repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
radjkarl/imgProcessor
imgProcessor/camera/NoiseLevelFunction.py
_validI
def _validI(x, y, weights): ''' return indices that have enough data points and are not erroneous ''' # density filter: i = np.logical_and(np.isfinite(y), weights > np.median(weights)) # filter outliers: try: grad = np.abs(np.gradient(y[i])) max_gradient = 4 * np.median(grad) i[i][grad > max_gradient] = False except (IndexError, ValueError): pass return i
python
def _validI(x, y, weights): ''' return indices that have enough data points and are not erroneous ''' # density filter: i = np.logical_and(np.isfinite(y), weights > np.median(weights)) # filter outliers: try: grad = np.abs(np.gradient(y[i])) max_gradient = 4 * np.median(grad) i[i][grad > max_gradient] = False except (IndexError, ValueError): pass return i
[ "def", "_validI", "(", "x", ",", "y", ",", "weights", ")", ":", "# density filter:\r", "i", "=", "np", ".", "logical_and", "(", "np", ".", "isfinite", "(", "y", ")", ",", "weights", ">", "np", ".", "median", "(", "weights", ")", ")", "# filter outliers:\r", "try", ":", "grad", "=", "np", ".", "abs", "(", "np", ".", "gradient", "(", "y", "[", "i", "]", ")", ")", "max_gradient", "=", "4", "*", "np", ".", "median", "(", "grad", ")", "i", "[", "i", "]", "[", "grad", ">", "max_gradient", "]", "=", "False", "except", "(", "IndexError", ",", "ValueError", ")", ":", "pass", "return", "i" ]
return indices that have enough data points and are not erroneous
[ "return", "indices", "that", "have", "enough", "data", "points", "and", "are", "not", "erroneous" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/NoiseLevelFunction.py#L110-L123
radjkarl/imgProcessor
imgProcessor/camera/NoiseLevelFunction.py
smooth
def smooth(x, y, weights): ''' in case the NLF cannot be described by a square root function commit bounded polynomial interpolation ''' # Spline hard to smooth properly, therefore solfed with # bounded polynomal interpolation # ext=3: no extrapolation, but boundary value # return UnivariateSpline(x, y, w=weights, # s=len(y)*weights.max()*100, ext=3) # return np.poly1d(np.polyfit(x,y,w=weights,deg=2)) p = np.polyfit(x, y, w=weights, deg=2) if np.any(np.isnan(p)): # couldn't even do polynomial fit # as last option: assume constant noise my = np.average(y, weights=weights) return lambda x: my return lambda xint: np.poly1d(p)(np.clip(xint, x[0], x[-1]))
python
def smooth(x, y, weights): ''' in case the NLF cannot be described by a square root function commit bounded polynomial interpolation ''' # Spline hard to smooth properly, therefore solfed with # bounded polynomal interpolation # ext=3: no extrapolation, but boundary value # return UnivariateSpline(x, y, w=weights, # s=len(y)*weights.max()*100, ext=3) # return np.poly1d(np.polyfit(x,y,w=weights,deg=2)) p = np.polyfit(x, y, w=weights, deg=2) if np.any(np.isnan(p)): # couldn't even do polynomial fit # as last option: assume constant noise my = np.average(y, weights=weights) return lambda x: my return lambda xint: np.poly1d(p)(np.clip(xint, x[0], x[-1]))
[ "def", "smooth", "(", "x", ",", "y", ",", "weights", ")", ":", "# Spline hard to smooth properly, therefore solfed with\r", "# bounded polynomal interpolation\r", "# ext=3: no extrapolation, but boundary value\r", "# return UnivariateSpline(x, y, w=weights,\r", "# s=len(y)*weights.max()*100, ext=3)\r", "# return np.poly1d(np.polyfit(x,y,w=weights,deg=2))\r", "p", "=", "np", ".", "polyfit", "(", "x", ",", "y", ",", "w", "=", "weights", ",", "deg", "=", "2", ")", "if", "np", ".", "any", "(", "np", ".", "isnan", "(", "p", ")", ")", ":", "# couldn't even do polynomial fit\r", "# as last option: assume constant noise\r", "my", "=", "np", ".", "average", "(", "y", ",", "weights", "=", "weights", ")", "return", "lambda", "x", ":", "my", "return", "lambda", "xint", ":", "np", ".", "poly1d", "(", "p", ")", "(", "np", ".", "clip", "(", "xint", ",", "x", "[", "0", "]", ",", "x", "[", "-", "1", "]", ")", ")" ]
in case the NLF cannot be described by a square root function commit bounded polynomial interpolation
[ "in", "case", "the", "NLF", "cannot", "be", "described", "by", "a", "square", "root", "function", "commit", "bounded", "polynomial", "interpolation" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/NoiseLevelFunction.py#L131-L150
radjkarl/imgProcessor
imgProcessor/camera/NoiseLevelFunction.py
oneImageNLF
def oneImageNLF(img, img2=None, signal=None): ''' Estimate the NLF from one or two images of the same kind ''' x, y, weights, signal = calcNLF(img, img2, signal) _, fn, _ = _evaluate(x, y, weights) return fn, signal
python
def oneImageNLF(img, img2=None, signal=None): ''' Estimate the NLF from one or two images of the same kind ''' x, y, weights, signal = calcNLF(img, img2, signal) _, fn, _ = _evaluate(x, y, weights) return fn, signal
[ "def", "oneImageNLF", "(", "img", ",", "img2", "=", "None", ",", "signal", "=", "None", ")", ":", "x", ",", "y", ",", "weights", ",", "signal", "=", "calcNLF", "(", "img", ",", "img2", ",", "signal", ")", "_", ",", "fn", ",", "_", "=", "_evaluate", "(", "x", ",", "y", ",", "weights", ")", "return", "fn", ",", "signal" ]
Estimate the NLF from one or two images of the same kind
[ "Estimate", "the", "NLF", "from", "one", "or", "two", "images", "of", "the", "same", "kind" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/NoiseLevelFunction.py#L153-L159
radjkarl/imgProcessor
imgProcessor/camera/NoiseLevelFunction.py
_getMinMax
def _getMinMax(img): ''' Get the a range of image intensities that most pixels are in with ''' av = np.mean(img) std = np.std(img) # define range for segmentation: mn = av - 3 * std mx = av + 3 * std return max(img.min(), mn, 0), min(img.max(), mx)
python
def _getMinMax(img): ''' Get the a range of image intensities that most pixels are in with ''' av = np.mean(img) std = np.std(img) # define range for segmentation: mn = av - 3 * std mx = av + 3 * std return max(img.min(), mn, 0), min(img.max(), mx)
[ "def", "_getMinMax", "(", "img", ")", ":", "av", "=", "np", ".", "mean", "(", "img", ")", "std", "=", "np", ".", "std", "(", "img", ")", "# define range for segmentation:\r", "mn", "=", "av", "-", "3", "*", "std", "mx", "=", "av", "+", "3", "*", "std", "return", "max", "(", "img", ".", "min", "(", ")", ",", "mn", ",", "0", ")", ",", "min", "(", "img", ".", "max", "(", ")", ",", "mx", ")" ]
Get the a range of image intensities that most pixels are in with
[ "Get", "the", "a", "range", "of", "image", "intensities", "that", "most", "pixels", "are", "in", "with" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/NoiseLevelFunction.py#L162-L173
radjkarl/imgProcessor
imgProcessor/camera/NoiseLevelFunction.py
calcNLF
def calcNLF(img, img2=None, signal=None, mn_mx_nbins=None, x=None, averageFn='AAD', signalFromMultipleImages=False): ''' Calculate the noise level function (NLF) as f(intensity) using one or two image. The approach for this work is published in JPV########## img2 - 2nd image taken under same conditions used to estimate noise via image difference signalFromMultipleImages - whether the signal is an average of multiple images and not just got from one median filtered image ''' # CONSTANTS: # factor Root mead square to average-absolute-difference: F_RMS2AAD = (2 / np.pi)**-0.5 F_NOISE_WITH_MEDIAN = 1 + (1 / 3**2) N_BINS = 100 MEDIAN_KERNEL_SIZE = 3 def _averageAbsoluteDeviation(d): return np.mean(np.abs(d)) * F_RMS2AAD def _rootMeanSquare(d): return (d**2).mean()**0.5 if averageFn == 'AAD': averageFn = _averageAbsoluteDeviation else: averageFn = _rootMeanSquare img = np.asfarray(img) if img2 is None: if signal is None: signal = median_filter(img, MEDIAN_KERNEL_SIZE) if signalFromMultipleImages: diff = img - signal else: # difference between the filtered and original image: diff = (img - signal) * F_NOISE_WITH_MEDIAN else: img2 = np.asfarray(img2) diff = (img - img2) # 2**0.5 because noise is subtracted by noise # and variance of sum = sum of variance: # var(immg1-img2)~2*var(img) # std(2*var) = 2**0.5*var**0.5 diff /= 2**0.5 if signal is None: signal = median_filter(0.5 * (img + img2), MEDIAN_KERNEL_SIZE) if mn_mx_nbins is not None: mn, mx, nbins = mn_mx_nbins min_len = 0 else: mn, mx = _getMinMax(signal) s = img.shape min_len = int(s[0] * s[1] * 1e-3) if min_len < 1: min_len = 5 # number of bins/different intensity ranges to analyse: nbins = N_BINS if mx - mn < nbins: nbins = int(mx - mn) # bin width: step = (mx - mn) / nbins # empty arrays: y = np.empty(shape=nbins) set_x = False if x is None: set_x = True x = np.empty(shape=nbins) # give bins with more samples more weight: weights = np.zeros(shape=nbins) # cur step: m = mn for n in range(nbins): # get indices of all pixel with in a bin: ind = np.logical_and(signal >= m, signal <= m + step) m += step d = diff[ind] ld = len(d) if ld >= min_len: weights[n] = ld # average absolute deviation (AAD), # scaled to RMS: y[n] = averageFn(d) if set_x: x[n] = m - 0.5 * step return x, y, weights, signal
python
def calcNLF(img, img2=None, signal=None, mn_mx_nbins=None, x=None, averageFn='AAD', signalFromMultipleImages=False): ''' Calculate the noise level function (NLF) as f(intensity) using one or two image. The approach for this work is published in JPV########## img2 - 2nd image taken under same conditions used to estimate noise via image difference signalFromMultipleImages - whether the signal is an average of multiple images and not just got from one median filtered image ''' # CONSTANTS: # factor Root mead square to average-absolute-difference: F_RMS2AAD = (2 / np.pi)**-0.5 F_NOISE_WITH_MEDIAN = 1 + (1 / 3**2) N_BINS = 100 MEDIAN_KERNEL_SIZE = 3 def _averageAbsoluteDeviation(d): return np.mean(np.abs(d)) * F_RMS2AAD def _rootMeanSquare(d): return (d**2).mean()**0.5 if averageFn == 'AAD': averageFn = _averageAbsoluteDeviation else: averageFn = _rootMeanSquare img = np.asfarray(img) if img2 is None: if signal is None: signal = median_filter(img, MEDIAN_KERNEL_SIZE) if signalFromMultipleImages: diff = img - signal else: # difference between the filtered and original image: diff = (img - signal) * F_NOISE_WITH_MEDIAN else: img2 = np.asfarray(img2) diff = (img - img2) # 2**0.5 because noise is subtracted by noise # and variance of sum = sum of variance: # var(immg1-img2)~2*var(img) # std(2*var) = 2**0.5*var**0.5 diff /= 2**0.5 if signal is None: signal = median_filter(0.5 * (img + img2), MEDIAN_KERNEL_SIZE) if mn_mx_nbins is not None: mn, mx, nbins = mn_mx_nbins min_len = 0 else: mn, mx = _getMinMax(signal) s = img.shape min_len = int(s[0] * s[1] * 1e-3) if min_len < 1: min_len = 5 # number of bins/different intensity ranges to analyse: nbins = N_BINS if mx - mn < nbins: nbins = int(mx - mn) # bin width: step = (mx - mn) / nbins # empty arrays: y = np.empty(shape=nbins) set_x = False if x is None: set_x = True x = np.empty(shape=nbins) # give bins with more samples more weight: weights = np.zeros(shape=nbins) # cur step: m = mn for n in range(nbins): # get indices of all pixel with in a bin: ind = np.logical_and(signal >= m, signal <= m + step) m += step d = diff[ind] ld = len(d) if ld >= min_len: weights[n] = ld # average absolute deviation (AAD), # scaled to RMS: y[n] = averageFn(d) if set_x: x[n] = m - 0.5 * step return x, y, weights, signal
[ "def", "calcNLF", "(", "img", ",", "img2", "=", "None", ",", "signal", "=", "None", ",", "mn_mx_nbins", "=", "None", ",", "x", "=", "None", ",", "averageFn", "=", "'AAD'", ",", "signalFromMultipleImages", "=", "False", ")", ":", "# CONSTANTS:\r", "# factor Root mead square to average-absolute-difference:\r", "F_RMS2AAD", "=", "(", "2", "/", "np", ".", "pi", ")", "**", "-", "0.5", "F_NOISE_WITH_MEDIAN", "=", "1", "+", "(", "1", "/", "3", "**", "2", ")", "N_BINS", "=", "100", "MEDIAN_KERNEL_SIZE", "=", "3", "def", "_averageAbsoluteDeviation", "(", "d", ")", ":", "return", "np", ".", "mean", "(", "np", ".", "abs", "(", "d", ")", ")", "*", "F_RMS2AAD", "def", "_rootMeanSquare", "(", "d", ")", ":", "return", "(", "d", "**", "2", ")", ".", "mean", "(", ")", "**", "0.5", "if", "averageFn", "==", "'AAD'", ":", "averageFn", "=", "_averageAbsoluteDeviation", "else", ":", "averageFn", "=", "_rootMeanSquare", "img", "=", "np", ".", "asfarray", "(", "img", ")", "if", "img2", "is", "None", ":", "if", "signal", "is", "None", ":", "signal", "=", "median_filter", "(", "img", ",", "MEDIAN_KERNEL_SIZE", ")", "if", "signalFromMultipleImages", ":", "diff", "=", "img", "-", "signal", "else", ":", "# difference between the filtered and original image:\r", "diff", "=", "(", "img", "-", "signal", ")", "*", "F_NOISE_WITH_MEDIAN", "else", ":", "img2", "=", "np", ".", "asfarray", "(", "img2", ")", "diff", "=", "(", "img", "-", "img2", ")", "# 2**0.5 because noise is subtracted by noise\r", "# and variance of sum = sum of variance:\r", "# var(immg1-img2)~2*var(img)\r", "# std(2*var) = 2**0.5*var**0.5\r", "diff", "/=", "2", "**", "0.5", "if", "signal", "is", "None", ":", "signal", "=", "median_filter", "(", "0.5", "*", "(", "img", "+", "img2", ")", ",", "MEDIAN_KERNEL_SIZE", ")", "if", "mn_mx_nbins", "is", "not", "None", ":", "mn", ",", "mx", ",", "nbins", "=", "mn_mx_nbins", "min_len", "=", "0", "else", ":", "mn", ",", "mx", "=", "_getMinMax", "(", "signal", ")", "s", "=", "img", ".", "shape", "min_len", "=", "int", "(", "s", "[", "0", "]", "*", "s", "[", "1", "]", "*", "1e-3", ")", "if", "min_len", "<", "1", ":", "min_len", "=", "5", "# number of bins/different intensity ranges to analyse:\r", "nbins", "=", "N_BINS", "if", "mx", "-", "mn", "<", "nbins", ":", "nbins", "=", "int", "(", "mx", "-", "mn", ")", "# bin width:\r", "step", "=", "(", "mx", "-", "mn", ")", "/", "nbins", "# empty arrays:\r", "y", "=", "np", ".", "empty", "(", "shape", "=", "nbins", ")", "set_x", "=", "False", "if", "x", "is", "None", ":", "set_x", "=", "True", "x", "=", "np", ".", "empty", "(", "shape", "=", "nbins", ")", "# give bins with more samples more weight:\r", "weights", "=", "np", ".", "zeros", "(", "shape", "=", "nbins", ")", "# cur step:\r", "m", "=", "mn", "for", "n", "in", "range", "(", "nbins", ")", ":", "# get indices of all pixel with in a bin:\r", "ind", "=", "np", ".", "logical_and", "(", "signal", ">=", "m", ",", "signal", "<=", "m", "+", "step", ")", "m", "+=", "step", "d", "=", "diff", "[", "ind", "]", "ld", "=", "len", "(", "d", ")", "if", "ld", ">=", "min_len", ":", "weights", "[", "n", "]", "=", "ld", "# average absolute deviation (AAD),\r", "# scaled to RMS:\r", "y", "[", "n", "]", "=", "averageFn", "(", "d", ")", "if", "set_x", ":", "x", "[", "n", "]", "=", "m", "-", "0.5", "*", "step", "return", "x", ",", "y", ",", "weights", ",", "signal" ]
Calculate the noise level function (NLF) as f(intensity) using one or two image. The approach for this work is published in JPV########## img2 - 2nd image taken under same conditions used to estimate noise via image difference signalFromMultipleImages - whether the signal is an average of multiple images and not just got from one median filtered image
[ "Calculate", "the", "noise", "level", "function", "(", "NLF", ")", "as", "f", "(", "intensity", ")", "using", "one", "or", "two", "image", ".", "The", "approach", "for", "this", "work", "is", "published", "in", "JPV##########", "img2", "-", "2nd", "image", "taken", "under", "same", "conditions", "used", "to", "estimate", "noise", "via", "image", "difference", "signalFromMultipleImages", "-", "whether", "the", "signal", "is", "an", "average", "of", "multiple", "images", "and", "not", "just", "got", "from", "one", "median", "filtered", "image" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/NoiseLevelFunction.py#L176-L271
radjkarl/imgProcessor
imgProcessor/interpolate/polyfit2d.py
polyfit2d
def polyfit2d(x, y, z, order=3 #bounds=None ): ''' fit unstructured data ''' ncols = (order + 1)**2 G = np.zeros((x.size, ncols)) ij = itertools.product(list(range(order+1)), list(range(order+1))) for k, (i,j) in enumerate(ij): G[:,k] = x**i * y**j m = np.linalg.lstsq(G, z)[0] return m
python
def polyfit2d(x, y, z, order=3 #bounds=None ): ''' fit unstructured data ''' ncols = (order + 1)**2 G = np.zeros((x.size, ncols)) ij = itertools.product(list(range(order+1)), list(range(order+1))) for k, (i,j) in enumerate(ij): G[:,k] = x**i * y**j m = np.linalg.lstsq(G, z)[0] return m
[ "def", "polyfit2d", "(", "x", ",", "y", ",", "z", ",", "order", "=", "3", "#bounds=None\r", ")", ":", "ncols", "=", "(", "order", "+", "1", ")", "**", "2", "G", "=", "np", ".", "zeros", "(", "(", "x", ".", "size", ",", "ncols", ")", ")", "ij", "=", "itertools", ".", "product", "(", "list", "(", "range", "(", "order", "+", "1", ")", ")", ",", "list", "(", "range", "(", "order", "+", "1", ")", ")", ")", "for", "k", ",", "(", "i", ",", "j", ")", "in", "enumerate", "(", "ij", ")", ":", "G", "[", ":", ",", "k", "]", "=", "x", "**", "i", "*", "y", "**", "j", "m", "=", "np", ".", "linalg", ".", "lstsq", "(", "G", ",", "z", ")", "[", "0", "]", "return", "m" ]
fit unstructured data
[ "fit", "unstructured", "data" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/interpolate/polyfit2d.py#L8-L19
radjkarl/imgProcessor
imgProcessor/interpolate/polyfit2d.py
polyfit2dGrid
def polyfit2dGrid(arr, mask=None, order=3, replace_all=False, copy=True, outgrid=None): ''' replace all masked values with polynomial fitted ones ''' s0,s1 = arr.shape if mask is None: if outgrid is None: y,x = np.mgrid[:float(s0),:float(s1)] p = polyfit2d(x.flatten(),y.flatten(),arr.flatten(),order) return polyval2d(x,y, p, dtype=arr.dtype) mask = np.zeros_like(arr, dtype=bool) elif mask.sum() == 0 and not replace_all and outgrid is None: return arr valid = ~mask y,x = np.where(valid) z = arr[valid] p = polyfit2d(x,y,z,order) if outgrid is not None: yy,xx = outgrid else: if replace_all: yy,xx = np.mgrid[:float(s0),:float(s1)] else: yy,xx = np.where(mask) new = polyval2d(xx,yy, p, dtype=arr.dtype) if outgrid is not None or replace_all: return new if copy: arr = arr.copy() arr[mask] = new return arr
python
def polyfit2dGrid(arr, mask=None, order=3, replace_all=False, copy=True, outgrid=None): ''' replace all masked values with polynomial fitted ones ''' s0,s1 = arr.shape if mask is None: if outgrid is None: y,x = np.mgrid[:float(s0),:float(s1)] p = polyfit2d(x.flatten(),y.flatten(),arr.flatten(),order) return polyval2d(x,y, p, dtype=arr.dtype) mask = np.zeros_like(arr, dtype=bool) elif mask.sum() == 0 and not replace_all and outgrid is None: return arr valid = ~mask y,x = np.where(valid) z = arr[valid] p = polyfit2d(x,y,z,order) if outgrid is not None: yy,xx = outgrid else: if replace_all: yy,xx = np.mgrid[:float(s0),:float(s1)] else: yy,xx = np.where(mask) new = polyval2d(xx,yy, p, dtype=arr.dtype) if outgrid is not None or replace_all: return new if copy: arr = arr.copy() arr[mask] = new return arr
[ "def", "polyfit2dGrid", "(", "arr", ",", "mask", "=", "None", ",", "order", "=", "3", ",", "replace_all", "=", "False", ",", "copy", "=", "True", ",", "outgrid", "=", "None", ")", ":", "s0", ",", "s1", "=", "arr", ".", "shape", "if", "mask", "is", "None", ":", "if", "outgrid", "is", "None", ":", "y", ",", "x", "=", "np", ".", "mgrid", "[", ":", "float", "(", "s0", ")", ",", ":", "float", "(", "s1", ")", "]", "p", "=", "polyfit2d", "(", "x", ".", "flatten", "(", ")", ",", "y", ".", "flatten", "(", ")", ",", "arr", ".", "flatten", "(", ")", ",", "order", ")", "return", "polyval2d", "(", "x", ",", "y", ",", "p", ",", "dtype", "=", "arr", ".", "dtype", ")", "mask", "=", "np", ".", "zeros_like", "(", "arr", ",", "dtype", "=", "bool", ")", "elif", "mask", ".", "sum", "(", ")", "==", "0", "and", "not", "replace_all", "and", "outgrid", "is", "None", ":", "return", "arr", "valid", "=", "~", "mask", "y", ",", "x", "=", "np", ".", "where", "(", "valid", ")", "z", "=", "arr", "[", "valid", "]", "p", "=", "polyfit2d", "(", "x", ",", "y", ",", "z", ",", "order", ")", "if", "outgrid", "is", "not", "None", ":", "yy", ",", "xx", "=", "outgrid", "else", ":", "if", "replace_all", ":", "yy", ",", "xx", "=", "np", ".", "mgrid", "[", ":", "float", "(", "s0", ")", ",", ":", "float", "(", "s1", ")", "]", "else", ":", "yy", ",", "xx", "=", "np", ".", "where", "(", "mask", ")", "new", "=", "polyval2d", "(", "xx", ",", "yy", ",", "p", ",", "dtype", "=", "arr", ".", "dtype", ")", "if", "outgrid", "is", "not", "None", "or", "replace_all", ":", "return", "new", "if", "copy", ":", "arr", "=", "arr", ".", "copy", "(", ")", "arr", "[", "mask", "]", "=", "new", "return", "arr" ]
replace all masked values with polynomial fitted ones
[ "replace", "all", "masked", "values", "with", "polynomial", "fitted", "ones" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/interpolate/polyfit2d.py#L31-L65
radjkarl/imgProcessor
imgProcessor/features/minimumLineInArray.py
minimumLineInArray
def minimumLineInArray(arr, relative=False, f=0, refinePosition=True, max_pos=100, return_pos_arr=False, # order=2 ): ''' find closest minimum position next to middle line relative: return position relative to middle line f: relative decrease (0...1) - setting this value close to one will discriminate positions further away from the center ##order: 2 for cubic refinement ''' s0, s1 = arr.shape[:2] if max_pos >= s1: x = np.arange(s1) else: # take fewer positions within 0->(s1-1) x = np.rint(np.linspace(0, s1 - 1, min(max_pos, s1))).astype(int) res = np.empty((s0, s0), dtype=float) _lineSumXY(x, res, arr, f) if return_pos_arr: return res # best integer index i, j = np.unravel_index(np.nanargmin(res), res.shape) if refinePosition: try: sub = res[i - 1:i + 2, j - 1:j + 2] ii, jj = center_of_mass(sub) if not np.isnan(ii): i += (ii - 1) if not np.isnan(jj): j += (jj - 1) except TypeError: pass if not relative: return i, j hs = (s0 - 1) / 2 return i - hs, j - hs
python
def minimumLineInArray(arr, relative=False, f=0, refinePosition=True, max_pos=100, return_pos_arr=False, # order=2 ): ''' find closest minimum position next to middle line relative: return position relative to middle line f: relative decrease (0...1) - setting this value close to one will discriminate positions further away from the center ##order: 2 for cubic refinement ''' s0, s1 = arr.shape[:2] if max_pos >= s1: x = np.arange(s1) else: # take fewer positions within 0->(s1-1) x = np.rint(np.linspace(0, s1 - 1, min(max_pos, s1))).astype(int) res = np.empty((s0, s0), dtype=float) _lineSumXY(x, res, arr, f) if return_pos_arr: return res # best integer index i, j = np.unravel_index(np.nanargmin(res), res.shape) if refinePosition: try: sub = res[i - 1:i + 2, j - 1:j + 2] ii, jj = center_of_mass(sub) if not np.isnan(ii): i += (ii - 1) if not np.isnan(jj): j += (jj - 1) except TypeError: pass if not relative: return i, j hs = (s0 - 1) / 2 return i - hs, j - hs
[ "def", "minimumLineInArray", "(", "arr", ",", "relative", "=", "False", ",", "f", "=", "0", ",", "refinePosition", "=", "True", ",", "max_pos", "=", "100", ",", "return_pos_arr", "=", "False", ",", "# order=2\r", ")", ":", "s0", ",", "s1", "=", "arr", ".", "shape", "[", ":", "2", "]", "if", "max_pos", ">=", "s1", ":", "x", "=", "np", ".", "arange", "(", "s1", ")", "else", ":", "# take fewer positions within 0->(s1-1)\r", "x", "=", "np", ".", "rint", "(", "np", ".", "linspace", "(", "0", ",", "s1", "-", "1", ",", "min", "(", "max_pos", ",", "s1", ")", ")", ")", ".", "astype", "(", "int", ")", "res", "=", "np", ".", "empty", "(", "(", "s0", ",", "s0", ")", ",", "dtype", "=", "float", ")", "_lineSumXY", "(", "x", ",", "res", ",", "arr", ",", "f", ")", "if", "return_pos_arr", ":", "return", "res", "# best integer index\r", "i", ",", "j", "=", "np", ".", "unravel_index", "(", "np", ".", "nanargmin", "(", "res", ")", ",", "res", ".", "shape", ")", "if", "refinePosition", ":", "try", ":", "sub", "=", "res", "[", "i", "-", "1", ":", "i", "+", "2", ",", "j", "-", "1", ":", "j", "+", "2", "]", "ii", ",", "jj", "=", "center_of_mass", "(", "sub", ")", "if", "not", "np", ".", "isnan", "(", "ii", ")", ":", "i", "+=", "(", "ii", "-", "1", ")", "if", "not", "np", ".", "isnan", "(", "jj", ")", ":", "j", "+=", "(", "jj", "-", "1", ")", "except", "TypeError", ":", "pass", "if", "not", "relative", ":", "return", "i", ",", "j", "hs", "=", "(", "s0", "-", "1", ")", "/", "2", "return", "i", "-", "hs", ",", "j", "-", "hs" ]
find closest minimum position next to middle line relative: return position relative to middle line f: relative decrease (0...1) - setting this value close to one will discriminate positions further away from the center ##order: 2 for cubic refinement
[ "find", "closest", "minimum", "position", "next", "to", "middle", "line", "relative", ":", "return", "position", "relative", "to", "middle", "line", "f", ":", "relative", "decrease", "(", "0", "...", "1", ")", "-", "setting", "this", "value", "close", "to", "one", "will", "discriminate", "positions", "further", "away", "from", "the", "center", "##order", ":", "2", "for", "cubic", "refinement" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/minimumLineInArray.py#L27-L72
radjkarl/imgProcessor
imgProcessor/filters/FourierFilter.py
FourierFilter.highPassFilter
def highPassFilter(self, threshold): ''' remove all low frequencies by setting a square in the middle of the Fourier transformation of the size (2*threshold)^2 to zero threshold = 0...1 ''' if not threshold: return rows, cols = self.img.shape tx = int(cols * threshold) ty = int(rows * threshold) # middle: crow, ccol = rows // 2, cols // 2 # square in the middle to zero self.fshift[crow - tx:crow + tx, ccol - ty:ccol + ty] = 0
python
def highPassFilter(self, threshold): ''' remove all low frequencies by setting a square in the middle of the Fourier transformation of the size (2*threshold)^2 to zero threshold = 0...1 ''' if not threshold: return rows, cols = self.img.shape tx = int(cols * threshold) ty = int(rows * threshold) # middle: crow, ccol = rows // 2, cols // 2 # square in the middle to zero self.fshift[crow - tx:crow + tx, ccol - ty:ccol + ty] = 0
[ "def", "highPassFilter", "(", "self", ",", "threshold", ")", ":", "if", "not", "threshold", ":", "return", "rows", ",", "cols", "=", "self", ".", "img", ".", "shape", "tx", "=", "int", "(", "cols", "*", "threshold", ")", "ty", "=", "int", "(", "rows", "*", "threshold", ")", "# middle:\r", "crow", ",", "ccol", "=", "rows", "//", "2", ",", "cols", "//", "2", "# square in the middle to zero\r", "self", ".", "fshift", "[", "crow", "-", "tx", ":", "crow", "+", "tx", ",", "ccol", "-", "ty", ":", "ccol", "+", "ty", "]", "=", "0" ]
remove all low frequencies by setting a square in the middle of the Fourier transformation of the size (2*threshold)^2 to zero threshold = 0...1
[ "remove", "all", "low", "frequencies", "by", "setting", "a", "square", "in", "the", "middle", "of", "the", "Fourier", "transformation", "of", "the", "size", "(", "2", "*", "threshold", ")", "^2", "to", "zero", "threshold", "=", "0", "...", "1" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/filters/FourierFilter.py#L27-L41
radjkarl/imgProcessor
imgProcessor/filters/FourierFilter.py
FourierFilter.lowPassFilter
def lowPassFilter(self, threshold): ''' remove all high frequencies by setting boundary around a quarry in the middle of the size (2*threshold)^2 to zero threshold = 0...1 ''' if not threshold: return rows, cols = self.img.shape tx = int(cols * threshold * 0.25) ty = int(rows * threshold * 0.25) # upper side self.fshift[rows - tx:rows, :] = 0 # lower side self.fshift[0:tx, :] = 0 # left side self.fshift[:, 0:ty] = 0 # right side self.fshift[:, cols - ty:cols] = 0
python
def lowPassFilter(self, threshold): ''' remove all high frequencies by setting boundary around a quarry in the middle of the size (2*threshold)^2 to zero threshold = 0...1 ''' if not threshold: return rows, cols = self.img.shape tx = int(cols * threshold * 0.25) ty = int(rows * threshold * 0.25) # upper side self.fshift[rows - tx:rows, :] = 0 # lower side self.fshift[0:tx, :] = 0 # left side self.fshift[:, 0:ty] = 0 # right side self.fshift[:, cols - ty:cols] = 0
[ "def", "lowPassFilter", "(", "self", ",", "threshold", ")", ":", "if", "not", "threshold", ":", "return", "rows", ",", "cols", "=", "self", ".", "img", ".", "shape", "tx", "=", "int", "(", "cols", "*", "threshold", "*", "0.25", ")", "ty", "=", "int", "(", "rows", "*", "threshold", "*", "0.25", ")", "# upper side\r", "self", ".", "fshift", "[", "rows", "-", "tx", ":", "rows", ",", ":", "]", "=", "0", "# lower side\r", "self", ".", "fshift", "[", "0", ":", "tx", ",", ":", "]", "=", "0", "# left side\r", "self", ".", "fshift", "[", ":", ",", "0", ":", "ty", "]", "=", "0", "# right side\r", "self", ".", "fshift", "[", ":", ",", "cols", "-", "ty", ":", "cols", "]", "=", "0" ]
remove all high frequencies by setting boundary around a quarry in the middle of the size (2*threshold)^2 to zero threshold = 0...1
[ "remove", "all", "high", "frequencies", "by", "setting", "boundary", "around", "a", "quarry", "in", "the", "middle", "of", "the", "size", "(", "2", "*", "threshold", ")", "^2", "to", "zero", "threshold", "=", "0", "...", "1" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/filters/FourierFilter.py#L43-L61
radjkarl/imgProcessor
imgProcessor/filters/FourierFilter.py
FourierFilter.reconstructImage
def reconstructImage(self): ''' do inverse Fourier transform and return result ''' f_ishift = np.fft.ifftshift(self.fshift) return np.real(np.fft.ifft2(f_ishift))
python
def reconstructImage(self): ''' do inverse Fourier transform and return result ''' f_ishift = np.fft.ifftshift(self.fshift) return np.real(np.fft.ifft2(f_ishift))
[ "def", "reconstructImage", "(", "self", ")", ":", "f_ishift", "=", "np", ".", "fft", ".", "ifftshift", "(", "self", ".", "fshift", ")", "return", "np", ".", "real", "(", "np", ".", "fft", ".", "ifft2", "(", "f_ishift", ")", ")" ]
do inverse Fourier transform and return result
[ "do", "inverse", "Fourier", "transform", "and", "return", "result" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/filters/FourierFilter.py#L108-L113
radjkarl/imgProcessor
imgProcessor/interpolate/interpolate2dUnstructuredIDW.py
interpolate2dUnstructuredIDW
def interpolate2dUnstructuredIDW(x, y, v, grid, power=2): ''' x,y,v --> 1d numpy.array grid --> 2d numpy.array fast if number of given values is small relative to grid resolution ''' n = len(v) gx = grid.shape[0] gy = grid.shape[1] for i in range(gx): for j in range(gy): overPx = False # if pixel position == point position sumWi = 0.0 value = 0.0 for k in range(n): xx = x[k] yy = y[k] vv = v[k] if xx == i and yy == j: grid[i, j] = vv overPx = True break # weight from inverse distance: wi = 1 / ((xx - i)**2 + (yy - j)**2)**(0.5 * power) sumWi += wi value += wi * vv if not overPx: grid[i, j] = value / sumWi return grid
python
def interpolate2dUnstructuredIDW(x, y, v, grid, power=2): ''' x,y,v --> 1d numpy.array grid --> 2d numpy.array fast if number of given values is small relative to grid resolution ''' n = len(v) gx = grid.shape[0] gy = grid.shape[1] for i in range(gx): for j in range(gy): overPx = False # if pixel position == point position sumWi = 0.0 value = 0.0 for k in range(n): xx = x[k] yy = y[k] vv = v[k] if xx == i and yy == j: grid[i, j] = vv overPx = True break # weight from inverse distance: wi = 1 / ((xx - i)**2 + (yy - j)**2)**(0.5 * power) sumWi += wi value += wi * vv if not overPx: grid[i, j] = value / sumWi return grid
[ "def", "interpolate2dUnstructuredIDW", "(", "x", ",", "y", ",", "v", ",", "grid", ",", "power", "=", "2", ")", ":", "n", "=", "len", "(", "v", ")", "gx", "=", "grid", ".", "shape", "[", "0", "]", "gy", "=", "grid", ".", "shape", "[", "1", "]", "for", "i", "in", "range", "(", "gx", ")", ":", "for", "j", "in", "range", "(", "gy", ")", ":", "overPx", "=", "False", "# if pixel position == point position\r", "sumWi", "=", "0.0", "value", "=", "0.0", "for", "k", "in", "range", "(", "n", ")", ":", "xx", "=", "x", "[", "k", "]", "yy", "=", "y", "[", "k", "]", "vv", "=", "v", "[", "k", "]", "if", "xx", "==", "i", "and", "yy", "==", "j", ":", "grid", "[", "i", ",", "j", "]", "=", "vv", "overPx", "=", "True", "break", "# weight from inverse distance:\r", "wi", "=", "1", "/", "(", "(", "xx", "-", "i", ")", "**", "2", "+", "(", "yy", "-", "j", ")", "**", "2", ")", "**", "(", "0.5", "*", "power", ")", "sumWi", "+=", "wi", "value", "+=", "wi", "*", "vv", "if", "not", "overPx", ":", "grid", "[", "i", ",", "j", "]", "=", "value", "/", "sumWi", "return", "grid" ]
x,y,v --> 1d numpy.array grid --> 2d numpy.array fast if number of given values is small relative to grid resolution
[ "x", "y", "v", "--", ">", "1d", "numpy", ".", "array", "grid", "--", ">", "2d", "numpy", ".", "array", "fast", "if", "number", "of", "given", "values", "is", "small", "relative", "to", "grid", "resolution" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/interpolate/interpolate2dUnstructuredIDW.py#L8-L38
radjkarl/imgProcessor
imgProcessor/features/hog.py
hog
def hog(image, orientations=8, ksize=(5, 5)): ''' returns the Histogram of Oriented Gradients :param ksize: convolution kernel size as (y,x) - needs to be odd :param orientations: number of orientations in between rad=0 and rad=pi similar to http://scikit-image.org/docs/dev/auto_examples/plot_hog.html but faster and with less options ''' s0, s1 = image.shape[:2] # speed up the process through saving generated kernels: try: k = hog.kernels[str(ksize) + str(orientations)] except KeyError: k = _mkConvKernel(ksize, orientations) hog.kernels[str(ksize) + str(orientations)] = k out = np.empty(shape=(s0, s1, orientations)) image[np.isnan(image)] = 0 for i in range(orientations): out[:, :, i] = convolve(image, k[i]) return out
python
def hog(image, orientations=8, ksize=(5, 5)): ''' returns the Histogram of Oriented Gradients :param ksize: convolution kernel size as (y,x) - needs to be odd :param orientations: number of orientations in between rad=0 and rad=pi similar to http://scikit-image.org/docs/dev/auto_examples/plot_hog.html but faster and with less options ''' s0, s1 = image.shape[:2] # speed up the process through saving generated kernels: try: k = hog.kernels[str(ksize) + str(orientations)] except KeyError: k = _mkConvKernel(ksize, orientations) hog.kernels[str(ksize) + str(orientations)] = k out = np.empty(shape=(s0, s1, orientations)) image[np.isnan(image)] = 0 for i in range(orientations): out[:, :, i] = convolve(image, k[i]) return out
[ "def", "hog", "(", "image", ",", "orientations", "=", "8", ",", "ksize", "=", "(", "5", ",", "5", ")", ")", ":", "s0", ",", "s1", "=", "image", ".", "shape", "[", ":", "2", "]", "# speed up the process through saving generated kernels:\r", "try", ":", "k", "=", "hog", ".", "kernels", "[", "str", "(", "ksize", ")", "+", "str", "(", "orientations", ")", "]", "except", "KeyError", ":", "k", "=", "_mkConvKernel", "(", "ksize", ",", "orientations", ")", "hog", ".", "kernels", "[", "str", "(", "ksize", ")", "+", "str", "(", "orientations", ")", "]", "=", "k", "out", "=", "np", ".", "empty", "(", "shape", "=", "(", "s0", ",", "s1", ",", "orientations", ")", ")", "image", "[", "np", ".", "isnan", "(", "image", ")", "]", "=", "0", "for", "i", "in", "range", "(", "orientations", ")", ":", "out", "[", ":", ",", ":", ",", "i", "]", "=", "convolve", "(", "image", ",", "k", "[", "i", "]", ")", "return", "out" ]
returns the Histogram of Oriented Gradients :param ksize: convolution kernel size as (y,x) - needs to be odd :param orientations: number of orientations in between rad=0 and rad=pi similar to http://scikit-image.org/docs/dev/auto_examples/plot_hog.html but faster and with less options
[ "returns", "the", "Histogram", "of", "Oriented", "Gradients", ":", "param", "ksize", ":", "convolution", "kernel", "size", "as", "(", "y", "x", ")", "-", "needs", "to", "be", "odd", ":", "param", "orientations", ":", "number", "of", "orientations", "in", "between", "rad", "=", "0", "and", "rad", "=", "pi", "similar", "to", "http", ":", "//", "scikit", "-", "image", ".", "org", "/", "docs", "/", "dev", "/", "auto_examples", "/", "plot_hog", ".", "html", "but", "faster", "and", "with", "less", "options" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/hog.py#L40-L64
radjkarl/imgProcessor
imgProcessor/features/hog.py
visualize
def visualize(hog, grid=(10, 10), radCircle=None): ''' visualize HOG as polynomial around cell center for [grid] * cells ''' s0, s1, nang = hog.shape angles = np.linspace(0, np.pi, nang + 1)[:-1] # center of each sub array: cx, cy = s0 // (2 * grid[0]), s1 // (2 * grid[1]) # max. radius of polynomial around cenetr: rx, ry = cx, cy # for drawing a position indicator (circle): if radCircle is None: radCircle = max(1, rx // 10) # output array: out = np.zeros((s0, s1), dtype=np.uint8) # point of polynomial: pts = np.empty(shape=(1, 2 * nang, 2), dtype=np.int32) # takes grid[0]*grid[1] sample HOG values: samplesHOG = subCell2DFnArray(hog, lambda arr: arr[cx, cy], grid) mxHOG = samplesHOG.max() # sub array slices: slices = list(subCell2DSlices(out, grid)) m = 0 for m, hhh in enumerate(samplesHOG.reshape(grid[0] * grid[1], nang)): hhmax = hhh.max() hh = hhh / hhmax sout = out[slices[m][2:4]] for n, (o, a) in enumerate(zip(hh, angles)): pts[0, n, 0] = cx + np.cos(a) * o * rx pts[0, n, 1] = cy + np.sin(a) * o * ry pts[0, n + nang, 0] = cx + np.cos(a + np.pi) * o * rx pts[0, n + nang, 1] = cy + np.sin(a + np.pi) * o * ry cv2.fillPoly(sout, pts, int(255 * hhmax / mxHOG)) cv2.circle(sout, (cx, cy), radCircle, 0, thickness=-1) return out
python
def visualize(hog, grid=(10, 10), radCircle=None): ''' visualize HOG as polynomial around cell center for [grid] * cells ''' s0, s1, nang = hog.shape angles = np.linspace(0, np.pi, nang + 1)[:-1] # center of each sub array: cx, cy = s0 // (2 * grid[0]), s1 // (2 * grid[1]) # max. radius of polynomial around cenetr: rx, ry = cx, cy # for drawing a position indicator (circle): if radCircle is None: radCircle = max(1, rx // 10) # output array: out = np.zeros((s0, s1), dtype=np.uint8) # point of polynomial: pts = np.empty(shape=(1, 2 * nang, 2), dtype=np.int32) # takes grid[0]*grid[1] sample HOG values: samplesHOG = subCell2DFnArray(hog, lambda arr: arr[cx, cy], grid) mxHOG = samplesHOG.max() # sub array slices: slices = list(subCell2DSlices(out, grid)) m = 0 for m, hhh in enumerate(samplesHOG.reshape(grid[0] * grid[1], nang)): hhmax = hhh.max() hh = hhh / hhmax sout = out[slices[m][2:4]] for n, (o, a) in enumerate(zip(hh, angles)): pts[0, n, 0] = cx + np.cos(a) * o * rx pts[0, n, 1] = cy + np.sin(a) * o * ry pts[0, n + nang, 0] = cx + np.cos(a + np.pi) * o * rx pts[0, n + nang, 1] = cy + np.sin(a + np.pi) * o * ry cv2.fillPoly(sout, pts, int(255 * hhmax / mxHOG)) cv2.circle(sout, (cx, cy), radCircle, 0, thickness=-1) return out
[ "def", "visualize", "(", "hog", ",", "grid", "=", "(", "10", ",", "10", ")", ",", "radCircle", "=", "None", ")", ":", "s0", ",", "s1", ",", "nang", "=", "hog", ".", "shape", "angles", "=", "np", ".", "linspace", "(", "0", ",", "np", ".", "pi", ",", "nang", "+", "1", ")", "[", ":", "-", "1", "]", "# center of each sub array:\r", "cx", ",", "cy", "=", "s0", "//", "(", "2", "*", "grid", "[", "0", "]", ")", ",", "s1", "//", "(", "2", "*", "grid", "[", "1", "]", ")", "# max. radius of polynomial around cenetr:\r", "rx", ",", "ry", "=", "cx", ",", "cy", "# for drawing a position indicator (circle):\r", "if", "radCircle", "is", "None", ":", "radCircle", "=", "max", "(", "1", ",", "rx", "//", "10", ")", "# output array:\r", "out", "=", "np", ".", "zeros", "(", "(", "s0", ",", "s1", ")", ",", "dtype", "=", "np", ".", "uint8", ")", "# point of polynomial:\r", "pts", "=", "np", ".", "empty", "(", "shape", "=", "(", "1", ",", "2", "*", "nang", ",", "2", ")", ",", "dtype", "=", "np", ".", "int32", ")", "# takes grid[0]*grid[1] sample HOG values:\r", "samplesHOG", "=", "subCell2DFnArray", "(", "hog", ",", "lambda", "arr", ":", "arr", "[", "cx", ",", "cy", "]", ",", "grid", ")", "mxHOG", "=", "samplesHOG", ".", "max", "(", ")", "# sub array slices:\r", "slices", "=", "list", "(", "subCell2DSlices", "(", "out", ",", "grid", ")", ")", "m", "=", "0", "for", "m", ",", "hhh", "in", "enumerate", "(", "samplesHOG", ".", "reshape", "(", "grid", "[", "0", "]", "*", "grid", "[", "1", "]", ",", "nang", ")", ")", ":", "hhmax", "=", "hhh", ".", "max", "(", ")", "hh", "=", "hhh", "/", "hhmax", "sout", "=", "out", "[", "slices", "[", "m", "]", "[", "2", ":", "4", "]", "]", "for", "n", ",", "(", "o", ",", "a", ")", "in", "enumerate", "(", "zip", "(", "hh", ",", "angles", ")", ")", ":", "pts", "[", "0", ",", "n", ",", "0", "]", "=", "cx", "+", "np", ".", "cos", "(", "a", ")", "*", "o", "*", "rx", "pts", "[", "0", ",", "n", ",", "1", "]", "=", "cy", "+", "np", ".", "sin", "(", "a", ")", "*", "o", "*", "ry", "pts", "[", "0", ",", "n", "+", "nang", ",", "0", "]", "=", "cx", "+", "np", ".", "cos", "(", "a", "+", "np", ".", "pi", ")", "*", "o", "*", "rx", "pts", "[", "0", ",", "n", "+", "nang", ",", "1", "]", "=", "cy", "+", "np", ".", "sin", "(", "a", "+", "np", ".", "pi", ")", "*", "o", "*", "ry", "cv2", ".", "fillPoly", "(", "sout", ",", "pts", ",", "int", "(", "255", "*", "hhmax", "/", "mxHOG", ")", ")", "cv2", ".", "circle", "(", "sout", ",", "(", "cx", ",", "cy", ")", ",", "radCircle", ",", "0", ",", "thickness", "=", "-", "1", ")", "return", "out" ]
visualize HOG as polynomial around cell center for [grid] * cells
[ "visualize", "HOG", "as", "polynomial", "around", "cell", "center", "for", "[", "grid", "]", "*", "cells" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/hog.py#L68-L105
radjkarl/imgProcessor
imgProcessor/camera/flatField/postProcessing.py
postProcessing
def postProcessing(arr, method='KW replace + Gauss', mask=None): ''' Post process measured flat field [arr]. Depending on the measurement, different post processing [method]s are beneficial. The available methods are presented in --- K.Bedrich, M.Bokalic et al.: ELECTROLUMINESCENCE IMAGING OF PV DEVICES: ADVANCED FLAT FIELD CALIBRATION,2017 --- methods: 'POLY replace' --> replace [arr] with a 2d polynomial fit 'KW replace' --> ... a fitted Kang-Weiss function 'AoV replace' --> ... a fitted Angle-of-view function 'POLY repair' --> same as above but either replacing empty 'KW repair' areas of smoothing out high gradient 'AoV repair' variations (POLY only) 'KW repair + Gauss' --> same as 'KW replace' with additional 'KW repair + Median' Gaussian or Median filter mask: None/2darray(bool) --> array of same shape ar [arr] indicating invalid or empty positions ''' assert method in ppMETHODS, \ 'post processing method (%s) must be one of %s' % (method, ppMETHODS) if method == 'POLY replace': return polyfit2dGrid(arr, mask, order=2, replace_all=True) elif method == 'KW replace': return function(arr, mask, replace_all=True) elif method == 'POLY repair': return polynomial(arr, mask, replace_all=False) elif method == 'KW repair': return function(arr, mask, replace_all=False) elif method == 'KW repair + Median': return median_filter(function(arr, mask, replace_all=False), min(method.shape) // 20) elif method == 'KW repair + Gauss': return gaussian_filter(function(arr, mask, replace_all=False), min(arr.shape) // 20) elif method == 'AoV repair': return function(arr, mask, fn=lambda XY, a: angleOfView(XY, method.shape, a=a), guess=(0.01), down_scale_factor=1) elif method == 'AoV replace': return function(arr, mask, fn=lambda XY, a: angleOfView(XY, arr.shape, a=a), guess=(0.01), replace_all=True, down_scale_factor=1)
python
def postProcessing(arr, method='KW replace + Gauss', mask=None): ''' Post process measured flat field [arr]. Depending on the measurement, different post processing [method]s are beneficial. The available methods are presented in --- K.Bedrich, M.Bokalic et al.: ELECTROLUMINESCENCE IMAGING OF PV DEVICES: ADVANCED FLAT FIELD CALIBRATION,2017 --- methods: 'POLY replace' --> replace [arr] with a 2d polynomial fit 'KW replace' --> ... a fitted Kang-Weiss function 'AoV replace' --> ... a fitted Angle-of-view function 'POLY repair' --> same as above but either replacing empty 'KW repair' areas of smoothing out high gradient 'AoV repair' variations (POLY only) 'KW repair + Gauss' --> same as 'KW replace' with additional 'KW repair + Median' Gaussian or Median filter mask: None/2darray(bool) --> array of same shape ar [arr] indicating invalid or empty positions ''' assert method in ppMETHODS, \ 'post processing method (%s) must be one of %s' % (method, ppMETHODS) if method == 'POLY replace': return polyfit2dGrid(arr, mask, order=2, replace_all=True) elif method == 'KW replace': return function(arr, mask, replace_all=True) elif method == 'POLY repair': return polynomial(arr, mask, replace_all=False) elif method == 'KW repair': return function(arr, mask, replace_all=False) elif method == 'KW repair + Median': return median_filter(function(arr, mask, replace_all=False), min(method.shape) // 20) elif method == 'KW repair + Gauss': return gaussian_filter(function(arr, mask, replace_all=False), min(arr.shape) // 20) elif method == 'AoV repair': return function(arr, mask, fn=lambda XY, a: angleOfView(XY, method.shape, a=a), guess=(0.01), down_scale_factor=1) elif method == 'AoV replace': return function(arr, mask, fn=lambda XY, a: angleOfView(XY, arr.shape, a=a), guess=(0.01), replace_all=True, down_scale_factor=1)
[ "def", "postProcessing", "(", "arr", ",", "method", "=", "'KW replace + Gauss'", ",", "mask", "=", "None", ")", ":", "assert", "method", "in", "ppMETHODS", ",", "'post processing method (%s) must be one of %s'", "%", "(", "method", ",", "ppMETHODS", ")", "if", "method", "==", "'POLY replace'", ":", "return", "polyfit2dGrid", "(", "arr", ",", "mask", ",", "order", "=", "2", ",", "replace_all", "=", "True", ")", "elif", "method", "==", "'KW replace'", ":", "return", "function", "(", "arr", ",", "mask", ",", "replace_all", "=", "True", ")", "elif", "method", "==", "'POLY repair'", ":", "return", "polynomial", "(", "arr", ",", "mask", ",", "replace_all", "=", "False", ")", "elif", "method", "==", "'KW repair'", ":", "return", "function", "(", "arr", ",", "mask", ",", "replace_all", "=", "False", ")", "elif", "method", "==", "'KW repair + Median'", ":", "return", "median_filter", "(", "function", "(", "arr", ",", "mask", ",", "replace_all", "=", "False", ")", ",", "min", "(", "method", ".", "shape", ")", "//", "20", ")", "elif", "method", "==", "'KW repair + Gauss'", ":", "return", "gaussian_filter", "(", "function", "(", "arr", ",", "mask", ",", "replace_all", "=", "False", ")", ",", "min", "(", "arr", ".", "shape", ")", "//", "20", ")", "elif", "method", "==", "'AoV repair'", ":", "return", "function", "(", "arr", ",", "mask", ",", "fn", "=", "lambda", "XY", ",", "a", ":", "angleOfView", "(", "XY", ",", "method", ".", "shape", ",", "a", "=", "a", ")", ",", "guess", "=", "(", "0.01", ")", ",", "down_scale_factor", "=", "1", ")", "elif", "method", "==", "'AoV replace'", ":", "return", "function", "(", "arr", ",", "mask", ",", "fn", "=", "lambda", "XY", ",", "a", ":", "angleOfView", "(", "XY", ",", "arr", ".", "shape", ",", "a", "=", "a", ")", ",", "guess", "=", "(", "0.01", ")", ",", "replace_all", "=", "True", ",", "down_scale_factor", "=", "1", ")" ]
Post process measured flat field [arr]. Depending on the measurement, different post processing [method]s are beneficial. The available methods are presented in --- K.Bedrich, M.Bokalic et al.: ELECTROLUMINESCENCE IMAGING OF PV DEVICES: ADVANCED FLAT FIELD CALIBRATION,2017 --- methods: 'POLY replace' --> replace [arr] with a 2d polynomial fit 'KW replace' --> ... a fitted Kang-Weiss function 'AoV replace' --> ... a fitted Angle-of-view function 'POLY repair' --> same as above but either replacing empty 'KW repair' areas of smoothing out high gradient 'AoV repair' variations (POLY only) 'KW repair + Gauss' --> same as 'KW replace' with additional 'KW repair + Median' Gaussian or Median filter mask: None/2darray(bool) --> array of same shape ar [arr] indicating invalid or empty positions
[ "Post", "process", "measured", "flat", "field", "[", "arr", "]", ".", "Depending", "on", "the", "measurement", "different", "post", "processing", "[", "method", "]", "s", "are", "beneficial", ".", "The", "available", "methods", "are", "presented", "in", "---", "K", ".", "Bedrich", "M", ".", "Bokalic", "et", "al", ".", ":", "ELECTROLUMINESCENCE", "IMAGING", "OF", "PV", "DEVICES", ":", "ADVANCED", "FLAT", "FIELD", "CALIBRATION", "2017", "---", "methods", ":", "POLY", "replace", "--", ">", "replace", "[", "arr", "]", "with", "a", "2d", "polynomial", "fit", "KW", "replace", "--", ">", "...", "a", "fitted", "Kang", "-", "Weiss", "function", "AoV", "replace", "--", ">", "...", "a", "fitted", "Angle", "-", "of", "-", "view", "function", "POLY", "repair", "--", ">", "same", "as", "above", "but", "either", "replacing", "empty", "KW", "repair", "areas", "of", "smoothing", "out", "high", "gradient", "AoV", "repair", "variations", "(", "POLY", "only", ")", "KW", "repair", "+", "Gauss", "--", ">", "same", "as", "KW", "replace", "with", "additional", "KW", "repair", "+", "Median", "Gaussian", "or", "Median", "filter", "mask", ":", "None", "/", "2darray", "(", "bool", ")", "--", ">", "array", "of", "same", "shape", "ar", "[", "arr", "]", "indicating", "invalid", "or", "empty", "positions" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/flatField/postProcessing.py#L16-L74
radjkarl/imgProcessor
imgProcessor/transform/rmBorder.py
rmBorder
def rmBorder(img, border=None): ''' border [None], if images are corrected and device ends at image border [one number] (like 50), if there is an equally spaced border around the device [two tuples] like ((50,60),(1500,900)) means ((Xfrom,Yfrom),(Xto, Yto)) [four tuples] like ((x0,y0),(x1,y1),...(x3,y3)) ''' if border is None: pass elif len(border) == 2: s0 = slice(border[0][1], border[1][1]) s1 = slice(border[0][0], border[1][0]) img = img[s0, s1] elif len(border) == 4: # eval whether border values are orthogonal: x = np.unique(border[:, 0]) y = np.unique(border[:, 1]) if len(x) == 2 and len(y) == 2: s0 = slice(y[0], y[1]) s1 = slice(x[0], x[1]) img = img[s0, s1] else: # edges are irregular: img = simplePerspectiveTransform(img, border) else: raise Exception('[border] input wrong') return img
python
def rmBorder(img, border=None): ''' border [None], if images are corrected and device ends at image border [one number] (like 50), if there is an equally spaced border around the device [two tuples] like ((50,60),(1500,900)) means ((Xfrom,Yfrom),(Xto, Yto)) [four tuples] like ((x0,y0),(x1,y1),...(x3,y3)) ''' if border is None: pass elif len(border) == 2: s0 = slice(border[0][1], border[1][1]) s1 = slice(border[0][0], border[1][0]) img = img[s0, s1] elif len(border) == 4: # eval whether border values are orthogonal: x = np.unique(border[:, 0]) y = np.unique(border[:, 1]) if len(x) == 2 and len(y) == 2: s0 = slice(y[0], y[1]) s1 = slice(x[0], x[1]) img = img[s0, s1] else: # edges are irregular: img = simplePerspectiveTransform(img, border) else: raise Exception('[border] input wrong') return img
[ "def", "rmBorder", "(", "img", ",", "border", "=", "None", ")", ":", "if", "border", "is", "None", ":", "pass", "elif", "len", "(", "border", ")", "==", "2", ":", "s0", "=", "slice", "(", "border", "[", "0", "]", "[", "1", "]", ",", "border", "[", "1", "]", "[", "1", "]", ")", "s1", "=", "slice", "(", "border", "[", "0", "]", "[", "0", "]", ",", "border", "[", "1", "]", "[", "0", "]", ")", "img", "=", "img", "[", "s0", ",", "s1", "]", "elif", "len", "(", "border", ")", "==", "4", ":", "# eval whether border values are orthogonal:\r", "x", "=", "np", ".", "unique", "(", "border", "[", ":", ",", "0", "]", ")", "y", "=", "np", ".", "unique", "(", "border", "[", ":", ",", "1", "]", ")", "if", "len", "(", "x", ")", "==", "2", "and", "len", "(", "y", ")", "==", "2", ":", "s0", "=", "slice", "(", "y", "[", "0", "]", ",", "y", "[", "1", "]", ")", "s1", "=", "slice", "(", "x", "[", "0", "]", ",", "x", "[", "1", "]", ")", "img", "=", "img", "[", "s0", ",", "s1", "]", "else", ":", "# edges are irregular:\r", "img", "=", "simplePerspectiveTransform", "(", "img", ",", "border", ")", "else", ":", "raise", "Exception", "(", "'[border] input wrong'", ")", "return", "img" ]
border [None], if images are corrected and device ends at image border [one number] (like 50), if there is an equally spaced border around the device [two tuples] like ((50,60),(1500,900)) means ((Xfrom,Yfrom),(Xto, Yto)) [four tuples] like ((x0,y0),(x1,y1),...(x3,y3))
[ "border", "[", "None", "]", "if", "images", "are", "corrected", "and", "device", "ends", "at", "image", "border", "[", "one", "number", "]", "(", "like", "50", ")", "if", "there", "is", "an", "equally", "spaced", "border", "around", "the", "device", "[", "two", "tuples", "]", "like", "((", "50", "60", ")", "(", "1500", "900", "))", "means", "((", "Xfrom", "Yfrom", ")", "(", "Xto", "Yto", "))", "[", "four", "tuples", "]", "like", "((", "x0", "y0", ")", "(", "x1", "y1", ")", "...", "(", "x3", "y3", "))" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transform/rmBorder.py#L6-L36
radjkarl/imgProcessor
imgProcessor/features/SingleTimeEffectDetection.py
SingleTimeEffectDetection.addImage
def addImage(self, image, mask=None): ''' ######### mask -- optional ''' self._last_diff = diff = image - self.noSTE ste = diff > self.threshold removeSinglePixels(ste) self.mask_clean = clean = ~ste if mask is not None: clean = np.logical_and(mask, clean) self.mma.update(image, clean) if self.save_ste_indices: self.mask_STE += ste return self
python
def addImage(self, image, mask=None): ''' ######### mask -- optional ''' self._last_diff = diff = image - self.noSTE ste = diff > self.threshold removeSinglePixels(ste) self.mask_clean = clean = ~ste if mask is not None: clean = np.logical_and(mask, clean) self.mma.update(image, clean) if self.save_ste_indices: self.mask_STE += ste return self
[ "def", "addImage", "(", "self", ",", "image", ",", "mask", "=", "None", ")", ":", "self", ".", "_last_diff", "=", "diff", "=", "image", "-", "self", ".", "noSTE", "ste", "=", "diff", ">", "self", ".", "threshold", "removeSinglePixels", "(", "ste", ")", "self", ".", "mask_clean", "=", "clean", "=", "~", "ste", "if", "mask", "is", "not", "None", ":", "clean", "=", "np", ".", "logical_and", "(", "mask", ",", "clean", ")", "self", ".", "mma", ".", "update", "(", "image", ",", "clean", ")", "if", "self", ".", "save_ste_indices", ":", "self", ".", "mask_STE", "+=", "ste", "return", "self" ]
######### mask -- optional
[ "#########", "mask", "--", "optional" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/SingleTimeEffectDetection.py#L55-L75
radjkarl/imgProcessor
imgProcessor/features/SingleTimeEffectDetection.py
SingleTimeEffectDetection.relativeAreaSTE
def relativeAreaSTE(self): ''' return STE area - relative to image area ''' s = self.noSTE.shape return np.sum(self.mask_STE) / (s[0] * s[1])
python
def relativeAreaSTE(self): ''' return STE area - relative to image area ''' s = self.noSTE.shape return np.sum(self.mask_STE) / (s[0] * s[1])
[ "def", "relativeAreaSTE", "(", "self", ")", ":", "s", "=", "self", ".", "noSTE", ".", "shape", "return", "np", ".", "sum", "(", "self", ".", "mask_STE", ")", "/", "(", "s", "[", "0", "]", "*", "s", "[", "1", "]", ")" ]
return STE area - relative to image area
[ "return", "STE", "area", "-", "relative", "to", "image", "area" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/SingleTimeEffectDetection.py#L83-L88
radjkarl/imgProcessor
imgProcessor/features/SingleTimeEffectDetection.py
SingleTimeEffectDetection.intensityDistributionSTE
def intensityDistributionSTE(self, bins=10, range=None): ''' return distribution of STE intensity ''' v = np.abs(self._last_diff[self.mask_STE]) return np.histogram(v, bins, range)
python
def intensityDistributionSTE(self, bins=10, range=None): ''' return distribution of STE intensity ''' v = np.abs(self._last_diff[self.mask_STE]) return np.histogram(v, bins, range)
[ "def", "intensityDistributionSTE", "(", "self", ",", "bins", "=", "10", ",", "range", "=", "None", ")", ":", "v", "=", "np", ".", "abs", "(", "self", ".", "_last_diff", "[", "self", ".", "mask_STE", "]", ")", "return", "np", ".", "histogram", "(", "v", ",", "bins", ",", "range", ")" ]
return distribution of STE intensity
[ "return", "distribution", "of", "STE", "intensity" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/SingleTimeEffectDetection.py#L90-L95
radjkarl/imgProcessor
imgProcessor/transformations.py
toUIntArray
def toUIntArray(img, dtype=None, cutNegative=True, cutHigh=True, range=None, copy=True): ''' transform a float to an unsigned integer array of a fitting dtype adds an offset, to get rid of negative values range = (min, max) - scale values between given range cutNegative - all values <0 will be set to 0 cutHigh - set to False to rather scale values to fit ''' mn, mx = None, None if range is not None: mn, mx = range if dtype is None: if mx is None: mx = np.nanmax(img) dtype = np.uint16 if mx > 255 else np.uint8 dtype = np.dtype(dtype) if dtype == img.dtype: return img # get max px value: b = {'uint8': 255, 'uint16': 65535, 'uint32': 4294967295, 'uint64': 18446744073709551615}[dtype.name] if copy: img = img.copy() if range is not None: img = np.asfarray(img) img -= mn # img[img<0]=0 # print np.nanmin(img), np.nanmax(img), mn, mx, range, b img *= b / (mx - mn) # print np.nanmin(img), np.nanmax(img), mn, mx, range, b img = np.clip(img, 0, b) else: if cutNegative: img[img < 0] = 0 else: # add an offset to all values: mn = np.min(img) if mn < 0: img -= mn # set minimum to 0 if cutHigh: #ind = img > b img[img > b] = b else: # scale values mx = np.nanmax(img) img = np.asfarray(img) * (float(b) / mx) img = img.astype(dtype) # if range is not None and cutHigh: # img[ind] = b return img
python
def toUIntArray(img, dtype=None, cutNegative=True, cutHigh=True, range=None, copy=True): ''' transform a float to an unsigned integer array of a fitting dtype adds an offset, to get rid of negative values range = (min, max) - scale values between given range cutNegative - all values <0 will be set to 0 cutHigh - set to False to rather scale values to fit ''' mn, mx = None, None if range is not None: mn, mx = range if dtype is None: if mx is None: mx = np.nanmax(img) dtype = np.uint16 if mx > 255 else np.uint8 dtype = np.dtype(dtype) if dtype == img.dtype: return img # get max px value: b = {'uint8': 255, 'uint16': 65535, 'uint32': 4294967295, 'uint64': 18446744073709551615}[dtype.name] if copy: img = img.copy() if range is not None: img = np.asfarray(img) img -= mn # img[img<0]=0 # print np.nanmin(img), np.nanmax(img), mn, mx, range, b img *= b / (mx - mn) # print np.nanmin(img), np.nanmax(img), mn, mx, range, b img = np.clip(img, 0, b) else: if cutNegative: img[img < 0] = 0 else: # add an offset to all values: mn = np.min(img) if mn < 0: img -= mn # set minimum to 0 if cutHigh: #ind = img > b img[img > b] = b else: # scale values mx = np.nanmax(img) img = np.asfarray(img) * (float(b) / mx) img = img.astype(dtype) # if range is not None and cutHigh: # img[ind] = b return img
[ "def", "toUIntArray", "(", "img", ",", "dtype", "=", "None", ",", "cutNegative", "=", "True", ",", "cutHigh", "=", "True", ",", "range", "=", "None", ",", "copy", "=", "True", ")", ":", "mn", ",", "mx", "=", "None", ",", "None", "if", "range", "is", "not", "None", ":", "mn", ",", "mx", "=", "range", "if", "dtype", "is", "None", ":", "if", "mx", "is", "None", ":", "mx", "=", "np", ".", "nanmax", "(", "img", ")", "dtype", "=", "np", ".", "uint16", "if", "mx", ">", "255", "else", "np", ".", "uint8", "dtype", "=", "np", ".", "dtype", "(", "dtype", ")", "if", "dtype", "==", "img", ".", "dtype", ":", "return", "img", "# get max px value:\r", "b", "=", "{", "'uint8'", ":", "255", ",", "'uint16'", ":", "65535", ",", "'uint32'", ":", "4294967295", ",", "'uint64'", ":", "18446744073709551615", "}", "[", "dtype", ".", "name", "]", "if", "copy", ":", "img", "=", "img", ".", "copy", "(", ")", "if", "range", "is", "not", "None", ":", "img", "=", "np", ".", "asfarray", "(", "img", ")", "img", "-=", "mn", "# img[img<0]=0\r", "# print np.nanmin(img), np.nanmax(img), mn, mx, range, b\r", "img", "*=", "b", "/", "(", "mx", "-", "mn", ")", "# print np.nanmin(img), np.nanmax(img), mn, mx, range, b\r", "img", "=", "np", ".", "clip", "(", "img", ",", "0", ",", "b", ")", "else", ":", "if", "cutNegative", ":", "img", "[", "img", "<", "0", "]", "=", "0", "else", ":", "# add an offset to all values:\r", "mn", "=", "np", ".", "min", "(", "img", ")", "if", "mn", "<", "0", ":", "img", "-=", "mn", "# set minimum to 0\r", "if", "cutHigh", ":", "#ind = img > b\r", "img", "[", "img", ">", "b", "]", "=", "b", "else", ":", "# scale values\r", "mx", "=", "np", ".", "nanmax", "(", "img", ")", "img", "=", "np", ".", "asfarray", "(", "img", ")", "*", "(", "float", "(", "b", ")", "/", "mx", ")", "img", "=", "img", ".", "astype", "(", "dtype", ")", "# if range is not None and cutHigh:\r", "# img[ind] = b\r", "return", "img" ]
transform a float to an unsigned integer array of a fitting dtype adds an offset, to get rid of negative values range = (min, max) - scale values between given range cutNegative - all values <0 will be set to 0 cutHigh - set to False to rather scale values to fit
[ "transform", "a", "float", "to", "an", "unsigned", "integer", "array", "of", "a", "fitting", "dtype", "adds", "an", "offset", "to", "get", "rid", "of", "negative", "values", "range", "=", "(", "min", "max", ")", "-", "scale", "values", "between", "given", "range", "cutNegative", "-", "all", "values", "<0", "will", "be", "set", "to", "0", "cutHigh", "-", "set", "to", "False", "to", "rather", "scale", "values", "to", "fit" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L11-L75
radjkarl/imgProcessor
imgProcessor/transformations.py
toFloatArray
def toFloatArray(img): ''' transform an unsigned integer array into a float array of the right size ''' _D = {1: np.float32, # uint8 2: np.float32, # uint16 4: np.float64, # uint32 8: np.float64} # uint64 return img.astype(_D[img.itemsize])
python
def toFloatArray(img): ''' transform an unsigned integer array into a float array of the right size ''' _D = {1: np.float32, # uint8 2: np.float32, # uint16 4: np.float64, # uint32 8: np.float64} # uint64 return img.astype(_D[img.itemsize])
[ "def", "toFloatArray", "(", "img", ")", ":", "_D", "=", "{", "1", ":", "np", ".", "float32", ",", "# uint8\r", "2", ":", "np", ".", "float32", ",", "# uint16\r", "4", ":", "np", ".", "float64", ",", "# uint32\r", "8", ":", "np", ".", "float64", "}", "# uint64\r", "return", "img", ".", "astype", "(", "_D", "[", "img", ".", "itemsize", "]", ")" ]
transform an unsigned integer array into a float array of the right size
[ "transform", "an", "unsigned", "integer", "array", "into", "a", "float", "array", "of", "the", "right", "size" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L78-L87
radjkarl/imgProcessor
imgProcessor/transformations.py
toNoUintArray
def toNoUintArray(arr): ''' cast array to the next higher integer array if dtype=unsigned integer ''' d = arr.dtype if d.kind == 'u': arr = arr.astype({1: np.int16, 2: np.int32, 4: np.int64}[d.itemsize]) return arr
python
def toNoUintArray(arr): ''' cast array to the next higher integer array if dtype=unsigned integer ''' d = arr.dtype if d.kind == 'u': arr = arr.astype({1: np.int16, 2: np.int32, 4: np.int64}[d.itemsize]) return arr
[ "def", "toNoUintArray", "(", "arr", ")", ":", "d", "=", "arr", ".", "dtype", "if", "d", ".", "kind", "==", "'u'", ":", "arr", "=", "arr", ".", "astype", "(", "{", "1", ":", "np", ".", "int16", ",", "2", ":", "np", ".", "int32", ",", "4", ":", "np", ".", "int64", "}", "[", "d", ".", "itemsize", "]", ")", "return", "arr" ]
cast array to the next higher integer array if dtype=unsigned integer
[ "cast", "array", "to", "the", "next", "higher", "integer", "array", "if", "dtype", "=", "unsigned", "integer" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L90-L100
radjkarl/imgProcessor
imgProcessor/transformations.py
toGray
def toGray(img): ''' weights see https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-prese http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor ''' return np.average(img, axis=-1, weights=(0.299, # red 0.587, # green 0.114) # blue ).astype(img.dtype)
python
def toGray(img): ''' weights see https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-prese http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor ''' return np.average(img, axis=-1, weights=(0.299, # red 0.587, # green 0.114) # blue ).astype(img.dtype)
[ "def", "toGray", "(", "img", ")", ":", "return", "np", ".", "average", "(", "img", ",", "axis", "=", "-", "1", ",", "weights", "=", "(", "0.299", ",", "# red\r", "0.587", ",", "# green\r", "0.114", ")", "# blue\r", ")", ".", "astype", "(", "img", ".", "dtype", ")" ]
weights see https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-prese http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor
[ "weights", "see", "https", ":", "//", "en", ".", "wikipedia", ".", "org", "/", "wiki", "/", "Grayscale#Colorimetric_", ".", "28luminance", "-", "prese", "http", ":", "//", "docs", ".", "opencv", ".", "org", "/", "2", ".", "4", "/", "modules", "/", "imgproc", "/", "doc", "/", "miscellaneous_transformations", ".", "html#cvtcolor" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L126-L135
radjkarl/imgProcessor
imgProcessor/transformations.py
rgChromaticity
def rgChromaticity(img): ''' returns the normalized RGB space (RGB/intensity) see https://en.wikipedia.org/wiki/Rg_chromaticity ''' out = _calc(img) if img.dtype == np.uint8: out = (255 * out).astype(np.uint8) return out
python
def rgChromaticity(img): ''' returns the normalized RGB space (RGB/intensity) see https://en.wikipedia.org/wiki/Rg_chromaticity ''' out = _calc(img) if img.dtype == np.uint8: out = (255 * out).astype(np.uint8) return out
[ "def", "rgChromaticity", "(", "img", ")", ":", "out", "=", "_calc", "(", "img", ")", "if", "img", ".", "dtype", "==", "np", ".", "uint8", ":", "out", "=", "(", "255", "*", "out", ")", ".", "astype", "(", "np", ".", "uint8", ")", "return", "out" ]
returns the normalized RGB space (RGB/intensity) see https://en.wikipedia.org/wiki/Rg_chromaticity
[ "returns", "the", "normalized", "RGB", "space", "(", "RGB", "/", "intensity", ")", "see", "https", ":", "//", "en", ".", "wikipedia", ".", "org", "/", "wiki", "/", "Rg_chromaticity" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L138-L146
radjkarl/imgProcessor
imgProcessor/transformations.py
monochromaticWavelength
def monochromaticWavelength(img): ''' TODO########## ''' # peak wave lengths: https://en.wikipedia.org/wiki/RGB_color_model out = _calc(img) peakWavelengths = (570, 540, 440) # (r,g,b) # s = sum(peakWavelengths) for n, p in enumerate(peakWavelengths): out[..., n] *= p return out.sum(axis=2)
python
def monochromaticWavelength(img): ''' TODO########## ''' # peak wave lengths: https://en.wikipedia.org/wiki/RGB_color_model out = _calc(img) peakWavelengths = (570, 540, 440) # (r,g,b) # s = sum(peakWavelengths) for n, p in enumerate(peakWavelengths): out[..., n] *= p return out.sum(axis=2)
[ "def", "monochromaticWavelength", "(", "img", ")", ":", "# peak wave lengths: https://en.wikipedia.org/wiki/RGB_color_model\r", "out", "=", "_calc", "(", "img", ")", "peakWavelengths", "=", "(", "570", ",", "540", ",", "440", ")", "# (r,g,b)\r", "# s = sum(peakWavelengths)\r", "for", "n", ",", "p", "in", "enumerate", "(", "peakWavelengths", ")", ":", "out", "[", "...", ",", "n", "]", "*=", "p", "return", "out", ".", "sum", "(", "axis", "=", "2", ")" ]
TODO##########
[ "TODO##########" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L157-L168
radjkarl/imgProcessor
imgProcessor/transformations.py
rot90
def rot90(img): ''' rotate one or multiple grayscale or color images 90 degrees ''' s = img.shape if len(s) == 3: if s[2] in (3, 4): # color image out = np.empty((s[1], s[0], s[2]), dtype=img.dtype) for i in range(s[2]): out[:, :, i] = np.rot90(img[:, :, i]) else: # mutliple grayscale out = np.empty((s[0], s[2], s[1]), dtype=img.dtype) for i in range(s[0]): out[i] = np.rot90(img[i]) elif len(s) == 2: # one grayscale out = np.rot90(img) elif len(s) == 4 and s[3] in (3, 4): # multiple color out = np.empty((s[0], s[2], s[1], s[3]), dtype=img.dtype) for i in range(s[0]): # for each img for j in range(s[3]): # for each channel out[i, :, :, j] = np.rot90(img[i, :, :, j]) else: NotImplemented return out
python
def rot90(img): ''' rotate one or multiple grayscale or color images 90 degrees ''' s = img.shape if len(s) == 3: if s[2] in (3, 4): # color image out = np.empty((s[1], s[0], s[2]), dtype=img.dtype) for i in range(s[2]): out[:, :, i] = np.rot90(img[:, :, i]) else: # mutliple grayscale out = np.empty((s[0], s[2], s[1]), dtype=img.dtype) for i in range(s[0]): out[i] = np.rot90(img[i]) elif len(s) == 2: # one grayscale out = np.rot90(img) elif len(s) == 4 and s[3] in (3, 4): # multiple color out = np.empty((s[0], s[2], s[1], s[3]), dtype=img.dtype) for i in range(s[0]): # for each img for j in range(s[3]): # for each channel out[i, :, :, j] = np.rot90(img[i, :, :, j]) else: NotImplemented return out
[ "def", "rot90", "(", "img", ")", ":", "s", "=", "img", ".", "shape", "if", "len", "(", "s", ")", "==", "3", ":", "if", "s", "[", "2", "]", "in", "(", "3", ",", "4", ")", ":", "# color image\r", "out", "=", "np", ".", "empty", "(", "(", "s", "[", "1", "]", ",", "s", "[", "0", "]", ",", "s", "[", "2", "]", ")", ",", "dtype", "=", "img", ".", "dtype", ")", "for", "i", "in", "range", "(", "s", "[", "2", "]", ")", ":", "out", "[", ":", ",", ":", ",", "i", "]", "=", "np", ".", "rot90", "(", "img", "[", ":", ",", ":", ",", "i", "]", ")", "else", ":", "# mutliple grayscale\r", "out", "=", "np", ".", "empty", "(", "(", "s", "[", "0", "]", ",", "s", "[", "2", "]", ",", "s", "[", "1", "]", ")", ",", "dtype", "=", "img", ".", "dtype", ")", "for", "i", "in", "range", "(", "s", "[", "0", "]", ")", ":", "out", "[", "i", "]", "=", "np", ".", "rot90", "(", "img", "[", "i", "]", ")", "elif", "len", "(", "s", ")", "==", "2", ":", "# one grayscale\r", "out", "=", "np", ".", "rot90", "(", "img", ")", "elif", "len", "(", "s", ")", "==", "4", "and", "s", "[", "3", "]", "in", "(", "3", ",", "4", ")", ":", "# multiple color\r", "out", "=", "np", ".", "empty", "(", "(", "s", "[", "0", "]", ",", "s", "[", "2", "]", ",", "s", "[", "1", "]", ",", "s", "[", "3", "]", ")", ",", "dtype", "=", "img", ".", "dtype", ")", "for", "i", "in", "range", "(", "s", "[", "0", "]", ")", ":", "# for each img\r", "for", "j", "in", "range", "(", "s", "[", "3", "]", ")", ":", "# for each channel\r", "out", "[", "i", ",", ":", ",", ":", ",", "j", "]", "=", "np", ".", "rot90", "(", "img", "[", "i", ",", ":", ",", ":", ",", "j", "]", ")", "else", ":", "NotImplemented", "return", "out" ]
rotate one or multiple grayscale or color images 90 degrees
[ "rotate", "one", "or", "multiple", "grayscale", "or", "color", "images", "90", "degrees" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L186-L209
radjkarl/imgProcessor
imgProcessor/transformations.py
applyColorMap
def applyColorMap(gray, cmap='flame'): ''' like cv2.applyColorMap(im_gray, cv2.COLORMAP_*) but with different color maps ''' # TODO:implement more cmaps if cmap != 'flame': raise NotImplemented # TODO: make better mx = 256 # if gray.dtype==np.uint8 else 65535 lut = np.empty(shape=(256, 3)) cmap = ( # taken from pyqtgraph GradientEditorItem (0, (0, 0, 0)), (0.2, (7, 0, 220)), (0.5, (236, 0, 134)), (0.8, (246, 246, 0)), (1.0, (255, 255, 255)) ) # build lookup table: lastval, lastcol = cmap[0] for step, col in cmap[1:]: val = int(step * mx) for i in range(3): lut[lastval:val, i] = np.linspace( lastcol[i], col[i], val - lastval) lastcol = col lastval = val s0, s1 = gray.shape out = np.empty(shape=(s0, s1, 3), dtype=np.uint8) for i in range(3): out[..., i] = cv2.LUT(gray, lut[:, i]) return out
python
def applyColorMap(gray, cmap='flame'): ''' like cv2.applyColorMap(im_gray, cv2.COLORMAP_*) but with different color maps ''' # TODO:implement more cmaps if cmap != 'flame': raise NotImplemented # TODO: make better mx = 256 # if gray.dtype==np.uint8 else 65535 lut = np.empty(shape=(256, 3)) cmap = ( # taken from pyqtgraph GradientEditorItem (0, (0, 0, 0)), (0.2, (7, 0, 220)), (0.5, (236, 0, 134)), (0.8, (246, 246, 0)), (1.0, (255, 255, 255)) ) # build lookup table: lastval, lastcol = cmap[0] for step, col in cmap[1:]: val = int(step * mx) for i in range(3): lut[lastval:val, i] = np.linspace( lastcol[i], col[i], val - lastval) lastcol = col lastval = val s0, s1 = gray.shape out = np.empty(shape=(s0, s1, 3), dtype=np.uint8) for i in range(3): out[..., i] = cv2.LUT(gray, lut[:, i]) return out
[ "def", "applyColorMap", "(", "gray", ",", "cmap", "=", "'flame'", ")", ":", "# TODO:implement more cmaps\r", "if", "cmap", "!=", "'flame'", ":", "raise", "NotImplemented", "# TODO: make better\r", "mx", "=", "256", "# if gray.dtype==np.uint8 else 65535\r", "lut", "=", "np", ".", "empty", "(", "shape", "=", "(", "256", ",", "3", ")", ")", "cmap", "=", "(", "# taken from pyqtgraph GradientEditorItem\r", "(", "0", ",", "(", "0", ",", "0", ",", "0", ")", ")", ",", "(", "0.2", ",", "(", "7", ",", "0", ",", "220", ")", ")", ",", "(", "0.5", ",", "(", "236", ",", "0", ",", "134", ")", ")", ",", "(", "0.8", ",", "(", "246", ",", "246", ",", "0", ")", ")", ",", "(", "1.0", ",", "(", "255", ",", "255", ",", "255", ")", ")", ")", "# build lookup table:\r", "lastval", ",", "lastcol", "=", "cmap", "[", "0", "]", "for", "step", ",", "col", "in", "cmap", "[", "1", ":", "]", ":", "val", "=", "int", "(", "step", "*", "mx", ")", "for", "i", "in", "range", "(", "3", ")", ":", "lut", "[", "lastval", ":", "val", ",", "i", "]", "=", "np", ".", "linspace", "(", "lastcol", "[", "i", "]", ",", "col", "[", "i", "]", ",", "val", "-", "lastval", ")", "lastcol", "=", "col", "lastval", "=", "val", "s0", ",", "s1", "=", "gray", ".", "shape", "out", "=", "np", ".", "empty", "(", "shape", "=", "(", "s0", ",", "s1", ",", "3", ")", ",", "dtype", "=", "np", ".", "uint8", ")", "for", "i", "in", "range", "(", "3", ")", ":", "out", "[", "...", ",", "i", "]", "=", "cv2", ".", "LUT", "(", "gray", ",", "lut", "[", ":", ",", "i", "]", ")", "return", "out" ]
like cv2.applyColorMap(im_gray, cv2.COLORMAP_*) but with different color maps
[ "like", "cv2", ".", "applyColorMap", "(", "im_gray", "cv2", ".", "COLORMAP_", "*", ")", "but", "with", "different", "color", "maps" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transformations.py#L212-L246
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
_insertDateIndex
def _insertDateIndex(date, l): ''' returns the index to insert the given date in a list where each items first value is a date ''' return next((i for i, n in enumerate(l) if n[0] < date), len(l))
python
def _insertDateIndex(date, l): ''' returns the index to insert the given date in a list where each items first value is a date ''' return next((i for i, n in enumerate(l) if n[0] < date), len(l))
[ "def", "_insertDateIndex", "(", "date", ",", "l", ")", ":", "return", "next", "(", "(", "i", "for", "i", ",", "n", "in", "enumerate", "(", "l", ")", "if", "n", "[", "0", "]", "<", "date", ")", ",", "len", "(", "l", ")", ")" ]
returns the index to insert the given date in a list where each items first value is a date
[ "returns", "the", "index", "to", "insert", "the", "given", "date", "in", "a", "list", "where", "each", "items", "first", "value", "is", "a", "date" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L29-L34
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
_getFromDate
def _getFromDate(l, date): ''' returns the index of given or best fitting date ''' try: date = _toDate(date) i = _insertDateIndex(date, l) - 1 if i == -1: return l[0] return l[i] except (ValueError, TypeError): # ValueError: date invalid / TypeError: date = None return l[0]
python
def _getFromDate(l, date): ''' returns the index of given or best fitting date ''' try: date = _toDate(date) i = _insertDateIndex(date, l) - 1 if i == -1: return l[0] return l[i] except (ValueError, TypeError): # ValueError: date invalid / TypeError: date = None return l[0]
[ "def", "_getFromDate", "(", "l", ",", "date", ")", ":", "try", ":", "date", "=", "_toDate", "(", "date", ")", "i", "=", "_insertDateIndex", "(", "date", ",", "l", ")", "-", "1", "if", "i", "==", "-", "1", ":", "return", "l", "[", "0", "]", "return", "l", "[", "i", "]", "except", "(", "ValueError", ",", "TypeError", ")", ":", "# ValueError: date invalid / TypeError: date = None\r", "return", "l", "[", "0", "]" ]
returns the index of given or best fitting date
[ "returns", "the", "index", "of", "given", "or", "best", "fitting", "date" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L37-L49
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.dates
def dates(self, typ, light=None): ''' Args: typ: type of calibration to look for. See .coeffs.keys() for all types available light (Optional[str]): restrict to calibrations, done given light source Returns: list: All calibration dates available for given typ ''' try: d = self._getDate(typ, light) return [self._toDateStr(c[0]) for c in d] except KeyError: return []
python
def dates(self, typ, light=None): ''' Args: typ: type of calibration to look for. See .coeffs.keys() for all types available light (Optional[str]): restrict to calibrations, done given light source Returns: list: All calibration dates available for given typ ''' try: d = self._getDate(typ, light) return [self._toDateStr(c[0]) for c in d] except KeyError: return []
[ "def", "dates", "(", "self", ",", "typ", ",", "light", "=", "None", ")", ":", "try", ":", "d", "=", "self", ".", "_getDate", "(", "typ", ",", "light", ")", "return", "[", "self", ".", "_toDateStr", "(", "c", "[", "0", "]", ")", "for", "c", "in", "d", "]", "except", "KeyError", ":", "return", "[", "]" ]
Args: typ: type of calibration to look for. See .coeffs.keys() for all types available light (Optional[str]): restrict to calibrations, done given light source Returns: list: All calibration dates available for given typ
[ "Args", ":", "typ", ":", "type", "of", "calibration", "to", "look", "for", ".", "See", ".", "coeffs", ".", "keys", "()", "for", "all", "types", "available", "light", "(", "Optional", "[", "str", "]", ")", ":", "restrict", "to", "calibrations", "done", "given", "light", "source", "Returns", ":", "list", ":", "All", "calibration", "dates", "available", "for", "given", "typ" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L91-L104
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.infos
def infos(self, typ, light=None, date=None): ''' Args: typ: type of calibration to look for. See .coeffs.keys() for all types available date (Optional[str]): date of calibration Returns: list: all infos available for given typ ''' d = self._getDate(typ, light) if date is None: return [c[1] for c in d] # TODO: not struct time, but time in ms since epoch return _getFromDate(d, date)[1]
python
def infos(self, typ, light=None, date=None): ''' Args: typ: type of calibration to look for. See .coeffs.keys() for all types available date (Optional[str]): date of calibration Returns: list: all infos available for given typ ''' d = self._getDate(typ, light) if date is None: return [c[1] for c in d] # TODO: not struct time, but time in ms since epoch return _getFromDate(d, date)[1]
[ "def", "infos", "(", "self", ",", "typ", ",", "light", "=", "None", ",", "date", "=", "None", ")", ":", "d", "=", "self", ".", "_getDate", "(", "typ", ",", "light", ")", "if", "date", "is", "None", ":", "return", "[", "c", "[", "1", "]", "for", "c", "in", "d", "]", "# TODO: not struct time, but time in ms since epoch\r", "return", "_getFromDate", "(", "d", ",", "date", ")", "[", "1", "]" ]
Args: typ: type of calibration to look for. See .coeffs.keys() for all types available date (Optional[str]): date of calibration Returns: list: all infos available for given typ
[ "Args", ":", "typ", ":", "type", "of", "calibration", "to", "look", "for", ".", "See", ".", "coeffs", ".", "keys", "()", "for", "all", "types", "available", "date", "(", "Optional", "[", "str", "]", ")", ":", "date", "of", "calibration", "Returns", ":", "list", ":", "all", "infos", "available", "for", "given", "typ" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L106-L119
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.overview
def overview(self): ''' Returns: str: an overview covering all calibrations infos and shapes ''' c = self.coeffs out = 'camera name: %s' % c['name'] out += '\nmax value: %s' % c['depth'] out += '\nlight spectra: %s' % c['light spectra'] out += '\ndark current:' for (date, info, (slope, intercept), error) in c['dark current']: out += '\n\t date: %s' % self._toDateStr(date) out += '\n\t\t info: %s; slope:%s, intercept:%s' % ( info, slope.shape, intercept.shape) out += '\nflat field:' for light, vals in c['flat field'].items(): out += '\n\t light: %s' % light for (date, info, arr, error) in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; array:%s' % (info, arr.shape) out += '\nlens:' for light, vals in c['lens'].items(): out += '\n\t light: %s' % light for (date, info, coeffs) in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; coeffs:%s' % (info, coeffs) out += '\nnoise:' for (date, info, nlf_coeff, error) in c['noise']: out += '\n\t date: %s' % self._toDateStr(date) out += '\n\t\t info: %s; coeffs:%s' % (info, nlf_coeff) out += '\nPoint spread function:' for light, vals in c['psf'].items(): out += '\n\t light: %s' % light for (date, info, psf) in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; shape:%s' % (info, psf.shape) return out
python
def overview(self): ''' Returns: str: an overview covering all calibrations infos and shapes ''' c = self.coeffs out = 'camera name: %s' % c['name'] out += '\nmax value: %s' % c['depth'] out += '\nlight spectra: %s' % c['light spectra'] out += '\ndark current:' for (date, info, (slope, intercept), error) in c['dark current']: out += '\n\t date: %s' % self._toDateStr(date) out += '\n\t\t info: %s; slope:%s, intercept:%s' % ( info, slope.shape, intercept.shape) out += '\nflat field:' for light, vals in c['flat field'].items(): out += '\n\t light: %s' % light for (date, info, arr, error) in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; array:%s' % (info, arr.shape) out += '\nlens:' for light, vals in c['lens'].items(): out += '\n\t light: %s' % light for (date, info, coeffs) in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; coeffs:%s' % (info, coeffs) out += '\nnoise:' for (date, info, nlf_coeff, error) in c['noise']: out += '\n\t date: %s' % self._toDateStr(date) out += '\n\t\t info: %s; coeffs:%s' % (info, nlf_coeff) out += '\nPoint spread function:' for light, vals in c['psf'].items(): out += '\n\t light: %s' % light for (date, info, psf) in vals: out += '\n\t\t date: %s' % self._toDateStr(date) out += '\n\t\t\t info: %s; shape:%s' % (info, psf.shape) return out
[ "def", "overview", "(", "self", ")", ":", "c", "=", "self", ".", "coeffs", "out", "=", "'camera name: %s'", "%", "c", "[", "'name'", "]", "out", "+=", "'\\nmax value: %s'", "%", "c", "[", "'depth'", "]", "out", "+=", "'\\nlight spectra: %s'", "%", "c", "[", "'light spectra'", "]", "out", "+=", "'\\ndark current:'", "for", "(", "date", ",", "info", ",", "(", "slope", ",", "intercept", ")", ",", "error", ")", "in", "c", "[", "'dark current'", "]", ":", "out", "+=", "'\\n\\t date: %s'", "%", "self", ".", "_toDateStr", "(", "date", ")", "out", "+=", "'\\n\\t\\t info: %s; slope:%s, intercept:%s'", "%", "(", "info", ",", "slope", ".", "shape", ",", "intercept", ".", "shape", ")", "out", "+=", "'\\nflat field:'", "for", "light", ",", "vals", "in", "c", "[", "'flat field'", "]", ".", "items", "(", ")", ":", "out", "+=", "'\\n\\t light: %s'", "%", "light", "for", "(", "date", ",", "info", ",", "arr", ",", "error", ")", "in", "vals", ":", "out", "+=", "'\\n\\t\\t date: %s'", "%", "self", ".", "_toDateStr", "(", "date", ")", "out", "+=", "'\\n\\t\\t\\t info: %s; array:%s'", "%", "(", "info", ",", "arr", ".", "shape", ")", "out", "+=", "'\\nlens:'", "for", "light", ",", "vals", "in", "c", "[", "'lens'", "]", ".", "items", "(", ")", ":", "out", "+=", "'\\n\\t light: %s'", "%", "light", "for", "(", "date", ",", "info", ",", "coeffs", ")", "in", "vals", ":", "out", "+=", "'\\n\\t\\t date: %s'", "%", "self", ".", "_toDateStr", "(", "date", ")", "out", "+=", "'\\n\\t\\t\\t info: %s; coeffs:%s'", "%", "(", "info", ",", "coeffs", ")", "out", "+=", "'\\nnoise:'", "for", "(", "date", ",", "info", ",", "nlf_coeff", ",", "error", ")", "in", "c", "[", "'noise'", "]", ":", "out", "+=", "'\\n\\t date: %s'", "%", "self", ".", "_toDateStr", "(", "date", ")", "out", "+=", "'\\n\\t\\t info: %s; coeffs:%s'", "%", "(", "info", ",", "nlf_coeff", ")", "out", "+=", "'\\nPoint spread function:'", "for", "light", ",", "vals", "in", "c", "[", "'psf'", "]", ".", "items", "(", ")", ":", "out", "+=", "'\\n\\t light: %s'", "%", "light", "for", "(", "date", ",", "info", ",", "psf", ")", "in", "vals", ":", "out", "+=", "'\\n\\t\\t date: %s'", "%", "self", ".", "_toDateStr", "(", "date", ")", "out", "+=", "'\\n\\t\\t\\t info: %s; shape:%s'", "%", "(", "info", ",", "psf", ".", "shape", ")", "return", "out" ]
Returns: str: an overview covering all calibrations infos and shapes
[ "Returns", ":", "str", ":", "an", "overview", "covering", "all", "calibrations", "infos", "and", "shapes" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L121-L164
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.setCamera
def setCamera(self, camera_name, bit_depth=16): ''' Args: camera_name (str): Name of the camera bit_depth (int): depth (bit) of the camera sensor ''' self.coeffs['name'] = camera_name self.coeffs['depth'] = bit_depth
python
def setCamera(self, camera_name, bit_depth=16): ''' Args: camera_name (str): Name of the camera bit_depth (int): depth (bit) of the camera sensor ''' self.coeffs['name'] = camera_name self.coeffs['depth'] = bit_depth
[ "def", "setCamera", "(", "self", ",", "camera_name", ",", "bit_depth", "=", "16", ")", ":", "self", ".", "coeffs", "[", "'name'", "]", "=", "camera_name", "self", ".", "coeffs", "[", "'depth'", "]", "=", "bit_depth" ]
Args: camera_name (str): Name of the camera bit_depth (int): depth (bit) of the camera sensor
[ "Args", ":", "camera_name", "(", "str", ")", ":", "Name", "of", "the", "camera", "bit_depth", "(", "int", ")", ":", "depth", "(", "bit", ")", "of", "the", "camera", "sensor" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L178-L185
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.addDarkCurrent
def addDarkCurrent(self, slope, intercept=None, date=None, info='', error=None): ''' Args: slope (np.array) intercept (np.array) error (numpy.array) slope (float): dPx/dExposureTime[sec] error (float): absolute date (str): "DD Mon YY" e.g. "30 Nov 16" ''' date = _toDate(date) self._checkShape(slope) self._checkShape(intercept) d = self.coeffs['dark current'] if intercept is None: data = slope else: data = (slope, intercept) d.insert(_insertDateIndex(date, d), [date, info, data, error])
python
def addDarkCurrent(self, slope, intercept=None, date=None, info='', error=None): ''' Args: slope (np.array) intercept (np.array) error (numpy.array) slope (float): dPx/dExposureTime[sec] error (float): absolute date (str): "DD Mon YY" e.g. "30 Nov 16" ''' date = _toDate(date) self._checkShape(slope) self._checkShape(intercept) d = self.coeffs['dark current'] if intercept is None: data = slope else: data = (slope, intercept) d.insert(_insertDateIndex(date, d), [date, info, data, error])
[ "def", "addDarkCurrent", "(", "self", ",", "slope", ",", "intercept", "=", "None", ",", "date", "=", "None", ",", "info", "=", "''", ",", "error", "=", "None", ")", ":", "date", "=", "_toDate", "(", "date", ")", "self", ".", "_checkShape", "(", "slope", ")", "self", ".", "_checkShape", "(", "intercept", ")", "d", "=", "self", ".", "coeffs", "[", "'dark current'", "]", "if", "intercept", "is", "None", ":", "data", "=", "slope", "else", ":", "data", "=", "(", "slope", ",", "intercept", ")", "d", ".", "insert", "(", "_insertDateIndex", "(", "date", ",", "d", ")", ",", "[", "date", ",", "info", ",", "data", ",", "error", "]", ")" ]
Args: slope (np.array) intercept (np.array) error (numpy.array) slope (float): dPx/dExposureTime[sec] error (float): absolute date (str): "DD Mon YY" e.g. "30 Nov 16"
[ "Args", ":", "slope", "(", "np", ".", "array", ")", "intercept", "(", "np", ".", "array", ")", "error", "(", "numpy", ".", "array", ")", "slope", "(", "float", ")", ":", "dPx", "/", "dExposureTime", "[", "sec", "]", "error", "(", "float", ")", ":", "absolute", "date", "(", "str", ")", ":", "DD", "Mon", "YY", "e", ".", "g", ".", "30", "Nov", "16" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L187-L207
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.addNoise
def addNoise(self, nlf_coeff, date=None, info='', error=None): ''' Args: nlf_coeff (list) error (float): absolute info (str): additional information date (str): "DD Mon YY" e.g. "30 Nov 16" ''' date = _toDate(date) d = self.coeffs['noise'] d.insert(_insertDateIndex(date, d), [date, info, nlf_coeff, error])
python
def addNoise(self, nlf_coeff, date=None, info='', error=None): ''' Args: nlf_coeff (list) error (float): absolute info (str): additional information date (str): "DD Mon YY" e.g. "30 Nov 16" ''' date = _toDate(date) d = self.coeffs['noise'] d.insert(_insertDateIndex(date, d), [date, info, nlf_coeff, error])
[ "def", "addNoise", "(", "self", ",", "nlf_coeff", ",", "date", "=", "None", ",", "info", "=", "''", ",", "error", "=", "None", ")", ":", "date", "=", "_toDate", "(", "date", ")", "d", "=", "self", ".", "coeffs", "[", "'noise'", "]", "d", ".", "insert", "(", "_insertDateIndex", "(", "date", ",", "d", ")", ",", "[", "date", ",", "info", ",", "nlf_coeff", ",", "error", "]", ")" ]
Args: nlf_coeff (list) error (float): absolute info (str): additional information date (str): "DD Mon YY" e.g. "30 Nov 16"
[ "Args", ":", "nlf_coeff", "(", "list", ")", "error", "(", "float", ")", ":", "absolute", "info", "(", "str", ")", ":", "additional", "information", "date", "(", "str", ")", ":", "DD", "Mon", "YY", "e", ".", "g", ".", "30", "Nov", "16" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L209-L219
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.addPSF
def addPSF(self, psf, date=None, info='', light_spectrum='visible'): ''' add a new point spread function ''' self._registerLight(light_spectrum) date = _toDate(date) f = self.coeffs['psf'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [date, info, psf])
python
def addPSF(self, psf, date=None, info='', light_spectrum='visible'): ''' add a new point spread function ''' self._registerLight(light_spectrum) date = _toDate(date) f = self.coeffs['psf'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [date, info, psf])
[ "def", "addPSF", "(", "self", ",", "psf", ",", "date", "=", "None", ",", "info", "=", "''", ",", "light_spectrum", "=", "'visible'", ")", ":", "self", ".", "_registerLight", "(", "light_spectrum", ")", "date", "=", "_toDate", "(", "date", ")", "f", "=", "self", ".", "coeffs", "[", "'psf'", "]", "if", "light_spectrum", "not", "in", "f", ":", "f", "[", "light_spectrum", "]", "=", "[", "]", "f", "[", "light_spectrum", "]", ".", "insert", "(", "_insertDateIndex", "(", "date", ",", "f", "[", "light_spectrum", "]", ")", ",", "[", "date", ",", "info", ",", "psf", "]", ")" ]
add a new point spread function
[ "add", "a", "new", "point", "spread", "function" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L232-L243
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.addFlatField
def addFlatField(self, arr, date=None, info='', error=None, light_spectrum='visible'): ''' light_spectrum = light, IR ... ''' self._registerLight(light_spectrum) self._checkShape(arr) date = _toDate(date) f = self.coeffs['flat field'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [date, info, arr, error])
python
def addFlatField(self, arr, date=None, info='', error=None, light_spectrum='visible'): ''' light_spectrum = light, IR ... ''' self._registerLight(light_spectrum) self._checkShape(arr) date = _toDate(date) f = self.coeffs['flat field'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [date, info, arr, error])
[ "def", "addFlatField", "(", "self", ",", "arr", ",", "date", "=", "None", ",", "info", "=", "''", ",", "error", "=", "None", ",", "light_spectrum", "=", "'visible'", ")", ":", "self", ".", "_registerLight", "(", "light_spectrum", ")", "self", ".", "_checkShape", "(", "arr", ")", "date", "=", "_toDate", "(", "date", ")", "f", "=", "self", ".", "coeffs", "[", "'flat field'", "]", "if", "light_spectrum", "not", "in", "f", ":", "f", "[", "light_spectrum", "]", "=", "[", "]", "f", "[", "light_spectrum", "]", ".", "insert", "(", "_insertDateIndex", "(", "date", ",", "f", "[", "light_spectrum", "]", ")", ",", "[", "date", ",", "info", ",", "arr", ",", "error", "]", ")" ]
light_spectrum = light, IR ...
[ "light_spectrum", "=", "light", "IR", "..." ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L255-L267
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.addLens
def addLens(self, lens, date=None, info='', light_spectrum='visible'): ''' lens -> instance of LensDistortion or saved file ''' self._registerLight(light_spectrum) date = _toDate(date) if not isinstance(lens, LensDistortion): l = LensDistortion() l.readFromFile(lens) lens = l f = self.coeffs['lens'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [date, info, lens.coeffs])
python
def addLens(self, lens, date=None, info='', light_spectrum='visible'): ''' lens -> instance of LensDistortion or saved file ''' self._registerLight(light_spectrum) date = _toDate(date) if not isinstance(lens, LensDistortion): l = LensDistortion() l.readFromFile(lens) lens = l f = self.coeffs['lens'] if light_spectrum not in f: f[light_spectrum] = [] f[light_spectrum].insert(_insertDateIndex(date, f[light_spectrum]), [date, info, lens.coeffs])
[ "def", "addLens", "(", "self", ",", "lens", ",", "date", "=", "None", ",", "info", "=", "''", ",", "light_spectrum", "=", "'visible'", ")", ":", "self", ".", "_registerLight", "(", "light_spectrum", ")", "date", "=", "_toDate", "(", "date", ")", "if", "not", "isinstance", "(", "lens", ",", "LensDistortion", ")", ":", "l", "=", "LensDistortion", "(", ")", "l", ".", "readFromFile", "(", "lens", ")", "lens", "=", "l", "f", "=", "self", ".", "coeffs", "[", "'lens'", "]", "if", "light_spectrum", "not", "in", "f", ":", "f", "[", "light_spectrum", "]", "=", "[", "]", "f", "[", "light_spectrum", "]", ".", "insert", "(", "_insertDateIndex", "(", "date", ",", "f", "[", "light_spectrum", "]", ")", ",", "[", "date", ",", "info", ",", "lens", ".", "coeffs", "]", ")" ]
lens -> instance of LensDistortion or saved file
[ "lens", "-", ">", "instance", "of", "LensDistortion", "or", "saved", "file" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L269-L285
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.clearOldCalibrations
def clearOldCalibrations(self, date=None): ''' if not only a specific date than remove all except of the youngest calibration ''' self.coeffs['dark current'] = [self.coeffs['dark current'][-1]] self.coeffs['noise'] = [self.coeffs['noise'][-1]] for light in self.coeffs['flat field']: self.coeffs['flat field'][light] = [ self.coeffs['flat field'][light][-1]] for light in self.coeffs['lens']: self.coeffs['lens'][light] = [self.coeffs['lens'][light][-1]]
python
def clearOldCalibrations(self, date=None): ''' if not only a specific date than remove all except of the youngest calibration ''' self.coeffs['dark current'] = [self.coeffs['dark current'][-1]] self.coeffs['noise'] = [self.coeffs['noise'][-1]] for light in self.coeffs['flat field']: self.coeffs['flat field'][light] = [ self.coeffs['flat field'][light][-1]] for light in self.coeffs['lens']: self.coeffs['lens'][light] = [self.coeffs['lens'][light][-1]]
[ "def", "clearOldCalibrations", "(", "self", ",", "date", "=", "None", ")", ":", "self", ".", "coeffs", "[", "'dark current'", "]", "=", "[", "self", ".", "coeffs", "[", "'dark current'", "]", "[", "-", "1", "]", "]", "self", ".", "coeffs", "[", "'noise'", "]", "=", "[", "self", ".", "coeffs", "[", "'noise'", "]", "[", "-", "1", "]", "]", "for", "light", "in", "self", ".", "coeffs", "[", "'flat field'", "]", ":", "self", ".", "coeffs", "[", "'flat field'", "]", "[", "light", "]", "=", "[", "self", ".", "coeffs", "[", "'flat field'", "]", "[", "light", "]", "[", "-", "1", "]", "]", "for", "light", "in", "self", ".", "coeffs", "[", "'lens'", "]", ":", "self", ".", "coeffs", "[", "'lens'", "]", "[", "light", "]", "=", "[", "self", ".", "coeffs", "[", "'lens'", "]", "[", "light", "]", "[", "-", "1", "]", "]" ]
if not only a specific date than remove all except of the youngest calibration
[ "if", "not", "only", "a", "specific", "date", "than", "remove", "all", "except", "of", "the", "youngest", "calibration" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L287-L298
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.transpose
def transpose(self): ''' transpose all calibration arrays in case different array shape orders were used (x,y) vs. (y,x) ''' def _t(item): if type(item) == list: for n, it in enumerate(item): if type(it) == tuple: it = list(it) item[n] = it if type(it) == list: _t(it) if isinstance(it, np.ndarray) and it.shape == s: item[n] = it.T s = self.coeffs['shape'] for item in self.coeffs.values(): if type(item) == dict: for item2 in item.values(): _t(item2) else: _t(item) self.coeffs['shape'] = s[::-1]
python
def transpose(self): ''' transpose all calibration arrays in case different array shape orders were used (x,y) vs. (y,x) ''' def _t(item): if type(item) == list: for n, it in enumerate(item): if type(it) == tuple: it = list(it) item[n] = it if type(it) == list: _t(it) if isinstance(it, np.ndarray) and it.shape == s: item[n] = it.T s = self.coeffs['shape'] for item in self.coeffs.values(): if type(item) == dict: for item2 in item.values(): _t(item2) else: _t(item) self.coeffs['shape'] = s[::-1]
[ "def", "transpose", "(", "self", ")", ":", "def", "_t", "(", "item", ")", ":", "if", "type", "(", "item", ")", "==", "list", ":", "for", "n", ",", "it", "in", "enumerate", "(", "item", ")", ":", "if", "type", "(", "it", ")", "==", "tuple", ":", "it", "=", "list", "(", "it", ")", "item", "[", "n", "]", "=", "it", "if", "type", "(", "it", ")", "==", "list", ":", "_t", "(", "it", ")", "if", "isinstance", "(", "it", ",", "np", ".", "ndarray", ")", "and", "it", ".", "shape", "==", "s", ":", "item", "[", "n", "]", "=", "it", ".", "T", "s", "=", "self", ".", "coeffs", "[", "'shape'", "]", "for", "item", "in", "self", ".", "coeffs", ".", "values", "(", ")", ":", "if", "type", "(", "item", ")", "==", "dict", ":", "for", "item2", "in", "item", ".", "values", "(", ")", ":", "_t", "(", "item2", ")", "else", ":", "_t", "(", "item", ")", "self", ".", "coeffs", "[", "'shape'", "]", "=", "s", "[", ":", ":", "-", "1", "]" ]
transpose all calibration arrays in case different array shape orders were used (x,y) vs. (y,x)
[ "transpose", "all", "calibration", "arrays", "in", "case", "different", "array", "shape", "orders", "were", "used", "(", "x", "y", ")", "vs", ".", "(", "y", "x", ")" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L324-L349
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.correct
def correct(self, images, bgImages=None, exposure_time=None, light_spectrum=None, threshold=0.1, keep_size=True, date=None, deblur=False, denoise=False): ''' exposure_time [s] date -> string e.g. '30. Nov 15' to get a calibration on from date -> {'dark current':'30. Nov 15', 'flat field':'15. Nov 15', 'lens':'14. Nov 15', 'noise':'01. Nov 15'} ''' print('CORRECT CAMERA ...') if isinstance(date, string_types) or date is None: date = {'dark current': date, 'flat field': date, 'lens': date, 'noise': date, 'psf': date} if light_spectrum is None: try: light_spectrum = self.coeffs['light spectra'][0] except IndexError: pass # do we have multiple images? if (type(images) in (list, tuple) or (isinstance(images, np.ndarray) and images.ndim == 3 and images.shape[-1] not in (3, 4) # is color )): if len(images) > 1: # 0.NOISE n = self.coeffs['noise'] if self.noise_level_function is None and len(n): n = _getFromDate(n, date['noise'])[2] self.noise_level_function = lambda x: NoiseLevelFunction.boundedFunction( x, *n) print('... remove single-time-effects from images ') # 1. STE REMOVAL ONLY IF >=2 IMAGES ARE GIVEN: ste = SingleTimeEffectDetection(images, nStd=4, noise_level_function=self.noise_level_function) image = ste.noSTE if self.noise_level_function is None: self.noise_level_function = ste.noise_level_function else: image = np.asfarray(imread(images[0], dtype=np.float)) else: image = np.asfarray(imread(images, dtype=np.float)) self._checkShape(image) self.last_light_spectrum = light_spectrum self.last_img = image # 2. BACKGROUND REMOVAL try: self._correctDarkCurrent(image, exposure_time, bgImages, date['dark current']) except Exception as errm: print('Error: %s' % errm) # 3. VIGNETTING/SENSITIVITY CORRECTION: try: self._correctVignetting(image, light_spectrum, date['flat field']) except Exception as errm: print('Error: %s' % errm) # 4. REPLACE DECECTIVE PX WITH MEDIAN FILTERED FALUE if threshold > 0: print('... remove artefacts') try: image = self._correctArtefacts(image, threshold) except Exception as errm: print('Error: %s' % errm) # 5. DEBLUR if deblur: print('... remove blur') try: image = self._correctBlur(image, light_spectrum, date['psf']) except Exception as errm: print('Error: %s' % errm) # 5. LENS CORRECTION: try: image = self._correctLens(image, light_spectrum, date['lens'], keep_size) except TypeError: 'Error: no lens calibration found' except Exception as errm: print('Error: %s' % errm) # 6. Denoise if denoise: print('... denoise ... this might take some time') image = self._correctNoise(image) print('DONE') return image
python
def correct(self, images, bgImages=None, exposure_time=None, light_spectrum=None, threshold=0.1, keep_size=True, date=None, deblur=False, denoise=False): ''' exposure_time [s] date -> string e.g. '30. Nov 15' to get a calibration on from date -> {'dark current':'30. Nov 15', 'flat field':'15. Nov 15', 'lens':'14. Nov 15', 'noise':'01. Nov 15'} ''' print('CORRECT CAMERA ...') if isinstance(date, string_types) or date is None: date = {'dark current': date, 'flat field': date, 'lens': date, 'noise': date, 'psf': date} if light_spectrum is None: try: light_spectrum = self.coeffs['light spectra'][0] except IndexError: pass # do we have multiple images? if (type(images) in (list, tuple) or (isinstance(images, np.ndarray) and images.ndim == 3 and images.shape[-1] not in (3, 4) # is color )): if len(images) > 1: # 0.NOISE n = self.coeffs['noise'] if self.noise_level_function is None and len(n): n = _getFromDate(n, date['noise'])[2] self.noise_level_function = lambda x: NoiseLevelFunction.boundedFunction( x, *n) print('... remove single-time-effects from images ') # 1. STE REMOVAL ONLY IF >=2 IMAGES ARE GIVEN: ste = SingleTimeEffectDetection(images, nStd=4, noise_level_function=self.noise_level_function) image = ste.noSTE if self.noise_level_function is None: self.noise_level_function = ste.noise_level_function else: image = np.asfarray(imread(images[0], dtype=np.float)) else: image = np.asfarray(imread(images, dtype=np.float)) self._checkShape(image) self.last_light_spectrum = light_spectrum self.last_img = image # 2. BACKGROUND REMOVAL try: self._correctDarkCurrent(image, exposure_time, bgImages, date['dark current']) except Exception as errm: print('Error: %s' % errm) # 3. VIGNETTING/SENSITIVITY CORRECTION: try: self._correctVignetting(image, light_spectrum, date['flat field']) except Exception as errm: print('Error: %s' % errm) # 4. REPLACE DECECTIVE PX WITH MEDIAN FILTERED FALUE if threshold > 0: print('... remove artefacts') try: image = self._correctArtefacts(image, threshold) except Exception as errm: print('Error: %s' % errm) # 5. DEBLUR if deblur: print('... remove blur') try: image = self._correctBlur(image, light_spectrum, date['psf']) except Exception as errm: print('Error: %s' % errm) # 5. LENS CORRECTION: try: image = self._correctLens(image, light_spectrum, date['lens'], keep_size) except TypeError: 'Error: no lens calibration found' except Exception as errm: print('Error: %s' % errm) # 6. Denoise if denoise: print('... denoise ... this might take some time') image = self._correctNoise(image) print('DONE') return image
[ "def", "correct", "(", "self", ",", "images", ",", "bgImages", "=", "None", ",", "exposure_time", "=", "None", ",", "light_spectrum", "=", "None", ",", "threshold", "=", "0.1", ",", "keep_size", "=", "True", ",", "date", "=", "None", ",", "deblur", "=", "False", ",", "denoise", "=", "False", ")", ":", "print", "(", "'CORRECT CAMERA ...'", ")", "if", "isinstance", "(", "date", ",", "string_types", ")", "or", "date", "is", "None", ":", "date", "=", "{", "'dark current'", ":", "date", ",", "'flat field'", ":", "date", ",", "'lens'", ":", "date", ",", "'noise'", ":", "date", ",", "'psf'", ":", "date", "}", "if", "light_spectrum", "is", "None", ":", "try", ":", "light_spectrum", "=", "self", ".", "coeffs", "[", "'light spectra'", "]", "[", "0", "]", "except", "IndexError", ":", "pass", "# do we have multiple images?\r", "if", "(", "type", "(", "images", ")", "in", "(", "list", ",", "tuple", ")", "or", "(", "isinstance", "(", "images", ",", "np", ".", "ndarray", ")", "and", "images", ".", "ndim", "==", "3", "and", "images", ".", "shape", "[", "-", "1", "]", "not", "in", "(", "3", ",", "4", ")", "# is color\r", ")", ")", ":", "if", "len", "(", "images", ")", ">", "1", ":", "# 0.NOISE\r", "n", "=", "self", ".", "coeffs", "[", "'noise'", "]", "if", "self", ".", "noise_level_function", "is", "None", "and", "len", "(", "n", ")", ":", "n", "=", "_getFromDate", "(", "n", ",", "date", "[", "'noise'", "]", ")", "[", "2", "]", "self", ".", "noise_level_function", "=", "lambda", "x", ":", "NoiseLevelFunction", ".", "boundedFunction", "(", "x", ",", "*", "n", ")", "print", "(", "'... remove single-time-effects from images '", ")", "# 1. STE REMOVAL ONLY IF >=2 IMAGES ARE GIVEN:\r", "ste", "=", "SingleTimeEffectDetection", "(", "images", ",", "nStd", "=", "4", ",", "noise_level_function", "=", "self", ".", "noise_level_function", ")", "image", "=", "ste", ".", "noSTE", "if", "self", ".", "noise_level_function", "is", "None", ":", "self", ".", "noise_level_function", "=", "ste", ".", "noise_level_function", "else", ":", "image", "=", "np", ".", "asfarray", "(", "imread", "(", "images", "[", "0", "]", ",", "dtype", "=", "np", ".", "float", ")", ")", "else", ":", "image", "=", "np", ".", "asfarray", "(", "imread", "(", "images", ",", "dtype", "=", "np", ".", "float", ")", ")", "self", ".", "_checkShape", "(", "image", ")", "self", ".", "last_light_spectrum", "=", "light_spectrum", "self", ".", "last_img", "=", "image", "# 2. BACKGROUND REMOVAL\r", "try", ":", "self", ".", "_correctDarkCurrent", "(", "image", ",", "exposure_time", ",", "bgImages", ",", "date", "[", "'dark current'", "]", ")", "except", "Exception", "as", "errm", ":", "print", "(", "'Error: %s'", "%", "errm", ")", "# 3. VIGNETTING/SENSITIVITY CORRECTION:\r", "try", ":", "self", ".", "_correctVignetting", "(", "image", ",", "light_spectrum", ",", "date", "[", "'flat field'", "]", ")", "except", "Exception", "as", "errm", ":", "print", "(", "'Error: %s'", "%", "errm", ")", "# 4. REPLACE DECECTIVE PX WITH MEDIAN FILTERED FALUE\r", "if", "threshold", ">", "0", ":", "print", "(", "'... remove artefacts'", ")", "try", ":", "image", "=", "self", ".", "_correctArtefacts", "(", "image", ",", "threshold", ")", "except", "Exception", "as", "errm", ":", "print", "(", "'Error: %s'", "%", "errm", ")", "# 5. DEBLUR\r", "if", "deblur", ":", "print", "(", "'... remove blur'", ")", "try", ":", "image", "=", "self", ".", "_correctBlur", "(", "image", ",", "light_spectrum", ",", "date", "[", "'psf'", "]", ")", "except", "Exception", "as", "errm", ":", "print", "(", "'Error: %s'", "%", "errm", ")", "# 5. LENS CORRECTION:\r", "try", ":", "image", "=", "self", ".", "_correctLens", "(", "image", ",", "light_spectrum", ",", "date", "[", "'lens'", "]", ",", "keep_size", ")", "except", "TypeError", ":", "'Error: no lens calibration found'", "except", "Exception", "as", "errm", ":", "print", "(", "'Error: %s'", "%", "errm", ")", "# 6. Denoise\r", "if", "denoise", ":", "print", "(", "'... denoise ... this might take some time'", ")", "image", "=", "self", ".", "_correctNoise", "(", "image", ")", "print", "(", "'DONE'", ")", "return", "image" ]
exposure_time [s] date -> string e.g. '30. Nov 15' to get a calibration on from date -> {'dark current':'30. Nov 15', 'flat field':'15. Nov 15', 'lens':'14. Nov 15', 'noise':'01. Nov 15'}
[ "exposure_time", "[", "s", "]", "date", "-", ">", "string", "e", ".", "g", ".", "30", ".", "Nov", "15", "to", "get", "a", "calibration", "on", "from", "date", "-", ">", "{", "dark", "current", ":", "30", ".", "Nov", "15", "flat", "field", ":", "15", ".", "Nov", "15", "lens", ":", "14", ".", "Nov", "15", "noise", ":", "01", ".", "Nov", "15", "}" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L351-L459
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration._correctNoise
def _correctNoise(self, image): ''' denoise using non-local-means with guessing best parameters ''' from skimage.restoration import denoise_nl_means # save startup time image[np.isnan(image)] = 0 # otherwise result =nan out = denoise_nl_means(image, patch_size=7, patch_distance=11, #h=signalStd(image) * 0.1 ) return out
python
def _correctNoise(self, image): ''' denoise using non-local-means with guessing best parameters ''' from skimage.restoration import denoise_nl_means # save startup time image[np.isnan(image)] = 0 # otherwise result =nan out = denoise_nl_means(image, patch_size=7, patch_distance=11, #h=signalStd(image) * 0.1 ) return out
[ "def", "_correctNoise", "(", "self", ",", "image", ")", ":", "from", "skimage", ".", "restoration", "import", "denoise_nl_means", "# save startup time\r", "image", "[", "np", ".", "isnan", "(", "image", ")", "]", "=", "0", "# otherwise result =nan\r", "out", "=", "denoise_nl_means", "(", "image", ",", "patch_size", "=", "7", ",", "patch_distance", "=", "11", ",", "#h=signalStd(image) * 0.1\r", ")", "return", "out" ]
denoise using non-local-means with guessing best parameters
[ "denoise", "using", "non", "-", "local", "-", "means", "with", "guessing", "best", "parameters" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L461-L474
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration._correctDarkCurrent
def _correctDarkCurrent(self, image, exposuretime, bgImages, date): ''' open OR calculate a background image: f(t)=m*t+n ''' # either exposureTime or bgImages has to be given # if exposuretime is not None or bgImages is not None: print('... remove dark current') if bgImages is not None: if (type(bgImages) in (list, tuple) or (isinstance(bgImages, np.ndarray) and bgImages.ndim == 3)): if len(bgImages) > 1: # if multiple images are given: do STE removal: nlf = self.noise_level_function bg = SingleTimeEffectDetection( bgImages, nStd=4, noise_level_function=nlf).noSTE else: bg = imread(bgImages[0]) else: bg = imread(bgImages) else: bg = self.calcDarkCurrent(exposuretime, date) self.temp['bg'] = bg image -= bg
python
def _correctDarkCurrent(self, image, exposuretime, bgImages, date): ''' open OR calculate a background image: f(t)=m*t+n ''' # either exposureTime or bgImages has to be given # if exposuretime is not None or bgImages is not None: print('... remove dark current') if bgImages is not None: if (type(bgImages) in (list, tuple) or (isinstance(bgImages, np.ndarray) and bgImages.ndim == 3)): if len(bgImages) > 1: # if multiple images are given: do STE removal: nlf = self.noise_level_function bg = SingleTimeEffectDetection( bgImages, nStd=4, noise_level_function=nlf).noSTE else: bg = imread(bgImages[0]) else: bg = imread(bgImages) else: bg = self.calcDarkCurrent(exposuretime, date) self.temp['bg'] = bg image -= bg
[ "def", "_correctDarkCurrent", "(", "self", ",", "image", ",", "exposuretime", ",", "bgImages", ",", "date", ")", ":", "# either exposureTime or bgImages has to be given\r", "# if exposuretime is not None or bgImages is not None:\r", "print", "(", "'... remove dark current'", ")", "if", "bgImages", "is", "not", "None", ":", "if", "(", "type", "(", "bgImages", ")", "in", "(", "list", ",", "tuple", ")", "or", "(", "isinstance", "(", "bgImages", ",", "np", ".", "ndarray", ")", "and", "bgImages", ".", "ndim", "==", "3", ")", ")", ":", "if", "len", "(", "bgImages", ")", ">", "1", ":", "# if multiple images are given: do STE removal:\r", "nlf", "=", "self", ".", "noise_level_function", "bg", "=", "SingleTimeEffectDetection", "(", "bgImages", ",", "nStd", "=", "4", ",", "noise_level_function", "=", "nlf", ")", ".", "noSTE", "else", ":", "bg", "=", "imread", "(", "bgImages", "[", "0", "]", ")", "else", ":", "bg", "=", "imread", "(", "bgImages", ")", "else", ":", "bg", "=", "self", ".", "calcDarkCurrent", "(", "exposuretime", ",", "date", ")", "self", ".", "temp", "[", "'bg'", "]", "=", "bg", "image", "-=", "bg" ]
open OR calculate a background image: f(t)=m*t+n
[ "open", "OR", "calculate", "a", "background", "image", ":", "f", "(", "t", ")", "=", "m", "*", "t", "+", "n" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L476-L502
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration._correctArtefacts
def _correctArtefacts(self, image, threshold): ''' Apply a thresholded median replacing high gradients and values beyond the boundaries ''' image = np.nan_to_num(image) medianThreshold(image, threshold, copy=False) return image
python
def _correctArtefacts(self, image, threshold): ''' Apply a thresholded median replacing high gradients and values beyond the boundaries ''' image = np.nan_to_num(image) medianThreshold(image, threshold, copy=False) return image
[ "def", "_correctArtefacts", "(", "self", ",", "image", ",", "threshold", ")", ":", "image", "=", "np", ".", "nan_to_num", "(", "image", ")", "medianThreshold", "(", "image", ",", "threshold", ",", "copy", "=", "False", ")", "return", "image" ]
Apply a thresholded median replacing high gradients and values beyond the boundaries
[ "Apply", "a", "thresholded", "median", "replacing", "high", "gradients", "and", "values", "beyond", "the", "boundaries" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L556-L563
radjkarl/imgProcessor
imgProcessor/camera/CameraCalibration.py
CameraCalibration.getCoeff
def getCoeff(self, name, light=None, date=None): ''' try to get calibration for right light source, but use another if they is none existent ''' d = self.coeffs[name] try: c = d[light] except KeyError: try: k, i = next(iter(d.items())) if light is not None: print( 'no calibration found for [%s] - using [%s] instead' % (light, k)) except StopIteration: return None c = i except TypeError: # coeff not dependent on light source c = d return _getFromDate(c, date)
python
def getCoeff(self, name, light=None, date=None): ''' try to get calibration for right light source, but use another if they is none existent ''' d = self.coeffs[name] try: c = d[light] except KeyError: try: k, i = next(iter(d.items())) if light is not None: print( 'no calibration found for [%s] - using [%s] instead' % (light, k)) except StopIteration: return None c = i except TypeError: # coeff not dependent on light source c = d return _getFromDate(c, date)
[ "def", "getCoeff", "(", "self", ",", "name", ",", "light", "=", "None", ",", "date", "=", "None", ")", ":", "d", "=", "self", ".", "coeffs", "[", "name", "]", "try", ":", "c", "=", "d", "[", "light", "]", "except", "KeyError", ":", "try", ":", "k", ",", "i", "=", "next", "(", "iter", "(", "d", ".", "items", "(", ")", ")", ")", "if", "light", "is", "not", "None", ":", "print", "(", "'no calibration found for [%s] - using [%s] instead'", "%", "(", "light", ",", "k", ")", ")", "except", "StopIteration", ":", "return", "None", "c", "=", "i", "except", "TypeError", ":", "# coeff not dependent on light source\r", "c", "=", "d", "return", "_getFromDate", "(", "c", ",", "date", ")" ]
try to get calibration for right light source, but use another if they is none existent
[ "try", "to", "get", "calibration", "for", "right", "light", "source", "but", "use", "another", "if", "they", "is", "none", "existent" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/CameraCalibration.py#L590-L611
radjkarl/imgProcessor
imgProcessor/camera/flatField/vignettingFromRandomSteps.py
vignettingFromRandomSteps
def vignettingFromRandomSteps(imgs, bg, inPlane_scale_factor=None, debugFolder=None, **kwargs): ''' important: first image should shown most iof the device because it is used as reference ''' # TODO: inPlane_scale_factor if debugFolder: debugFolder = PathStr(debugFolder) s = ObjectVignettingSeparation(imgs[0], bg, **kwargs) for img in imgs[1:]: fit = s.addImg(img) if debugFolder and fit is not False: imwrite(debugFolder.join('fit_%s.tiff' % len(s.fits)), fit) if debugFolder: imwrite(debugFolder.join('init.tiff'), s.flatField) smoothed_ff, mask, flatField, obj = s.separate() if debugFolder: imwrite(debugFolder.join('object.tiff'), obj) imwrite(debugFolder.join('flatfield.tiff'), flatField, dtype=float) imwrite(debugFolder.join('flatfield_smoothed.tiff'), smoothed_ff, dtype=float) return smoothed_ff, mask
python
def vignettingFromRandomSteps(imgs, bg, inPlane_scale_factor=None, debugFolder=None, **kwargs): ''' important: first image should shown most iof the device because it is used as reference ''' # TODO: inPlane_scale_factor if debugFolder: debugFolder = PathStr(debugFolder) s = ObjectVignettingSeparation(imgs[0], bg, **kwargs) for img in imgs[1:]: fit = s.addImg(img) if debugFolder and fit is not False: imwrite(debugFolder.join('fit_%s.tiff' % len(s.fits)), fit) if debugFolder: imwrite(debugFolder.join('init.tiff'), s.flatField) smoothed_ff, mask, flatField, obj = s.separate() if debugFolder: imwrite(debugFolder.join('object.tiff'), obj) imwrite(debugFolder.join('flatfield.tiff'), flatField, dtype=float) imwrite(debugFolder.join('flatfield_smoothed.tiff'), smoothed_ff, dtype=float) return smoothed_ff, mask
[ "def", "vignettingFromRandomSteps", "(", "imgs", ",", "bg", ",", "inPlane_scale_factor", "=", "None", ",", "debugFolder", "=", "None", ",", "*", "*", "kwargs", ")", ":", "# TODO: inPlane_scale_factor\r", "if", "debugFolder", ":", "debugFolder", "=", "PathStr", "(", "debugFolder", ")", "s", "=", "ObjectVignettingSeparation", "(", "imgs", "[", "0", "]", ",", "bg", ",", "*", "*", "kwargs", ")", "for", "img", "in", "imgs", "[", "1", ":", "]", ":", "fit", "=", "s", ".", "addImg", "(", "img", ")", "if", "debugFolder", "and", "fit", "is", "not", "False", ":", "imwrite", "(", "debugFolder", ".", "join", "(", "'fit_%s.tiff'", "%", "len", "(", "s", ".", "fits", ")", ")", ",", "fit", ")", "if", "debugFolder", ":", "imwrite", "(", "debugFolder", ".", "join", "(", "'init.tiff'", ")", ",", "s", ".", "flatField", ")", "smoothed_ff", ",", "mask", ",", "flatField", ",", "obj", "=", "s", ".", "separate", "(", ")", "if", "debugFolder", ":", "imwrite", "(", "debugFolder", ".", "join", "(", "'object.tiff'", ")", ",", "obj", ")", "imwrite", "(", "debugFolder", ".", "join", "(", "'flatfield.tiff'", ")", ",", "flatField", ",", "dtype", "=", "float", ")", "imwrite", "(", "debugFolder", ".", "join", "(", "'flatfield_smoothed.tiff'", ")", ",", "smoothed_ff", ",", "dtype", "=", "float", ")", "return", "smoothed_ff", ",", "mask" ]
important: first image should shown most iof the device because it is used as reference
[ "important", ":", "first", "image", "should", "shown", "most", "iof", "the", "device", "because", "it", "is", "used", "as", "reference" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/flatField/vignettingFromRandomSteps.py#L324-L352
radjkarl/imgProcessor
imgProcessor/camera/flatField/vignettingFromRandomSteps.py
ObjectVignettingSeparation.addImg
def addImg(self, img, maxShear=0.015, maxRot=100, minMatches=12, borderWidth=3): # borderWidth=100 """ Args: img (path or array): image containing the same object as in the reference image Kwargs: maxShear (float): In order to define a good fit, refect higher shear values between this and the reference image maxRot (float): Same for rotation minMatches (int): Minimum of mating points found in both, this and the reference image """ try: fit, img, H, H_inv, nmatched = self._fitImg(img) except Exception as e: print(e) return # CHECK WHETHER FIT IS GOOD ENOUGH: (translation, rotation, scale, shear) = decompHomography(H) print('Homography ...\n\ttranslation: %s\n\trotation: %s\n\tscale: %s\n\tshear: %s' % (translation, rotation, scale, shear)) if (nmatched > minMatches and abs(shear) < maxShear and abs(rotation) < maxRot): print('==> img added') # HOMOGRAPHY: self.Hs.append(H) # INVERSE HOMOGRSAPHY self.Hinvs.append(H_inv) # IMAGES WARPED TO THE BASE IMAGE self.fits.append(fit) # ADD IMAGE TO THE INITIAL flatField ARRAY: i = img > self.signal_ranges[-1][0] # remove borders (that might have erroneous light): i = minimum_filter(i, borderWidth) self._ff_mma.update(img, i) # create fit img mask: mask = fit < self.signal_ranges[-1][0] mask = maximum_filter(mask, borderWidth) # IGNORE BORDER r = self.remove_border_size if r: mask[:r, :] = 1 mask[-r:, :] = 1 mask[:, -r:] = 1 mask[:, :r] = 1 self._fit_masks.append(mask) # image added return fit return False
python
def addImg(self, img, maxShear=0.015, maxRot=100, minMatches=12, borderWidth=3): # borderWidth=100 """ Args: img (path or array): image containing the same object as in the reference image Kwargs: maxShear (float): In order to define a good fit, refect higher shear values between this and the reference image maxRot (float): Same for rotation minMatches (int): Minimum of mating points found in both, this and the reference image """ try: fit, img, H, H_inv, nmatched = self._fitImg(img) except Exception as e: print(e) return # CHECK WHETHER FIT IS GOOD ENOUGH: (translation, rotation, scale, shear) = decompHomography(H) print('Homography ...\n\ttranslation: %s\n\trotation: %s\n\tscale: %s\n\tshear: %s' % (translation, rotation, scale, shear)) if (nmatched > minMatches and abs(shear) < maxShear and abs(rotation) < maxRot): print('==> img added') # HOMOGRAPHY: self.Hs.append(H) # INVERSE HOMOGRSAPHY self.Hinvs.append(H_inv) # IMAGES WARPED TO THE BASE IMAGE self.fits.append(fit) # ADD IMAGE TO THE INITIAL flatField ARRAY: i = img > self.signal_ranges[-1][0] # remove borders (that might have erroneous light): i = minimum_filter(i, borderWidth) self._ff_mma.update(img, i) # create fit img mask: mask = fit < self.signal_ranges[-1][0] mask = maximum_filter(mask, borderWidth) # IGNORE BORDER r = self.remove_border_size if r: mask[:r, :] = 1 mask[-r:, :] = 1 mask[:, -r:] = 1 mask[:, :r] = 1 self._fit_masks.append(mask) # image added return fit return False
[ "def", "addImg", "(", "self", ",", "img", ",", "maxShear", "=", "0.015", ",", "maxRot", "=", "100", ",", "minMatches", "=", "12", ",", "borderWidth", "=", "3", ")", ":", "# borderWidth=100\r", "try", ":", "fit", ",", "img", ",", "H", ",", "H_inv", ",", "nmatched", "=", "self", ".", "_fitImg", "(", "img", ")", "except", "Exception", "as", "e", ":", "print", "(", "e", ")", "return", "# CHECK WHETHER FIT IS GOOD ENOUGH:\r", "(", "translation", ",", "rotation", ",", "scale", ",", "shear", ")", "=", "decompHomography", "(", "H", ")", "print", "(", "'Homography ...\\n\\ttranslation: %s\\n\\trotation: %s\\n\\tscale: %s\\n\\tshear: %s'", "%", "(", "translation", ",", "rotation", ",", "scale", ",", "shear", ")", ")", "if", "(", "nmatched", ">", "minMatches", "and", "abs", "(", "shear", ")", "<", "maxShear", "and", "abs", "(", "rotation", ")", "<", "maxRot", ")", ":", "print", "(", "'==> img added'", ")", "# HOMOGRAPHY:\r", "self", ".", "Hs", ".", "append", "(", "H", ")", "# INVERSE HOMOGRSAPHY\r", "self", ".", "Hinvs", ".", "append", "(", "H_inv", ")", "# IMAGES WARPED TO THE BASE IMAGE\r", "self", ".", "fits", ".", "append", "(", "fit", ")", "# ADD IMAGE TO THE INITIAL flatField ARRAY:\r", "i", "=", "img", ">", "self", ".", "signal_ranges", "[", "-", "1", "]", "[", "0", "]", "# remove borders (that might have erroneous light):\r", "i", "=", "minimum_filter", "(", "i", ",", "borderWidth", ")", "self", ".", "_ff_mma", ".", "update", "(", "img", ",", "i", ")", "# create fit img mask:\r", "mask", "=", "fit", "<", "self", ".", "signal_ranges", "[", "-", "1", "]", "[", "0", "]", "mask", "=", "maximum_filter", "(", "mask", ",", "borderWidth", ")", "# IGNORE BORDER\r", "r", "=", "self", ".", "remove_border_size", "if", "r", ":", "mask", "[", ":", "r", ",", ":", "]", "=", "1", "mask", "[", "-", "r", ":", ",", ":", "]", "=", "1", "mask", "[", ":", ",", "-", "r", ":", "]", "=", "1", "mask", "[", ":", ",", ":", "r", "]", "=", "1", "self", ".", "_fit_masks", ".", "append", "(", "mask", ")", "# image added\r", "return", "fit", "return", "False" ]
Args: img (path or array): image containing the same object as in the reference image Kwargs: maxShear (float): In order to define a good fit, refect higher shear values between this and the reference image maxRot (float): Same for rotation minMatches (int): Minimum of mating points found in both, this and the reference image
[ "Args", ":", "img", "(", "path", "or", "array", ")", ":", "image", "containing", "the", "same", "object", "as", "in", "the", "reference", "image", "Kwargs", ":", "maxShear", "(", "float", ")", ":", "In", "order", "to", "define", "a", "good", "fit", "refect", "higher", "shear", "values", "between", "this", "and", "the", "reference", "image", "maxRot", "(", "float", ")", ":", "Same", "for", "rotation", "minMatches", "(", "int", ")", ":", "Minimum", "of", "mating", "points", "found", "in", "both", "this", "and", "the", "reference", "image" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/flatField/vignettingFromRandomSteps.py#L114-L167
radjkarl/imgProcessor
imgProcessor/camera/flatField/vignettingFromRandomSteps.py
ObjectVignettingSeparation.error
def error(self, nCells=15): ''' calculate the standard deviation of all fitted images, averaged to a grid ''' s0, s1 = self.fits[0].shape aR = s0 / s1 if aR > 1: ss0 = int(nCells) ss1 = int(ss0 / aR) else: ss1 = int(nCells) ss0 = int(ss1 * aR) L = len(self.fits) arr = np.array(self.fits) arr[np.array(self._fit_masks)] = np.nan avg = np.tile(np.nanmean(arr, axis=0), (L, 1, 1)) arr = (arr - avg) / avg out = np.empty(shape=(L, ss0, ss1)) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) for n, f in enumerate(arr): out[n] = subCell2DFnArray(f, np.nanmean, (ss0, ss1)) return np.nanmean(out**2)**0.5
python
def error(self, nCells=15): ''' calculate the standard deviation of all fitted images, averaged to a grid ''' s0, s1 = self.fits[0].shape aR = s0 / s1 if aR > 1: ss0 = int(nCells) ss1 = int(ss0 / aR) else: ss1 = int(nCells) ss0 = int(ss1 * aR) L = len(self.fits) arr = np.array(self.fits) arr[np.array(self._fit_masks)] = np.nan avg = np.tile(np.nanmean(arr, axis=0), (L, 1, 1)) arr = (arr - avg) / avg out = np.empty(shape=(L, ss0, ss1)) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) for n, f in enumerate(arr): out[n] = subCell2DFnArray(f, np.nanmean, (ss0, ss1)) return np.nanmean(out**2)**0.5
[ "def", "error", "(", "self", ",", "nCells", "=", "15", ")", ":", "s0", ",", "s1", "=", "self", ".", "fits", "[", "0", "]", ".", "shape", "aR", "=", "s0", "/", "s1", "if", "aR", ">", "1", ":", "ss0", "=", "int", "(", "nCells", ")", "ss1", "=", "int", "(", "ss0", "/", "aR", ")", "else", ":", "ss1", "=", "int", "(", "nCells", ")", "ss0", "=", "int", "(", "ss1", "*", "aR", ")", "L", "=", "len", "(", "self", ".", "fits", ")", "arr", "=", "np", ".", "array", "(", "self", ".", "fits", ")", "arr", "[", "np", ".", "array", "(", "self", ".", "_fit_masks", ")", "]", "=", "np", ".", "nan", "avg", "=", "np", ".", "tile", "(", "np", ".", "nanmean", "(", "arr", ",", "axis", "=", "0", ")", ",", "(", "L", ",", "1", ",", "1", ")", ")", "arr", "=", "(", "arr", "-", "avg", ")", "/", "avg", "out", "=", "np", ".", "empty", "(", "shape", "=", "(", "L", ",", "ss0", ",", "ss1", ")", ")", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "warnings", ".", "simplefilter", "(", "\"ignore\"", ",", "category", "=", "RuntimeWarning", ")", "for", "n", ",", "f", "in", "enumerate", "(", "arr", ")", ":", "out", "[", "n", "]", "=", "subCell2DFnArray", "(", "f", ",", "np", ".", "nanmean", ",", "(", "ss0", ",", "ss1", ")", ")", "return", "np", ".", "nanmean", "(", "out", "**", "2", ")", "**", "0.5" ]
calculate the standard deviation of all fitted images, averaged to a grid
[ "calculate", "the", "standard", "deviation", "of", "all", "fitted", "images", "averaged", "to", "a", "grid" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/flatField/vignettingFromRandomSteps.py#L169-L197
radjkarl/imgProcessor
imgProcessor/camera/flatField/vignettingFromRandomSteps.py
ObjectVignettingSeparation._fitImg
def _fitImg(self, img): ''' fit perspective and size of the input image to the reference image ''' img = imread(img, 'gray') if self.bg is not None: img = cv2.subtract(img, self.bg) if self.lens is not None: img = self.lens.correct(img, keepSize=True) (H, _, _, _, _, _, _, n_matches) = self.findHomography(img) H_inv = self.invertHomography(H) s = self.obj_shape fit = cv2.warpPerspective(img, H_inv, (s[1], s[0])) return fit, img, H, H_inv, n_matches
python
def _fitImg(self, img): ''' fit perspective and size of the input image to the reference image ''' img = imread(img, 'gray') if self.bg is not None: img = cv2.subtract(img, self.bg) if self.lens is not None: img = self.lens.correct(img, keepSize=True) (H, _, _, _, _, _, _, n_matches) = self.findHomography(img) H_inv = self.invertHomography(H) s = self.obj_shape fit = cv2.warpPerspective(img, H_inv, (s[1], s[0])) return fit, img, H, H_inv, n_matches
[ "def", "_fitImg", "(", "self", ",", "img", ")", ":", "img", "=", "imread", "(", "img", ",", "'gray'", ")", "if", "self", ".", "bg", "is", "not", "None", ":", "img", "=", "cv2", ".", "subtract", "(", "img", ",", "self", ".", "bg", ")", "if", "self", ".", "lens", "is", "not", "None", ":", "img", "=", "self", ".", "lens", ".", "correct", "(", "img", ",", "keepSize", "=", "True", ")", "(", "H", ",", "_", ",", "_", ",", "_", ",", "_", ",", "_", ",", "_", ",", "n_matches", ")", "=", "self", ".", "findHomography", "(", "img", ")", "H_inv", "=", "self", ".", "invertHomography", "(", "H", ")", "s", "=", "self", ".", "obj_shape", "fit", "=", "cv2", ".", "warpPerspective", "(", "img", ",", "H_inv", ",", "(", "s", "[", "1", "]", ",", "s", "[", "0", "]", ")", ")", "return", "fit", ",", "img", ",", "H", ",", "H_inv", ",", "n_matches" ]
fit perspective and size of the input image to the reference image
[ "fit", "perspective", "and", "size", "of", "the", "input", "image", "to", "the", "reference", "image" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/flatField/vignettingFromRandomSteps.py#L294-L310
radjkarl/imgProcessor
imgProcessor/camera/flatField/vignettingFromRandomSteps.py
ObjectVignettingSeparation._findObject
def _findObject(self, img): ''' Create a bounding box around the object within an image ''' from imgProcessor.imgSignal import signalMinimum # img is scaled already i = img > signalMinimum(img) # img.max()/2.5 # filter noise, single-time-effects etc. from mask: i = minimum_filter(i, 4) return boundingBox(i)
python
def _findObject(self, img): ''' Create a bounding box around the object within an image ''' from imgProcessor.imgSignal import signalMinimum # img is scaled already i = img > signalMinimum(img) # img.max()/2.5 # filter noise, single-time-effects etc. from mask: i = minimum_filter(i, 4) return boundingBox(i)
[ "def", "_findObject", "(", "self", ",", "img", ")", ":", "from", "imgProcessor", ".", "imgSignal", "import", "signalMinimum", "# img is scaled already\r", "i", "=", "img", ">", "signalMinimum", "(", "img", ")", "# img.max()/2.5\r", "# filter noise, single-time-effects etc. from mask:\r", "i", "=", "minimum_filter", "(", "i", ",", "4", ")", "return", "boundingBox", "(", "i", ")" ]
Create a bounding box around the object within an image
[ "Create", "a", "bounding", "box", "around", "the", "object", "within", "an", "image" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/flatField/vignettingFromRandomSteps.py#L312-L321
radjkarl/imgProcessor
imgProcessor/filters/filterVerticalLines.py
filterVerticalLines
def filterVerticalLines(arr, min_line_length=4): """ Remove vertical lines in boolean array if linelength >=min_line_length """ gy = arr.shape[0] gx = arr.shape[1] mn = min_line_length-1 for i in range(gy): for j in range(gx): if arr[i,j]: for d in range(min_line_length): if not arr[i+d,j]: break if d == mn: d = 0 while True: if not arr[i+d,j]: break arr[i+d,j] = 0 d +=1
python
def filterVerticalLines(arr, min_line_length=4): """ Remove vertical lines in boolean array if linelength >=min_line_length """ gy = arr.shape[0] gx = arr.shape[1] mn = min_line_length-1 for i in range(gy): for j in range(gx): if arr[i,j]: for d in range(min_line_length): if not arr[i+d,j]: break if d == mn: d = 0 while True: if not arr[i+d,j]: break arr[i+d,j] = 0 d +=1
[ "def", "filterVerticalLines", "(", "arr", ",", "min_line_length", "=", "4", ")", ":", "gy", "=", "arr", ".", "shape", "[", "0", "]", "gx", "=", "arr", ".", "shape", "[", "1", "]", "mn", "=", "min_line_length", "-", "1", "for", "i", "in", "range", "(", "gy", ")", ":", "for", "j", "in", "range", "(", "gx", ")", ":", "if", "arr", "[", "i", ",", "j", "]", ":", "for", "d", "in", "range", "(", "min_line_length", ")", ":", "if", "not", "arr", "[", "i", "+", "d", ",", "j", "]", ":", "break", "if", "d", "==", "mn", ":", "d", "=", "0", "while", "True", ":", "if", "not", "arr", "[", "i", "+", "d", ",", "j", "]", ":", "break", "arr", "[", "i", "+", "d", ",", "j", "]", "=", "0", "d", "+=", "1" ]
Remove vertical lines in boolean array if linelength >=min_line_length
[ "Remove", "vertical", "lines", "in", "boolean", "array", "if", "linelength", ">", "=", "min_line_length" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/filters/filterVerticalLines.py#L4-L23
radjkarl/imgProcessor
imgProcessor/equations/vignetting.py
vignetting
def vignetting(xy, f=100, alpha=0, rot=0, tilt=0, cx=50, cy=50): ''' Vignetting equation using the KANG-WEISS-MODEL see http://research.microsoft.com/en-us/um/people/sbkang/publications/eccv00.pdf f - focal length alpha - coefficient in the geometric vignetting factor tilt - tilt angle of a planar scene rot - rotation angle of a planar scene cx - image center, x cy - image center, y ''' x, y = xy # distance to image center: dist = ((x - cx)**2 + (y - cy)**2)**0.5 # OFF_AXIS ILLUMINATION FACTOR: A = 1.0 / (1 + (dist / f)**2)**2 # GEOMETRIC FACTOR: if alpha != 0: G = (1 - alpha * dist) else: G = 1 # TILT FACTOR: if tilt != 0: T = tiltFactor((x, y), f, tilt, rot, (cy, cx)) else: T = 1 return A * G * T
python
def vignetting(xy, f=100, alpha=0, rot=0, tilt=0, cx=50, cy=50): ''' Vignetting equation using the KANG-WEISS-MODEL see http://research.microsoft.com/en-us/um/people/sbkang/publications/eccv00.pdf f - focal length alpha - coefficient in the geometric vignetting factor tilt - tilt angle of a planar scene rot - rotation angle of a planar scene cx - image center, x cy - image center, y ''' x, y = xy # distance to image center: dist = ((x - cx)**2 + (y - cy)**2)**0.5 # OFF_AXIS ILLUMINATION FACTOR: A = 1.0 / (1 + (dist / f)**2)**2 # GEOMETRIC FACTOR: if alpha != 0: G = (1 - alpha * dist) else: G = 1 # TILT FACTOR: if tilt != 0: T = tiltFactor((x, y), f, tilt, rot, (cy, cx)) else: T = 1 return A * G * T
[ "def", "vignetting", "(", "xy", ",", "f", "=", "100", ",", "alpha", "=", "0", ",", "rot", "=", "0", ",", "tilt", "=", "0", ",", "cx", "=", "50", ",", "cy", "=", "50", ")", ":", "x", ",", "y", "=", "xy", "# distance to image center:\r", "dist", "=", "(", "(", "x", "-", "cx", ")", "**", "2", "+", "(", "y", "-", "cy", ")", "**", "2", ")", "**", "0.5", "# OFF_AXIS ILLUMINATION FACTOR:\r", "A", "=", "1.0", "/", "(", "1", "+", "(", "dist", "/", "f", ")", "**", "2", ")", "**", "2", "# GEOMETRIC FACTOR:\r", "if", "alpha", "!=", "0", ":", "G", "=", "(", "1", "-", "alpha", "*", "dist", ")", "else", ":", "G", "=", "1", "# TILT FACTOR:\r", "if", "tilt", "!=", "0", ":", "T", "=", "tiltFactor", "(", "(", "x", ",", "y", ")", ",", "f", ",", "tilt", ",", "rot", ",", "(", "cy", ",", "cx", ")", ")", "else", ":", "T", "=", "1", "return", "A", "*", "G", "*", "T" ]
Vignetting equation using the KANG-WEISS-MODEL see http://research.microsoft.com/en-us/um/people/sbkang/publications/eccv00.pdf f - focal length alpha - coefficient in the geometric vignetting factor tilt - tilt angle of a planar scene rot - rotation angle of a planar scene cx - image center, x cy - image center, y
[ "Vignetting", "equation", "using", "the", "KANG", "-", "WEISS", "-", "MODEL", "see", "http", ":", "//", "research", ".", "microsoft", ".", "com", "/", "en", "-", "us", "/", "um", "/", "people", "/", "sbkang", "/", "publications", "/", "eccv00", ".", "pdf", "f", "-", "focal", "length", "alpha", "-", "coefficient", "in", "the", "geometric", "vignetting", "factor", "tilt", "-", "tilt", "angle", "of", "a", "planar", "scene", "rot", "-", "rotation", "angle", "of", "a", "planar", "scene", "cx", "-", "image", "center", "x", "cy", "-", "image", "center", "y" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/equations/vignetting.py#L9-L37
radjkarl/imgProcessor
imgProcessor/equations/vignetting.py
tiltFactor
def tiltFactor(xy, f, tilt, rot, center=None): ''' this function is extra to only cover vignetting through perspective distortion f - focal length [px] tau - tilt angle of a planar scene [radian] rot - rotation angle of a planar scene [radian] ''' x, y = xy arr = np.cos(tilt) * ( 1 + (np.tan(tilt) / f) * ( x * np.sin(rot) - y * np.cos(rot)))**3 return arr
python
def tiltFactor(xy, f, tilt, rot, center=None): ''' this function is extra to only cover vignetting through perspective distortion f - focal length [px] tau - tilt angle of a planar scene [radian] rot - rotation angle of a planar scene [radian] ''' x, y = xy arr = np.cos(tilt) * ( 1 + (np.tan(tilt) / f) * ( x * np.sin(rot) - y * np.cos(rot)))**3 return arr
[ "def", "tiltFactor", "(", "xy", ",", "f", ",", "tilt", ",", "rot", ",", "center", "=", "None", ")", ":", "x", ",", "y", "=", "xy", "arr", "=", "np", ".", "cos", "(", "tilt", ")", "*", "(", "1", "+", "(", "np", ".", "tan", "(", "tilt", ")", "/", "f", ")", "*", "(", "x", "*", "np", ".", "sin", "(", "rot", ")", "-", "y", "*", "np", ".", "cos", "(", "rot", ")", ")", ")", "**", "3", "return", "arr" ]
this function is extra to only cover vignetting through perspective distortion f - focal length [px] tau - tilt angle of a planar scene [radian] rot - rotation angle of a planar scene [radian]
[ "this", "function", "is", "extra", "to", "only", "cover", "vignetting", "through", "perspective", "distortion", "f", "-", "focal", "length", "[", "px", "]", "tau", "-", "tilt", "angle", "of", "a", "planar", "scene", "[", "radian", "]", "rot", "-", "rotation", "angle", "of", "a", "planar", "scene", "[", "radian", "]" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/equations/vignetting.py#L40-L52
radjkarl/imgProcessor
imgProcessor/transform/imgAverage.py
imgAverage
def imgAverage(images, copy=True): ''' returns an image average works on many, also unloaded images minimises RAM usage ''' i0 = images[0] out = imread(i0, dtype='float') if copy and id(i0) == id(out): out = out.copy() for i in images[1:]: out += imread(i, dtype='float') out /= len(images) return out
python
def imgAverage(images, copy=True): ''' returns an image average works on many, also unloaded images minimises RAM usage ''' i0 = images[0] out = imread(i0, dtype='float') if copy and id(i0) == id(out): out = out.copy() for i in images[1:]: out += imread(i, dtype='float') out /= len(images) return out
[ "def", "imgAverage", "(", "images", ",", "copy", "=", "True", ")", ":", "i0", "=", "images", "[", "0", "]", "out", "=", "imread", "(", "i0", ",", "dtype", "=", "'float'", ")", "if", "copy", "and", "id", "(", "i0", ")", "==", "id", "(", "out", ")", ":", "out", "=", "out", ".", "copy", "(", ")", "for", "i", "in", "images", "[", "1", ":", "]", ":", "out", "+=", "imread", "(", "i", ",", "dtype", "=", "'float'", ")", "out", "/=", "len", "(", "images", ")", "return", "out" ]
returns an image average works on many, also unloaded images minimises RAM usage
[ "returns", "an", "image", "average", "works", "on", "many", "also", "unloaded", "images", "minimises", "RAM", "usage" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transform/imgAverage.py#L7-L22
radjkarl/imgProcessor
imgProcessor/interpolate/offsetMeshgrid.py
offsetMeshgrid
def offsetMeshgrid(offset, grid, shape): ''' Imagine you have cell averages [grid] on an image. the top-left position of [grid] within the image can be variable [offset] offset(x,y) e.g.(0,0) if no offset grid(nx,ny) resolution of smaller grid shape(x,y) -> output shape returns meshgrid to be used to upscale [grid] to [shape] resolution ''' g0,g1 = grid s0,s1 = shape o0, o1 = offset #rescale to small grid: o0 = - o0/ s0 * (g0-1) o1 = - o1/ s1 * (g1-1) xx,yy = np.meshgrid(np.linspace(o1, o1+g1-1, s1), np.linspace(o0,o0+g0-1, s0)) return yy,xx
python
def offsetMeshgrid(offset, grid, shape): ''' Imagine you have cell averages [grid] on an image. the top-left position of [grid] within the image can be variable [offset] offset(x,y) e.g.(0,0) if no offset grid(nx,ny) resolution of smaller grid shape(x,y) -> output shape returns meshgrid to be used to upscale [grid] to [shape] resolution ''' g0,g1 = grid s0,s1 = shape o0, o1 = offset #rescale to small grid: o0 = - o0/ s0 * (g0-1) o1 = - o1/ s1 * (g1-1) xx,yy = np.meshgrid(np.linspace(o1, o1+g1-1, s1), np.linspace(o0,o0+g0-1, s0)) return yy,xx
[ "def", "offsetMeshgrid", "(", "offset", ",", "grid", ",", "shape", ")", ":", "g0", ",", "g1", "=", "grid", "s0", ",", "s1", "=", "shape", "o0", ",", "o1", "=", "offset", "#rescale to small grid:\r", "o0", "=", "-", "o0", "/", "s0", "*", "(", "g0", "-", "1", ")", "o1", "=", "-", "o1", "/", "s1", "*", "(", "g1", "-", "1", ")", "xx", ",", "yy", "=", "np", ".", "meshgrid", "(", "np", ".", "linspace", "(", "o1", ",", "o1", "+", "g1", "-", "1", ",", "s1", ")", ",", "np", ".", "linspace", "(", "o0", ",", "o0", "+", "g0", "-", "1", ",", "s0", ")", ")", "return", "yy", ",", "xx" ]
Imagine you have cell averages [grid] on an image. the top-left position of [grid] within the image can be variable [offset] offset(x,y) e.g.(0,0) if no offset grid(nx,ny) resolution of smaller grid shape(x,y) -> output shape returns meshgrid to be used to upscale [grid] to [shape] resolution
[ "Imagine", "you", "have", "cell", "averages", "[", "grid", "]", "on", "an", "image", ".", "the", "top", "-", "left", "position", "of", "[", "grid", "]", "within", "the", "image", "can", "be", "variable", "[", "offset", "]", "offset", "(", "x", "y", ")", "e", ".", "g", ".", "(", "0", "0", ")", "if", "no", "offset", "grid", "(", "nx", "ny", ")", "resolution", "of", "smaller", "grid", "shape", "(", "x", "y", ")", "-", ">", "output", "shape", "returns", "meshgrid", "to", "be", "used", "to", "upscale", "[", "grid", "]", "to", "[", "shape", "]", "resolution" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/interpolate/offsetMeshgrid.py#L5-L27
radjkarl/imgProcessor
imgProcessor/equations/poisson.py
poisson
def poisson(x, a, b, c, d=0): ''' Poisson function a -> height of the curve's peak b -> position of the center of the peak c -> standard deviation d -> offset ''' from scipy.misc import factorial #save startup time lamb = 1 X = (x/(2*c)).astype(int) return a * (( lamb**X/factorial(X)) * np.exp(-lamb) ) +d
python
def poisson(x, a, b, c, d=0): ''' Poisson function a -> height of the curve's peak b -> position of the center of the peak c -> standard deviation d -> offset ''' from scipy.misc import factorial #save startup time lamb = 1 X = (x/(2*c)).astype(int) return a * (( lamb**X/factorial(X)) * np.exp(-lamb) ) +d
[ "def", "poisson", "(", "x", ",", "a", ",", "b", ",", "c", ",", "d", "=", "0", ")", ":", "from", "scipy", ".", "misc", "import", "factorial", "#save startup time\r", "lamb", "=", "1", "X", "=", "(", "x", "/", "(", "2", "*", "c", ")", ")", ".", "astype", "(", "int", ")", "return", "a", "*", "(", "(", "lamb", "**", "X", "/", "factorial", "(", "X", ")", ")", "*", "np", ".", "exp", "(", "-", "lamb", ")", ")", "+", "d" ]
Poisson function a -> height of the curve's peak b -> position of the center of the peak c -> standard deviation d -> offset
[ "Poisson", "function", "a", "-", ">", "height", "of", "the", "curve", "s", "peak", "b", "-", ">", "position", "of", "the", "center", "of", "the", "peak", "c", "-", ">", "standard", "deviation", "d", "-", ">", "offset" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/equations/poisson.py#L4-L15
radjkarl/imgProcessor
imgProcessor/transform/rotate.py
rotate
def rotate(image, angle, interpolation=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT, borderValue=0): ''' angle [deg] ''' s0, s1 = image.shape image_center = (s0 - 1) / 2., (s1 - 1) / 2. rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape, flags=interpolation, borderMode=borderMode, borderValue=borderValue) return result
python
def rotate(image, angle, interpolation=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT, borderValue=0): ''' angle [deg] ''' s0, s1 = image.shape image_center = (s0 - 1) / 2., (s1 - 1) / 2. rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0) result = cv2.warpAffine(image, rot_mat, image.shape, flags=interpolation, borderMode=borderMode, borderValue=borderValue) return result
[ "def", "rotate", "(", "image", ",", "angle", ",", "interpolation", "=", "cv2", ".", "INTER_CUBIC", ",", "borderMode", "=", "cv2", ".", "BORDER_REFLECT", ",", "borderValue", "=", "0", ")", ":", "s0", ",", "s1", "=", "image", ".", "shape", "image_center", "=", "(", "s0", "-", "1", ")", "/", "2.", ",", "(", "s1", "-", "1", ")", "/", "2.", "rot_mat", "=", "cv2", ".", "getRotationMatrix2D", "(", "image_center", ",", "angle", ",", "1.0", ")", "result", "=", "cv2", ".", "warpAffine", "(", "image", ",", "rot_mat", ",", "image", ".", "shape", ",", "flags", "=", "interpolation", ",", "borderMode", "=", "borderMode", ",", "borderValue", "=", "borderValue", ")", "return", "result" ]
angle [deg]
[ "angle", "[", "deg", "]" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transform/rotate.py#L8-L19
radjkarl/imgProcessor
imgProcessor/uncertainty/adjustUncertToExposureTime.py
adjustUncertToExposureTime
def adjustUncertToExposureTime(facExpTime, uncertMap, evtLenMap): ''' Adjust image uncertainty (measured at exposure time t0) to new exposure time facExpTime --> new exp.time / reference exp.time =(t/t0) uncertMap --> 2d array mapping image uncertainty evtLen --> 2d array mapping event duration within image [sec] event duration is relative to exposure time e.g. duration = 2 means event is 2x longer than exposure time More information can be found at ... ---- K.Bedrich: Quantitative Electroluminescence Imaging, PhD Thesis, 2017 Subsection 5.1.4.3: Exposure Time Dependency ---- ''' #fit parameters, obtained from ####[simulateUncertDependencyOnExpTime] params = np.array( #a facExpTime f_0 f_inf [[ 2.63017121e+00, 3.05873627e-01, 1.00000000e+01, 2.78233309e-01], [ 2.26467931e+00, 2.86206621e-01, 8.01396977e+00, 2.04089232e-01], [ 1.27361168e+00, 5.18377189e-01, 3.04180084e+00, 2.61396338e-01], [ 7.34546040e-01, 7.34549823e-01, 1.86507345e+00, 2.77563156e-01], [ 3.82715618e-01, 9.32410141e-01, 1.34510254e+00, 2.91228149e-01], [ 1.71166071e-01, 1.14092885e+00, 1.11243702e+00, 3.07947386e-01], [ 6.13455410e-02, 1.43802520e+00, 1.02995065e+00, 3.93920802e-01], [ 1.65383071e-02, 1.75605076e+00, 1.00859395e+00, 5.02132321e-01], [ 4.55800114e-03, 1.99855711e+00, 9.98819118e-01, 5.99572776e-01]]) #event duration relative to exposure time:(1/16...16) dur = np.array([ 0.0625, 0.125 , 0.25 , 0.5 , 1. , 2. , 4. , 8. , 16. ]) #get factors from interpolation: a = UnivariateSpline(dur, params[:, 0], k=3, s=0) b = UnivariateSpline(dur, params[:, 1], k=3, s=0) start = UnivariateSpline(dur, params[:, 2], k=3, s=0) end = UnivariateSpline(dur, params[:, 3], k=3, s=0) p0 = a(evtLenMap), b(evtLenMap), start(evtLenMap), end(evtLenMap) #uncertainty for new exposure time: out = uncertMap * _fitfn(facExpTime, *p0) # everywhere where there ARE NO EVENTS --> scale uncert. as if would # be normal distributed: i = evtLenMap == 0 out[i] = uncertMap[i] * (1 / facExpTime)**0.5 return out
python
def adjustUncertToExposureTime(facExpTime, uncertMap, evtLenMap): ''' Adjust image uncertainty (measured at exposure time t0) to new exposure time facExpTime --> new exp.time / reference exp.time =(t/t0) uncertMap --> 2d array mapping image uncertainty evtLen --> 2d array mapping event duration within image [sec] event duration is relative to exposure time e.g. duration = 2 means event is 2x longer than exposure time More information can be found at ... ---- K.Bedrich: Quantitative Electroluminescence Imaging, PhD Thesis, 2017 Subsection 5.1.4.3: Exposure Time Dependency ---- ''' #fit parameters, obtained from ####[simulateUncertDependencyOnExpTime] params = np.array( #a facExpTime f_0 f_inf [[ 2.63017121e+00, 3.05873627e-01, 1.00000000e+01, 2.78233309e-01], [ 2.26467931e+00, 2.86206621e-01, 8.01396977e+00, 2.04089232e-01], [ 1.27361168e+00, 5.18377189e-01, 3.04180084e+00, 2.61396338e-01], [ 7.34546040e-01, 7.34549823e-01, 1.86507345e+00, 2.77563156e-01], [ 3.82715618e-01, 9.32410141e-01, 1.34510254e+00, 2.91228149e-01], [ 1.71166071e-01, 1.14092885e+00, 1.11243702e+00, 3.07947386e-01], [ 6.13455410e-02, 1.43802520e+00, 1.02995065e+00, 3.93920802e-01], [ 1.65383071e-02, 1.75605076e+00, 1.00859395e+00, 5.02132321e-01], [ 4.55800114e-03, 1.99855711e+00, 9.98819118e-01, 5.99572776e-01]]) #event duration relative to exposure time:(1/16...16) dur = np.array([ 0.0625, 0.125 , 0.25 , 0.5 , 1. , 2. , 4. , 8. , 16. ]) #get factors from interpolation: a = UnivariateSpline(dur, params[:, 0], k=3, s=0) b = UnivariateSpline(dur, params[:, 1], k=3, s=0) start = UnivariateSpline(dur, params[:, 2], k=3, s=0) end = UnivariateSpline(dur, params[:, 3], k=3, s=0) p0 = a(evtLenMap), b(evtLenMap), start(evtLenMap), end(evtLenMap) #uncertainty for new exposure time: out = uncertMap * _fitfn(facExpTime, *p0) # everywhere where there ARE NO EVENTS --> scale uncert. as if would # be normal distributed: i = evtLenMap == 0 out[i] = uncertMap[i] * (1 / facExpTime)**0.5 return out
[ "def", "adjustUncertToExposureTime", "(", "facExpTime", ",", "uncertMap", ",", "evtLenMap", ")", ":", "#fit parameters, obtained from ####[simulateUncertDependencyOnExpTime]\r", "params", "=", "np", ".", "array", "(", "#a facExpTime f_0 f_inf \r", "[", "[", "2.63017121e+00", ",", "3.05873627e-01", ",", "1.00000000e+01", ",", "2.78233309e-01", "]", ",", "[", "2.26467931e+00", ",", "2.86206621e-01", ",", "8.01396977e+00", ",", "2.04089232e-01", "]", ",", "[", "1.27361168e+00", ",", "5.18377189e-01", ",", "3.04180084e+00", ",", "2.61396338e-01", "]", ",", "[", "7.34546040e-01", ",", "7.34549823e-01", ",", "1.86507345e+00", ",", "2.77563156e-01", "]", ",", "[", "3.82715618e-01", ",", "9.32410141e-01", ",", "1.34510254e+00", ",", "2.91228149e-01", "]", ",", "[", "1.71166071e-01", ",", "1.14092885e+00", ",", "1.11243702e+00", ",", "3.07947386e-01", "]", ",", "[", "6.13455410e-02", ",", "1.43802520e+00", ",", "1.02995065e+00", ",", "3.93920802e-01", "]", ",", "[", "1.65383071e-02", ",", "1.75605076e+00", ",", "1.00859395e+00", ",", "5.02132321e-01", "]", ",", "[", "4.55800114e-03", ",", "1.99855711e+00", ",", "9.98819118e-01", ",", "5.99572776e-01", "]", "]", ")", "#event duration relative to exposure time:(1/16...16)\r", "dur", "=", "np", ".", "array", "(", "[", "0.0625", ",", "0.125", ",", "0.25", ",", "0.5", ",", "1.", ",", "2.", ",", "4.", ",", "8.", ",", "16.", "]", ")", "#get factors from interpolation:\r", "a", "=", "UnivariateSpline", "(", "dur", ",", "params", "[", ":", ",", "0", "]", ",", "k", "=", "3", ",", "s", "=", "0", ")", "b", "=", "UnivariateSpline", "(", "dur", ",", "params", "[", ":", ",", "1", "]", ",", "k", "=", "3", ",", "s", "=", "0", ")", "start", "=", "UnivariateSpline", "(", "dur", ",", "params", "[", ":", ",", "2", "]", ",", "k", "=", "3", ",", "s", "=", "0", ")", "end", "=", "UnivariateSpline", "(", "dur", ",", "params", "[", ":", ",", "3", "]", ",", "k", "=", "3", ",", "s", "=", "0", ")", "p0", "=", "a", "(", "evtLenMap", ")", ",", "b", "(", "evtLenMap", ")", ",", "start", "(", "evtLenMap", ")", ",", "end", "(", "evtLenMap", ")", "#uncertainty for new exposure time:\r", "out", "=", "uncertMap", "*", "_fitfn", "(", "facExpTime", ",", "*", "p0", ")", "# everywhere where there ARE NO EVENTS --> scale uncert. as if would\r", "# be normal distributed:\r", "i", "=", "evtLenMap", "==", "0", "out", "[", "i", "]", "=", "uncertMap", "[", "i", "]", "*", "(", "1", "/", "facExpTime", ")", "**", "0.5", "return", "out" ]
Adjust image uncertainty (measured at exposure time t0) to new exposure time facExpTime --> new exp.time / reference exp.time =(t/t0) uncertMap --> 2d array mapping image uncertainty evtLen --> 2d array mapping event duration within image [sec] event duration is relative to exposure time e.g. duration = 2 means event is 2x longer than exposure time More information can be found at ... ---- K.Bedrich: Quantitative Electroluminescence Imaging, PhD Thesis, 2017 Subsection 5.1.4.3: Exposure Time Dependency ----
[ "Adjust", "image", "uncertainty", "(", "measured", "at", "exposure", "time", "t0", ")", "to", "new", "exposure", "time", "facExpTime", "--", ">", "new", "exp", ".", "time", "/", "reference", "exp", ".", "time", "=", "(", "t", "/", "t0", ")", "uncertMap", "--", ">", "2d", "array", "mapping", "image", "uncertainty", "evtLen", "--", ">", "2d", "array", "mapping", "event", "duration", "within", "image", "[", "sec", "]", "event", "duration", "is", "relative", "to", "exposure", "time", "e", ".", "g", ".", "duration", "=", "2", "means", "event", "is", "2x", "longer", "than", "exposure", "time", "More", "information", "can", "be", "found", "at", "...", "----", "K", ".", "Bedrich", ":", "Quantitative", "Electroluminescence", "Imaging", "PhD", "Thesis", "2017", "Subsection", "5", ".", "1", ".", "4", ".", "3", ":", "Exposure", "Time", "Dependency", "----" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/uncertainty/adjustUncertToExposureTime.py#L10-L59
radjkarl/imgProcessor
imgProcessor/equations/gaussian.py
gaussian
def gaussian(x, a, b, c, d=0): ''' a -> height of the curve's peak b -> position of the center of the peak c -> standard deviation or Gaussian RMS width d -> offset ''' return a * np.exp( -(((x-b)**2 )/ (2*(c**2))) ) + d
python
def gaussian(x, a, b, c, d=0): ''' a -> height of the curve's peak b -> position of the center of the peak c -> standard deviation or Gaussian RMS width d -> offset ''' return a * np.exp( -(((x-b)**2 )/ (2*(c**2))) ) + d
[ "def", "gaussian", "(", "x", ",", "a", ",", "b", ",", "c", ",", "d", "=", "0", ")", ":", "return", "a", "*", "np", ".", "exp", "(", "-", "(", "(", "(", "x", "-", "b", ")", "**", "2", ")", "/", "(", "2", "*", "(", "c", "**", "2", ")", ")", ")", ")", "+", "d" ]
a -> height of the curve's peak b -> position of the center of the peak c -> standard deviation or Gaussian RMS width d -> offset
[ "a", "-", ">", "height", "of", "the", "curve", "s", "peak", "b", "-", ">", "position", "of", "the", "center", "of", "the", "peak", "c", "-", ">", "standard", "deviation", "or", "Gaussian", "RMS", "width", "d", "-", ">", "offset" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/equations/gaussian.py#L6-L13
radjkarl/imgProcessor
imgProcessor/interpolate/videoWrite.py
videoWrite
def videoWrite(path, imgs, levels=None, shape=None, frames=15, annotate_names=None, lut=None, updateFn=None): ''' TODO ''' frames = int(frames) if annotate_names is not None: assert len(annotate_names) == len(imgs) if levels is None: if imgs[0].dtype == np.uint8: levels = 0, 255 elif imgs[0].dtype == np.uint16: levels = 0, 2**16 - 1 else: levels = np.min(imgs), np.max(imgs) fourcc = cv2.VideoWriter_fourcc(*'XVID') h, w = imgs.shape[1:3] if shape and shape != (h, w): h, w = shape imgs = [cv2.resize(i, (w, h)) for i in imgs] assert path[-3:] in ('avi', 'png'), 'video export only supports *.avi or *.png' isVideo = path[-3:] == 'avi' if isVideo: cap = cv2.VideoCapture(0) # im.ndim==4) out = cv2.VideoWriter(path, fourcc, frames, (w, h), isColor=1) times = np.linspace(0, len(imgs) - 1, len(imgs) * frames) interpolator = LinearInterpolateImageStack(imgs) if lut is not None: lut = lut(imgs[0]) for n, time in enumerate(times): if updateFn: # update progress: updateFn.emit(100 * n / len(times)) image = interpolator(time) cimg = makeRGBA(image, lut=lut, levels=levels)[0] cimg = cv2.cvtColor(cimg, cv2.COLOR_RGBA2BGR) if annotate_names: text = annotate_names[n // frames] alpha = 0.5 org = (0, cimg.shape[0]) fontFace = cv2.FONT_HERSHEY_PLAIN fontScale = 2 thickness = 3 putTextAlpha(cimg, text, alpha, org, fontFace, fontScale, (0, 255, 0), thickness ) if isVideo: out.write(cimg) else: cv2.imwrite('%s_%i_%.3f.png' % (path[:-4], n, time), cimg) if isVideo: cap.release() out.release()
python
def videoWrite(path, imgs, levels=None, shape=None, frames=15, annotate_names=None, lut=None, updateFn=None): ''' TODO ''' frames = int(frames) if annotate_names is not None: assert len(annotate_names) == len(imgs) if levels is None: if imgs[0].dtype == np.uint8: levels = 0, 255 elif imgs[0].dtype == np.uint16: levels = 0, 2**16 - 1 else: levels = np.min(imgs), np.max(imgs) fourcc = cv2.VideoWriter_fourcc(*'XVID') h, w = imgs.shape[1:3] if shape and shape != (h, w): h, w = shape imgs = [cv2.resize(i, (w, h)) for i in imgs] assert path[-3:] in ('avi', 'png'), 'video export only supports *.avi or *.png' isVideo = path[-3:] == 'avi' if isVideo: cap = cv2.VideoCapture(0) # im.ndim==4) out = cv2.VideoWriter(path, fourcc, frames, (w, h), isColor=1) times = np.linspace(0, len(imgs) - 1, len(imgs) * frames) interpolator = LinearInterpolateImageStack(imgs) if lut is not None: lut = lut(imgs[0]) for n, time in enumerate(times): if updateFn: # update progress: updateFn.emit(100 * n / len(times)) image = interpolator(time) cimg = makeRGBA(image, lut=lut, levels=levels)[0] cimg = cv2.cvtColor(cimg, cv2.COLOR_RGBA2BGR) if annotate_names: text = annotate_names[n // frames] alpha = 0.5 org = (0, cimg.shape[0]) fontFace = cv2.FONT_HERSHEY_PLAIN fontScale = 2 thickness = 3 putTextAlpha(cimg, text, alpha, org, fontFace, fontScale, (0, 255, 0), thickness ) if isVideo: out.write(cimg) else: cv2.imwrite('%s_%i_%.3f.png' % (path[:-4], n, time), cimg) if isVideo: cap.release() out.release()
[ "def", "videoWrite", "(", "path", ",", "imgs", ",", "levels", "=", "None", ",", "shape", "=", "None", ",", "frames", "=", "15", ",", "annotate_names", "=", "None", ",", "lut", "=", "None", ",", "updateFn", "=", "None", ")", ":", "frames", "=", "int", "(", "frames", ")", "if", "annotate_names", "is", "not", "None", ":", "assert", "len", "(", "annotate_names", ")", "==", "len", "(", "imgs", ")", "if", "levels", "is", "None", ":", "if", "imgs", "[", "0", "]", ".", "dtype", "==", "np", ".", "uint8", ":", "levels", "=", "0", ",", "255", "elif", "imgs", "[", "0", "]", ".", "dtype", "==", "np", ".", "uint16", ":", "levels", "=", "0", ",", "2", "**", "16", "-", "1", "else", ":", "levels", "=", "np", ".", "min", "(", "imgs", ")", ",", "np", ".", "max", "(", "imgs", ")", "fourcc", "=", "cv2", ".", "VideoWriter_fourcc", "(", "*", "'XVID'", ")", "h", ",", "w", "=", "imgs", ".", "shape", "[", "1", ":", "3", "]", "if", "shape", "and", "shape", "!=", "(", "h", ",", "w", ")", ":", "h", ",", "w", "=", "shape", "imgs", "=", "[", "cv2", ".", "resize", "(", "i", ",", "(", "w", ",", "h", ")", ")", "for", "i", "in", "imgs", "]", "assert", "path", "[", "-", "3", ":", "]", "in", "(", "'avi'", ",", "'png'", ")", ",", "'video export only supports *.avi or *.png'", "isVideo", "=", "path", "[", "-", "3", ":", "]", "==", "'avi'", "if", "isVideo", ":", "cap", "=", "cv2", ".", "VideoCapture", "(", "0", ")", "# im.ndim==4)\r", "out", "=", "cv2", ".", "VideoWriter", "(", "path", ",", "fourcc", ",", "frames", ",", "(", "w", ",", "h", ")", ",", "isColor", "=", "1", ")", "times", "=", "np", ".", "linspace", "(", "0", ",", "len", "(", "imgs", ")", "-", "1", ",", "len", "(", "imgs", ")", "*", "frames", ")", "interpolator", "=", "LinearInterpolateImageStack", "(", "imgs", ")", "if", "lut", "is", "not", "None", ":", "lut", "=", "lut", "(", "imgs", "[", "0", "]", ")", "for", "n", ",", "time", "in", "enumerate", "(", "times", ")", ":", "if", "updateFn", ":", "# update progress:\r", "updateFn", ".", "emit", "(", "100", "*", "n", "/", "len", "(", "times", ")", ")", "image", "=", "interpolator", "(", "time", ")", "cimg", "=", "makeRGBA", "(", "image", ",", "lut", "=", "lut", ",", "levels", "=", "levels", ")", "[", "0", "]", "cimg", "=", "cv2", ".", "cvtColor", "(", "cimg", ",", "cv2", ".", "COLOR_RGBA2BGR", ")", "if", "annotate_names", ":", "text", "=", "annotate_names", "[", "n", "//", "frames", "]", "alpha", "=", "0.5", "org", "=", "(", "0", ",", "cimg", ".", "shape", "[", "0", "]", ")", "fontFace", "=", "cv2", ".", "FONT_HERSHEY_PLAIN", "fontScale", "=", "2", "thickness", "=", "3", "putTextAlpha", "(", "cimg", ",", "text", ",", "alpha", ",", "org", ",", "fontFace", ",", "fontScale", ",", "(", "0", ",", "255", ",", "0", ")", ",", "thickness", ")", "if", "isVideo", ":", "out", ".", "write", "(", "cimg", ")", "else", ":", "cv2", ".", "imwrite", "(", "'%s_%i_%.3f.png'", "%", "(", "path", "[", ":", "-", "4", "]", ",", "n", ",", "time", ")", ",", "cimg", ")", "if", "isVideo", ":", "cap", ".", "release", "(", ")", "out", ".", "release", "(", ")" ]
TODO
[ "TODO" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/interpolate/videoWrite.py#L14-L81
radjkarl/imgProcessor
imgProcessor/imgIO.py
imread
def imread(img, color=None, dtype=None): ''' dtype = 'noUint', uint8, float, 'float', ... ''' COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE, 'all': cv2.IMREAD_COLOR, None: cv2.IMREAD_ANYCOLOR } c = COLOR2CV[color] if callable(img): img = img() elif isinstance(img, string_types): # from_file = True # try: # ftype = img[img.find('.'):] # img = READERS[ftype](img)[0] # except KeyError: # open with openCV # grey - 8 bit if dtype in (None, "noUint") or np.dtype(dtype) != np.uint8: c |= cv2.IMREAD_ANYDEPTH img2 = cv2.imread(img, c) if img2 is None: raise IOError("image '%s' is not existing" % img) img = img2 elif color == 'gray' and img.ndim == 3: # multi channel img like rgb # cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #cannot handle float64 img = toGray(img) # transform array to uint8 array due to openCV restriction if dtype is not None: if isinstance(img, np.ndarray): img = _changeArrayDType(img, dtype, cutHigh=False) return img
python
def imread(img, color=None, dtype=None): ''' dtype = 'noUint', uint8, float, 'float', ... ''' COLOR2CV = {'gray': cv2.IMREAD_GRAYSCALE, 'all': cv2.IMREAD_COLOR, None: cv2.IMREAD_ANYCOLOR } c = COLOR2CV[color] if callable(img): img = img() elif isinstance(img, string_types): # from_file = True # try: # ftype = img[img.find('.'):] # img = READERS[ftype](img)[0] # except KeyError: # open with openCV # grey - 8 bit if dtype in (None, "noUint") or np.dtype(dtype) != np.uint8: c |= cv2.IMREAD_ANYDEPTH img2 = cv2.imread(img, c) if img2 is None: raise IOError("image '%s' is not existing" % img) img = img2 elif color == 'gray' and img.ndim == 3: # multi channel img like rgb # cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #cannot handle float64 img = toGray(img) # transform array to uint8 array due to openCV restriction if dtype is not None: if isinstance(img, np.ndarray): img = _changeArrayDType(img, dtype, cutHigh=False) return img
[ "def", "imread", "(", "img", ",", "color", "=", "None", ",", "dtype", "=", "None", ")", ":", "COLOR2CV", "=", "{", "'gray'", ":", "cv2", ".", "IMREAD_GRAYSCALE", ",", "'all'", ":", "cv2", ".", "IMREAD_COLOR", ",", "None", ":", "cv2", ".", "IMREAD_ANYCOLOR", "}", "c", "=", "COLOR2CV", "[", "color", "]", "if", "callable", "(", "img", ")", ":", "img", "=", "img", "(", ")", "elif", "isinstance", "(", "img", ",", "string_types", ")", ":", "# from_file = True\r", "# try:\r", "# ftype = img[img.find('.'):]\r", "# img = READERS[ftype](img)[0]\r", "# except KeyError:\r", "# open with openCV\r", "# grey - 8 bit\r", "if", "dtype", "in", "(", "None", ",", "\"noUint\"", ")", "or", "np", ".", "dtype", "(", "dtype", ")", "!=", "np", ".", "uint8", ":", "c", "|=", "cv2", ".", "IMREAD_ANYDEPTH", "img2", "=", "cv2", ".", "imread", "(", "img", ",", "c", ")", "if", "img2", "is", "None", ":", "raise", "IOError", "(", "\"image '%s' is not existing\"", "%", "img", ")", "img", "=", "img2", "elif", "color", "==", "'gray'", "and", "img", ".", "ndim", "==", "3", ":", "# multi channel img like rgb\r", "# cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #cannot handle float64\r", "img", "=", "toGray", "(", "img", ")", "# transform array to uint8 array due to openCV restriction\r", "if", "dtype", "is", "not", "None", ":", "if", "isinstance", "(", "img", ",", "np", ".", "ndarray", ")", ":", "img", "=", "_changeArrayDType", "(", "img", ",", "dtype", ",", "cutHigh", "=", "False", ")", "return", "img" ]
dtype = 'noUint', uint8, float, 'float', ...
[ "dtype", "=", "noUint", "uint8", "float", "float", "..." ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/imgIO.py#L39-L73
radjkarl/imgProcessor
imgProcessor/measure/sharpness/SharpnessfromPoints.py
SharpnessfromPointSources.addImg
def addImg(self, img, roi=None): ''' img - background, flat field, ste corrected image roi - [(x1,y1),...,(x4,y4)] - boundaries where points are ''' self.img = imread(img, 'gray') s0, s1 = self.img.shape if roi is None: roi = ((0, 0), (s0, 0), (s0, s1), (0, s1)) k = self.kernel_size hk = k // 2 # mask image img2 = self.img.copy() # .astype(int) mask = np.zeros(self.img.shape) cv2.fillConvexPoly(mask, np.asarray(roi, dtype=np.int32), color=1) mask = mask.astype(bool) im = img2[mask] bg = im.mean() # assume image average with in roi == background mask = ~mask img2[mask] = -1 # find points from local maxima: self.points = np.zeros(shape=(self.max_points, 2), dtype=int) thresh = 0.8 * bg + 0.2 * im.max() _findPoints(img2, thresh, self.min_dist, self.points) self.points = self.points[:np.argmin(self.points, axis=0)[0]] # correct point position, to that every point is over max value: for n, p in enumerate(self.points): sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1] i, j = np.unravel_index(np.nanargmax(sub), sub.shape) self.points[n] += [j - hk, i - hk] # remove points that are too close to their neighbour or the border mask = maximum_filter(mask, hk) i = np.ones(self.points.shape[0], dtype=bool) for n, p in enumerate(self.points): if mask[p[1], p[0]]: # too close to border i[n] = False else: # too close to other points for pp in self.points[n + 1:]: if norm(p - pp) < hk + 1: i[n] = False isum = i.sum() ll = len(i) - isum print('found %s points' % isum) if ll: print( 'removed %s points (too close to border or other points)' % ll) self.points = self.points[i] # self.n_points += len(self.points) # for finding best peak position: # def fn(xy,cx,cy):#par # (x,y) = xy # return 1-(((x-cx)**2 + (y-cy)**2)*(1/8)).flatten() # x,y = np.mgrid[-2:3,-2:3] # x = x.flatten() # y = y.flatten() # for shifting peak: xx, yy = np.mgrid[0:k, 0:k] xx = xx.astype(float) yy = yy.astype(float) self.subs = [] # import pylab as plt # plt.figure(20) # img = self.drawPoints() # plt.imshow(img, interpolation='none') # # plt.figure(21) # # plt.imshow(sub2, interpolation='none') # plt.show() #thresh = 0.8*bg + 0.1*im.max() for i, p in enumerate(self.points): sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1].astype(float) sub2 = sub.copy() mean = sub2.mean() mx = sub2.max() sub2[sub2 < 0.5 * (mean + mx)] = 0 # only select peak try: # SHIFT SUB ARRAY to align peak maximum exactly in middle: # only eval a 5x5 array in middle of sub: # peak = sub[hk-3:hk+4,hk-3:hk+4]#.copy() # peak -= peak.min() # peak/=peak.max() # peak = peak.flatten() # fit paraboloid to get shift in x,y: # p, _ = curve_fit(fn, (x,y), peak, (0,0)) c0, c1 = center_of_mass(sub2) # print (p,c0,c1,hk) #coords = np.array([xx+p[0],yy+p[1]]) coords = np.array([xx + (c0 - hk), yy + (c1 - hk)]) #print (c0,c1) #import pylab as plt #plt.imshow(sub2, interpolation='none') # shift array: sub = map_coordinates(sub, coords, mode='nearest').reshape(k, k) # plt.figure(2) #plt.imshow(sub, interpolation='none') # plt.show() #normalize: bg = 0.25* ( sub[0].mean() + sub[-1].mean() + sub[:,0].mean() + sub[:,-1].mean()) sub-=bg sub /= sub.max() # import pylab as plt # plt.figure(20) # plt.imshow(sub, interpolation='none') # # plt.figure(21) # # plt.imshow(sub2, interpolation='none') # plt.show() self._psf += sub if self.calc_std: self.subs.append(sub) except ValueError: pass
python
def addImg(self, img, roi=None): ''' img - background, flat field, ste corrected image roi - [(x1,y1),...,(x4,y4)] - boundaries where points are ''' self.img = imread(img, 'gray') s0, s1 = self.img.shape if roi is None: roi = ((0, 0), (s0, 0), (s0, s1), (0, s1)) k = self.kernel_size hk = k // 2 # mask image img2 = self.img.copy() # .astype(int) mask = np.zeros(self.img.shape) cv2.fillConvexPoly(mask, np.asarray(roi, dtype=np.int32), color=1) mask = mask.astype(bool) im = img2[mask] bg = im.mean() # assume image average with in roi == background mask = ~mask img2[mask] = -1 # find points from local maxima: self.points = np.zeros(shape=(self.max_points, 2), dtype=int) thresh = 0.8 * bg + 0.2 * im.max() _findPoints(img2, thresh, self.min_dist, self.points) self.points = self.points[:np.argmin(self.points, axis=0)[0]] # correct point position, to that every point is over max value: for n, p in enumerate(self.points): sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1] i, j = np.unravel_index(np.nanargmax(sub), sub.shape) self.points[n] += [j - hk, i - hk] # remove points that are too close to their neighbour or the border mask = maximum_filter(mask, hk) i = np.ones(self.points.shape[0], dtype=bool) for n, p in enumerate(self.points): if mask[p[1], p[0]]: # too close to border i[n] = False else: # too close to other points for pp in self.points[n + 1:]: if norm(p - pp) < hk + 1: i[n] = False isum = i.sum() ll = len(i) - isum print('found %s points' % isum) if ll: print( 'removed %s points (too close to border or other points)' % ll) self.points = self.points[i] # self.n_points += len(self.points) # for finding best peak position: # def fn(xy,cx,cy):#par # (x,y) = xy # return 1-(((x-cx)**2 + (y-cy)**2)*(1/8)).flatten() # x,y = np.mgrid[-2:3,-2:3] # x = x.flatten() # y = y.flatten() # for shifting peak: xx, yy = np.mgrid[0:k, 0:k] xx = xx.astype(float) yy = yy.astype(float) self.subs = [] # import pylab as plt # plt.figure(20) # img = self.drawPoints() # plt.imshow(img, interpolation='none') # # plt.figure(21) # # plt.imshow(sub2, interpolation='none') # plt.show() #thresh = 0.8*bg + 0.1*im.max() for i, p in enumerate(self.points): sub = self.img[p[1] - hk:p[1] + hk + 1, p[0] - hk:p[0] + hk + 1].astype(float) sub2 = sub.copy() mean = sub2.mean() mx = sub2.max() sub2[sub2 < 0.5 * (mean + mx)] = 0 # only select peak try: # SHIFT SUB ARRAY to align peak maximum exactly in middle: # only eval a 5x5 array in middle of sub: # peak = sub[hk-3:hk+4,hk-3:hk+4]#.copy() # peak -= peak.min() # peak/=peak.max() # peak = peak.flatten() # fit paraboloid to get shift in x,y: # p, _ = curve_fit(fn, (x,y), peak, (0,0)) c0, c1 = center_of_mass(sub2) # print (p,c0,c1,hk) #coords = np.array([xx+p[0],yy+p[1]]) coords = np.array([xx + (c0 - hk), yy + (c1 - hk)]) #print (c0,c1) #import pylab as plt #plt.imshow(sub2, interpolation='none') # shift array: sub = map_coordinates(sub, coords, mode='nearest').reshape(k, k) # plt.figure(2) #plt.imshow(sub, interpolation='none') # plt.show() #normalize: bg = 0.25* ( sub[0].mean() + sub[-1].mean() + sub[:,0].mean() + sub[:,-1].mean()) sub-=bg sub /= sub.max() # import pylab as plt # plt.figure(20) # plt.imshow(sub, interpolation='none') # # plt.figure(21) # # plt.imshow(sub2, interpolation='none') # plt.show() self._psf += sub if self.calc_std: self.subs.append(sub) except ValueError: pass
[ "def", "addImg", "(", "self", ",", "img", ",", "roi", "=", "None", ")", ":", "self", ".", "img", "=", "imread", "(", "img", ",", "'gray'", ")", "s0", ",", "s1", "=", "self", ".", "img", ".", "shape", "if", "roi", "is", "None", ":", "roi", "=", "(", "(", "0", ",", "0", ")", ",", "(", "s0", ",", "0", ")", ",", "(", "s0", ",", "s1", ")", ",", "(", "0", ",", "s1", ")", ")", "k", "=", "self", ".", "kernel_size", "hk", "=", "k", "//", "2", "# mask image\r", "img2", "=", "self", ".", "img", ".", "copy", "(", ")", "# .astype(int)\r", "mask", "=", "np", ".", "zeros", "(", "self", ".", "img", ".", "shape", ")", "cv2", ".", "fillConvexPoly", "(", "mask", ",", "np", ".", "asarray", "(", "roi", ",", "dtype", "=", "np", ".", "int32", ")", ",", "color", "=", "1", ")", "mask", "=", "mask", ".", "astype", "(", "bool", ")", "im", "=", "img2", "[", "mask", "]", "bg", "=", "im", ".", "mean", "(", ")", "# assume image average with in roi == background\r", "mask", "=", "~", "mask", "img2", "[", "mask", "]", "=", "-", "1", "# find points from local maxima:\r", "self", ".", "points", "=", "np", ".", "zeros", "(", "shape", "=", "(", "self", ".", "max_points", ",", "2", ")", ",", "dtype", "=", "int", ")", "thresh", "=", "0.8", "*", "bg", "+", "0.2", "*", "im", ".", "max", "(", ")", "_findPoints", "(", "img2", ",", "thresh", ",", "self", ".", "min_dist", ",", "self", ".", "points", ")", "self", ".", "points", "=", "self", ".", "points", "[", ":", "np", ".", "argmin", "(", "self", ".", "points", ",", "axis", "=", "0", ")", "[", "0", "]", "]", "# correct point position, to that every point is over max value:\r", "for", "n", ",", "p", "in", "enumerate", "(", "self", ".", "points", ")", ":", "sub", "=", "self", ".", "img", "[", "p", "[", "1", "]", "-", "hk", ":", "p", "[", "1", "]", "+", "hk", "+", "1", ",", "p", "[", "0", "]", "-", "hk", ":", "p", "[", "0", "]", "+", "hk", "+", "1", "]", "i", ",", "j", "=", "np", ".", "unravel_index", "(", "np", ".", "nanargmax", "(", "sub", ")", ",", "sub", ".", "shape", ")", "self", ".", "points", "[", "n", "]", "+=", "[", "j", "-", "hk", ",", "i", "-", "hk", "]", "# remove points that are too close to their neighbour or the border\r", "mask", "=", "maximum_filter", "(", "mask", ",", "hk", ")", "i", "=", "np", ".", "ones", "(", "self", ".", "points", ".", "shape", "[", "0", "]", ",", "dtype", "=", "bool", ")", "for", "n", ",", "p", "in", "enumerate", "(", "self", ".", "points", ")", ":", "if", "mask", "[", "p", "[", "1", "]", ",", "p", "[", "0", "]", "]", ":", "# too close to border\r", "i", "[", "n", "]", "=", "False", "else", ":", "# too close to other points\r", "for", "pp", "in", "self", ".", "points", "[", "n", "+", "1", ":", "]", ":", "if", "norm", "(", "p", "-", "pp", ")", "<", "hk", "+", "1", ":", "i", "[", "n", "]", "=", "False", "isum", "=", "i", ".", "sum", "(", ")", "ll", "=", "len", "(", "i", ")", "-", "isum", "print", "(", "'found %s points'", "%", "isum", ")", "if", "ll", ":", "print", "(", "'removed %s points (too close to border or other points)'", "%", "ll", ")", "self", ".", "points", "=", "self", ".", "points", "[", "i", "]", "# self.n_points += len(self.points)\r", "# for finding best peak position:\r", "# def fn(xy,cx,cy):#par\r", "# (x,y) = xy\r", "# return 1-(((x-cx)**2 + (y-cy)**2)*(1/8)).flatten()\r", "# x,y = np.mgrid[-2:3,-2:3]\r", "# x = x.flatten()\r", "# y = y.flatten()\r", "# for shifting peak:\r", "xx", ",", "yy", "=", "np", ".", "mgrid", "[", "0", ":", "k", ",", "0", ":", "k", "]", "xx", "=", "xx", ".", "astype", "(", "float", ")", "yy", "=", "yy", ".", "astype", "(", "float", ")", "self", ".", "subs", "=", "[", "]", "# import pylab as plt\r", "# plt.figure(20)\r", "# img = self.drawPoints()\r", "# plt.imshow(img, interpolation='none')\r", "# # plt.figure(21)\r", "# # plt.imshow(sub2, interpolation='none')\r", "# plt.show()\r", "#thresh = 0.8*bg + 0.1*im.max()\r", "for", "i", ",", "p", "in", "enumerate", "(", "self", ".", "points", ")", ":", "sub", "=", "self", ".", "img", "[", "p", "[", "1", "]", "-", "hk", ":", "p", "[", "1", "]", "+", "hk", "+", "1", ",", "p", "[", "0", "]", "-", "hk", ":", "p", "[", "0", "]", "+", "hk", "+", "1", "]", ".", "astype", "(", "float", ")", "sub2", "=", "sub", ".", "copy", "(", ")", "mean", "=", "sub2", ".", "mean", "(", ")", "mx", "=", "sub2", ".", "max", "(", ")", "sub2", "[", "sub2", "<", "0.5", "*", "(", "mean", "+", "mx", ")", "]", "=", "0", "# only select peak\r", "try", ":", "# SHIFT SUB ARRAY to align peak maximum exactly in middle:\r", "# only eval a 5x5 array in middle of sub:\r", "# peak = sub[hk-3:hk+4,hk-3:hk+4]#.copy()\r", "# peak -= peak.min()\r", "# peak/=peak.max()\r", "# peak = peak.flatten()\r", "# fit paraboloid to get shift in x,y:\r", "# p, _ = curve_fit(fn, (x,y), peak, (0,0))\r", "c0", ",", "c1", "=", "center_of_mass", "(", "sub2", ")", "# print (p,c0,c1,hk)\r", "#coords = np.array([xx+p[0],yy+p[1]])\r", "coords", "=", "np", ".", "array", "(", "[", "xx", "+", "(", "c0", "-", "hk", ")", ",", "yy", "+", "(", "c1", "-", "hk", ")", "]", ")", "#print (c0,c1)\r", "#import pylab as plt\r", "#plt.imshow(sub2, interpolation='none')\r", "# shift array:\r", "sub", "=", "map_coordinates", "(", "sub", ",", "coords", ",", "mode", "=", "'nearest'", ")", ".", "reshape", "(", "k", ",", "k", ")", "# plt.figure(2)\r", "#plt.imshow(sub, interpolation='none')\r", "# plt.show()\r", "#normalize:\r", "bg", "=", "0.25", "*", "(", "sub", "[", "0", "]", ".", "mean", "(", ")", "+", "sub", "[", "-", "1", "]", ".", "mean", "(", ")", "+", "sub", "[", ":", ",", "0", "]", ".", "mean", "(", ")", "+", "sub", "[", ":", ",", "-", "1", "]", ".", "mean", "(", ")", ")", "sub", "-=", "bg", "sub", "/=", "sub", ".", "max", "(", ")", "# import pylab as plt\r", "# plt.figure(20)\r", "# plt.imshow(sub, interpolation='none')\r", "# # plt.figure(21)\r", "# # plt.imshow(sub2, interpolation='none')\r", "# plt.show()\r", "self", ".", "_psf", "+=", "sub", "if", "self", ".", "calc_std", ":", "self", ".", "subs", ".", "append", "(", "sub", ")", "except", "ValueError", ":", "pass" ]
img - background, flat field, ste corrected image roi - [(x1,y1),...,(x4,y4)] - boundaries where points are
[ "img", "-", "background", "flat", "field", "ste", "corrected", "image", "roi", "-", "[", "(", "x1", "y1", ")", "...", "(", "x4", "y4", ")", "]", "-", "boundaries", "where", "points", "are" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/measure/sharpness/SharpnessfromPoints.py#L78-L220
radjkarl/imgProcessor
imgProcessor/interpolate/interpolate2dStructuredFastIDW.py
interpolate2dStructuredFastIDW
def interpolate2dStructuredFastIDW(grid, mask, kernel=15, power=2, minnvals=5): ''' FASTER IMPLEMENTATION OF interpolate2dStructuredIDW replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [minvals] -> minimum number of neighbour values to find until interpolation stops ''' indices, dist = growPositions(kernel) weights = 1 / dist**(0.5 * power) return _calc(grid, mask, indices, weights, minnvals - 1)
python
def interpolate2dStructuredFastIDW(grid, mask, kernel=15, power=2, minnvals=5): ''' FASTER IMPLEMENTATION OF interpolate2dStructuredIDW replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [minvals] -> minimum number of neighbour values to find until interpolation stops ''' indices, dist = growPositions(kernel) weights = 1 / dist**(0.5 * power) return _calc(grid, mask, indices, weights, minnvals - 1)
[ "def", "interpolate2dStructuredFastIDW", "(", "grid", ",", "mask", ",", "kernel", "=", "15", ",", "power", "=", "2", ",", "minnvals", "=", "5", ")", ":", "indices", ",", "dist", "=", "growPositions", "(", "kernel", ")", "weights", "=", "1", "/", "dist", "**", "(", "0.5", "*", "power", ")", "return", "_calc", "(", "grid", ",", "mask", ",", "indices", ",", "weights", ",", "minnvals", "-", "1", ")" ]
FASTER IMPLEMENTATION OF interpolate2dStructuredIDW replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [minvals] -> minimum number of neighbour values to find until interpolation stops
[ "FASTER", "IMPLEMENTATION", "OF", "interpolate2dStructuredIDW", "replace", "all", "values", "in", "[", "grid", "]", "indicated", "by", "[", "mask", "]", "with", "the", "inverse", "distance", "weighted", "interpolation", "of", "all", "values", "within", "px", "+", "-", "kernel", "[", "power", "]", "-", ">", "distance", "weighting", "factor", ":", "1", "/", "distance", "**", "[", "power", "]", "[", "minvals", "]", "-", ">", "minimum", "number", "of", "neighbour", "values", "to", "find", "until", "interpolation", "stops" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/interpolate/interpolate2dStructuredFastIDW.py#L9-L26
radjkarl/imgProcessor
imgProcessor/transform/linearBlend.py
linearBlend
def linearBlend(img1, img2, overlap, backgroundColor=None): ''' Stitch 2 images vertically together. Smooth the overlap area of both images with a linear fade from img1 to img2 @param img1: numpy.2dArray @param img2: numpy.2dArray of the same shape[1,2] as img1 @param overlap: number of pixels both images overlap @returns: stitched-image ''' (sizex, sizey) = img1.shape[:2] overlapping = True if overlap < 0: overlapping = False overlap = -overlap # linear transparency change: alpha = np.tile(np.expand_dims(np.linspace(1, 0, overlap), 1), sizey) if len(img2.shape) == 3: # multi channel img like rgb # make alpha 3d with n channels alpha = np.dstack(([alpha for _ in range(img2.shape[2])])) if overlapping: img1_cut = img1[sizex - overlap:sizex, :] img2_cut = img2[0:overlap, :] else: # take average of last 5 rows: img1_cut = np.tile(img1[-min(sizex, 5):, :].mean( axis=0), (overlap, 1)).reshape(alpha.shape) img2_cut = np.tile(img2[:min(img2.shape[0], 5), :].mean( axis=0), (overlap, 1)).reshape(alpha.shape) # fill intermediate area as mixture of both images #################bg transparent############ inter = (img1_cut * alpha + img2_cut * (1 - alpha)).astype(img1.dtype) # set background areas to value of respective other img: if backgroundColor is not None: mask = np.logical_and(img1_cut == backgroundColor, img2_cut != backgroundColor) inter[mask] = img2_cut[mask] mask = np.logical_and(img2_cut == backgroundColor, img1_cut != backgroundColor) inter[mask] = img1_cut[mask] if not overlapping: overlap = 0 return np.vstack((img1[0:sizex - overlap, :], inter, img2[overlap:, :]))
python
def linearBlend(img1, img2, overlap, backgroundColor=None): ''' Stitch 2 images vertically together. Smooth the overlap area of both images with a linear fade from img1 to img2 @param img1: numpy.2dArray @param img2: numpy.2dArray of the same shape[1,2] as img1 @param overlap: number of pixels both images overlap @returns: stitched-image ''' (sizex, sizey) = img1.shape[:2] overlapping = True if overlap < 0: overlapping = False overlap = -overlap # linear transparency change: alpha = np.tile(np.expand_dims(np.linspace(1, 0, overlap), 1), sizey) if len(img2.shape) == 3: # multi channel img like rgb # make alpha 3d with n channels alpha = np.dstack(([alpha for _ in range(img2.shape[2])])) if overlapping: img1_cut = img1[sizex - overlap:sizex, :] img2_cut = img2[0:overlap, :] else: # take average of last 5 rows: img1_cut = np.tile(img1[-min(sizex, 5):, :].mean( axis=0), (overlap, 1)).reshape(alpha.shape) img2_cut = np.tile(img2[:min(img2.shape[0], 5), :].mean( axis=0), (overlap, 1)).reshape(alpha.shape) # fill intermediate area as mixture of both images #################bg transparent############ inter = (img1_cut * alpha + img2_cut * (1 - alpha)).astype(img1.dtype) # set background areas to value of respective other img: if backgroundColor is not None: mask = np.logical_and(img1_cut == backgroundColor, img2_cut != backgroundColor) inter[mask] = img2_cut[mask] mask = np.logical_and(img2_cut == backgroundColor, img1_cut != backgroundColor) inter[mask] = img1_cut[mask] if not overlapping: overlap = 0 return np.vstack((img1[0:sizex - overlap, :], inter, img2[overlap:, :]))
[ "def", "linearBlend", "(", "img1", ",", "img2", ",", "overlap", ",", "backgroundColor", "=", "None", ")", ":", "(", "sizex", ",", "sizey", ")", "=", "img1", ".", "shape", "[", ":", "2", "]", "overlapping", "=", "True", "if", "overlap", "<", "0", ":", "overlapping", "=", "False", "overlap", "=", "-", "overlap", "# linear transparency change:\r", "alpha", "=", "np", ".", "tile", "(", "np", ".", "expand_dims", "(", "np", ".", "linspace", "(", "1", ",", "0", ",", "overlap", ")", ",", "1", ")", ",", "sizey", ")", "if", "len", "(", "img2", ".", "shape", ")", "==", "3", ":", "# multi channel img like rgb\r", "# make alpha 3d with n channels\r", "alpha", "=", "np", ".", "dstack", "(", "(", "[", "alpha", "for", "_", "in", "range", "(", "img2", ".", "shape", "[", "2", "]", ")", "]", ")", ")", "if", "overlapping", ":", "img1_cut", "=", "img1", "[", "sizex", "-", "overlap", ":", "sizex", ",", ":", "]", "img2_cut", "=", "img2", "[", "0", ":", "overlap", ",", ":", "]", "else", ":", "# take average of last 5 rows:\r", "img1_cut", "=", "np", ".", "tile", "(", "img1", "[", "-", "min", "(", "sizex", ",", "5", ")", ":", ",", ":", "]", ".", "mean", "(", "axis", "=", "0", ")", ",", "(", "overlap", ",", "1", ")", ")", ".", "reshape", "(", "alpha", ".", "shape", ")", "img2_cut", "=", "np", ".", "tile", "(", "img2", "[", ":", "min", "(", "img2", ".", "shape", "[", "0", "]", ",", "5", ")", ",", ":", "]", ".", "mean", "(", "axis", "=", "0", ")", ",", "(", "overlap", ",", "1", ")", ")", ".", "reshape", "(", "alpha", ".", "shape", ")", "# fill intermediate area as mixture of both images\r", "#################bg transparent############\r", "inter", "=", "(", "img1_cut", "*", "alpha", "+", "img2_cut", "*", "(", "1", "-", "alpha", ")", ")", ".", "astype", "(", "img1", ".", "dtype", ")", "# set background areas to value of respective other img:\r", "if", "backgroundColor", "is", "not", "None", ":", "mask", "=", "np", ".", "logical_and", "(", "img1_cut", "==", "backgroundColor", ",", "img2_cut", "!=", "backgroundColor", ")", "inter", "[", "mask", "]", "=", "img2_cut", "[", "mask", "]", "mask", "=", "np", ".", "logical_and", "(", "img2_cut", "==", "backgroundColor", ",", "img1_cut", "!=", "backgroundColor", ")", "inter", "[", "mask", "]", "=", "img1_cut", "[", "mask", "]", "if", "not", "overlapping", ":", "overlap", "=", "0", "return", "np", ".", "vstack", "(", "(", "img1", "[", "0", ":", "sizex", "-", "overlap", ",", ":", "]", ",", "inter", ",", "img2", "[", "overlap", ":", ",", ":", "]", ")", ")" ]
Stitch 2 images vertically together. Smooth the overlap area of both images with a linear fade from img1 to img2 @param img1: numpy.2dArray @param img2: numpy.2dArray of the same shape[1,2] as img1 @param overlap: number of pixels both images overlap @returns: stitched-image
[ "Stitch", "2", "images", "vertically", "together", ".", "Smooth", "the", "overlap", "area", "of", "both", "images", "with", "a", "linear", "fade", "from", "img1", "to", "img2" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/transform/linearBlend.py#L7-L55
radjkarl/imgProcessor
imgProcessor/interpolate/interpolate2dStructuredPointSpreadIDW.py
interpolate2dStructuredPointSpreadIDW
def interpolate2dStructuredPointSpreadIDW(grid, mask, kernel=15, power=2, maxIter=1e5, copy=True): ''' same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies 'grid' and 'mask' ''' assert grid.shape == mask.shape, 'grid and mask shape are different' border = np.zeros(shape=mask.shape, dtype=np.bool) if copy: # copy mask as well because if will be modified later: mask = mask.copy() grid = grid.copy() return _calc(grid, mask, border, kernel, power, maxIter)
python
def interpolate2dStructuredPointSpreadIDW(grid, mask, kernel=15, power=2, maxIter=1e5, copy=True): ''' same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies 'grid' and 'mask' ''' assert grid.shape == mask.shape, 'grid and mask shape are different' border = np.zeros(shape=mask.shape, dtype=np.bool) if copy: # copy mask as well because if will be modified later: mask = mask.copy() grid = grid.copy() return _calc(grid, mask, border, kernel, power, maxIter)
[ "def", "interpolate2dStructuredPointSpreadIDW", "(", "grid", ",", "mask", ",", "kernel", "=", "15", ",", "power", "=", "2", ",", "maxIter", "=", "1e5", ",", "copy", "=", "True", ")", ":", "assert", "grid", ".", "shape", "==", "mask", ".", "shape", ",", "'grid and mask shape are different'", "border", "=", "np", ".", "zeros", "(", "shape", "=", "mask", ".", "shape", ",", "dtype", "=", "np", ".", "bool", ")", "if", "copy", ":", "# copy mask as well because if will be modified later:\r", "mask", "=", "mask", ".", "copy", "(", ")", "grid", "=", "grid", ".", "copy", "(", ")", "return", "_calc", "(", "grid", ",", "mask", ",", "border", ",", "kernel", ",", "power", ",", "maxIter", ")" ]
same as interpolate2dStructuredIDW but using the point spread method this is faster if there are bigger connected masked areas and the border length is smaller replace all values in [grid] indicated by [mask] with the inverse distance weighted interpolation of all values within px+-kernel [power] -> distance weighting factor: 1/distance**[power] [copy] -> False: a bit faster, but modifies 'grid' and 'mask'
[ "same", "as", "interpolate2dStructuredIDW", "but", "using", "the", "point", "spread", "method", "this", "is", "faster", "if", "there", "are", "bigger", "connected", "masked", "areas", "and", "the", "border", "length", "is", "smaller", "replace", "all", "values", "in", "[", "grid", "]", "indicated", "by", "[", "mask", "]", "with", "the", "inverse", "distance", "weighted", "interpolation", "of", "all", "values", "within", "px", "+", "-", "kernel", "[", "power", "]", "-", ">", "distance", "weighting", "factor", ":", "1", "/", "distance", "**", "[", "power", "]", "[", "copy", "]", "-", ">", "False", ":", "a", "bit", "faster", "but", "modifies", "grid", "and", "mask" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/interpolate/interpolate2dStructuredPointSpreadIDW.py#L7-L28
radjkarl/imgProcessor
imgProcessor/measure/SNR/SNRaverage.py
SNRaverage
def SNRaverage(snr, method='average', excludeBackground=True, checkBackground=True, backgroundLevel=None): ''' average a signal-to-noise map :param method: ['average','X75', 'RMS', 'median'] - X75: this SNR will be exceeded by 75% of the signal :type method: str :param checkBackground: check whether there is actually a background level to exclude :type checkBackground: bool :returns: averaged SNR as float ''' if excludeBackground: # get background level if backgroundLevel is None: try: f = FitHistogramPeaks(snr).fitParams if checkBackground: if not hasBackground(f): excludeBackground = False if excludeBackground: backgroundLevel = getSignalMinimum(f) except (ValueError, AssertionError): backgroundLevel = snr.min() if excludeBackground: snr = snr[snr >= backgroundLevel] if method == 'RMS': avg = (snr**2).mean()**0.5 elif method == 'average': avg = snr.mean() # if np.isnan(avg): # avg = np.nanmean(snr) elif method == 'median': avg = np.median(snr) # if np.isnan(avg): # avg = np.nanmedian(snr) elif method == 'X75': r = (snr.min(), snr.max()) hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r) hist = np.asfarray(hist) / hist.sum() cdf = np.cumsum(hist) i = np.argmax(cdf > 0.25) avg = bin_edges[i] else: raise NotImplemented("given SNR average doesn't exist") return avg
python
def SNRaverage(snr, method='average', excludeBackground=True, checkBackground=True, backgroundLevel=None): ''' average a signal-to-noise map :param method: ['average','X75', 'RMS', 'median'] - X75: this SNR will be exceeded by 75% of the signal :type method: str :param checkBackground: check whether there is actually a background level to exclude :type checkBackground: bool :returns: averaged SNR as float ''' if excludeBackground: # get background level if backgroundLevel is None: try: f = FitHistogramPeaks(snr).fitParams if checkBackground: if not hasBackground(f): excludeBackground = False if excludeBackground: backgroundLevel = getSignalMinimum(f) except (ValueError, AssertionError): backgroundLevel = snr.min() if excludeBackground: snr = snr[snr >= backgroundLevel] if method == 'RMS': avg = (snr**2).mean()**0.5 elif method == 'average': avg = snr.mean() # if np.isnan(avg): # avg = np.nanmean(snr) elif method == 'median': avg = np.median(snr) # if np.isnan(avg): # avg = np.nanmedian(snr) elif method == 'X75': r = (snr.min(), snr.max()) hist, bin_edges = np.histogram(snr, bins=2 * int(r[1] - r[0]), range=r) hist = np.asfarray(hist) / hist.sum() cdf = np.cumsum(hist) i = np.argmax(cdf > 0.25) avg = bin_edges[i] else: raise NotImplemented("given SNR average doesn't exist") return avg
[ "def", "SNRaverage", "(", "snr", ",", "method", "=", "'average'", ",", "excludeBackground", "=", "True", ",", "checkBackground", "=", "True", ",", "backgroundLevel", "=", "None", ")", ":", "if", "excludeBackground", ":", "# get background level\r", "if", "backgroundLevel", "is", "None", ":", "try", ":", "f", "=", "FitHistogramPeaks", "(", "snr", ")", ".", "fitParams", "if", "checkBackground", ":", "if", "not", "hasBackground", "(", "f", ")", ":", "excludeBackground", "=", "False", "if", "excludeBackground", ":", "backgroundLevel", "=", "getSignalMinimum", "(", "f", ")", "except", "(", "ValueError", ",", "AssertionError", ")", ":", "backgroundLevel", "=", "snr", ".", "min", "(", ")", "if", "excludeBackground", ":", "snr", "=", "snr", "[", "snr", ">=", "backgroundLevel", "]", "if", "method", "==", "'RMS'", ":", "avg", "=", "(", "snr", "**", "2", ")", ".", "mean", "(", ")", "**", "0.5", "elif", "method", "==", "'average'", ":", "avg", "=", "snr", ".", "mean", "(", ")", "# if np.isnan(avg):\r", "# avg = np.nanmean(snr)\r", "elif", "method", "==", "'median'", ":", "avg", "=", "np", ".", "median", "(", "snr", ")", "# if np.isnan(avg):\r", "# avg = np.nanmedian(snr) \r", "elif", "method", "==", "'X75'", ":", "r", "=", "(", "snr", ".", "min", "(", ")", ",", "snr", ".", "max", "(", ")", ")", "hist", ",", "bin_edges", "=", "np", ".", "histogram", "(", "snr", ",", "bins", "=", "2", "*", "int", "(", "r", "[", "1", "]", "-", "r", "[", "0", "]", ")", ",", "range", "=", "r", ")", "hist", "=", "np", ".", "asfarray", "(", "hist", ")", "/", "hist", ".", "sum", "(", ")", "cdf", "=", "np", ".", "cumsum", "(", "hist", ")", "i", "=", "np", ".", "argmax", "(", "cdf", ">", "0.25", ")", "avg", "=", "bin_edges", "[", "i", "]", "else", ":", "raise", "NotImplemented", "(", "\"given SNR average doesn't exist\"", ")", "return", "avg" ]
average a signal-to-noise map :param method: ['average','X75', 'RMS', 'median'] - X75: this SNR will be exceeded by 75% of the signal :type method: str :param checkBackground: check whether there is actually a background level to exclude :type checkBackground: bool :returns: averaged SNR as float
[ "average", "a", "signal", "-", "to", "-", "noise", "map", ":", "param", "method", ":", "[", "average", "X75", "RMS", "median", "]", "-", "X75", ":", "this", "SNR", "will", "be", "exceeded", "by", "75%", "of", "the", "signal", ":", "type", "method", ":", "str", ":", "param", "checkBackground", ":", "check", "whether", "there", "is", "actually", "a", "background", "level", "to", "exclude", ":", "type", "checkBackground", ":", "bool", ":", "returns", ":", "averaged", "SNR", "as", "float" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/measure/SNR/SNRaverage.py#L10-L58
radjkarl/imgProcessor
imgProcessor/filters/maskedConvolve.py
maskedConvolve
def maskedConvolve(arr, kernel, mask, mode='reflect'): ''' same as scipy.ndimage.convolve but is only executed on mask==True ... which should speed up everything ''' arr2 = extendArrayForConvolution(arr, kernel.shape, modex=mode, modey=mode) print(arr2.shape) out = np.zeros_like(arr) return _calc(arr2, kernel, mask, out)
python
def maskedConvolve(arr, kernel, mask, mode='reflect'): ''' same as scipy.ndimage.convolve but is only executed on mask==True ... which should speed up everything ''' arr2 = extendArrayForConvolution(arr, kernel.shape, modex=mode, modey=mode) print(arr2.shape) out = np.zeros_like(arr) return _calc(arr2, kernel, mask, out)
[ "def", "maskedConvolve", "(", "arr", ",", "kernel", ",", "mask", ",", "mode", "=", "'reflect'", ")", ":", "arr2", "=", "extendArrayForConvolution", "(", "arr", ",", "kernel", ".", "shape", ",", "modex", "=", "mode", ",", "modey", "=", "mode", ")", "print", "(", "arr2", ".", "shape", ")", "out", "=", "np", ".", "zeros_like", "(", "arr", ")", "return", "_calc", "(", "arr2", ",", "kernel", ",", "mask", ",", "out", ")" ]
same as scipy.ndimage.convolve but is only executed on mask==True ... which should speed up everything
[ "same", "as", "scipy", ".", "ndimage", ".", "convolve", "but", "is", "only", "executed", "on", "mask", "==", "True", "...", "which", "should", "speed", "up", "everything" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/filters/maskedConvolve.py#L13-L21
radjkarl/imgProcessor
imgProcessor/measure/SNR/SNR.py
SNR
def SNR(img1, img2=None, bg=None, noise_level_function=None, constant_noise_level=False, imgs_to_be_averaged=False): ''' Returns a signal-to-noise-map uses algorithm as described in BEDRICH 2016 JPV (not jet published) :param constant_noise_level: True, to assume noise to be constant :param imgs_to_be_averaged: True, if SNR is for average(img1, img2) ''' # dark current subtraction: img1 = np.asfarray(img1) if bg is not None: img1 = img1 - bg # SIGNAL: if img2 is not None: img2_exists = True img2 = np.asfarray(img2) - bg # signal as average on both images signal = 0.5 * (img1 + img2) else: img2_exists = False signal = img1 # denoise: signal = median_filter(signal, 3) # NOISE if constant_noise_level: # CONSTANT NOISE if img2_exists: d = img1 - img2 # 0.5**0.5 because of sum of variances noise = 0.5**0.5 * np.mean(np.abs((d))) * F_RMS2AAD else: d = (img1 - signal) * F_NOISE_WITH_MEDIAN noise = np.mean(np.abs(d)) * F_RMS2AAD else: # NOISE LEVEL FUNCTION if noise_level_function is None: noise_level_function, _ = oneImageNLF(img1, img2, signal) noise = noise_level_function(signal) noise[noise < 1] = 1 # otherwise SNR could be higher than image value if imgs_to_be_averaged: # SNR will be higher if both given images are supposed to be averaged: # factor of noise reduction if SNR if for average(img1, img2): noise *= 0.5**0.5 # BACKGROUND estimation and removal if background not given: if bg is None: bg = getBackgroundLevel(img1) signal -= bg snr = signal / noise # limit to 1, saying at these points signal=noise: snr[snr < 1] = 1 return snr
python
def SNR(img1, img2=None, bg=None, noise_level_function=None, constant_noise_level=False, imgs_to_be_averaged=False): ''' Returns a signal-to-noise-map uses algorithm as described in BEDRICH 2016 JPV (not jet published) :param constant_noise_level: True, to assume noise to be constant :param imgs_to_be_averaged: True, if SNR is for average(img1, img2) ''' # dark current subtraction: img1 = np.asfarray(img1) if bg is not None: img1 = img1 - bg # SIGNAL: if img2 is not None: img2_exists = True img2 = np.asfarray(img2) - bg # signal as average on both images signal = 0.5 * (img1 + img2) else: img2_exists = False signal = img1 # denoise: signal = median_filter(signal, 3) # NOISE if constant_noise_level: # CONSTANT NOISE if img2_exists: d = img1 - img2 # 0.5**0.5 because of sum of variances noise = 0.5**0.5 * np.mean(np.abs((d))) * F_RMS2AAD else: d = (img1 - signal) * F_NOISE_WITH_MEDIAN noise = np.mean(np.abs(d)) * F_RMS2AAD else: # NOISE LEVEL FUNCTION if noise_level_function is None: noise_level_function, _ = oneImageNLF(img1, img2, signal) noise = noise_level_function(signal) noise[noise < 1] = 1 # otherwise SNR could be higher than image value if imgs_to_be_averaged: # SNR will be higher if both given images are supposed to be averaged: # factor of noise reduction if SNR if for average(img1, img2): noise *= 0.5**0.5 # BACKGROUND estimation and removal if background not given: if bg is None: bg = getBackgroundLevel(img1) signal -= bg snr = signal / noise # limit to 1, saying at these points signal=noise: snr[snr < 1] = 1 return snr
[ "def", "SNR", "(", "img1", ",", "img2", "=", "None", ",", "bg", "=", "None", ",", "noise_level_function", "=", "None", ",", "constant_noise_level", "=", "False", ",", "imgs_to_be_averaged", "=", "False", ")", ":", "# dark current subtraction:\r", "img1", "=", "np", ".", "asfarray", "(", "img1", ")", "if", "bg", "is", "not", "None", ":", "img1", "=", "img1", "-", "bg", "# SIGNAL:\r", "if", "img2", "is", "not", "None", ":", "img2_exists", "=", "True", "img2", "=", "np", ".", "asfarray", "(", "img2", ")", "-", "bg", "# signal as average on both images\r", "signal", "=", "0.5", "*", "(", "img1", "+", "img2", ")", "else", ":", "img2_exists", "=", "False", "signal", "=", "img1", "# denoise:\r", "signal", "=", "median_filter", "(", "signal", ",", "3", ")", "# NOISE\r", "if", "constant_noise_level", ":", "# CONSTANT NOISE\r", "if", "img2_exists", ":", "d", "=", "img1", "-", "img2", "# 0.5**0.5 because of sum of variances\r", "noise", "=", "0.5", "**", "0.5", "*", "np", ".", "mean", "(", "np", ".", "abs", "(", "(", "d", ")", ")", ")", "*", "F_RMS2AAD", "else", ":", "d", "=", "(", "img1", "-", "signal", ")", "*", "F_NOISE_WITH_MEDIAN", "noise", "=", "np", ".", "mean", "(", "np", ".", "abs", "(", "d", ")", ")", "*", "F_RMS2AAD", "else", ":", "# NOISE LEVEL FUNCTION\r", "if", "noise_level_function", "is", "None", ":", "noise_level_function", ",", "_", "=", "oneImageNLF", "(", "img1", ",", "img2", ",", "signal", ")", "noise", "=", "noise_level_function", "(", "signal", ")", "noise", "[", "noise", "<", "1", "]", "=", "1", "# otherwise SNR could be higher than image value\r", "if", "imgs_to_be_averaged", ":", "# SNR will be higher if both given images are supposed to be averaged:\r", "# factor of noise reduction if SNR if for average(img1, img2):\r", "noise", "*=", "0.5", "**", "0.5", "# BACKGROUND estimation and removal if background not given:\r", "if", "bg", "is", "None", ":", "bg", "=", "getBackgroundLevel", "(", "img1", ")", "signal", "-=", "bg", "snr", "=", "signal", "/", "noise", "# limit to 1, saying at these points signal=noise:\r", "snr", "[", "snr", "<", "1", "]", "=", "1", "return", "snr" ]
Returns a signal-to-noise-map uses algorithm as described in BEDRICH 2016 JPV (not jet published) :param constant_noise_level: True, to assume noise to be constant :param imgs_to_be_averaged: True, if SNR is for average(img1, img2)
[ "Returns", "a", "signal", "-", "to", "-", "noise", "-", "map", "uses", "algorithm", "as", "described", "in", "BEDRICH", "2016", "JPV", "(", "not", "jet", "published", ")", ":", "param", "constant_noise_level", ":", "True", "to", "assume", "noise", "to", "be", "constant", ":", "param", "imgs_to_be_averaged", ":", "True", "if", "SNR", "is", "for", "average", "(", "img1", "img2", ")" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/measure/SNR/SNR.py#L21-L79
radjkarl/imgProcessor
imgProcessor/utils/sortCorners.py
sortCorners
def sortCorners(corners): ''' sort the corners of a given quadrilateral of the type corners : [ [xi,yi],... ] to an anti-clockwise order starting with the bottom left corner or (if plotted as image where y increases to the bottom): clockwise, starting top left ''' corners = np.asarray(corners) # bring edges in order: corners2 = corners[ConvexHull(corners).vertices] if len(corners2) == 3: # sometimes ConvexHull one point is missing because it is # within the hull triangle # find the right position of set corner as the minimum perimeter # built with that point as different indices for c in corners: if c not in corners2: break perimeter = [] for n in range(0, 4): corners3 = np.insert(corners2, n, c, axis=0) perimeter.append( np.linalg.norm( np.diff( corners3, axis=0), axis=1).sum()) n = np.argmin(perimeter) corners2 = np.insert(corners2, n, c, axis=0) # find the edge with the right angle to the quad middle: mn = corners2.mean(axis=0) d = (corners2 - mn) ascent = np.arctan2(d[:, 1], d[:, 0]) bl = np.abs(BL_ANGLE + ascent).argmin() # build a index list starting with bl: i = list(range(bl, 4)) i.extend(list(range(0, bl))) return corners2[i]
python
def sortCorners(corners): ''' sort the corners of a given quadrilateral of the type corners : [ [xi,yi],... ] to an anti-clockwise order starting with the bottom left corner or (if plotted as image where y increases to the bottom): clockwise, starting top left ''' corners = np.asarray(corners) # bring edges in order: corners2 = corners[ConvexHull(corners).vertices] if len(corners2) == 3: # sometimes ConvexHull one point is missing because it is # within the hull triangle # find the right position of set corner as the minimum perimeter # built with that point as different indices for c in corners: if c not in corners2: break perimeter = [] for n in range(0, 4): corners3 = np.insert(corners2, n, c, axis=0) perimeter.append( np.linalg.norm( np.diff( corners3, axis=0), axis=1).sum()) n = np.argmin(perimeter) corners2 = np.insert(corners2, n, c, axis=0) # find the edge with the right angle to the quad middle: mn = corners2.mean(axis=0) d = (corners2 - mn) ascent = np.arctan2(d[:, 1], d[:, 0]) bl = np.abs(BL_ANGLE + ascent).argmin() # build a index list starting with bl: i = list(range(bl, 4)) i.extend(list(range(0, bl))) return corners2[i]
[ "def", "sortCorners", "(", "corners", ")", ":", "corners", "=", "np", ".", "asarray", "(", "corners", ")", "# bring edges in order:\r", "corners2", "=", "corners", "[", "ConvexHull", "(", "corners", ")", ".", "vertices", "]", "if", "len", "(", "corners2", ")", "==", "3", ":", "# sometimes ConvexHull one point is missing because it is\r", "# within the hull triangle\r", "# find the right position of set corner as the minimum perimeter\r", "# built with that point as different indices\r", "for", "c", "in", "corners", ":", "if", "c", "not", "in", "corners2", ":", "break", "perimeter", "=", "[", "]", "for", "n", "in", "range", "(", "0", ",", "4", ")", ":", "corners3", "=", "np", ".", "insert", "(", "corners2", ",", "n", ",", "c", ",", "axis", "=", "0", ")", "perimeter", ".", "append", "(", "np", ".", "linalg", ".", "norm", "(", "np", ".", "diff", "(", "corners3", ",", "axis", "=", "0", ")", ",", "axis", "=", "1", ")", ".", "sum", "(", ")", ")", "n", "=", "np", ".", "argmin", "(", "perimeter", ")", "corners2", "=", "np", ".", "insert", "(", "corners2", ",", "n", ",", "c", ",", "axis", "=", "0", ")", "# find the edge with the right angle to the quad middle:\r", "mn", "=", "corners2", ".", "mean", "(", "axis", "=", "0", ")", "d", "=", "(", "corners2", "-", "mn", ")", "ascent", "=", "np", ".", "arctan2", "(", "d", "[", ":", ",", "1", "]", ",", "d", "[", ":", ",", "0", "]", ")", "bl", "=", "np", ".", "abs", "(", "BL_ANGLE", "+", "ascent", ")", ".", "argmin", "(", ")", "# build a index list starting with bl:\r", "i", "=", "list", "(", "range", "(", "bl", ",", "4", ")", ")", "i", ".", "extend", "(", "list", "(", "range", "(", "0", ",", "bl", ")", ")", ")", "return", "corners2", "[", "i", "]" ]
sort the corners of a given quadrilateral of the type corners : [ [xi,yi],... ] to an anti-clockwise order starting with the bottom left corner or (if plotted as image where y increases to the bottom): clockwise, starting top left
[ "sort", "the", "corners", "of", "a", "given", "quadrilateral", "of", "the", "type", "corners", ":", "[", "[", "xi", "yi", "]", "...", "]", "to", "an", "anti", "-", "clockwise", "order", "starting", "with", "the", "bottom", "left", "corner", "or", "(", "if", "plotted", "as", "image", "where", "y", "increases", "to", "the", "bottom", ")", ":", "clockwise", "starting", "top", "left" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/utils/sortCorners.py#L8-L50
radjkarl/imgProcessor
imgProcessor/render/closestDirectDistance.py
closestDirectDistance
def closestDirectDistance(arr, ksize=30, dtype=np.uint16): ''' return an array with contains the closest distance to the next positive value given in arr within a given kernel size ''' out = np.zeros_like(arr, dtype=dtype) _calc(out, arr, ksize) return out
python
def closestDirectDistance(arr, ksize=30, dtype=np.uint16): ''' return an array with contains the closest distance to the next positive value given in arr within a given kernel size ''' out = np.zeros_like(arr, dtype=dtype) _calc(out, arr, ksize) return out
[ "def", "closestDirectDistance", "(", "arr", ",", "ksize", "=", "30", ",", "dtype", "=", "np", ".", "uint16", ")", ":", "out", "=", "np", ".", "zeros_like", "(", "arr", ",", "dtype", "=", "dtype", ")", "_calc", "(", "out", ",", "arr", ",", "ksize", ")", "return", "out" ]
return an array with contains the closest distance to the next positive value given in arr within a given kernel size
[ "return", "an", "array", "with", "contains", "the", "closest", "distance", "to", "the", "next", "positive", "value", "given", "in", "arr", "within", "a", "given", "kernel", "size" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/render/closestDirectDistance.py#L6-L14
radjkarl/imgProcessor
imgProcessor/render/closestConnectedDistance.py
closestConnectedDistance
def closestConnectedDistance(target, walls=None, max_len_border_line=500, max_n_path=100, concentrate_every_n_pixel=1): ''' returns an array with contains the closest distance from every pixel the next position where target == 1 [walls] binary 2darray - e.g. walls in a labyrinth that have to be surrounded in order to get to the target [target] binary 2darray - positions given by 1 [concentrate_every_n_pixel] often the distance of neighbour pixels is similar to speed up calculation set this value to e.g. 3 to calculate only the distance for every 3. pixel and interpolate in between recommended are values up to 3-5 [max_len_border_line] this function calculates distances travelled using region growth e.g. 0123 1123 2223 3333 the last steps (e.g. for all steps 3 border_line=7) are stored in an array of limited length defined in 'max_len_border_line' [max_n_path] how many paths are possible between every pixel and the target only needed if fast==False ''' c = concentrate_every_n_pixel assert c >= 1 if walls is None: walls = np.zeros_like(target, dtype=bool) s = target.shape dt = np.uint16 if max(target.shape) < 200: dt = np.uint8 out = np.zeros((s[0] // c, s[1] // c), dtype=dt) # temporary arrays: growth = np.zeros_like(target, dtype=dt) res = np.empty(shape=3, dtype=dt) steps = np.empty(shape=(max_len_border_line, 2), dtype=dt) new_steps = np.empty(shape=(max_len_border_line, 2), dtype=dt) # run calculation: _calc(growth, out, walls, target, steps, new_steps, res, concentrate_every_n_pixel) if c > 1: # if concentrate_every_n_pixel > 1 # the resized output array # will have wrong values close to the wall # therefore substitute all wall value (-1) # with an average of their closest neighbours interpolate2dStructuredIDW(out, out == 0) out = cv2.resize(out, s[::-1]) out[walls] = 0 return out
python
def closestConnectedDistance(target, walls=None, max_len_border_line=500, max_n_path=100, concentrate_every_n_pixel=1): ''' returns an array with contains the closest distance from every pixel the next position where target == 1 [walls] binary 2darray - e.g. walls in a labyrinth that have to be surrounded in order to get to the target [target] binary 2darray - positions given by 1 [concentrate_every_n_pixel] often the distance of neighbour pixels is similar to speed up calculation set this value to e.g. 3 to calculate only the distance for every 3. pixel and interpolate in between recommended are values up to 3-5 [max_len_border_line] this function calculates distances travelled using region growth e.g. 0123 1123 2223 3333 the last steps (e.g. for all steps 3 border_line=7) are stored in an array of limited length defined in 'max_len_border_line' [max_n_path] how many paths are possible between every pixel and the target only needed if fast==False ''' c = concentrate_every_n_pixel assert c >= 1 if walls is None: walls = np.zeros_like(target, dtype=bool) s = target.shape dt = np.uint16 if max(target.shape) < 200: dt = np.uint8 out = np.zeros((s[0] // c, s[1] // c), dtype=dt) # temporary arrays: growth = np.zeros_like(target, dtype=dt) res = np.empty(shape=3, dtype=dt) steps = np.empty(shape=(max_len_border_line, 2), dtype=dt) new_steps = np.empty(shape=(max_len_border_line, 2), dtype=dt) # run calculation: _calc(growth, out, walls, target, steps, new_steps, res, concentrate_every_n_pixel) if c > 1: # if concentrate_every_n_pixel > 1 # the resized output array # will have wrong values close to the wall # therefore substitute all wall value (-1) # with an average of their closest neighbours interpolate2dStructuredIDW(out, out == 0) out = cv2.resize(out, s[::-1]) out[walls] = 0 return out
[ "def", "closestConnectedDistance", "(", "target", ",", "walls", "=", "None", ",", "max_len_border_line", "=", "500", ",", "max_n_path", "=", "100", ",", "concentrate_every_n_pixel", "=", "1", ")", ":", "c", "=", "concentrate_every_n_pixel", "assert", "c", ">=", "1", "if", "walls", "is", "None", ":", "walls", "=", "np", ".", "zeros_like", "(", "target", ",", "dtype", "=", "bool", ")", "s", "=", "target", ".", "shape", "dt", "=", "np", ".", "uint16", "if", "max", "(", "target", ".", "shape", ")", "<", "200", ":", "dt", "=", "np", ".", "uint8", "out", "=", "np", ".", "zeros", "(", "(", "s", "[", "0", "]", "//", "c", ",", "s", "[", "1", "]", "//", "c", ")", ",", "dtype", "=", "dt", ")", "# temporary arrays:\r", "growth", "=", "np", ".", "zeros_like", "(", "target", ",", "dtype", "=", "dt", ")", "res", "=", "np", ".", "empty", "(", "shape", "=", "3", ",", "dtype", "=", "dt", ")", "steps", "=", "np", ".", "empty", "(", "shape", "=", "(", "max_len_border_line", ",", "2", ")", ",", "dtype", "=", "dt", ")", "new_steps", "=", "np", ".", "empty", "(", "shape", "=", "(", "max_len_border_line", ",", "2", ")", ",", "dtype", "=", "dt", ")", "# run calculation:\r", "_calc", "(", "growth", ",", "out", ",", "walls", ",", "target", ",", "steps", ",", "new_steps", ",", "res", ",", "concentrate_every_n_pixel", ")", "if", "c", ">", "1", ":", "# if concentrate_every_n_pixel > 1\r", "# the resized output array\r", "# will have wrong values close to the wall\r", "# therefore substitute all wall value (-1)\r", "# with an average of their closest neighbours\r", "interpolate2dStructuredIDW", "(", "out", ",", "out", "==", "0", ")", "out", "=", "cv2", ".", "resize", "(", "out", ",", "s", "[", ":", ":", "-", "1", "]", ")", "out", "[", "walls", "]", "=", "0", "return", "out" ]
returns an array with contains the closest distance from every pixel the next position where target == 1 [walls] binary 2darray - e.g. walls in a labyrinth that have to be surrounded in order to get to the target [target] binary 2darray - positions given by 1 [concentrate_every_n_pixel] often the distance of neighbour pixels is similar to speed up calculation set this value to e.g. 3 to calculate only the distance for every 3. pixel and interpolate in between recommended are values up to 3-5 [max_len_border_line] this function calculates distances travelled using region growth e.g. 0123 1123 2223 3333 the last steps (e.g. for all steps 3 border_line=7) are stored in an array of limited length defined in 'max_len_border_line' [max_n_path] how many paths are possible between every pixel and the target only needed if fast==False
[ "returns", "an", "array", "with", "contains", "the", "closest", "distance", "from", "every", "pixel", "the", "next", "position", "where", "target", "==", "1", "[", "walls", "]", "binary", "2darray", "-", "e", ".", "g", ".", "walls", "in", "a", "labyrinth", "that", "have", "to", "be", "surrounded", "in", "order", "to", "get", "to", "the", "target", "[", "target", "]", "binary", "2darray", "-", "positions", "given", "by", "1", "[", "concentrate_every_n_pixel", "]", "often", "the", "distance", "of", "neighbour", "pixels", "is", "similar", "to", "speed", "up", "calculation", "set", "this", "value", "to", "e", ".", "g", ".", "3", "to", "calculate", "only", "the", "distance", "for", "every", "3", ".", "pixel", "and", "interpolate", "in", "between", "recommended", "are", "values", "up", "to", "3", "-", "5", "[", "max_len_border_line", "]", "this", "function", "calculates", "distances", "travelled", "using", "region", "growth", "e", ".", "g", ".", "0123", "1123", "2223", "3333", "the", "last", "steps", "(", "e", ".", "g", ".", "for", "all", "steps", "3", "border_line", "=", "7", ")", "are", "stored", "in", "an", "array", "of", "limited", "length", "defined", "in", "max_len_border_line", "[", "max_n_path", "]", "how", "many", "paths", "are", "possible", "between", "every", "pixel", "and", "the", "target", "only", "needed", "if", "fast", "==", "False" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/render/closestConnectedDistance.py#L14-L77
radjkarl/imgProcessor
imgProcessor/render/closestConnectedDistance.py
_grow
def _grow(growth, walls, target, i, j, steps, new_steps, res): ''' fills [res] with [distance to next position where target == 1, x coord., y coord. of that position in target] using region growth i,j -> pixel position growth -> a work array, needed to measure the distance steps, new_steps -> current and last positions of the region growth steps using this instead of looking for the right step position in [growth] should speed up the process ''' # clean array: growth[:] = 0 if target[i, j]: # pixel is in target res[0] = 1 res[1] = i res[2] = j return step = 1 s0, s1 = growth.shape step_len = 1 new_step_ind = 0 steps[new_step_ind, 0] = i steps[new_step_ind, 1] = j growth[i, j] = 1 while True: for n in range(step_len): i, j = steps[n] for ii, jj in DIRECT_NEIGHBOURS: pi = i + ii pj = j + jj # if in image: if 0 <= pi < s0 and 0 <= pj < s1: # is growth array is empty and there are no walls: # fill growth with current step if growth[pi, pj] == 0 and not walls[pi, pj]: growth[pi, pj] = step if target[pi, pj]: # found destination res[0] = 1 res[1] = pi res[2] = pj return new_steps[new_step_ind, 0] = pi new_steps[new_step_ind, 1] = pj new_step_ind += 1 if new_step_ind == 0: # couldn't populate any more because growth is full # and all possible steps are gone res[0] = 0 return step += 1 steps, new_steps = new_steps, steps step_len = new_step_ind new_step_ind = 0
python
def _grow(growth, walls, target, i, j, steps, new_steps, res): ''' fills [res] with [distance to next position where target == 1, x coord., y coord. of that position in target] using region growth i,j -> pixel position growth -> a work array, needed to measure the distance steps, new_steps -> current and last positions of the region growth steps using this instead of looking for the right step position in [growth] should speed up the process ''' # clean array: growth[:] = 0 if target[i, j]: # pixel is in target res[0] = 1 res[1] = i res[2] = j return step = 1 s0, s1 = growth.shape step_len = 1 new_step_ind = 0 steps[new_step_ind, 0] = i steps[new_step_ind, 1] = j growth[i, j] = 1 while True: for n in range(step_len): i, j = steps[n] for ii, jj in DIRECT_NEIGHBOURS: pi = i + ii pj = j + jj # if in image: if 0 <= pi < s0 and 0 <= pj < s1: # is growth array is empty and there are no walls: # fill growth with current step if growth[pi, pj] == 0 and not walls[pi, pj]: growth[pi, pj] = step if target[pi, pj]: # found destination res[0] = 1 res[1] = pi res[2] = pj return new_steps[new_step_ind, 0] = pi new_steps[new_step_ind, 1] = pj new_step_ind += 1 if new_step_ind == 0: # couldn't populate any more because growth is full # and all possible steps are gone res[0] = 0 return step += 1 steps, new_steps = new_steps, steps step_len = new_step_ind new_step_ind = 0
[ "def", "_grow", "(", "growth", ",", "walls", ",", "target", ",", "i", ",", "j", ",", "steps", ",", "new_steps", ",", "res", ")", ":", "# clean array:\r", "growth", "[", ":", "]", "=", "0", "if", "target", "[", "i", ",", "j", "]", ":", "# pixel is in target\r", "res", "[", "0", "]", "=", "1", "res", "[", "1", "]", "=", "i", "res", "[", "2", "]", "=", "j", "return", "step", "=", "1", "s0", ",", "s1", "=", "growth", ".", "shape", "step_len", "=", "1", "new_step_ind", "=", "0", "steps", "[", "new_step_ind", ",", "0", "]", "=", "i", "steps", "[", "new_step_ind", ",", "1", "]", "=", "j", "growth", "[", "i", ",", "j", "]", "=", "1", "while", "True", ":", "for", "n", "in", "range", "(", "step_len", ")", ":", "i", ",", "j", "=", "steps", "[", "n", "]", "for", "ii", ",", "jj", "in", "DIRECT_NEIGHBOURS", ":", "pi", "=", "i", "+", "ii", "pj", "=", "j", "+", "jj", "# if in image:\r", "if", "0", "<=", "pi", "<", "s0", "and", "0", "<=", "pj", "<", "s1", ":", "# is growth array is empty and there are no walls:\r", "# fill growth with current step\r", "if", "growth", "[", "pi", ",", "pj", "]", "==", "0", "and", "not", "walls", "[", "pi", ",", "pj", "]", ":", "growth", "[", "pi", ",", "pj", "]", "=", "step", "if", "target", "[", "pi", ",", "pj", "]", ":", "# found destination\r", "res", "[", "0", "]", "=", "1", "res", "[", "1", "]", "=", "pi", "res", "[", "2", "]", "=", "pj", "return", "new_steps", "[", "new_step_ind", ",", "0", "]", "=", "pi", "new_steps", "[", "new_step_ind", ",", "1", "]", "=", "pj", "new_step_ind", "+=", "1", "if", "new_step_ind", "==", "0", ":", "# couldn't populate any more because growth is full\r", "# and all possible steps are gone\r", "res", "[", "0", "]", "=", "0", "return", "step", "+=", "1", "steps", ",", "new_steps", "=", "new_steps", ",", "steps", "step_len", "=", "new_step_ind", "new_step_ind", "=", "0" ]
fills [res] with [distance to next position where target == 1, x coord., y coord. of that position in target] using region growth i,j -> pixel position growth -> a work array, needed to measure the distance steps, new_steps -> current and last positions of the region growth steps using this instead of looking for the right step position in [growth] should speed up the process
[ "fills", "[", "res", "]", "with", "[", "distance", "to", "next", "position", "where", "target", "==", "1", "x", "coord", ".", "y", "coord", ".", "of", "that", "position", "in", "target", "]", "using", "region", "growth", "i", "j", "-", ">", "pixel", "position", "growth", "-", ">", "a", "work", "array", "needed", "to", "measure", "the", "distance", "steps", "new_steps", "-", ">", "current", "and", "last", "positions", "of", "the", "region", "growth", "steps", "using", "this", "instead", "of", "looking", "for", "the", "right", "step", "position", "in", "[", "growth", "]", "should", "speed", "up", "the", "process" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/render/closestConnectedDistance.py#L100-L166
radjkarl/imgProcessor
imgProcessor/features/polylinesFromBinImage.py
polylinesFromBinImage
def polylinesFromBinImage(img, minimum_cluster_size=6, remove_small_obj_size=3, reconnect_size=3, max_n_contours=None, max_len_contour=None, copy=True): ''' return a list of arrays of un-branching contours img -> (boolean) array optional: --------- minimum_cluster_size -> minimum number of pixels connected together to build a contour ##search_kernel_size -> TODO ##min_search_kernel_moment -> TODO numeric: ------------- max_n_contours -> maximum number of possible contours in img max_len_contour -> maximum contour length ''' assert minimum_cluster_size > 1 assert reconnect_size % 2, 'ksize needs to be odd' # assert search_kernel_size == 0 or search_kernel_size > 2 and search_kernel_size%2, 'kernel size needs to be odd' # assume array size parameters, is not given: if max_n_contours is None: max_n_contours = max(img.shape) if max_len_contour is None: max_len_contour = sum(img.shape[:2]) # array containing coord. of all contours: contours = np.zeros(shape=(max_n_contours, max_len_contour, 2), dtype=np.uint16) # if not search_kernel_size else np.float32) if img.dtype != np.bool: img = img.astype(bool) elif copy: img = img.copy() if remove_small_obj_size: remove_small_objects(img, remove_small_obj_size, connectivity=2, in_place=True) if reconnect_size: # remove gaps maximum_filter(img, reconnect_size, output=img) # reduce contour width to 1 img = skeletonize(img) n_contours = _populateContoursArray(img, contours, minimum_cluster_size) contours = contours[:n_contours] l = [] for c in contours: ind = np.zeros(shape=len(c), dtype=bool) _getValidInd(c, ind) # remove all empty spaces: l.append(c[ind]) return l
python
def polylinesFromBinImage(img, minimum_cluster_size=6, remove_small_obj_size=3, reconnect_size=3, max_n_contours=None, max_len_contour=None, copy=True): ''' return a list of arrays of un-branching contours img -> (boolean) array optional: --------- minimum_cluster_size -> minimum number of pixels connected together to build a contour ##search_kernel_size -> TODO ##min_search_kernel_moment -> TODO numeric: ------------- max_n_contours -> maximum number of possible contours in img max_len_contour -> maximum contour length ''' assert minimum_cluster_size > 1 assert reconnect_size % 2, 'ksize needs to be odd' # assert search_kernel_size == 0 or search_kernel_size > 2 and search_kernel_size%2, 'kernel size needs to be odd' # assume array size parameters, is not given: if max_n_contours is None: max_n_contours = max(img.shape) if max_len_contour is None: max_len_contour = sum(img.shape[:2]) # array containing coord. of all contours: contours = np.zeros(shape=(max_n_contours, max_len_contour, 2), dtype=np.uint16) # if not search_kernel_size else np.float32) if img.dtype != np.bool: img = img.astype(bool) elif copy: img = img.copy() if remove_small_obj_size: remove_small_objects(img, remove_small_obj_size, connectivity=2, in_place=True) if reconnect_size: # remove gaps maximum_filter(img, reconnect_size, output=img) # reduce contour width to 1 img = skeletonize(img) n_contours = _populateContoursArray(img, contours, minimum_cluster_size) contours = contours[:n_contours] l = [] for c in contours: ind = np.zeros(shape=len(c), dtype=bool) _getValidInd(c, ind) # remove all empty spaces: l.append(c[ind]) return l
[ "def", "polylinesFromBinImage", "(", "img", ",", "minimum_cluster_size", "=", "6", ",", "remove_small_obj_size", "=", "3", ",", "reconnect_size", "=", "3", ",", "max_n_contours", "=", "None", ",", "max_len_contour", "=", "None", ",", "copy", "=", "True", ")", ":", "assert", "minimum_cluster_size", ">", "1", "assert", "reconnect_size", "%", "2", ",", "'ksize needs to be odd'", "# assert search_kernel_size == 0 or search_kernel_size > 2 and search_kernel_size%2, 'kernel size needs to be odd'\r", "# assume array size parameters, is not given:\r", "if", "max_n_contours", "is", "None", ":", "max_n_contours", "=", "max", "(", "img", ".", "shape", ")", "if", "max_len_contour", "is", "None", ":", "max_len_contour", "=", "sum", "(", "img", ".", "shape", "[", ":", "2", "]", ")", "# array containing coord. of all contours:\r", "contours", "=", "np", ".", "zeros", "(", "shape", "=", "(", "max_n_contours", ",", "max_len_contour", ",", "2", ")", ",", "dtype", "=", "np", ".", "uint16", ")", "# if not search_kernel_size else np.float32)\r", "if", "img", ".", "dtype", "!=", "np", ".", "bool", ":", "img", "=", "img", ".", "astype", "(", "bool", ")", "elif", "copy", ":", "img", "=", "img", ".", "copy", "(", ")", "if", "remove_small_obj_size", ":", "remove_small_objects", "(", "img", ",", "remove_small_obj_size", ",", "connectivity", "=", "2", ",", "in_place", "=", "True", ")", "if", "reconnect_size", ":", "# remove gaps\r", "maximum_filter", "(", "img", ",", "reconnect_size", ",", "output", "=", "img", ")", "# reduce contour width to 1\r", "img", "=", "skeletonize", "(", "img", ")", "n_contours", "=", "_populateContoursArray", "(", "img", ",", "contours", ",", "minimum_cluster_size", ")", "contours", "=", "contours", "[", ":", "n_contours", "]", "l", "=", "[", "]", "for", "c", "in", "contours", ":", "ind", "=", "np", ".", "zeros", "(", "shape", "=", "len", "(", "c", ")", ",", "dtype", "=", "bool", ")", "_getValidInd", "(", "c", ",", "ind", ")", "# remove all empty spaces:\r", "l", ".", "append", "(", "c", "[", "ind", "]", ")", "return", "l" ]
return a list of arrays of un-branching contours img -> (boolean) array optional: --------- minimum_cluster_size -> minimum number of pixels connected together to build a contour ##search_kernel_size -> TODO ##min_search_kernel_moment -> TODO numeric: ------------- max_n_contours -> maximum number of possible contours in img max_len_contour -> maximum contour length
[ "return", "a", "list", "of", "arrays", "of", "un", "-", "branching", "contours", "img", "-", ">", "(", "boolean", ")", "array", "optional", ":", "---------", "minimum_cluster_size", "-", ">", "minimum", "number", "of", "pixels", "connected", "together", "to", "build", "a", "contour", "##search_kernel_size", "-", ">", "TODO", "##min_search_kernel_moment", "-", ">", "TODO", "numeric", ":", "-------------", "max_n_contours", "-", ">", "maximum", "number", "of", "possible", "contours", "in", "img", "max_len_contour", "-", ">", "maximum", "contour", "length" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/polylinesFromBinImage.py#L14-L73
radjkarl/imgProcessor
imgProcessor/utils/cdf.py
cdf
def cdf(arr, pos=None): ''' Return the cumulative density function of a given array or its intensity at a given position (0-1) ''' r = (arr.min(), arr.max()) hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r) hist = np.asfarray(hist) / hist.sum() cdf = np.cumsum(hist) if pos is None: return cdf i = np.argmax(cdf > pos) return bin_edges[i]
python
def cdf(arr, pos=None): ''' Return the cumulative density function of a given array or its intensity at a given position (0-1) ''' r = (arr.min(), arr.max()) hist, bin_edges = np.histogram(arr, bins=2 * int(r[1] - r[0]), range=r) hist = np.asfarray(hist) / hist.sum() cdf = np.cumsum(hist) if pos is None: return cdf i = np.argmax(cdf > pos) return bin_edges[i]
[ "def", "cdf", "(", "arr", ",", "pos", "=", "None", ")", ":", "r", "=", "(", "arr", ".", "min", "(", ")", ",", "arr", ".", "max", "(", ")", ")", "hist", ",", "bin_edges", "=", "np", ".", "histogram", "(", "arr", ",", "bins", "=", "2", "*", "int", "(", "r", "[", "1", "]", "-", "r", "[", "0", "]", ")", ",", "range", "=", "r", ")", "hist", "=", "np", ".", "asfarray", "(", "hist", ")", "/", "hist", ".", "sum", "(", ")", "cdf", "=", "np", ".", "cumsum", "(", "hist", ")", "if", "pos", "is", "None", ":", "return", "cdf", "i", "=", "np", ".", "argmax", "(", "cdf", ">", "pos", ")", "return", "bin_edges", "[", "i", "]" ]
Return the cumulative density function of a given array or its intensity at a given position (0-1)
[ "Return", "the", "cumulative", "density", "function", "of", "a", "given", "array", "or", "its", "intensity", "at", "a", "given", "position", "(", "0", "-", "1", ")" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/utils/cdf.py#L7-L20
radjkarl/imgProcessor
imgProcessor/array/subCell2D.py
subCell2DGenerator
def subCell2DGenerator(arr, shape, d01=None, p01=None): '''Generator to access evenly sized sub-cells in a 2d array Args: shape (tuple): number of sub-cells in y,x e.g. (10,15) d01 (tuple, optional): cell size in y and x p01 (tuple, optional): position of top left edge Returns: int: 1st index int: 2nd index array: sub array Example: >>> a = np.array([[[0,1],[1,2]],[[2,3],[3,4]]]) >>> gen = subCell2DGenerator(a,(2,2)) >>> for i,j, sub in gen: print( i,j, sub ) 0 0 [[[0 1]]] 0 1 [[[1 2]]] 1 0 [[[2 3]]] 1 1 [[[3 4]]] ''' for i, j, s0, s1 in subCell2DSlices(arr, shape, d01, p01): yield i, j, arr[s0, s1]
python
def subCell2DGenerator(arr, shape, d01=None, p01=None): '''Generator to access evenly sized sub-cells in a 2d array Args: shape (tuple): number of sub-cells in y,x e.g. (10,15) d01 (tuple, optional): cell size in y and x p01 (tuple, optional): position of top left edge Returns: int: 1st index int: 2nd index array: sub array Example: >>> a = np.array([[[0,1],[1,2]],[[2,3],[3,4]]]) >>> gen = subCell2DGenerator(a,(2,2)) >>> for i,j, sub in gen: print( i,j, sub ) 0 0 [[[0 1]]] 0 1 [[[1 2]]] 1 0 [[[2 3]]] 1 1 [[[3 4]]] ''' for i, j, s0, s1 in subCell2DSlices(arr, shape, d01, p01): yield i, j, arr[s0, s1]
[ "def", "subCell2DGenerator", "(", "arr", ",", "shape", ",", "d01", "=", "None", ",", "p01", "=", "None", ")", ":", "for", "i", ",", "j", ",", "s0", ",", "s1", "in", "subCell2DSlices", "(", "arr", ",", "shape", ",", "d01", ",", "p01", ")", ":", "yield", "i", ",", "j", ",", "arr", "[", "s0", ",", "s1", "]" ]
Generator to access evenly sized sub-cells in a 2d array Args: shape (tuple): number of sub-cells in y,x e.g. (10,15) d01 (tuple, optional): cell size in y and x p01 (tuple, optional): position of top left edge Returns: int: 1st index int: 2nd index array: sub array Example: >>> a = np.array([[[0,1],[1,2]],[[2,3],[3,4]]]) >>> gen = subCell2DGenerator(a,(2,2)) >>> for i,j, sub in gen: print( i,j, sub ) 0 0 [[[0 1]]] 0 1 [[[1 2]]] 1 0 [[[2 3]]] 1 1 [[[3 4]]]
[ "Generator", "to", "access", "evenly", "sized", "sub", "-", "cells", "in", "a", "2d", "array", "Args", ":", "shape", "(", "tuple", ")", ":", "number", "of", "sub", "-", "cells", "in", "y", "x", "e", ".", "g", ".", "(", "10", "15", ")", "d01", "(", "tuple", "optional", ")", ":", "cell", "size", "in", "y", "and", "x", "p01", "(", "tuple", "optional", ")", ":", "position", "of", "top", "left", "edge", "Returns", ":", "int", ":", "1st", "index", "int", ":", "2nd", "index", "array", ":", "sub", "array", "Example", ":", ">>>", "a", "=", "np", ".", "array", "(", "[[[", "0", "1", "]", "[", "1", "2", "]]", "[[", "2", "3", "]", "[", "3", "4", "]]]", ")", ">>>", "gen", "=", "subCell2DGenerator", "(", "a", "(", "2", "2", "))", ">>>", "for", "i", "j", "sub", "in", "gen", ":", "print", "(", "i", "j", "sub", ")", "0", "0", "[[[", "0", "1", "]]]", "0", "1", "[[[", "1", "2", "]]]", "1", "0", "[[[", "2", "3", "]]]", "1", "1", "[[[", "3", "4", "]]]" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/array/subCell2D.py#L5-L29
radjkarl/imgProcessor
imgProcessor/array/subCell2D.py
subCell2DSlices
def subCell2DSlices(arr, shape, d01=None, p01=None): '''Generator to access evenly sized sub-cells in a 2d array Args: shape (tuple): number of sub-cells in y,x e.g. (10,15) d01 (tuple, optional): cell size in y and x p01 (tuple, optional): position of top left edge Returns: int: 1st index int: 2nd index slice: first dimension slice: 1st dimension ''' if p01 is not None: yinit, xinit = p01 else: xinit, yinit = 0, 0 x, y = xinit, yinit g0, g1 = shape s0, s1 = arr.shape[:2] if d01 is not None: d0, d1 = d01 else: d0, d1 = s0 / g0, s1 / g1 y1 = d0 + yinit for i in range(g0): for j in range(g1): x1 = x + d1 yield (i, j, slice(max(0, _rint(y)), max(0, _rint(y1))), slice(max(0, _rint(x)), max(0, _rint(x1)))) x = x1 y = y1 y1 = y + d0 x = xinit
python
def subCell2DSlices(arr, shape, d01=None, p01=None): '''Generator to access evenly sized sub-cells in a 2d array Args: shape (tuple): number of sub-cells in y,x e.g. (10,15) d01 (tuple, optional): cell size in y and x p01 (tuple, optional): position of top left edge Returns: int: 1st index int: 2nd index slice: first dimension slice: 1st dimension ''' if p01 is not None: yinit, xinit = p01 else: xinit, yinit = 0, 0 x, y = xinit, yinit g0, g1 = shape s0, s1 = arr.shape[:2] if d01 is not None: d0, d1 = d01 else: d0, d1 = s0 / g0, s1 / g1 y1 = d0 + yinit for i in range(g0): for j in range(g1): x1 = x + d1 yield (i, j, slice(max(0, _rint(y)), max(0, _rint(y1))), slice(max(0, _rint(x)), max(0, _rint(x1)))) x = x1 y = y1 y1 = y + d0 x = xinit
[ "def", "subCell2DSlices", "(", "arr", ",", "shape", ",", "d01", "=", "None", ",", "p01", "=", "None", ")", ":", "if", "p01", "is", "not", "None", ":", "yinit", ",", "xinit", "=", "p01", "else", ":", "xinit", ",", "yinit", "=", "0", ",", "0", "x", ",", "y", "=", "xinit", ",", "yinit", "g0", ",", "g1", "=", "shape", "s0", ",", "s1", "=", "arr", ".", "shape", "[", ":", "2", "]", "if", "d01", "is", "not", "None", ":", "d0", ",", "d1", "=", "d01", "else", ":", "d0", ",", "d1", "=", "s0", "/", "g0", ",", "s1", "/", "g1", "y1", "=", "d0", "+", "yinit", "for", "i", "in", "range", "(", "g0", ")", ":", "for", "j", "in", "range", "(", "g1", ")", ":", "x1", "=", "x", "+", "d1", "yield", "(", "i", ",", "j", ",", "slice", "(", "max", "(", "0", ",", "_rint", "(", "y", ")", ")", ",", "max", "(", "0", ",", "_rint", "(", "y1", ")", ")", ")", ",", "slice", "(", "max", "(", "0", ",", "_rint", "(", "x", ")", ")", ",", "max", "(", "0", ",", "_rint", "(", "x1", ")", ")", ")", ")", "x", "=", "x1", "y", "=", "y1", "y1", "=", "y", "+", "d0", "x", "=", "xinit" ]
Generator to access evenly sized sub-cells in a 2d array Args: shape (tuple): number of sub-cells in y,x e.g. (10,15) d01 (tuple, optional): cell size in y and x p01 (tuple, optional): position of top left edge Returns: int: 1st index int: 2nd index slice: first dimension slice: 1st dimension
[ "Generator", "to", "access", "evenly", "sized", "sub", "-", "cells", "in", "a", "2d", "array", "Args", ":", "shape", "(", "tuple", ")", ":", "number", "of", "sub", "-", "cells", "in", "y", "x", "e", ".", "g", ".", "(", "10", "15", ")", "d01", "(", "tuple", "optional", ")", ":", "cell", "size", "in", "y", "and", "x", "p01", "(", "tuple", "optional", ")", ":", "position", "of", "top", "left", "edge", "Returns", ":", "int", ":", "1st", "index", "int", ":", "2nd", "index", "slice", ":", "first", "dimension", "slice", ":", "1st", "dimension" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/array/subCell2D.py#L32-L71
radjkarl/imgProcessor
imgProcessor/array/subCell2D.py
subCell2DCoords
def subCell2DCoords(*args, **kwargs): '''Same as subCell2DSlices but returning coordinates Example: g = subCell2DCoords(arr, shape) for x, y in g: plt.plot(x, y) ''' for _, _, s0, s1 in subCell2DSlices(*args, **kwargs): yield ((s1.start, s1.start, s1.stop), (s0.start, s0.stop, s0.stop))
python
def subCell2DCoords(*args, **kwargs): '''Same as subCell2DSlices but returning coordinates Example: g = subCell2DCoords(arr, shape) for x, y in g: plt.plot(x, y) ''' for _, _, s0, s1 in subCell2DSlices(*args, **kwargs): yield ((s1.start, s1.start, s1.stop), (s0.start, s0.stop, s0.stop))
[ "def", "subCell2DCoords", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "for", "_", ",", "_", ",", "s0", ",", "s1", "in", "subCell2DSlices", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "yield", "(", "(", "s1", ".", "start", ",", "s1", ".", "start", ",", "s1", ".", "stop", ")", ",", "(", "s0", ".", "start", ",", "s0", ".", "stop", ",", "s0", ".", "stop", ")", ")" ]
Same as subCell2DSlices but returning coordinates Example: g = subCell2DCoords(arr, shape) for x, y in g: plt.plot(x, y)
[ "Same", "as", "subCell2DSlices", "but", "returning", "coordinates", "Example", ":", "g", "=", "subCell2DCoords", "(", "arr", "shape", ")", "for", "x", "y", "in", "g", ":", "plt", ".", "plot", "(", "x", "y", ")" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/array/subCell2D.py#L74-L84
radjkarl/imgProcessor
imgProcessor/array/subCell2D.py
subCell2DFnArray
def subCell2DFnArray(arr, fn, shape, dtype=None, **kwargs): ''' Return array where every cell is the output of a given cell function Args: fn (function): ...to be executed on all sub-arrays Returns: array: value of every cell equals result of fn(sub-array) Example: mx = subCell2DFnArray(myArray, np.max, (10,6) ) - -> here mx is a 2d array containing all cell maxima ''' sh = list(arr.shape) sh[:2] = shape out = np.empty(sh, dtype=dtype) for i, j, c in subCell2DGenerator(arr, shape, **kwargs): out[i, j] = fn(c) return out
python
def subCell2DFnArray(arr, fn, shape, dtype=None, **kwargs): ''' Return array where every cell is the output of a given cell function Args: fn (function): ...to be executed on all sub-arrays Returns: array: value of every cell equals result of fn(sub-array) Example: mx = subCell2DFnArray(myArray, np.max, (10,6) ) - -> here mx is a 2d array containing all cell maxima ''' sh = list(arr.shape) sh[:2] = shape out = np.empty(sh, dtype=dtype) for i, j, c in subCell2DGenerator(arr, shape, **kwargs): out[i, j] = fn(c) return out
[ "def", "subCell2DFnArray", "(", "arr", ",", "fn", ",", "shape", ",", "dtype", "=", "None", ",", "*", "*", "kwargs", ")", ":", "sh", "=", "list", "(", "arr", ".", "shape", ")", "sh", "[", ":", "2", "]", "=", "shape", "out", "=", "np", ".", "empty", "(", "sh", ",", "dtype", "=", "dtype", ")", "for", "i", ",", "j", ",", "c", "in", "subCell2DGenerator", "(", "arr", ",", "shape", ",", "*", "*", "kwargs", ")", ":", "out", "[", "i", ",", "j", "]", "=", "fn", "(", "c", ")", "return", "out" ]
Return array where every cell is the output of a given cell function Args: fn (function): ...to be executed on all sub-arrays Returns: array: value of every cell equals result of fn(sub-array) Example: mx = subCell2DFnArray(myArray, np.max, (10,6) ) - -> here mx is a 2d array containing all cell maxima
[ "Return", "array", "where", "every", "cell", "is", "the", "output", "of", "a", "given", "cell", "function", "Args", ":", "fn", "(", "function", ")", ":", "...", "to", "be", "executed", "on", "all", "sub", "-", "arrays", "Returns", ":", "array", ":", "value", "of", "every", "cell", "equals", "result", "of", "fn", "(", "sub", "-", "array", ")", "Example", ":", "mx", "=", "subCell2DFnArray", "(", "myArray", "np", ".", "max", "(", "10", "6", ")", ")", "-", "-", ">", "here", "mx", "is", "a", "2d", "array", "containing", "all", "cell", "maxima" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/array/subCell2D.py#L87-L107
radjkarl/imgProcessor
imgProcessor/equations/defocusThroughDepth.py
defocusThroughDepth
def defocusThroughDepth(u, uf, f, fn, k=2.355): ''' return the defocus (mm std) through DOF u -> scene point (depth value) uf -> in-focus position (the distance at which the scene point should be placed in order to be focused) f -> focal length k -> camera dependent constant (transferring blur circle to PSF), 2.335 would be FHWD of 2dgaussian fn --> f-number (relative aperture) equation (3) taken from http://linkinghub.elsevier.com/retrieve/pii/S0031320312004736 Pertuz et.al. "Analysis of focus measure operators for shape-from-focus" all parameter should be in same physical unit [mm] !! assumes spatial invariant blur ''' # A = f/fn return (k/fn) * (f**2*abs(u-uf)) / (u*(uf-f))
python
def defocusThroughDepth(u, uf, f, fn, k=2.355): ''' return the defocus (mm std) through DOF u -> scene point (depth value) uf -> in-focus position (the distance at which the scene point should be placed in order to be focused) f -> focal length k -> camera dependent constant (transferring blur circle to PSF), 2.335 would be FHWD of 2dgaussian fn --> f-number (relative aperture) equation (3) taken from http://linkinghub.elsevier.com/retrieve/pii/S0031320312004736 Pertuz et.al. "Analysis of focus measure operators for shape-from-focus" all parameter should be in same physical unit [mm] !! assumes spatial invariant blur ''' # A = f/fn return (k/fn) * (f**2*abs(u-uf)) / (u*(uf-f))
[ "def", "defocusThroughDepth", "(", "u", ",", "uf", ",", "f", ",", "fn", ",", "k", "=", "2.355", ")", ":", "# A = f/fn \r", "return", "(", "k", "/", "fn", ")", "*", "(", "f", "**", "2", "*", "abs", "(", "u", "-", "uf", ")", ")", "/", "(", "u", "*", "(", "uf", "-", "f", ")", ")" ]
return the defocus (mm std) through DOF u -> scene point (depth value) uf -> in-focus position (the distance at which the scene point should be placed in order to be focused) f -> focal length k -> camera dependent constant (transferring blur circle to PSF), 2.335 would be FHWD of 2dgaussian fn --> f-number (relative aperture) equation (3) taken from http://linkinghub.elsevier.com/retrieve/pii/S0031320312004736 Pertuz et.al. "Analysis of focus measure operators for shape-from-focus" all parameter should be in same physical unit [mm] !! assumes spatial invariant blur
[ "return", "the", "defocus", "(", "mm", "std", ")", "through", "DOF", "u", "-", ">", "scene", "point", "(", "depth", "value", ")", "uf", "-", ">", "in", "-", "focus", "position", "(", "the", "distance", "at", "which", "the", "scene", "point", "should", "be", "placed", "in", "order", "to", "be", "focused", ")", "f", "-", ">", "focal", "length", "k", "-", ">", "camera", "dependent", "constant", "(", "transferring", "blur", "circle", "to", "PSF", ")", "2", ".", "335", "would", "be", "FHWD", "of", "2dgaussian", "fn", "--", ">", "f", "-", "number", "(", "relative", "aperture", ")", "equation", "(", "3", ")", "taken", "from", "http", ":", "//", "linkinghub", ".", "elsevier", ".", "com", "/", "retrieve", "/", "pii", "/", "S0031320312004736", "Pertuz", "et", ".", "al", ".", "Analysis", "of", "focus", "measure", "operators", "for", "shape", "-", "from", "-", "focus", "all", "parameter", "should", "be", "in", "same", "physical", "unit", "[", "mm", "]", "!!", "assumes", "spatial", "invariant", "blur" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/equations/defocusThroughDepth.py#L4-L22
radjkarl/imgProcessor
imgProcessor/filters/_extendArrayForConvolution.py
extendArrayForConvolution
def extendArrayForConvolution(arr, kernelXY, modex='reflect', modey='reflect'): ''' extends a given array right right border handling for convolution -->in opposite to skimage and skipy this function allows to chose different mode = ('reflect', 'wrap') in x and y direction only supports 'warp' and 'reflect' at the moment ''' (kx, ky) = kernelXY kx//=2 ky//=2 #indexing 0:-0 leads to empty arrays and not the whole thing #make it easy with assuming ksize=1 and removing extra size later: nokx = kx == 0 noky = ky == 0 if nokx: kx = 1 if noky: ky = 1 s0,s1 = arr.shape assert ky < s0 assert kx < s1 arr2 = np.zeros((s0+2*ky, s1+2*kx), dtype=arr.dtype) if kx == 0: kx = None arr2[ky:-ky,kx:-kx]=arr #original array: t = arr[:ky] #TOP rb = arr[-1:-ky-1:-1] #reverse bottom rt = arr[ky-1::-1] #reverse top rr = arr[:,-1:-kx-1:-1] #reverse right l = arr[:,:kx] #left # rtl = arr[ky-1::-1,kx-1::-1] #filter array: tm2 = arr2[:ky , kx:-kx] #TOP-MIDDLE bm2 = arr2[-ky:, kx:-kx] #BOTTOM-MIDDLE tl2 = arr2[:ky , :kx] #TOP-LEFT bl2 = arr2[-ky:, :kx] #BOTTOM-LEFT tr2 = arr2[:ky:, -kx:]#TOP-RIGHT br2 = arr2[-ky:, -kx:]#TOP-RIGHT #fill edges: if modey == 'warp': tm2[:] = t bm2[:] = rb tl2[:] = arr2[2*ky:ky:-1,:kx] bl2[:] = arr2[-ky-1:-2*ky-1:-1,:kx] #TODO: do other options!!! elif modey == 'reflect': tm2[:] = rt bm2[:] = rb if modex =='reflect': tl2[:] = arr[ky-1::-1,kx-1::-1] bl2[:] = arr[-1:-ky-1:-1,kx-1::-1] tr2[:] = arr[:ky,-kx:][::-1,::-1] br2[:] = arr[-ky:,-kx:][::-1,::-1] else:#warp tl2[:] = arr[ky-1::-1 , -kx:] bl2[:] = arr[-1:-ky-1:-1 , -kx:] tr2[:] = arr[ky-1::-1 , :kx] br2[:] = arr[-1:-ky-1:-1 , :kx] else: raise Exception('modey not supported') if modex == 'wrap': arr2[ky:-ky,kx-1::-1] = rr arr2[ky:-ky,-kx:] = l elif modex == 'reflect': arr2[ky:-ky,:kx] = l[:,::-1] arr2[ky:-ky,-kx:] = rr else: raise Exception('modex not supported') if nokx: arr2 = arr2[:,1:-1] if noky: arr2 = arr2[1:-1] return arr2
python
def extendArrayForConvolution(arr, kernelXY, modex='reflect', modey='reflect'): ''' extends a given array right right border handling for convolution -->in opposite to skimage and skipy this function allows to chose different mode = ('reflect', 'wrap') in x and y direction only supports 'warp' and 'reflect' at the moment ''' (kx, ky) = kernelXY kx//=2 ky//=2 #indexing 0:-0 leads to empty arrays and not the whole thing #make it easy with assuming ksize=1 and removing extra size later: nokx = kx == 0 noky = ky == 0 if nokx: kx = 1 if noky: ky = 1 s0,s1 = arr.shape assert ky < s0 assert kx < s1 arr2 = np.zeros((s0+2*ky, s1+2*kx), dtype=arr.dtype) if kx == 0: kx = None arr2[ky:-ky,kx:-kx]=arr #original array: t = arr[:ky] #TOP rb = arr[-1:-ky-1:-1] #reverse bottom rt = arr[ky-1::-1] #reverse top rr = arr[:,-1:-kx-1:-1] #reverse right l = arr[:,:kx] #left # rtl = arr[ky-1::-1,kx-1::-1] #filter array: tm2 = arr2[:ky , kx:-kx] #TOP-MIDDLE bm2 = arr2[-ky:, kx:-kx] #BOTTOM-MIDDLE tl2 = arr2[:ky , :kx] #TOP-LEFT bl2 = arr2[-ky:, :kx] #BOTTOM-LEFT tr2 = arr2[:ky:, -kx:]#TOP-RIGHT br2 = arr2[-ky:, -kx:]#TOP-RIGHT #fill edges: if modey == 'warp': tm2[:] = t bm2[:] = rb tl2[:] = arr2[2*ky:ky:-1,:kx] bl2[:] = arr2[-ky-1:-2*ky-1:-1,:kx] #TODO: do other options!!! elif modey == 'reflect': tm2[:] = rt bm2[:] = rb if modex =='reflect': tl2[:] = arr[ky-1::-1,kx-1::-1] bl2[:] = arr[-1:-ky-1:-1,kx-1::-1] tr2[:] = arr[:ky,-kx:][::-1,::-1] br2[:] = arr[-ky:,-kx:][::-1,::-1] else:#warp tl2[:] = arr[ky-1::-1 , -kx:] bl2[:] = arr[-1:-ky-1:-1 , -kx:] tr2[:] = arr[ky-1::-1 , :kx] br2[:] = arr[-1:-ky-1:-1 , :kx] else: raise Exception('modey not supported') if modex == 'wrap': arr2[ky:-ky,kx-1::-1] = rr arr2[ky:-ky,-kx:] = l elif modex == 'reflect': arr2[ky:-ky,:kx] = l[:,::-1] arr2[ky:-ky,-kx:] = rr else: raise Exception('modex not supported') if nokx: arr2 = arr2[:,1:-1] if noky: arr2 = arr2[1:-1] return arr2
[ "def", "extendArrayForConvolution", "(", "arr", ",", "kernelXY", ",", "modex", "=", "'reflect'", ",", "modey", "=", "'reflect'", ")", ":", "(", "kx", ",", "ky", ")", "=", "kernelXY", "kx", "//=", "2", "ky", "//=", "2", "#indexing 0:-0 leads to empty arrays and not the whole thing\r", "#make it easy with assuming ksize=1 and removing extra size later:\r", "nokx", "=", "kx", "==", "0", "noky", "=", "ky", "==", "0", "if", "nokx", ":", "kx", "=", "1", "if", "noky", ":", "ky", "=", "1", "s0", ",", "s1", "=", "arr", ".", "shape", "assert", "ky", "<", "s0", "assert", "kx", "<", "s1", "arr2", "=", "np", ".", "zeros", "(", "(", "s0", "+", "2", "*", "ky", ",", "s1", "+", "2", "*", "kx", ")", ",", "dtype", "=", "arr", ".", "dtype", ")", "if", "kx", "==", "0", ":", "kx", "=", "None", "arr2", "[", "ky", ":", "-", "ky", ",", "kx", ":", "-", "kx", "]", "=", "arr", "#original array:\r", "t", "=", "arr", "[", ":", "ky", "]", "#TOP\r", "rb", "=", "arr", "[", "-", "1", ":", "-", "ky", "-", "1", ":", "-", "1", "]", "#reverse bottom\r", "rt", "=", "arr", "[", "ky", "-", "1", ":", ":", "-", "1", "]", "#reverse top\r", "rr", "=", "arr", "[", ":", ",", "-", "1", ":", "-", "kx", "-", "1", ":", "-", "1", "]", "#reverse right\r", "l", "=", "arr", "[", ":", ",", ":", "kx", "]", "#left\r", "# rtl = arr[ky-1::-1,kx-1::-1]\r", "#filter array:\r", "tm2", "=", "arr2", "[", ":", "ky", ",", "kx", ":", "-", "kx", "]", "#TOP-MIDDLE\r", "bm2", "=", "arr2", "[", "-", "ky", ":", ",", "kx", ":", "-", "kx", "]", "#BOTTOM-MIDDLE\r", "tl2", "=", "arr2", "[", ":", "ky", ",", ":", "kx", "]", "#TOP-LEFT\r", "bl2", "=", "arr2", "[", "-", "ky", ":", ",", ":", "kx", "]", "#BOTTOM-LEFT\r", "tr2", "=", "arr2", "[", ":", "ky", ":", ",", "-", "kx", ":", "]", "#TOP-RIGHT\r", "br2", "=", "arr2", "[", "-", "ky", ":", ",", "-", "kx", ":", "]", "#TOP-RIGHT\r", "#fill edges:\r", "if", "modey", "==", "'warp'", ":", "tm2", "[", ":", "]", "=", "t", "bm2", "[", ":", "]", "=", "rb", "tl2", "[", ":", "]", "=", "arr2", "[", "2", "*", "ky", ":", "ky", ":", "-", "1", ",", ":", "kx", "]", "bl2", "[", ":", "]", "=", "arr2", "[", "-", "ky", "-", "1", ":", "-", "2", "*", "ky", "-", "1", ":", "-", "1", ",", ":", "kx", "]", "#TODO: do other options!!! \r", "elif", "modey", "==", "'reflect'", ":", "tm2", "[", ":", "]", "=", "rt", "bm2", "[", ":", "]", "=", "rb", "if", "modex", "==", "'reflect'", ":", "tl2", "[", ":", "]", "=", "arr", "[", "ky", "-", "1", ":", ":", "-", "1", ",", "kx", "-", "1", ":", ":", "-", "1", "]", "bl2", "[", ":", "]", "=", "arr", "[", "-", "1", ":", "-", "ky", "-", "1", ":", "-", "1", ",", "kx", "-", "1", ":", ":", "-", "1", "]", "tr2", "[", ":", "]", "=", "arr", "[", ":", "ky", ",", "-", "kx", ":", "]", "[", ":", ":", "-", "1", ",", ":", ":", "-", "1", "]", "br2", "[", ":", "]", "=", "arr", "[", "-", "ky", ":", ",", "-", "kx", ":", "]", "[", ":", ":", "-", "1", ",", ":", ":", "-", "1", "]", "else", ":", "#warp\r", "tl2", "[", ":", "]", "=", "arr", "[", "ky", "-", "1", ":", ":", "-", "1", ",", "-", "kx", ":", "]", "bl2", "[", ":", "]", "=", "arr", "[", "-", "1", ":", "-", "ky", "-", "1", ":", "-", "1", ",", "-", "kx", ":", "]", "tr2", "[", ":", "]", "=", "arr", "[", "ky", "-", "1", ":", ":", "-", "1", ",", ":", "kx", "]", "br2", "[", ":", "]", "=", "arr", "[", "-", "1", ":", "-", "ky", "-", "1", ":", "-", "1", ",", ":", "kx", "]", "else", ":", "raise", "Exception", "(", "'modey not supported'", ")", "if", "modex", "==", "'wrap'", ":", "arr2", "[", "ky", ":", "-", "ky", ",", "kx", "-", "1", ":", ":", "-", "1", "]", "=", "rr", "arr2", "[", "ky", ":", "-", "ky", ",", "-", "kx", ":", "]", "=", "l", "elif", "modex", "==", "'reflect'", ":", "arr2", "[", "ky", ":", "-", "ky", ",", ":", "kx", "]", "=", "l", "[", ":", ",", ":", ":", "-", "1", "]", "arr2", "[", "ky", ":", "-", "ky", ",", "-", "kx", ":", "]", "=", "rr", "else", ":", "raise", "Exception", "(", "'modex not supported'", ")", "if", "nokx", ":", "arr2", "=", "arr2", "[", ":", ",", "1", ":", "-", "1", "]", "if", "noky", ":", "arr2", "=", "arr2", "[", "1", ":", "-", "1", "]", "return", "arr2" ]
extends a given array right right border handling for convolution -->in opposite to skimage and skipy this function allows to chose different mode = ('reflect', 'wrap') in x and y direction only supports 'warp' and 'reflect' at the moment
[ "extends", "a", "given", "array", "right", "right", "border", "handling", "for", "convolution", "--", ">", "in", "opposite", "to", "skimage", "and", "skipy", "this", "function", "allows", "to", "chose", "different", "mode", "=", "(", "reflect", "wrap", ")", "in", "x", "and", "y", "direction", "only", "supports", "warp", "and", "reflect", "at", "the", "moment" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/filters/_extendArrayForConvolution.py#L5-L97
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.calibrate
def calibrate(self, board_size=(8, 6), method='Chessboard', images=[], max_images=100, sensorSize_mm=None, detect_sensible=True): ''' sensorSize_mm - (width, height) [mm] Physical size of the sensor ''' self._coeffs = {} self.opts = {'foundPattern': [], # whether pattern could be found for image 'size': board_size, 'imgs': [], # list of either npArrsays or img paths # list or 2d coords. of found pattern features (e.g. # chessboard corners) 'imgPoints': [] } self._detect_sensible = detect_sensible self.method = {'Chessboard': self._findChessboard, 'Symmetric circles': self._findSymmetricCircles, 'Asymmetric circles': self._findAsymmetricCircles, 'Manual': None # TODO: 'Image grid':FindGridInImage }[method] self.max_images = max_images self.findCount = 0 self.apertureSize = sensorSize_mm self.objp = self._mkObjPoints(board_size) if method == 'Asymmetric circles': # this pattern have its points (every 2. row) displaced, so: i = self.objp[:, 1] % 2 == 1 self.objp[:, 0] *= 2 self.objp[i, 0] += 1 # Arrays to store object points and image points from all the images. self.objpoints = [] # 3d point in real world space # self.imgpoints = [] # 2d points in image plane. self.mapx, self.mapy = None, None # from matplotlib import pyplot as plt for n, i in enumerate(images): print('working on image %s' % n) if self.addImg(i): print('OK')
python
def calibrate(self, board_size=(8, 6), method='Chessboard', images=[], max_images=100, sensorSize_mm=None, detect_sensible=True): ''' sensorSize_mm - (width, height) [mm] Physical size of the sensor ''' self._coeffs = {} self.opts = {'foundPattern': [], # whether pattern could be found for image 'size': board_size, 'imgs': [], # list of either npArrsays or img paths # list or 2d coords. of found pattern features (e.g. # chessboard corners) 'imgPoints': [] } self._detect_sensible = detect_sensible self.method = {'Chessboard': self._findChessboard, 'Symmetric circles': self._findSymmetricCircles, 'Asymmetric circles': self._findAsymmetricCircles, 'Manual': None # TODO: 'Image grid':FindGridInImage }[method] self.max_images = max_images self.findCount = 0 self.apertureSize = sensorSize_mm self.objp = self._mkObjPoints(board_size) if method == 'Asymmetric circles': # this pattern have its points (every 2. row) displaced, so: i = self.objp[:, 1] % 2 == 1 self.objp[:, 0] *= 2 self.objp[i, 0] += 1 # Arrays to store object points and image points from all the images. self.objpoints = [] # 3d point in real world space # self.imgpoints = [] # 2d points in image plane. self.mapx, self.mapy = None, None # from matplotlib import pyplot as plt for n, i in enumerate(images): print('working on image %s' % n) if self.addImg(i): print('OK')
[ "def", "calibrate", "(", "self", ",", "board_size", "=", "(", "8", ",", "6", ")", ",", "method", "=", "'Chessboard'", ",", "images", "=", "[", "]", ",", "max_images", "=", "100", ",", "sensorSize_mm", "=", "None", ",", "detect_sensible", "=", "True", ")", ":", "self", ".", "_coeffs", "=", "{", "}", "self", ".", "opts", "=", "{", "'foundPattern'", ":", "[", "]", ",", "# whether pattern could be found for image\r", "'size'", ":", "board_size", ",", "'imgs'", ":", "[", "]", ",", "# list of either npArrsays or img paths\r", "# list or 2d coords. of found pattern features (e.g.\r", "# chessboard corners)\r", "'imgPoints'", ":", "[", "]", "}", "self", ".", "_detect_sensible", "=", "detect_sensible", "self", ".", "method", "=", "{", "'Chessboard'", ":", "self", ".", "_findChessboard", ",", "'Symmetric circles'", ":", "self", ".", "_findSymmetricCircles", ",", "'Asymmetric circles'", ":", "self", ".", "_findAsymmetricCircles", ",", "'Manual'", ":", "None", "# TODO: 'Image grid':FindGridInImage\r", "}", "[", "method", "]", "self", ".", "max_images", "=", "max_images", "self", ".", "findCount", "=", "0", "self", ".", "apertureSize", "=", "sensorSize_mm", "self", ".", "objp", "=", "self", ".", "_mkObjPoints", "(", "board_size", ")", "if", "method", "==", "'Asymmetric circles'", ":", "# this pattern have its points (every 2. row) displaced, so:\r", "i", "=", "self", ".", "objp", "[", ":", ",", "1", "]", "%", "2", "==", "1", "self", ".", "objp", "[", ":", ",", "0", "]", "*=", "2", "self", ".", "objp", "[", "i", ",", "0", "]", "+=", "1", "# Arrays to store object points and image points from all the images.\r", "self", ".", "objpoints", "=", "[", "]", "# 3d point in real world space\r", "# self.imgpoints = [] # 2d points in image plane.\r", "self", ".", "mapx", ",", "self", ".", "mapy", "=", "None", ",", "None", "# from matplotlib import pyplot as plt\r", "for", "n", ",", "i", "in", "enumerate", "(", "images", ")", ":", "print", "(", "'working on image %s'", "%", "n", ")", "if", "self", ".", "addImg", "(", "i", ")", ":", "print", "(", "'OK'", ")" ]
sensorSize_mm - (width, height) [mm] Physical size of the sensor
[ "sensorSize_mm", "-", "(", "width", "height", ")", "[", "mm", "]", "Physical", "size", "of", "the", "sensor" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L35-L80
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.addPoints
def addPoints(self, points, board_size=None): ''' add corner points directly instead of extracting them from image points = ( (0,1), (...),... ) [x,y] ''' self.opts['foundPattern'].append(True) self.findCount += 1 if board_size is not None: self.objpoints.append(self._mkObjPoints(board_size)) else: self.objpoints.append(self.objp) s0 = points.shape[0] self.opts['imgPoints'].append(np.asarray(points).reshape( s0, 1, 2).astype(np.float32))
python
def addPoints(self, points, board_size=None): ''' add corner points directly instead of extracting them from image points = ( (0,1), (...),... ) [x,y] ''' self.opts['foundPattern'].append(True) self.findCount += 1 if board_size is not None: self.objpoints.append(self._mkObjPoints(board_size)) else: self.objpoints.append(self.objp) s0 = points.shape[0] self.opts['imgPoints'].append(np.asarray(points).reshape( s0, 1, 2).astype(np.float32))
[ "def", "addPoints", "(", "self", ",", "points", ",", "board_size", "=", "None", ")", ":", "self", ".", "opts", "[", "'foundPattern'", "]", ".", "append", "(", "True", ")", "self", ".", "findCount", "+=", "1", "if", "board_size", "is", "not", "None", ":", "self", ".", "objpoints", ".", "append", "(", "self", ".", "_mkObjPoints", "(", "board_size", ")", ")", "else", ":", "self", ".", "objpoints", ".", "append", "(", "self", ".", "objp", ")", "s0", "=", "points", ".", "shape", "[", "0", "]", "self", ".", "opts", "[", "'imgPoints'", "]", ".", "append", "(", "np", ".", "asarray", "(", "points", ")", ".", "reshape", "(", "s0", ",", "1", ",", "2", ")", ".", "astype", "(", "np", ".", "float32", ")", ")" ]
add corner points directly instead of extracting them from image points = ( (0,1), (...),... ) [x,y]
[ "add", "corner", "points", "directly", "instead", "of", "extracting", "them", "from", "image", "points", "=", "(", "(", "0", "1", ")", "(", "...", ")", "...", ")", "[", "x", "y", "]" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L91-L106
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.setImgShape
def setImgShape(self, shape): ''' image shape must be known for calculating camera matrix if method==Manual and addPoints is used instead of addImg this method must be called before .coeffs are obtained ''' self.img = type('Dummy', (object,), {}) # if imgProcessor.ARRAYS_ORDER_IS_XY: # self.img.shape = shape[::-1] # else: self.img.shape = shape
python
def setImgShape(self, shape): ''' image shape must be known for calculating camera matrix if method==Manual and addPoints is used instead of addImg this method must be called before .coeffs are obtained ''' self.img = type('Dummy', (object,), {}) # if imgProcessor.ARRAYS_ORDER_IS_XY: # self.img.shape = shape[::-1] # else: self.img.shape = shape
[ "def", "setImgShape", "(", "self", ",", "shape", ")", ":", "self", ".", "img", "=", "type", "(", "'Dummy'", ",", "(", "object", ",", ")", ",", "{", "}", ")", "# if imgProcessor.ARRAYS_ORDER_IS_XY:\r", "# self.img.shape = shape[::-1]\r", "# else:\r", "self", ".", "img", ".", "shape", "=", "shape" ]
image shape must be known for calculating camera matrix if method==Manual and addPoints is used instead of addImg this method must be called before .coeffs are obtained
[ "image", "shape", "must", "be", "known", "for", "calculating", "camera", "matrix", "if", "method", "==", "Manual", "and", "addPoints", "is", "used", "instead", "of", "addImg", "this", "method", "must", "be", "called", "before", ".", "coeffs", "are", "obtained" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L108-L118
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.addImgStream
def addImgStream(self, img): ''' add images using a continous stream - stop when max number of images is reached ''' if self.findCount > self.max_images: raise EnoughImages('have enough images') return self.addImg(img)
python
def addImgStream(self, img): ''' add images using a continous stream - stop when max number of images is reached ''' if self.findCount > self.max_images: raise EnoughImages('have enough images') return self.addImg(img)
[ "def", "addImgStream", "(", "self", ",", "img", ")", ":", "if", "self", ".", "findCount", ">", "self", ".", "max_images", ":", "raise", "EnoughImages", "(", "'have enough images'", ")", "return", "self", ".", "addImg", "(", "img", ")" ]
add images using a continous stream - stop when max number of images is reached
[ "add", "images", "using", "a", "continous", "stream", "-", "stop", "when", "max", "number", "of", "images", "is", "reached" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L120-L127
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.addImg
def addImg(self, img): ''' add one chessboard image for detection lens distortion ''' # self.opts['imgs'].append(img) self.img = imread(img, 'gray', 'uint8') didFindCorners, corners = self.method() self.opts['foundPattern'].append(didFindCorners) if didFindCorners: self.findCount += 1 self.objpoints.append(self.objp) self.opts['imgPoints'].append(corners) return didFindCorners
python
def addImg(self, img): ''' add one chessboard image for detection lens distortion ''' # self.opts['imgs'].append(img) self.img = imread(img, 'gray', 'uint8') didFindCorners, corners = self.method() self.opts['foundPattern'].append(didFindCorners) if didFindCorners: self.findCount += 1 self.objpoints.append(self.objp) self.opts['imgPoints'].append(corners) return didFindCorners
[ "def", "addImg", "(", "self", ",", "img", ")", ":", "# self.opts['imgs'].append(img)\r", "self", ".", "img", "=", "imread", "(", "img", ",", "'gray'", ",", "'uint8'", ")", "didFindCorners", ",", "corners", "=", "self", ".", "method", "(", ")", "self", ".", "opts", "[", "'foundPattern'", "]", ".", "append", "(", "didFindCorners", ")", "if", "didFindCorners", ":", "self", ".", "findCount", "+=", "1", "self", ".", "objpoints", ".", "append", "(", "self", ".", "objp", ")", "self", ".", "opts", "[", "'imgPoints'", "]", ".", "append", "(", "corners", ")", "return", "didFindCorners" ]
add one chessboard image for detection lens distortion
[ "add", "one", "chessboard", "image", "for", "detection", "lens", "distortion" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L129-L144
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.getCoeffStr
def getCoeffStr(self): ''' get the distortion coeffs in a formated string ''' txt = '' for key, val in self.coeffs.items(): txt += '%s = %s\n' % (key, val) return txt
python
def getCoeffStr(self): ''' get the distortion coeffs in a formated string ''' txt = '' for key, val in self.coeffs.items(): txt += '%s = %s\n' % (key, val) return txt
[ "def", "getCoeffStr", "(", "self", ")", ":", "txt", "=", "''", "for", "key", ",", "val", "in", "self", ".", "coeffs", ".", "items", "(", ")", ":", "txt", "+=", "'%s = %s\\n'", "%", "(", "key", ",", "val", ")", "return", "txt" ]
get the distortion coeffs in a formated string
[ "get", "the", "distortion", "coeffs", "in", "a", "formated", "string" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L177-L184
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.drawChessboard
def drawChessboard(self, img=None): ''' draw a grid fitting to the last added image on this one or an extra image img == None ==False -> draw chessbord on empty image ==img ''' assert self.findCount > 0, 'cannot draw chessboard if nothing found' if img is None: img = self.img elif isinstance(img, bool) and not img: img = np.zeros(shape=(self.img.shape), dtype=self.img.dtype) else: img = imread(img, dtype='uint8') gray = False if img.ndim == 2: gray = True # need a color 8 bit image img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Draw and display the corners cv2.drawChessboardCorners(img, self.opts['size'], self.opts['imgPoints'][-1], self.opts['foundPattern'][-1]) if gray: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img
python
def drawChessboard(self, img=None): ''' draw a grid fitting to the last added image on this one or an extra image img == None ==False -> draw chessbord on empty image ==img ''' assert self.findCount > 0, 'cannot draw chessboard if nothing found' if img is None: img = self.img elif isinstance(img, bool) and not img: img = np.zeros(shape=(self.img.shape), dtype=self.img.dtype) else: img = imread(img, dtype='uint8') gray = False if img.ndim == 2: gray = True # need a color 8 bit image img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # Draw and display the corners cv2.drawChessboardCorners(img, self.opts['size'], self.opts['imgPoints'][-1], self.opts['foundPattern'][-1]) if gray: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return img
[ "def", "drawChessboard", "(", "self", ",", "img", "=", "None", ")", ":", "assert", "self", ".", "findCount", ">", "0", ",", "'cannot draw chessboard if nothing found'", "if", "img", "is", "None", ":", "img", "=", "self", ".", "img", "elif", "isinstance", "(", "img", ",", "bool", ")", "and", "not", "img", ":", "img", "=", "np", ".", "zeros", "(", "shape", "=", "(", "self", ".", "img", ".", "shape", ")", ",", "dtype", "=", "self", ".", "img", ".", "dtype", ")", "else", ":", "img", "=", "imread", "(", "img", ",", "dtype", "=", "'uint8'", ")", "gray", "=", "False", "if", "img", ".", "ndim", "==", "2", ":", "gray", "=", "True", "# need a color 8 bit image\r", "img", "=", "cv2", ".", "cvtColor", "(", "img", ",", "cv2", ".", "COLOR_GRAY2BGR", ")", "# Draw and display the corners\r", "cv2", ".", "drawChessboardCorners", "(", "img", ",", "self", ".", "opts", "[", "'size'", "]", ",", "self", ".", "opts", "[", "'imgPoints'", "]", "[", "-", "1", "]", ",", "self", ".", "opts", "[", "'foundPattern'", "]", "[", "-", "1", "]", ")", "if", "gray", ":", "img", "=", "cv2", ".", "cvtColor", "(", "img", ",", "cv2", ".", "COLOR_BGR2GRAY", ")", "return", "img" ]
draw a grid fitting to the last added image on this one or an extra image img == None ==False -> draw chessbord on empty image ==img
[ "draw", "a", "grid", "fitting", "to", "the", "last", "added", "image", "on", "this", "one", "or", "an", "extra", "image", "img", "==", "None", "==", "False", "-", ">", "draw", "chessbord", "on", "empty", "image", "==", "img" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L186-L212
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.writeToFile
def writeToFile(self, filename, saveOpts=False): ''' write the distortion coeffs to file saveOpts --> Whether so save calibration options (and not just results) ''' try: if not filename.endswith('.%s' % self.ftype): filename += '.%s' % self.ftype s = {'coeffs': self.coeffs} if saveOpts: s['opts'] = self.opts # else: # s['opts':{}] np.savez(filename, **s) return filename except AttributeError: raise Exception( 'need to calibrate camera before calibration can be saved to file')
python
def writeToFile(self, filename, saveOpts=False): ''' write the distortion coeffs to file saveOpts --> Whether so save calibration options (and not just results) ''' try: if not filename.endswith('.%s' % self.ftype): filename += '.%s' % self.ftype s = {'coeffs': self.coeffs} if saveOpts: s['opts'] = self.opts # else: # s['opts':{}] np.savez(filename, **s) return filename except AttributeError: raise Exception( 'need to calibrate camera before calibration can be saved to file')
[ "def", "writeToFile", "(", "self", ",", "filename", ",", "saveOpts", "=", "False", ")", ":", "try", ":", "if", "not", "filename", ".", "endswith", "(", "'.%s'", "%", "self", ".", "ftype", ")", ":", "filename", "+=", "'.%s'", "%", "self", ".", "ftype", "s", "=", "{", "'coeffs'", ":", "self", ".", "coeffs", "}", "if", "saveOpts", ":", "s", "[", "'opts'", "]", "=", "self", ".", "opts", "# else:\r", "# s['opts':{}]\r", "np", ".", "savez", "(", "filename", ",", "*", "*", "s", ")", "return", "filename", "except", "AttributeError", ":", "raise", "Exception", "(", "'need to calibrate camera before calibration can be saved to file'", ")" ]
write the distortion coeffs to file saveOpts --> Whether so save calibration options (and not just results)
[ "write", "the", "distortion", "coeffs", "to", "file", "saveOpts", "--", ">", "Whether", "so", "save", "calibration", "options", "(", "and", "not", "just", "results", ")" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L258-L275
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.readFromFile
def readFromFile(self, filename): ''' read the distortion coeffs from file ''' s = dict(np.load(filename)) try: self.coeffs = s['coeffs'][()] except KeyError: #LEGENCY - remove self.coeffs = s try: self.opts = s['opts'][()] except KeyError: pass return self.coeffs
python
def readFromFile(self, filename): ''' read the distortion coeffs from file ''' s = dict(np.load(filename)) try: self.coeffs = s['coeffs'][()] except KeyError: #LEGENCY - remove self.coeffs = s try: self.opts = s['opts'][()] except KeyError: pass return self.coeffs
[ "def", "readFromFile", "(", "self", ",", "filename", ")", ":", "s", "=", "dict", "(", "np", ".", "load", "(", "filename", ")", ")", "try", ":", "self", ".", "coeffs", "=", "s", "[", "'coeffs'", "]", "[", "(", ")", "]", "except", "KeyError", ":", "#LEGENCY - remove\r", "self", ".", "coeffs", "=", "s", "try", ":", "self", ".", "opts", "=", "s", "[", "'opts'", "]", "[", "(", ")", "]", "except", "KeyError", ":", "pass", "return", "self", ".", "coeffs" ]
read the distortion coeffs from file
[ "read", "the", "distortion", "coeffs", "from", "file" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L277-L291
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.undistortPoints
def undistortPoints(self, points, keepSize=False): ''' points --> list of (x,y) coordinates ''' s = self.img.shape cam = self.coeffs['cameraMatrix'] d = self.coeffs['distortionCoeffs'] pts = np.asarray(points, dtype=np.float32) if pts.ndim == 2: pts = np.expand_dims(pts, axis=0) (newCameraMatrix, roi) = cv2.getOptimalNewCameraMatrix(cam, d, s[::-1], 1, s[::-1]) if not keepSize: xx, yy = roi[:2] pts[0, 0] -= xx pts[0, 1] -= yy return cv2.undistortPoints(pts, cam, d, P=newCameraMatrix)
python
def undistortPoints(self, points, keepSize=False): ''' points --> list of (x,y) coordinates ''' s = self.img.shape cam = self.coeffs['cameraMatrix'] d = self.coeffs['distortionCoeffs'] pts = np.asarray(points, dtype=np.float32) if pts.ndim == 2: pts = np.expand_dims(pts, axis=0) (newCameraMatrix, roi) = cv2.getOptimalNewCameraMatrix(cam, d, s[::-1], 1, s[::-1]) if not keepSize: xx, yy = roi[:2] pts[0, 0] -= xx pts[0, 1] -= yy return cv2.undistortPoints(pts, cam, d, P=newCameraMatrix)
[ "def", "undistortPoints", "(", "self", ",", "points", ",", "keepSize", "=", "False", ")", ":", "s", "=", "self", ".", "img", ".", "shape", "cam", "=", "self", ".", "coeffs", "[", "'cameraMatrix'", "]", "d", "=", "self", ".", "coeffs", "[", "'distortionCoeffs'", "]", "pts", "=", "np", ".", "asarray", "(", "points", ",", "dtype", "=", "np", ".", "float32", ")", "if", "pts", ".", "ndim", "==", "2", ":", "pts", "=", "np", ".", "expand_dims", "(", "pts", ",", "axis", "=", "0", ")", "(", "newCameraMatrix", ",", "roi", ")", "=", "cv2", ".", "getOptimalNewCameraMatrix", "(", "cam", ",", "d", ",", "s", "[", ":", ":", "-", "1", "]", ",", "1", ",", "s", "[", ":", ":", "-", "1", "]", ")", "if", "not", "keepSize", ":", "xx", ",", "yy", "=", "roi", "[", ":", "2", "]", "pts", "[", "0", ",", "0", "]", "-=", "xx", "pts", "[", "0", ",", "1", "]", "-=", "yy", "return", "cv2", ".", "undistortPoints", "(", "pts", ",", "cam", ",", "d", ",", "P", "=", "newCameraMatrix", ")" ]
points --> list of (x,y) coordinates
[ "points", "--", ">", "list", "of", "(", "x", "y", ")", "coordinates" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L293-L314
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.correct
def correct(self, image, keepSize=False, borderValue=0): ''' remove lens distortion from given image ''' image = imread(image) (h, w) = image.shape[:2] mapx, mapy = self.getUndistortRectifyMap(w, h) self.img = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=borderValue ) if not keepSize: xx, yy, ww, hh = self.roi self.img = self.img[yy: yy + hh, xx: xx + ww] return self.img
python
def correct(self, image, keepSize=False, borderValue=0): ''' remove lens distortion from given image ''' image = imread(image) (h, w) = image.shape[:2] mapx, mapy = self.getUndistortRectifyMap(w, h) self.img = cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=borderValue ) if not keepSize: xx, yy, ww, hh = self.roi self.img = self.img[yy: yy + hh, xx: xx + ww] return self.img
[ "def", "correct", "(", "self", ",", "image", ",", "keepSize", "=", "False", ",", "borderValue", "=", "0", ")", ":", "image", "=", "imread", "(", "image", ")", "(", "h", ",", "w", ")", "=", "image", ".", "shape", "[", ":", "2", "]", "mapx", ",", "mapy", "=", "self", ".", "getUndistortRectifyMap", "(", "w", ",", "h", ")", "self", ".", "img", "=", "cv2", ".", "remap", "(", "image", ",", "mapx", ",", "mapy", ",", "cv2", ".", "INTER_LINEAR", ",", "borderMode", "=", "cv2", ".", "BORDER_CONSTANT", ",", "borderValue", "=", "borderValue", ")", "if", "not", "keepSize", ":", "xx", ",", "yy", ",", "ww", ",", "hh", "=", "self", ".", "roi", "self", ".", "img", "=", "self", ".", "img", "[", "yy", ":", "yy", "+", "hh", ",", "xx", ":", "xx", "+", "ww", "]", "return", "self", ".", "img" ]
remove lens distortion from given image
[ "remove", "lens", "distortion", "from", "given", "image" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L316-L330
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.distortImage
def distortImage(self, image): ''' opposite of 'correct' ''' image = imread(image) (imgHeight, imgWidth) = image.shape[:2] mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight) return cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderValue=(0, 0, 0))
python
def distortImage(self, image): ''' opposite of 'correct' ''' image = imread(image) (imgHeight, imgWidth) = image.shape[:2] mapx, mapy = self.getDistortRectifyMap(imgWidth, imgHeight) return cv2.remap(image, mapx, mapy, cv2.INTER_LINEAR, borderValue=(0, 0, 0))
[ "def", "distortImage", "(", "self", ",", "image", ")", ":", "image", "=", "imread", "(", "image", ")", "(", "imgHeight", ",", "imgWidth", ")", "=", "image", ".", "shape", "[", ":", "2", "]", "mapx", ",", "mapy", "=", "self", ".", "getDistortRectifyMap", "(", "imgWidth", ",", "imgHeight", ")", "return", "cv2", ".", "remap", "(", "image", ",", "mapx", ",", "mapy", ",", "cv2", ".", "INTER_LINEAR", ",", "borderValue", "=", "(", "0", ",", "0", ",", "0", ")", ")" ]
opposite of 'correct'
[ "opposite", "of", "correct" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L332-L340
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.getCameraParams
def getCameraParams(self): ''' value positions based on http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html#cv.InitUndistortRectifyMap ''' c = self.coeffs['cameraMatrix'] fx = c[0][0] fy = c[1][1] cx = c[0][2] cy = c[1][2] k1, k2, p1, p2, k3 = tuple(self.coeffs['distortionCoeffs'].tolist()[0]) return fx, fy, cx, cy, k1, k2, k3, p1, p2
python
def getCameraParams(self): ''' value positions based on http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html#cv.InitUndistortRectifyMap ''' c = self.coeffs['cameraMatrix'] fx = c[0][0] fy = c[1][1] cx = c[0][2] cy = c[1][2] k1, k2, p1, p2, k3 = tuple(self.coeffs['distortionCoeffs'].tolist()[0]) return fx, fy, cx, cy, k1, k2, k3, p1, p2
[ "def", "getCameraParams", "(", "self", ")", ":", "c", "=", "self", ".", "coeffs", "[", "'cameraMatrix'", "]", "fx", "=", "c", "[", "0", "]", "[", "0", "]", "fy", "=", "c", "[", "1", "]", "[", "1", "]", "cx", "=", "c", "[", "0", "]", "[", "2", "]", "cy", "=", "c", "[", "1", "]", "[", "2", "]", "k1", ",", "k2", ",", "p1", ",", "p2", ",", "k3", "=", "tuple", "(", "self", ".", "coeffs", "[", "'distortionCoeffs'", "]", ".", "tolist", "(", ")", "[", "0", "]", ")", "return", "fx", ",", "fy", ",", "cx", ",", "cy", ",", "k1", ",", "k2", ",", "k3", ",", "p1", ",", "p2" ]
value positions based on http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html#cv.InitUndistortRectifyMap
[ "value", "positions", "based", "on", "http", ":", "//", "docs", ".", "opencv", ".", "org", "/", "modules", "/", "imgproc", "/", "doc", "/", "geometric_transformations", ".", "html#cv", ".", "InitUndistortRectifyMap" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L360-L371
radjkarl/imgProcessor
imgProcessor/camera/LensDistortion.py
LensDistortion.standardUncertainties
def standardUncertainties(self, sharpness=0.5): ''' sharpness -> image sharpness // std of Gaussian PSF [px] returns a list of standard uncertainties for the x and y component: (1x,2x), (1y, 2y), (intensity:None) 1. px-size-changes(due to deflection) 2. reprojection error ''' height, width = self.coeffs['shape'] fx, fy = self.getDeflection(width, height) # is RMSE of imgPoint-projectedPoints r = self.coeffs['reprojectionError'] t = (sharpness**2 + r**2)**0.5 return fx * t, fy * t
python
def standardUncertainties(self, sharpness=0.5): ''' sharpness -> image sharpness // std of Gaussian PSF [px] returns a list of standard uncertainties for the x and y component: (1x,2x), (1y, 2y), (intensity:None) 1. px-size-changes(due to deflection) 2. reprojection error ''' height, width = self.coeffs['shape'] fx, fy = self.getDeflection(width, height) # is RMSE of imgPoint-projectedPoints r = self.coeffs['reprojectionError'] t = (sharpness**2 + r**2)**0.5 return fx * t, fy * t
[ "def", "standardUncertainties", "(", "self", ",", "sharpness", "=", "0.5", ")", ":", "height", ",", "width", "=", "self", ".", "coeffs", "[", "'shape'", "]", "fx", ",", "fy", "=", "self", ".", "getDeflection", "(", "width", ",", "height", ")", "# is RMSE of imgPoint-projectedPoints\r", "r", "=", "self", ".", "coeffs", "[", "'reprojectionError'", "]", "t", "=", "(", "sharpness", "**", "2", "+", "r", "**", "2", ")", "**", "0.5", "return", "fx", "*", "t", ",", "fy", "*", "t" ]
sharpness -> image sharpness // std of Gaussian PSF [px] returns a list of standard uncertainties for the x and y component: (1x,2x), (1y, 2y), (intensity:None) 1. px-size-changes(due to deflection) 2. reprojection error
[ "sharpness", "-", ">", "image", "sharpness", "//", "std", "of", "Gaussian", "PSF", "[", "px", "]", "returns", "a", "list", "of", "standard", "uncertainties", "for", "the", "x", "and", "y", "component", ":", "(", "1x", "2x", ")", "(", "1y", "2y", ")", "(", "intensity", ":", "None", ")", "1", ".", "px", "-", "size", "-", "changes", "(", "due", "to", "deflection", ")", "2", ".", "reprojection", "error" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/camera/LensDistortion.py#L404-L418
radjkarl/imgProcessor
imgProcessor/filters/edgesFromBoolImg.py
edgesFromBoolImg
def edgesFromBoolImg(arr, dtype=None): ''' takes a binary image (usually a mask) and returns the edges of the object inside ''' out = np.zeros_like(arr, dtype=dtype) _calc(arr, out) _calc(arr.T, out.T) return out
python
def edgesFromBoolImg(arr, dtype=None): ''' takes a binary image (usually a mask) and returns the edges of the object inside ''' out = np.zeros_like(arr, dtype=dtype) _calc(arr, out) _calc(arr.T, out.T) return out
[ "def", "edgesFromBoolImg", "(", "arr", ",", "dtype", "=", "None", ")", ":", "out", "=", "np", ".", "zeros_like", "(", "arr", ",", "dtype", "=", "dtype", ")", "_calc", "(", "arr", ",", "out", ")", "_calc", "(", "arr", ".", "T", ",", "out", ".", "T", ")", "return", "out" ]
takes a binary image (usually a mask) and returns the edges of the object inside
[ "takes", "a", "binary", "image", "(", "usually", "a", "mask", ")", "and", "returns", "the", "edges", "of", "the", "object", "inside" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/filters/edgesFromBoolImg.py#L5-L13
radjkarl/imgProcessor
imgProcessor/features/PatternRecognition.py
draw_matches
def draw_matches(img1, kp1, img2, kp2, matches, color=None, thickness=2, r=15): """Draws lines between matching keypoints of two images. Keypoints not in a matching pair are not drawn. Places the images side by side in a new image and draws circles around each keypoint, with line segments connecting matching pairs. You can tweak the r, thickness, and figsize values as needed. Args: img1: An openCV image ndarray in a grayscale or color format. kp1: A list of cv2.KeyPoint objects for img1. img2: An openCV image ndarray of the same format and with the same element type as img1. kp2: A list of cv2.KeyPoint objects for img2. matches: A list of DMatch objects whose trainIdx attribute refers to img1 keypoints and whose queryIdx attribute refers to img2 keypoints. color: The color of the circles and connecting lines drawn on the images. A 3-tuple for color images, a scalar for grayscale images. If None, these values are randomly generated. """ # We're drawing them side by side. Get dimensions accordingly. # Handle both color and grayscale images. if len(img1.shape) == 3: new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[ 1] + img2.shape[1], img1.shape[2]) elif len(img1.shape) == 2: new_shape = ( max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1]) new_img = np.zeros(new_shape, type(img1.flat[0])) # Place images onto the new image. new_img[0:img1.shape[0], 0:img1.shape[1]] = img1 new_img[0:img2.shape[0], img1.shape[1] :img1.shape[1] + img2.shape[1]] = img2 # Draw lines between matches. Make sure to offset kp coords in second # image appropriately. if color: c = color for m in matches: # Generate random color for RGB/BGR and grayscale images as needed. if not color: c = np.random.randint(0, 256, 3) if len( img1.shape) == 3 else np.random.randint(0, 256) # So the keypoint locs are stored as a tuple of floats. cv2.line(), like most other things, # wants locs as a tuple of ints. end1 = tuple(np.round(kp1[m.trainIdx].pt).astype(int)) end2 = tuple(np.round(kp2[m.queryIdx].pt).astype( int) + np.array([img1.shape[1], 0])) cv2.line(new_img, end1, end2, c, thickness) cv2.circle(new_img, end1, r, c, thickness) cv2.circle(new_img, end2, r, c, thickness) return new_img
python
def draw_matches(img1, kp1, img2, kp2, matches, color=None, thickness=2, r=15): """Draws lines between matching keypoints of two images. Keypoints not in a matching pair are not drawn. Places the images side by side in a new image and draws circles around each keypoint, with line segments connecting matching pairs. You can tweak the r, thickness, and figsize values as needed. Args: img1: An openCV image ndarray in a grayscale or color format. kp1: A list of cv2.KeyPoint objects for img1. img2: An openCV image ndarray of the same format and with the same element type as img1. kp2: A list of cv2.KeyPoint objects for img2. matches: A list of DMatch objects whose trainIdx attribute refers to img1 keypoints and whose queryIdx attribute refers to img2 keypoints. color: The color of the circles and connecting lines drawn on the images. A 3-tuple for color images, a scalar for grayscale images. If None, these values are randomly generated. """ # We're drawing them side by side. Get dimensions accordingly. # Handle both color and grayscale images. if len(img1.shape) == 3: new_shape = (max(img1.shape[0], img2.shape[0]), img1.shape[ 1] + img2.shape[1], img1.shape[2]) elif len(img1.shape) == 2: new_shape = ( max(img1.shape[0], img2.shape[0]), img1.shape[1] + img2.shape[1]) new_img = np.zeros(new_shape, type(img1.flat[0])) # Place images onto the new image. new_img[0:img1.shape[0], 0:img1.shape[1]] = img1 new_img[0:img2.shape[0], img1.shape[1] :img1.shape[1] + img2.shape[1]] = img2 # Draw lines between matches. Make sure to offset kp coords in second # image appropriately. if color: c = color for m in matches: # Generate random color for RGB/BGR and grayscale images as needed. if not color: c = np.random.randint(0, 256, 3) if len( img1.shape) == 3 else np.random.randint(0, 256) # So the keypoint locs are stored as a tuple of floats. cv2.line(), like most other things, # wants locs as a tuple of ints. end1 = tuple(np.round(kp1[m.trainIdx].pt).astype(int)) end2 = tuple(np.round(kp2[m.queryIdx].pt).astype( int) + np.array([img1.shape[1], 0])) cv2.line(new_img, end1, end2, c, thickness) cv2.circle(new_img, end1, r, c, thickness) cv2.circle(new_img, end2, r, c, thickness) return new_img
[ "def", "draw_matches", "(", "img1", ",", "kp1", ",", "img2", ",", "kp2", ",", "matches", ",", "color", "=", "None", ",", "thickness", "=", "2", ",", "r", "=", "15", ")", ":", "# We're drawing them side by side. Get dimensions accordingly.\r", "# Handle both color and grayscale images.\r", "if", "len", "(", "img1", ".", "shape", ")", "==", "3", ":", "new_shape", "=", "(", "max", "(", "img1", ".", "shape", "[", "0", "]", ",", "img2", ".", "shape", "[", "0", "]", ")", ",", "img1", ".", "shape", "[", "1", "]", "+", "img2", ".", "shape", "[", "1", "]", ",", "img1", ".", "shape", "[", "2", "]", ")", "elif", "len", "(", "img1", ".", "shape", ")", "==", "2", ":", "new_shape", "=", "(", "max", "(", "img1", ".", "shape", "[", "0", "]", ",", "img2", ".", "shape", "[", "0", "]", ")", ",", "img1", ".", "shape", "[", "1", "]", "+", "img2", ".", "shape", "[", "1", "]", ")", "new_img", "=", "np", ".", "zeros", "(", "new_shape", ",", "type", "(", "img1", ".", "flat", "[", "0", "]", ")", ")", "# Place images onto the new image.\r", "new_img", "[", "0", ":", "img1", ".", "shape", "[", "0", "]", ",", "0", ":", "img1", ".", "shape", "[", "1", "]", "]", "=", "img1", "new_img", "[", "0", ":", "img2", ".", "shape", "[", "0", "]", ",", "img1", ".", "shape", "[", "1", "]", ":", "img1", ".", "shape", "[", "1", "]", "+", "img2", ".", "shape", "[", "1", "]", "]", "=", "img2", "# Draw lines between matches. Make sure to offset kp coords in second\r", "# image appropriately.\r", "if", "color", ":", "c", "=", "color", "for", "m", "in", "matches", ":", "# Generate random color for RGB/BGR and grayscale images as needed.\r", "if", "not", "color", ":", "c", "=", "np", ".", "random", ".", "randint", "(", "0", ",", "256", ",", "3", ")", "if", "len", "(", "img1", ".", "shape", ")", "==", "3", "else", "np", ".", "random", ".", "randint", "(", "0", ",", "256", ")", "# So the keypoint locs are stored as a tuple of floats. cv2.line(), like most other things,\r", "# wants locs as a tuple of ints.\r", "end1", "=", "tuple", "(", "np", ".", "round", "(", "kp1", "[", "m", ".", "trainIdx", "]", ".", "pt", ")", ".", "astype", "(", "int", ")", ")", "end2", "=", "tuple", "(", "np", ".", "round", "(", "kp2", "[", "m", ".", "queryIdx", "]", ".", "pt", ")", ".", "astype", "(", "int", ")", "+", "np", ".", "array", "(", "[", "img1", ".", "shape", "[", "1", "]", ",", "0", "]", ")", ")", "cv2", ".", "line", "(", "new_img", ",", "end1", ",", "end2", ",", "c", ",", "thickness", ")", "cv2", ".", "circle", "(", "new_img", ",", "end1", ",", "r", ",", "c", ",", "thickness", ")", "cv2", ".", "circle", "(", "new_img", ",", "end2", ",", "r", ",", "c", ",", "thickness", ")", "return", "new_img" ]
Draws lines between matching keypoints of two images. Keypoints not in a matching pair are not drawn. Places the images side by side in a new image and draws circles around each keypoint, with line segments connecting matching pairs. You can tweak the r, thickness, and figsize values as needed. Args: img1: An openCV image ndarray in a grayscale or color format. kp1: A list of cv2.KeyPoint objects for img1. img2: An openCV image ndarray of the same format and with the same element type as img1. kp2: A list of cv2.KeyPoint objects for img2. matches: A list of DMatch objects whose trainIdx attribute refers to img1 keypoints and whose queryIdx attribute refers to img2 keypoints. color: The color of the circles and connecting lines drawn on the images. A 3-tuple for color images, a scalar for grayscale images. If None, these values are randomly generated.
[ "Draws", "lines", "between", "matching", "keypoints", "of", "two", "images", ".", "Keypoints", "not", "in", "a", "matching", "pair", "are", "not", "drawn", ".", "Places", "the", "images", "side", "by", "side", "in", "a", "new", "image", "and", "draws", "circles", "around", "each", "keypoint", "with", "line", "segments", "connecting", "matching", "pairs", ".", "You", "can", "tweak", "the", "r", "thickness", "and", "figsize", "values", "as", "needed", ".", "Args", ":", "img1", ":", "An", "openCV", "image", "ndarray", "in", "a", "grayscale", "or", "color", "format", ".", "kp1", ":", "A", "list", "of", "cv2", ".", "KeyPoint", "objects", "for", "img1", ".", "img2", ":", "An", "openCV", "image", "ndarray", "of", "the", "same", "format", "and", "with", "the", "same", "element", "type", "as", "img1", ".", "kp2", ":", "A", "list", "of", "cv2", ".", "KeyPoint", "objects", "for", "img2", ".", "matches", ":", "A", "list", "of", "DMatch", "objects", "whose", "trainIdx", "attribute", "refers", "to", "img1", "keypoints", "and", "whose", "queryIdx", "attribute", "refers", "to", "img2", "keypoints", ".", "color", ":", "The", "color", "of", "the", "circles", "and", "connecting", "lines", "drawn", "on", "the", "images", ".", "A", "3", "-", "tuple", "for", "color", "images", "a", "scalar", "for", "grayscale", "images", ".", "If", "None", "these", "values", "are", "randomly", "generated", "." ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/PatternRecognition.py#L203-L252
radjkarl/imgProcessor
imgProcessor/features/PatternRecognition.py
PatternRecognition._scaleTo8bit
def _scaleTo8bit(self, img): ''' The pattern comparator need images to be 8 bit -> find the range of the signal and scale the image ''' r = scaleSignalCutParams(img, 0.02) # , nSigma=3) self.signal_ranges.append(r) return toUIntArray(img, dtype=np.uint8, range=r)
python
def _scaleTo8bit(self, img): ''' The pattern comparator need images to be 8 bit -> find the range of the signal and scale the image ''' r = scaleSignalCutParams(img, 0.02) # , nSigma=3) self.signal_ranges.append(r) return toUIntArray(img, dtype=np.uint8, range=r)
[ "def", "_scaleTo8bit", "(", "self", ",", "img", ")", ":", "r", "=", "scaleSignalCutParams", "(", "img", ",", "0.02", ")", "# , nSigma=3)\r", "self", ".", "signal_ranges", ".", "append", "(", "r", ")", "return", "toUIntArray", "(", "img", ",", "dtype", "=", "np", ".", "uint8", ",", "range", "=", "r", ")" ]
The pattern comparator need images to be 8 bit -> find the range of the signal and scale the image
[ "The", "pattern", "comparator", "need", "images", "to", "be", "8", "bit", "-", ">", "find", "the", "range", "of", "the", "signal", "and", "scale", "the", "image" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/PatternRecognition.py#L89-L96
radjkarl/imgProcessor
imgProcessor/features/PatternRecognition.py
PatternRecognition.findHomography
def findHomography(self, img, drawMatches=False): ''' Find homography of the image through pattern comparison with the base image ''' print("\t Finding points...") # Find points in the next frame img = self._prepareImage(img) features, descs = self.detector.detectAndCompute(img, None) ###################### # TODO: CURRENTLY BROKEN IN OPENCV3.1 - WAITNG FOR NEW RELEASE 3.2 # matches = self.matcher.knnMatch(descs,#.astype(np.float32), # self.base_descs, # k=3) # print("\t Match Count: ", len(matches)) # matches_subset = self._filterMatches(matches) # its working alternative (for now): bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches_subset = bf.match(descs, self.base_descs) ###################### # matches = bf.knnMatch(descs,self.base_descs, k=2) # # Apply ratio test # matches_subset = [] # medDist = np.median([m.distance for m in matches]) # matches_subset = [m for m in matches if m.distance < medDist] # for m in matches: # print(m.distance) # for m,n in matches: # if m.distance < 0.75*n.distance: # matches_subset.append([m]) if not len(matches_subset): raise Exception('no matches found') print("\t Filtered Match Count: ", len(matches_subset)) distance = sum([m.distance for m in matches_subset]) print("\t Distance from Key Image: ", distance) averagePointDistance = distance / (len(matches_subset)) print("\t Average Distance: ", averagePointDistance) kp1 = [] kp2 = [] for match in matches_subset: kp1.append(self.base_features[match.trainIdx]) kp2.append(features[match.queryIdx]) # /self._fH #scale with _fH, if image was resized p1 = np.array([k.pt for k in kp1]) p2 = np.array([k.pt for k in kp2]) # /self._fH H, status = cv2.findHomography(p1, p2, cv2.RANSAC, # method 5.0 # max reprojection error (1...10) ) if status is None: raise Exception('no homography found') else: inliers = np.sum(status) print('%d / %d inliers/matched' % (inliers, len(status))) inlierRatio = inliers / len(status) if self.minInlierRatio > inlierRatio or inliers < self.minInliers: raise Exception('bad fit!') # scale with _fH, if image was resized # see # http://answers.opencv.org/question/26173/the-relationship-between-homography-matrix-and-scaling-images/ s = np.eye(3, 3) s[0, 0] = 1 / self._fH s[1, 1] = 1 / self._fH H = s.dot(H).dot(np.linalg.inv(s)) if drawMatches: # s0,s1 = img.shape # out = np.empty(shape=(s0,s1,3), dtype=np.uint8) img = draw_matches(self.base8bit, self.base_features, img, features, matches_subset[:20], # None,#out, # flags=2 thickness=5 ) return (H, inliers, inlierRatio, averagePointDistance, img, features, descs, len(matches_subset))
python
def findHomography(self, img, drawMatches=False): ''' Find homography of the image through pattern comparison with the base image ''' print("\t Finding points...") # Find points in the next frame img = self._prepareImage(img) features, descs = self.detector.detectAndCompute(img, None) ###################### # TODO: CURRENTLY BROKEN IN OPENCV3.1 - WAITNG FOR NEW RELEASE 3.2 # matches = self.matcher.knnMatch(descs,#.astype(np.float32), # self.base_descs, # k=3) # print("\t Match Count: ", len(matches)) # matches_subset = self._filterMatches(matches) # its working alternative (for now): bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches_subset = bf.match(descs, self.base_descs) ###################### # matches = bf.knnMatch(descs,self.base_descs, k=2) # # Apply ratio test # matches_subset = [] # medDist = np.median([m.distance for m in matches]) # matches_subset = [m for m in matches if m.distance < medDist] # for m in matches: # print(m.distance) # for m,n in matches: # if m.distance < 0.75*n.distance: # matches_subset.append([m]) if not len(matches_subset): raise Exception('no matches found') print("\t Filtered Match Count: ", len(matches_subset)) distance = sum([m.distance for m in matches_subset]) print("\t Distance from Key Image: ", distance) averagePointDistance = distance / (len(matches_subset)) print("\t Average Distance: ", averagePointDistance) kp1 = [] kp2 = [] for match in matches_subset: kp1.append(self.base_features[match.trainIdx]) kp2.append(features[match.queryIdx]) # /self._fH #scale with _fH, if image was resized p1 = np.array([k.pt for k in kp1]) p2 = np.array([k.pt for k in kp2]) # /self._fH H, status = cv2.findHomography(p1, p2, cv2.RANSAC, # method 5.0 # max reprojection error (1...10) ) if status is None: raise Exception('no homography found') else: inliers = np.sum(status) print('%d / %d inliers/matched' % (inliers, len(status))) inlierRatio = inliers / len(status) if self.minInlierRatio > inlierRatio or inliers < self.minInliers: raise Exception('bad fit!') # scale with _fH, if image was resized # see # http://answers.opencv.org/question/26173/the-relationship-between-homography-matrix-and-scaling-images/ s = np.eye(3, 3) s[0, 0] = 1 / self._fH s[1, 1] = 1 / self._fH H = s.dot(H).dot(np.linalg.inv(s)) if drawMatches: # s0,s1 = img.shape # out = np.empty(shape=(s0,s1,3), dtype=np.uint8) img = draw_matches(self.base8bit, self.base_features, img, features, matches_subset[:20], # None,#out, # flags=2 thickness=5 ) return (H, inliers, inlierRatio, averagePointDistance, img, features, descs, len(matches_subset))
[ "def", "findHomography", "(", "self", ",", "img", ",", "drawMatches", "=", "False", ")", ":", "print", "(", "\"\\t Finding points...\"", ")", "# Find points in the next frame\r", "img", "=", "self", ".", "_prepareImage", "(", "img", ")", "features", ",", "descs", "=", "self", ".", "detector", ".", "detectAndCompute", "(", "img", ",", "None", ")", "######################\r", "# TODO: CURRENTLY BROKEN IN OPENCV3.1 - WAITNG FOR NEW RELEASE 3.2\r", "# matches = self.matcher.knnMatch(descs,#.astype(np.float32),\r", "# self.base_descs,\r", "# k=3)\r", "# print(\"\\t Match Count: \", len(matches))\r", "# matches_subset = self._filterMatches(matches)\r", "# its working alternative (for now):\r", "bf", "=", "cv2", ".", "BFMatcher", "(", "cv2", ".", "NORM_HAMMING", ",", "crossCheck", "=", "True", ")", "matches_subset", "=", "bf", ".", "match", "(", "descs", ",", "self", ".", "base_descs", ")", "######################\r", "# matches = bf.knnMatch(descs,self.base_descs, k=2)\r", "# # Apply ratio test\r", "# matches_subset = []\r", "# medDist = np.median([m.distance for m in matches])\r", "# matches_subset = [m for m in matches if m.distance < medDist]\r", "# for m in matches:\r", "# print(m.distance)\r", "# for m,n in matches:\r", "# if m.distance < 0.75*n.distance:\r", "# matches_subset.append([m])\r", "if", "not", "len", "(", "matches_subset", ")", ":", "raise", "Exception", "(", "'no matches found'", ")", "print", "(", "\"\\t Filtered Match Count: \"", ",", "len", "(", "matches_subset", ")", ")", "distance", "=", "sum", "(", "[", "m", ".", "distance", "for", "m", "in", "matches_subset", "]", ")", "print", "(", "\"\\t Distance from Key Image: \"", ",", "distance", ")", "averagePointDistance", "=", "distance", "/", "(", "len", "(", "matches_subset", ")", ")", "print", "(", "\"\\t Average Distance: \"", ",", "averagePointDistance", ")", "kp1", "=", "[", "]", "kp2", "=", "[", "]", "for", "match", "in", "matches_subset", ":", "kp1", ".", "append", "(", "self", ".", "base_features", "[", "match", ".", "trainIdx", "]", ")", "kp2", ".", "append", "(", "features", "[", "match", ".", "queryIdx", "]", ")", "# /self._fH #scale with _fH, if image was resized\r", "p1", "=", "np", ".", "array", "(", "[", "k", ".", "pt", "for", "k", "in", "kp1", "]", ")", "p2", "=", "np", ".", "array", "(", "[", "k", ".", "pt", "for", "k", "in", "kp2", "]", ")", "# /self._fH\r", "H", ",", "status", "=", "cv2", ".", "findHomography", "(", "p1", ",", "p2", ",", "cv2", ".", "RANSAC", ",", "# method\r", "5.0", "# max reprojection error (1...10)\r", ")", "if", "status", "is", "None", ":", "raise", "Exception", "(", "'no homography found'", ")", "else", ":", "inliers", "=", "np", ".", "sum", "(", "status", ")", "print", "(", "'%d / %d inliers/matched'", "%", "(", "inliers", ",", "len", "(", "status", ")", ")", ")", "inlierRatio", "=", "inliers", "/", "len", "(", "status", ")", "if", "self", ".", "minInlierRatio", ">", "inlierRatio", "or", "inliers", "<", "self", ".", "minInliers", ":", "raise", "Exception", "(", "'bad fit!'", ")", "# scale with _fH, if image was resized\r", "# see\r", "# http://answers.opencv.org/question/26173/the-relationship-between-homography-matrix-and-scaling-images/\r", "s", "=", "np", ".", "eye", "(", "3", ",", "3", ")", "s", "[", "0", ",", "0", "]", "=", "1", "/", "self", ".", "_fH", "s", "[", "1", ",", "1", "]", "=", "1", "/", "self", ".", "_fH", "H", "=", "s", ".", "dot", "(", "H", ")", ".", "dot", "(", "np", ".", "linalg", ".", "inv", "(", "s", ")", ")", "if", "drawMatches", ":", "# s0,s1 = img.shape\r", "# out = np.empty(shape=(s0,s1,3), dtype=np.uint8)\r", "img", "=", "draw_matches", "(", "self", ".", "base8bit", ",", "self", ".", "base_features", ",", "img", ",", "features", ",", "matches_subset", "[", ":", "20", "]", ",", "# None,#out,\r", "# flags=2\r", "thickness", "=", "5", ")", "return", "(", "H", ",", "inliers", ",", "inlierRatio", ",", "averagePointDistance", ",", "img", ",", "features", ",", "descs", ",", "len", "(", "matches_subset", ")", ")" ]
Find homography of the image through pattern comparison with the base image
[ "Find", "homography", "of", "the", "image", "through", "pattern", "comparison", "with", "the", "base", "image" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/features/PatternRecognition.py#L108-L196
radjkarl/imgProcessor
imgProcessor/generate/patterns.py
patCircles
def patCircles(s0): '''make circle array''' arr = np.zeros((s0,s0), dtype=np.uint8) col = 255 for rad in np.linspace(s0,s0/7.,10): cv2.circle(arr, (0,0), int(round(rad)), color=col, thickness=-1, lineType=cv2.LINE_AA ) if col: col = 0 else: col = 255 return arr.astype(float)
python
def patCircles(s0): '''make circle array''' arr = np.zeros((s0,s0), dtype=np.uint8) col = 255 for rad in np.linspace(s0,s0/7.,10): cv2.circle(arr, (0,0), int(round(rad)), color=col, thickness=-1, lineType=cv2.LINE_AA ) if col: col = 0 else: col = 255 return arr.astype(float)
[ "def", "patCircles", "(", "s0", ")", ":", "arr", "=", "np", ".", "zeros", "(", "(", "s0", ",", "s0", ")", ",", "dtype", "=", "np", ".", "uint8", ")", "col", "=", "255", "for", "rad", "in", "np", ".", "linspace", "(", "s0", ",", "s0", "/", "7.", ",", "10", ")", ":", "cv2", ".", "circle", "(", "arr", ",", "(", "0", ",", "0", ")", ",", "int", "(", "round", "(", "rad", ")", ")", ",", "color", "=", "col", ",", "thickness", "=", "-", "1", ",", "lineType", "=", "cv2", ".", "LINE_AA", ")", "if", "col", ":", "col", "=", "0", "else", ":", "col", "=", "255", "return", "arr", ".", "astype", "(", "float", ")" ]
make circle array
[ "make", "circle", "array" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/generate/patterns.py#L5-L18
radjkarl/imgProcessor
imgProcessor/generate/patterns.py
patCrossLines
def patCrossLines(s0): '''make line pattern''' arr = np.zeros((s0,s0), dtype=np.uint8) col = 255 t = int(s0/100.) for pos in np.logspace(0.01,1,10): pos = int(round((pos-0.5)*s0/10.)) cv2.line(arr, (0,pos), (s0,pos), color=col, thickness=t, lineType=cv2.LINE_AA ) cv2.line(arr, (pos,0), (pos,s0), color=col, thickness=t, lineType=cv2.LINE_AA ) return arr.astype(float)
python
def patCrossLines(s0): '''make line pattern''' arr = np.zeros((s0,s0), dtype=np.uint8) col = 255 t = int(s0/100.) for pos in np.logspace(0.01,1,10): pos = int(round((pos-0.5)*s0/10.)) cv2.line(arr, (0,pos), (s0,pos), color=col, thickness=t, lineType=cv2.LINE_AA ) cv2.line(arr, (pos,0), (pos,s0), color=col, thickness=t, lineType=cv2.LINE_AA ) return arr.astype(float)
[ "def", "patCrossLines", "(", "s0", ")", ":", "arr", "=", "np", ".", "zeros", "(", "(", "s0", ",", "s0", ")", ",", "dtype", "=", "np", ".", "uint8", ")", "col", "=", "255", "t", "=", "int", "(", "s0", "/", "100.", ")", "for", "pos", "in", "np", ".", "logspace", "(", "0.01", ",", "1", ",", "10", ")", ":", "pos", "=", "int", "(", "round", "(", "(", "pos", "-", "0.5", ")", "*", "s0", "/", "10.", ")", ")", "cv2", ".", "line", "(", "arr", ",", "(", "0", ",", "pos", ")", ",", "(", "s0", ",", "pos", ")", ",", "color", "=", "col", ",", "thickness", "=", "t", ",", "lineType", "=", "cv2", ".", "LINE_AA", ")", "cv2", ".", "line", "(", "arr", ",", "(", "pos", ",", "0", ")", ",", "(", "pos", ",", "s0", ")", ",", "color", "=", "col", ",", "thickness", "=", "t", ",", "lineType", "=", "cv2", ".", "LINE_AA", ")", "return", "arr", ".", "astype", "(", "float", ")" ]
make line pattern
[ "make", "line", "pattern" ]
train
https://github.com/radjkarl/imgProcessor/blob/7c5a28718f81c01a430152c60a686ac50afbfd7c/imgProcessor/generate/patterns.py#L21-L33