exp_id
int64 0
63
| A
int64 -1
1
| B
int64 -1
1
| C
int64 -1
1
| D
int64 -1
1
| E
int64 -1
1
| F
int64 -1
1
| G
int64 -1
1
| H
int64 -1
1
| learning_rate
float64 0
0
| weight_decay
float64 0
0.1
| lr_scheduler_type
stringclasses 2
values | warmup_ratio
float64 0
0.15
| gradient_accumulation_steps
int64 1
4
| num_train_epochs
int64 50
200
| per_device_train_batch_size
int64 2
4
| per_device_eval_batch_size
int64 2
4
| train_mean_iou
float64 0.32
0.71
| train_mean_accuracy
float64 0.48
0.81
| train_precision_tree
float64 0.22
0.79
| train_recall_tree
float64 0.09
0.86
| train_dice_tree
float64 0.13
0.74
| val_mean_iou
float64 0.25
0.66
| val_mean_accuracy
float64 0.48
0.79
| val_precision_tree
float64 0.27
0.83
| val_recall_tree
float64 0.01
0.86
| val_dice_tree
float64 0.01
0.7
| test_mean_iou
float64 0.15
0.68
| test_mean_accuracy
float64 0.44
0.8
| test_precision_tree
float64 0
0.79
| test_recall_tree
float64 0
1
| test_dice_tree
float64 0
0.72
| training_time_sec
float64 175
860
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0
| -1
| -1
| -1
| -1
| -1
| -1
| 1
| 1
| 0.00001
| 0
|
linear
| 0
| 1
| 50
| 4
| 4
| 0.479706
| 0.618203
| 0.48891
| 0.400071
| 0.440052
| 0.443351
| 0.574197
| 0.572262
| 0.21679
| 0.314455
| 0.373163
| 0.51631
| 0.588731
| 0.046437
| 0.086084
| 176.856428
|
1
| -1
| -1
| -1
| -1
| -1
| 1
| 1
| -1
| 0.00001
| 0
|
linear
| 0
| 1
| 200
| 4
| 2
| 0.505448
| 0.69084
| 0.472496
| 0.677813
| 0.556831
| 0.473022
| 0.648801
| 0.455517
| 0.600658
| 0.518114
| 0.330348
| 0.586598
| 0.35139
| 0.809911
| 0.49013
| 695.989304
|
2
| -1
| -1
| -1
| -1
| 1
| -1
| 1
| -1
| 0.00001
| 0
|
linear
| 0
| 4
| 50
| 4
| 2
| 0.439655
| 0.61998
| 0.401449
| 0.576098
| 0.473172
| 0.267056
| 0.483401
| 0.286268
| 0.633714
| 0.394382
| 0.249582
| 0.468964
| 0.279705
| 0.641328
| 0.389525
| 175.215945
|
3
| -1
| -1
| -1
| -1
| 1
| 1
| 1
| 1
| 0.00001
| 0
|
linear
| 0
| 4
| 200
| 4
| 4
| 0.477253
| 0.670428
| 0.44132
| 0.675505
| 0.533859
| 0.390693
| 0.568388
| 0.362834
| 0.528583
| 0.430299
| 0.156464
| 0.50043
| 0.298874
| 0.98539
| 0.458639
| 717.351092
|
4
| -1
| -1
| -1
| 1
| -1
| -1
| -1
| 1
| 0.00001
| 0
|
linear
| 0.15
| 1
| 50
| 2
| 4
| 0.486341
| 0.681123
| 0.45032
| 0.693535
| 0.54607
| 0.471293
| 0.612753
| 0.493898
| 0.397388
| 0.440418
| 0.318551
| 0.553021
| 0.332872
| 0.72424
| 0.456109
| 201.06424
|
5
| -1
| -1
| -1
| 1
| -1
| 1
| -1
| -1
| 0.00001
| 0
|
linear
| 0.15
| 1
| 200
| 2
| 2
| 0.513017
| 0.656366
| 0.524912
| 0.484248
| 0.503761
| 0.437726
| 0.569957
| 0.827099
| 0.153455
| 0.258879
| 0.422028
| 0.61
| 0.40088
| 0.605262
| 0.482312
| 781.45458
|
6
| -1
| -1
| -1
| 1
| 1
| -1
| -1
| -1
| 0.00001
| 0
|
linear
| 0.15
| 4
| 50
| 2
| 2
| 0.355236
| 0.480811
| 0.21505
| 0.089582
| 0.126478
| 0.3528
| 0.499474
| 0.266385
| 0.006477
| 0.012647
| 0.350655
| 0.5
| 0
| 0
| 0
| 190.575664
|
7
| -1
| -1
| -1
| 1
| 1
| 1
| -1
| 1
| 0.00001
| 0
|
linear
| 0.15
| 4
| 200
| 2
| 4
| 0.512067
| 0.680876
| 0.488954
| 0.61212
| 0.543648
| 0.454965
| 0.634662
| 0.434247
| 0.598396
| 0.503275
| 0.313551
| 0.549439
| 0.3302
| 0.726692
| 0.454074
| 760.266694
|
8
| -1
| -1
| 1
| -1
| -1
| -1
| -1
| 1
| 0.00001
| 0
|
cosine
| 0
| 1
| 50
| 2
| 4
| 0.489436
| 0.665119
| 0.459066
| 0.612831
| 0.52492
| 0.44143
| 0.59361
| 0.427211
| 0.431318
| 0.429255
| 0.322916
| 0.493663
| 0.293054
| 0.46212
| 0.358662
| 238.351016
|
9
| -1
| -1
| 1
| -1
| -1
| 1
| -1
| -1
| 0.00001
| 0
|
cosine
| 0
| 1
| 200
| 2
| 2
| 0.630567
| 0.760487
| 0.674561
| 0.642224
| 0.657996
| 0.576834
| 0.710503
| 0.643847
| 0.549249
| 0.592798
| 0.604795
| 0.750091
| 0.63097
| 0.666105
| 0.648062
| 810.863158
|
10
| -1
| -1
| 1
| -1
| 1
| -1
| -1
| -1
| 0.00001
| 0
|
cosine
| 0
| 4
| 50
| 2
| 2
| 0.422513
| 0.638303
| 0.390415
| 0.711112
| 0.50408
| 0.29639
| 0.575444
| 0.338382
| 0.863716
| 0.48626
| 0.252314
| 0.535517
| 0.317176
| 0.854764
| 0.46267
| 201.144829
|
11
| -1
| -1
| 1
| -1
| 1
| 1
| -1
| 1
| 0.00001
| 0
|
cosine
| 0
| 4
| 200
| 2
| 4
| 0.582802
| 0.722072
| 0.612409
| 0.590361
| 0.601183
| 0.536121
| 0.682024
| 0.566257
| 0.537991
| 0.551762
| 0.485887
| 0.679715
| 0.465627
| 0.703091
| 0.560234
| 775.677701
|
12
| -1
| -1
| 1
| 1
| -1
| -1
| 1
| 1
| 0.00001
| 0
|
cosine
| 0.15
| 1
| 50
| 4
| 4
| 0.396121
| 0.624252
| 0.371393
| 0.736008
| 0.493675
| 0.34925
| 0.5497
| 0.335516
| 0.605953
| 0.431893
| 0.169435
| 0.507199
| 0.301818
| 0.974559
| 0.460897
| 188.437149
|
13
| -1
| -1
| 1
| 1
| -1
| 1
| 1
| -1
| 0.00001
| 0
|
cosine
| 0.15
| 1
| 200
| 4
| 2
| 0.579661
| 0.717827
| 0.61263
| 0.5789
| 0.595288
| 0.538032
| 0.66771
| 0.636667
| 0.441857
| 0.521668
| 0.547975
| 0.70476
| 0.558389
| 0.617522
| 0.586469
| 763.883168
|
14
| -1
| -1
| 1
| 1
| 1
| -1
| 1
| -1
| 0.00001
| 0
|
cosine
| 0.15
| 4
| 50
| 4
| 2
| 0.35086
| 0.614606
| 0.350922
| 0.82997
| 0.493279
| 0.315948
| 0.565713
| 0.33695
| 0.775859
| 0.469848
| 0.149345
| 0.5
| 0.298691
| 1
| 0.459988
| 191.152094
|
15
| -1
| -1
| 1
| 1
| 1
| 1
| 1
| 1
| 0.00001
| 0
|
cosine
| 0.15
| 4
| 200
| 4
| 4
| 0.495835
| 0.6748
| 0.464816
| 0.636306
| 0.537207
| 0.427489
| 0.590714
| 0.403313
| 0.483138
| 0.439631
| 0.230233
| 0.54797
| 0.321503
| 0.94825
| 0.480197
| 731.050913
|
16
| -1
| 1
| -1
| -1
| -1
| -1
| -1
| -1
| 0.00001
| 0.1
|
linear
| 0
| 1
| 50
| 2
| 2
| 0.510895
| 0.646365
| 0.545635
| 0.434239
| 0.483605
| 0.455442
| 0.603144
| 0.454054
| 0.418877
| 0.435757
| 0.322532
| 0.532336
| 0.321784
| 0.63198
| 0.426439
| 206.873841
|
17
| -1
| 1
| -1
| -1
| -1
| 1
| -1
| 1
| 0.00001
| 0.1
|
linear
| 0
| 1
| 200
| 2
| 4
| 0.636
| 0.764315
| 0.682586
| 0.646229
| 0.66391
| 0.576186
| 0.707832
| 0.651987
| 0.536552
| 0.588663
| 0.613416
| 0.752465
| 0.652658
| 0.652925
| 0.652791
| 800.276684
|
18
| -1
| 1
| -1
| -1
| 1
| -1
| -1
| 1
| 0.00001
| 0.1
|
linear
| 0
| 4
| 50
| 2
| 4
| 0.424001
| 0.643979
| 0.392747
| 0.729143
| 0.510511
| 0.305319
| 0.522299
| 0.311853
| 0.650319
| 0.421554
| 0.402858
| 0.558299
| 0.372006
| 0.414917
| 0.392291
| 200.989423
|
19
| -1
| 1
| -1
| -1
| 1
| 1
| -1
| -1
| 0.00001
| 0.1
|
linear
| 0
| 4
| 200
| 2
| 2
| 0.453902
| 0.676671
| 0.41957
| 0.770433
| 0.543277
| 0.450154
| 0.636924
| 0.428416
| 0.626876
| 0.508985
| 0.233103
| 0.552717
| 0.323748
| 0.955351
| 0.483611
| 785.76628
|
20
| -1
| 1
| -1
| 1
| -1
| -1
| 1
| -1
| 0.00001
| 0.1
|
linear
| 0.15
| 1
| 50
| 4
| 2
| 0.438412
| 0.648559
| 0.403785
| 0.703794
| 0.513158
| 0.389048
| 0.540777
| 0.349299
| 0.381657
| 0.364762
| 0.218609
| 0.443255
| 0.266202
| 0.652158
| 0.378078
| 196.418063
|
21
| -1
| 1
| -1
| 1
| -1
| 1
| 1
| 1
| 0.00001
| 0.1
|
linear
| 0.15
| 1
| 200
| 4
| 4
| 0.498169
| 0.675047
| 0.468336
| 0.629954
| 0.537253
| 0.436049
| 0.621191
| 0.413414
| 0.604308
| 0.490958
| 0.304574
| 0.546393
| 0.327349
| 0.743295
| 0.454524
| 767.621025
|
22
| -1
| 1
| -1
| 1
| 1
| -1
| 1
| 1
| 0.00001
| 0.1
|
linear
| 0.15
| 4
| 50
| 4
| 4
| 0.476134
| 0.666801
| 0.440501
| 0.663293
| 0.529413
| 0.380757
| 0.58826
| 0.366053
| 0.656231
| 0.469958
| 0.257228
| 0.518252
| 0.308748
| 0.7859
| 0.44333
| 191.88357
|
23
| -1
| 1
| -1
| 1
| 1
| 1
| 1
| -1
| 0.00001
| 0.1
|
linear
| 0.15
| 4
| 200
| 4
| 2
| 0.493203
| 0.671356
| 0.462249
| 0.629125
| 0.532929
| 0.377943
| 0.562357
| 0.35286
| 0.552128
| 0.430556
| 0.220896
| 0.519234
| 0.308072
| 0.885926
| 0.457168
| 762.56833
|
24
| -1
| 1
| 1
| -1
| -1
| -1
| 1
| -1
| 0.00001
| 0.1
|
cosine
| 0
| 1
| 50
| 4
| 2
| 0.46587
| 0.655662
| 0.429842
| 0.647354
| 0.516637
| 0.36141
| 0.537347
| 0.331522
| 0.501696
| 0.399231
| 0.266841
| 0.559853
| 0.32967
| 0.893384
| 0.481617
| 206.098646
|
25
| -1
| 1
| 1
| -1
| -1
| 1
| 1
| 1
| 0.00001
| 0.1
|
cosine
| 0
| 1
| 200
| 4
| 4
| 0.507627
| 0.684646
| 0.478681
| 0.643586
| 0.549018
| 0.480117
| 0.63474
| 0.479863
| 0.496761
| 0.488166
| 0.370248
| 0.589104
| 0.363961
| 0.696909
| 0.478188
| 775.589044
|
26
| -1
| 1
| 1
| -1
| 1
| -1
| 1
| 1
| 0.00001
| 0.1
|
cosine
| 0
| 4
| 50
| 4
| 4
| 0.316989
| 0.595839
| 0.335107
| 0.85747
| 0.481887
| 0.347288
| 0.552593
| 0.336646
| 0.625129
| 0.437623
| 0.154631
| 0.501404
| 0.299285
| 0.992082
| 0.459846
| 194.652291
|
27
| -1
| 1
| 1
| -1
| 1
| 1
| 1
| -1
| 0.00001
| 0.1
|
cosine
| 0
| 4
| 200
| 4
| 2
| 0.439548
| 0.656122
| 0.405901
| 0.730879
| 0.521938
| 0.404785
| 0.597597
| 0.382802
| 0.611043
| 0.470714
| 0.15128
| 0.501599
| 0.299362
| 1
| 0.460783
| 757.382255
|
28
| -1
| 1
| 1
| 1
| -1
| -1
| -1
| -1
| 0.00001
| 0.1
|
cosine
| 0.15
| 1
| 50
| 2
| 2
| 0.53569
| 0.688289
| 0.534913
| 0.570792
| 0.55227
| 0.481663
| 0.626692
| 0.499474
| 0.439132
| 0.467363
| 0.377169
| 0.577136
| 0.361459
| 0.62304
| 0.457499
| 217.273358
|
29
| -1
| 1
| 1
| 1
| -1
| 1
| -1
| 1
| 0.00001
| 0.1
|
cosine
| 0.15
| 1
| 200
| 2
| 4
| 0.636743
| 0.759953
| 0.700308
| 0.62449
| 0.660229
| 0.576041
| 0.721074
| 0.607216
| 0.608215
| 0.607715
| 0.594232
| 0.741473
| 0.618606
| 0.654917
| 0.636244
| 831.564754
|
30
| -1
| 1
| 1
| 1
| 1
| -1
| -1
| 1
| 0.00001
| 0.1
|
cosine
| 0.15
| 4
| 50
| 2
| 4
| 0.424939
| 0.648727
| 0.394468
| 0.744984
| 0.515814
| 0.246217
| 0.522216
| 0.308468
| 0.826959
| 0.44933
| 0.149313
| 0.499858
| 0.298631
| 0.999693
| 0.459884
| 208.017397
|
31
| -1
| 1
| 1
| 1
| 1
| 1
| -1
| -1
| 0.00001
| 0.1
|
cosine
| 0.15
| 4
| 200
| 2
| 2
| 0.516824
| 0.688635
| 0.492056
| 0.632972
| 0.553689
| 0.500758
| 0.655805
| 0.506038
| 0.529971
| 0.517728
| 0.301364
| 0.566519
| 0.336904
| 0.82258
| 0.478024
| 807.874514
|
32
| 1
| -1
| -1
| -1
| -1
| -1
| -1
| -1
| 0.0001
| 0
|
linear
| 0
| 1
| 50
| 2
| 2
| 0.682042
| 0.791773
| 0.7649
| 0.663333
| 0.710505
| 0.634402
| 0.753694
| 0.733363
| 0.599373
| 0.659632
| 0.662243
| 0.77589
| 0.764323
| 0.635198
| 0.693804
| 223.770615
|
33
| 1
| -1
| -1
| -1
| -1
| 1
| -1
| 1
| 0.0001
| 0
|
linear
| 0
| 1
| 200
| 2
| 4
| 0.706054
| 0.814616
| 0.771128
| 0.711921
| 0.740343
| 0.659582
| 0.785684
| 0.712636
| 0.688567
| 0.700395
| 0.683982
| 0.799635
| 0.756018
| 0.694764
| 0.724098
| 838.74038
|
34
| 1
| -1
| -1
| -1
| 1
| -1
| -1
| 1
| 0.0001
| 0
|
linear
| 0
| 4
| 50
| 2
| 4
| 0.63941
| 0.762931
| 0.700361
| 0.631611
| 0.664212
| 0.577472
| 0.70741
| 0.660723
| 0.529611
| 0.587947
| 0.602006
| 0.735846
| 0.661807
| 0.602912
| 0.630988
| 208.362217
|
35
| 1
| -1
| -1
| -1
| 1
| 1
| -1
| -1
| 0.0001
| 0
|
linear
| 0
| 4
| 200
| 2
| 2
| 0.697801
| 0.806608
| 0.769658
| 0.694561
| 0.730184
| 0.648467
| 0.768521
| 0.732176
| 0.635102
| 0.680193
| 0.67542
| 0.788494
| 0.766446
| 0.66304
| 0.711003
| 794.750892
|
36
| 1
| -1
| -1
| 1
| -1
| -1
| 1
| -1
| 0.0001
| 0
|
linear
| 0.15
| 1
| 50
| 4
| 2
| 0.655043
| 0.769955
| 0.739374
| 0.626304
| 0.678159
| 0.593169
| 0.720246
| 0.682922
| 0.547861
| 0.607981
| 0.6379
| 0.760346
| 0.721657
| 0.62304
| 0.668732
| 207.697486
|
37
| 1
| -1
| -1
| 1
| -1
| 1
| 1
| 1
| 0.0001
| 0
|
linear
| 0.15
| 1
| 200
| 4
| 4
| 0.704329
| 0.80951
| 0.783952
| 0.693851
| 0.736155
| 0.652369
| 0.772954
| 0.730722
| 0.646463
| 0.686015
| 0.677383
| 0.790934
| 0.764325
| 0.669834
| 0.713967
| 778.666658
|
38
| 1
| -1
| -1
| 1
| 1
| -1
| 1
| 1
| 0.0001
| 0
|
linear
| 0.15
| 4
| 50
| 4
| 4
| 0.525127
| 0.706201
| 0.494944
| 0.686572
| 0.575218
| 0.497593
| 0.668495
| 0.485851
| 0.609038
| 0.540515
| 0.345121
| 0.58564
| 0.354508
| 0.762912
| 0.484076
| 197.303081
|
39
| 1
| -1
| -1
| 1
| 1
| 1
| 1
| -1
| 0.0001
| 0
|
linear
| 0.15
| 4
| 200
| 4
| 2
| 0.678966
| 0.789832
| 0.759962
| 0.661419
| 0.707275
| 0.627787
| 0.746347
| 0.736368
| 0.580403
| 0.649149
| 0.656498
| 0.772714
| 0.752135
| 0.634483
| 0.688317
| 764.505184
|
40
| 1
| -1
| 1
| -1
| -1
| -1
| 1
| -1
| 0.0001
| 0
|
cosine
| 0
| 1
| 50
| 4
| 2
| 0.660983
| 0.768776
| 0.773619
| 0.60707
| 0.680299
| 0.607608
| 0.731109
| 0.706401
| 0.560559
| 0.625086
| 0.632424
| 0.748732
| 0.751708
| 0.578902
| 0.654084
| 204.897799
|
41
| 1
| -1
| 1
| -1
| -1
| 1
| 1
| 1
| 0.0001
| 0
|
cosine
| 0
| 1
| 200
| 4
| 4
| 0.702965
| 0.809045
| 0.780393
| 0.694581
| 0.734991
| 0.648139
| 0.766804
| 0.738208
| 0.627545
| 0.678393
| 0.677579
| 0.7937
| 0.753739
| 0.68235
| 0.71627
| 782.74339
|
42
| 1
| -1
| 1
| -1
| 1
| -1
| 1
| 1
| 0.0001
| 0
|
cosine
| 0
| 4
| 50
| 4
| 4
| 0.540396
| 0.701312
| 0.528472
| 0.618631
| 0.570008
| 0.508356
| 0.658827
| 0.523387
| 0.515988
| 0.519661
| 0.43904
| 0.644416
| 0.420238
| 0.700332
| 0.525279
| 194.70928
|
43
| 1
| -1
| 1
| -1
| 1
| 1
| 1
| -1
| 0.0001
| 0
|
cosine
| 0
| 4
| 200
| 4
| 2
| 0.686513
| 0.794925
| 0.770625
| 0.667614
| 0.71543
| 0.632999
| 0.754508
| 0.722603
| 0.607444
| 0.660038
| 0.665965
| 0.780525
| 0.759926
| 0.648276
| 0.699675
| 742.003063
|
44
| 1
| -1
| 1
| 1
| -1
| -1
| -1
| -1
| 0.0001
| 0
|
cosine
| 0.15
| 1
| 50
| 2
| 2
| 0.674801
| 0.788676
| 0.747413
| 0.665345
| 0.703995
| 0.621124
| 0.74668
| 0.701247
| 0.601532
| 0.647573
| 0.65238
| 0.766278
| 0.763707
| 0.613384
| 0.680341
| 220.922518
|
45
| 1
| -1
| 1
| 1
| -1
| 1
| -1
| 1
| 0.0001
| 0
|
cosine
| 0.15
| 1
| 200
| 2
| 4
| 0.707789
| 0.814642
| 0.777499
| 0.708647
| 0.741478
| 0.658903
| 0.781517
| 0.724431
| 0.670728
| 0.696546
| 0.683741
| 0.798904
| 0.757889
| 0.691954
| 0.723422
| 814.610484
|
46
| 1
| -1
| 1
| 1
| 1
| -1
| -1
| 1
| 0.0001
| 0
|
cosine
| 0.15
| 4
| 50
| 2
| 4
| 0.614817
| 0.730922
| 0.724969
| 0.542365
| 0.620511
| 0.530645
| 0.656296
| 0.668521
| 0.395332
| 0.49685
| 0.574468
| 0.70424
| 0.662707
| 0.521533
| 0.583705
| 207.88319
|
47
| 1
| -1
| 1
| 1
| 1
| 1
| -1
| -1
| 0.0001
| 0
|
cosine
| 0.15
| 4
| 200
| 2
| 2
| 0.691212
| 0.797993
| 0.777547
| 0.671125
| 0.720427
| 0.634663
| 0.754445
| 0.731021
| 0.602457
| 0.660542
| 0.666248
| 0.780154
| 0.762931
| 0.645773
| 0.69948
| 791.490153
|
48
| 1
| 1
| -1
| -1
| -1
| -1
| 1
| 1
| 0.0001
| 0.1
|
linear
| 0
| 1
| 50
| 4
| 4
| 0.626138
| 0.747852
| 0.701534
| 0.594721
| 0.643727
| 0.56572
| 0.696008
| 0.651688
| 0.50622
| 0.569817
| 0.598636
| 0.735068
| 0.650931
| 0.609298
| 0.629426
| 205.372802
|
49
| 1
| 1
| -1
| -1
| -1
| 1
| 1
| -1
| 0.0001
| 0.1
|
linear
| 0
| 1
| 200
| 4
| 2
| 0.699453
| 0.810239
| 0.762523
| 0.706595
| 0.733494
| 0.625305
| 0.742917
| 0.741502
| 0.569659
| 0.644319
| 0.678011
| 0.793899
| 0.75469
| 0.682248
| 0.716643
| 793.276108
|
50
| 1
| 1
| -1
| -1
| 1
| -1
| 1
| -1
| 0.0001
| 0.1
|
linear
| 0
| 4
| 50
| 4
| 2
| 0.520534
| 0.699412
| 0.491451
| 0.670237
| 0.567086
| 0.493821
| 0.653813
| 0.491045
| 0.546885
| 0.517463
| 0.353184
| 0.600168
| 0.36307
| 0.792337
| 0.497961
| 203.149781
|
51
| 1
| 1
| -1
| -1
| 1
| 1
| 1
| 1
| 0.0001
| 0.1
|
linear
| 0
| 4
| 200
| 4
| 4
| 0.687123
| 0.79311
| 0.781077
| 0.65844
| 0.714535
| 0.627056
| 0.742541
| 0.754188
| 0.562461
| 0.644365
| 0.663693
| 0.774
| 0.781306
| 0.622171
| 0.692717
| 738.1348
|
52
| 1
| 1
| -1
| 1
| -1
| -1
| -1
| 1
| 0.0001
| 0.1
|
linear
| 0.15
| 1
| 50
| 2
| 4
| 0.681783
| 0.786659
| 0.786597
| 0.641416
| 0.706626
| 0.617535
| 0.73216
| 0.761487
| 0.535061
| 0.628502
| 0.656702
| 0.765935
| 0.78929
| 0.600102
| 0.681816
| 228.511873
|
53
| 1
| 1
| -1
| 1
| -1
| 1
| -1
| -1
| 0.0001
| 0.1
|
linear
| 0.15
| 1
| 200
| 2
| 2
| 0.707731
| 0.812047
| 0.787306
| 0.697875
| 0.739898
| 0.64718
| 0.761476
| 0.759591
| 0.603588
| 0.672663
| 0.683034
| 0.794675
| 0.772411
| 0.673921
| 0.719812
| 860.044953
|
54
| 1
| 1
| -1
| 1
| 1
| -1
| -1
| -1
| 0.0001
| 0.1
|
linear
| 0.15
| 4
| 50
| 2
| 2
| 0.572013
| 0.725259
| 0.572427
| 0.636602
| 0.602811
| 0.4826
| 0.632859
| 0.489856
| 0.474141
| 0.48187
| 0.475478
| 0.684579
| 0.453941
| 0.756986
| 0.567544
| 222.006755
|
55
| 1
| 1
| -1
| 1
| 1
| 1
| -1
| 1
| 0.0001
| 0.1
|
linear
| 0.15
| 4
| 200
| 2
| 4
| 0.697624
| 0.806049
| 0.771103
| 0.692549
| 0.729718
| 0.653233
| 0.775072
| 0.725935
| 0.654431
| 0.688331
| 0.676283
| 0.792621
| 0.752784
| 0.680409
| 0.714769
| 797.1564
|
56
| 1
| 1
| 1
| -1
| -1
| -1
| -1
| 1
| 0.0001
| 0.1
|
cosine
| 0
| 1
| 50
| 2
| 4
| 0.686793
| 0.793091
| 0.779705
| 0.659052
| 0.714319
| 0.627229
| 0.742714
| 0.754167
| 0.562873
| 0.644628
| 0.65595
| 0.766295
| 0.782862
| 0.603934
| 0.681855
| 228.192894
|
57
| 1
| 1
| 1
| -1
| -1
| 1
| -1
| -1
| 0.0001
| 0.1
|
cosine
| 0
| 1
| 200
| 2
| 2
| 0.702697
| 0.805952
| 0.792005
| 0.681995
| 0.732894
| 0.635033
| 0.751129
| 0.750165
| 0.584413
| 0.656996
| 0.683829
| 0.79596
| 0.770253
| 0.678059
| 0.721222
| 855.988291
|
58
| 1
| 1
| 1
| -1
| 1
| -1
| -1
| -1
| 0.0001
| 0.1
|
cosine
| 0
| 4
| 50
| 2
| 2
| 0.583719
| 0.717013
| 0.63112
| 0.562743
| 0.594973
| 0.533519
| 0.670055
| 0.594799
| 0.47738
| 0.52966
| 0.55753
| 0.70848
| 0.57861
| 0.604444
| 0.591245
| 217.185323
|
59
| 1
| 1
| 1
| -1
| 1
| 1
| -1
| 1
| 0.0001
| 0.1
|
cosine
| 0
| 4
| 200
| 2
| 4
| 0.697112
| 0.802107
| 0.784962
| 0.676767
| 0.726861
| 0.649615
| 0.769612
| 0.732628
| 0.637415
| 0.681713
| 0.673618
| 0.788894
| 0.756947
| 0.669323
| 0.710444
| 782.007131
|
60
| 1
| 1
| 1
| 1
| -1
| -1
| 1
| 1
| 0.0001
| 0.1
|
cosine
| 0.15
| 1
| 50
| 4
| 4
| 0.62094
| 0.735476
| 0.73507
| 0.548283
| 0.628083
| 0.571253
| 0.701201
| 0.656919
| 0.516194
| 0.578116
| 0.592216
| 0.717002
| 0.697623
| 0.532261
| 0.603825
| 215.114218
|
61
| 1
| 1
| 1
| 1
| -1
| 1
| 1
| -1
| 0.0001
| 0.1
|
cosine
| 0.15
| 1
| 200
| 4
| 2
| 0.703949
| 0.809861
| 0.781056
| 0.69608
| 0.736124
| 0.63089
| 0.748309
| 0.742778
| 0.581637
| 0.652405
| 0.678893
| 0.795007
| 0.753863
| 0.685313
| 0.717956
| 821.499286
|
62
| 1
| 1
| 1
| 1
| 1
| -1
| 1
| -1
| 0.0001
| 0.1
|
cosine
| 0.15
| 4
| 50
| 4
| 2
| 0.53998
| 0.704018
| 0.524411
| 0.632519
| 0.573414
| 0.510467
| 0.66071
| 0.526456
| 0.518147
| 0.522269
| 0.45626
| 0.653467
| 0.436189
| 0.682861
| 0.532338
| 220.036159
|
63
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 1
| 0.0001
| 0.1
|
cosine
| 0.15
| 4
| 200
| 4
| 4
| 0.681015
| 0.790925
| 0.764087
| 0.661814
| 0.709283
| 0.629474
| 0.754668
| 0.705717
| 0.618137
| 0.65903
| 0.657345
| 0.773945
| 0.750405
| 0.638314
| 0.689836
| 628.100692
|
🌲 Tree Segmentation Performance Optimization Dataset
Fractional–Factorial Hyperparameter Search Results (64‑run, Resolution V DOE)
This dataset contains the experimental results from a 64‑run fractional factorial design (2⁸⁻² Resolution V) used to optimize hyperparameters for a SegFormer semantic segmentation model trained to detect trees.
📂 Dataset Structure
results/fractional_factorial_partial.csv
A cumulative CSV file updated after each experiment.
It contains all completed runs so far, enabling:
- real‑time monitoring
- ability to resume experiments
- incremental analysis
results/fractional_factorial_results.csv
The final CSV produced once all 64 runs finish.
It includes for each run:
- experiment ID
- fractional‑factorial coded levels (A–H)
- the decoded hyperparameters
- best‑epoch metrics for train, validation, and test splits
- training time
Both CSV files share the same schema but differ in completeness.
🧪 Experimental Design Overview
A 2⁸⁻² fractional factorial experiment was used with:
- 8 factors (A–H)
- 64 total runs
- Resolution V, allowing estimation of main effects and most two‑factor interactions
- Generators:
G = A × B × C × DH = A × B × E × F
Factors A–F are independent; G and H are derived.
This design allows efficient exploration of a large hyperparameter space using only 64 experiments instead of 256.
🎛 Hyperparameter Coding
Each coded factor { -1, +1 } is mapped to an actual hyperparameter:
| Factor | −1 Level | +1 Level |
|---|---|---|
| A | learning rate = 1e-5 |
1e-4 |
| B | weight decay = 0.0 |
0.1 |
| C | scheduler = linear |
cosine |
| D | warmup ratio = 0.0 |
0.15 |
| E | grad. accumulation = 1 |
4 |
| F | epochs = 50 |
200 |
| G | train batch size = 2 |
4 |
| H | eval batch size = 2 |
4 |
The dataset includes both the coded values and the decoded hyperparameters.
🤖 Model & Training Setup
All experiments fine‑tune:
nvidia/segformer-b0-finetuned-ade-512-512
Key details:
- Metrics include:
- IoU
- accuracy
- tree‑class precision, recall, Dice
- Metrics are computed for train, val, and test splits
- Downloads last month
- 164