 tail_ with_context :: Context -> StateT Vstate IO a -> StateT Vstate IO a with_context context = withStateT (\ s -> s { vs_stack = context : vs_stack s }) -- | True if @bind@ does not occur in @macparams@. free_var :: VarBind -> [Node] -> Bool free_var bind macparams = not $ elem (varName bind) (flip mapMaybe macparams $ \ node -> case node of Var name -> Just name _ -> Nothing) -- | This is supposed to be similar to lambda calculus beta-reduction. replace_var :: VarBind -> [Node] -> [Node] replace_var bind@(VarBind name content) nodes = flip concatMap nodes $ \ node -> case node of Fragment nodes_ -> [Fragment (replace_var bind nodes_)] -- Var name2 | name == name2 -> [content] -- QuietVar name2 | name == name2 -> [content] defn@(MacroDef mname mparams mbody) -> if free_var bind (map (Var . maName) mparams) -- then [MacroDef mname mparams (replace_var bind mbody)] then undefined -- FIXME else [defn] Call name_ args -> [Call name_ (replace_var bind args)] _ -> [node] -- what to do when undefined variable? -- * print '$var' literally -- * throw an error invoke :: Node -> StateT Vstate IO String invoke (Call name argvals) = do m_macbind <- v_get_macro name case m_macbind of Nothing -> error $ "undefined macro: #" ++ name Just macbind@(Macbind _ macargs mbody) -> do unless (length macargs == length argvals) $ do error $ "macro formal and actual argument count must match:\nformal: " ++ show macbind ++ "\nactual: " ++ show argvals -- let assignment = zipWith (\ (Var m) a -> VarBind m a) (map (Var . maName) macargs) argvals -- let mbody' = foldr (\ a b -> replace_var a b) mbody assignment let mbody' = undefined -- FIXME render mbody' {- with_context (Context (zipWith (\ formal actual -> case formal of Var name -> VarBind name actual _ -> error $ "macro formal argument must be variable reference; got " ++ show formal ) macargs argvals) []) (render mbody) -} -- | Render the parsed template into string. phase_2 :: [Node] -> StateT Vstate IO String phase_2 nodes_ = action 0 nodes_ where depth_limit = 8 action :: Integer -> [Node] -> StateT Vstate IO String action depth nodes = let descend = action (succ depth) in do case nodes of node : tail_ -> do when (depth > depth_limit) $ do error $ "possible cycle: phase_2 depth reached " ++ show depth ++ " while evaluating " ++ show node -- liftIO $ putStrLn $ show node result <- case node of Literal s -> return s Fragment nodes__ -> descend nodes__ -- Var name -> v_get_var name >>= maybe (error $ "undefined variable: $" ++ name) (descend . (: []) . varContent) -- QuietVar name -> v_get_var name >>= maybe (return "") (descend . (: []) . varContent) Zacall name -> do m_macbind <- v_get_macro $ nameToString name case m_macbind of Nothing -> do liftIO . putStrLn $ "warning: silently converting #" ++ nameToString name ++ " to literal" return ('#' : nameToString name) Just _ -> invoke (Call (nameToString name) []) call@(Call _ _) -> invoke call _ -> error $ "phase_2 not implemented: " ++ show node (result ++) <$> render tail_ _ -> return ""
edom/velocity
Text/Velocity.hs
Haskell
bsd-3-clause
7,030
{-# LANGUAGE ScopedTypeVariables, FlexibleContexts, TypeFamilies, TypeSynonymInstances, FlexibleInstances, GADTs, RankNTypes, UndecidableInstances #-} -- | The 'Enabled' module allows the construction of circuits that use -- additional control logic -- an enable signal -- that externalizes whether a -- data signal is valid. module Language.KansasLava.Protocols.Enabled (Enabled, packEnabled, unpackEnabled, enabledVal, isEnabled, mapEnabled, enabledS, disabledS, ) where import Language.KansasLava.Signal import Language.KansasLava.Rep -- | Enabled is a synonym for Maybe. type Enabled a = Maybe a -- | This is lifting *Comb* because Comb is stateless, and the 'en' Bool being -- passed on assumes no history, in the 'a -> b' function. mapEnabled :: (Rep a, Rep b, sig ~ Signal clk) => (forall clk' . Signal clk' a -> Signal clk' b) -> sig (Enabled a) -> sig (Enabled b) mapEnabled f en = pack (en_bool,f en_val) where (en_bool,en_val) = unpack en -- | Lift a data signal to be an Enabled signal, that's always enabled. enabledS :: (Rep a, sig ~ Signal clk) => sig a -> sig (Enabled a) enabledS s = pack (pureS True,s) -- | Create a signal that's never enabled. disabledS :: (Rep a, sig ~ Signal clk) => sig (Enabled a) disabledS = pack (pureS False,undefinedS) -- | Combine a boolean control signal and an data signal into an enabled signal. packEnabled :: (Rep a, sig ~ Signal clk) => sig Bool -> sig a -> sig (Enabled a) packEnabled s1 s2 = pack (s1,s2) -- | Break the representation of an Enabled signal into a Bool signal (for whether the -- value is valid) and a signal for the data. unpackEnabled :: (Rep a, sig ~ Signal clk) => sig (Enabled a) -> (sig Bool, sig a) unpackEnabled = unpack -- | Drop the Enabled control from the signal. The output signal will be Rep -- unknown if the input signal is not enabled. enabledVal :: (Rep a, sig ~ Signal clk) => sig (Enabled a) -> sig a enabledVal = snd . unpackEnabled -- | Determine if the the circuit is enabled. isEnabled :: (Rep a, sig ~ Signal clk) => sig (Enabled a) -> sig Bool isEnabled = fst . unpackEnabled
andygill/kansas-lava
Language/KansasLava/Protocols/Enabled.hs
Haskell
bsd-3-clause
2,134
module AssetsHelper where import Assets import Utils.Utils import TypeSystem.Parser.TypeSystemParser import TypeSystem import Data.List import qualified Data.Map as M import Control.Arrow ((&&&)) import SyntaxHighlighting.Coloring stfl = parseTypeSystem Assets._Test_STFL_language (Just "Assets/STFL.language") & either (error . show) id stflSyntax = get tsSyntax stfl optionsSyntax = parseTypeSystem Assets._Manual_Options_language (Just "Assets/Manual/Options.Language") & either (error . show) id & get tsSyntax terminalStyle = Assets._Terminal_style & parseColoringFile "Assets/Terminal.style" & either error id knownStyles :: M.Map Name FullColoring knownStyles = Assets.allAssets & filter ((".style" `isSuffixOf`) . fst) |> (fst &&& (\(fp, style) -> parseColoringFile ("Assets: "++fp) style & either error id)) & M.fromList fetchStyle name = let errMsg = "No builtin style with name "++name ++ "\nBuiltin styles are:\n" ++ (knownStyles & M.keys & unlines & indent) in checkExists (name++".style") knownStyles errMsg minimalStyleTypes = Assets._MinimalStyles_txt & validLines
pietervdvn/ALGT
src/AssetsHelper.hs
Haskell
bsd-3-clause
1,127
{-# LANGUAGE CPP , GADTs , Rank2Types , DataKinds , TypeFamilies , FlexibleContexts , UndecidableInstances , LambdaCase , MultiParamTypeClasses , OverloadedStrings #-} {-# OPTIONS_GHC -Wall -fwarn-tabs -fsimpl-tick-factor=1000 #-} module Language.Hakaru.Runtime.LogFloatPrelude where #if __GLASGOW_HASKELL__ < 710 import Data.Functor ((<$>)) import Control.Applicative (Applicative(..)) #endif import Data.Foldable as F import qualified System.Random.MWC as MWC import qualified System.Random.MWC.Distributions as MWCD import Data.Number.Natural import Data.Number.LogFloat hiding (sum, product) import qualified Data.Number.LogFloat as LF import Data.STRef import qualified Data.Vector as V import qualified Data.Vector.Unboxed as U import qualified Data.Vector.Generic as G import qualified Data.Vector.Generic.Mutable as M import Control.Monad import Control.Monad.ST import Prelude hiding (init, sum, product, exp, log, (**), pi) import qualified Prelude as P type family MinBoxVec (v1 :: * -> *) (v2 :: * -> *) :: * -> * type instance MinBoxVec V.Vector v = V.Vector type instance MinBoxVec v V.Vector = V.Vector type instance MinBoxVec U.Vector U.Vector = U.Vector type family MayBoxVec a :: * -> * type instance MayBoxVec () = U.Vector type instance MayBoxVec Int = U.Vector type instance MayBoxVec Double = U.Vector type instance MayBoxVec LogFloat = U.Vector type instance MayBoxVec Bool = U.Vector type instance MayBoxVec (U.Vector a) = V.Vector type instance MayBoxVec (V.Vector a) = V.Vector type instance MayBoxVec (a,b) = MinBoxVec (MayBoxVec a) (MayBoxVec b) newtype instance U.MVector s LogFloat = MV_LogFloat (U.MVector s Double) newtype instance U.Vector LogFloat = V_LogFloat (U.Vector Double) instance U.Unbox LogFloat instance M.MVector U.MVector LogFloat where {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicOverlaps #-} {-# INLINE basicUnsafeNew #-} #if __GLASGOW_HASKELL__ > 710 {-# INLINE basicInitialize #-} #endif {-# INLINE basicUnsafeReplicate #-} {-# INLINE basicUnsafeRead #-} {-# INLINE basicUnsafeWrite #-} {-# INLINE basicClear #-} {-# INLINE basicSet #-} {-# INLINE basicUnsafeCopy #-} {-# INLINE basicUnsafeGrow #-} basicLength (MV_LogFloat v) = M.basicLength v basicUnsafeSlice i n (MV_LogFloat v) = MV_LogFloat $ M.basicUnsafeSlice i n v basicOverlaps (MV_LogFloat v1) (MV_LogFloat v2) = M.basicOverlaps v1 v2 basicUnsafeNew n = MV_LogFloat `liftM` M.basicUnsafeNew n #if __GLASGOW_HASKELL__ > 710 basicInitialize (MV_LogFloat v) = M.basicInitialize v #endif basicUnsafeReplicate n x = MV_LogFloat `liftM` M.basicUnsafeReplicate n (logFromLogFloat x) basicUnsafeRead (MV_LogFloat v) i = logToLogFloat `liftM` M.basicUnsafeRead v i basicUnsafeWrite (MV_LogFloat v) i x = M.basicUnsafeWrite v i (logFromLogFloat x) basicClear (MV_LogFloat v) = M.basicClear v basicSet (MV_LogFloat v) x = M.basicSet v (logFromLogFloat x) basicUnsafeCopy (MV_LogFloat v1) (MV_LogFloat v2) = M.basicUnsafeCopy v1 v2 basicUnsafeMove (MV_LogFloat v1) (MV_LogFloat v2) = M.basicUnsafeMove v1 v2 basicUnsafeGrow (MV_LogFloat v) n = MV_LogFloat `liftM` M.basicUnsafeGrow v n instance G.Vector U.Vector LogFloat where {-# INLINE basicUnsafeFreeze #-} {-# INLINE basicUnsafeThaw #-} {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicUnsafeIndexM #-} {-# INLINE elemseq #-} basicUnsafeFreeze (MV_LogFloat v) = V_LogFloat `liftM` G.basicUnsafeFreeze v basicUnsafeThaw (V_LogFloat v) = MV_LogFloat `liftM` G.basicUnsafeThaw v basicLength (V_LogFloat v) = G.basicLength v basicUnsafeSlice i n (V_LogFloat v) = V_LogFloat $ G.basicUnsafeSlice i n v basicUnsafeIndexM (V_LogFloat v) i = logToLogFloat `liftM` G.basicUnsafeIndexM v i basicUnsafeCopy (MV_LogFloat mv) (V_LogFloat v) = G.basicUnsafeCopy mv v elemseq _ x z = G.elemseq (undefined :: U.Vector a) (logFromLogFloat x) z lam :: (a -> b) -> a -> b lam = id {-# INLINE lam #-} app :: (a -> b) -> a -> b app f x = f x {-# INLINE app #-} let_ :: a -> (a -> b) -> b let_ x f = let x1 = x in f x1 {-# INLINE let_ #-} ann_ :: a -> b -> b ann_ _ a = a {-# INLINE ann_ #-} exp :: Double -> LogFloat exp = logToLogFloat {-# INLINE exp #-} log :: LogFloat -> Double log = logFromLogFloat {-# INLINE log #-} newtype Measure a = Measure { unMeasure :: MWC.GenIO -> IO (Maybe a) } instance Functor Measure where fmap = liftM {-# INLINE fmap #-} instance Applicative Measure where pure x = Measure $ \_ -> return (Just x) {-# INLINE pure #-} (<*>) = ap {-# INLINE (<*>) #-} instance Monad Measure where return = pure {-# INLINE return #-} m >>= f = Measure $ \g -> do Just x <- unMeasure m g unMeasure (f x) g {-# INLINE (>>=) #-} makeMeasure :: (MWC.GenIO -> IO a) -> Measure a makeMeasure f = Measure $ \g -> Just <$> f g {-# INLINE makeMeasure #-} uniform :: Double -> Double -> Measure Double uniform lo hi = makeMeasure $ MWC.uniformR (lo, hi) {-# INLINE uniform #-} normal :: Double -> LogFloat -> Measure Double normal mu sd = makeMeasure $ MWCD.normal mu (fromLogFloat sd) {-# INLINE normal #-} beta :: LogFloat -> LogFloat -> Measure LogFloat beta a b = makeMeasure $ \g -> logFloat <$> MWCD.beta (fromLogFloat a) (fromLogFloat b) g {-# INLINE beta #-} gamma :: LogFloat -> LogFloat -> Measure LogFloat gamma a b = makeMeasure $ \g -> logFloat <$> MWCD.gamma (fromLogFloat a) (fromLogFloat b) g {-# INLINE gamma #-} categorical :: MayBoxVec LogFloat LogFloat -> Measure Int categorical a = makeMeasure $ \g -> fromIntegral <$> MWCD.categorical (U.map prep a) g where prep p = fromLogFloat (p / m) m = G.maximum a {-# INLINE categorical #-} plate :: (G.Vector (MayBoxVec a) a) => Int -> (Int -> Measure a) -> Measure (MayBoxVec a a) plate n f = G.generateM (fromIntegral n) $ \x -> f (fromIntegral x) {-# INLINE plate #-} bucket :: Int -> Int -> (forall s. Reducer () s a) -> a bucket b e r = runST $ case r of Reducer{init=initR,accum=accumR,done=doneR} -> do s' <- initR () F.mapM_ (\i -> accumR () i s') [b .. e - 1] doneR s' {-# INLINE bucket #-} data Reducer xs s a = forall cell. Reducer { init :: xs -> ST s cell , accum :: xs -> Int -> cell -> ST s () , done :: cell -> ST s a } r_fanout :: Reducer xs s a -> Reducer xs s b -> Reducer xs s (a,b) r_fanout Reducer{init=initA,accum=accumA,done=doneA} Reducer{init=initB,accum=accumB,done=doneB} = Reducer { init = \xs -> liftM2 (,) (initA xs) (initB xs) , accum = \bs i (s1, s2) -> accumA bs i s1 >> accumB bs i s2 , done = \(s1, s2) -> liftM2 (,) (doneA s1) (doneB s2) } {-# INLINE r_fanout #-} r_index :: (G.Vector (MayBoxVec a) a) => (xs -> Int) -> ((Int, xs) -> Int) -> Reducer (Int, xs) s a -> Reducer xs s (MayBoxVec a a) r_index n f Reducer{init=initR,accum=accumR,done=doneR} = Reducer { init = \xs -> V.generateM (n xs) (\b -> initR (b, xs)) , accum = \bs i v -> let ov = f (i, bs) in accumR (ov,bs) i (v V.! ov) , done = \v -> fmap G.convert (V.mapM doneR v) } {-# INLINE r_index #-} r_split :: ((Int, xs) -> Bool) -> Reducer xs s a -> Reducer xs s b -> Reducer xs s (a,b) r_split b Reducer{init=initA,accum=accumA,done=doneA} Reducer{init=initB,accum=accumB,done=doneB} = Reducer { init = \xs -> liftM2 (,) (initA xs) (initB xs) , accum = \bs i (s1, s2) -> if (b (i,bs)) then accumA bs i s1 else accumB bs i s2 , done = \(s1, s2) -> liftM2 (,) (doneA s1) (doneB s2) } {-# INLINE r_split #-} r_add :: Num a => ((Int, xs) -> a) -> Reducer xs s a r_add e = Reducer { init = \_ -> newSTRef 0 , accum = \bs i s -> modifySTRef' s (+ (e (i,bs))) , done = readSTRef } {-# INLINE r_add #-} r_nop :: Reducer xs s () r_nop = Reducer { init = \_ -> return () , accum = \_ _ _ -> return () , done = \_ -> return () } {-# INLINE r_nop #-} pair :: a -> b -> (a, b) pair = (,) {-# INLINE pair #-} true, false :: Bool true = True false = False nothing :: Maybe a nothing = Nothing just :: a -> Maybe a just = Just unit :: () unit = () data Pattern = PVar | PWild newtype Branch a b = Branch { extract :: a -> Maybe b } ptrue, pfalse :: a -> Branch Bool a ptrue b = Branch { extract = extractBool True b } pfalse b = Branch { extract = extractBool False b } {-# INLINE ptrue #-} {-# INLINE pfalse #-} extractBool :: Bool -> a -> Bool -> Maybe a extractBool b a p | p == b = Just a | otherwise = Nothing {-# INLINE extractBool #-} pnothing :: b -> Branch (Maybe a) b pnothing b = Branch { extract = \ma -> case ma of Nothing -> Just b Just _ -> Nothing } pjust :: Pattern -> (a -> b) -> Branch (Maybe a) b pjust PVar c = Branch { extract = \ma -> case ma of Nothing -> Nothing Just x -> Just (c x) } pjust _ _ = error "Runtime.Prelude pjust" ppair :: Pattern -> Pattern -> (x -> y -> b) -> Branch (x,y) b ppair PVar PVar c = Branch { extract = (\(x,y) -> Just (c x y)) } ppair _ _ _ = error "ppair: TODO" uncase_ :: Maybe a -> a uncase_ (Just a) = a uncase_ Nothing = error "case_: unable to match any branches" {-# INLINE uncase_ #-} case_ :: a -> [Branch a b] -> b case_ e [c1] = uncase_ (extract c1 e) case_ e [c1, c2] = uncase_ (extract c1 e `mplus` extract c2 e) case_ e bs_ = go bs_ where go [] = error "case_: unable to match any branches" go (b:bs) = case extract b e of Just b' -> b' Nothing -> go bs {-# INLINE case_ #-} branch :: (c -> Branch a b) -> c -> Branch a b branch pat body = pat body {-# INLINE branch #-} dirac :: a -> Measure a dirac = return {-# INLINE dirac #-} pose :: LogFloat -> Measure a -> Measure a pose _ a = a {-# INLINE pose #-} superpose :: [(LogFloat, Measure a)] -> Measure a superpose pms = do i <- categorical (G.fromList $ map fst pms) snd (pms !! i) {-# INLINE superpose #-} reject :: Measure a reject = Measure $ \_ -> return Nothing nat_ :: Int -> Int nat_ = id int_ :: Int -> Int int_ = id unsafeNat :: Int -> Int unsafeNat = id nat2prob :: Int -> LogFloat nat2prob = fromIntegral fromInt :: Int -> Double fromInt = fromIntegral nat2int :: Int -> Int nat2int = id nat2real :: Int -> Double nat2real = fromIntegral fromProb :: LogFloat -> Double fromProb = fromLogFloat unsafeProb :: Double -> LogFloat unsafeProb = logFloat real_ :: Rational -> Double real_ = fromRational prob_ :: NonNegativeRational -> LogFloat prob_ = fromRational . fromNonNegativeRational infinity :: Double infinity = 1/0 abs_ :: Num a => a -> a abs_ = abs (**) :: LogFloat -> Double -> LogFloat (**) = pow {-# INLINE (**) #-} pi :: LogFloat pi = logFloat P.pi {-# INLINE pi #-} thRootOf :: Int -> LogFloat -> LogFloat thRootOf a b = b `pow` (recip $ fromIntegral a) {-# INLINE thRootOf #-} array :: (G.Vector (MayBoxVec a) a) => Int -> (Int -> a) -> MayBoxVec a a array n f = G.generate (fromIntegral n) (f . fromIntegral) {-# INLINE array #-} arrayLit :: (G.Vector (MayBoxVec a) a) => [a] -> MayBoxVec a a arrayLit = G.fromList {-# INLINE arrayLit #-} (!) :: (G.Vector (MayBoxVec a) a) => MayBoxVec a a -> Int -> a a ! b = a G.! (fromIntegral b) {-# INLINE (!) #-} size :: (G.Vector (MayBoxVec a) a) => MayBoxVec a a -> Int size v = fromIntegral (G.length v) {-# INLINE size #-} class Num a => Num' a where product :: Int -> Int -> (Int -> a) -> a product a b f = F.foldl' (\x y -> x * f y) 1 [a .. b-1] {-# INLINE product #-} summate :: Int -> Int -> (Int -> a) -> a summate a b f = F.foldl' (\x y -> x + f y) 0 [a .. b-1] {-# INLINE summate #-} instance Num' Int instance Num' Double instance Num' LogFloat where product a b f = LF.product (map f [a .. b-1]) {-# INLINE product #-} summate a b f = LF.sum (map f [a .. b-1]) {-# INLINE summate #-} run :: Show a => MWC.GenIO -> Measure a -> IO () run g k = unMeasure k g >>= \case Just a -> print a Nothing -> return () iterateM_ :: Monad m => (a -> m a) -> a -> m b iterateM_ f = g where g x = f x >>= g withPrint :: Show a => (a -> IO b) -> a -> IO b withPrint f x = print x >> f x
zaxtax/hakaru
haskell/Language/Hakaru/Runtime/LogFloatPrelude.hs
Haskell
bsd-3-clause
13,161
module ADP.Tests.RGExample where import ADP.Multi.All type RG_Algebra alphabet answer = ( EPS -> answer, -- nil answer -> answer -> answer, -- left answer -> answer -> answer -> answer, -- pair answer -> answer -> answer -> answer -> answer -> answer -> answer, -- knot answer -> answer -> answer, -- knot1 answer -> answer, -- knot2 (alphabet, alphabet) -> answer, -- basepair alphabet -> answer, -- base [answer] -> [answer] -- h ) data Start = Nil | Left' Start Start | Pair Start Start Start | Knot Start Start Start Start Start Start | Knot1 Start Start | Knot2 Start | BasePair (Char, Char) | Base Char deriving (Eq, Show) enum :: RG_Algebra Char Start enum = (\_->Nil,Left',Pair,Knot,Knot1,Knot2,BasePair,Base,id) maxBasepairs :: RG_Algebra Char Int maxBasepairs = (nil,left,pair,knot,knot1,knot2,basepair,base,h) where nil _ = 0 left a b = a + b pair a b c = a + b + c knot a b c d e f = a + b + c + d + e + f knot1 a b = a + b knot2 a = a basepair _ = 1 base _ = 0 h [] = [] h xs = [maximum xs]
adp-multi/adp-multi-monadiccp
tests/ADP/Tests/RGExample.hs
Haskell
bsd-3-clause
1,413
{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE ImpredicativeTypes #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE KindSignatures #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Control.Proof.Simple where import Control.Applicative import Control.Arrow import Control.Eff import Control.Eff.Choose import Control.Eff.Lift import Control.Eff.State.Lazy import Control.Lens import Control.Monad import Data.Function import Data.List import Data.Typeable import Numeric.Natural import qualified Data.Map as M import System.IO (hFlush, stdout) import Data.Name import Data.Prop import Data.Proof import Control.Proof.Common type Hypotheses = M.Map Name PropS type Target = PropS data Prove' = Prove { _hypotheses :: Hypotheses , _target :: Target } deriving (Typeable) makeLenses ''Prove' instance Show Prove' where show x = hypos x ++ fence ++ trg x where hypos = concatMap (\ (n,p) -> show n ++ "\t" ++ show p ++ "\n") . M.toList . (^. hypotheses) fence = replicate 40 '-' ++ "\n" trg = show . (^. target) type Prove = State Prove' getProve :: (Member Prove r) => Eff r Prove' getProve = get putProve :: (Member Prove r) => Prove' -> Eff r () putProve = put modifyProve :: (Member Prove r) => (Prove' -> Prove') -> Eff r () modifyProve = modify getHypotheses :: (Member Prove r) => Eff r Hypotheses getHypotheses = (^. hypotheses) <$> getProve putHypotheses :: (Member Prove r) => Hypotheses -> Eff r () putHypotheses = modifyProve . (hypotheses .~) modifyHypotheses :: (Member Prove r) => (Hypotheses -> Hypotheses) -> Eff r () modifyHypotheses = modifyProve . (hypotheses %~) getTarget :: (Member Prove r) => Eff r Target getTarget = (^. target) <$> getProve putTarget :: (Member Prove r) => Target -> Eff r () putTarget = modifyProve . (target .~) modifyTarget :: (Member Prove r) => (Target -> Target) -> Eff r () modifyTarget = modifyProve . (target %~) intro :: (Member Prove r, Member Choose r) => Eff r ProofS -> Eff r ProofS intro cont = do a <- getTarget case a of Prop _ -> mzero' Imply p q -> do name <- newName . M.keys <$> getHypotheses modifyHypotheses (M.insert name p) putTarget q Lambda name <$> cont intros :: (Member Prove r, Member Choose r) => Eff r ProofS -> Eff r ProofS intros cont = intro cont >> (cont `mplus'` intros cont) chooseHypothesis :: (Member Prove r, Member Choose r) => Eff r (Name, PropS) chooseHypothesis = choose . M.toList =<< getHypotheses where chooseImplyHypothesis :: (Member Prove r, Member Choose r) => Eff r (Name, (PropS, PropS)) chooseImplyHypothesis = do (n, p) <- chooseHypothesis case p of a `Imply` b -> return (n, (a, b)) _ -> mzero' exact :: (Member Prove r, Member Choose r) => Eff r ProofS exact = do (n, p) <- chooseHypothesis q <- getTarget if p == q then return $ Proof n else mzero' apply :: (Member Prove r, Member Choose r) => Eff r ProofS -> Eff r ProofS apply cont = do (n, (p, q)) <- chooseImplyHypothesis (ps, q') <- choose $ split (p ~> q) r <- getTarget if q' == r then do rs <- forM ps $ \ p' -> do putTarget p' cont return . foldr1 Apply $ Proof n : rs else mzero' auto :: (Member Prove r, Member Choose r) => Eff r ProofS -> Eff r ProofS auto cont = join $ choose [ intro cont , apply cont , exact ] hand :: (SetMember Lift (Lift IO) r, Member Prove r, Member Choose r) => Eff r ProofS -> Eff r ProofS hand cont = do lift . print =<< getProve s <- lift $ do putStr "tactic> " hFlush stdout getLine case s of "print" -> getProve >>= (lift . print) >> cont "intro" -> intro cont "intros" -> intros cont "apply" -> apply cont "exact" -> exact "auto" -> auto cont _ -> lift (putStrLn $ "no such command: " ++ s) >> cont runTactic :: Hypotheses -> Target -> (Eff (Prove :> Choose :> r) ProofS -> Eff (Prove :> Choose :> r) ProofS) -> Eff r [ProofS] runTactic x y = ((nubBy alphaEqual . map reduceS) <$>) . runChoice . evalState (Prove x y) . fix autoSolve :: Hypotheses -> Target -> [ProofS] autoSolve x y = run $ runTactic x y auto handSolve :: Hypotheses -> Target -> IO [ProofS] handSolve x y = putStrLn "* handSolve is wroking in progress *" >> runLift (runTactic x y hand) -- | >>> autoSolve' [] "(a -> b) -> (b -> c) -> a -> c" -- [\ x0 x1 . x1 x0] -- >>> autoSolve' [] "b -> (a -> b) -> a -> b" -- [\ x0 x1 . x1,\ x0 x1 x2 . x0] -- >>> autoSolve' [("maybe_case", "maybe_a -> b -> (a -> b) -> b1")] "b -> (a -> b) -> maybe_a -> b1" -- [\ x0 x1 x2 . maybe_case (x2 (x0 x1)),\ x0 x1 x2 . maybe_case (x2 (x0 (\ x3 . x0)))] autoSolve' :: [(String, String)] -> String -> [ProofS] autoSolve' xs y = autoSolve (M.fromList $ map (toName *** readPropS) xs) (readPropS y)
solorab/proof-haskell
Control/Proof/Simple.hs
Haskell
mit
5,049
----------------------------------------------------------------------------- -- | -- Module : RoverTests -- Copyright : (c) 2017 Pascal Poizat -- License : Apache-2.0 (see the file LICENSE) -- -- Maintainer : pascal.poizat@lip6.fr -- Stability : experimental -- Portability : unknown -- -- Test file for the Veca module. ----------------------------------------------------------------------------- module RoverTests (roverTests) where import Test.Tasty import Test.Tasty.HUnit -- import Test.Tasty.QuickCheck as QC -- import Test.Tasty.SmallCheck as SC import Data.Map as M (Map, fromList) import Data.Monoid ((<>)) import qualified Data.Set as S (fromList) import Examples.Rover.Model import Models.Events import Models.LabelledTransitionSystem as LTS (LabelledTransitionSystem (..), Path (..), paths') import Models.Name (Name (..)) import Models.Named (Named (..)) import Models.TimedAutomaton as TA (Bounds (..), ClockConstraint (..), ClockOperator (..), ClockReset (..), Edge (..), Expression (..), Location (..), TimedAutomaton (..), VariableAssignment (..), VariableType (..), VariableTyping (..), relabel) import Veca.Model import Veca.Operations listDone :: Int -> Map (Name String) VariableTyping listDone n = M.fromList [ ( Name ["done"] , VariableTyping (Name ["done"]) (IntType bounds) (Just $ Expression "0") ) ] where bounds = Bounds 0 n setDone :: Int -> VariableAssignment setDone n = VariableAssignment (Name ["done"]) (Expression (show n)) roverTests :: TestTree roverTests = testGroup "Tests" [unittests] unittests :: TestTree unittests = testGroup "Unit tests for the Rover Case Study" [uController, uStoreUnit, uPictureUnit, uVideoUnit, uAcquisitionUnit, uRover] uController :: TestTree uController = testGroup "Unit tests for Controller" [ testCase "basic component definition is valid" $ isValidComponent (componentType controllerUnit) @?= True , testCase "TA generation" $ cToTA controllerUnit @?= controllerTA ] uStoreUnit :: TestTree uStoreUnit = testGroup "Unit tests for Store Unit" [ testCase "basic component definition is valid" $ isValidComponent (componentType storeUnit) @?= True , testCase "TA generation" $ cToTA storeUnit @?= storeUnitTA ] uPictureUnit :: TestTree uPictureUnit = testGroup "Unit tests for Picture Unit" [ testCase "basic component definition is valid" $ isValidComponent (componentType pictureUnit) @?= True , testCase "TA generation" $ cToTA pictureUnit @?= pictureUnitTA ] uVideoUnit :: TestTree uVideoUnit = testGroup "Unit tests for Video Unit" [ testCase "basic component definition is valid" $ isValidComponent (componentType videoUnit) @?= True , testCase "paths" $ S.fromList computedVUPaths @?= S.fromList expectedVUPaths , testCase "isCPaths k1" $ (isCPath vuk1 <$> expectedVUPaths) @?= resk1 , testCase "isCPaths k2" $ (isCPath vuk2 <$> expectedVUPaths) @?= resk2 , testCase "isCPaths k3" $ (isCPath vuk3 <$> expectedVUPaths) @?= resk3 , testCase "TA generation" $ cToTA videoUnit @?= videoUnitTA ] where computedVUPaths = paths' (behavior (componentType videoUnit)) uAcquisitionUnit :: TestTree uAcquisitionUnit = testGroup "Unit tests for Acquisition Unit" [ testCase "composite component definition is valid" $ isValidComponent (componentType acquisitionUnit) @?= True ] uRover :: TestTree uRover = testGroup "Unit tests for Rover" [ testCase "composite component definition is valid" $ isValidComponent (componentType rover) @?= True , testCase "TA generation for the Rover (standalone)" $ (cTreeToTAList . cToCTree) rover @?= roverTAs ] -- -- Results -- expectedVUPaths :: [VPath] expectedVUPaths = Path <$> [ [] , [vut1] , [vut2] , [vut3] , [vut4] , [vut5] , [vut6] , [vut7] , [vut1, vut2] , [vut2, vut3] , [vut3, vut4] , [vut3, vut5] , [vut4, vut6] , [vut5, vut7] , [vut6, vut7] , [vut1, vut2, vut3] , [vut2, vut3, vut4] , [vut2, vut3, vut5] , [vut3, vut4, vut6] , [vut3, vut5, vut7] , [vut4, vut6, vut7] , [vut1, vut2, vut3, vut4] , [vut1, vut2, vut3, vut5] , [vut2, vut3, vut4, vut6] , [vut2, vut3, vut5, vut7] , [vut3, vut4, vut6, vut7] , [vut1, vut2, vut3, vut4, vut6] , [vut1, vut2, vut3, vut5, vut7] , [vut2, vut3, vut4, vut6, vut7] , [vut1, vut2, vut3, vut4, vut6, vut7] ] resk1 :: [Bool] resk1 = [ False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , True , False , True ] resk2 :: [Bool] resk2 = [ False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , True , False , False , False , False , False , False , False , False , False , False , False ] resk3 :: [Bool] resk3 = [ False , False , False , False , False , False , False , False , False , True , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False , False ] -- -- test results -- videoUnitTA :: VTA videoUnitTA = TimedAutomaton v (Location <$> ["0", "1", "2", "3", "4", "5", "6"]) (Location "0") [] [] clocksVU (listDone 6) (alphabet . behavior . componentType $ videoUnit) [ Edge (Location "0") (receive askVid) [] [ClockReset c1] [setDone 1] (Location "1") , Edge (Location "1") (invoke getVid) [] [ClockReset c3] [setDone 3] (Location "2") , Edge (Location "2") (result getVid) [ClockConstraint c3 GE 0] [ClockReset c2] [setDone 4] (Location "3") , Edge (Location "3") tau [] [] [setDone 6] (Location "4") , Edge (Location "3") tau [] [] [setDone 6] (Location "5") , Edge (Location "4") (invoke storeVid) [ClockConstraint c2 GE 0] [] [setDone 5] (Location "5") , Edge (Location "5") (reply askVid) [ClockConstraint c1 GE 44] [] [setDone 2] (Location "6") , Edge (Location "6") tau [] [] [setDone 6] (Location "6") ] [ (Location "1", [ClockConstraint c1 LE 46]) , (Location "2", [ClockConstraint c1 LE 46, ClockConstraint c3 LE 6]) , (Location "3", [ClockConstraint c1 LE 46, ClockConstraint c2 LE 12]) , (Location "4", [ClockConstraint c1 LE 46, ClockConstraint c2 LE 12]) , (Location "5", [ClockConstraint c1 LE 46]) ] where clocksVU = genClock <$> timeconstraints (componentType videoUnit) c1 = head clocksVU c2 = clocksVU !! 1 c3 = clocksVU !! 2 pictureUnitTA :: VTA pictureUnitTA = TimedAutomaton p (Location <$> ["0", "1", "2", "3", "4", "5", "6"]) (Location "0") [] [] clocksPU (listDone 6) (alphabet . behavior . componentType $ pictureUnit) [ Edge (Location "0") (receive askPic) [] [ClockReset c1] [setDone 1] (Location "1") , Edge (Location "1") (invoke getPic) [] [ClockReset c3] [setDone 3] (Location "2") , Edge (Location "2") (result getPic) [ClockConstraint c3 GE 0] [ClockReset c2] [setDone 4] (Location "3") , Edge (Location "3") tau [] [] [setDone 6] (Location "4") , Edge (Location "3") tau [] [] [setDone 6] (Location "5") , Edge (Location "4") (invoke storePic) [ClockConstraint c2 GE 0] [] [setDone 5] (Location "5") , Edge (Location "5") (reply askPic) [ClockConstraint c1 GE 44] [] [setDone 2] (Location "6") , Edge (Location "6") tau [] [] [setDone 6] (Location "6") ] [ (Location "1", [ClockConstraint c1 LE 46]) , (Location "2", [ClockConstraint c1 LE 46, ClockConstraint c3 LE 6]) , (Location "3", [ClockConstraint c1 LE 46, ClockConstraint c2 LE 12]) , (Location "4", [ClockConstraint c1 LE 46, ClockConstraint c2 LE 12]) , (Location "5", [ClockConstraint c1 LE 46]) ] where clocksPU = genClock <$> timeconstraints (componentType pictureUnit) c1 = head clocksPU c2 = clocksPU !! 1 c3 = clocksPU !! 2 storeUnitTA :: VTA storeUnitTA = TimedAutomaton s (Location <$> ["0", "1"]) (Location "0") [] [] [] (listDone 3) (alphabet . behavior . componentType $ storeUnit) [ Edge (Location "0") (receive storePic) [] [] [setDone 2] (Location "1") , Edge (Location "0") (receive storeVid) [] [] [setDone 3] (Location "1") , Edge (Location "1") tau [] [] [setDone 1] (Location "0") , Edge (Location "0") tau [] [] [setDone 1] (Location "0") ] [] controllerTA :: VTA controllerTA = TimedAutomaton c (Location <$> ["0", "1", "2", "3", "4", "5", "6"]) (Location "0") [] [] clocksC (listDone 7) ((alphabet . behavior . componentType $ controllerUnit) ++ [tau]) [ Edge (Location "0") (receive run) [] [ClockReset c1] [setDone 1] (Location "1") , Edge (Location "1") (invoke askVid) [] [] [setDone 3] (Location "2") , Edge (Location "2") (result askVid) [] [] [setDone 4] (Location "3") , Edge (Location "3") (invoke askPic) [] [] [setDone 5] (Location "4") , Edge (Location "4") (result askPic) [] [] [setDone 6] (Location "5") , Edge (Location "5") (reply run) [ClockConstraint c1 GE 55] [] [setDone 2] (Location "6") , Edge (Location "6") tau [] [] [setDone 7] (Location "6") ] [ (Location "1", [ClockConstraint c1 LE 60]) , (Location "2", [ClockConstraint c1 LE 60]) , (Location "3", [ClockConstraint c1 LE 60]) , (Location "4", [ClockConstraint c1 LE 60]) , (Location "5", [ClockConstraint c1 LE 60]) ] where clocksC = genClock <$> timeconstraints (componentType controllerUnit) c1 = head clocksC roverTAs :: [VTA] roverTAs = [ prefixBy r $ relabel sub1 controllerTA , prefixBy (r <> a) $ relabel sub2 pictureUnitTA , prefixBy (r <> a) $ relabel sub3 videoUnitTA , prefixBy r $ relabel sub4 storeUnitTA ] where sub1 = lift [mksub (r <> n5) run, mksub (r <> n1) askPic, mksub (r <> n2) askVid] sub2 = lift [mksub (r <> n1) askPic, mksub (r <> n6) getPic, mksub (r <> n3) storePic] sub3 = lift [mksub (r <> n2) askVid, mksub (r <> n7) getVid, mksub (r <> n4) storeVid] sub4 = lift [mksub (r <> n3) storePic, mksub (r <> n4) storeVid] lift = foldMap (fLift [CReceive, CReply, CInvoke, CResult]) mksub i o = (o, indexBy i o)
pascalpoizat/veca-haskell
test/RoverTests.hs
Haskell
apache-2.0
11,809
{-# LANGUAGE Rank2Types #-} ----------------------------------------------------------------------------- -- | -- Module : Data.IntSet.Lens -- Copyright : (C) 2012-16 Edward Kmett -- License : BSD-style (see the file LICENSE) -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : provisional -- Portability : portable -- ---------------------------------------------------------------------------- module Data.IntSet.Lens ( members , setmapped , setOf ) where import Control.Lens import Data.IntSet as IntSet -- $setup -- >>> :set -XNoOverloadedStrings -- >>> import Control.Lens -- | IntSet isn't Foldable, but this 'Fold' can be used to access the members of an 'IntSet'. -- -- >>> sumOf members $ setOf folded [1,2,3,4] -- 10 members :: Fold IntSet Int members = folding IntSet.toAscList {-# INLINE members #-} -- | This 'Setter' can be used to change the contents of an 'IntSet' by mapping -- the elements to new values. -- -- Sadly, you can't create a valid 'Traversal' for a 'Set', because the number of -- elements might change but you can manipulate it by reading using 'folded' and -- reindexing it via 'setmapped'. -- -- >>> over setmapped (+1) (fromList [1,2,3,4]) -- fromList [2,3,4,5] setmapped :: IndexPreservingSetter' IntSet Int setmapped = setting IntSet.map {-# INLINE setmapped #-} -- | Construct an 'IntSet' from a 'Getter', 'Fold', 'Traversal', 'Lens' or 'Iso'. -- -- >>> setOf folded [1,2,3,4] -- fromList [1,2,3,4] -- -- >>> setOf (folded._2) [("hello",1),("world",2),("!!!",3)] -- fromList [1,2,3] -- -- @ -- 'setOf' :: 'Getter' s 'Int' -> s -> 'IntSet' -- 'setOf' :: 'Fold' s 'Int' -> s -> 'IntSet' -- 'setOf' :: 'Iso'' s 'Int' -> s -> 'IntSet' -- 'setOf' :: 'Lens'' s 'Int' -> s -> 'IntSet' -- 'setOf' :: 'Traversal'' s 'Int' -> s -> 'IntSet' -- @ setOf :: Getting IntSet s Int -> s -> IntSet setOf l = views l IntSet.singleton {-# INLINE setOf #-}
ddssff/lens
src/Data/IntSet/Lens.hs
Haskell
bsd-3-clause
1,938
{-# LANGUAGE PatternGuards, ExistentialQuantification, CPP #-} {-# OPTIONS_GHC -fwarn-incomplete-patterns #-} module Idris.Core.Execute (execute) where import Idris.AbsSyntax import Idris.AbsSyntaxTree import IRTS.Lang(FDesc(..), FType(..)) import Idris.Primitives(Prim(..), primitives) import Idris.Core.TT import Idris.Core.Evaluate import Idris.Core.CaseTree import Idris.Error import Debug.Trace import Util.DynamicLinker import Util.System import Control.Applicative hiding (Const) import Control.Exception import Control.Monad.Trans import Control.Monad.Trans.State.Strict import Control.Monad.Trans.Except (ExceptT, runExceptT, throwE) import Control.Monad hiding (forM) import Data.Maybe import Data.Bits import Data.Traversable (forM) import Data.Time.Clock.POSIX (getPOSIXTime) import qualified Data.Map as M #ifdef IDRIS_FFI import Foreign.LibFFI import Foreign.C.String import Foreign.Marshal.Alloc (free) import Foreign.Ptr #endif import System.IO #ifndef IDRIS_FFI execute :: Term -> Idris Term execute tm = fail "libffi not supported, rebuild Idris with -f FFI" #else -- else is rest of file readMay :: (Read a) => String -> Maybe a readMay s = case reads s of [(x, "")] -> Just x _ -> Nothing data Lazy = Delayed ExecEnv Context Term | Forced ExecVal deriving Show data ExecState = ExecState { exec_dynamic_libs :: [DynamicLib] -- ^ Dynamic libs from idris monad , binderNames :: [Name] -- ^ Used to uniquify binders when converting to TT } data ExecVal = EP NameType Name ExecVal | EV Int | EBind Name (Binder ExecVal) (ExecVal -> Exec ExecVal) | EApp ExecVal ExecVal | EType UExp | EUType Universe | EErased | EConstant Const | forall a. EPtr (Ptr a) | EThunk Context ExecEnv Term | EHandle Handle instance Show ExecVal where show (EP _ n _) = show n show (EV i) = "!!V" ++ show i ++ "!!" show (EBind n b body) = "EBind " ++ show b ++ " <<fn>>" show (EApp e1 e2) = show e1 ++ " (" ++ show e2 ++ ")" show (EType _) = "Type" show (EUType _) = "UType" show EErased = "[__]" show (EConstant c) = show c show (EPtr p) = "<<ptr " ++ show p ++ ">>" show (EThunk _ env tm) = "<<thunk " ++ show env ++ "||||" ++ show tm ++ ">>" show (EHandle h) = "<<handle " ++ show h ++ ">>" toTT :: ExecVal -> Exec Term toTT (EP nt n ty) = (P nt n) <$> (toTT ty) toTT (EV i) = return $ V i toTT (EBind n b body) = do n' <- newN n body' <- body $ EP Bound n' EErased b' <- fixBinder b Bind n' b' <$> toTT body' where fixBinder (Lam t) = Lam <$> toTT t fixBinder (Pi i t k) = Pi i <$> toTT t <*> toTT k fixBinder (Let t1 t2) = Let <$> toTT t1 <*> toTT t2 fixBinder (NLet t1 t2) = NLet <$> toTT t1 <*> toTT t2 fixBinder (Hole t) = Hole <$> toTT t fixBinder (GHole i t) = GHole i <$> toTT t fixBinder (Guess t1 t2) = Guess <$> toTT t1 <*> toTT t2 fixBinder (PVar t) = PVar <$> toTT t fixBinder (PVTy t) = PVTy <$> toTT t newN n = do (ExecState hs ns) <- lift get let n' = uniqueName n ns lift (put (ExecState hs (n':ns))) return n' toTT (EApp e1 e2) = do e1' <- toTT e1 e2' <- toTT e2 return $ App Complete e1' e2' toTT (EType u) = return $ TType u toTT (EUType u) = return $ UType u toTT EErased = return Erased toTT (EConstant c) = return (Constant c) toTT (EThunk ctxt env tm) = do env' <- mapM toBinder env return $ normalise ctxt env' tm where toBinder (n, v) = do v' <- toTT v return (n, Let Erased v') toTT (EHandle _) = execFail $ Msg "Can't convert handles back to TT after execution." toTT (EPtr ptr) = execFail $ Msg "Can't convert pointers back to TT after execution." unApplyV :: ExecVal -> (ExecVal, [ExecVal]) unApplyV tm = ua [] tm where ua args (EApp f a) = ua (a:args) f ua args t = (t, args) mkEApp :: ExecVal -> [ExecVal] -> ExecVal mkEApp f [] = f mkEApp f (a:args) = mkEApp (EApp f a) args initState :: Idris ExecState initState = do ist <- getIState return $ ExecState (idris_dynamic_libs ist) [] type Exec = ExceptT Err (StateT ExecState IO) runExec :: Exec a -> ExecState -> IO (Either Err a) runExec ex st = fst <$> runStateT (runExceptT ex) st getExecState :: Exec ExecState getExecState = lift get putExecState :: ExecState -> Exec () putExecState = lift . put execFail :: Err -> Exec a execFail = throwE execIO :: IO a -> Exec a execIO = lift . lift execute :: Term -> Idris Term execute tm = do est <- initState ctxt <- getContext res <- lift . lift . flip runExec est $ do res <- doExec [] ctxt tm toTT res case res of Left err -> ierror err Right tm' -> return tm' ioWrap :: ExecVal -> ExecVal ioWrap tm = mkEApp (EP (DCon 0 2 False) (sUN "prim__IO") EErased) [EErased, tm] ioUnit :: ExecVal ioUnit = ioWrap (EP Ref unitCon EErased) type ExecEnv = [(Name, ExecVal)] doExec :: ExecEnv -> Context -> Term -> Exec ExecVal doExec env ctxt p@(P Ref n ty) | Just v <- lookup n env = return v doExec env ctxt p@(P Ref n ty) = do let val = lookupDef n ctxt case val of [Function _ tm] -> doExec env ctxt tm [TyDecl _ _] -> return (EP Ref n EErased) -- abstract def [Operator tp arity op] -> return (EP Ref n EErased) -- will be special-cased later [CaseOp _ _ _ _ _ (CaseDefs _ ([], STerm tm) _ _)] -> -- nullary fun doExec env ctxt tm [CaseOp _ _ _ _ _ (CaseDefs _ (ns, sc) _ _)] -> return (EP Ref n EErased) [] -> execFail . Msg $ "Could not find " ++ show n ++ " in definitions." other | length other > 1 -> execFail . Msg $ "Multiple definitions found for " ++ show n | otherwise -> execFail . Msg . take 500 $ "got to " ++ show other ++ " lookup up " ++ show n doExec env ctxt p@(P Bound n ty) = case lookup n env of Nothing -> execFail . Msg $ "not found" Just tm -> return tm doExec env ctxt (P (DCon a b u) n _) = return (EP (DCon a b u) n EErased) doExec env ctxt (P (TCon a b) n _) = return (EP (TCon a b) n EErased) doExec env ctxt v@(V i) | i < length env = return (snd (env !! i)) | otherwise = execFail . Msg $ "env too small" doExec env ctxt (Bind n (Let t v) body) = do v' <- doExec env ctxt v doExec ((n, v'):env) ctxt body doExec env ctxt (Bind n (NLet t v) body) = trace "NLet" $ undefined doExec env ctxt tm@(Bind n b body) = do b' <- forM b (doExec env ctxt) return $ EBind n b' (\arg -> doExec ((n, arg):env) ctxt body) doExec env ctxt a@(App _ _ _) = do let (f, args) = unApply a f' <- doExec env ctxt f args' <- case f' of (EP _ d _) | d == delay -> case args of [t,a,tm] -> do t' <- doExec env ctxt t a' <- doExec env ctxt a return [t', a', EThunk ctxt env tm] _ -> mapM (doExec env ctxt) args -- partial applications are fine to evaluate fun' -> do mapM (doExec env ctxt) args execApp env ctxt f' args' doExec env ctxt (Constant c) = return (EConstant c) doExec env ctxt (Proj tm i) = let (x, xs) = unApply tm in doExec env ctxt ((x:xs) !! i) doExec env ctxt Erased = return EErased doExec env ctxt Impossible = fail "Tried to execute an impossible case" doExec env ctxt (TType u) = return (EType u) doExec env ctxt (UType u) = return (EUType u) execApp :: ExecEnv -> Context -> ExecVal -> [ExecVal] -> Exec ExecVal execApp env ctxt v [] = return v -- no args is just a constant! can result from function calls execApp env ctxt (EP _ f _) (t:a:delayed:rest) | f == force , (_, [_, _, EThunk tmCtxt tmEnv tm]) <- unApplyV delayed = do tm' <- doExec tmEnv tmCtxt tm execApp env ctxt tm' rest execApp env ctxt (EP _ fp _) (ty:action:rest) | fp == upio, (prim__IO, [_, v]) <- unApplyV action = execApp env ctxt v rest execApp env ctxt (EP _ fp _) args@(_:_:v:k:rest) | fp == piobind, (prim__IO, [_, v']) <- unApplyV v = do res <- execApp env ctxt k [v'] execApp env ctxt res rest execApp env ctxt con@(EP _ fp _) args@(tp:v:rest) | fp == pioret = execApp env ctxt (mkEApp con [tp, v]) rest -- Special cases arising from not having access to the C RTS in the interpreter execApp env ctxt f@(EP _ fp _) args@(xs:_:_:_:args') | fp == mkfprim, (ty : fn : w : rest) <- reverse args' = execForeign env ctxt getArity ty fn rest (mkEApp f args) where getArity = case unEList xs of Just as -> length as _ -> 0 execApp env ctxt c@(EP (DCon _ arity _) n _) args = do let args' = take arity args let restArgs = drop arity args execApp env ctxt (mkEApp c args') restArgs execApp env ctxt c@(EP (TCon _ arity) n _) args = do let args' = take arity args let restArgs = drop arity args execApp env ctxt (mkEApp c args') restArgs execApp env ctxt f@(EP _ n _) args | Just (res, rest) <- getOp n args = do r <- res execApp env ctxt r rest execApp env ctxt f@(EP _ n _) args = do let val = lookupDef n ctxt case val of [Function _ tm] -> fail "should already have been eval'd" [TyDecl nt ty] -> return $ mkEApp f args [Operator tp arity op] -> if length args >= arity then let args' = take arity args in case getOp n args' of Just (res, []) -> do r <- res execApp env ctxt r (drop arity args) _ -> return (mkEApp f args) else return (mkEApp f args) [CaseOp _ _ _ _ _ (CaseDefs _ ([], STerm tm) _ _)] -> -- nullary fun do rhs <- doExec env ctxt tm execApp env ctxt rhs args [CaseOp _ _ _ _ _ (CaseDefs _ (ns, sc) _ _)] -> do res <- execCase env ctxt ns sc args return $ fromMaybe (mkEApp f args) res thing -> return $ mkEApp f args execApp env ctxt bnd@(EBind n b body) (arg:args) = do ret <- body arg let (f', as) = unApplyV ret execApp env ctxt f' (as ++ args) execApp env ctxt app@(EApp _ _) args2 | (f, args1) <- unApplyV app = execApp env ctxt f (args1 ++ args2) execApp env ctxt f args = return (mkEApp f args) execForeign env ctxt arity ty fn xs onfail | Just (FFun "putStr" [(_, str)] _) <- foreignFromTT arity ty fn xs = case str of EConstant (Str arg) -> do execIO (putStr arg) execApp env ctxt ioUnit (drop arity xs) _ -> execFail . Msg $ "The argument to putStr should be a constant string, but it was " ++ show str ++ ". Are all cases covered?" | Just (FFun "putchar" [(_, ch)] _) <- foreignFromTT arity ty fn xs = case ch of EConstant (Ch c) -> do execIO (putChar c) execApp env ctxt ioUnit (drop arity xs) EConstant (I i) -> do execIO (putChar (toEnum i)) execApp env ctxt ioUnit (drop arity xs) _ -> execFail . Msg $ "The argument to putchar should be a constant character, but it was " ++ show str ++ ". Are all cases covered?" | Just (FFun "idris_readStr" [_, (_, handle)] _) <- foreignFromTT arity ty fn xs = case handle of EHandle h -> do contents <- execIO $ hGetLine h execApp env ctxt (EConstant (Str (contents ++ "\n"))) (drop arity xs) _ -> execFail . Msg $ "The argument to idris_readStr should be a handle, but it was " ++ show handle ++ ". Are all cases covered?" | Just (FFun "getchar" _ _) <- foreignFromTT arity ty fn xs = do -- The C API returns an Int which Idris library code -- converts; thus, we must make an int here. ch <- execIO $ fmap (ioWrap . EConstant . I . fromEnum) getChar execApp env ctxt ch xs | Just (FFun "idris_time" _ _) <- foreignFromTT arity ty fn xs = do execIO $ fmap (ioWrap . EConstant . I . round) getPOSIXTime | Just (FFun "fileOpen" [(_,fileStr), (_,modeStr)] _) <- foreignFromTT arity ty fn xs = case (fileStr, modeStr) of (EConstant (Str f), EConstant (Str mode)) -> do f <- execIO $ catch (do let m = case mode of "r" -> Right ReadMode "w" -> Right WriteMode "a" -> Right AppendMode "rw" -> Right ReadWriteMode "wr" -> Right ReadWriteMode "r+" -> Right ReadWriteMode _ -> Left ("Invalid mode for " ++ f ++ ": " ++ mode) case fmap (openFile f) m of Right h -> do h' <- h hSetBinaryMode h' True return $ Right (ioWrap (EHandle h'), drop arity xs) Left err -> return $ Left err) (\e -> let _ = ( e::SomeException) in return $ Right (ioWrap (EPtr nullPtr), drop arity xs)) case f of Left err -> execFail . Msg $ err Right (res, rest) -> execApp env ctxt res rest _ -> execFail . Msg $ "The arguments to fileOpen should be constant strings, but they were " ++ show fileStr ++ " and " ++ show modeStr ++ ". Are all cases covered?" | Just (FFun "fileEOF" [(_,handle)] _) <- foreignFromTT arity ty fn xs = case handle of EHandle h -> do eofp <- execIO $ hIsEOF h let res = ioWrap (EConstant (I $ if eofp then 1 else 0)) execApp env ctxt res (drop arity xs) _ -> execFail . Msg $ "The argument to fileEOF should be a file handle, but it was " ++ show handle ++ ". Are all cases covered?" | Just (FFun "fileClose" [(_,handle)] _) <- foreignFromTT arity ty fn xs = case handle of EHandle h -> do execIO $ hClose h execApp env ctxt ioUnit (drop arity xs) _ -> execFail . Msg $ "The argument to fileClose should be a file handle, but it was " ++ show handle ++ ". Are all cases covered?" | Just (FFun "isNull" [(_, ptr)] _) <- foreignFromTT arity ty fn xs = case ptr of EPtr p -> let res = ioWrap . EConstant . I $ if p == nullPtr then 1 else 0 in execApp env ctxt res (drop arity xs) -- Handles will be checked as null pointers sometimes - but if we got a -- real Handle, then it's valid, so just return 1. EHandle h -> let res = ioWrap . EConstant . I $ 0 in execApp env ctxt res (drop arity xs) -- A foreign-returned char* has to be tested for NULL sometimes EConstant (Str s) -> let res = ioWrap . EConstant . I $ 0 in execApp env ctxt res (drop arity xs) _ -> execFail . Msg $ "The argument to isNull should be a pointer or file handle or string, but it was " ++ show ptr ++ ". Are all cases covered?" -- Right now, there's no way to send command-line arguments to the executor, -- so just return 0. execForeign env ctxt arity ty fn xs onfail | Just (FFun "idris_numArgs" _ _) <- foreignFromTT arity ty fn xs = let res = ioWrap . EConstant . I $ 0 in execApp env ctxt res (drop arity xs) execForeign env ctxt arity ty fn xs onfail = case foreignFromTT arity ty fn xs of Just ffun@(FFun f argTs retT) | length xs >= arity -> do let (args', xs') = (take arity xs, -- foreign args drop arity xs) -- rest res <- call ffun (map snd argTs) case res of Nothing -> fail $ "Could not call foreign function \"" ++ f ++ "\" with args " ++ show (map snd argTs) Just r -> return (mkEApp r xs') _ -> return onfail splitArg tm | (_, [_,_,l,r]) <- unApplyV tm -- pair, two implicits = Just (toFDesc l, r) splitArg _ = Nothing toFDesc tm | (EP _ n _, []) <- unApplyV tm = FCon (deNS n) | (EP _ n _, as) <- unApplyV tm = FApp (deNS n) (map toFDesc as) toFDesc _ = FUnknown deNS (NS n _) = n deNS n = n prf = sUN "prim__readFile" pwf = sUN "prim__writeFile" prs = sUN "prim__readString" pws = sUN "prim__writeString" pbm = sUN "prim__believe_me" pstdin = sUN "prim__stdin" pstdout = sUN "prim__stdout" mkfprim = sUN "mkForeignPrim" pioret = sUN "prim_io_return" piobind = sUN "prim_io_bind" upio = sUN "unsafePerformPrimIO" delay = sUN "Delay" force = sUN "Force" -- | Look up primitive operations in the global table and transform -- them into ExecVal functions getOp :: Name -> [ExecVal] -> Maybe (Exec ExecVal, [ExecVal]) getOp fn (_ : _ : x : xs) | fn == pbm = Just (return x, xs) getOp fn (_ : EConstant (Str n) : xs) | fn == pws = Just (do execIO $ putStr n return (EConstant (I 0)), xs) getOp fn (_:xs) | fn == prs = Just (do line <- execIO getLine return (EConstant (Str line)), xs) getOp fn (_ : EP _ fn' _ : EConstant (Str n) : xs) | fn == pwf && fn' == pstdout = Just (do execIO $ putStr n return (EConstant (I 0)), xs) getOp fn (_ : EP _ fn' _ : xs) | fn == prf && fn' == pstdin = Just (do line <- execIO getLine return (EConstant (Str line)), xs) getOp fn (_ : EHandle h : EConstant (Str n) : xs) | fn == pwf = Just (do execIO $ hPutStr h n return (EConstant (I 0)), xs) getOp fn (_ : EHandle h : xs) | fn == prf = Just (do contents <- execIO $ hGetLine h return (EConstant (Str (contents ++ "\n"))), xs) getOp fn (_ : arg : xs) | fn == prf = Just $ (execFail (Msg "Can't use prim__readFile on a raw pointer in the executor."), xs) getOp n args = do (arity, prim) <- getPrim n primitives if (length args >= arity) then do res <- applyPrim prim (take arity args) Just (res, drop arity args) else Nothing where getPrim :: Name -> [Prim] -> Maybe (Int, [ExecVal] -> Maybe ExecVal) getPrim n [] = Nothing getPrim n ((Prim pn _ arity def _ _) : prims) | n == pn = Just (arity, execPrim def) | otherwise = getPrim n prims execPrim :: ([Const] -> Maybe Const) -> [ExecVal] -> Maybe ExecVal execPrim f args = EConstant <$> (mapM getConst args >>= f) getConst (EConstant c) = Just c getConst _ = Nothing applyPrim :: ([ExecVal] -> Maybe ExecVal) -> [ExecVal] -> Maybe (Exec ExecVal) applyPrim fn args = return <$> fn args -- | Overall wrapper for case tree execution. If there are enough arguments, it takes them, -- evaluates them, then begins the checks for matching cases. execCase :: ExecEnv -> Context -> [Name] -> SC -> [ExecVal] -> Exec (Maybe ExecVal) execCase env ctxt ns sc args = let arity = length ns in if arity <= length args then do let amap = zip ns args -- trace ("Case " ++ show sc ++ "\n in " ++ show amap ++"\n in env " ++ show env ++ "\n\n" ) $ return () caseRes <- execCase' env ctxt amap sc case caseRes of Just res -> Just <$> execApp (map (\(n, tm) -> (n, tm)) amap ++ env) ctxt res (drop arity args) Nothing -> return Nothing else return Nothing -- | Take bindings and a case tree and examines them, executing the matching case if possible. execCase' :: ExecEnv -> Context -> [(Name, ExecVal)] -> SC -> Exec (Maybe ExecVal) execCase' env ctxt amap (UnmatchedCase _) = return Nothing execCase' env ctxt amap (STerm tm) = Just <$> doExec (map (\(n, v) -> (n, v)) amap ++ env) ctxt tm execCase' env ctxt amap (Case sh n alts) | Just tm <- lookup n amap = case chooseAlt tm alts of Just (newCase, newBindings) -> let amap' = newBindings ++ (filter (\(x,_) -> not (elem x (map fst newBindings))) amap) in execCase' env ctxt amap' newCase Nothing -> return Nothing execCase' _ _ _ cse = fail $ "The impossible happened: tried to exec " ++ show cse chooseAlt :: ExecVal -> [CaseAlt] -> Maybe (SC, [(Name, ExecVal)]) chooseAlt tm (DefaultCase sc : alts) | ok tm = Just (sc, []) | otherwise = Nothing where -- Default cases should only work on applications of constructors or on constants ok (EApp f x) = ok f ok (EP Bound _ _) = False ok (EP Ref _ _) = False ok _ = True chooseAlt (EConstant c) (ConstCase c' sc : alts) | c == c' = Just (sc, []) chooseAlt tm (ConCase n i ns sc : alts) | ((EP _ cn _), args) <- unApplyV tm , cn == n = Just (sc, zip ns args) | otherwise = chooseAlt tm alts chooseAlt tm (_:alts) = chooseAlt tm alts chooseAlt _ [] = Nothing data Foreign = FFun String [(FDesc, ExecVal)] FDesc deriving Show toFType :: FDesc -> FType toFType (FCon c) | c == sUN "C_Str" = FString | c == sUN "C_Float" = FArith ATFloat | c == sUN "C_Ptr" = FPtr | c == sUN "C_MPtr" = FManagedPtr | c == sUN "C_Unit" = FUnit toFType (FApp c [_,ity]) | c == sUN "C_IntT" = FArith (toAType ity) where toAType (FCon i) | i == sUN "C_IntChar" = ATInt ITChar | i == sUN "C_IntNative" = ATInt ITNative | i == sUN "C_IntBits8" = ATInt (ITFixed IT8) | i == sUN "C_IntBits16" = ATInt (ITFixed IT16) | i == sUN "C_IntBits32" = ATInt (ITFixed IT32) | i == sUN "C_IntBits64" = ATInt (ITFixed IT64) toAType t = error (show t ++ " not defined in toAType") toFType (FApp c [_]) | c == sUN "C_Any" = FAny toFType t = error (show t ++ " not defined in toFType") call :: Foreign -> [ExecVal] -> Exec (Maybe ExecVal) call (FFun name argTypes retType) args = do fn <- findForeign name maybe (return Nothing) (\f -> Just . ioWrap <$> call' f args (toFType retType)) fn where call' :: ForeignFun -> [ExecVal] -> FType -> Exec ExecVal call' (Fun _ h) args (FArith (ATInt ITNative)) = do res <- execIO $ callFFI h retCInt (prepArgs args) return (EConstant (I (fromIntegral res))) call' (Fun _ h) args (FArith (ATInt (ITFixed IT8))) = do res <- execIO $ callFFI h retCChar (prepArgs args) return (EConstant (B8 (fromIntegral res))) call' (Fun _ h) args (FArith (ATInt (ITFixed IT16))) = do res <- execIO $ callFFI h retCWchar (prepArgs args) return (EConstant (B16 (fromIntegral res))) call' (Fun _ h) args (FArith (ATInt (ITFixed IT32))) = do res <- execIO $ callFFI h retCInt (prepArgs args) return (EConstant (B32 (fromIntegral res))) call' (Fun _ h) args (FArith (ATInt (ITFixed IT64))) = do res <- execIO $ callFFI h retCLong (prepArgs args) return (EConstant (B64 (fromIntegral res))) call' (Fun _ h) args (FArith ATFloat) = do res <- execIO $ callFFI h retCDouble (prepArgs args) return (EConstant (Fl (realToFrac res))) call' (Fun _ h) args (FArith (ATInt ITChar)) = do res <- execIO $ callFFI h retCChar (prepArgs args) return (EConstant (Ch (castCCharToChar res))) call' (Fun _ h) args FString = do res <- execIO $ callFFI h retCString (prepArgs args) if res == nullPtr then return (EPtr res) else do hStr <- execIO $ peekCString res return (EConstant (Str hStr)) call' (Fun _ h) args FPtr = EPtr <$> (execIO $ callFFI h (retPtr retVoid) (prepArgs args)) call' (Fun _ h) args FUnit = do _ <- execIO $ callFFI h retVoid (prepArgs args) return $ EP Ref unitCon EErased call' _ _ _ = fail "the impossible happened in call' in Execute.hs" prepArgs = map prepArg prepArg (EConstant (I i)) = argCInt (fromIntegral i) prepArg (EConstant (B8 i)) = argCChar (fromIntegral i) prepArg (EConstant (B16 i)) = argCWchar (fromIntegral i) prepArg (EConstant (B32 i)) = argCInt (fromIntegral i) prepArg (EConstant (B64 i)) = argCLong (fromIntegral i) prepArg (EConstant (Fl f)) = argCDouble (realToFrac f) prepArg (EConstant (Ch c)) = argCChar (castCharToCChar c) -- FIXME - castCharToCChar only safe for first 256 chars -- Issue #1720 on the issue tracker. -- https://github.com/idris-lang/Idris-dev/issues/1720 prepArg (EConstant (Str s)) = argString s prepArg (EPtr p) = argPtr p prepArg other = trace ("Could not use " ++ take 100 (show other) ++ " as FFI arg.") undefined foreignFromTT :: Int -> ExecVal -> ExecVal -> [ExecVal] -> Maybe Foreign foreignFromTT arity ty (EConstant (Str name)) args = do argFTyVals <- mapM splitArg (take arity args) return $ FFun name argFTyVals (toFDesc ty) foreignFromTT arity ty fn args = trace ("failed to construct ffun from " ++ show (ty,fn,args)) Nothing getFTy :: ExecVal -> Maybe FType getFTy (EApp (EP _ (UN fi) _) (EP _ (UN intTy) _)) | fi == txt "FIntT" = case str intTy of "ITNative" -> Just (FArith (ATInt ITNative)) "ITChar" -> Just (FArith (ATInt ITChar)) "IT8" -> Just (FArith (ATInt (ITFixed IT8))) "IT16" -> Just (FArith (ATInt (ITFixed IT16))) "IT32" -> Just (FArith (ATInt (ITFixed IT32))) "IT64" -> Just (FArith (ATInt (ITFixed IT64))) _ -> Nothing getFTy (EP _ (UN t) _) = case str t of "FFloat" -> Just (FArith ATFloat) "FString" -> Just FString "FPtr" -> Just FPtr "FUnit" -> Just FUnit _ -> Nothing getFTy _ = Nothing unEList :: ExecVal -> Maybe [ExecVal] unEList tm = case unApplyV tm of (nil, [_]) -> Just [] (cons, ([_, x, xs])) -> do rest <- unEList xs return $ x:rest (f, args) -> Nothing toConst :: Term -> Maybe Const toConst (Constant c) = Just c toConst _ = Nothing mapMaybeM :: (Functor m, Monad m) => (a -> m (Maybe b)) -> [a] -> m [b] mapMaybeM f [] = return [] mapMaybeM f (x:xs) = do rest <- mapMaybeM f xs maybe rest (:rest) <$> f x findForeign :: String -> Exec (Maybe ForeignFun) findForeign fn = do est <- getExecState let libs = exec_dynamic_libs est fns <- mapMaybeM getFn libs case fns of [f] -> return (Just f) [] -> do execIO . putStrLn $ "Symbol \"" ++ fn ++ "\" not found" return Nothing fs -> do execIO . putStrLn $ "Symbol \"" ++ fn ++ "\" is ambiguous. Found " ++ show (length fs) ++ " occurrences." return Nothing where getFn lib = execIO $ catchIO (tryLoadFn fn lib) (\_ -> return Nothing) #endif
athanclark/Idris-dev
src/Idris/Core/Execute.hs
Haskell
bsd-3-clause
29,467
{-# LANGUAGE Rank2Types #-} module Opaleye.Internal.PackMap where import qualified Opaleye.Internal.Tag as T import qualified Opaleye.Internal.HaskellDB.PrimQuery as HPQ import Control.Applicative (Applicative, pure, (<*>), liftA2) import qualified Control.Monad.Trans.State as State import Data.Profunctor (Profunctor, dimap) import Data.Profunctor.Product (ProductProfunctor, empty, (***!)) import qualified Data.Profunctor.Product as PP import qualified Data.Functor.Identity as I -- This is rather like a Control.Lens.Traversal with the type -- parameters switched but I'm not sure if it should be required to -- obey the same laws. -- -- TODO: We could attempt to generalise this to -- -- data LensLike f a b s t = LensLike ((a -> f b) -> s -> f t) -- -- i.e. a wrapped, argument-flipped Control.Lens.LensLike -- -- This would allow us to do the Profunctor and ProductProfunctor -- instances (requiring just Functor f and Applicative f respectively) -- and share them between many different restrictions of f. For -- example, TableColumnMaker is like a Setter so we would restrict f -- to the Distributive case. -- | A 'PackMap' @a@ @b@ @s@ @t@ encodes how an @s@ contains an -- updatable sequence of @a@ inside it. Each @a@ in the sequence can -- be updated to a @b@ (and the @s@ changes to a @t@ to reflect this -- change of type). -- -- 'PackMap' is just like a @Traversal@ from the lens package. -- 'PackMap' has a different order of arguments to @Traversal@ because -- it typically needs to be made a 'Profunctor' (and indeed -- 'ProductProfunctor') in @s@ and @t@. It is unclear at this point -- whether we want the same @Traversal@ laws to hold or not. Our use -- cases may be much more general. data PackMap a b s t = PackMap (Applicative f => (a -> f b) -> s -> f t) -- | Replaces the targeted occurences of @a@ in @s@ with @b@ (changing -- the @s@ to a @t@ in the process). This can be done via an -- 'Applicative' action. -- -- 'traversePM' is just like @traverse@ from the @lens@ package. -- 'traversePM' used to be called @packmap@. traversePM :: Applicative f => PackMap a b s t -> (a -> f b) -> s -> f t traversePM (PackMap f) = f -- | Modify the targeted occurrences of @a@ in @s@ with @b@ (changing -- the @s@ to a @t@ in the process). -- -- 'overPM' is just like @over@ from the @lens@ pacakge. overPM :: PackMap a b s t -> (a -> b) -> s -> t overPM p f = I.runIdentity . traversePM p (I.Identity . f) -- { -- | A helpful monad for writing columns in the AST type PM a = State.State (a, Int) new :: PM a String new = do (a, i) <- State.get State.put (a, i + 1) return (show i) write :: a -> PM [a] () write a = do (as, i) <- State.get State.put (as ++ [a], i) run :: PM [a] r -> (r, [a]) run m = (r, as) where (r, (as, _)) = State.runState m ([], 0) -- } -- { General functions for writing columns in the AST -- | Make a fresh name for an input value (the variable @primExpr@ -- type is typically actually a 'HPQ.PrimExpr') based on the supplied -- function and the unique 'T.Tag' that is used as part of our -- @QueryArr@. -- -- Add the fresh name and the input value it refers to to the list in -- the state parameter. extractAttrPE :: (primExpr -> String -> String) -> T.Tag -> primExpr -> PM [(HPQ.Symbol, primExpr)] HPQ.PrimExpr extractAttrPE mkName t pe = do i <- new let s = HPQ.Symbol (mkName pe i) t write (s, pe) return (HPQ.AttrExpr s) -- | As 'extractAttrPE' but ignores the 'primExpr' when making the -- fresh column name and just uses the supplied 'String' and 'T.Tag'. extractAttr :: String -> T.Tag -> primExpr -> PM [(HPQ.Symbol, primExpr)] HPQ.PrimExpr extractAttr s = extractAttrPE (const (s ++)) -- } eitherFunction :: Functor f => (a -> f b) -> (a' -> f b') -> Either a a' -> f (Either b b') eitherFunction f g = fmap (either (fmap Left) (fmap Right)) (f PP.+++! g) -- { -- Boilerplate instance definitions. There's no choice here apart -- from the order in which the applicative is applied. instance Functor (PackMap a b s) where fmap f (PackMap g) = PackMap ((fmap . fmap . fmap) f g) instance Applicative (PackMap a b s) where pure x = PackMap (pure (pure (pure x))) PackMap f <*> PackMap x = PackMap (liftA2 (liftA2 (<*>)) f x) instance Profunctor (PackMap a b) where dimap f g (PackMap q) = PackMap (fmap (dimap f (fmap g)) q) instance ProductProfunctor (PackMap a b) where empty = PP.defaultEmpty (***!) = PP.defaultProfunctorProduct instance PP.SumProfunctor (PackMap a b) where f +++! g = (PackMap (\x -> eitherFunction (f' x) (g' x))) where PackMap f' = f PackMap g' = g -- }
alanz/haskell-opaleye
src/Opaleye/Internal/PackMap.hs
Haskell
bsd-3-clause
4,764
{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE TupleSections #-} module Stack.FileWatch ( fileWatch , fileWatchPoll , printExceptionStderr ) where import Blaze.ByteString.Builder (toLazyByteString, copyByteString) import Blaze.ByteString.Builder.Char.Utf8 (fromShow) import Control.Concurrent.Async (race_) import Control.Concurrent.STM import Control.Exception (Exception) import Control.Exception.Enclosed (tryAny) import Control.Monad (forever, unless, when) import qualified Data.ByteString.Lazy as L import qualified Data.Map.Strict as Map import Data.Monoid ((<>)) import Data.Set (Set) import qualified Data.Set as Set import Data.String (fromString) import Data.Traversable (forM) import Ignore import Path import System.FSNotify import System.IO (stderr) -- | Print an exception to stderr printExceptionStderr :: Exception e => e -> IO () printExceptionStderr e = L.hPut stderr $ toLazyByteString $ fromShow e <> copyByteString "\n" fileWatch :: IO (Path Abs Dir) -> ((Set (Path Abs File) -> IO ()) -> IO ()) -> IO () fileWatch = fileWatchConf defaultConfig fileWatchPoll :: IO (Path Abs Dir) -> ((Set (Path Abs File) -> IO ()) -> IO ()) -> IO () fileWatchPoll = fileWatchConf $ defaultConfig { confUsePolling = True } -- | Run an action, watching for file changes -- -- The action provided takes a callback that is used to set the files to be -- watched. When any of those files are changed, we rerun the action again. fileWatchConf :: WatchConfig -> IO (Path Abs Dir) -> ((Set (Path Abs File) -> IO ()) -> IO ()) -> IO () fileWatchConf cfg getProjectRoot inner = withManagerConf cfg $ \manager -> do allFiles <- newTVarIO Set.empty dirtyVar <- newTVarIO True watchVar <- newTVarIO Map.empty projRoot <- getProjectRoot mChecker <- findIgnoreFiles [VCSGit, VCSMercurial, VCSDarcs] projRoot >>= buildChecker (FileIgnoredChecker isFileIgnored) <- case mChecker of Left err -> do putStrLn $ "Failed to parse VCS's ignore file: " ++ err return $ FileIgnoredChecker (const False) Right chk -> return chk let onChange event = atomically $ do files <- readTVar allFiles when (eventPath event `Set.member` files) (writeTVar dirtyVar True) setWatched :: Set (Path Abs File) -> IO () setWatched files = do atomically $ writeTVar allFiles $ Set.map toFilePath files watch0 <- readTVarIO watchVar let actions = Map.mergeWithKey keepListening stopListening startListening watch0 newDirs watch1 <- forM (Map.toList actions) $ \(k, mmv) -> do mv <- mmv return $ case mv of Nothing -> Map.empty Just v -> Map.singleton k v atomically $ writeTVar watchVar $ Map.unions watch1 where newDirs = Map.fromList $ map (, ()) $ Set.toList $ Set.map parent files keepListening _dir listen () = Just $ return $ Just listen stopListening = Map.map $ \f -> do () <- f return Nothing startListening = Map.mapWithKey $ \dir () -> do let dir' = fromString $ toFilePath dir listen <- watchDir manager dir' (not . isFileIgnored . eventPath) onChange return $ Just listen let watchInput = do line <- getLine unless (line == "quit") $ do case line of "help" -> do putStrLn "" putStrLn "help: display this help" putStrLn "quit: exit" putStrLn "build: force a rebuild" putStrLn "watched: display watched directories" "build" -> atomically $ writeTVar dirtyVar True "watched" -> do watch <- readTVarIO watchVar mapM_ (putStrLn . toFilePath) (Map.keys watch) _ -> putStrLn $ concat [ "Unknown command: " , show line , ". Try 'help'" ] watchInput race_ watchInput $ forever $ do atomically $ do dirty <- readTVar dirtyVar check dirty eres <- tryAny $ inner setWatched -- Clear dirtiness flag after the build to avoid an infinite -- loop caused by the build itself triggering dirtiness. This -- could be viewed as a bug, since files changed during the -- build will not trigger an extra rebuild, but overall seems -- like better behavior. See -- https://github.com/commercialhaskell/stack/issues/822 atomically $ writeTVar dirtyVar False case eres of Left e -> printExceptionStderr e Right () -> putStrLn "Success! Waiting for next file change." putStrLn "Type help for available commands"
robstewart57/stack
src/Stack/FileWatch.hs
Haskell
bsd-3-clause
5,294
import Sudoku import Control.Exception import System.Environment import Data.Maybe main :: IO () main = do [f] <- getArgs grids <- fmap lines $ readFile f print (length (filter isJust (map solve grids)))
lywaterman/parconc-examples
sudoku-par1.hs
Haskell
bsd-3-clause
217
{-# LANGUAGE ImplicitParams, TypeFamilies #-} module T3540 where thing :: (a~Int) thing = undefined thing1 :: Int -> (a~Int) thing1 = undefined thing2 :: (a~Int) -> Int thing2 = undefined thing3 :: (?dude :: Int) -> Int thing3 = undefined thing4:: (Eq a) -> Int thing4 = undefined
forked-upstream-packages-for-ghcjs/ghc
testsuite/tests/typecheck/should_fail/T3540.hs
Haskell
bsd-3-clause
288
module Main where import Data.Functor ((<$>)) import Data.Maybe (isJust, fromJust) import System.Cmd (rawSystem) import System.Exit (ExitCode(..)) import System.IO (hFlush, stdout) import System.Posix.Process (forkProcess, getProcessStatus) import Hackonad.LineParser typePrompt :: IO () typePrompt = putStr "> " >> hFlush stdout readCommand :: IO (String, [String]) readCommand = parseInputLine <$> getLine while :: (Monad m) => (a -> m (Bool, a)) -> a -> m () while action initialValue = action initialValue >>= \ (res, iterVal) -> if res then while action iterVal else return () proccessExitCode :: ExitCode -> String -> Int -> IO () proccessExitCode ExitSuccess _ _ = return () proccessExitCode (ExitFailure code) command sessionLine = case code of 127 -> putStrLn $ "Hackonad: " ++ show sessionLine ++ ": " ++ command ++ ": not found" otherwise -> putStrLn $ "Hackonad: " ++ show code ++ ": " ++ command mainLoop :: Int -> IO (Bool, Int) mainLoop sessionLine = do typePrompt (command, parameters) <- readCommand if command == "exit" then return (False, sessionLine) else do pid <- forkProcess $ do exitCode <- rawSystem command parameters proccessExitCode exitCode command sessionLine status <- getProcessStatus True False pid if isJust status then do putStrLn $ "Base +" ++ show ( fromJust status ) return (True, sessionLine + 1) else do putStrLn "Base +" return (True, sessionLine + 1) main :: IO () main = while mainLoop 0
triplepointfive/Hackonad
src/Main.hs
Haskell
mit
1,671
module Main where import Data.Monoid import Test.Framework import qualified Test.Parser as Parser import qualified Test.Eval as Eval main :: IO () main = defaultMainWithOpts tests mempty tests = concat [ Parser.tests , Eval.tests ]
forestbelton/anima
Test/Main.hs
Haskell
mit
250
module Main where import Reddit.TheButton.Connection import Reddit.TheButton.Types import Reddit.TheButton.AnyBar import Reddit.TheButton.Utility import Control.Monad (forever) import Control.Concurrent (forkIO) import Control.Concurrent.Chan (readChan, dupChan) import System.IO (hSetBuffering, BufferMode(..), stdout) main :: IO () main = do hSetBuffering stdout LineBuffering chan1 <- getTicks chan2 <- mapChan btnColor chan1 forkIO $ abUpdateFromChan "1738" chan2 forever $ do tick <- readChan chan1 putStrLn (btnColor tick) where btnColor = show . secToColor . bSecondsLeft
romac/thebutton.hs
src/Main.hs
Haskell
mit
624
-- | This file defines 'FormulaTree', the type used for modeling the calculation trees. -- -- Author: Thorsten Rangwich. See file <../LICENSE> for details. module Tree.FormulaTree ( FormulaTree(..), TreeError(..), NamedFunction(..) -- FIXME: Export creater and exporters, not type ) where import qualified Data.Plain as P import qualified Data.SheetLayout as L -- | Type to mark error in tree data TreeError = NamedError String -- ^ Named error - this should be used | CircularReference -- ^ Circular reference in tree. | UnspecifiedError -- ^ Unspecified error - not useful, better add more specific errors deriving Show -- | Wrapper to be used in the trees. data NamedFunction = NamedFunction { funcName :: String, funcCall :: P.PlainFunction } -- | Compiled representation of a formula data FormulaTree = Raw P.Plain -- ^ Node is plain result value | Reference L.Address | Funcall NamedFunction [FormulaTree] -- ^ Node is a formula | TreeError TreeError -- ^ Node is evaluated to an error -- This makes sense for errors affecting the tree like circular references -- in contrast to plain value errors like div/0.
tnrangwi/grill
src/Tree/FormulaTree.hs
Haskell
mit
1,303
{-# LANGUAGE Rank2Types #-} module Statistics where import Data.Foldable import Control.Monad.State import System.Random import Data.List type Rnd a = (RandomGen g) => State g a randomRM :: (Random a) => (a, a) -> Rnd a randomRM v = do g <- get (x, g') <- return $ randomR v g put g' return x choose :: [a] -> Rnd a choose l = do let n = length l i <- randomRM (0, n - 1) return (l !! i) chooseIO :: (Foldable f) => f a -> IO a chooseIO l = do let l' = toList l n = length l' i <- randomRIO (0, n - 1) return (l' !! i) stdNormal :: (Random a, Ord a, Floating a) => Rnd a stdNormal = do u1 <- randomRM (-1, 1) u2 <- randomRM (-1, 1) let m = stdNormalMarsaglia u1 u2 case m of Nothing -> stdNormal Just (z1, _) -> return z1 stdNormalMarsaglia :: (Ord a, Floating a) => a -> a -> Maybe (a, a) stdNormalMarsaglia y1 y2 = if q > 1 then Nothing else Just (z1, z2) where z1 = y1 * p z2 = y2 * p q = y1 * y1 + y2 * y2 p = sqrt ((-2) * log q / q) normal :: (Random a, Ord a, Floating a) => a -> a -> Rnd a normal mu sigma = do n <- stdNormal return $ mu + n * sigma normalR :: (Random a, Ord a, Floating a) => (a, a) -> a -> a -> Rnd a normalR (mn, mx) mu sigma = do n <- normal mu sigma if n < mn then return mn else if n > mx then return mx else return n normalIO :: (Random a, Ord a, Floating a) => a -> a -> IO a normalIO mu sigma = newStdGen >>= return . evalState (normal mu sigma) normalRIO :: (Random a, Ord a, Floating a) => (a, a) -> a -> a -> IO a normalRIO limits mu sigma = newStdGen >>= return . evalState (normalR limits mu sigma) average :: (Fractional a) => [a] -> a average l = go 0 0 l where go acc len [] = acc / len go acc len (x:xs) = go (acc + x) (len + 1) xs averageInt :: [Int] -> Int averageInt l = go 0 0 l where go acc len [] = acc `div` len go acc len (x:xs) = go (acc + x) (len + 1) xs median :: (Ord a, Num a) => [a] -> a median [] = error "Median on empty list" median l = (sort l) !! (length l `div` 2) -- chance of a to b chance :: Int -> Int -> Rnd Bool chance a b = do v <- randomRM (1, b) if a <= v - 1 then return True else return False -- shuffle :: [a] -> Rnd [a] shuffle l = shuffle' l [] -- >>= reverse >>= flip shuffle' [] where shuffle' [] bs = return bs shuffle' as bs = do el <- choose as shuffle' (delete el as) (el : bs)
anttisalonen/starrover2
src/Statistics.hs
Haskell
mit
2,451
{-# LANGUAGE FlexibleInstances #-} module TermSpec where import Data.Text as T import Test.QuickCheck import Faun.Term import TextGen instance Arbitrary Term where arbitrary = oneof [genVar, genConst, genFun] genTerms :: Gen [Term] genTerms = sized $ \n -> do size <- choose (0, n `mod` 6) -- Huge lists of arguments make the test result hard to read / interpret. vectorOf size arbitrary genVar :: Gen Term genVar = do name <- genCamelString return $ Variable $ T.pack name genConst :: Gen Term genConst = do name <- genPascalString return $ Constant $ T.pack name genFun :: Gen Term genFun = do name <- genPascalString args <- genTerms return $ Function (T.pack name) args
PhDP/Sphinx-AI
tests/TermSpec.hs
Haskell
mit
701
-- | -- Module: BigE.Attribute.Vert_P_N -- Copyright: (c) 2017 Patrik Sandahl -- Licence: MIT -- Maintainer: Patrik Sandahl <patrik.sandahl@gmail.com> -- Stability: experimental -- Portability: portable -- Language: Haskell2010 module BigE.Attribute.Vert_P_N ( Vertex (..) ) where import BigE.Attribute (Attribute (..), allocBoundBuffers, fillBoundVBO, pointerOffset) import Control.Monad (unless) import qualified Data.Vector.Storable as Vector import Foreign (Storable (..), castPtr, plusPtr) import Graphics.GL (GLfloat) import qualified Graphics.GL as GL import Linear (V3) -- | A convenience definition of a vertex containing two attributes. -- The vertex position and the vertex normal. data Vertex = Vertex { position :: !(V3 GLfloat) , normal :: !(V3 GLfloat) } deriving (Eq, Show) -- | Storable instance. instance Storable Vertex where sizeOf v = sizeOf (position v) + sizeOf (normal v) alignment v = alignment $ position v peek ptr = do p <- peek $ castPtr ptr let nPtr = castPtr (ptr `plusPtr` sizeOf p) n <- peek nPtr return Vertex { position = p, normal = n } poke ptr v = do let pPtr = castPtr ptr nPtr = castPtr (pPtr `plusPtr` sizeOf (position v)) poke pPtr $ position v poke nPtr $ normal v -- | Attribute instance. instance Attribute Vertex where initAttributes bufferUsage vertices = do buffers <- allocBoundBuffers unless (Vector.null vertices) $ do item <- fillBoundVBO vertices bufferUsage let itemSize = fromIntegral $ sizeOf item -- Position. GL.glEnableVertexAttribArray 0 GL.glVertexAttribPointer 0 3 GL.GL_FLOAT GL.GL_FALSE itemSize (pointerOffset 0) -- Normal. GL.glEnableVertexAttribArray 1 GL.glVertexAttribPointer 1 3 GL.GL_FLOAT GL.GL_FALSE itemSize (pointerOffset $ sizeOf (position item)) return buffers
psandahl/big-engine
src/BigE/Attribute/Vert_P_N.hs
Haskell
mit
2,273
{-# LANGUAGE CPP, OverloadedStrings #-} module NewAccount (newAccountSpecs) where import Data.Monoid import Yesod.Auth import Yesod.Test import Foundation import Text.XML.Cursor (attribute) import qualified Data.Text as T redirectCode :: Int #if MIN_VERSION_yesod_test(1,4,0) redirectCode = 303 #else redirectCode = 302 #endif -- In 9f379bc219bd1fdf008e2c179b03e98a05b36401 (which went into yesod-form-1.3.9) -- the numbering of fields was changed. We normally wouldn't care because fields -- can be set via 'byLabel', but hidden fields have no label so we must use the id -- directly. We temporarily support both versions of yesod form with the following. f1, f2 :: T.Text #if MIN_VERSION_yesod_form(1,3,9) f1 = "f1" f2 = "f2" #else f1 = "f2" f2 = "f3" #endif newAccountSpecs :: YesodSpec MyApp newAccountSpecs = ydescribe "New account tests" $ do yit "new account with mismatched passwords" $ do get' "/auth/page/account/newaccount" statusIs 200 bodyContains "Register" post'"/auth/page/account/newaccount" $ do addNonce byLabel "Username" "abc" byLabel "Email" "test@example.com" byLabel "Password" "xxx" byLabel "Confirm" "yyy" statusIs redirectCode get' "/" statusIs 200 bodyContains "Passwords did not match" yit "creates a new account" $ do get' "/auth/page/account/newaccount" statusIs 200 post'"/auth/page/account/newaccount" $ do addNonce byLabel "Username" "abc" byLabel "Email" "test@example.com" byLabel "Password" "xxx" byLabel "Confirm" "xxx" statusIs redirectCode get' "/" statusIs 200 bodyContains "A confirmation e-mail has been sent to test@example.com" (username, email, verify) <- lastVerifyEmail assertEqual "username" username "abc" assertEqual "email" email "test@example.com" get' "/auth/page/account/verify/abc/zzzzzz" statusIs redirectCode get' "/" statusIs 200 bodyContains "invalid verification key" -- try login get' "/auth/login" statusIs 200 post'"/auth/page/account/login" $ do byLabel "Username" "abc" byLabel "Password" "yyy" statusIs redirectCode get' "/auth/login" statusIs 200 bodyContains "Invalid username/password combination" -- valid login post'"/auth/page/account/login" $ do byLabel "Username" "abc" byLabel "Password" "xxx" statusIs 200 bodyContains "Your email has not yet been verified" -- valid login with email get' "/auth/login" statusIs 200 post'"/auth/page/account/login" $ do byLabel "Username" "test@example.com" byLabel "Password" "xxx" statusIs 200 bodyContains "Your email has not yet been verified" -- resend verify email post'"/auth/page/account/resendverifyemail" $ do addNonce addPostParam f1 "abc" -- username is also a hidden field statusIs redirectCode get' "/" bodyContains "A confirmation e-mail has been sent to test@example.com" (username', email', verify') <- lastVerifyEmail assertEqual "username" username' "abc" assertEqual "email" email' "test@example.com" assertEqual "verify" True (verify /= verify') -- verify email get' verify' statusIs redirectCode get' "/" statusIs 200 bodyContains "You are logged in as abc" post $ AuthR LogoutR statusIs redirectCode get' "/" statusIs 200 bodyContains "Please visit the <a href=\"/auth/login\">Login page" -- valid login get' "/auth/login" post'"/auth/page/account/login" $ do byLabel "Username" "abc" byLabel "Password" "xxx" statusIs redirectCode get' "/" bodyContains "You are logged in as abc" -- logout post $ AuthR LogoutR -- valid login with email get' "/auth/login" post'"/auth/page/account/login" $ do byLabel "Username" "test@example.com" byLabel "Password" "xxx" statusIs 302 get' "/" bodyContains "You are logged in as abc" -- logout post $ AuthR LogoutR -- reset password get' "/auth/page/account/resetpassword" statusIs 200 bodyContains "Send password reset email" post'"/auth/page/account/resetpassword" $ do byLabel "Username" "abc" addNonce statusIs redirectCode get' "/" statusIs 200 bodyContains "A password reset email has been sent to your email address" (username'', email'', newpwd) <- lastNewPwdEmail assertEqual "User" username'' "abc" assertEqual "Email" email'' "test@example.com" -- bad key get' newpwd statusIs 200 post'"/auth/page/account/setpassword" $ do addNonce byLabel "New password" "www" byLabel "Confirm" "www" addPostParam f1 "abc" addPostParam f2 "qqqqqqqqqqqqqq" statusIs 403 bodyContains "Invalid key" -- good key get' newpwd statusIs 200 matches <- htmlQuery $ "input[name=" <> f2 <> "][type=hidden][value]" post'"/auth/page/account/setpassword" $ do addNonce byLabel "New password" "www" byLabel "Confirm" "www" addPostParam f1 "abc" key <- case matches of [] -> error "Unable to find set password key" element:_ -> return $ head $ attribute "value" $ parseHTML element addPostParam f2 key statusIs redirectCode get' "/" statusIs 200 bodyContains "Password updated" bodyContains "You are logged in as abc" post $ AuthR LogoutR -- check new password get' "/auth/login" post'"/auth/page/account/login" $ do byLabel "Username" "abc" byLabel "Password" "www" statusIs redirectCode get' "/" statusIs 200 bodyContains "You are logged in as abc" yit "errors with a username with a period" $ do get' "/auth/page/account/newaccount" statusIs 200 post' "/auth/page/account/newaccount" $ do addNonce byLabel "Username" "x.y" byLabel "Email" "xy@example.com" byLabel "Password" "hunter2" byLabel "Confirm" "hunter2" statusIs redirectCode get' "/" statusIs 200 bodyContains "Invalid username" -- Issue #2: a valid username was not checked on creation
jasonzoladz/yesod-auth-account-fork
tests/NewAccount.hs
Haskell
mit
7,624
module Hamming (distance) where distance :: String -> String -> Maybe Int distance xs ys = error "You need to implement this function."
exercism/xhaskell
exercises/practice/hamming/src/Hamming.hs
Haskell
mit
137
import Data.Digits lend = length . digits 10 bases = [1..9] -- lend (10^x) > 10 for all x exponents = [1..30] -- lend (9^x) > x for x>30 pairs = [(base,exponent) | base <- bases, exponent <- exponents] isValid (base,exponent) = (lend (base^exponent) == exponent) valid = filter isValid pairs answer = length valid
gumgl/project-euler
63/63.hs
Haskell
mit
319
{-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE CPP #-} {-# LANGUAGE TemplateHaskell #-} -- | The basic typeclass for a Yesod application. module Yesod.Internal.Core ( -- * Type classes Yesod (..) , YesodDispatch (..) , RenderRoute (..) -- ** Breadcrumbs , YesodBreadcrumbs (..) , breadcrumbs -- * Utitlities , maybeAuthorized , widgetToPageContent -- * Defaults , defaultErrorHandler -- * Data types , AuthResult (..) -- * Sessions , SessionBackend (..) , defaultClientSessionBackend , clientSessionBackend , loadClientSession , BackendSession -- * jsLoader , ScriptLoadPosition (..) , BottomOfHeadAsync , loadJsYepnope -- * Misc , yesodVersion , yesodRender , resolveApproot , Approot (..) , FileUpload (..) , runFakeHandler ) where import Yesod.Content import Yesod.Handler hiding (lift, getExpires) import Yesod.Routes.Class import Data.Word (Word64) import Control.Arrow ((***)) import Control.Monad (forM) import Yesod.Widget import Yesod.Request import qualified Network.Wai as W import Yesod.Internal import Yesod.Internal.Session import Yesod.Internal.Request import qualified Web.ClientSession as CS import qualified Data.ByteString.Char8 as S8 import qualified Data.ByteString.Lazy as L import qualified Data.IORef as I import Data.Monoid import Text.Hamlet import Text.Julius import Text.Blaze ((!), customAttribute, textTag, toValue, unsafeLazyByteString) import qualified Text.Blaze.Html5 as TBH import Data.Text.Lazy.Builder (toLazyText) import Data.Text.Lazy.Encoding (encodeUtf8) import Data.Maybe (fromMaybe, isJust) import Control.Monad.IO.Class (MonadIO (liftIO)) import Control.Monad.Trans.Resource (runResourceT) import Web.Cookie (parseCookies) import qualified Data.Map as Map import Data.Time import Network.HTTP.Types (encodePath) import qualified Data.Text as T import Data.Text (Text) import qualified Data.Text.Encoding as TE import qualified Data.Text.Encoding.Error as TEE import Blaze.ByteString.Builder (Builder, toByteString) import Blaze.ByteString.Builder.Char.Utf8 (fromText) import Data.List (foldl') import qualified Network.HTTP.Types as H import Web.Cookie (SetCookie (..)) import Language.Haskell.TH.Syntax (Loc (..)) import Text.Blaze (preEscapedToMarkup) import Data.Aeson (Value (Array, String)) import Data.Aeson.Encode (encode) import qualified Data.Vector as Vector import Network.Wai.Middleware.Gzip (GzipSettings, def) import Network.Wai.Parse (tempFileBackEnd, lbsBackEnd) import qualified Paths_yesod_core import Data.Version (showVersion) import System.Log.FastLogger (Logger, mkLogger, loggerDate, LogStr (..), loggerPutStr) import Control.Monad.Logger (LogLevel (LevelInfo, LevelOther), LogSource) import System.Log.FastLogger.Date (ZonedDate) import System.IO (stdout) yesodVersion :: String yesodVersion = showVersion Paths_yesod_core.version -- | This class is automatically instantiated when you use the template haskell -- mkYesod function. You should never need to deal with it directly. class YesodDispatch sub master where yesodDispatch :: Yesod master => Logger -> master -> sub -> (Route sub -> Route master) -> (Maybe (SessionBackend master) -> W.Application) -- ^ 404 handler -> (Route sub -> Maybe (SessionBackend master) -> W.Application) -- ^ 405 handler -> Text -- ^ request method -> [Text] -- ^ pieces -> Maybe (SessionBackend master) -> W.Application yesodRunner :: Yesod master => Logger -> GHandler sub master ChooseRep -> master -> sub -> Maybe (Route sub) -> (Route sub -> Route master) -> Maybe (SessionBackend master) -> W.Application yesodRunner = defaultYesodRunner -- | How to determine the root of the application for constructing URLs. -- -- Note that future versions of Yesod may add new constructors without bumping -- the major version number. As a result, you should /not/ pattern match on -- @Approot@ values. data Approot master = ApprootRelative -- ^ No application root. | ApprootStatic Text | ApprootMaster (master -> Text) | ApprootRequest (master -> W.Request -> Text) type ResolvedApproot = Text -- | Define settings for a Yesod applications. All methods have intelligent -- defaults, and therefore no implementation is required. class RenderRoute a => Yesod a where -- | An absolute URL to the root of the application. Do not include -- trailing slash. -- -- Default value: 'ApprootRelative'. This is valid under the following -- conditions: -- -- * Your application is served from the root of the domain. -- -- * You do not use any features that require absolute URLs, such as Atom -- feeds and XML sitemaps. -- -- If this is not true, you should override with a different -- implementation. approot :: Approot a approot = ApprootRelative -- | Output error response pages. errorHandler :: ErrorResponse -> GHandler sub a ChooseRep errorHandler = defaultErrorHandler -- | Applies some form of layout to the contents of a page. defaultLayout :: GWidget sub a () -> GHandler sub a RepHtml defaultLayout w = do p <- widgetToPageContent w mmsg <- getMessage hamletToRepHtml [hamlet| $newline never $doctype 5 <html> <head> <title>#{pageTitle p} ^{pageHead p} <body> $maybe msg <- mmsg <p .message>#{msg} ^{pageBody p} |] -- | Override the rendering function for a particular URL. One use case for -- this is to offload static hosting to a different domain name to avoid -- sending cookies. urlRenderOverride :: a -> Route a -> Maybe Builder urlRenderOverride _ _ = Nothing -- | Determine if a request is authorized or not. -- -- Return 'Authorized' if the request is authorized, -- 'Unauthorized' a message if unauthorized. -- If authentication is required, return 'AuthenticationRequired'. isAuthorized :: Route a -> Bool -- ^ is this a write request? -> GHandler s a AuthResult isAuthorized _ _ = return Authorized -- | Determines whether the current request is a write request. By default, -- this assumes you are following RESTful principles, and determines this -- from request method. In particular, all except the following request -- methods are considered write: GET HEAD OPTIONS TRACE. -- -- This function is used to determine if a request is authorized; see -- 'isAuthorized'. isWriteRequest :: Route a -> GHandler s a Bool isWriteRequest _ = do wai <- waiRequest return $ W.requestMethod wai `notElem` ["GET", "HEAD", "OPTIONS", "TRACE"] -- | The default route for authentication. -- -- Used in particular by 'isAuthorized', but library users can do whatever -- they want with it. authRoute :: a -> Maybe (Route a) authRoute _ = Nothing -- | A function used to clean up path segments. It returns 'Right' with a -- clean path or 'Left' with a new set of pieces the user should be -- redirected to. The default implementation enforces: -- -- * No double slashes -- -- * There is no trailing slash. -- -- Note that versions of Yesod prior to 0.7 used a different set of rules -- involing trailing slashes. cleanPath :: a -> [Text] -> Either [Text] [Text] cleanPath _ s = if corrected == s then Right $ map dropDash s else Left corrected where corrected = filter (not . T.null) s dropDash t | T.all (== '-') t = T.drop 1 t | otherwise = t -- | Builds an absolute URL by concatenating the application root with the -- pieces of a path and a query string, if any. -- Note that the pieces of the path have been previously cleaned up by 'cleanPath'. joinPath :: a -> T.Text -- ^ application root -> [T.Text] -- ^ path pieces -> [(T.Text, T.Text)] -- ^ query string -> Builder joinPath _ ar pieces' qs' = fromText ar `mappend` encodePath pieces qs where pieces = if null pieces' then [""] else map addDash pieces' qs = map (TE.encodeUtf8 *** go) qs' go "" = Nothing go x = Just $ TE.encodeUtf8 x addDash t | T.all (== '-') t = T.cons '-' t | otherwise = t -- | This function is used to store some static content to be served as an -- external file. The most common case of this is stashing CSS and -- JavaScript content in an external file; the "Yesod.Widget" module uses -- this feature. -- -- The return value is 'Nothing' if no storing was performed; this is the -- default implementation. A 'Just' 'Left' gives the absolute URL of the -- file, whereas a 'Just' 'Right' gives the type-safe URL. The former is -- necessary when you are serving the content outside the context of a -- Yesod application, such as via memcached. addStaticContent :: Text -- ^ filename extension -> Text -- ^ mime-type -> L.ByteString -- ^ content -> GHandler sub a (Maybe (Either Text (Route a, [(Text, Text)]))) addStaticContent _ _ _ = return Nothing {- Temporarily disabled until we have a better interface. -- | Whether or not to tie a session to a specific IP address. Defaults to -- 'False'. -- -- Note: This setting has two known problems: it does not work correctly -- when behind a reverse proxy (including load balancers), and it may not -- function correctly if the user is behind a proxy. sessionIpAddress :: a -> Bool sessionIpAddress _ = False -} -- | The path value to set for cookies. By default, uses \"\/\", meaning -- cookies will be sent to every page on the current domain. cookiePath :: a -> S8.ByteString cookiePath _ = "/" -- | The domain value to set for cookies. By default, the -- domain is not set, meaning cookies will be sent only to -- the current domain. cookieDomain :: a -> Maybe S8.ByteString cookieDomain _ = Nothing -- | Maximum allowed length of the request body, in bytes. -- -- Default: 2 megabytes. maximumContentLength :: a -> Maybe (Route a) -> Word64 maximumContentLength _ _ = 2 * 1024 * 1024 -- 2 megabytes -- | Returns a @Logger@ to use for log messages. -- -- Default: Sends to stdout and automatically flushes on each write. getLogger :: a -> IO Logger getLogger _ = mkLogger True stdout -- | Send a message to the @Logger@ provided by @getLogger@. -- -- Note: This method is no longer used. Instead, you should override -- 'messageLoggerSource'. messageLogger :: a -> Logger -> Loc -- ^ position in source code -> LogLevel -> LogStr -- ^ message -> IO () messageLogger a logger loc = messageLoggerSource a logger loc "" -- | Send a message to the @Logger@ provided by @getLogger@. messageLoggerSource :: a -> Logger -> Loc -- ^ position in source code -> LogSource -> LogLevel -> LogStr -- ^ message -> IO () messageLoggerSource a logger loc source level msg = if shouldLog a source level then formatLogMessage (loggerDate logger) loc source level msg >>= loggerPutStr logger else return () -- | The logging level in place for this application. Any messages below -- this level will simply be ignored. logLevel :: a -> LogLevel logLevel _ = LevelInfo -- | GZIP settings. gzipSettings :: a -> GzipSettings gzipSettings _ = def -- | Where to Load sripts from. We recommend the default value, -- 'BottomOfBody'. Alternatively use the built in async yepnope loader: -- -- > BottomOfHeadAsync $ loadJsYepnope $ Right $ StaticR js_modernizr_js -- -- Or write your own async js loader: see 'loadJsYepnope' jsLoader :: a -> ScriptLoadPosition a jsLoader _ = BottomOfBody -- | Create a session backend. Returning `Nothing' disables sessions. -- -- Default: Uses clientsession with a 2 hour timeout. makeSessionBackend :: a -> IO (Maybe (SessionBackend a)) makeSessionBackend _ = do key <- CS.getKey CS.defaultKeyFile return $ Just $ clientSessionBackend key 120 -- | How to store uploaded files. -- -- Default: Whe nthe request body is greater than 50kb, store in a temp -- file. Otherwise, store in memory. fileUpload :: a -> Word64 -- ^ request body size -> FileUpload fileUpload _ size | size > 50000 = FileUploadDisk tempFileBackEnd | otherwise = FileUploadMemory lbsBackEnd -- | Should we log the given log source/level combination. -- -- Default: Logs everything at or above 'logLevel' shouldLog :: a -> LogSource -> LogLevel -> Bool shouldLog a _ level = level >= logLevel a {-# DEPRECATED messageLogger "Please use messageLoggerSource (since yesod-core 1.1.2)" #-} formatLogMessage :: IO ZonedDate -> Loc -> LogSource -> LogLevel -> LogStr -- ^ message -> IO [LogStr] formatLogMessage getdate loc src level msg = do now <- getdate return [ LB now , LB " [" , LS $ case level of LevelOther t -> T.unpack t _ -> drop 5 $ show level , LS $ if T.null src then "" else "#" ++ T.unpack src , LB "] " , msg , LB " @(" , LS $ fileLocationToString loc , LB ")\n" ] -- taken from file-location package -- turn the TH Loc loaction information into a human readable string -- leaving out the loc_end parameter fileLocationToString :: Loc -> String fileLocationToString loc = (loc_package loc) ++ ':' : (loc_module loc) ++ ' ' : (loc_filename loc) ++ ':' : (line loc) ++ ':' : (char loc) where line = show . fst . loc_start char = show . snd . loc_start defaultYesodRunner :: Yesod master => Logger -> GHandler sub master ChooseRep -> master -> sub -> Maybe (Route sub) -> (Route sub -> Route master) -> Maybe (SessionBackend master) -> W.Application defaultYesodRunner logger handler master sub murl toMasterRoute msb req | maximumContentLength master (fmap toMasterRoute murl) < len = return $ W.responseLBS (H.Status 413 "Too Large") [("Content-Type", "text/plain")] "Request body too large to be processed." | otherwise = do now <- liftIO getCurrentTime let dontSaveSession _ _ = return [] (session, saveSession) <- liftIO $ maybe (return ([], dontSaveSession)) (\sb -> sbLoadSession sb master req now) msb rr <- liftIO $ parseWaiRequest req session (isJust msb) len let h = {-# SCC "h" #-} do case murl of Nothing -> handler Just url -> do isWrite <- isWriteRequest $ toMasterRoute url ar <- isAuthorized (toMasterRoute url) isWrite case ar of Authorized -> return () AuthenticationRequired -> case authRoute master of Nothing -> permissionDenied "Authentication required" Just url' -> do setUltDestCurrent redirect url' Unauthorized s' -> permissionDenied s' handler let sessionMap = Map.fromList . filter ((/=) tokenKey . fst) $ session let ra = resolveApproot master req let log' = messageLoggerSource master logger yar <- handlerToYAR master sub (fileUpload master) log' toMasterRoute (yesodRender master ra) errorHandler rr murl sessionMap h extraHeaders <- case yar of (YARPlain _ _ ct _ newSess) -> do let nsToken = Map.toList $ maybe newSess (\n -> Map.insert tokenKey (TE.encodeUtf8 n) newSess) (reqToken rr) sessionHeaders <- liftIO (saveSession nsToken now) return $ ("Content-Type", ct) : map headerToPair sessionHeaders _ -> return [] return $ yarToResponse yar extraHeaders where len = fromMaybe 0 $ lookup "content-length" (W.requestHeaders req) >>= readMay readMay s = case reads $ S8.unpack s of [] -> Nothing (x, _):_ -> Just x data AuthResult = Authorized | AuthenticationRequired | Unauthorized Text deriving (Eq, Show, Read) -- | A type-safe, concise method of creating breadcrumbs for pages. For each -- resource, you declare the title of the page and the parent resource (if -- present). class YesodBreadcrumbs y where -- | Returns the title and the parent resource, if available. If you return -- a 'Nothing', then this is considered a top-level page. breadcrumb :: Route y -> GHandler sub y (Text , Maybe (Route y)) -- | Gets the title of the current page and the hierarchy of parent pages, -- along with their respective titles. breadcrumbs :: YesodBreadcrumbs y => GHandler sub y (Text, [(Route y, Text)]) breadcrumbs = do x' <- getCurrentRoute tm <- getRouteToMaster let x = fmap tm x' case x of Nothing -> return ("Not found", []) Just y -> do (title, next) <- breadcrumb y z <- go [] next return (title, z) where go back Nothing = return back go back (Just this) = do (title, next) <- breadcrumb this go ((this, title) : back) next applyLayout' :: Yesod master => Html -- ^ title -> HtmlUrl (Route master) -- ^ body -> GHandler sub master ChooseRep applyLayout' title body = fmap chooseRep $ defaultLayout $ do setTitle title toWidget body -- | The default error handler for 'errorHandler'. defaultErrorHandler :: Yesod y => ErrorResponse -> GHandler sub y ChooseRep defaultErrorHandler NotFound = do r <- waiRequest let path' = TE.decodeUtf8With TEE.lenientDecode $ W.rawPathInfo r applyLayout' "Not Found" [hamlet| $newline never <h1>Not Found <p>#{path'} |] defaultErrorHandler (PermissionDenied msg) = applyLayout' "Permission Denied" [hamlet| $newline never <h1>Permission denied <p>#{msg} |] defaultErrorHandler (InvalidArgs ia) = applyLayout' "Invalid Arguments" [hamlet| $newline never <h1>Invalid Arguments <ul> $forall msg <- ia <li>#{msg} |] defaultErrorHandler (InternalError e) = applyLayout' "Internal Server Error" [hamlet| $newline never <h1>Internal Server Error <p>#{e} |] defaultErrorHandler (BadMethod m) = applyLayout' "Bad Method" [hamlet| $newline never <h1>Method Not Supported <p>Method "#{S8.unpack m}" not supported |] -- | Return the same URL if the user is authorized to see it. -- -- Built on top of 'isAuthorized'. This is useful for building page that only -- contain links to pages the user is allowed to see. maybeAuthorized :: Yesod a => Route a -> Bool -- ^ is this a write request? -> GHandler s a (Maybe (Route a)) maybeAuthorized r isWrite = do x <- isAuthorized r isWrite return $ if x == Authorized then Just r else Nothing jsToHtml :: Javascript -> Html jsToHtml (Javascript b) = preEscapedToMarkup $ toLazyText b jelper :: JavascriptUrl url -> HtmlUrl url jelper = fmap jsToHtml -- | Convert a widget to a 'PageContent'. widgetToPageContent :: (Eq (Route master), Yesod master) => GWidget sub master () -> GHandler sub master (PageContent (Route master)) widgetToPageContent w = do master <- getYesod ((), GWData (Body body) (Last mTitle) scripts' stylesheets' style jscript (Head head')) <- unGWidget w let title = maybe mempty unTitle mTitle scripts = runUniqueList scripts' stylesheets = runUniqueList stylesheets' render <- getUrlRenderParams let renderLoc x = case x of Nothing -> Nothing Just (Left s) -> Just s Just (Right (u, p)) -> Just $ render u p css <- forM (Map.toList style) $ \(mmedia, content) -> do let rendered = toLazyText $ content render x <- addStaticContent "css" "text/css; charset=utf-8" $ encodeUtf8 rendered return (mmedia, case x of Nothing -> Left $ preEscapedToMarkup rendered Just y -> Right $ either id (uncurry render) y) jsLoc <- case jscript of Nothing -> return Nothing Just s -> do x <- addStaticContent "js" "text/javascript; charset=utf-8" $ encodeUtf8 $ renderJavascriptUrl render s return $ renderLoc x -- modernizr should be at the end of the <head> http://www.modernizr.com/docs/#installing -- the asynchronous loader means your page doesn't have to wait for all the js to load let (mcomplete, asyncScripts) = asyncHelper render scripts jscript jsLoc regularScriptLoad = [hamlet| $newline never $forall s <- scripts ^{mkScriptTag s} $maybe j <- jscript $maybe s <- jsLoc <script src="#{s}"> $nothing <script>^{jelper j} |] headAll = [hamlet| $newline never \^{head'} $forall s <- stylesheets ^{mkLinkTag s} $forall s <- css $maybe t <- right $ snd s $maybe media <- fst s <link rel=stylesheet media=#{media} href=#{t}> $nothing <link rel=stylesheet href=#{t}> $maybe content <- left $ snd s $maybe media <- fst s <style media=#{media}>#{content} $nothing <style>#{content} $case jsLoader master $of BottomOfBody $of BottomOfHeadAsync asyncJsLoader ^{asyncJsLoader asyncScripts mcomplete} $of BottomOfHeadBlocking ^{regularScriptLoad} |] let bodyScript = [hamlet| $newline never ^{body} ^{regularScriptLoad} |] return $ PageContent title headAll (case jsLoader master of BottomOfBody -> bodyScript _ -> body) where renderLoc' render' (Local url) = render' url [] renderLoc' _ (Remote s) = s addAttr x (y, z) = x ! customAttribute (textTag y) (toValue z) mkScriptTag (Script loc attrs) render' = foldl' addAttr TBH.script (("src", renderLoc' render' loc) : attrs) $ return () mkLinkTag (Stylesheet loc attrs) render' = foldl' addAttr TBH.link ( ("rel", "stylesheet") : ("href", renderLoc' render' loc) : attrs ) data ScriptLoadPosition master = BottomOfBody | BottomOfHeadBlocking | BottomOfHeadAsync (BottomOfHeadAsync master) type BottomOfHeadAsync master = [Text] -- ^ urls to load asynchronously -> Maybe (HtmlUrl (Route master)) -- ^ widget of js to run on async completion -> (HtmlUrl (Route master)) -- ^ widget to insert at the bottom of <head> left :: Either a b -> Maybe a left (Left x) = Just x left _ = Nothing right :: Either a b -> Maybe b right (Right x) = Just x right _ = Nothing jsonArray :: [Text] -> Html jsonArray = unsafeLazyByteString . encode . Array . Vector.fromList . map String -- | For use with setting 'jsLoader' to 'BottomOfHeadAsync' loadJsYepnope :: Yesod master => Either Text (Route master) -> [Text] -> Maybe (HtmlUrl (Route master)) -> (HtmlUrl (Route master)) loadJsYepnope eyn scripts mcomplete = [hamlet| $newline never $maybe yn <- left eyn <script src=#{yn}> $maybe yn <- right eyn <script src=@{yn}> $maybe complete <- mcomplete <script>yepnope({load:#{jsonArray scripts},complete:function(){^{complete}}}); $nothing <script>yepnope({load:#{jsonArray scripts}}); |] asyncHelper :: (url -> [x] -> Text) -> [Script (url)] -> Maybe (JavascriptUrl (url)) -> Maybe Text -> (Maybe (HtmlUrl url), [Text]) asyncHelper render scripts jscript jsLoc = (mcomplete, scripts'') where scripts' = map goScript scripts scripts'' = case jsLoc of Just s -> scripts' ++ [s] Nothing -> scripts' goScript (Script (Local url) _) = render url [] goScript (Script (Remote s) _) = s mcomplete = case jsLoc of Just{} -> Nothing Nothing -> case jscript of Nothing -> Nothing Just j -> Just $ jelper j yesodRender :: Yesod y => y -> ResolvedApproot -> Route y -> [(Text, Text)] -- ^ url query string -> Text yesodRender y ar url params = TE.decodeUtf8 $ toByteString $ fromMaybe (joinPath y ar ps $ params ++ params') (urlRenderOverride y url) where (ps, params') = renderRoute url resolveApproot :: Yesod master => master -> W.Request -> ResolvedApproot resolveApproot master req = case approot of ApprootRelative -> "" ApprootStatic t -> t ApprootMaster f -> f master ApprootRequest f -> f master req defaultClientSessionBackend :: Yesod master => IO (SessionBackend master) defaultClientSessionBackend = do key <- CS.getKey CS.defaultKeyFile let timeout = 120 -- 120 minutes return $ clientSessionBackend key timeout clientSessionBackend :: Yesod master => CS.Key -- ^ The encryption key -> Int -- ^ Inactive session valitity in minutes -> SessionBackend master clientSessionBackend key timeout = SessionBackend { sbLoadSession = loadClientSession key timeout "_SESSION" } loadClientSession :: Yesod master => CS.Key -> Int -- ^ timeout -> S8.ByteString -- ^ session name -> master -> W.Request -> UTCTime -> IO (BackendSession, SaveSession) loadClientSession key timeout sessionName master req now = return (sess, save) where sess = fromMaybe [] $ do raw <- lookup "Cookie" $ W.requestHeaders req val <- lookup sessionName $ parseCookies raw let host = "" -- fixme, properly lock sessions to client address decodeClientSession key now host val save sess' now' = do -- We should never cache the IV! Be careful! iv <- liftIO CS.randomIV return [AddCookie def { setCookieName = sessionName , setCookieValue = sessionVal iv , setCookiePath = Just (cookiePath master) , setCookieExpires = Just expires , setCookieDomain = cookieDomain master , setCookieHttpOnly = True }] where host = "" -- fixme, properly lock sessions to client address expires = fromIntegral (timeout * 60) `addUTCTime` now' sessionVal iv = encodeClientSession key iv expires host sess' -- | Run a 'GHandler' completely outside of Yesod. This -- function comes with many caveats and you shouldn't use it -- unless you fully understand what it's doing and how it works. -- -- As of now, there's only one reason to use this function at -- all: in order to run unit tests of functions inside 'GHandler' -- but that aren't easily testable with a full HTTP request. -- Even so, it's better to use @wai-test@ or @yesod-test@ instead -- of using this function. -- -- This function will create a fake HTTP request (both @wai@'s -- 'W.Request' and @yesod@'s 'Request') and feed it to the -- @GHandler@. The only useful information the @GHandler@ may -- get from the request is the session map, which you must supply -- as argument to @runFakeHandler@. All other fields contain -- fake information, which means that they can be accessed but -- won't have any useful information. The response of the -- @GHandler@ is completely ignored, including changes to the -- session, cookies or headers. We only return you the -- @GHandler@'s return value. runFakeHandler :: (Yesod master, MonadIO m) => SessionMap -> (master -> Logger) -> master -> GHandler master master a -> m (Either ErrorResponse a) runFakeHandler fakeSessionMap logger master handler = liftIO $ do ret <- I.newIORef (Left $ InternalError "runFakeHandler: no result") let handler' = do liftIO . I.writeIORef ret . Right =<< handler return () let YesodApp yapp = runHandler handler' (yesodRender master "") Nothing id master master (fileUpload master) (messageLoggerSource master $ logger master) errHandler err = YesodApp $ \_ _ _ session -> do liftIO $ I.writeIORef ret (Left err) return $ YARPlain H.status500 [] typePlain (toContent ("runFakeHandler: errHandler" :: S8.ByteString)) session fakeWaiRequest = W.Request { W.requestMethod = "POST" , W.httpVersion = H.http11 , W.rawPathInfo = "/runFakeHandler/pathInfo" , W.rawQueryString = "" , W.serverName = "runFakeHandler-serverName" , W.serverPort = 80 , W.requestHeaders = [] , W.isSecure = False , W.remoteHost = error "runFakeHandler-remoteHost" , W.pathInfo = ["runFakeHandler", "pathInfo"] , W.queryString = [] , W.requestBody = mempty , W.vault = mempty } fakeRequest = Request { reqGetParams = [] , reqCookies = [] , reqWaiRequest = fakeWaiRequest , reqLangs = [] , reqToken = Just "NaN" -- not a nonce =) , reqBodySize = 0 } fakeContentType = [] _ <- runResourceT $ yapp errHandler fakeRequest fakeContentType fakeSessionMap I.readIORef ret {-# WARNING runFakeHandler "Usually you should *not* use runFakeHandler unless you really understand how it works and why you need it." #-}
piyush-kurur/yesod
yesod-core/Yesod/Internal/Core.hs
Haskell
mit
31,135
module MiniSequel.Adapter.PostgreSQL.Log where import qualified MiniSequel.Adapter.PostgreSQL as Adapter -- -- exec con query = do -- print query -- Adapter.exec con query -- -- takeModel con model = do -- print model -- Adapter.takeModel con model
TachoMex/MiniSequel
src/MiniSequel/Adapter/Log.hs
Haskell
mit
276