repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
PaulHancock/Aegean
AegeanTools/regions.py
Region.sky_within
def sky_within(self, ra, dec, degin=False): """ Test whether a sky position is within this region Parameters ---------- ra, dec : float Sky position. degin : bool If True the ra/dec is interpreted as degrees, otherwise as radians. Default = False. Returns ------- within : bool True if the given position is within one of the region's pixels. """ sky = self.radec2sky(ra, dec) if degin: sky = np.radians(sky) theta_phi = self.sky2ang(sky) # Set values that are nan to be zero and record a mask mask = np.bitwise_not(np.logical_and.reduce(np.isfinite(theta_phi), axis=1)) theta_phi[mask, :] = 0 theta, phi = theta_phi.transpose() pix = hp.ang2pix(2**self.maxdepth, theta, phi, nest=True) pixelset = self.get_demoted() result = np.in1d(pix, list(pixelset)) # apply the mask and set the shonky values to False result[mask] = False return result
python
def sky_within(self, ra, dec, degin=False): """ Test whether a sky position is within this region Parameters ---------- ra, dec : float Sky position. degin : bool If True the ra/dec is interpreted as degrees, otherwise as radians. Default = False. Returns ------- within : bool True if the given position is within one of the region's pixels. """ sky = self.radec2sky(ra, dec) if degin: sky = np.radians(sky) theta_phi = self.sky2ang(sky) # Set values that are nan to be zero and record a mask mask = np.bitwise_not(np.logical_and.reduce(np.isfinite(theta_phi), axis=1)) theta_phi[mask, :] = 0 theta, phi = theta_phi.transpose() pix = hp.ang2pix(2**self.maxdepth, theta, phi, nest=True) pixelset = self.get_demoted() result = np.in1d(pix, list(pixelset)) # apply the mask and set the shonky values to False result[mask] = False return result
[ "def", "sky_within", "(", "self", ",", "ra", ",", "dec", ",", "degin", "=", "False", ")", ":", "sky", "=", "self", ".", "radec2sky", "(", "ra", ",", "dec", ")", "if", "degin", ":", "sky", "=", "np", ".", "radians", "(", "sky", ")", "theta_phi", "=", "self", ".", "sky2ang", "(", "sky", ")", "# Set values that are nan to be zero and record a mask", "mask", "=", "np", ".", "bitwise_not", "(", "np", ".", "logical_and", ".", "reduce", "(", "np", ".", "isfinite", "(", "theta_phi", ")", ",", "axis", "=", "1", ")", ")", "theta_phi", "[", "mask", ",", ":", "]", "=", "0", "theta", ",", "phi", "=", "theta_phi", ".", "transpose", "(", ")", "pix", "=", "hp", ".", "ang2pix", "(", "2", "**", "self", ".", "maxdepth", ",", "theta", ",", "phi", ",", "nest", "=", "True", ")", "pixelset", "=", "self", ".", "get_demoted", "(", ")", "result", "=", "np", ".", "in1d", "(", "pix", ",", "list", "(", "pixelset", ")", ")", "# apply the mask and set the shonky values to False", "result", "[", "mask", "]", "=", "False", "return", "result" ]
Test whether a sky position is within this region Parameters ---------- ra, dec : float Sky position. degin : bool If True the ra/dec is interpreted as degrees, otherwise as radians. Default = False. Returns ------- within : bool True if the given position is within one of the region's pixels.
[ "Test", "whether", "a", "sky", "position", "is", "within", "this", "region" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L223-L257
PaulHancock/Aegean
AegeanTools/regions.py
Region.union
def union(self, other, renorm=True): """ Add another Region by performing union on their pixlists. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. renorm : bool Perform renormalisation after the operation? Default = True. """ # merge the pixels that are common to both for d in range(1, min(self.maxdepth, other.maxdepth)+1): self.add_pixels(other.pixeldict[d], d) # if the other region is at higher resolution, then include a degraded version of the remaining pixels. if self.maxdepth < other.maxdepth: for d in range(self.maxdepth+1, other.maxdepth+1): for p in other.pixeldict[d]: # promote this pixel to self.maxdepth pp = p/4**(d-self.maxdepth) self.pixeldict[self.maxdepth].add(pp) if renorm: self._renorm() return
python
def union(self, other, renorm=True): """ Add another Region by performing union on their pixlists. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. renorm : bool Perform renormalisation after the operation? Default = True. """ # merge the pixels that are common to both for d in range(1, min(self.maxdepth, other.maxdepth)+1): self.add_pixels(other.pixeldict[d], d) # if the other region is at higher resolution, then include a degraded version of the remaining pixels. if self.maxdepth < other.maxdepth: for d in range(self.maxdepth+1, other.maxdepth+1): for p in other.pixeldict[d]: # promote this pixel to self.maxdepth pp = p/4**(d-self.maxdepth) self.pixeldict[self.maxdepth].add(pp) if renorm: self._renorm() return
[ "def", "union", "(", "self", ",", "other", ",", "renorm", "=", "True", ")", ":", "# merge the pixels that are common to both", "for", "d", "in", "range", "(", "1", ",", "min", "(", "self", ".", "maxdepth", ",", "other", ".", "maxdepth", ")", "+", "1", ")", ":", "self", ".", "add_pixels", "(", "other", ".", "pixeldict", "[", "d", "]", ",", "d", ")", "# if the other region is at higher resolution, then include a degraded version of the remaining pixels.", "if", "self", ".", "maxdepth", "<", "other", ".", "maxdepth", ":", "for", "d", "in", "range", "(", "self", ".", "maxdepth", "+", "1", ",", "other", ".", "maxdepth", "+", "1", ")", ":", "for", "p", "in", "other", ".", "pixeldict", "[", "d", "]", ":", "# promote this pixel to self.maxdepth", "pp", "=", "p", "/", "4", "**", "(", "d", "-", "self", ".", "maxdepth", ")", "self", ".", "pixeldict", "[", "self", ".", "maxdepth", "]", ".", "add", "(", "pp", ")", "if", "renorm", ":", "self", ".", "_renorm", "(", ")", "return" ]
Add another Region by performing union on their pixlists. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. renorm : bool Perform renormalisation after the operation? Default = True.
[ "Add", "another", "Region", "by", "performing", "union", "on", "their", "pixlists", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L259-L285
PaulHancock/Aegean
AegeanTools/regions.py
Region.without
def without(self, other): """ Subtract another Region by performing a difference operation on their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. """ # work only on the lowest level # TODO: Allow this to be done for regions with different depths. if not (self.maxdepth == other.maxdepth): raise AssertionError("Regions must have the same maxdepth") self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].difference_update(opd) self._renorm() return
python
def without(self, other): """ Subtract another Region by performing a difference operation on their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. """ # work only on the lowest level # TODO: Allow this to be done for regions with different depths. if not (self.maxdepth == other.maxdepth): raise AssertionError("Regions must have the same maxdepth") self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].difference_update(opd) self._renorm() return
[ "def", "without", "(", "self", ",", "other", ")", ":", "# work only on the lowest level", "# TODO: Allow this to be done for regions with different depths.", "if", "not", "(", "self", ".", "maxdepth", "==", "other", ".", "maxdepth", ")", ":", "raise", "AssertionError", "(", "\"Regions must have the same maxdepth\"", ")", "self", ".", "_demote_all", "(", ")", "opd", "=", "set", "(", "other", ".", "get_demoted", "(", ")", ")", "self", ".", "pixeldict", "[", "self", ".", "maxdepth", "]", ".", "difference_update", "(", "opd", ")", "self", ".", "_renorm", "(", ")", "return" ]
Subtract another Region by performing a difference operation on their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined.
[ "Subtract", "another", "Region", "by", "performing", "a", "difference", "operation", "on", "their", "pixlists", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L287-L305
PaulHancock/Aegean
AegeanTools/regions.py
Region.intersect
def intersect(self, other): """ Combine with another Region by performing intersection on their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. """ # work only on the lowest level # TODO: Allow this to be done for regions with different depths. if not (self.maxdepth == other.maxdepth): raise AssertionError("Regions must have the same maxdepth") self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].intersection_update(opd) self._renorm() return
python
def intersect(self, other): """ Combine with another Region by performing intersection on their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. """ # work only on the lowest level # TODO: Allow this to be done for regions with different depths. if not (self.maxdepth == other.maxdepth): raise AssertionError("Regions must have the same maxdepth") self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].intersection_update(opd) self._renorm() return
[ "def", "intersect", "(", "self", ",", "other", ")", ":", "# work only on the lowest level", "# TODO: Allow this to be done for regions with different depths.", "if", "not", "(", "self", ".", "maxdepth", "==", "other", ".", "maxdepth", ")", ":", "raise", "AssertionError", "(", "\"Regions must have the same maxdepth\"", ")", "self", ".", "_demote_all", "(", ")", "opd", "=", "set", "(", "other", ".", "get_demoted", "(", ")", ")", "self", ".", "pixeldict", "[", "self", ".", "maxdepth", "]", ".", "intersection_update", "(", "opd", ")", "self", ".", "_renorm", "(", ")", "return" ]
Combine with another Region by performing intersection on their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined.
[ "Combine", "with", "another", "Region", "by", "performing", "intersection", "on", "their", "pixlists", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L307-L325
PaulHancock/Aegean
AegeanTools/regions.py
Region.symmetric_difference
def symmetric_difference(self, other): """ Combine with another Region by performing the symmetric difference of their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. """ # work only on the lowest level # TODO: Allow this to be done for regions with different depths. if not (self.maxdepth == other.maxdepth): raise AssertionError("Regions must have the same maxdepth") self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].symmetric_difference_update(opd) self._renorm() return
python
def symmetric_difference(self, other): """ Combine with another Region by performing the symmetric difference of their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined. """ # work only on the lowest level # TODO: Allow this to be done for regions with different depths. if not (self.maxdepth == other.maxdepth): raise AssertionError("Regions must have the same maxdepth") self._demote_all() opd = set(other.get_demoted()) self.pixeldict[self.maxdepth].symmetric_difference_update(opd) self._renorm() return
[ "def", "symmetric_difference", "(", "self", ",", "other", ")", ":", "# work only on the lowest level", "# TODO: Allow this to be done for regions with different depths.", "if", "not", "(", "self", ".", "maxdepth", "==", "other", ".", "maxdepth", ")", ":", "raise", "AssertionError", "(", "\"Regions must have the same maxdepth\"", ")", "self", ".", "_demote_all", "(", ")", "opd", "=", "set", "(", "other", ".", "get_demoted", "(", ")", ")", "self", ".", "pixeldict", "[", "self", ".", "maxdepth", "]", ".", "symmetric_difference_update", "(", "opd", ")", "self", ".", "_renorm", "(", ")", "return" ]
Combine with another Region by performing the symmetric difference of their pixlists. Requires both regions to have the same maxdepth. Parameters ---------- other : :class:`AegeanTools.regions.Region` The region to be combined.
[ "Combine", "with", "another", "Region", "by", "performing", "the", "symmetric", "difference", "of", "their", "pixlists", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L327-L345
PaulHancock/Aegean
AegeanTools/regions.py
Region.write_reg
def write_reg(self, filename): """ Write a ds9 region file that represents this region as a set of diamonds. Parameters ---------- filename : str File to write """ with open(filename, 'w') as out: for d in range(1, self.maxdepth+1): for p in self.pixeldict[d]: line = "fk5; polygon(" # the following int() gets around some problems with np.int64 that exist prior to numpy v 1.8.1 vectors = list(zip(*hp.boundaries(2**d, int(p), step=1, nest=True))) positions = [] for sky in self.vec2sky(np.array(vectors), degrees=True): ra, dec = sky pos = SkyCoord(ra/15, dec, unit=(u.degree, u.degree)) positions.append(pos.ra.to_string(sep=':', precision=2)) positions.append(pos.dec.to_string(sep=':', precision=2)) line += ','.join(positions) line += ")" print(line, file=out) return
python
def write_reg(self, filename): """ Write a ds9 region file that represents this region as a set of diamonds. Parameters ---------- filename : str File to write """ with open(filename, 'w') as out: for d in range(1, self.maxdepth+1): for p in self.pixeldict[d]: line = "fk5; polygon(" # the following int() gets around some problems with np.int64 that exist prior to numpy v 1.8.1 vectors = list(zip(*hp.boundaries(2**d, int(p), step=1, nest=True))) positions = [] for sky in self.vec2sky(np.array(vectors), degrees=True): ra, dec = sky pos = SkyCoord(ra/15, dec, unit=(u.degree, u.degree)) positions.append(pos.ra.to_string(sep=':', precision=2)) positions.append(pos.dec.to_string(sep=':', precision=2)) line += ','.join(positions) line += ")" print(line, file=out) return
[ "def", "write_reg", "(", "self", ",", "filename", ")", ":", "with", "open", "(", "filename", ",", "'w'", ")", "as", "out", ":", "for", "d", "in", "range", "(", "1", ",", "self", ".", "maxdepth", "+", "1", ")", ":", "for", "p", "in", "self", ".", "pixeldict", "[", "d", "]", ":", "line", "=", "\"fk5; polygon(\"", "# the following int() gets around some problems with np.int64 that exist prior to numpy v 1.8.1", "vectors", "=", "list", "(", "zip", "(", "*", "hp", ".", "boundaries", "(", "2", "**", "d", ",", "int", "(", "p", ")", ",", "step", "=", "1", ",", "nest", "=", "True", ")", ")", ")", "positions", "=", "[", "]", "for", "sky", "in", "self", ".", "vec2sky", "(", "np", ".", "array", "(", "vectors", ")", ",", "degrees", "=", "True", ")", ":", "ra", ",", "dec", "=", "sky", "pos", "=", "SkyCoord", "(", "ra", "/", "15", ",", "dec", ",", "unit", "=", "(", "u", ".", "degree", ",", "u", ".", "degree", ")", ")", "positions", ".", "append", "(", "pos", ".", "ra", ".", "to_string", "(", "sep", "=", "':'", ",", "precision", "=", "2", ")", ")", "positions", ".", "append", "(", "pos", ".", "dec", ".", "to_string", "(", "sep", "=", "':'", ",", "precision", "=", "2", ")", ")", "line", "+=", "','", ".", "join", "(", "positions", ")", "line", "+=", "\")\"", "print", "(", "line", ",", "file", "=", "out", ")", "return" ]
Write a ds9 region file that represents this region as a set of diamonds. Parameters ---------- filename : str File to write
[ "Write", "a", "ds9", "region", "file", "that", "represents", "this", "region", "as", "a", "set", "of", "diamonds", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L347-L371
PaulHancock/Aegean
AegeanTools/regions.py
Region.write_fits
def write_fits(self, filename, moctool=''): """ Write a fits file representing the MOC of this region. Parameters ---------- filename : str File to write moctool : str String to be written to fits header with key "MOCTOOL". Default = '' """ datafile = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'MOC.fits') hdulist = fits.open(datafile) cols = fits.Column(name='NPIX', array=self._uniq(), format='1K') tbhdu = fits.BinTableHDU.from_columns([cols]) hdulist[1] = tbhdu hdulist[1].header['PIXTYPE'] = ('HEALPIX ', 'HEALPix magic code') hdulist[1].header['ORDERING'] = ('NUNIQ ', 'NUNIQ coding method') hdulist[1].header['COORDSYS'] = ('C ', 'ICRS reference frame') hdulist[1].header['MOCORDER'] = (self.maxdepth, 'MOC resolution (best order)') hdulist[1].header['MOCTOOL'] = (moctool, 'Name of the MOC generator') hdulist[1].header['MOCTYPE'] = ('CATALOG', 'Source type (IMAGE or CATALOG)') hdulist[1].header['MOCID'] = (' ', 'Identifier of the collection') hdulist[1].header['ORIGIN'] = (' ', 'MOC origin') time = datetime.datetime.utcnow() hdulist[1].header['DATE'] = (datetime.datetime.strftime(time, format="%Y-%m-%dT%H:%m:%SZ"), 'MOC creation date') hdulist.writeto(filename, overwrite=True) return
python
def write_fits(self, filename, moctool=''): """ Write a fits file representing the MOC of this region. Parameters ---------- filename : str File to write moctool : str String to be written to fits header with key "MOCTOOL". Default = '' """ datafile = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'MOC.fits') hdulist = fits.open(datafile) cols = fits.Column(name='NPIX', array=self._uniq(), format='1K') tbhdu = fits.BinTableHDU.from_columns([cols]) hdulist[1] = tbhdu hdulist[1].header['PIXTYPE'] = ('HEALPIX ', 'HEALPix magic code') hdulist[1].header['ORDERING'] = ('NUNIQ ', 'NUNIQ coding method') hdulist[1].header['COORDSYS'] = ('C ', 'ICRS reference frame') hdulist[1].header['MOCORDER'] = (self.maxdepth, 'MOC resolution (best order)') hdulist[1].header['MOCTOOL'] = (moctool, 'Name of the MOC generator') hdulist[1].header['MOCTYPE'] = ('CATALOG', 'Source type (IMAGE or CATALOG)') hdulist[1].header['MOCID'] = (' ', 'Identifier of the collection') hdulist[1].header['ORIGIN'] = (' ', 'MOC origin') time = datetime.datetime.utcnow() hdulist[1].header['DATE'] = (datetime.datetime.strftime(time, format="%Y-%m-%dT%H:%m:%SZ"), 'MOC creation date') hdulist.writeto(filename, overwrite=True) return
[ "def", "write_fits", "(", "self", ",", "filename", ",", "moctool", "=", "''", ")", ":", "datafile", "=", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "__file__", ")", ")", ",", "'data'", ",", "'MOC.fits'", ")", "hdulist", "=", "fits", ".", "open", "(", "datafile", ")", "cols", "=", "fits", ".", "Column", "(", "name", "=", "'NPIX'", ",", "array", "=", "self", ".", "_uniq", "(", ")", ",", "format", "=", "'1K'", ")", "tbhdu", "=", "fits", ".", "BinTableHDU", ".", "from_columns", "(", "[", "cols", "]", ")", "hdulist", "[", "1", "]", "=", "tbhdu", "hdulist", "[", "1", "]", ".", "header", "[", "'PIXTYPE'", "]", "=", "(", "'HEALPIX '", ",", "'HEALPix magic code'", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'ORDERING'", "]", "=", "(", "'NUNIQ '", ",", "'NUNIQ coding method'", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'COORDSYS'", "]", "=", "(", "'C '", ",", "'ICRS reference frame'", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'MOCORDER'", "]", "=", "(", "self", ".", "maxdepth", ",", "'MOC resolution (best order)'", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'MOCTOOL'", "]", "=", "(", "moctool", ",", "'Name of the MOC generator'", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'MOCTYPE'", "]", "=", "(", "'CATALOG'", ",", "'Source type (IMAGE or CATALOG)'", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'MOCID'", "]", "=", "(", "' '", ",", "'Identifier of the collection'", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'ORIGIN'", "]", "=", "(", "' '", ",", "'MOC origin'", ")", "time", "=", "datetime", ".", "datetime", ".", "utcnow", "(", ")", "hdulist", "[", "1", "]", ".", "header", "[", "'DATE'", "]", "=", "(", "datetime", ".", "datetime", ".", "strftime", "(", "time", ",", "format", "=", "\"%Y-%m-%dT%H:%m:%SZ\"", ")", ",", "'MOC creation date'", ")", "hdulist", ".", "writeto", "(", "filename", ",", "overwrite", "=", "True", ")", "return" ]
Write a fits file representing the MOC of this region. Parameters ---------- filename : str File to write moctool : str String to be written to fits header with key "MOCTOOL". Default = ''
[ "Write", "a", "fits", "file", "representing", "the", "MOC", "of", "this", "region", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L373-L402
PaulHancock/Aegean
AegeanTools/regions.py
Region._uniq
def _uniq(self): """ Create a list of all the pixels that cover this region. This list contains overlapping pixels of different orders. Returns ------- pix : list A list of HEALPix pixel numbers. """ pd = [] for d in range(1, self.maxdepth): pd.extend(map(lambda x: int(4**(d+1) + x), self.pixeldict[d])) return sorted(pd)
python
def _uniq(self): """ Create a list of all the pixels that cover this region. This list contains overlapping pixels of different orders. Returns ------- pix : list A list of HEALPix pixel numbers. """ pd = [] for d in range(1, self.maxdepth): pd.extend(map(lambda x: int(4**(d+1) + x), self.pixeldict[d])) return sorted(pd)
[ "def", "_uniq", "(", "self", ")", ":", "pd", "=", "[", "]", "for", "d", "in", "range", "(", "1", ",", "self", ".", "maxdepth", ")", ":", "pd", ".", "extend", "(", "map", "(", "lambda", "x", ":", "int", "(", "4", "**", "(", "d", "+", "1", ")", "+", "x", ")", ",", "self", ".", "pixeldict", "[", "d", "]", ")", ")", "return", "sorted", "(", "pd", ")" ]
Create a list of all the pixels that cover this region. This list contains overlapping pixels of different orders. Returns ------- pix : list A list of HEALPix pixel numbers.
[ "Create", "a", "list", "of", "all", "the", "pixels", "that", "cover", "this", "region", ".", "This", "list", "contains", "overlapping", "pixels", "of", "different", "orders", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L404-L417
PaulHancock/Aegean
AegeanTools/regions.py
Region.radec2sky
def radec2sky(ra, dec): """ Convert [ra], [dec] to [(ra[0], dec[0]),....] and also ra,dec to [(ra,dec)] if ra/dec are not iterable Parameters ---------- ra, dec : float or iterable Sky coordinates Returns ------- sky : numpy.array array of (ra,dec) coordinates. """ try: sky = np.array(list(zip(ra, dec))) except TypeError: sky = np.array([(ra, dec)]) return sky
python
def radec2sky(ra, dec): """ Convert [ra], [dec] to [(ra[0], dec[0]),....] and also ra,dec to [(ra,dec)] if ra/dec are not iterable Parameters ---------- ra, dec : float or iterable Sky coordinates Returns ------- sky : numpy.array array of (ra,dec) coordinates. """ try: sky = np.array(list(zip(ra, dec))) except TypeError: sky = np.array([(ra, dec)]) return sky
[ "def", "radec2sky", "(", "ra", ",", "dec", ")", ":", "try", ":", "sky", "=", "np", ".", "array", "(", "list", "(", "zip", "(", "ra", ",", "dec", ")", ")", ")", "except", "TypeError", ":", "sky", "=", "np", ".", "array", "(", "[", "(", "ra", ",", "dec", ")", "]", ")", "return", "sky" ]
Convert [ra], [dec] to [(ra[0], dec[0]),....] and also ra,dec to [(ra,dec)] if ra/dec are not iterable Parameters ---------- ra, dec : float or iterable Sky coordinates Returns ------- sky : numpy.array array of (ra,dec) coordinates.
[ "Convert", "[", "ra", "]", "[", "dec", "]", "to", "[", "(", "ra", "[", "0", "]", "dec", "[", "0", "]", ")", "....", "]", "and", "also", "ra", "dec", "to", "[", "(", "ra", "dec", ")", "]", "if", "ra", "/", "dec", "are", "not", "iterable" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L420-L439
PaulHancock/Aegean
AegeanTools/regions.py
Region.sky2ang
def sky2ang(sky): """ Convert ra,dec coordinates to theta,phi coordinates ra -> phi dec -> theta Parameters ---------- sky : numpy.array Array of (ra,dec) coordinates. See :func:`AegeanTools.regions.Region.radec2sky` Returns ------- theta_phi : numpy.array Array of (theta,phi) coordinates. """ try: theta_phi = sky.copy() except AttributeError as _: theta_phi = np.array(sky) theta_phi[:, [1, 0]] = theta_phi[:, [0, 1]] theta_phi[:, 0] = np.pi/2 - theta_phi[:, 0] # # force 0<=theta<=2pi # theta_phi[:, 0] -= 2*np.pi*(theta_phi[:, 0]//(2*np.pi)) # # and now -pi<=theta<=pi # theta_phi[:, 0] -= (theta_phi[:, 0] > np.pi)*2*np.pi return theta_phi
python
def sky2ang(sky): """ Convert ra,dec coordinates to theta,phi coordinates ra -> phi dec -> theta Parameters ---------- sky : numpy.array Array of (ra,dec) coordinates. See :func:`AegeanTools.regions.Region.radec2sky` Returns ------- theta_phi : numpy.array Array of (theta,phi) coordinates. """ try: theta_phi = sky.copy() except AttributeError as _: theta_phi = np.array(sky) theta_phi[:, [1, 0]] = theta_phi[:, [0, 1]] theta_phi[:, 0] = np.pi/2 - theta_phi[:, 0] # # force 0<=theta<=2pi # theta_phi[:, 0] -= 2*np.pi*(theta_phi[:, 0]//(2*np.pi)) # # and now -pi<=theta<=pi # theta_phi[:, 0] -= (theta_phi[:, 0] > np.pi)*2*np.pi return theta_phi
[ "def", "sky2ang", "(", "sky", ")", ":", "try", ":", "theta_phi", "=", "sky", ".", "copy", "(", ")", "except", "AttributeError", "as", "_", ":", "theta_phi", "=", "np", ".", "array", "(", "sky", ")", "theta_phi", "[", ":", ",", "[", "1", ",", "0", "]", "]", "=", "theta_phi", "[", ":", ",", "[", "0", ",", "1", "]", "]", "theta_phi", "[", ":", ",", "0", "]", "=", "np", ".", "pi", "/", "2", "-", "theta_phi", "[", ":", ",", "0", "]", "# # force 0<=theta<=2pi", "# theta_phi[:, 0] -= 2*np.pi*(theta_phi[:, 0]//(2*np.pi))", "# # and now -pi<=theta<=pi", "# theta_phi[:, 0] -= (theta_phi[:, 0] > np.pi)*2*np.pi", "return", "theta_phi" ]
Convert ra,dec coordinates to theta,phi coordinates ra -> phi dec -> theta Parameters ---------- sky : numpy.array Array of (ra,dec) coordinates. See :func:`AegeanTools.regions.Region.radec2sky` Returns ------- theta_phi : numpy.array Array of (theta,phi) coordinates.
[ "Convert", "ra", "dec", "coordinates", "to", "theta", "phi", "coordinates", "ra", "-", ">", "phi", "dec", "-", ">", "theta" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L442-L469
PaulHancock/Aegean
AegeanTools/regions.py
Region.sky2vec
def sky2vec(cls, sky): """ Convert sky positions in to 3d-vectors on the unit sphere. Parameters ---------- sky : numpy.array Sky coordinates as an array of (ra,dec) Returns ------- vec : numpy.array Unit vectors as an array of (x,y,z) See Also -------- :func:`AegeanTools.regions.Region.vec2sky` """ theta_phi = cls.sky2ang(sky) theta, phi = map(np.array, list(zip(*theta_phi))) vec = hp.ang2vec(theta, phi) return vec
python
def sky2vec(cls, sky): """ Convert sky positions in to 3d-vectors on the unit sphere. Parameters ---------- sky : numpy.array Sky coordinates as an array of (ra,dec) Returns ------- vec : numpy.array Unit vectors as an array of (x,y,z) See Also -------- :func:`AegeanTools.regions.Region.vec2sky` """ theta_phi = cls.sky2ang(sky) theta, phi = map(np.array, list(zip(*theta_phi))) vec = hp.ang2vec(theta, phi) return vec
[ "def", "sky2vec", "(", "cls", ",", "sky", ")", ":", "theta_phi", "=", "cls", ".", "sky2ang", "(", "sky", ")", "theta", ",", "phi", "=", "map", "(", "np", ".", "array", ",", "list", "(", "zip", "(", "*", "theta_phi", ")", ")", ")", "vec", "=", "hp", ".", "ang2vec", "(", "theta", ",", "phi", ")", "return", "vec" ]
Convert sky positions in to 3d-vectors on the unit sphere. Parameters ---------- sky : numpy.array Sky coordinates as an array of (ra,dec) Returns ------- vec : numpy.array Unit vectors as an array of (x,y,z) See Also -------- :func:`AegeanTools.regions.Region.vec2sky`
[ "Convert", "sky", "positions", "in", "to", "3d", "-", "vectors", "on", "the", "unit", "sphere", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L472-L493
PaulHancock/Aegean
AegeanTools/regions.py
Region.vec2sky
def vec2sky(cls, vec, degrees=False): """ Convert [x,y,z] vectors into sky coordinates ra,dec Parameters ---------- vec : numpy.array Unit vectors as an array of (x,y,z) degrees Returns ------- sky : numpy.array Sky coordinates as an array of (ra,dec) See Also -------- :func:`AegeanTools.regions.Region.sky2vec` """ theta, phi = hp.vec2ang(vec) ra = phi dec = np.pi/2-theta if degrees: ra = np.degrees(ra) dec = np.degrees(dec) return cls.radec2sky(ra, dec)
python
def vec2sky(cls, vec, degrees=False): """ Convert [x,y,z] vectors into sky coordinates ra,dec Parameters ---------- vec : numpy.array Unit vectors as an array of (x,y,z) degrees Returns ------- sky : numpy.array Sky coordinates as an array of (ra,dec) See Also -------- :func:`AegeanTools.regions.Region.sky2vec` """ theta, phi = hp.vec2ang(vec) ra = phi dec = np.pi/2-theta if degrees: ra = np.degrees(ra) dec = np.degrees(dec) return cls.radec2sky(ra, dec)
[ "def", "vec2sky", "(", "cls", ",", "vec", ",", "degrees", "=", "False", ")", ":", "theta", ",", "phi", "=", "hp", ".", "vec2ang", "(", "vec", ")", "ra", "=", "phi", "dec", "=", "np", ".", "pi", "/", "2", "-", "theta", "if", "degrees", ":", "ra", "=", "np", ".", "degrees", "(", "ra", ")", "dec", "=", "np", ".", "degrees", "(", "dec", ")", "return", "cls", ".", "radec2sky", "(", "ra", ",", "dec", ")" ]
Convert [x,y,z] vectors into sky coordinates ra,dec Parameters ---------- vec : numpy.array Unit vectors as an array of (x,y,z) degrees Returns ------- sky : numpy.array Sky coordinates as an array of (ra,dec) See Also -------- :func:`AegeanTools.regions.Region.sky2vec`
[ "Convert", "[", "x", "y", "z", "]", "vectors", "into", "sky", "coordinates", "ra", "dec" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/regions.py#L496-L523
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.from_header
def from_header(cls, header, beam=None, lat=None): """ Create a new WCSHelper class from the given header. Parameters ---------- header : `astropy.fits.HDUHeader` or string The header to be used to create the WCS helper beam : :class:`AegeanTools.fits_image.Beam` or None The synthesized beam. If the supplied beam is None then one is constructed form the header. lat : float The latitude of the telescope. Returns ------- obj : :class:`AegeanTools.wcs_helpers.WCSHelper` A helper object. """ try: wcs = pywcs.WCS(header, naxis=2) except: # TODO: figure out what error is being thrown wcs = pywcs.WCS(str(header), naxis=2) if beam is None: beam = get_beam(header) else: beam = beam if beam is None: logging.critical("Cannot determine beam information") _, pixscale = get_pixinfo(header) refpix = (header['CRPIX1'], header['CRPIX2']) return cls(wcs, beam, pixscale, refpix, lat)
python
def from_header(cls, header, beam=None, lat=None): """ Create a new WCSHelper class from the given header. Parameters ---------- header : `astropy.fits.HDUHeader` or string The header to be used to create the WCS helper beam : :class:`AegeanTools.fits_image.Beam` or None The synthesized beam. If the supplied beam is None then one is constructed form the header. lat : float The latitude of the telescope. Returns ------- obj : :class:`AegeanTools.wcs_helpers.WCSHelper` A helper object. """ try: wcs = pywcs.WCS(header, naxis=2) except: # TODO: figure out what error is being thrown wcs = pywcs.WCS(str(header), naxis=2) if beam is None: beam = get_beam(header) else: beam = beam if beam is None: logging.critical("Cannot determine beam information") _, pixscale = get_pixinfo(header) refpix = (header['CRPIX1'], header['CRPIX2']) return cls(wcs, beam, pixscale, refpix, lat)
[ "def", "from_header", "(", "cls", ",", "header", ",", "beam", "=", "None", ",", "lat", "=", "None", ")", ":", "try", ":", "wcs", "=", "pywcs", ".", "WCS", "(", "header", ",", "naxis", "=", "2", ")", "except", ":", "# TODO: figure out what error is being thrown", "wcs", "=", "pywcs", ".", "WCS", "(", "str", "(", "header", ")", ",", "naxis", "=", "2", ")", "if", "beam", "is", "None", ":", "beam", "=", "get_beam", "(", "header", ")", "else", ":", "beam", "=", "beam", "if", "beam", "is", "None", ":", "logging", ".", "critical", "(", "\"Cannot determine beam information\"", ")", "_", ",", "pixscale", "=", "get_pixinfo", "(", "header", ")", "refpix", "=", "(", "header", "[", "'CRPIX1'", "]", ",", "header", "[", "'CRPIX2'", "]", ")", "return", "cls", "(", "wcs", ",", "beam", ",", "pixscale", ",", "refpix", ",", "lat", ")" ]
Create a new WCSHelper class from the given header. Parameters ---------- header : `astropy.fits.HDUHeader` or string The header to be used to create the WCS helper beam : :class:`AegeanTools.fits_image.Beam` or None The synthesized beam. If the supplied beam is None then one is constructed form the header. lat : float The latitude of the telescope. Returns ------- obj : :class:`AegeanTools.wcs_helpers.WCSHelper` A helper object.
[ "Create", "a", "new", "WCSHelper", "class", "from", "the", "given", "header", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L62-L97
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.from_file
def from_file(cls, filename, beam=None): """ Create a new WCSHelper class from a given fits file. Parameters ---------- filename : string The file to be read beam : :class:`AegeanTools.fits_image.Beam` or None The synthesized beam. If the supplied beam is None then one is constructed form the header. Returns ------- obj : :class:`AegeanTools.wcs_helpers.WCSHelper` A helper object """ header = fits.getheader(filename) return cls.from_header(header, beam)
python
def from_file(cls, filename, beam=None): """ Create a new WCSHelper class from a given fits file. Parameters ---------- filename : string The file to be read beam : :class:`AegeanTools.fits_image.Beam` or None The synthesized beam. If the supplied beam is None then one is constructed form the header. Returns ------- obj : :class:`AegeanTools.wcs_helpers.WCSHelper` A helper object """ header = fits.getheader(filename) return cls.from_header(header, beam)
[ "def", "from_file", "(", "cls", ",", "filename", ",", "beam", "=", "None", ")", ":", "header", "=", "fits", ".", "getheader", "(", "filename", ")", "return", "cls", ".", "from_header", "(", "header", ",", "beam", ")" ]
Create a new WCSHelper class from a given fits file. Parameters ---------- filename : string The file to be read beam : :class:`AegeanTools.fits_image.Beam` or None The synthesized beam. If the supplied beam is None then one is constructed form the header. Returns ------- obj : :class:`AegeanTools.wcs_helpers.WCSHelper` A helper object
[ "Create", "a", "new", "WCSHelper", "class", "from", "a", "given", "fits", "file", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L100-L118
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.pix2sky
def pix2sky(self, pixel): """ Convert pixel coordinates into sky coordinates. Parameters ---------- pixel : (float, float) The (x,y) pixel coordinates Returns ------- sky : (float, float) The (ra,dec) sky coordinates in degrees """ x, y = pixel # wcs and pyfits have oposite ideas of x/y return self.wcs.wcs_pix2world([[y, x]], 1)[0]
python
def pix2sky(self, pixel): """ Convert pixel coordinates into sky coordinates. Parameters ---------- pixel : (float, float) The (x,y) pixel coordinates Returns ------- sky : (float, float) The (ra,dec) sky coordinates in degrees """ x, y = pixel # wcs and pyfits have oposite ideas of x/y return self.wcs.wcs_pix2world([[y, x]], 1)[0]
[ "def", "pix2sky", "(", "self", ",", "pixel", ")", ":", "x", ",", "y", "=", "pixel", "# wcs and pyfits have oposite ideas of x/y", "return", "self", ".", "wcs", ".", "wcs_pix2world", "(", "[", "[", "y", ",", "x", "]", "]", ",", "1", ")", "[", "0", "]" ]
Convert pixel coordinates into sky coordinates. Parameters ---------- pixel : (float, float) The (x,y) pixel coordinates Returns ------- sky : (float, float) The (ra,dec) sky coordinates in degrees
[ "Convert", "pixel", "coordinates", "into", "sky", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L120-L137
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.sky2pix
def sky2pix(self, pos): """ Convert sky coordinates into pixel coordinates. Parameters ---------- pos : (float, float) The (ra, dec) sky coordinates (degrees) Returns ------- pixel : (float, float) The (x,y) pixel coordinates """ pixel = self.wcs.wcs_world2pix([pos], 1) # wcs and pyfits have oposite ideas of x/y return [pixel[0][1], pixel[0][0]]
python
def sky2pix(self, pos): """ Convert sky coordinates into pixel coordinates. Parameters ---------- pos : (float, float) The (ra, dec) sky coordinates (degrees) Returns ------- pixel : (float, float) The (x,y) pixel coordinates """ pixel = self.wcs.wcs_world2pix([pos], 1) # wcs and pyfits have oposite ideas of x/y return [pixel[0][1], pixel[0][0]]
[ "def", "sky2pix", "(", "self", ",", "pos", ")", ":", "pixel", "=", "self", ".", "wcs", ".", "wcs_world2pix", "(", "[", "pos", "]", ",", "1", ")", "# wcs and pyfits have oposite ideas of x/y", "return", "[", "pixel", "[", "0", "]", "[", "1", "]", ",", "pixel", "[", "0", "]", "[", "0", "]", "]" ]
Convert sky coordinates into pixel coordinates. Parameters ---------- pos : (float, float) The (ra, dec) sky coordinates (degrees) Returns ------- pixel : (float, float) The (x,y) pixel coordinates
[ "Convert", "sky", "coordinates", "into", "pixel", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L139-L156
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.sky2pix_vec
def sky2pix_vec(self, pos, r, pa): """ Convert a vector from sky to pixel coords. The vector has a magnitude, angle, and an origin on the sky. Parameters ---------- pos : (float, float) The (ra, dec) of the origin of the vector (degrees). r : float The magnitude or length of the vector (degrees). pa : float The position angle of the vector (degrees). Returns ------- x, y : float The pixel coordinates of the origin. r, theta : float The magnitude (pixels) and angle (degrees) of the vector. """ ra, dec = pos x, y = self.sky2pix(pos) a = translate(ra, dec, r, pa) locations = self.sky2pix(a) x_off, y_off = locations a = np.sqrt((x - x_off) ** 2 + (y - y_off) ** 2) theta = np.degrees(np.arctan2((y_off - y), (x_off - x))) return x, y, a, theta
python
def sky2pix_vec(self, pos, r, pa): """ Convert a vector from sky to pixel coords. The vector has a magnitude, angle, and an origin on the sky. Parameters ---------- pos : (float, float) The (ra, dec) of the origin of the vector (degrees). r : float The magnitude or length of the vector (degrees). pa : float The position angle of the vector (degrees). Returns ------- x, y : float The pixel coordinates of the origin. r, theta : float The magnitude (pixels) and angle (degrees) of the vector. """ ra, dec = pos x, y = self.sky2pix(pos) a = translate(ra, dec, r, pa) locations = self.sky2pix(a) x_off, y_off = locations a = np.sqrt((x - x_off) ** 2 + (y - y_off) ** 2) theta = np.degrees(np.arctan2((y_off - y), (x_off - x))) return x, y, a, theta
[ "def", "sky2pix_vec", "(", "self", ",", "pos", ",", "r", ",", "pa", ")", ":", "ra", ",", "dec", "=", "pos", "x", ",", "y", "=", "self", ".", "sky2pix", "(", "pos", ")", "a", "=", "translate", "(", "ra", ",", "dec", ",", "r", ",", "pa", ")", "locations", "=", "self", ".", "sky2pix", "(", "a", ")", "x_off", ",", "y_off", "=", "locations", "a", "=", "np", ".", "sqrt", "(", "(", "x", "-", "x_off", ")", "**", "2", "+", "(", "y", "-", "y_off", ")", "**", "2", ")", "theta", "=", "np", ".", "degrees", "(", "np", ".", "arctan2", "(", "(", "y_off", "-", "y", ")", ",", "(", "x_off", "-", "x", ")", ")", ")", "return", "x", ",", "y", ",", "a", ",", "theta" ]
Convert a vector from sky to pixel coords. The vector has a magnitude, angle, and an origin on the sky. Parameters ---------- pos : (float, float) The (ra, dec) of the origin of the vector (degrees). r : float The magnitude or length of the vector (degrees). pa : float The position angle of the vector (degrees). Returns ------- x, y : float The pixel coordinates of the origin. r, theta : float The magnitude (pixels) and angle (degrees) of the vector.
[ "Convert", "a", "vector", "from", "sky", "to", "pixel", "coords", ".", "The", "vector", "has", "a", "magnitude", "angle", "and", "an", "origin", "on", "the", "sky", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L158-L189
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.pix2sky_vec
def pix2sky_vec(self, pixel, r, theta): """ Given and input position and vector in pixel coordinates, calculate the equivalent position and vector in sky coordinates. Parameters ---------- pixel : (int,int) origin of vector in pixel coordinates r : float magnitude of vector in pixels theta : float angle of vector in degrees Returns ------- ra, dec : float The (ra, dec) of the origin point (degrees). r, pa : float The magnitude and position angle of the vector (degrees). """ ra1, dec1 = self.pix2sky(pixel) x, y = pixel a = [x + r * np.cos(np.radians(theta)), y + r * np.sin(np.radians(theta))] locations = self.pix2sky(a) ra2, dec2 = locations a = gcd(ra1, dec1, ra2, dec2) pa = bear(ra1, dec1, ra2, dec2) return ra1, dec1, a, pa
python
def pix2sky_vec(self, pixel, r, theta): """ Given and input position and vector in pixel coordinates, calculate the equivalent position and vector in sky coordinates. Parameters ---------- pixel : (int,int) origin of vector in pixel coordinates r : float magnitude of vector in pixels theta : float angle of vector in degrees Returns ------- ra, dec : float The (ra, dec) of the origin point (degrees). r, pa : float The magnitude and position angle of the vector (degrees). """ ra1, dec1 = self.pix2sky(pixel) x, y = pixel a = [x + r * np.cos(np.radians(theta)), y + r * np.sin(np.radians(theta))] locations = self.pix2sky(a) ra2, dec2 = locations a = gcd(ra1, dec1, ra2, dec2) pa = bear(ra1, dec1, ra2, dec2) return ra1, dec1, a, pa
[ "def", "pix2sky_vec", "(", "self", ",", "pixel", ",", "r", ",", "theta", ")", ":", "ra1", ",", "dec1", "=", "self", ".", "pix2sky", "(", "pixel", ")", "x", ",", "y", "=", "pixel", "a", "=", "[", "x", "+", "r", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "y", "+", "r", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", "locations", "=", "self", ".", "pix2sky", "(", "a", ")", "ra2", ",", "dec2", "=", "locations", "a", "=", "gcd", "(", "ra1", ",", "dec1", ",", "ra2", ",", "dec2", ")", "pa", "=", "bear", "(", "ra1", ",", "dec1", ",", "ra2", ",", "dec2", ")", "return", "ra1", ",", "dec1", ",", "a", ",", "pa" ]
Given and input position and vector in pixel coordinates, calculate the equivalent position and vector in sky coordinates. Parameters ---------- pixel : (int,int) origin of vector in pixel coordinates r : float magnitude of vector in pixels theta : float angle of vector in degrees Returns ------- ra, dec : float The (ra, dec) of the origin point (degrees). r, pa : float The magnitude and position angle of the vector (degrees).
[ "Given", "and", "input", "position", "and", "vector", "in", "pixel", "coordinates", "calculate", "the", "equivalent", "position", "and", "vector", "in", "sky", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L191-L220
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.sky2pix_ellipse
def sky2pix_ellipse(self, pos, a, b, pa): """ Convert an ellipse from sky to pixel coordinates. Parameters ---------- pos : (float, float) The (ra, dec) of the ellipse center (degrees). a, b, pa: float The semi-major axis, semi-minor axis and position angle of the ellipse (degrees). Returns ------- x,y : float The (x, y) pixel coordinates of the ellipse center. sx, sy : float The major and minor axes (FWHM) in pixels. theta : float The rotation angle of the ellipse (degrees). theta = 0 corresponds to the ellipse being aligned with the x-axis. """ ra, dec = pos x, y = self.sky2pix(pos) x_off, y_off = self.sky2pix(translate(ra, dec, a, pa)) sx = np.hypot((x - x_off), (y - y_off)) theta = np.arctan2((y_off - y), (x_off - x)) x_off, y_off = self.sky2pix(translate(ra, dec, b, pa - 90)) sy = np.hypot((x - x_off), (y - y_off)) theta2 = np.arctan2((y_off - y), (x_off - x)) - np.pi / 2 # The a/b vectors are perpendicular in sky space, but not always in pixel space # so we have to account for this by calculating the angle between the two vectors # and modifying the minor axis length defect = theta - theta2 sy *= abs(np.cos(defect)) return x, y, sx, sy, np.degrees(theta)
python
def sky2pix_ellipse(self, pos, a, b, pa): """ Convert an ellipse from sky to pixel coordinates. Parameters ---------- pos : (float, float) The (ra, dec) of the ellipse center (degrees). a, b, pa: float The semi-major axis, semi-minor axis and position angle of the ellipse (degrees). Returns ------- x,y : float The (x, y) pixel coordinates of the ellipse center. sx, sy : float The major and minor axes (FWHM) in pixels. theta : float The rotation angle of the ellipse (degrees). theta = 0 corresponds to the ellipse being aligned with the x-axis. """ ra, dec = pos x, y = self.sky2pix(pos) x_off, y_off = self.sky2pix(translate(ra, dec, a, pa)) sx = np.hypot((x - x_off), (y - y_off)) theta = np.arctan2((y_off - y), (x_off - x)) x_off, y_off = self.sky2pix(translate(ra, dec, b, pa - 90)) sy = np.hypot((x - x_off), (y - y_off)) theta2 = np.arctan2((y_off - y), (x_off - x)) - np.pi / 2 # The a/b vectors are perpendicular in sky space, but not always in pixel space # so we have to account for this by calculating the angle between the two vectors # and modifying the minor axis length defect = theta - theta2 sy *= abs(np.cos(defect)) return x, y, sx, sy, np.degrees(theta)
[ "def", "sky2pix_ellipse", "(", "self", ",", "pos", ",", "a", ",", "b", ",", "pa", ")", ":", "ra", ",", "dec", "=", "pos", "x", ",", "y", "=", "self", ".", "sky2pix", "(", "pos", ")", "x_off", ",", "y_off", "=", "self", ".", "sky2pix", "(", "translate", "(", "ra", ",", "dec", ",", "a", ",", "pa", ")", ")", "sx", "=", "np", ".", "hypot", "(", "(", "x", "-", "x_off", ")", ",", "(", "y", "-", "y_off", ")", ")", "theta", "=", "np", ".", "arctan2", "(", "(", "y_off", "-", "y", ")", ",", "(", "x_off", "-", "x", ")", ")", "x_off", ",", "y_off", "=", "self", ".", "sky2pix", "(", "translate", "(", "ra", ",", "dec", ",", "b", ",", "pa", "-", "90", ")", ")", "sy", "=", "np", ".", "hypot", "(", "(", "x", "-", "x_off", ")", ",", "(", "y", "-", "y_off", ")", ")", "theta2", "=", "np", ".", "arctan2", "(", "(", "y_off", "-", "y", ")", ",", "(", "x_off", "-", "x", ")", ")", "-", "np", ".", "pi", "/", "2", "# The a/b vectors are perpendicular in sky space, but not always in pixel space", "# so we have to account for this by calculating the angle between the two vectors", "# and modifying the minor axis length", "defect", "=", "theta", "-", "theta2", "sy", "*=", "abs", "(", "np", ".", "cos", "(", "defect", ")", ")", "return", "x", ",", "y", ",", "sx", ",", "sy", ",", "np", ".", "degrees", "(", "theta", ")" ]
Convert an ellipse from sky to pixel coordinates. Parameters ---------- pos : (float, float) The (ra, dec) of the ellipse center (degrees). a, b, pa: float The semi-major axis, semi-minor axis and position angle of the ellipse (degrees). Returns ------- x,y : float The (x, y) pixel coordinates of the ellipse center. sx, sy : float The major and minor axes (FWHM) in pixels. theta : float The rotation angle of the ellipse (degrees). theta = 0 corresponds to the ellipse being aligned with the x-axis.
[ "Convert", "an", "ellipse", "from", "sky", "to", "pixel", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L222-L261
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.pix2sky_ellipse
def pix2sky_ellipse(self, pixel, sx, sy, theta): """ Convert an ellipse from pixel to sky coordinates. Parameters ---------- pixel : (float, float) The (x, y) coordinates of the center of the ellipse. sx, sy : float The major and minor axes (FHWM) of the ellipse, in pixels. theta : float The rotation angle of the ellipse (degrees). theta = 0 corresponds to the ellipse being aligned with the x-axis. Returns ------- ra, dec : float The (ra, dec) coordinates of the center of the ellipse (degrees). a, b : float The semi-major and semi-minor axis of the ellipse (degrees). pa : float The position angle of the ellipse (degrees). """ ra, dec = self.pix2sky(pixel) x, y = pixel v_sx = [x + sx * np.cos(np.radians(theta)), y + sx * np.sin(np.radians(theta))] ra2, dec2 = self.pix2sky(v_sx) major = gcd(ra, dec, ra2, dec2) pa = bear(ra, dec, ra2, dec2) v_sy = [x + sy * np.cos(np.radians(theta - 90)), y + sy * np.sin(np.radians(theta - 90))] ra2, dec2 = self.pix2sky(v_sy) minor = gcd(ra, dec, ra2, dec2) pa2 = bear(ra, dec, ra2, dec2) - 90 # The a/b vectors are perpendicular in sky space, but not always in pixel space # so we have to account for this by calculating the angle between the two vectors # and modifying the minor axis length defect = pa - pa2 minor *= abs(np.cos(np.radians(defect))) return ra, dec, major, minor, pa
python
def pix2sky_ellipse(self, pixel, sx, sy, theta): """ Convert an ellipse from pixel to sky coordinates. Parameters ---------- pixel : (float, float) The (x, y) coordinates of the center of the ellipse. sx, sy : float The major and minor axes (FHWM) of the ellipse, in pixels. theta : float The rotation angle of the ellipse (degrees). theta = 0 corresponds to the ellipse being aligned with the x-axis. Returns ------- ra, dec : float The (ra, dec) coordinates of the center of the ellipse (degrees). a, b : float The semi-major and semi-minor axis of the ellipse (degrees). pa : float The position angle of the ellipse (degrees). """ ra, dec = self.pix2sky(pixel) x, y = pixel v_sx = [x + sx * np.cos(np.radians(theta)), y + sx * np.sin(np.radians(theta))] ra2, dec2 = self.pix2sky(v_sx) major = gcd(ra, dec, ra2, dec2) pa = bear(ra, dec, ra2, dec2) v_sy = [x + sy * np.cos(np.radians(theta - 90)), y + sy * np.sin(np.radians(theta - 90))] ra2, dec2 = self.pix2sky(v_sy) minor = gcd(ra, dec, ra2, dec2) pa2 = bear(ra, dec, ra2, dec2) - 90 # The a/b vectors are perpendicular in sky space, but not always in pixel space # so we have to account for this by calculating the angle between the two vectors # and modifying the minor axis length defect = pa - pa2 minor *= abs(np.cos(np.radians(defect))) return ra, dec, major, minor, pa
[ "def", "pix2sky_ellipse", "(", "self", ",", "pixel", ",", "sx", ",", "sy", ",", "theta", ")", ":", "ra", ",", "dec", "=", "self", ".", "pix2sky", "(", "pixel", ")", "x", ",", "y", "=", "pixel", "v_sx", "=", "[", "x", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "y", "+", "sx", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", "ra2", ",", "dec2", "=", "self", ".", "pix2sky", "(", "v_sx", ")", "major", "=", "gcd", "(", "ra", ",", "dec", ",", "ra2", ",", "dec2", ")", "pa", "=", "bear", "(", "ra", ",", "dec", ",", "ra2", ",", "dec2", ")", "v_sy", "=", "[", "x", "+", "sy", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", "-", "90", ")", ")", ",", "y", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", "-", "90", ")", ")", "]", "ra2", ",", "dec2", "=", "self", ".", "pix2sky", "(", "v_sy", ")", "minor", "=", "gcd", "(", "ra", ",", "dec", ",", "ra2", ",", "dec2", ")", "pa2", "=", "bear", "(", "ra", ",", "dec", ",", "ra2", ",", "dec2", ")", "-", "90", "# The a/b vectors are perpendicular in sky space, but not always in pixel space", "# so we have to account for this by calculating the angle between the two vectors", "# and modifying the minor axis length", "defect", "=", "pa", "-", "pa2", "minor", "*=", "abs", "(", "np", ".", "cos", "(", "np", ".", "radians", "(", "defect", ")", ")", ")", "return", "ra", ",", "dec", ",", "major", ",", "minor", ",", "pa" ]
Convert an ellipse from pixel to sky coordinates. Parameters ---------- pixel : (float, float) The (x, y) coordinates of the center of the ellipse. sx, sy : float The major and minor axes (FHWM) of the ellipse, in pixels. theta : float The rotation angle of the ellipse (degrees). theta = 0 corresponds to the ellipse being aligned with the x-axis. Returns ------- ra, dec : float The (ra, dec) coordinates of the center of the ellipse (degrees). a, b : float The semi-major and semi-minor axis of the ellipse (degrees). pa : float The position angle of the ellipse (degrees).
[ "Convert", "an", "ellipse", "from", "pixel", "to", "sky", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L263-L307
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.get_pixbeam_pixel
def get_pixbeam_pixel(self, x, y): """ Determine the beam in pixels at the given location in pixel coordinates. Parameters ---------- x , y : float The pixel coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in pixel coordinates. """ ra, dec = self.pix2sky((x, y)) return self.get_pixbeam(ra, dec)
python
def get_pixbeam_pixel(self, x, y): """ Determine the beam in pixels at the given location in pixel coordinates. Parameters ---------- x , y : float The pixel coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in pixel coordinates. """ ra, dec = self.pix2sky((x, y)) return self.get_pixbeam(ra, dec)
[ "def", "get_pixbeam_pixel", "(", "self", ",", "x", ",", "y", ")", ":", "ra", ",", "dec", "=", "self", ".", "pix2sky", "(", "(", "x", ",", "y", ")", ")", "return", "self", ".", "get_pixbeam", "(", "ra", ",", "dec", ")" ]
Determine the beam in pixels at the given location in pixel coordinates. Parameters ---------- x , y : float The pixel coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in pixel coordinates.
[ "Determine", "the", "beam", "in", "pixels", "at", "the", "given", "location", "in", "pixel", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L309-L324
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.get_beam
def get_beam(self, ra, dec): """ Determine the beam at the given sky location. Parameters ---------- ra, dec : float The sky coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in sky coordinates """ # check to see if we need to scale the major axis based on the declination if self.lat is None: factor = 1 else: # this works if the pa is zero. For non-zero pa it's a little more difficult factor = np.cos(np.radians(dec - self.lat)) return Beam(self.beam.a / factor, self.beam.b, self.beam.pa)
python
def get_beam(self, ra, dec): """ Determine the beam at the given sky location. Parameters ---------- ra, dec : float The sky coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in sky coordinates """ # check to see if we need to scale the major axis based on the declination if self.lat is None: factor = 1 else: # this works if the pa is zero. For non-zero pa it's a little more difficult factor = np.cos(np.radians(dec - self.lat)) return Beam(self.beam.a / factor, self.beam.b, self.beam.pa)
[ "def", "get_beam", "(", "self", ",", "ra", ",", "dec", ")", ":", "# check to see if we need to scale the major axis based on the declination", "if", "self", ".", "lat", "is", "None", ":", "factor", "=", "1", "else", ":", "# this works if the pa is zero. For non-zero pa it's a little more difficult", "factor", "=", "np", ".", "cos", "(", "np", ".", "radians", "(", "dec", "-", "self", ".", "lat", ")", ")", "return", "Beam", "(", "self", ".", "beam", ".", "a", "/", "factor", ",", "self", ".", "beam", ".", "b", ",", "self", ".", "beam", ".", "pa", ")" ]
Determine the beam at the given sky location. Parameters ---------- ra, dec : float The sky coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in sky coordinates
[ "Determine", "the", "beam", "at", "the", "given", "sky", "location", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L326-L346
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.get_pixbeam
def get_pixbeam(self, ra, dec): """ Determine the beam in pixels at the given location in sky coordinates. Parameters ---------- ra , dec : float The sly coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in pixel coordinates. """ if ra is None: ra, dec = self.pix2sky(self.refpix) pos = [ra, dec] beam = self.get_beam(ra, dec) _, _, major, minor, theta = self.sky2pix_ellipse(pos, beam.a, beam.b, beam.pa) if major < minor: major, minor = minor, major theta -= 90 if theta < -180: theta += 180 if not np.isfinite(theta): theta = 0 if not all(np.isfinite([major, minor, theta])): beam = None else: beam = Beam(major, minor, theta) return beam
python
def get_pixbeam(self, ra, dec): """ Determine the beam in pixels at the given location in sky coordinates. Parameters ---------- ra , dec : float The sly coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in pixel coordinates. """ if ra is None: ra, dec = self.pix2sky(self.refpix) pos = [ra, dec] beam = self.get_beam(ra, dec) _, _, major, minor, theta = self.sky2pix_ellipse(pos, beam.a, beam.b, beam.pa) if major < minor: major, minor = minor, major theta -= 90 if theta < -180: theta += 180 if not np.isfinite(theta): theta = 0 if not all(np.isfinite([major, minor, theta])): beam = None else: beam = Beam(major, minor, theta) return beam
[ "def", "get_pixbeam", "(", "self", ",", "ra", ",", "dec", ")", ":", "if", "ra", "is", "None", ":", "ra", ",", "dec", "=", "self", ".", "pix2sky", "(", "self", ".", "refpix", ")", "pos", "=", "[", "ra", ",", "dec", "]", "beam", "=", "self", ".", "get_beam", "(", "ra", ",", "dec", ")", "_", ",", "_", ",", "major", ",", "minor", ",", "theta", "=", "self", ".", "sky2pix_ellipse", "(", "pos", ",", "beam", ".", "a", ",", "beam", ".", "b", ",", "beam", ".", "pa", ")", "if", "major", "<", "minor", ":", "major", ",", "minor", "=", "minor", ",", "major", "theta", "-=", "90", "if", "theta", "<", "-", "180", ":", "theta", "+=", "180", "if", "not", "np", ".", "isfinite", "(", "theta", ")", ":", "theta", "=", "0", "if", "not", "all", "(", "np", ".", "isfinite", "(", "[", "major", ",", "minor", ",", "theta", "]", ")", ")", ":", "beam", "=", "None", "else", ":", "beam", "=", "Beam", "(", "major", ",", "minor", ",", "theta", ")", "return", "beam" ]
Determine the beam in pixels at the given location in sky coordinates. Parameters ---------- ra , dec : float The sly coordinates at which the beam is determined. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` A beam object, with a/b/pa in pixel coordinates.
[ "Determine", "the", "beam", "in", "pixels", "at", "the", "given", "location", "in", "sky", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L348-L381
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.get_beamarea_deg2
def get_beamarea_deg2(self, ra, dec): """ Calculate the area of the synthesized beam in square degrees. Parameters ---------- ra, dec : float The sky coordinates at which the calculation is made. Returns ------- area : float The beam area in square degrees. """ barea = abs(self.beam.a * self.beam.b * np.pi) # in deg**2 at reference coords if self.lat is not None: barea /= np.cos(np.radians(dec - self.lat)) return barea
python
def get_beamarea_deg2(self, ra, dec): """ Calculate the area of the synthesized beam in square degrees. Parameters ---------- ra, dec : float The sky coordinates at which the calculation is made. Returns ------- area : float The beam area in square degrees. """ barea = abs(self.beam.a * self.beam.b * np.pi) # in deg**2 at reference coords if self.lat is not None: barea /= np.cos(np.radians(dec - self.lat)) return barea
[ "def", "get_beamarea_deg2", "(", "self", ",", "ra", ",", "dec", ")", ":", "barea", "=", "abs", "(", "self", ".", "beam", ".", "a", "*", "self", ".", "beam", ".", "b", "*", "np", ".", "pi", ")", "# in deg**2 at reference coords", "if", "self", ".", "lat", "is", "not", "None", ":", "barea", "/=", "np", ".", "cos", "(", "np", ".", "radians", "(", "dec", "-", "self", ".", "lat", ")", ")", "return", "barea" ]
Calculate the area of the synthesized beam in square degrees. Parameters ---------- ra, dec : float The sky coordinates at which the calculation is made. Returns ------- area : float The beam area in square degrees.
[ "Calculate", "the", "area", "of", "the", "synthesized", "beam", "in", "square", "degrees", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L383-L400
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.get_beamarea_pix
def get_beamarea_pix(self, ra, dec): """ Calculate the beam area in square pixels. Parameters ---------- ra, dec : float The sky coordinates at which the calculation is made dec Returns ------- area : float The beam area in square pixels. """ parea = abs(self.pixscale[0] * self.pixscale[1]) # in deg**2 at reference coords barea = self.get_beamarea_deg2(ra, dec) return barea / parea
python
def get_beamarea_pix(self, ra, dec): """ Calculate the beam area in square pixels. Parameters ---------- ra, dec : float The sky coordinates at which the calculation is made dec Returns ------- area : float The beam area in square pixels. """ parea = abs(self.pixscale[0] * self.pixscale[1]) # in deg**2 at reference coords barea = self.get_beamarea_deg2(ra, dec) return barea / parea
[ "def", "get_beamarea_pix", "(", "self", ",", "ra", ",", "dec", ")", ":", "parea", "=", "abs", "(", "self", ".", "pixscale", "[", "0", "]", "*", "self", ".", "pixscale", "[", "1", "]", ")", "# in deg**2 at reference coords", "barea", "=", "self", ".", "get_beamarea_deg2", "(", "ra", ",", "dec", ")", "return", "barea", "/", "parea" ]
Calculate the beam area in square pixels. Parameters ---------- ra, dec : float The sky coordinates at which the calculation is made dec Returns ------- area : float The beam area in square pixels.
[ "Calculate", "the", "beam", "area", "in", "square", "pixels", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L402-L419
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
WCSHelper.sky_sep
def sky_sep(self, pix1, pix2): """ calculate the GCD sky separation (degrees) between two pixels. Parameters ---------- pix1, pix2 : (float, float) The (x,y) pixel coordinates for the two positions. Returns ------- dist : float The distance between the two points (degrees). """ pos1 = self.pix2sky(pix1) pos2 = self.pix2sky(pix2) sep = gcd(pos1[0], pos1[1], pos2[0], pos2[1]) return sep
python
def sky_sep(self, pix1, pix2): """ calculate the GCD sky separation (degrees) between two pixels. Parameters ---------- pix1, pix2 : (float, float) The (x,y) pixel coordinates for the two positions. Returns ------- dist : float The distance between the two points (degrees). """ pos1 = self.pix2sky(pix1) pos2 = self.pix2sky(pix2) sep = gcd(pos1[0], pos1[1], pos2[0], pos2[1]) return sep
[ "def", "sky_sep", "(", "self", ",", "pix1", ",", "pix2", ")", ":", "pos1", "=", "self", ".", "pix2sky", "(", "pix1", ")", "pos2", "=", "self", ".", "pix2sky", "(", "pix2", ")", "sep", "=", "gcd", "(", "pos1", "[", "0", "]", ",", "pos1", "[", "1", "]", ",", "pos2", "[", "0", "]", ",", "pos2", "[", "1", "]", ")", "return", "sep" ]
calculate the GCD sky separation (degrees) between two pixels. Parameters ---------- pix1, pix2 : (float, float) The (x,y) pixel coordinates for the two positions. Returns ------- dist : float The distance between the two points (degrees).
[ "calculate", "the", "GCD", "sky", "separation", "(", "degrees", ")", "between", "two", "pixels", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L421-L438
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
PSFHelper.get_psf_sky
def get_psf_sky(self, ra, dec): """ Determine the local psf at a given sky location. The psf is returned in degrees. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis, semi-minor axis, and position angle in (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ # If we don't have a psf map then we just fall back to using the beam # from the fits header (including ZA scaling) if self.data is None: beam = self.wcshelper.get_beam(ra, dec) return beam.a, beam.b, beam.pa x, y = self.sky2pix([ra, dec]) # We leave the interpolation in the hands of whoever is making these images # clamping the x,y coords at the image boundaries just makes sense x = int(np.clip(x, 0, self.data.shape[1] - 1)) y = int(np.clip(y, 0, self.data.shape[2] - 1)) psf_sky = self.data[:, x, y] return psf_sky
python
def get_psf_sky(self, ra, dec): """ Determine the local psf at a given sky location. The psf is returned in degrees. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis, semi-minor axis, and position angle in (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ # If we don't have a psf map then we just fall back to using the beam # from the fits header (including ZA scaling) if self.data is None: beam = self.wcshelper.get_beam(ra, dec) return beam.a, beam.b, beam.pa x, y = self.sky2pix([ra, dec]) # We leave the interpolation in the hands of whoever is making these images # clamping the x,y coords at the image boundaries just makes sense x = int(np.clip(x, 0, self.data.shape[1] - 1)) y = int(np.clip(y, 0, self.data.shape[2] - 1)) psf_sky = self.data[:, x, y] return psf_sky
[ "def", "get_psf_sky", "(", "self", ",", "ra", ",", "dec", ")", ":", "# If we don't have a psf map then we just fall back to using the beam", "# from the fits header (including ZA scaling)", "if", "self", ".", "data", "is", "None", ":", "beam", "=", "self", ".", "wcshelper", ".", "get_beam", "(", "ra", ",", "dec", ")", "return", "beam", ".", "a", ",", "beam", ".", "b", ",", "beam", ".", "pa", "x", ",", "y", "=", "self", ".", "sky2pix", "(", "[", "ra", ",", "dec", "]", ")", "# We leave the interpolation in the hands of whoever is making these images", "# clamping the x,y coords at the image boundaries just makes sense", "x", "=", "int", "(", "np", ".", "clip", "(", "x", ",", "0", ",", "self", ".", "data", ".", "shape", "[", "1", "]", "-", "1", ")", ")", "y", "=", "int", "(", "np", ".", "clip", "(", "y", ",", "0", ",", "self", ".", "data", ".", "shape", "[", "2", "]", "-", "1", ")", ")", "psf_sky", "=", "self", ".", "data", "[", ":", ",", "x", ",", "y", "]", "return", "psf_sky" ]
Determine the local psf at a given sky location. The psf is returned in degrees. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis, semi-minor axis, and position angle in (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned.
[ "Determine", "the", "local", "psf", "at", "a", "given", "sky", "location", ".", "The", "psf", "is", "returned", "in", "degrees", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L474-L504
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
PSFHelper.get_psf_pix
def get_psf_pix(self, ra, dec): """ Determine the local psf (a,b,pa) at a given sky location. The psf is in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ psf_sky = self.get_psf_sky(ra, dec) psf_pix = self.wcshelper.sky2pix_ellipse([ra, dec], psf_sky[0], psf_sky[1], psf_sky[2])[2:] return psf_pix
python
def get_psf_pix(self, ra, dec): """ Determine the local psf (a,b,pa) at a given sky location. The psf is in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ psf_sky = self.get_psf_sky(ra, dec) psf_pix = self.wcshelper.sky2pix_ellipse([ra, dec], psf_sky[0], psf_sky[1], psf_sky[2])[2:] return psf_pix
[ "def", "get_psf_pix", "(", "self", ",", "ra", ",", "dec", ")", ":", "psf_sky", "=", "self", ".", "get_psf_sky", "(", "ra", ",", "dec", ")", "psf_pix", "=", "self", ".", "wcshelper", ".", "sky2pix_ellipse", "(", "[", "ra", ",", "dec", "]", ",", "psf_sky", "[", "0", "]", ",", "psf_sky", "[", "1", "]", ",", "psf_sky", "[", "2", "]", ")", "[", "2", ":", "]", "return", "psf_pix" ]
Determine the local psf (a,b,pa) at a given sky location. The psf is in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned.
[ "Determine", "the", "local", "psf", "(", "a", "b", "pa", ")", "at", "a", "given", "sky", "location", ".", "The", "psf", "is", "in", "pixel", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L506-L527
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
PSFHelper.get_pixbeam
def get_pixbeam(self, ra, dec): """ Get the psf at the location specified in pixel coordinates. The psf is also in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ # If there is no psf image then just use the fits header (plus lat scaling) from the wcshelper if self.data is None: return self.wcshelper.get_pixbeam(ra, dec) # get the beam from the psf image data psf = self.get_psf_pix(ra, dec) if not np.all(np.isfinite(psf)): log.warn("PSF requested, returned Null") return None return Beam(psf[0], psf[1], psf[2])
python
def get_pixbeam(self, ra, dec): """ Get the psf at the location specified in pixel coordinates. The psf is also in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned. """ # If there is no psf image then just use the fits header (plus lat scaling) from the wcshelper if self.data is None: return self.wcshelper.get_pixbeam(ra, dec) # get the beam from the psf image data psf = self.get_psf_pix(ra, dec) if not np.all(np.isfinite(psf)): log.warn("PSF requested, returned Null") return None return Beam(psf[0], psf[1], psf[2])
[ "def", "get_pixbeam", "(", "self", ",", "ra", ",", "dec", ")", ":", "# If there is no psf image then just use the fits header (plus lat scaling) from the wcshelper", "if", "self", ".", "data", "is", "None", ":", "return", "self", ".", "wcshelper", ".", "get_pixbeam", "(", "ra", ",", "dec", ")", "# get the beam from the psf image data", "psf", "=", "self", ".", "get_psf_pix", "(", "ra", ",", "dec", ")", "if", "not", "np", ".", "all", "(", "np", ".", "isfinite", "(", "psf", ")", ")", ":", "log", ".", "warn", "(", "\"PSF requested, returned Null\"", ")", "return", "None", "return", "Beam", "(", "psf", "[", "0", "]", ",", "psf", "[", "1", "]", ",", "psf", "[", "2", "]", ")" ]
Get the psf at the location specified in pixel coordinates. The psf is also in pixel coordinates. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- a, b, pa : float The psf semi-major axis (pixels), semi-minor axis (pixels), and rotation angle (degrees). If a psf is defined then it is the psf that is returned, otherwise the image restoring beam is returned.
[ "Get", "the", "psf", "at", "the", "location", "specified", "in", "pixel", "coordinates", ".", "The", "psf", "is", "also", "in", "pixel", "coordinates", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L552-L578
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
PSFHelper.get_beam
def get_beam(self, ra, dec): """ Get the psf as a :class:`AegeanTools.fits_image.Beam` object. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- beam : :class:`AegeanTools.fits_image.Beam` The psf at the given location. """ if self.data is None: return self.wcshelper.beam else: psf = self.get_psf_sky(ra, dec) if not all(np.isfinite(psf)): return None return Beam(psf[0], psf[1], psf[2])
python
def get_beam(self, ra, dec): """ Get the psf as a :class:`AegeanTools.fits_image.Beam` object. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- beam : :class:`AegeanTools.fits_image.Beam` The psf at the given location. """ if self.data is None: return self.wcshelper.beam else: psf = self.get_psf_sky(ra, dec) if not all(np.isfinite(psf)): return None return Beam(psf[0], psf[1], psf[2])
[ "def", "get_beam", "(", "self", ",", "ra", ",", "dec", ")", ":", "if", "self", ".", "data", "is", "None", ":", "return", "self", ".", "wcshelper", ".", "beam", "else", ":", "psf", "=", "self", ".", "get_psf_sky", "(", "ra", ",", "dec", ")", "if", "not", "all", "(", "np", ".", "isfinite", "(", "psf", ")", ")", ":", "return", "None", "return", "Beam", "(", "psf", "[", "0", "]", ",", "psf", "[", "1", "]", ",", "psf", "[", "2", "]", ")" ]
Get the psf as a :class:`AegeanTools.fits_image.Beam` object. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- beam : :class:`AegeanTools.fits_image.Beam` The psf at the given location.
[ "Get", "the", "psf", "as", "a", ":", "class", ":", "AegeanTools", ".", "fits_image", ".", "Beam", "object", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L580-L600
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
PSFHelper.get_beamarea_pix
def get_beamarea_pix(self, ra, dec): """ Calculate the area of the beam in square pixels. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- area : float The area of the beam in square pixels. """ beam = self.get_pixbeam(ra, dec) if beam is None: return 0 return beam.a * beam.b * np.pi
python
def get_beamarea_pix(self, ra, dec): """ Calculate the area of the beam in square pixels. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- area : float The area of the beam in square pixels. """ beam = self.get_pixbeam(ra, dec) if beam is None: return 0 return beam.a * beam.b * np.pi
[ "def", "get_beamarea_pix", "(", "self", ",", "ra", ",", "dec", ")", ":", "beam", "=", "self", ".", "get_pixbeam", "(", "ra", ",", "dec", ")", "if", "beam", "is", "None", ":", "return", "0", "return", "beam", ".", "a", "*", "beam", ".", "b", "*", "np", ".", "pi" ]
Calculate the area of the beam in square pixels. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- area : float The area of the beam in square pixels.
[ "Calculate", "the", "area", "of", "the", "beam", "in", "square", "pixels", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L602-L619
PaulHancock/Aegean
AegeanTools/wcs_helpers.py
PSFHelper.get_beamarea_deg2
def get_beamarea_deg2(self, ra, dec): """ Calculate the area of the beam in square degrees. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- area : float The area of the beam in square degrees. """ beam = self.get_beam(ra, dec) if beam is None: return 0 return beam.a * beam.b * np.pi
python
def get_beamarea_deg2(self, ra, dec): """ Calculate the area of the beam in square degrees. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- area : float The area of the beam in square degrees. """ beam = self.get_beam(ra, dec) if beam is None: return 0 return beam.a * beam.b * np.pi
[ "def", "get_beamarea_deg2", "(", "self", ",", "ra", ",", "dec", ")", ":", "beam", "=", "self", ".", "get_beam", "(", "ra", ",", "dec", ")", "if", "beam", "is", "None", ":", "return", "0", "return", "beam", ".", "a", "*", "beam", ".", "b", "*", "np", ".", "pi" ]
Calculate the area of the beam in square degrees. Parameters ---------- ra, dec : float The sky position (degrees). Returns ------- area : float The area of the beam in square degrees.
[ "Calculate", "the", "area", "of", "the", "beam", "in", "square", "degrees", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/wcs_helpers.py#L621-L639
PaulHancock/Aegean
AegeanTools/msq2.py
MarchingSquares.find_start_point
def find_start_point(self): """ Find the first location in our array that is not empty """ for i, row in enumerate(self.data): for j, _ in enumerate(row): if self.data[i, j] != 0: # or not np.isfinite(self.data[i,j]): return i, j
python
def find_start_point(self): """ Find the first location in our array that is not empty """ for i, row in enumerate(self.data): for j, _ in enumerate(row): if self.data[i, j] != 0: # or not np.isfinite(self.data[i,j]): return i, j
[ "def", "find_start_point", "(", "self", ")", ":", "for", "i", ",", "row", "in", "enumerate", "(", "self", ".", "data", ")", ":", "for", "j", ",", "_", "in", "enumerate", "(", "row", ")", ":", "if", "self", ".", "data", "[", "i", ",", "j", "]", "!=", "0", ":", "# or not np.isfinite(self.data[i,j]):", "return", "i", ",", "j" ]
Find the first location in our array that is not empty
[ "Find", "the", "first", "location", "in", "our", "array", "that", "is", "not", "empty" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/msq2.py#L36-L43
PaulHancock/Aegean
AegeanTools/msq2.py
MarchingSquares.step
def step(self, x, y): """ Move from the current location to the next Parameters ---------- x, y : int The current location """ up_left = self.solid(x - 1, y - 1) up_right = self.solid(x, y - 1) down_left = self.solid(x - 1, y) down_right = self.solid(x, y) state = 0 self.prev = self.next # which cells are filled? if up_left: state |= 1 if up_right: state |= 2 if down_left: state |= 4 if down_right: state |= 8 # what is the next step? if state in [1, 5, 13]: self.next = self.UP elif state in [2, 3, 7]: self.next = self.RIGHT elif state in [4, 12, 14]: self.next = self.LEFT elif state in [8, 10, 11]: self.next = self.DOWN elif state == 6: if self.prev == self.UP: self.next = self.LEFT else: self.next = self.RIGHT elif state == 9: if self.prev == self.RIGHT: self.next = self.UP else: self.next = self.DOWN else: self.next = self.NOWHERE return
python
def step(self, x, y): """ Move from the current location to the next Parameters ---------- x, y : int The current location """ up_left = self.solid(x - 1, y - 1) up_right = self.solid(x, y - 1) down_left = self.solid(x - 1, y) down_right = self.solid(x, y) state = 0 self.prev = self.next # which cells are filled? if up_left: state |= 1 if up_right: state |= 2 if down_left: state |= 4 if down_right: state |= 8 # what is the next step? if state in [1, 5, 13]: self.next = self.UP elif state in [2, 3, 7]: self.next = self.RIGHT elif state in [4, 12, 14]: self.next = self.LEFT elif state in [8, 10, 11]: self.next = self.DOWN elif state == 6: if self.prev == self.UP: self.next = self.LEFT else: self.next = self.RIGHT elif state == 9: if self.prev == self.RIGHT: self.next = self.UP else: self.next = self.DOWN else: self.next = self.NOWHERE return
[ "def", "step", "(", "self", ",", "x", ",", "y", ")", ":", "up_left", "=", "self", ".", "solid", "(", "x", "-", "1", ",", "y", "-", "1", ")", "up_right", "=", "self", ".", "solid", "(", "x", ",", "y", "-", "1", ")", "down_left", "=", "self", ".", "solid", "(", "x", "-", "1", ",", "y", ")", "down_right", "=", "self", ".", "solid", "(", "x", ",", "y", ")", "state", "=", "0", "self", ".", "prev", "=", "self", ".", "next", "# which cells are filled?", "if", "up_left", ":", "state", "|=", "1", "if", "up_right", ":", "state", "|=", "2", "if", "down_left", ":", "state", "|=", "4", "if", "down_right", ":", "state", "|=", "8", "# what is the next step?", "if", "state", "in", "[", "1", ",", "5", ",", "13", "]", ":", "self", ".", "next", "=", "self", ".", "UP", "elif", "state", "in", "[", "2", ",", "3", ",", "7", "]", ":", "self", ".", "next", "=", "self", ".", "RIGHT", "elif", "state", "in", "[", "4", ",", "12", ",", "14", "]", ":", "self", ".", "next", "=", "self", ".", "LEFT", "elif", "state", "in", "[", "8", ",", "10", ",", "11", "]", ":", "self", ".", "next", "=", "self", ".", "DOWN", "elif", "state", "==", "6", ":", "if", "self", ".", "prev", "==", "self", ".", "UP", ":", "self", ".", "next", "=", "self", ".", "LEFT", "else", ":", "self", ".", "next", "=", "self", ".", "RIGHT", "elif", "state", "==", "9", ":", "if", "self", ".", "prev", "==", "self", ".", "RIGHT", ":", "self", ".", "next", "=", "self", ".", "UP", "else", ":", "self", ".", "next", "=", "self", ".", "DOWN", "else", ":", "self", ".", "next", "=", "self", ".", "NOWHERE", "return" ]
Move from the current location to the next Parameters ---------- x, y : int The current location
[ "Move", "from", "the", "current", "location", "to", "the", "next" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/msq2.py#L45-L92
PaulHancock/Aegean
AegeanTools/msq2.py
MarchingSquares.solid
def solid(self, x, y): """ Determine whether the pixel x,y is nonzero Parameters ---------- x, y : int The pixel of interest. Returns ------- solid : bool True if the pixel is not zero. """ if not(0 <= x < self.xsize) or not(0 <= y < self.ysize): return False if self.data[x, y] == 0: return False return True
python
def solid(self, x, y): """ Determine whether the pixel x,y is nonzero Parameters ---------- x, y : int The pixel of interest. Returns ------- solid : bool True if the pixel is not zero. """ if not(0 <= x < self.xsize) or not(0 <= y < self.ysize): return False if self.data[x, y] == 0: return False return True
[ "def", "solid", "(", "self", ",", "x", ",", "y", ")", ":", "if", "not", "(", "0", "<=", "x", "<", "self", ".", "xsize", ")", "or", "not", "(", "0", "<=", "y", "<", "self", ".", "ysize", ")", ":", "return", "False", "if", "self", ".", "data", "[", "x", ",", "y", "]", "==", "0", ":", "return", "False", "return", "True" ]
Determine whether the pixel x,y is nonzero Parameters ---------- x, y : int The pixel of interest. Returns ------- solid : bool True if the pixel is not zero.
[ "Determine", "whether", "the", "pixel", "x", "y", "is", "nonzero" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/msq2.py#L94-L112
PaulHancock/Aegean
AegeanTools/msq2.py
MarchingSquares.walk_perimeter
def walk_perimeter(self, startx, starty): """ Starting at a point on the perimeter of a region, 'walk' the perimeter to return to the starting point. Record the path taken. Parameters ---------- startx, starty : int The starting location. Assumed to be on the perimeter of a region. Returns ------- perimeter : list A list of pixel coordinates [ [x1,y1], ...] that constitute the perimeter of the region. """ # checks startx = max(startx, 0) startx = min(startx, self.xsize) starty = max(starty, 0) starty = min(starty, self.ysize) points = [] x, y = startx, starty while True: self.step(x, y) if 0 <= x <= self.xsize and 0 <= y <= self.ysize: points.append((x, y)) if self.next == self.UP: y -= 1 elif self.next == self.LEFT: x -= 1 elif self.next == self.DOWN: y += 1 elif self.next == self.RIGHT: x += 1 # stop if we meet some kind of error elif self.next == self.NOWHERE: break # stop when we return to the starting location if x == startx and y == starty: break return points
python
def walk_perimeter(self, startx, starty): """ Starting at a point on the perimeter of a region, 'walk' the perimeter to return to the starting point. Record the path taken. Parameters ---------- startx, starty : int The starting location. Assumed to be on the perimeter of a region. Returns ------- perimeter : list A list of pixel coordinates [ [x1,y1], ...] that constitute the perimeter of the region. """ # checks startx = max(startx, 0) startx = min(startx, self.xsize) starty = max(starty, 0) starty = min(starty, self.ysize) points = [] x, y = startx, starty while True: self.step(x, y) if 0 <= x <= self.xsize and 0 <= y <= self.ysize: points.append((x, y)) if self.next == self.UP: y -= 1 elif self.next == self.LEFT: x -= 1 elif self.next == self.DOWN: y += 1 elif self.next == self.RIGHT: x += 1 # stop if we meet some kind of error elif self.next == self.NOWHERE: break # stop when we return to the starting location if x == startx and y == starty: break return points
[ "def", "walk_perimeter", "(", "self", ",", "startx", ",", "starty", ")", ":", "# checks", "startx", "=", "max", "(", "startx", ",", "0", ")", "startx", "=", "min", "(", "startx", ",", "self", ".", "xsize", ")", "starty", "=", "max", "(", "starty", ",", "0", ")", "starty", "=", "min", "(", "starty", ",", "self", ".", "ysize", ")", "points", "=", "[", "]", "x", ",", "y", "=", "startx", ",", "starty", "while", "True", ":", "self", ".", "step", "(", "x", ",", "y", ")", "if", "0", "<=", "x", "<=", "self", ".", "xsize", "and", "0", "<=", "y", "<=", "self", ".", "ysize", ":", "points", ".", "append", "(", "(", "x", ",", "y", ")", ")", "if", "self", ".", "next", "==", "self", ".", "UP", ":", "y", "-=", "1", "elif", "self", ".", "next", "==", "self", ".", "LEFT", ":", "x", "-=", "1", "elif", "self", ".", "next", "==", "self", ".", "DOWN", ":", "y", "+=", "1", "elif", "self", ".", "next", "==", "self", ".", "RIGHT", ":", "x", "+=", "1", "# stop if we meet some kind of error", "elif", "self", ".", "next", "==", "self", ".", "NOWHERE", ":", "break", "# stop when we return to the starting location", "if", "x", "==", "startx", "and", "y", "==", "starty", ":", "break", "return", "points" ]
Starting at a point on the perimeter of a region, 'walk' the perimeter to return to the starting point. Record the path taken. Parameters ---------- startx, starty : int The starting location. Assumed to be on the perimeter of a region. Returns ------- perimeter : list A list of pixel coordinates [ [x1,y1], ...] that constitute the perimeter of the region.
[ "Starting", "at", "a", "point", "on", "the", "perimeter", "of", "a", "region", "walk", "the", "perimeter", "to", "return", "to", "the", "starting", "point", ".", "Record", "the", "path", "taken", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/msq2.py#L114-L157
PaulHancock/Aegean
AegeanTools/msq2.py
MarchingSquares.do_march
def do_march(self): """ March about and trace the outline of our object Returns ------- perimeter : list The pixels on the perimeter of the region [[x1, y1], ...] """ x, y = self.find_start_point() perimeter = self.walk_perimeter(x, y) return perimeter
python
def do_march(self): """ March about and trace the outline of our object Returns ------- perimeter : list The pixels on the perimeter of the region [[x1, y1], ...] """ x, y = self.find_start_point() perimeter = self.walk_perimeter(x, y) return perimeter
[ "def", "do_march", "(", "self", ")", ":", "x", ",", "y", "=", "self", ".", "find_start_point", "(", ")", "perimeter", "=", "self", ".", "walk_perimeter", "(", "x", ",", "y", ")", "return", "perimeter" ]
March about and trace the outline of our object Returns ------- perimeter : list The pixels on the perimeter of the region [[x1, y1], ...]
[ "March", "about", "and", "trace", "the", "outline", "of", "our", "object" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/msq2.py#L159-L170
PaulHancock/Aegean
AegeanTools/msq2.py
MarchingSquares._blank_within
def _blank_within(self, perimeter): """ Blank all the pixels within the given perimeter. Parameters ---------- perimeter : list The perimeter of the region. """ # Method: # scan around the perimeter filling 'up' from each pixel # stopping when we reach the other boundary for p in perimeter: # if we are on the edge of the data then there is nothing to fill if p[0] >= self.data.shape[0] or p[1] >= self.data.shape[1]: continue # if this pixel is blank then don't fill if self.data[p] == 0: continue # blank this pixel self.data[p] = 0 # blank until we reach the other perimeter for i in range(p[1]+1, self.data.shape[1]): q = p[0], i # stop when we reach another part of the perimeter if q in perimeter: break # fill everything in between, even inclusions self.data[q] = 0 return
python
def _blank_within(self, perimeter): """ Blank all the pixels within the given perimeter. Parameters ---------- perimeter : list The perimeter of the region. """ # Method: # scan around the perimeter filling 'up' from each pixel # stopping when we reach the other boundary for p in perimeter: # if we are on the edge of the data then there is nothing to fill if p[0] >= self.data.shape[0] or p[1] >= self.data.shape[1]: continue # if this pixel is blank then don't fill if self.data[p] == 0: continue # blank this pixel self.data[p] = 0 # blank until we reach the other perimeter for i in range(p[1]+1, self.data.shape[1]): q = p[0], i # stop when we reach another part of the perimeter if q in perimeter: break # fill everything in between, even inclusions self.data[q] = 0 return
[ "def", "_blank_within", "(", "self", ",", "perimeter", ")", ":", "# Method:", "# scan around the perimeter filling 'up' from each pixel", "# stopping when we reach the other boundary", "for", "p", "in", "perimeter", ":", "# if we are on the edge of the data then there is nothing to fill", "if", "p", "[", "0", "]", ">=", "self", ".", "data", ".", "shape", "[", "0", "]", "or", "p", "[", "1", "]", ">=", "self", ".", "data", ".", "shape", "[", "1", "]", ":", "continue", "# if this pixel is blank then don't fill", "if", "self", ".", "data", "[", "p", "]", "==", "0", ":", "continue", "# blank this pixel", "self", ".", "data", "[", "p", "]", "=", "0", "# blank until we reach the other perimeter", "for", "i", "in", "range", "(", "p", "[", "1", "]", "+", "1", ",", "self", ".", "data", ".", "shape", "[", "1", "]", ")", ":", "q", "=", "p", "[", "0", "]", ",", "i", "# stop when we reach another part of the perimeter", "if", "q", "in", "perimeter", ":", "break", "# fill everything in between, even inclusions", "self", ".", "data", "[", "q", "]", "=", "0", "return" ]
Blank all the pixels within the given perimeter. Parameters ---------- perimeter : list The perimeter of the region.
[ "Blank", "all", "the", "pixels", "within", "the", "given", "perimeter", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/msq2.py#L172-L205
PaulHancock/Aegean
AegeanTools/msq2.py
MarchingSquares.do_march_all
def do_march_all(self): """ Recursive march in the case that we have a fragmented shape. Returns ------- perimeters : [perimeter1, ...] The perimeters of all the regions in the image. See Also -------- :func:`AegeanTools.msq2.MarchingSquares.do_march` """ # copy the data since we are going to be modifying it data_copy = copy(self.data) # iterate through finding an island, creating a perimeter, # and then blanking the island perimeters = [] p = self.find_start_point() while p is not None: x, y = p perim = self.walk_perimeter(x, y) perimeters.append(perim) self._blank_within(perim) p = self.find_start_point() # restore the data self.data = data_copy return perimeters
python
def do_march_all(self): """ Recursive march in the case that we have a fragmented shape. Returns ------- perimeters : [perimeter1, ...] The perimeters of all the regions in the image. See Also -------- :func:`AegeanTools.msq2.MarchingSquares.do_march` """ # copy the data since we are going to be modifying it data_copy = copy(self.data) # iterate through finding an island, creating a perimeter, # and then blanking the island perimeters = [] p = self.find_start_point() while p is not None: x, y = p perim = self.walk_perimeter(x, y) perimeters.append(perim) self._blank_within(perim) p = self.find_start_point() # restore the data self.data = data_copy return perimeters
[ "def", "do_march_all", "(", "self", ")", ":", "# copy the data since we are going to be modifying it", "data_copy", "=", "copy", "(", "self", ".", "data", ")", "# iterate through finding an island, creating a perimeter,", "# and then blanking the island", "perimeters", "=", "[", "]", "p", "=", "self", ".", "find_start_point", "(", ")", "while", "p", "is", "not", "None", ":", "x", ",", "y", "=", "p", "perim", "=", "self", ".", "walk_perimeter", "(", "x", ",", "y", ")", "perimeters", ".", "append", "(", "perim", ")", "self", ".", "_blank_within", "(", "perim", ")", "p", "=", "self", ".", "find_start_point", "(", ")", "# restore the data", "self", ".", "data", "=", "data_copy", "return", "perimeters" ]
Recursive march in the case that we have a fragmented shape. Returns ------- perimeters : [perimeter1, ...] The perimeters of all the regions in the image. See Also -------- :func:`AegeanTools.msq2.MarchingSquares.do_march`
[ "Recursive", "march", "in", "the", "case", "that", "we", "have", "a", "fragmented", "shape", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/msq2.py#L207-L236
PaulHancock/Aegean
AegeanTools/fitting.py
elliptical_gaussian
def elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta): """ Generate a model 2d Gaussian with the given parameters. Evaluate this model at the given locations x,y. Parameters ---------- x, y : numeric or array-like locations at which to evaluate the gaussian amp : float Peak value. xo, yo : float Center of the gaussian. sx, sy : float major/minor axes in sigmas theta : float position angle (degrees) CCW from x-axis Returns ------- data : numeric or array-like Gaussian function evaluated at the x,y locations. """ try: sint, cost = math.sin(np.radians(theta)), math.cos(np.radians(theta)) except ValueError as e: if 'math domain error' in e.args: sint, cost = np.nan, np.nan xxo = x - xo yyo = y - yo exp = (xxo * cost + yyo * sint) ** 2 / sx ** 2 \ + (xxo * sint - yyo * cost) ** 2 / sy ** 2 exp *= -1. / 2 return amp * np.exp(exp)
python
def elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta): """ Generate a model 2d Gaussian with the given parameters. Evaluate this model at the given locations x,y. Parameters ---------- x, y : numeric or array-like locations at which to evaluate the gaussian amp : float Peak value. xo, yo : float Center of the gaussian. sx, sy : float major/minor axes in sigmas theta : float position angle (degrees) CCW from x-axis Returns ------- data : numeric or array-like Gaussian function evaluated at the x,y locations. """ try: sint, cost = math.sin(np.radians(theta)), math.cos(np.radians(theta)) except ValueError as e: if 'math domain error' in e.args: sint, cost = np.nan, np.nan xxo = x - xo yyo = y - yo exp = (xxo * cost + yyo * sint) ** 2 / sx ** 2 \ + (xxo * sint - yyo * cost) ** 2 / sy ** 2 exp *= -1. / 2 return amp * np.exp(exp)
[ "def", "elliptical_gaussian", "(", "x", ",", "y", ",", "amp", ",", "xo", ",", "yo", ",", "sx", ",", "sy", ",", "theta", ")", ":", "try", ":", "sint", ",", "cost", "=", "math", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "math", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", "except", "ValueError", "as", "e", ":", "if", "'math domain error'", "in", "e", ".", "args", ":", "sint", ",", "cost", "=", "np", ".", "nan", ",", "np", ".", "nan", "xxo", "=", "x", "-", "xo", "yyo", "=", "y", "-", "yo", "exp", "=", "(", "xxo", "*", "cost", "+", "yyo", "*", "sint", ")", "**", "2", "/", "sx", "**", "2", "+", "(", "xxo", "*", "sint", "-", "yyo", "*", "cost", ")", "**", "2", "/", "sy", "**", "2", "exp", "*=", "-", "1.", "/", "2", "return", "amp", "*", "np", ".", "exp", "(", "exp", ")" ]
Generate a model 2d Gaussian with the given parameters. Evaluate this model at the given locations x,y. Parameters ---------- x, y : numeric or array-like locations at which to evaluate the gaussian amp : float Peak value. xo, yo : float Center of the gaussian. sx, sy : float major/minor axes in sigmas theta : float position angle (degrees) CCW from x-axis Returns ------- data : numeric or array-like Gaussian function evaluated at the x,y locations.
[ "Generate", "a", "model", "2d", "Gaussian", "with", "the", "given", "parameters", ".", "Evaluate", "this", "model", "at", "the", "given", "locations", "x", "y", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L30-L63
PaulHancock/Aegean
AegeanTools/fitting.py
Cmatrix
def Cmatrix(x, y, sx, sy, theta): """ Construct a correlation matrix corresponding to the data. The matrix assumes a gaussian correlation function. Parameters ---------- x, y : array-like locations at which to evaluate the correlation matirx sx, sy : float major/minor axes of the gaussian correlation function (sigmas) theta : float position angle of the gaussian correlation function (degrees) Returns ------- data : array-like The C-matrix. """ C = np.vstack([elliptical_gaussian(x, y, 1, i, j, sx, sy, theta) for i, j in zip(x, y)]) return C
python
def Cmatrix(x, y, sx, sy, theta): """ Construct a correlation matrix corresponding to the data. The matrix assumes a gaussian correlation function. Parameters ---------- x, y : array-like locations at which to evaluate the correlation matirx sx, sy : float major/minor axes of the gaussian correlation function (sigmas) theta : float position angle of the gaussian correlation function (degrees) Returns ------- data : array-like The C-matrix. """ C = np.vstack([elliptical_gaussian(x, y, 1, i, j, sx, sy, theta) for i, j in zip(x, y)]) return C
[ "def", "Cmatrix", "(", "x", ",", "y", ",", "sx", ",", "sy", ",", "theta", ")", ":", "C", "=", "np", ".", "vstack", "(", "[", "elliptical_gaussian", "(", "x", ",", "y", ",", "1", ",", "i", ",", "j", ",", "sx", ",", "sy", ",", "theta", ")", "for", "i", ",", "j", "in", "zip", "(", "x", ",", "y", ")", "]", ")", "return", "C" ]
Construct a correlation matrix corresponding to the data. The matrix assumes a gaussian correlation function. Parameters ---------- x, y : array-like locations at which to evaluate the correlation matirx sx, sy : float major/minor axes of the gaussian correlation function (sigmas) theta : float position angle of the gaussian correlation function (degrees) Returns ------- data : array-like The C-matrix.
[ "Construct", "a", "correlation", "matrix", "corresponding", "to", "the", "data", ".", "The", "matrix", "assumes", "a", "gaussian", "correlation", "function", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L66-L87
PaulHancock/Aegean
AegeanTools/fitting.py
Bmatrix
def Bmatrix(C): """ Calculate a matrix which is effectively the square root of the correlation matrix C Parameters ---------- C : 2d array A covariance matrix Returns ------- B : 2d array A matrix B such the B.dot(B') = inv(C) """ # this version of finding the square root of the inverse matrix # suggested by Cath Trott L, Q = eigh(C) # force very small eigenvalues to have some minimum non-zero value minL = 1e-9*L[-1] L[L < minL] = minL S = np.diag(1 / np.sqrt(L)) B = Q.dot(S) return B
python
def Bmatrix(C): """ Calculate a matrix which is effectively the square root of the correlation matrix C Parameters ---------- C : 2d array A covariance matrix Returns ------- B : 2d array A matrix B such the B.dot(B') = inv(C) """ # this version of finding the square root of the inverse matrix # suggested by Cath Trott L, Q = eigh(C) # force very small eigenvalues to have some minimum non-zero value minL = 1e-9*L[-1] L[L < minL] = minL S = np.diag(1 / np.sqrt(L)) B = Q.dot(S) return B
[ "def", "Bmatrix", "(", "C", ")", ":", "# this version of finding the square root of the inverse matrix", "# suggested by Cath Trott", "L", ",", "Q", "=", "eigh", "(", "C", ")", "# force very small eigenvalues to have some minimum non-zero value", "minL", "=", "1e-9", "*", "L", "[", "-", "1", "]", "L", "[", "L", "<", "minL", "]", "=", "minL", "S", "=", "np", ".", "diag", "(", "1", "/", "np", ".", "sqrt", "(", "L", ")", ")", "B", "=", "Q", ".", "dot", "(", "S", ")", "return", "B" ]
Calculate a matrix which is effectively the square root of the correlation matrix C Parameters ---------- C : 2d array A covariance matrix Returns ------- B : 2d array A matrix B such the B.dot(B') = inv(C)
[ "Calculate", "a", "matrix", "which", "is", "effectively", "the", "square", "root", "of", "the", "correlation", "matrix", "C" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L90-L113
PaulHancock/Aegean
AegeanTools/fitting.py
jacobian
def jacobian(pars, x, y): """ Analytical calculation of the Jacobian for an elliptical gaussian Will work for a model that contains multiple Gaussians, and for which some components are not being fit (don't vary). Parameters ---------- pars : lmfit.Model The model parameters x, y : list Locations at which the jacobian is being evaluated Returns ------- j : 2d array The Jacobian. See Also -------- :func:`AegeanTools.fitting.emp_jacobian` """ matrix = [] for i in range(pars['components'].value): prefix = "c{0}_".format(i) amp = pars[prefix + 'amp'].value xo = pars[prefix + 'xo'].value yo = pars[prefix + 'yo'].value sx = pars[prefix + 'sx'].value sy = pars[prefix + 'sy'].value theta = pars[prefix + 'theta'].value # The derivative with respect to component i doesn't depend on any other components # thus the model should not contain the other components model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) # precompute for speed sint = np.sin(np.radians(theta)) cost = np.cos(np.radians(theta)) xxo = x - xo yyo = y - yo xcos, ycos = xxo * cost, yyo * cost xsin, ysin = xxo * sint, yyo * sint if pars[prefix + 'amp'].vary: dmds = model / amp matrix.append(dmds) if pars[prefix + 'xo'].vary: dmdxo = cost * (xcos + ysin) / sx ** 2 + sint * (xsin - ycos) / sy ** 2 dmdxo *= model matrix.append(dmdxo) if pars[prefix + 'yo'].vary: dmdyo = sint * (xcos + ysin) / sx ** 2 - cost * (xsin - ycos) / sy ** 2 dmdyo *= model matrix.append(dmdyo) if pars[prefix + 'sx'].vary: dmdsx = model / sx ** 3 * (xcos + ysin) ** 2 matrix.append(dmdsx) if pars[prefix + 'sy'].vary: dmdsy = model / sy ** 3 * (xsin - ycos) ** 2 matrix.append(dmdsy) if pars[prefix + 'theta'].vary: dmdtheta = model * (sy ** 2 - sx ** 2) * (xsin - ycos) * (xcos + ysin) / sx ** 2 / sy ** 2 matrix.append(dmdtheta) return np.array(matrix)
python
def jacobian(pars, x, y): """ Analytical calculation of the Jacobian for an elliptical gaussian Will work for a model that contains multiple Gaussians, and for which some components are not being fit (don't vary). Parameters ---------- pars : lmfit.Model The model parameters x, y : list Locations at which the jacobian is being evaluated Returns ------- j : 2d array The Jacobian. See Also -------- :func:`AegeanTools.fitting.emp_jacobian` """ matrix = [] for i in range(pars['components'].value): prefix = "c{0}_".format(i) amp = pars[prefix + 'amp'].value xo = pars[prefix + 'xo'].value yo = pars[prefix + 'yo'].value sx = pars[prefix + 'sx'].value sy = pars[prefix + 'sy'].value theta = pars[prefix + 'theta'].value # The derivative with respect to component i doesn't depend on any other components # thus the model should not contain the other components model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) # precompute for speed sint = np.sin(np.radians(theta)) cost = np.cos(np.radians(theta)) xxo = x - xo yyo = y - yo xcos, ycos = xxo * cost, yyo * cost xsin, ysin = xxo * sint, yyo * sint if pars[prefix + 'amp'].vary: dmds = model / amp matrix.append(dmds) if pars[prefix + 'xo'].vary: dmdxo = cost * (xcos + ysin) / sx ** 2 + sint * (xsin - ycos) / sy ** 2 dmdxo *= model matrix.append(dmdxo) if pars[prefix + 'yo'].vary: dmdyo = sint * (xcos + ysin) / sx ** 2 - cost * (xsin - ycos) / sy ** 2 dmdyo *= model matrix.append(dmdyo) if pars[prefix + 'sx'].vary: dmdsx = model / sx ** 3 * (xcos + ysin) ** 2 matrix.append(dmdsx) if pars[prefix + 'sy'].vary: dmdsy = model / sy ** 3 * (xsin - ycos) ** 2 matrix.append(dmdsy) if pars[prefix + 'theta'].vary: dmdtheta = model * (sy ** 2 - sx ** 2) * (xsin - ycos) * (xcos + ysin) / sx ** 2 / sy ** 2 matrix.append(dmdtheta) return np.array(matrix)
[ "def", "jacobian", "(", "pars", ",", "x", ",", "y", ")", ":", "matrix", "=", "[", "]", "for", "i", "in", "range", "(", "pars", "[", "'components'", "]", ".", "value", ")", ":", "prefix", "=", "\"c{0}_\"", ".", "format", "(", "i", ")", "amp", "=", "pars", "[", "prefix", "+", "'amp'", "]", ".", "value", "xo", "=", "pars", "[", "prefix", "+", "'xo'", "]", ".", "value", "yo", "=", "pars", "[", "prefix", "+", "'yo'", "]", ".", "value", "sx", "=", "pars", "[", "prefix", "+", "'sx'", "]", ".", "value", "sy", "=", "pars", "[", "prefix", "+", "'sy'", "]", ".", "value", "theta", "=", "pars", "[", "prefix", "+", "'theta'", "]", ".", "value", "# The derivative with respect to component i doesn't depend on any other components", "# thus the model should not contain the other components", "model", "=", "elliptical_gaussian", "(", "x", ",", "y", ",", "amp", ",", "xo", ",", "yo", ",", "sx", ",", "sy", ",", "theta", ")", "# precompute for speed", "sint", "=", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "cost", "=", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", "xxo", "=", "x", "-", "xo", "yyo", "=", "y", "-", "yo", "xcos", ",", "ycos", "=", "xxo", "*", "cost", ",", "yyo", "*", "cost", "xsin", ",", "ysin", "=", "xxo", "*", "sint", ",", "yyo", "*", "sint", "if", "pars", "[", "prefix", "+", "'amp'", "]", ".", "vary", ":", "dmds", "=", "model", "/", "amp", "matrix", ".", "append", "(", "dmds", ")", "if", "pars", "[", "prefix", "+", "'xo'", "]", ".", "vary", ":", "dmdxo", "=", "cost", "*", "(", "xcos", "+", "ysin", ")", "/", "sx", "**", "2", "+", "sint", "*", "(", "xsin", "-", "ycos", ")", "/", "sy", "**", "2", "dmdxo", "*=", "model", "matrix", ".", "append", "(", "dmdxo", ")", "if", "pars", "[", "prefix", "+", "'yo'", "]", ".", "vary", ":", "dmdyo", "=", "sint", "*", "(", "xcos", "+", "ysin", ")", "/", "sx", "**", "2", "-", "cost", "*", "(", "xsin", "-", "ycos", ")", "/", "sy", "**", "2", "dmdyo", "*=", "model", "matrix", ".", "append", "(", "dmdyo", ")", "if", "pars", "[", "prefix", "+", "'sx'", "]", ".", "vary", ":", "dmdsx", "=", "model", "/", "sx", "**", "3", "*", "(", "xcos", "+", "ysin", ")", "**", "2", "matrix", ".", "append", "(", "dmdsx", ")", "if", "pars", "[", "prefix", "+", "'sy'", "]", ".", "vary", ":", "dmdsy", "=", "model", "/", "sy", "**", "3", "*", "(", "xsin", "-", "ycos", ")", "**", "2", "matrix", ".", "append", "(", "dmdsy", ")", "if", "pars", "[", "prefix", "+", "'theta'", "]", ".", "vary", ":", "dmdtheta", "=", "model", "*", "(", "sy", "**", "2", "-", "sx", "**", "2", ")", "*", "(", "xsin", "-", "ycos", ")", "*", "(", "xcos", "+", "ysin", ")", "/", "sx", "**", "2", "/", "sy", "**", "2", "matrix", ".", "append", "(", "dmdtheta", ")", "return", "np", ".", "array", "(", "matrix", ")" ]
Analytical calculation of the Jacobian for an elliptical gaussian Will work for a model that contains multiple Gaussians, and for which some components are not being fit (don't vary). Parameters ---------- pars : lmfit.Model The model parameters x, y : list Locations at which the jacobian is being evaluated Returns ------- j : 2d array The Jacobian. See Also -------- :func:`AegeanTools.fitting.emp_jacobian`
[ "Analytical", "calculation", "of", "the", "Jacobian", "for", "an", "elliptical", "gaussian", "Will", "work", "for", "a", "model", "that", "contains", "multiple", "Gaussians", "and", "for", "which", "some", "components", "are", "not", "being", "fit", "(", "don", "t", "vary", ")", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L116-L188
PaulHancock/Aegean
AegeanTools/fitting.py
lmfit_jacobian
def lmfit_jacobian(pars, x, y, errs=None, B=None, emp=False): """ Wrapper around :func:`AegeanTools.fitting.jacobian` and :func:`AegeanTools.fitting.emp_jacobian` which gives the output in a format that is required for lmfit. Parameters ---------- pars : lmfit.Model The model parameters x, y : list Locations at which the jacobian is being evaluated errs : list a vector of 1\sigma errors (optional). Default = None B : 2d-array a B-matrix (optional) see :func:`AegeanTools.fitting.Bmatrix` emp : bool If true the use the empirical Jacobian, otherwise use the analytical one. Default = False. Returns ------- j : 2d-array A Jacobian. See Also -------- :func:`AegeanTools.fitting.Bmatrix` :func:`AegeanTools.fitting.jacobian` :func:`AegeanTools.fitting.emp_jacobian` """ if emp: matrix = emp_jacobian(pars, x, y) else: # calculate in the normal way matrix = jacobian(pars, x, y) # now munge this to be as expected for lmfit matrix = np.vstack(matrix) if errs is not None: matrix /= errs # matrix = matrix.dot(errs) if B is not None: matrix = matrix.dot(B) matrix = np.transpose(matrix) return matrix
python
def lmfit_jacobian(pars, x, y, errs=None, B=None, emp=False): """ Wrapper around :func:`AegeanTools.fitting.jacobian` and :func:`AegeanTools.fitting.emp_jacobian` which gives the output in a format that is required for lmfit. Parameters ---------- pars : lmfit.Model The model parameters x, y : list Locations at which the jacobian is being evaluated errs : list a vector of 1\sigma errors (optional). Default = None B : 2d-array a B-matrix (optional) see :func:`AegeanTools.fitting.Bmatrix` emp : bool If true the use the empirical Jacobian, otherwise use the analytical one. Default = False. Returns ------- j : 2d-array A Jacobian. See Also -------- :func:`AegeanTools.fitting.Bmatrix` :func:`AegeanTools.fitting.jacobian` :func:`AegeanTools.fitting.emp_jacobian` """ if emp: matrix = emp_jacobian(pars, x, y) else: # calculate in the normal way matrix = jacobian(pars, x, y) # now munge this to be as expected for lmfit matrix = np.vstack(matrix) if errs is not None: matrix /= errs # matrix = matrix.dot(errs) if B is not None: matrix = matrix.dot(B) matrix = np.transpose(matrix) return matrix
[ "def", "lmfit_jacobian", "(", "pars", ",", "x", ",", "y", ",", "errs", "=", "None", ",", "B", "=", "None", ",", "emp", "=", "False", ")", ":", "if", "emp", ":", "matrix", "=", "emp_jacobian", "(", "pars", ",", "x", ",", "y", ")", "else", ":", "# calculate in the normal way", "matrix", "=", "jacobian", "(", "pars", ",", "x", ",", "y", ")", "# now munge this to be as expected for lmfit", "matrix", "=", "np", ".", "vstack", "(", "matrix", ")", "if", "errs", "is", "not", "None", ":", "matrix", "/=", "errs", "# matrix = matrix.dot(errs)", "if", "B", "is", "not", "None", ":", "matrix", "=", "matrix", ".", "dot", "(", "B", ")", "matrix", "=", "np", ".", "transpose", "(", "matrix", ")", "return", "matrix" ]
Wrapper around :func:`AegeanTools.fitting.jacobian` and :func:`AegeanTools.fitting.emp_jacobian` which gives the output in a format that is required for lmfit. Parameters ---------- pars : lmfit.Model The model parameters x, y : list Locations at which the jacobian is being evaluated errs : list a vector of 1\sigma errors (optional). Default = None B : 2d-array a B-matrix (optional) see :func:`AegeanTools.fitting.Bmatrix` emp : bool If true the use the empirical Jacobian, otherwise use the analytical one. Default = False. Returns ------- j : 2d-array A Jacobian. See Also -------- :func:`AegeanTools.fitting.Bmatrix` :func:`AegeanTools.fitting.jacobian` :func:`AegeanTools.fitting.emp_jacobian`
[ "Wrapper", "around", ":", "func", ":", "AegeanTools", ".", "fitting", ".", "jacobian", "and", ":", "func", ":", "AegeanTools", ".", "fitting", ".", "emp_jacobian", "which", "gives", "the", "output", "in", "a", "format", "that", "is", "required", "for", "lmfit", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L228-L279
PaulHancock/Aegean
AegeanTools/fitting.py
hessian
def hessian(pars, x, y): """ Create a hessian matrix corresponding to the source model 'pars' Only parameters that vary will contribute to the hessian. Thus there will be a total of nvar x nvar entries, each of which is a len(x) x len(y) array. Parameters ---------- pars : lmfit.Parameters The model x, y : list locations at which to evaluate the Hessian Returns ------- h : np.array Hessian. Shape will be (nvar, nvar, len(x), len(y)) See Also -------- :func:`AegeanTools.fitting.emp_hessian` """ j = 0 # keeping track of the number of variable parameters # total number of variable parameters ntvar = np.sum([pars[k].vary for k in pars.keys() if k != 'components']) # construct an empty matrix of the correct size hmat = np.zeros((ntvar, ntvar, x.shape[0], x.shape[1])) npvar = 0 for i in range(pars['components'].value): prefix = "c{0}_".format(i) amp = pars[prefix + 'amp'].value xo = pars[prefix + 'xo'].value yo = pars[prefix + 'yo'].value sx = pars[prefix + 'sx'].value sy = pars[prefix + 'sy'].value theta = pars[prefix + 'theta'].value amp_var = pars[prefix + 'amp'].vary xo_var = pars[prefix + 'xo'].vary yo_var = pars[prefix + 'yo'].vary sx_var = pars[prefix + 'sx'].vary sy_var = pars[prefix + 'sy'].vary theta_var = pars[prefix + 'theta'].vary # precomputed for speed model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) sint = np.sin(np.radians(theta)) sin2t = np.sin(np.radians(2*theta)) cost = np.cos(np.radians(theta)) cos2t = np.cos(np.radians(2*theta)) sx2 = sx**2 sy2 = sy**2 xxo = x-xo yyo = y-yo xcos, ycos = xxo*cost, yyo*cost xsin, ysin = xxo*sint, yyo*sint if amp_var: k = npvar # second round of keeping track of variable params # H(amp,amp)/G = 0 hmat[j][k] = 0 k += 1 if xo_var: # H(amp,xo)/G = 1.0*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))/(amp*sx**2*sy**2) hmat[j][k] = (xsin - ycos)*sint/sy2 + (xcos + ysin)*cost/sx2 hmat[j][k] *= model k += 1 if yo_var: # H(amp,yo)/G = 1.0*(-sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t))/(amp*sx**2*sy**2) hmat[j][k] = -(xsin - ycos)*cost/sy2 + (xcos + ysin)*sint/sx2 hmat[j][k] *= model/amp k += 1 if sx_var: # H(amp,sx)/G = 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2/(amp*sx**3) hmat[j][k] = (xcos + ysin)**2 hmat[j][k] *= model/(amp*sx**3) k += 1 if sy_var: # H(amp,sy) = 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2/(amp*sy**3) hmat[j][k] = (xsin - ycos)**2 hmat[j][k] *= model/(amp*sy**3) k += 1 if theta_var: # H(amp,t) = (-1.0*sx**2 + sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(amp*sx**2*sy**2) hmat[j][k] = (xsin - ycos)*(xcos + ysin) hmat[j][k] *= sy2-sx2 hmat[j][k] *= model/(amp*sx2*sy2) # k += 1 j += 1 if xo_var: k = npvar if amp_var: # H(xo,amp)/G = H(amp,xo) hmat[j][k] = hmat[k][j] k += 1 # if xo_var: # H(xo,xo)/G = 1.0*(-sx**2*sy**2*(sx**2*sin(t)**2 + sy**2*cos(t)**2) + (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))**2)/(sx**4*sy**4) hmat[j][k] = -sx2*sy2*(sx2*sint**2 + sy2*cost**2) hmat[j][k] += (sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost)**2 hmat[j][k] *= model/ (sx2**2*sy2**2) k += 1 if yo_var: # H(xo,yo)/G = 1.0*(sx**2*sy**2*(sx**2 - sy**2)*sin(2*t)/2 - (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**4*sy**4) hmat[j][k] = sx2*sy2*(sx2 - sy2)*sin2t/2 hmat[j][k] -= (sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost)*(sx2*(xsin -ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] *= model / (sx**4*sy**4) k += 1 if sx_var: # H(xo,sx) = ((x - xo)*cos(t) + (y - yo)*sin(t))*(-2.0*sx**2*sy**2*cos(t) + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx**5*sy**2) hmat[j][k] = (xcos + ysin) hmat[j][k] *= -2*sx2*sy2*cost + (xcos + ysin)*(sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost) hmat[j][k] *= model / (sx**5*sy2) k += 1 if sy_var: # H(xo,sy) = ((x - xo)*sin(t) + (-y + yo)*cos(t))*(-2.0*sx**2*sy**2*sin(t) + 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx2*sy**5) hmat[j][k] = (xsin - ycos) hmat[j][k] *= -2*sx2*sy2*sint + (xsin - ycos)*(sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost) hmat[j][k] *= model/(sx2*sy**5) k += 1 if theta_var: # H(xo,t) = 1.0*(sx**2*sy**2*(sx**2 - sy**2)*(x*sin(2*t) - xo*sin(2*t) - y*cos(2*t) + yo*cos(2*t)) + (-sx**2 + 1.0*sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx**4*sy**4) # second part hmat[j][k] = (sy2-sx2)*(xsin - ycos)*(xcos + ysin) hmat[j][k] *= sx2*(xsin -ycos)*sint + sy2*(xcos + ysin)*cost # first part hmat[j][k] += sx2*sy2*(sx2 - sy2)*(xxo*sin2t -yyo*cos2t) hmat[j][k] *= model/(sx**4*sy**4) # k += 1 j += 1 if yo_var: k = npvar if amp_var: # H(yo,amp)/G = H(amp,yo) hmat[j][k] = hmat[0][2] k += 1 if xo_var: # H(yo,xo)/G = H(xo,yo)/G hmat[j][k] =hmat[1][2] k += 1 # if yo_var: # H(yo,yo)/G = 1.0*(-sx**2*sy**2*(sx**2*cos(t)**2 + sy**2*sin(t)**2) + (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t))**2)/(sx**4*sy**4) hmat[j][k] = (sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint)**2 / (sx2**2*sy2**2) hmat[j][k] -= cost**2/sy2 + sint**2/sx2 hmat[j][k] *= model k += 1 if sx_var: # H(yo,sx)/G = -((x - xo)*cos(t) + (y - yo)*sin(t))*(2.0*sx**2*sy**2*sin(t) + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) - (y - yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**5*sy**2) hmat[j][k] = -1*(xcos + ysin) hmat[j][k] *= 2*sx2*sy2*sint + (xcos + ysin)*(sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] *= model/(sx**5*sy2) k += 1 if sy_var: # H(yo,sy)/G = ((x - xo)*sin(t) + (-y + yo)*cos(t))*(2.0*sx**2*sy**2*cos(t) - 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**2*sy**5) hmat[j][k] = (xsin -ycos) hmat[j][k] *= 2*sx2*sy2*cost - (xsin - ycos)*(sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] *= model/(sx2*sy**5) k += 1 if theta_var: # H(yo,t)/G = 1.0*(sx**2*sy**2*(sx**2*(-x*cos(2*t) + xo*cos(2*t) - y*sin(2*t) + yo*sin(2*t)) + sy**2*(x*cos(2*t) - xo*cos(2*t) + y*sin(2*t) - yo*sin(2*t))) + (1.0*sx**2 - sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**4*sy**4) hmat[j][k] = (sx2 - sy2)*(xsin - ycos)*(xcos + ysin) hmat[j][k] *= (sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] += sx2*sy2*(sx2-sy2)*(-x*cos2t + xo*cos2t - y*sin2t + yo*sin2t) hmat[j][k] *= model/(sx**4*sy**4) # k += 1 j += 1 if sx_var: k = npvar if amp_var: # H(sx,amp)/G = H(amp,sx)/G hmat[j][k] = hmat[k][j] k += 1 if xo_var: # H(sx,xo)/G = H(xo,sx)/G hmat[j][k] = hmat[k][j] k += 1 if yo_var: # H(sx,yo)/G = H(yo/sx)/G hmat[j][k] = hmat[k][j] k += 1 # if sx_var: # H(sx,sx)/G = (-3.0*sx**2 + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2)*((x - xo)*cos(t) + (y - yo)*sin(t))**2/sx**6 hmat[j][k] = -3*sx2 + (xcos + ysin)**2 hmat[j][k] *= (xcos + ysin)**2 hmat[j][k] *= model/sx**6 k += 1 if sy_var: # H(sx,sy)/G = 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2*((x - xo)*cos(t) + (y - yo)*sin(t))**2/(sx**3*sy**3) hmat[j][k] = (xsin - ycos)**2 * (xcos + ysin)**2 hmat[j][k] *= model/(sx**3*sy**3) k += 1 if theta_var: # H(sx,t)/G = (-2.0*sx**2*sy**2 + 1.0*(-sx**2 + sy**2)*((x - xo)*cos(t) + (y - yo)*sin(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(sx**5*sy**2) hmat[j][k] = -2*sx2*sy2 + (sy2 - sx2)*(xcos + ysin)**2 hmat[j][k] *= (xsin -ycos)*(xcos + ysin) hmat[j][k] *= model/(sx**5*sy**2) # k += 1 j += 1 if sy_var: k = npvar if amp_var: # H(sy,amp)/G = H(amp,sy)/G hmat[j][k] = hmat[k][j] k += 1 if xo_var: # H(sy,xo)/G = H(xo,sy)/G hmat[j][k] = hmat[k][j] k += 1 if yo_var: # H(sy,yo)/G = H(yo/sy)/G hmat[j][k] = hmat[k][j] k += 1 if sx_var: # H(sy,sx)/G = H(sx,sy)/G hmat[j][k] = hmat[k][j] k += 1 # if sy_var: # H(sy,sy)/G = (-3.0*sy**2 + 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))**2/sy**6 hmat[j][k] = -3*sy2 + (xsin - ycos)**2 hmat[j][k] *= (xsin - ycos)**2 hmat[j][k] *= model/sy**6 k += 1 if theta_var: # H(sy,t)/G = (2.0*sx**2*sy**2 + 1.0*(-sx**2 + sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(sx**2*sy**5) hmat[j][k] = 2*sx2*sy2 + (sy2 - sx2)*(xsin - ycos)**2 hmat[j][k] *= (xsin - ycos)*(xcos + ysin) hmat[j][k] *= model/(sx**2*sy**5) # k += 1 j += 1 if theta_var: k = npvar if amp_var: # H(t,amp)/G = H(amp,t)/G hmat[j][k] = hmat[k][j] k += 1 if xo_var: # H(t,xo)/G = H(xo,t)/G hmat[j][k] = hmat[k][j] k += 1 if yo_var: # H(t,yo)/G = H(yo/t)/G hmat[j][k] = hmat[k][j] k += 1 if sx_var: # H(t,sx)/G = H(sx,t)/G hmat[j][k] = hmat[k][j] k += 1 if sy_var: # H(t,sy)/G = H(sy,t)/G hmat[j][k] = hmat[k][j] k += 1 # if theta_var: # H(t,t)/G = (sx**2*sy**2*(sx**2*(((x - xo)*sin(t) + (-y + yo)*cos(t))**2 - 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2) + sy**2*(-1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2 + ((x - xo)*cos(t) + (y - yo)*sin(t))**2)) + (sx**2 - 1.0*sy**2)**2*((x - xo)*sin(t) + (-y + yo)*cos(t))**2*((x - xo)*cos(t) + (y - yo)*sin(t))**2)/(sx**4*sy**4) hmat[j][k] = sx2*sy2 hmat[j][k] *= sx2*((xsin - ycos)**2 - (xcos + ysin)**2) + sy2*((xcos + ysin)**2 - (xsin - ycos)**2) hmat[j][k] += (sx2 - sy2)**2*(xsin - ycos)**2*(xcos + ysin)**2 hmat[j][k] *= model/(sx**4*sy**4) # j += 1 # save the number of variables for the next iteration # as we need to start our indexing at this number npvar = k return np.array(hmat)
python
def hessian(pars, x, y): """ Create a hessian matrix corresponding to the source model 'pars' Only parameters that vary will contribute to the hessian. Thus there will be a total of nvar x nvar entries, each of which is a len(x) x len(y) array. Parameters ---------- pars : lmfit.Parameters The model x, y : list locations at which to evaluate the Hessian Returns ------- h : np.array Hessian. Shape will be (nvar, nvar, len(x), len(y)) See Also -------- :func:`AegeanTools.fitting.emp_hessian` """ j = 0 # keeping track of the number of variable parameters # total number of variable parameters ntvar = np.sum([pars[k].vary for k in pars.keys() if k != 'components']) # construct an empty matrix of the correct size hmat = np.zeros((ntvar, ntvar, x.shape[0], x.shape[1])) npvar = 0 for i in range(pars['components'].value): prefix = "c{0}_".format(i) amp = pars[prefix + 'amp'].value xo = pars[prefix + 'xo'].value yo = pars[prefix + 'yo'].value sx = pars[prefix + 'sx'].value sy = pars[prefix + 'sy'].value theta = pars[prefix + 'theta'].value amp_var = pars[prefix + 'amp'].vary xo_var = pars[prefix + 'xo'].vary yo_var = pars[prefix + 'yo'].vary sx_var = pars[prefix + 'sx'].vary sy_var = pars[prefix + 'sy'].vary theta_var = pars[prefix + 'theta'].vary # precomputed for speed model = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) sint = np.sin(np.radians(theta)) sin2t = np.sin(np.radians(2*theta)) cost = np.cos(np.radians(theta)) cos2t = np.cos(np.radians(2*theta)) sx2 = sx**2 sy2 = sy**2 xxo = x-xo yyo = y-yo xcos, ycos = xxo*cost, yyo*cost xsin, ysin = xxo*sint, yyo*sint if amp_var: k = npvar # second round of keeping track of variable params # H(amp,amp)/G = 0 hmat[j][k] = 0 k += 1 if xo_var: # H(amp,xo)/G = 1.0*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))/(amp*sx**2*sy**2) hmat[j][k] = (xsin - ycos)*sint/sy2 + (xcos + ysin)*cost/sx2 hmat[j][k] *= model k += 1 if yo_var: # H(amp,yo)/G = 1.0*(-sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t))/(amp*sx**2*sy**2) hmat[j][k] = -(xsin - ycos)*cost/sy2 + (xcos + ysin)*sint/sx2 hmat[j][k] *= model/amp k += 1 if sx_var: # H(amp,sx)/G = 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2/(amp*sx**3) hmat[j][k] = (xcos + ysin)**2 hmat[j][k] *= model/(amp*sx**3) k += 1 if sy_var: # H(amp,sy) = 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2/(amp*sy**3) hmat[j][k] = (xsin - ycos)**2 hmat[j][k] *= model/(amp*sy**3) k += 1 if theta_var: # H(amp,t) = (-1.0*sx**2 + sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(amp*sx**2*sy**2) hmat[j][k] = (xsin - ycos)*(xcos + ysin) hmat[j][k] *= sy2-sx2 hmat[j][k] *= model/(amp*sx2*sy2) # k += 1 j += 1 if xo_var: k = npvar if amp_var: # H(xo,amp)/G = H(amp,xo) hmat[j][k] = hmat[k][j] k += 1 # if xo_var: # H(xo,xo)/G = 1.0*(-sx**2*sy**2*(sx**2*sin(t)**2 + sy**2*cos(t)**2) + (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))**2)/(sx**4*sy**4) hmat[j][k] = -sx2*sy2*(sx2*sint**2 + sy2*cost**2) hmat[j][k] += (sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost)**2 hmat[j][k] *= model/ (sx2**2*sy2**2) k += 1 if yo_var: # H(xo,yo)/G = 1.0*(sx**2*sy**2*(sx**2 - sy**2)*sin(2*t)/2 - (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**4*sy**4) hmat[j][k] = sx2*sy2*(sx2 - sy2)*sin2t/2 hmat[j][k] -= (sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost)*(sx2*(xsin -ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] *= model / (sx**4*sy**4) k += 1 if sx_var: # H(xo,sx) = ((x - xo)*cos(t) + (y - yo)*sin(t))*(-2.0*sx**2*sy**2*cos(t) + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx**5*sy**2) hmat[j][k] = (xcos + ysin) hmat[j][k] *= -2*sx2*sy2*cost + (xcos + ysin)*(sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost) hmat[j][k] *= model / (sx**5*sy2) k += 1 if sy_var: # H(xo,sy) = ((x - xo)*sin(t) + (-y + yo)*cos(t))*(-2.0*sx**2*sy**2*sin(t) + 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx2*sy**5) hmat[j][k] = (xsin - ycos) hmat[j][k] *= -2*sx2*sy2*sint + (xsin - ycos)*(sx2*(xsin - ycos)*sint + sy2*(xcos + ysin)*cost) hmat[j][k] *= model/(sx2*sy**5) k += 1 if theta_var: # H(xo,t) = 1.0*(sx**2*sy**2*(sx**2 - sy**2)*(x*sin(2*t) - xo*sin(2*t) - y*cos(2*t) + yo*cos(2*t)) + (-sx**2 + 1.0*sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx**4*sy**4) # second part hmat[j][k] = (sy2-sx2)*(xsin - ycos)*(xcos + ysin) hmat[j][k] *= sx2*(xsin -ycos)*sint + sy2*(xcos + ysin)*cost # first part hmat[j][k] += sx2*sy2*(sx2 - sy2)*(xxo*sin2t -yyo*cos2t) hmat[j][k] *= model/(sx**4*sy**4) # k += 1 j += 1 if yo_var: k = npvar if amp_var: # H(yo,amp)/G = H(amp,yo) hmat[j][k] = hmat[0][2] k += 1 if xo_var: # H(yo,xo)/G = H(xo,yo)/G hmat[j][k] =hmat[1][2] k += 1 # if yo_var: # H(yo,yo)/G = 1.0*(-sx**2*sy**2*(sx**2*cos(t)**2 + sy**2*sin(t)**2) + (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t))**2)/(sx**4*sy**4) hmat[j][k] = (sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint)**2 / (sx2**2*sy2**2) hmat[j][k] -= cost**2/sy2 + sint**2/sx2 hmat[j][k] *= model k += 1 if sx_var: # H(yo,sx)/G = -((x - xo)*cos(t) + (y - yo)*sin(t))*(2.0*sx**2*sy**2*sin(t) + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) - (y - yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**5*sy**2) hmat[j][k] = -1*(xcos + ysin) hmat[j][k] *= 2*sx2*sy2*sint + (xcos + ysin)*(sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] *= model/(sx**5*sy2) k += 1 if sy_var: # H(yo,sy)/G = ((x - xo)*sin(t) + (-y + yo)*cos(t))*(2.0*sx**2*sy**2*cos(t) - 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**2*sy**5) hmat[j][k] = (xsin -ycos) hmat[j][k] *= 2*sx2*sy2*cost - (xsin - ycos)*(sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] *= model/(sx2*sy**5) k += 1 if theta_var: # H(yo,t)/G = 1.0*(sx**2*sy**2*(sx**2*(-x*cos(2*t) + xo*cos(2*t) - y*sin(2*t) + yo*sin(2*t)) + sy**2*(x*cos(2*t) - xo*cos(2*t) + y*sin(2*t) - yo*sin(2*t))) + (1.0*sx**2 - sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**4*sy**4) hmat[j][k] = (sx2 - sy2)*(xsin - ycos)*(xcos + ysin) hmat[j][k] *= (sx2*(xsin - ycos)*cost - sy2*(xcos + ysin)*sint) hmat[j][k] += sx2*sy2*(sx2-sy2)*(-x*cos2t + xo*cos2t - y*sin2t + yo*sin2t) hmat[j][k] *= model/(sx**4*sy**4) # k += 1 j += 1 if sx_var: k = npvar if amp_var: # H(sx,amp)/G = H(amp,sx)/G hmat[j][k] = hmat[k][j] k += 1 if xo_var: # H(sx,xo)/G = H(xo,sx)/G hmat[j][k] = hmat[k][j] k += 1 if yo_var: # H(sx,yo)/G = H(yo/sx)/G hmat[j][k] = hmat[k][j] k += 1 # if sx_var: # H(sx,sx)/G = (-3.0*sx**2 + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2)*((x - xo)*cos(t) + (y - yo)*sin(t))**2/sx**6 hmat[j][k] = -3*sx2 + (xcos + ysin)**2 hmat[j][k] *= (xcos + ysin)**2 hmat[j][k] *= model/sx**6 k += 1 if sy_var: # H(sx,sy)/G = 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2*((x - xo)*cos(t) + (y - yo)*sin(t))**2/(sx**3*sy**3) hmat[j][k] = (xsin - ycos)**2 * (xcos + ysin)**2 hmat[j][k] *= model/(sx**3*sy**3) k += 1 if theta_var: # H(sx,t)/G = (-2.0*sx**2*sy**2 + 1.0*(-sx**2 + sy**2)*((x - xo)*cos(t) + (y - yo)*sin(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(sx**5*sy**2) hmat[j][k] = -2*sx2*sy2 + (sy2 - sx2)*(xcos + ysin)**2 hmat[j][k] *= (xsin -ycos)*(xcos + ysin) hmat[j][k] *= model/(sx**5*sy**2) # k += 1 j += 1 if sy_var: k = npvar if amp_var: # H(sy,amp)/G = H(amp,sy)/G hmat[j][k] = hmat[k][j] k += 1 if xo_var: # H(sy,xo)/G = H(xo,sy)/G hmat[j][k] = hmat[k][j] k += 1 if yo_var: # H(sy,yo)/G = H(yo/sy)/G hmat[j][k] = hmat[k][j] k += 1 if sx_var: # H(sy,sx)/G = H(sx,sy)/G hmat[j][k] = hmat[k][j] k += 1 # if sy_var: # H(sy,sy)/G = (-3.0*sy**2 + 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))**2/sy**6 hmat[j][k] = -3*sy2 + (xsin - ycos)**2 hmat[j][k] *= (xsin - ycos)**2 hmat[j][k] *= model/sy**6 k += 1 if theta_var: # H(sy,t)/G = (2.0*sx**2*sy**2 + 1.0*(-sx**2 + sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(sx**2*sy**5) hmat[j][k] = 2*sx2*sy2 + (sy2 - sx2)*(xsin - ycos)**2 hmat[j][k] *= (xsin - ycos)*(xcos + ysin) hmat[j][k] *= model/(sx**2*sy**5) # k += 1 j += 1 if theta_var: k = npvar if amp_var: # H(t,amp)/G = H(amp,t)/G hmat[j][k] = hmat[k][j] k += 1 if xo_var: # H(t,xo)/G = H(xo,t)/G hmat[j][k] = hmat[k][j] k += 1 if yo_var: # H(t,yo)/G = H(yo/t)/G hmat[j][k] = hmat[k][j] k += 1 if sx_var: # H(t,sx)/G = H(sx,t)/G hmat[j][k] = hmat[k][j] k += 1 if sy_var: # H(t,sy)/G = H(sy,t)/G hmat[j][k] = hmat[k][j] k += 1 # if theta_var: # H(t,t)/G = (sx**2*sy**2*(sx**2*(((x - xo)*sin(t) + (-y + yo)*cos(t))**2 - 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2) + sy**2*(-1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2 + ((x - xo)*cos(t) + (y - yo)*sin(t))**2)) + (sx**2 - 1.0*sy**2)**2*((x - xo)*sin(t) + (-y + yo)*cos(t))**2*((x - xo)*cos(t) + (y - yo)*sin(t))**2)/(sx**4*sy**4) hmat[j][k] = sx2*sy2 hmat[j][k] *= sx2*((xsin - ycos)**2 - (xcos + ysin)**2) + sy2*((xcos + ysin)**2 - (xsin - ycos)**2) hmat[j][k] += (sx2 - sy2)**2*(xsin - ycos)**2*(xcos + ysin)**2 hmat[j][k] *= model/(sx**4*sy**4) # j += 1 # save the number of variables for the next iteration # as we need to start our indexing at this number npvar = k return np.array(hmat)
[ "def", "hessian", "(", "pars", ",", "x", ",", "y", ")", ":", "j", "=", "0", "# keeping track of the number of variable parameters", "# total number of variable parameters", "ntvar", "=", "np", ".", "sum", "(", "[", "pars", "[", "k", "]", ".", "vary", "for", "k", "in", "pars", ".", "keys", "(", ")", "if", "k", "!=", "'components'", "]", ")", "# construct an empty matrix of the correct size", "hmat", "=", "np", ".", "zeros", "(", "(", "ntvar", ",", "ntvar", ",", "x", ".", "shape", "[", "0", "]", ",", "x", ".", "shape", "[", "1", "]", ")", ")", "npvar", "=", "0", "for", "i", "in", "range", "(", "pars", "[", "'components'", "]", ".", "value", ")", ":", "prefix", "=", "\"c{0}_\"", ".", "format", "(", "i", ")", "amp", "=", "pars", "[", "prefix", "+", "'amp'", "]", ".", "value", "xo", "=", "pars", "[", "prefix", "+", "'xo'", "]", ".", "value", "yo", "=", "pars", "[", "prefix", "+", "'yo'", "]", ".", "value", "sx", "=", "pars", "[", "prefix", "+", "'sx'", "]", ".", "value", "sy", "=", "pars", "[", "prefix", "+", "'sy'", "]", ".", "value", "theta", "=", "pars", "[", "prefix", "+", "'theta'", "]", ".", "value", "amp_var", "=", "pars", "[", "prefix", "+", "'amp'", "]", ".", "vary", "xo_var", "=", "pars", "[", "prefix", "+", "'xo'", "]", ".", "vary", "yo_var", "=", "pars", "[", "prefix", "+", "'yo'", "]", ".", "vary", "sx_var", "=", "pars", "[", "prefix", "+", "'sx'", "]", ".", "vary", "sy_var", "=", "pars", "[", "prefix", "+", "'sy'", "]", ".", "vary", "theta_var", "=", "pars", "[", "prefix", "+", "'theta'", "]", ".", "vary", "# precomputed for speed", "model", "=", "elliptical_gaussian", "(", "x", ",", "y", ",", "amp", ",", "xo", ",", "yo", ",", "sx", ",", "sy", ",", "theta", ")", "sint", "=", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "sin2t", "=", "np", ".", "sin", "(", "np", ".", "radians", "(", "2", "*", "theta", ")", ")", "cost", "=", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", "cos2t", "=", "np", ".", "cos", "(", "np", ".", "radians", "(", "2", "*", "theta", ")", ")", "sx2", "=", "sx", "**", "2", "sy2", "=", "sy", "**", "2", "xxo", "=", "x", "-", "xo", "yyo", "=", "y", "-", "yo", "xcos", ",", "ycos", "=", "xxo", "*", "cost", ",", "yyo", "*", "cost", "xsin", ",", "ysin", "=", "xxo", "*", "sint", ",", "yyo", "*", "sint", "if", "amp_var", ":", "k", "=", "npvar", "# second round of keeping track of variable params", "# H(amp,amp)/G = 0", "hmat", "[", "j", "]", "[", "k", "]", "=", "0", "k", "+=", "1", "if", "xo_var", ":", "# H(amp,xo)/G = 1.0*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))/(amp*sx**2*sy**2)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xsin", "-", "ycos", ")", "*", "sint", "/", "sy2", "+", "(", "xcos", "+", "ysin", ")", "*", "cost", "/", "sx2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "k", "+=", "1", "if", "yo_var", ":", "# H(amp,yo)/G = 1.0*(-sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t))/(amp*sx**2*sy**2)", "hmat", "[", "j", "]", "[", "k", "]", "=", "-", "(", "xsin", "-", "ycos", ")", "*", "cost", "/", "sy2", "+", "(", "xcos", "+", "ysin", ")", "*", "sint", "/", "sx2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "amp", "k", "+=", "1", "if", "sx_var", ":", "# H(amp,sx)/G = 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2/(amp*sx**3)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xcos", "+", "ysin", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "amp", "*", "sx", "**", "3", ")", "k", "+=", "1", "if", "sy_var", ":", "# H(amp,sy) = 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2/(amp*sy**3)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xsin", "-", "ycos", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "amp", "*", "sy", "**", "3", ")", "k", "+=", "1", "if", "theta_var", ":", "# H(amp,t) = (-1.0*sx**2 + sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(amp*sx**2*sy**2)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xsin", "-", "ycos", ")", "*", "(", "xcos", "+", "ysin", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "sy2", "-", "sx2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "amp", "*", "sx2", "*", "sy2", ")", "# k += 1", "j", "+=", "1", "if", "xo_var", ":", "k", "=", "npvar", "if", "amp_var", ":", "# H(xo,amp)/G = H(amp,xo)", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "# if xo_var:", "# H(xo,xo)/G = 1.0*(-sx**2*sy**2*(sx**2*sin(t)**2 + sy**2*cos(t)**2) + (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))**2)/(sx**4*sy**4)", "hmat", "[", "j", "]", "[", "k", "]", "=", "-", "sx2", "*", "sy2", "*", "(", "sx2", "*", "sint", "**", "2", "+", "sy2", "*", "cost", "**", "2", ")", "hmat", "[", "j", "]", "[", "k", "]", "+=", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "sint", "+", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "cost", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx2", "**", "2", "*", "sy2", "**", "2", ")", "k", "+=", "1", "if", "yo_var", ":", "# H(xo,yo)/G = 1.0*(sx**2*sy**2*(sx**2 - sy**2)*sin(2*t)/2 - (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**4*sy**4)", "hmat", "[", "j", "]", "[", "k", "]", "=", "sx2", "*", "sy2", "*", "(", "sx2", "-", "sy2", ")", "*", "sin2t", "/", "2", "hmat", "[", "j", "]", "[", "k", "]", "-=", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "sint", "+", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "cost", ")", "*", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "cost", "-", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "sint", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "4", "*", "sy", "**", "4", ")", "k", "+=", "1", "if", "sx_var", ":", "# H(xo,sx) = ((x - xo)*cos(t) + (y - yo)*sin(t))*(-2.0*sx**2*sy**2*cos(t) + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx**5*sy**2)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xcos", "+", "ysin", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "-", "2", "*", "sx2", "*", "sy2", "*", "cost", "+", "(", "xcos", "+", "ysin", ")", "*", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "sint", "+", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "cost", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "5", "*", "sy2", ")", "k", "+=", "1", "if", "sy_var", ":", "# H(xo,sy) = ((x - xo)*sin(t) + (-y + yo)*cos(t))*(-2.0*sx**2*sy**2*sin(t) + 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx2*sy**5)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xsin", "-", "ycos", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "-", "2", "*", "sx2", "*", "sy2", "*", "sint", "+", "(", "xsin", "-", "ycos", ")", "*", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "sint", "+", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "cost", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx2", "*", "sy", "**", "5", ")", "k", "+=", "1", "if", "theta_var", ":", "# H(xo,t) = 1.0*(sx**2*sy**2*(sx**2 - sy**2)*(x*sin(2*t) - xo*sin(2*t) - y*cos(2*t) + yo*cos(2*t)) + (-sx**2 + 1.0*sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*sin(t) + sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*cos(t)))/(sx**4*sy**4)", "# second part", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "sy2", "-", "sx2", ")", "*", "(", "xsin", "-", "ycos", ")", "*", "(", "xcos", "+", "ysin", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "sint", "+", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "cost", "# first part", "hmat", "[", "j", "]", "[", "k", "]", "+=", "sx2", "*", "sy2", "*", "(", "sx2", "-", "sy2", ")", "*", "(", "xxo", "*", "sin2t", "-", "yyo", "*", "cos2t", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "4", "*", "sy", "**", "4", ")", "# k += 1", "j", "+=", "1", "if", "yo_var", ":", "k", "=", "npvar", "if", "amp_var", ":", "# H(yo,amp)/G = H(amp,yo)", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "0", "]", "[", "2", "]", "k", "+=", "1", "if", "xo_var", ":", "# H(yo,xo)/G = H(xo,yo)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "1", "]", "[", "2", "]", "k", "+=", "1", "# if yo_var:", "# H(yo,yo)/G = 1.0*(-sx**2*sy**2*(sx**2*cos(t)**2 + sy**2*sin(t)**2) + (sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t))**2)/(sx**4*sy**4)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "cost", "-", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "sint", ")", "**", "2", "/", "(", "sx2", "**", "2", "*", "sy2", "**", "2", ")", "hmat", "[", "j", "]", "[", "k", "]", "-=", "cost", "**", "2", "/", "sy2", "+", "sint", "**", "2", "/", "sx2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "k", "+=", "1", "if", "sx_var", ":", "# H(yo,sx)/G = -((x - xo)*cos(t) + (y - yo)*sin(t))*(2.0*sx**2*sy**2*sin(t) + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) - (y - yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**5*sy**2)", "hmat", "[", "j", "]", "[", "k", "]", "=", "-", "1", "*", "(", "xcos", "+", "ysin", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "2", "*", "sx2", "*", "sy2", "*", "sint", "+", "(", "xcos", "+", "ysin", ")", "*", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "cost", "-", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "sint", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "5", "*", "sy2", ")", "k", "+=", "1", "if", "sy_var", ":", "# H(yo,sy)/G = ((x - xo)*sin(t) + (-y + yo)*cos(t))*(2.0*sx**2*sy**2*cos(t) - 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**2*sy**5)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xsin", "-", "ycos", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "2", "*", "sx2", "*", "sy2", "*", "cost", "-", "(", "xsin", "-", "ycos", ")", "*", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "cost", "-", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "sint", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx2", "*", "sy", "**", "5", ")", "k", "+=", "1", "if", "theta_var", ":", "# H(yo,t)/G = 1.0*(sx**2*sy**2*(sx**2*(-x*cos(2*t) + xo*cos(2*t) - y*sin(2*t) + yo*sin(2*t)) + sy**2*(x*cos(2*t) - xo*cos(2*t) + y*sin(2*t) - yo*sin(2*t))) + (1.0*sx**2 - sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))*(sx**2*((x - xo)*sin(t) + (-y + yo)*cos(t))*cos(t) - sy**2*((x - xo)*cos(t) + (y - yo)*sin(t))*sin(t)))/(sx**4*sy**4)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "sx2", "-", "sy2", ")", "*", "(", "xsin", "-", "ycos", ")", "*", "(", "xcos", "+", "ysin", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "(", "sx2", "*", "(", "xsin", "-", "ycos", ")", "*", "cost", "-", "sy2", "*", "(", "xcos", "+", "ysin", ")", "*", "sint", ")", "hmat", "[", "j", "]", "[", "k", "]", "+=", "sx2", "*", "sy2", "*", "(", "sx2", "-", "sy2", ")", "*", "(", "-", "x", "*", "cos2t", "+", "xo", "*", "cos2t", "-", "y", "*", "sin2t", "+", "yo", "*", "sin2t", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "4", "*", "sy", "**", "4", ")", "# k += 1", "j", "+=", "1", "if", "sx_var", ":", "k", "=", "npvar", "if", "amp_var", ":", "# H(sx,amp)/G = H(amp,sx)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "xo_var", ":", "# H(sx,xo)/G = H(xo,sx)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "yo_var", ":", "# H(sx,yo)/G = H(yo/sx)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "# if sx_var:", "# H(sx,sx)/G = (-3.0*sx**2 + 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2)*((x - xo)*cos(t) + (y - yo)*sin(t))**2/sx**6", "hmat", "[", "j", "]", "[", "k", "]", "=", "-", "3", "*", "sx2", "+", "(", "xcos", "+", "ysin", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "(", "xcos", "+", "ysin", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "sx", "**", "6", "k", "+=", "1", "if", "sy_var", ":", "# H(sx,sy)/G = 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2*((x - xo)*cos(t) + (y - yo)*sin(t))**2/(sx**3*sy**3)", "hmat", "[", "j", "]", "[", "k", "]", "=", "(", "xsin", "-", "ycos", ")", "**", "2", "*", "(", "xcos", "+", "ysin", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "3", "*", "sy", "**", "3", ")", "k", "+=", "1", "if", "theta_var", ":", "# H(sx,t)/G = (-2.0*sx**2*sy**2 + 1.0*(-sx**2 + sy**2)*((x - xo)*cos(t) + (y - yo)*sin(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(sx**5*sy**2)", "hmat", "[", "j", "]", "[", "k", "]", "=", "-", "2", "*", "sx2", "*", "sy2", "+", "(", "sy2", "-", "sx2", ")", "*", "(", "xcos", "+", "ysin", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "(", "xsin", "-", "ycos", ")", "*", "(", "xcos", "+", "ysin", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "5", "*", "sy", "**", "2", ")", "# k += 1", "j", "+=", "1", "if", "sy_var", ":", "k", "=", "npvar", "if", "amp_var", ":", "# H(sy,amp)/G = H(amp,sy)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "xo_var", ":", "# H(sy,xo)/G = H(xo,sy)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "yo_var", ":", "# H(sy,yo)/G = H(yo/sy)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "sx_var", ":", "# H(sy,sx)/G = H(sx,sy)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "# if sy_var:", "# H(sy,sy)/G = (-3.0*sy**2 + 1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))**2/sy**6", "hmat", "[", "j", "]", "[", "k", "]", "=", "-", "3", "*", "sy2", "+", "(", "xsin", "-", "ycos", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "(", "xsin", "-", "ycos", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "sy", "**", "6", "k", "+=", "1", "if", "theta_var", ":", "# H(sy,t)/G = (2.0*sx**2*sy**2 + 1.0*(-sx**2 + sy**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))**2)*((x - xo)*sin(t) + (-y + yo)*cos(t))*((x - xo)*cos(t) + (y - yo)*sin(t))/(sx**2*sy**5)", "hmat", "[", "j", "]", "[", "k", "]", "=", "2", "*", "sx2", "*", "sy2", "+", "(", "sy2", "-", "sx2", ")", "*", "(", "xsin", "-", "ycos", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "(", "xsin", "-", "ycos", ")", "*", "(", "xcos", "+", "ysin", ")", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "2", "*", "sy", "**", "5", ")", "# k += 1", "j", "+=", "1", "if", "theta_var", ":", "k", "=", "npvar", "if", "amp_var", ":", "# H(t,amp)/G = H(amp,t)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "xo_var", ":", "# H(t,xo)/G = H(xo,t)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "yo_var", ":", "# H(t,yo)/G = H(yo/t)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "sx_var", ":", "# H(t,sx)/G = H(sx,t)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "if", "sy_var", ":", "# H(t,sy)/G = H(sy,t)/G", "hmat", "[", "j", "]", "[", "k", "]", "=", "hmat", "[", "k", "]", "[", "j", "]", "k", "+=", "1", "# if theta_var:", "# H(t,t)/G = (sx**2*sy**2*(sx**2*(((x - xo)*sin(t) + (-y + yo)*cos(t))**2 - 1.0*((x - xo)*cos(t) + (y - yo)*sin(t))**2) + sy**2*(-1.0*((x - xo)*sin(t) + (-y + yo)*cos(t))**2 + ((x - xo)*cos(t) + (y - yo)*sin(t))**2)) + (sx**2 - 1.0*sy**2)**2*((x - xo)*sin(t) + (-y + yo)*cos(t))**2*((x - xo)*cos(t) + (y - yo)*sin(t))**2)/(sx**4*sy**4)", "hmat", "[", "j", "]", "[", "k", "]", "=", "sx2", "*", "sy2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "sx2", "*", "(", "(", "xsin", "-", "ycos", ")", "**", "2", "-", "(", "xcos", "+", "ysin", ")", "**", "2", ")", "+", "sy2", "*", "(", "(", "xcos", "+", "ysin", ")", "**", "2", "-", "(", "xsin", "-", "ycos", ")", "**", "2", ")", "hmat", "[", "j", "]", "[", "k", "]", "+=", "(", "sx2", "-", "sy2", ")", "**", "2", "*", "(", "xsin", "-", "ycos", ")", "**", "2", "*", "(", "xcos", "+", "ysin", ")", "**", "2", "hmat", "[", "j", "]", "[", "k", "]", "*=", "model", "/", "(", "sx", "**", "4", "*", "sy", "**", "4", ")", "# j += 1", "# save the number of variables for the next iteration", "# as we need to start our indexing at this number", "npvar", "=", "k", "return", "np", ".", "array", "(", "hmat", ")" ]
Create a hessian matrix corresponding to the source model 'pars' Only parameters that vary will contribute to the hessian. Thus there will be a total of nvar x nvar entries, each of which is a len(x) x len(y) array. Parameters ---------- pars : lmfit.Parameters The model x, y : list locations at which to evaluate the Hessian Returns ------- h : np.array Hessian. Shape will be (nvar, nvar, len(x), len(y)) See Also -------- :func:`AegeanTools.fitting.emp_hessian`
[ "Create", "a", "hessian", "matrix", "corresponding", "to", "the", "source", "model", "pars", "Only", "parameters", "that", "vary", "will", "contribute", "to", "the", "hessian", ".", "Thus", "there", "will", "be", "a", "total", "of", "nvar", "x", "nvar", "entries", "each", "of", "which", "is", "a", "len", "(", "x", ")", "x", "len", "(", "y", ")", "array", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L282-L572
PaulHancock/Aegean
AegeanTools/fitting.py
emp_hessian
def emp_hessian(pars, x, y): """ Calculate the hessian matrix empirically. Create a hessian matrix corresponding to the source model 'pars' Only parameters that vary will contribute to the hessian. Thus there will be a total of nvar x nvar entries, each of which is a len(x) x len(y) array. Parameters ---------- pars : lmfit.Parameters The model x, y : list locations at which to evaluate the Hessian Returns ------- h : np.array Hessian. Shape will be (nvar, nvar, len(x), len(y)) Notes ----- Uses :func:`AegeanTools.fitting.emp_jacobian` to calculate the first order derivatives. See Also -------- :func:`AegeanTools.fitting.hessian` """ eps = 1e-5 matrix = [] for i in range(pars['components'].value): model = emp_jacobian(pars, x, y) prefix = "c{0}_".format(i) for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']: if pars[prefix+p].vary: pars[prefix+p].value += eps dm2didj = emp_jacobian(pars, x, y) - model matrix.append(dm2didj/eps) pars[prefix+p].value -= eps matrix = np.array(matrix) return matrix
python
def emp_hessian(pars, x, y): """ Calculate the hessian matrix empirically. Create a hessian matrix corresponding to the source model 'pars' Only parameters that vary will contribute to the hessian. Thus there will be a total of nvar x nvar entries, each of which is a len(x) x len(y) array. Parameters ---------- pars : lmfit.Parameters The model x, y : list locations at which to evaluate the Hessian Returns ------- h : np.array Hessian. Shape will be (nvar, nvar, len(x), len(y)) Notes ----- Uses :func:`AegeanTools.fitting.emp_jacobian` to calculate the first order derivatives. See Also -------- :func:`AegeanTools.fitting.hessian` """ eps = 1e-5 matrix = [] for i in range(pars['components'].value): model = emp_jacobian(pars, x, y) prefix = "c{0}_".format(i) for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']: if pars[prefix+p].vary: pars[prefix+p].value += eps dm2didj = emp_jacobian(pars, x, y) - model matrix.append(dm2didj/eps) pars[prefix+p].value -= eps matrix = np.array(matrix) return matrix
[ "def", "emp_hessian", "(", "pars", ",", "x", ",", "y", ")", ":", "eps", "=", "1e-5", "matrix", "=", "[", "]", "for", "i", "in", "range", "(", "pars", "[", "'components'", "]", ".", "value", ")", ":", "model", "=", "emp_jacobian", "(", "pars", ",", "x", ",", "y", ")", "prefix", "=", "\"c{0}_\"", ".", "format", "(", "i", ")", "for", "p", "in", "[", "'amp'", ",", "'xo'", ",", "'yo'", ",", "'sx'", ",", "'sy'", ",", "'theta'", "]", ":", "if", "pars", "[", "prefix", "+", "p", "]", ".", "vary", ":", "pars", "[", "prefix", "+", "p", "]", ".", "value", "+=", "eps", "dm2didj", "=", "emp_jacobian", "(", "pars", ",", "x", ",", "y", ")", "-", "model", "matrix", ".", "append", "(", "dm2didj", "/", "eps", ")", "pars", "[", "prefix", "+", "p", "]", ".", "value", "-=", "eps", "matrix", "=", "np", ".", "array", "(", "matrix", ")", "return", "matrix" ]
Calculate the hessian matrix empirically. Create a hessian matrix corresponding to the source model 'pars' Only parameters that vary will contribute to the hessian. Thus there will be a total of nvar x nvar entries, each of which is a len(x) x len(y) array. Parameters ---------- pars : lmfit.Parameters The model x, y : list locations at which to evaluate the Hessian Returns ------- h : np.array Hessian. Shape will be (nvar, nvar, len(x), len(y)) Notes ----- Uses :func:`AegeanTools.fitting.emp_jacobian` to calculate the first order derivatives. See Also -------- :func:`AegeanTools.fitting.hessian`
[ "Calculate", "the", "hessian", "matrix", "empirically", ".", "Create", "a", "hessian", "matrix", "corresponding", "to", "the", "source", "model", "pars", "Only", "parameters", "that", "vary", "will", "contribute", "to", "the", "hessian", ".", "Thus", "there", "will", "be", "a", "total", "of", "nvar", "x", "nvar", "entries", "each", "of", "which", "is", "a", "len", "(", "x", ")", "x", "len", "(", "y", ")", "array", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L575-L615
PaulHancock/Aegean
AegeanTools/fitting.py
nan_acf
def nan_acf(noise): """ Calculate the autocorrelation function of the noise where the noise is a 2d array that may contain nans Parameters ---------- noise : 2d-array Noise image. Returns ------- acf : 2d-array The ACF. """ corr = np.zeros(noise.shape) ix,jx = noise.shape for i in range(ix): si_min = slice(i, None, None) si_max = slice(None, ix-i, None) for j in range(jx): sj_min = slice(j, None, None) sj_max = slice(None, jx-j, None) if np.all(np.isnan(noise[si_min, sj_min])) or np.all(np.isnan(noise[si_max, sj_max])): corr[i, j] = np.nan else: corr[i, j] = np.nansum(noise[si_min, sj_min] * noise[si_max, sj_max]) # return the normalised acf return corr / np.nanmax(corr)
python
def nan_acf(noise): """ Calculate the autocorrelation function of the noise where the noise is a 2d array that may contain nans Parameters ---------- noise : 2d-array Noise image. Returns ------- acf : 2d-array The ACF. """ corr = np.zeros(noise.shape) ix,jx = noise.shape for i in range(ix): si_min = slice(i, None, None) si_max = slice(None, ix-i, None) for j in range(jx): sj_min = slice(j, None, None) sj_max = slice(None, jx-j, None) if np.all(np.isnan(noise[si_min, sj_min])) or np.all(np.isnan(noise[si_max, sj_max])): corr[i, j] = np.nan else: corr[i, j] = np.nansum(noise[si_min, sj_min] * noise[si_max, sj_max]) # return the normalised acf return corr / np.nanmax(corr)
[ "def", "nan_acf", "(", "noise", ")", ":", "corr", "=", "np", ".", "zeros", "(", "noise", ".", "shape", ")", "ix", ",", "jx", "=", "noise", ".", "shape", "for", "i", "in", "range", "(", "ix", ")", ":", "si_min", "=", "slice", "(", "i", ",", "None", ",", "None", ")", "si_max", "=", "slice", "(", "None", ",", "ix", "-", "i", ",", "None", ")", "for", "j", "in", "range", "(", "jx", ")", ":", "sj_min", "=", "slice", "(", "j", ",", "None", ",", "None", ")", "sj_max", "=", "slice", "(", "None", ",", "jx", "-", "j", ",", "None", ")", "if", "np", ".", "all", "(", "np", ".", "isnan", "(", "noise", "[", "si_min", ",", "sj_min", "]", ")", ")", "or", "np", ".", "all", "(", "np", ".", "isnan", "(", "noise", "[", "si_max", ",", "sj_max", "]", ")", ")", ":", "corr", "[", "i", ",", "j", "]", "=", "np", ".", "nan", "else", ":", "corr", "[", "i", ",", "j", "]", "=", "np", ".", "nansum", "(", "noise", "[", "si_min", ",", "sj_min", "]", "*", "noise", "[", "si_max", ",", "sj_max", "]", ")", "# return the normalised acf", "return", "corr", "/", "np", ".", "nanmax", "(", "corr", ")" ]
Calculate the autocorrelation function of the noise where the noise is a 2d array that may contain nans Parameters ---------- noise : 2d-array Noise image. Returns ------- acf : 2d-array The ACF.
[ "Calculate", "the", "autocorrelation", "function", "of", "the", "noise", "where", "the", "noise", "is", "a", "2d", "array", "that", "may", "contain", "nans" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L618-L647
PaulHancock/Aegean
AegeanTools/fitting.py
make_ita
def make_ita(noise, acf=None): """ Create the matrix ita of the noise where the noise may be a masked array where ita(x,y) is the correlation between pixel pairs that have the same separation as x and y. Parameters ---------- noise : 2d-array The noise image acf : 2d-array The autocorrelation matrix. (None = calculate from data). Default = None. Returns ------- ita : 2d-array The matrix ita """ if acf is None: acf = nan_acf(noise) # s should be the number of non-masked pixels s = np.count_nonzero(np.isfinite(noise)) # the indices of the non-masked pixels xm, ym = np.where(np.isfinite(noise)) ita = np.zeros((s, s)) # iterate over the pixels for i, (x1, y1) in enumerate(zip(xm, ym)): for j, (x2, y2) in enumerate(zip(xm, ym)): k = abs(x1-x2) l = abs(y1-y2) ita[i, j] = acf[k, l] return ita
python
def make_ita(noise, acf=None): """ Create the matrix ita of the noise where the noise may be a masked array where ita(x,y) is the correlation between pixel pairs that have the same separation as x and y. Parameters ---------- noise : 2d-array The noise image acf : 2d-array The autocorrelation matrix. (None = calculate from data). Default = None. Returns ------- ita : 2d-array The matrix ita """ if acf is None: acf = nan_acf(noise) # s should be the number of non-masked pixels s = np.count_nonzero(np.isfinite(noise)) # the indices of the non-masked pixels xm, ym = np.where(np.isfinite(noise)) ita = np.zeros((s, s)) # iterate over the pixels for i, (x1, y1) in enumerate(zip(xm, ym)): for j, (x2, y2) in enumerate(zip(xm, ym)): k = abs(x1-x2) l = abs(y1-y2) ita[i, j] = acf[k, l] return ita
[ "def", "make_ita", "(", "noise", ",", "acf", "=", "None", ")", ":", "if", "acf", "is", "None", ":", "acf", "=", "nan_acf", "(", "noise", ")", "# s should be the number of non-masked pixels", "s", "=", "np", ".", "count_nonzero", "(", "np", ".", "isfinite", "(", "noise", ")", ")", "# the indices of the non-masked pixels", "xm", ",", "ym", "=", "np", ".", "where", "(", "np", ".", "isfinite", "(", "noise", ")", ")", "ita", "=", "np", ".", "zeros", "(", "(", "s", ",", "s", ")", ")", "# iterate over the pixels", "for", "i", ",", "(", "x1", ",", "y1", ")", "in", "enumerate", "(", "zip", "(", "xm", ",", "ym", ")", ")", ":", "for", "j", ",", "(", "x2", ",", "y2", ")", "in", "enumerate", "(", "zip", "(", "xm", ",", "ym", ")", ")", ":", "k", "=", "abs", "(", "x1", "-", "x2", ")", "l", "=", "abs", "(", "y1", "-", "y2", ")", "ita", "[", "i", ",", "j", "]", "=", "acf", "[", "k", ",", "l", "]", "return", "ita" ]
Create the matrix ita of the noise where the noise may be a masked array where ita(x,y) is the correlation between pixel pairs that have the same separation as x and y. Parameters ---------- noise : 2d-array The noise image acf : 2d-array The autocorrelation matrix. (None = calculate from data). Default = None. Returns ------- ita : 2d-array The matrix ita
[ "Create", "the", "matrix", "ita", "of", "the", "noise", "where", "the", "noise", "may", "be", "a", "masked", "array", "where", "ita", "(", "x", "y", ")", "is", "the", "correlation", "between", "pixel", "pairs", "that", "have", "the", "same", "separation", "as", "x", "and", "y", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L650-L682
PaulHancock/Aegean
AegeanTools/fitting.py
RB_bias
def RB_bias(data, pars, ita=None, acf=None): """ Calculate the expected bias on each of the parameters in the model pars. Only parameters that are allowed to vary will have a bias. Calculation follows the description of Refrieger & Brown 1998 (cite). Parameters ---------- data : 2d-array data that was fit pars : lmfit.Parameters The model ita : 2d-array The ita matrix (optional). acf : 2d-array The acf for the data. Returns ------- bias : array The bias on each of the parameters """ log.info("data {0}".format(data.shape)) nparams = np.sum([pars[k].vary for k in pars.keys() if k != 'components']) # masked pixels xm, ym = np.where(np.isfinite(data)) # all pixels x, y = np.indices(data.shape) # Create the jacobian as an AxN array accounting for the masked pixels j = np.array(np.vsplit(lmfit_jacobian(pars, xm, ym).T, nparams)).reshape(nparams, -1) h = hessian(pars, x, y) # mask the hessian to be AxAxN array h = h[:, :, xm, ym] Hij = np.einsum('ik,jk', j, j) Dij = np.linalg.inv(Hij) Bijk = np.einsum('ip,jkp', j, h) Eilkm = np.einsum('il,km', Dij, Dij) Cimn_1 = -1 * np.einsum('krj,ir,km,jn', Bijk, Dij, Dij, Dij) Cimn_2 = -1./2 * np.einsum('rkj,ir,km,jn', Bijk, Dij, Dij, Dij) Cimn = Cimn_1 + Cimn_2 if ita is None: # N is the noise (data-model) N = data - ntwodgaussian_lmfit(pars)(x, y) if acf is None: acf = nan_acf(N) ita = make_ita(N, acf=acf) log.info('acf.shape {0}'.format(acf.shape)) log.info('acf[0] {0}'.format(acf[0])) log.info('ita.shape {0}'.format(ita.shape)) log.info('ita[0] {0}'.format(ita[0])) # Included for completeness but not required # now mask/ravel the noise # N = N[np.isfinite(N)].ravel() # Pi = np.einsum('ip,p', j, N) # Qij = np.einsum('ijp,p', h, N) Vij = np.einsum('ip,jq,pq', j, j, ita) Uijk = np.einsum('ip,jkq,pq', j, h, ita) bias_1 = np.einsum('imn, mn', Cimn, Vij) bias_2 = np.einsum('ilkm, mlk', Eilkm, Uijk) bias = bias_1 + bias_2 log.info('bias {0}'.format(bias)) return bias
python
def RB_bias(data, pars, ita=None, acf=None): """ Calculate the expected bias on each of the parameters in the model pars. Only parameters that are allowed to vary will have a bias. Calculation follows the description of Refrieger & Brown 1998 (cite). Parameters ---------- data : 2d-array data that was fit pars : lmfit.Parameters The model ita : 2d-array The ita matrix (optional). acf : 2d-array The acf for the data. Returns ------- bias : array The bias on each of the parameters """ log.info("data {0}".format(data.shape)) nparams = np.sum([pars[k].vary for k in pars.keys() if k != 'components']) # masked pixels xm, ym = np.where(np.isfinite(data)) # all pixels x, y = np.indices(data.shape) # Create the jacobian as an AxN array accounting for the masked pixels j = np.array(np.vsplit(lmfit_jacobian(pars, xm, ym).T, nparams)).reshape(nparams, -1) h = hessian(pars, x, y) # mask the hessian to be AxAxN array h = h[:, :, xm, ym] Hij = np.einsum('ik,jk', j, j) Dij = np.linalg.inv(Hij) Bijk = np.einsum('ip,jkp', j, h) Eilkm = np.einsum('il,km', Dij, Dij) Cimn_1 = -1 * np.einsum('krj,ir,km,jn', Bijk, Dij, Dij, Dij) Cimn_2 = -1./2 * np.einsum('rkj,ir,km,jn', Bijk, Dij, Dij, Dij) Cimn = Cimn_1 + Cimn_2 if ita is None: # N is the noise (data-model) N = data - ntwodgaussian_lmfit(pars)(x, y) if acf is None: acf = nan_acf(N) ita = make_ita(N, acf=acf) log.info('acf.shape {0}'.format(acf.shape)) log.info('acf[0] {0}'.format(acf[0])) log.info('ita.shape {0}'.format(ita.shape)) log.info('ita[0] {0}'.format(ita[0])) # Included for completeness but not required # now mask/ravel the noise # N = N[np.isfinite(N)].ravel() # Pi = np.einsum('ip,p', j, N) # Qij = np.einsum('ijp,p', h, N) Vij = np.einsum('ip,jq,pq', j, j, ita) Uijk = np.einsum('ip,jkq,pq', j, h, ita) bias_1 = np.einsum('imn, mn', Cimn, Vij) bias_2 = np.einsum('ilkm, mlk', Eilkm, Uijk) bias = bias_1 + bias_2 log.info('bias {0}'.format(bias)) return bias
[ "def", "RB_bias", "(", "data", ",", "pars", ",", "ita", "=", "None", ",", "acf", "=", "None", ")", ":", "log", ".", "info", "(", "\"data {0}\"", ".", "format", "(", "data", ".", "shape", ")", ")", "nparams", "=", "np", ".", "sum", "(", "[", "pars", "[", "k", "]", ".", "vary", "for", "k", "in", "pars", ".", "keys", "(", ")", "if", "k", "!=", "'components'", "]", ")", "# masked pixels", "xm", ",", "ym", "=", "np", ".", "where", "(", "np", ".", "isfinite", "(", "data", ")", ")", "# all pixels", "x", ",", "y", "=", "np", ".", "indices", "(", "data", ".", "shape", ")", "# Create the jacobian as an AxN array accounting for the masked pixels", "j", "=", "np", ".", "array", "(", "np", ".", "vsplit", "(", "lmfit_jacobian", "(", "pars", ",", "xm", ",", "ym", ")", ".", "T", ",", "nparams", ")", ")", ".", "reshape", "(", "nparams", ",", "-", "1", ")", "h", "=", "hessian", "(", "pars", ",", "x", ",", "y", ")", "# mask the hessian to be AxAxN array", "h", "=", "h", "[", ":", ",", ":", ",", "xm", ",", "ym", "]", "Hij", "=", "np", ".", "einsum", "(", "'ik,jk'", ",", "j", ",", "j", ")", "Dij", "=", "np", ".", "linalg", ".", "inv", "(", "Hij", ")", "Bijk", "=", "np", ".", "einsum", "(", "'ip,jkp'", ",", "j", ",", "h", ")", "Eilkm", "=", "np", ".", "einsum", "(", "'il,km'", ",", "Dij", ",", "Dij", ")", "Cimn_1", "=", "-", "1", "*", "np", ".", "einsum", "(", "'krj,ir,km,jn'", ",", "Bijk", ",", "Dij", ",", "Dij", ",", "Dij", ")", "Cimn_2", "=", "-", "1.", "/", "2", "*", "np", ".", "einsum", "(", "'rkj,ir,km,jn'", ",", "Bijk", ",", "Dij", ",", "Dij", ",", "Dij", ")", "Cimn", "=", "Cimn_1", "+", "Cimn_2", "if", "ita", "is", "None", ":", "# N is the noise (data-model)", "N", "=", "data", "-", "ntwodgaussian_lmfit", "(", "pars", ")", "(", "x", ",", "y", ")", "if", "acf", "is", "None", ":", "acf", "=", "nan_acf", "(", "N", ")", "ita", "=", "make_ita", "(", "N", ",", "acf", "=", "acf", ")", "log", ".", "info", "(", "'acf.shape {0}'", ".", "format", "(", "acf", ".", "shape", ")", ")", "log", ".", "info", "(", "'acf[0] {0}'", ".", "format", "(", "acf", "[", "0", "]", ")", ")", "log", ".", "info", "(", "'ita.shape {0}'", ".", "format", "(", "ita", ".", "shape", ")", ")", "log", ".", "info", "(", "'ita[0] {0}'", ".", "format", "(", "ita", "[", "0", "]", ")", ")", "# Included for completeness but not required", "# now mask/ravel the noise", "# N = N[np.isfinite(N)].ravel()", "# Pi = np.einsum('ip,p', j, N)", "# Qij = np.einsum('ijp,p', h, N)", "Vij", "=", "np", ".", "einsum", "(", "'ip,jq,pq'", ",", "j", ",", "j", ",", "ita", ")", "Uijk", "=", "np", ".", "einsum", "(", "'ip,jkq,pq'", ",", "j", ",", "h", ",", "ita", ")", "bias_1", "=", "np", ".", "einsum", "(", "'imn, mn'", ",", "Cimn", ",", "Vij", ")", "bias_2", "=", "np", ".", "einsum", "(", "'ilkm, mlk'", ",", "Eilkm", ",", "Uijk", ")", "bias", "=", "bias_1", "+", "bias_2", "log", ".", "info", "(", "'bias {0}'", ".", "format", "(", "bias", ")", ")", "return", "bias" ]
Calculate the expected bias on each of the parameters in the model pars. Only parameters that are allowed to vary will have a bias. Calculation follows the description of Refrieger & Brown 1998 (cite). Parameters ---------- data : 2d-array data that was fit pars : lmfit.Parameters The model ita : 2d-array The ita matrix (optional). acf : 2d-array The acf for the data. Returns ------- bias : array The bias on each of the parameters
[ "Calculate", "the", "expected", "bias", "on", "each", "of", "the", "parameters", "in", "the", "model", "pars", ".", "Only", "parameters", "that", "are", "allowed", "to", "vary", "will", "have", "a", "bias", ".", "Calculation", "follows", "the", "description", "of", "Refrieger", "&", "Brown", "1998", "(", "cite", ")", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L685-L757
PaulHancock/Aegean
AegeanTools/fitting.py
bias_correct
def bias_correct(params, data, acf=None): """ Calculate and apply a bias correction to the given fit parameters Parameters ---------- params : lmfit.Parameters The model parameters. These will be modified. data : 2d-array The data which was used in the fitting acf : 2d-array ACF of the data. Default = None. Returns ------- None See Also -------- :func:`AegeanTools.fitting.RB_bias` """ bias = RB_bias(data, params, acf=acf) i = 0 for p in params: if 'theta' in p: continue if params[p].vary: params[p].value -= bias[i] i += 1 return
python
def bias_correct(params, data, acf=None): """ Calculate and apply a bias correction to the given fit parameters Parameters ---------- params : lmfit.Parameters The model parameters. These will be modified. data : 2d-array The data which was used in the fitting acf : 2d-array ACF of the data. Default = None. Returns ------- None See Also -------- :func:`AegeanTools.fitting.RB_bias` """ bias = RB_bias(data, params, acf=acf) i = 0 for p in params: if 'theta' in p: continue if params[p].vary: params[p].value -= bias[i] i += 1 return
[ "def", "bias_correct", "(", "params", ",", "data", ",", "acf", "=", "None", ")", ":", "bias", "=", "RB_bias", "(", "data", ",", "params", ",", "acf", "=", "acf", ")", "i", "=", "0", "for", "p", "in", "params", ":", "if", "'theta'", "in", "p", ":", "continue", "if", "params", "[", "p", "]", ".", "vary", ":", "params", "[", "p", "]", ".", "value", "-=", "bias", "[", "i", "]", "i", "+=", "1", "return" ]
Calculate and apply a bias correction to the given fit parameters Parameters ---------- params : lmfit.Parameters The model parameters. These will be modified. data : 2d-array The data which was used in the fitting acf : 2d-array ACF of the data. Default = None. Returns ------- None See Also -------- :func:`AegeanTools.fitting.RB_bias`
[ "Calculate", "and", "apply", "a", "bias", "correction", "to", "the", "given", "fit", "parameters" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L760-L792
PaulHancock/Aegean
AegeanTools/fitting.py
condon_errors
def condon_errors(source, theta_n, psf=None): """ Calculate the parameter errors for a fitted source using the description of Condon'97 All parameters are assigned errors, assuming that all params were fit. If some params were held fixed then these errors are overestimated. Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. theta_n : float or None A measure of the beam sampling. (See Condon'97). psf : :class:`AegeanTools.fits_image.Beam` The psf at the location of the source. Returns ------- None """ # indices for the calculation or rho alphas = {'amp': (3. / 2, 3. / 2), 'major': (5. / 2, 1. / 2), 'xo': (5. / 2, 1. / 2), 'minor': (1. / 2, 5. / 2), 'yo': (1. / 2, 5. / 2), 'pa': (1. / 2, 5. / 2)} major = source.a / 3600. # degrees minor = source.b / 3600. # degrees phi = np.radians(source.pa) # radians if psf is not None: beam = psf.get_beam(source.ra, source.dec) if beam is not None: theta_n = np.hypot(beam.a, beam.b) print(beam, theta_n) if theta_n is None: source.err_a = source.err_b = source.err_peak_flux = source.err_pa = source.err_int_flux = 0.0 return smoothing = major * minor / (theta_n ** 2) factor1 = (1 + (major / theta_n)) factor2 = (1 + (minor / theta_n)) snr = source.peak_flux / source.local_rms # calculation of rho2 depends on the parameter being used so we lambda this into a function rho2 = lambda x: smoothing / 4 * factor1 ** alphas[x][0] * factor2 ** alphas[x][1] * snr ** 2 source.err_peak_flux = source.peak_flux * np.sqrt(2 / rho2('amp')) source.err_a = major * np.sqrt(2 / rho2('major')) * 3600. # arcsec source.err_b = minor * np.sqrt(2 / rho2('minor')) * 3600. # arcsec err_xo2 = 2. / rho2('xo') * major ** 2 / (8 * np.log(2)) # Condon'97 eq 21 err_yo2 = 2. / rho2('yo') * minor ** 2 / (8 * np.log(2)) source.err_ra = np.sqrt(err_xo2 * np.sin(phi)**2 + err_yo2 * np.cos(phi)**2) source.err_dec = np.sqrt(err_xo2 * np.cos(phi)**2 + err_yo2 * np.sin(phi)**2) if (major == 0) or (minor == 0): source.err_pa = ERR_MASK # if major/minor are very similar then we should not be able to figure out what pa is. elif abs(2 * (major-minor) / (major+minor)) < 0.01: source.err_pa = ERR_MASK else: source.err_pa = np.degrees(np.sqrt(4 / rho2('pa')) * (major * minor / (major ** 2 - minor ** 2))) # integrated flux error err2 = (source.err_peak_flux / source.peak_flux) ** 2 err2 += (theta_n ** 2 / (major * minor)) * ((source.err_a / source.a) ** 2 + (source.err_b / source.b) ** 2) source.err_int_flux = source.int_flux * np.sqrt(err2) return
python
def condon_errors(source, theta_n, psf=None): """ Calculate the parameter errors for a fitted source using the description of Condon'97 All parameters are assigned errors, assuming that all params were fit. If some params were held fixed then these errors are overestimated. Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. theta_n : float or None A measure of the beam sampling. (See Condon'97). psf : :class:`AegeanTools.fits_image.Beam` The psf at the location of the source. Returns ------- None """ # indices for the calculation or rho alphas = {'amp': (3. / 2, 3. / 2), 'major': (5. / 2, 1. / 2), 'xo': (5. / 2, 1. / 2), 'minor': (1. / 2, 5. / 2), 'yo': (1. / 2, 5. / 2), 'pa': (1. / 2, 5. / 2)} major = source.a / 3600. # degrees minor = source.b / 3600. # degrees phi = np.radians(source.pa) # radians if psf is not None: beam = psf.get_beam(source.ra, source.dec) if beam is not None: theta_n = np.hypot(beam.a, beam.b) print(beam, theta_n) if theta_n is None: source.err_a = source.err_b = source.err_peak_flux = source.err_pa = source.err_int_flux = 0.0 return smoothing = major * minor / (theta_n ** 2) factor1 = (1 + (major / theta_n)) factor2 = (1 + (minor / theta_n)) snr = source.peak_flux / source.local_rms # calculation of rho2 depends on the parameter being used so we lambda this into a function rho2 = lambda x: smoothing / 4 * factor1 ** alphas[x][0] * factor2 ** alphas[x][1] * snr ** 2 source.err_peak_flux = source.peak_flux * np.sqrt(2 / rho2('amp')) source.err_a = major * np.sqrt(2 / rho2('major')) * 3600. # arcsec source.err_b = minor * np.sqrt(2 / rho2('minor')) * 3600. # arcsec err_xo2 = 2. / rho2('xo') * major ** 2 / (8 * np.log(2)) # Condon'97 eq 21 err_yo2 = 2. / rho2('yo') * minor ** 2 / (8 * np.log(2)) source.err_ra = np.sqrt(err_xo2 * np.sin(phi)**2 + err_yo2 * np.cos(phi)**2) source.err_dec = np.sqrt(err_xo2 * np.cos(phi)**2 + err_yo2 * np.sin(phi)**2) if (major == 0) or (minor == 0): source.err_pa = ERR_MASK # if major/minor are very similar then we should not be able to figure out what pa is. elif abs(2 * (major-minor) / (major+minor)) < 0.01: source.err_pa = ERR_MASK else: source.err_pa = np.degrees(np.sqrt(4 / rho2('pa')) * (major * minor / (major ** 2 - minor ** 2))) # integrated flux error err2 = (source.err_peak_flux / source.peak_flux) ** 2 err2 += (theta_n ** 2 / (major * minor)) * ((source.err_a / source.a) ** 2 + (source.err_b / source.b) ** 2) source.err_int_flux = source.int_flux * np.sqrt(err2) return
[ "def", "condon_errors", "(", "source", ",", "theta_n", ",", "psf", "=", "None", ")", ":", "# indices for the calculation or rho", "alphas", "=", "{", "'amp'", ":", "(", "3.", "/", "2", ",", "3.", "/", "2", ")", ",", "'major'", ":", "(", "5.", "/", "2", ",", "1.", "/", "2", ")", ",", "'xo'", ":", "(", "5.", "/", "2", ",", "1.", "/", "2", ")", ",", "'minor'", ":", "(", "1.", "/", "2", ",", "5.", "/", "2", ")", ",", "'yo'", ":", "(", "1.", "/", "2", ",", "5.", "/", "2", ")", ",", "'pa'", ":", "(", "1.", "/", "2", ",", "5.", "/", "2", ")", "}", "major", "=", "source", ".", "a", "/", "3600.", "# degrees", "minor", "=", "source", ".", "b", "/", "3600.", "# degrees", "phi", "=", "np", ".", "radians", "(", "source", ".", "pa", ")", "# radians", "if", "psf", "is", "not", "None", ":", "beam", "=", "psf", ".", "get_beam", "(", "source", ".", "ra", ",", "source", ".", "dec", ")", "if", "beam", "is", "not", "None", ":", "theta_n", "=", "np", ".", "hypot", "(", "beam", ".", "a", ",", "beam", ".", "b", ")", "print", "(", "beam", ",", "theta_n", ")", "if", "theta_n", "is", "None", ":", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "source", ".", "err_peak_flux", "=", "source", ".", "err_pa", "=", "source", ".", "err_int_flux", "=", "0.0", "return", "smoothing", "=", "major", "*", "minor", "/", "(", "theta_n", "**", "2", ")", "factor1", "=", "(", "1", "+", "(", "major", "/", "theta_n", ")", ")", "factor2", "=", "(", "1", "+", "(", "minor", "/", "theta_n", ")", ")", "snr", "=", "source", ".", "peak_flux", "/", "source", ".", "local_rms", "# calculation of rho2 depends on the parameter being used so we lambda this into a function", "rho2", "=", "lambda", "x", ":", "smoothing", "/", "4", "*", "factor1", "**", "alphas", "[", "x", "]", "[", "0", "]", "*", "factor2", "**", "alphas", "[", "x", "]", "[", "1", "]", "*", "snr", "**", "2", "source", ".", "err_peak_flux", "=", "source", ".", "peak_flux", "*", "np", ".", "sqrt", "(", "2", "/", "rho2", "(", "'amp'", ")", ")", "source", ".", "err_a", "=", "major", "*", "np", ".", "sqrt", "(", "2", "/", "rho2", "(", "'major'", ")", ")", "*", "3600.", "# arcsec", "source", ".", "err_b", "=", "minor", "*", "np", ".", "sqrt", "(", "2", "/", "rho2", "(", "'minor'", ")", ")", "*", "3600.", "# arcsec", "err_xo2", "=", "2.", "/", "rho2", "(", "'xo'", ")", "*", "major", "**", "2", "/", "(", "8", "*", "np", ".", "log", "(", "2", ")", ")", "# Condon'97 eq 21", "err_yo2", "=", "2.", "/", "rho2", "(", "'yo'", ")", "*", "minor", "**", "2", "/", "(", "8", "*", "np", ".", "log", "(", "2", ")", ")", "source", ".", "err_ra", "=", "np", ".", "sqrt", "(", "err_xo2", "*", "np", ".", "sin", "(", "phi", ")", "**", "2", "+", "err_yo2", "*", "np", ".", "cos", "(", "phi", ")", "**", "2", ")", "source", ".", "err_dec", "=", "np", ".", "sqrt", "(", "err_xo2", "*", "np", ".", "cos", "(", "phi", ")", "**", "2", "+", "err_yo2", "*", "np", ".", "sin", "(", "phi", ")", "**", "2", ")", "if", "(", "major", "==", "0", ")", "or", "(", "minor", "==", "0", ")", ":", "source", ".", "err_pa", "=", "ERR_MASK", "# if major/minor are very similar then we should not be able to figure out what pa is.", "elif", "abs", "(", "2", "*", "(", "major", "-", "minor", ")", "/", "(", "major", "+", "minor", ")", ")", "<", "0.01", ":", "source", ".", "err_pa", "=", "ERR_MASK", "else", ":", "source", ".", "err_pa", "=", "np", ".", "degrees", "(", "np", ".", "sqrt", "(", "4", "/", "rho2", "(", "'pa'", ")", ")", "*", "(", "major", "*", "minor", "/", "(", "major", "**", "2", "-", "minor", "**", "2", ")", ")", ")", "# integrated flux error", "err2", "=", "(", "source", ".", "err_peak_flux", "/", "source", ".", "peak_flux", ")", "**", "2", "err2", "+=", "(", "theta_n", "**", "2", "/", "(", "major", "*", "minor", ")", ")", "*", "(", "(", "source", ".", "err_a", "/", "source", ".", "a", ")", "**", "2", "+", "(", "source", ".", "err_b", "/", "source", ".", "b", ")", "**", "2", ")", "source", ".", "err_int_flux", "=", "source", ".", "int_flux", "*", "np", ".", "sqrt", "(", "err2", ")", "return" ]
Calculate the parameter errors for a fitted source using the description of Condon'97 All parameters are assigned errors, assuming that all params were fit. If some params were held fixed then these errors are overestimated. Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. theta_n : float or None A measure of the beam sampling. (See Condon'97). psf : :class:`AegeanTools.fits_image.Beam` The psf at the location of the source. Returns ------- None
[ "Calculate", "the", "parameter", "errors", "for", "a", "fitted", "source", "using", "the", "description", "of", "Condon", "97", "All", "parameters", "are", "assigned", "errors", "assuming", "that", "all", "params", "were", "fit", ".", "If", "some", "params", "were", "held", "fixed", "then", "these", "errors", "are", "overestimated", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L795-L868
PaulHancock/Aegean
AegeanTools/fitting.py
errors
def errors(source, model, wcshelper): """ Convert pixel based errors into sky coord errors Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. model : lmfit.Parameters The model which was fit. wcshelper : :class:`AegeanTools.wcs_helpers.WCSHelper` WCS information. Returns ------- source : :class:`AegeanTools.models.SimpleSource` The modified source obejct. """ # if the source wasn't fit then all errors are -1 if source.flags & (flags.NOTFIT | flags.FITERR): source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # copy the errors from the model prefix = "c{0}_".format(source.source) err_amp = model[prefix + 'amp'].stderr xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value err_xo = model[prefix + 'xo'].stderr err_yo = model[prefix + 'yo'].stderr sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value err_sx = model[prefix + 'sx'].stderr err_sy = model[prefix + 'sy'].stderr theta = model[prefix + 'theta'].value err_theta = model[prefix + 'theta'].stderr source.err_peak_flux = err_amp pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta] log.debug("Pix errs: {0}".format(pix_errs)) ref = wcshelper.pix2sky([xo, yo]) # check to see if the reference position has a valid WCS coordinate # It is possible for this to fail, even if the ra/dec conversion works elsewhere if not all(np.isfinite(ref)): source.flags |= flags.WCSERR source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # position errors if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary \ and all(np.isfinite([err_xo, err_yo])): offset = wcshelper.pix2sky([xo + err_xo, yo + err_yo]) source.err_ra = gcd(ref[0], ref[1], offset[0], ref[1]) source.err_dec = gcd(ref[0], ref[1], ref[0], offset[1]) else: source.err_ra = source.err_dec = -1 if model[prefix + 'theta'].vary and np.isfinite(err_theta): # pa error off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) off2 = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + err_theta)), yo + sy * np.sin(np.radians(theta + err_theta))]) source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(ref[0], ref[1], off2[0], off2[1])) else: source.err_pa = ERR_MASK if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary \ and all(np.isfinite([err_sx, err_sy])): # major axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) offset = wcshelper.pix2sky( [xo + (sx + err_sx) * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600 # minor axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), yo + sy * np.sin(np.radians(theta + 90))]) offset = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + 90)), yo + (sy + err_sy) * np.sin(np.radians(theta + 90))]) source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600 else: source.err_a = source.err_b = ERR_MASK sqerr = 0 sqerr += (source.err_peak_flux / source.peak_flux) ** 2 if source.err_peak_flux > 0 else 0 sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0 sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0 if sqerr == 0: source.err_int_flux = ERR_MASK else: source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr)) return source
python
def errors(source, model, wcshelper): """ Convert pixel based errors into sky coord errors Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. model : lmfit.Parameters The model which was fit. wcshelper : :class:`AegeanTools.wcs_helpers.WCSHelper` WCS information. Returns ------- source : :class:`AegeanTools.models.SimpleSource` The modified source obejct. """ # if the source wasn't fit then all errors are -1 if source.flags & (flags.NOTFIT | flags.FITERR): source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # copy the errors from the model prefix = "c{0}_".format(source.source) err_amp = model[prefix + 'amp'].stderr xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value err_xo = model[prefix + 'xo'].stderr err_yo = model[prefix + 'yo'].stderr sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value err_sx = model[prefix + 'sx'].stderr err_sy = model[prefix + 'sy'].stderr theta = model[prefix + 'theta'].value err_theta = model[prefix + 'theta'].stderr source.err_peak_flux = err_amp pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta] log.debug("Pix errs: {0}".format(pix_errs)) ref = wcshelper.pix2sky([xo, yo]) # check to see if the reference position has a valid WCS coordinate # It is possible for this to fail, even if the ra/dec conversion works elsewhere if not all(np.isfinite(ref)): source.flags |= flags.WCSERR source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # position errors if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary \ and all(np.isfinite([err_xo, err_yo])): offset = wcshelper.pix2sky([xo + err_xo, yo + err_yo]) source.err_ra = gcd(ref[0], ref[1], offset[0], ref[1]) source.err_dec = gcd(ref[0], ref[1], ref[0], offset[1]) else: source.err_ra = source.err_dec = -1 if model[prefix + 'theta'].vary and np.isfinite(err_theta): # pa error off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) off2 = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + err_theta)), yo + sy * np.sin(np.radians(theta + err_theta))]) source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(ref[0], ref[1], off2[0], off2[1])) else: source.err_pa = ERR_MASK if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary \ and all(np.isfinite([err_sx, err_sy])): # major axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) offset = wcshelper.pix2sky( [xo + (sx + err_sx) * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) source.err_a = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600 # minor axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), yo + sy * np.sin(np.radians(theta + 90))]) offset = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + 90)), yo + (sy + err_sy) * np.sin(np.radians(theta + 90))]) source.err_b = gcd(ref[0], ref[1], offset[0], offset[1]) * 3600 else: source.err_a = source.err_b = ERR_MASK sqerr = 0 sqerr += (source.err_peak_flux / source.peak_flux) ** 2 if source.err_peak_flux > 0 else 0 sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0 sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0 if sqerr == 0: source.err_int_flux = ERR_MASK else: source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr)) return source
[ "def", "errors", "(", "source", ",", "model", ",", "wcshelper", ")", ":", "# if the source wasn't fit then all errors are -1", "if", "source", ".", "flags", "&", "(", "flags", ".", "NOTFIT", "|", "flags", ".", "FITERR", ")", ":", "source", ".", "err_peak_flux", "=", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "source", ".", "err_pa", "=", "ERR_MASK", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "source", ".", "err_int_flux", "=", "ERR_MASK", "return", "source", "# copy the errors from the model", "prefix", "=", "\"c{0}_\"", ".", "format", "(", "source", ".", "source", ")", "err_amp", "=", "model", "[", "prefix", "+", "'amp'", "]", ".", "stderr", "xo", ",", "yo", "=", "model", "[", "prefix", "+", "'xo'", "]", ".", "value", ",", "model", "[", "prefix", "+", "'yo'", "]", ".", "value", "err_xo", "=", "model", "[", "prefix", "+", "'xo'", "]", ".", "stderr", "err_yo", "=", "model", "[", "prefix", "+", "'yo'", "]", ".", "stderr", "sx", ",", "sy", "=", "model", "[", "prefix", "+", "'sx'", "]", ".", "value", ",", "model", "[", "prefix", "+", "'sy'", "]", ".", "value", "err_sx", "=", "model", "[", "prefix", "+", "'sx'", "]", ".", "stderr", "err_sy", "=", "model", "[", "prefix", "+", "'sy'", "]", ".", "stderr", "theta", "=", "model", "[", "prefix", "+", "'theta'", "]", ".", "value", "err_theta", "=", "model", "[", "prefix", "+", "'theta'", "]", ".", "stderr", "source", ".", "err_peak_flux", "=", "err_amp", "pix_errs", "=", "[", "err_xo", ",", "err_yo", ",", "err_sx", ",", "err_sy", ",", "err_theta", "]", "log", ".", "debug", "(", "\"Pix errs: {0}\"", ".", "format", "(", "pix_errs", ")", ")", "ref", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", ",", "yo", "]", ")", "# check to see if the reference position has a valid WCS coordinate", "# It is possible for this to fail, even if the ra/dec conversion works elsewhere", "if", "not", "all", "(", "np", ".", "isfinite", "(", "ref", ")", ")", ":", "source", ".", "flags", "|=", "flags", ".", "WCSERR", "source", ".", "err_peak_flux", "=", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "source", ".", "err_pa", "=", "ERR_MASK", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "source", ".", "err_int_flux", "=", "ERR_MASK", "return", "source", "# position errors", "if", "model", "[", "prefix", "+", "'xo'", "]", ".", "vary", "and", "model", "[", "prefix", "+", "'yo'", "]", ".", "vary", "and", "all", "(", "np", ".", "isfinite", "(", "[", "err_xo", ",", "err_yo", "]", ")", ")", ":", "offset", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "err_xo", ",", "yo", "+", "err_yo", "]", ")", "source", ".", "err_ra", "=", "gcd", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "offset", "[", "0", "]", ",", "ref", "[", "1", "]", ")", "source", ".", "err_dec", "=", "gcd", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "ref", "[", "0", "]", ",", "offset", "[", "1", "]", ")", "else", ":", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "-", "1", "if", "model", "[", "prefix", "+", "'theta'", "]", ".", "vary", "and", "np", ".", "isfinite", "(", "err_theta", ")", ":", "# pa error", "off1", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", ")", "off2", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", "+", "err_theta", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", "+", "err_theta", ")", ")", "]", ")", "source", ".", "err_pa", "=", "abs", "(", "bear", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "off1", "[", "0", "]", ",", "off1", "[", "1", "]", ")", "-", "bear", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "off2", "[", "0", "]", ",", "off2", "[", "1", "]", ")", ")", "else", ":", "source", ".", "err_pa", "=", "ERR_MASK", "if", "model", "[", "prefix", "+", "'sx'", "]", ".", "vary", "and", "model", "[", "prefix", "+", "'sy'", "]", ".", "vary", "and", "all", "(", "np", ".", "isfinite", "(", "[", "err_sx", ",", "err_sy", "]", ")", ")", ":", "# major axis error", "ref", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", ")", "offset", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "(", "sx", "+", "err_sx", ")", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", ")", "source", ".", "err_a", "=", "gcd", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "offset", "[", "0", "]", ",", "offset", "[", "1", "]", ")", "*", "3600", "# minor axis error", "ref", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", "]", ")", "offset", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", ",", "yo", "+", "(", "sy", "+", "err_sy", ")", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", "]", ")", "source", ".", "err_b", "=", "gcd", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "offset", "[", "0", "]", ",", "offset", "[", "1", "]", ")", "*", "3600", "else", ":", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "ERR_MASK", "sqerr", "=", "0", "sqerr", "+=", "(", "source", ".", "err_peak_flux", "/", "source", ".", "peak_flux", ")", "**", "2", "if", "source", ".", "err_peak_flux", ">", "0", "else", "0", "sqerr", "+=", "(", "source", ".", "err_a", "/", "source", ".", "a", ")", "**", "2", "if", "source", ".", "err_a", ">", "0", "else", "0", "sqerr", "+=", "(", "source", ".", "err_b", "/", "source", ".", "b", ")", "**", "2", "if", "source", ".", "err_b", ">", "0", "else", "0", "if", "sqerr", "==", "0", ":", "source", ".", "err_int_flux", "=", "ERR_MASK", "else", ":", "source", ".", "err_int_flux", "=", "abs", "(", "source", ".", "int_flux", "*", "np", ".", "sqrt", "(", "sqerr", ")", ")", "return", "source" ]
Convert pixel based errors into sky coord errors Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. model : lmfit.Parameters The model which was fit. wcshelper : :class:`AegeanTools.wcs_helpers.WCSHelper` WCS information. Returns ------- source : :class:`AegeanTools.models.SimpleSource` The modified source obejct.
[ "Convert", "pixel", "based", "errors", "into", "sky", "coord", "errors" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L871-L969
PaulHancock/Aegean
AegeanTools/fitting.py
new_errors
def new_errors(source, model, wcshelper): # pragma: no cover """ Convert pixel based errors into sky coord errors Uses covariance matrix for ra/dec errors and calculus approach to a/b/pa errors Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. model : lmfit.Parameters The model which was fit. wcshelper : :class:`AegeanTools.wcs_helpers.WCSHelper` WCS information. Returns ------- source : :class:`AegeanTools.models.SimpleSource` The modified source obejct. """ # if the source wasn't fit then all errors are -1 if source.flags & (flags.NOTFIT | flags.FITERR): source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # copy the errors/values from the model prefix = "c{0}_".format(source.source) err_amp = model[prefix + 'amp'].stderr xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value err_xo = model[prefix + 'xo'].stderr err_yo = model[prefix + 'yo'].stderr sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value err_sx = model[prefix + 'sx'].stderr err_sy = model[prefix + 'sy'].stderr theta = model[prefix + 'theta'].value err_theta = model[prefix + 'theta'].stderr # the peak flux error doesn't need to be converted, just copied source.err_peak_flux = err_amp pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta] # check for inf/nan errors -> these sources have poor fits. if not all(a is not None and np.isfinite(a) for a in pix_errs): source.flags |= flags.FITERR source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # calculate the reference coordinate ref = wcshelper.pix2sky([xo, yo]) # check to see if the reference position has a valid WCS coordinate # It is possible for this to fail, even if the ra/dec conversion works elsewhere if not all(np.isfinite(ref)): source.flags |= flags.WCSERR source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # calculate position errors by transforming the error ellipse if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary: # determine the error ellipse from the Jacobian mat = model.covar[1:3, 1:3] if not(np.all(np.isfinite(mat))): source.err_ra = source.err_dec = ERR_MASK else: (a, b), e = np.linalg.eig(mat) pa = np.degrees(np.arctan2(*e[0])) # transform this ellipse into sky coordinates _, _, major, minor, pa = wcshelper.pix2sky_ellipse([xo, yo], a, b, pa) # now determine the radius of the ellipse along the ra/dec directions. source.err_ra = major*minor / np.hypot(major*np.sin(np.radians(pa)), minor*np.cos(np.radians(pa))) source.err_dec = major*minor / np.hypot(major*np.cos(np.radians(pa)), minor*np.sin(np.radians(pa))) else: source.err_ra = source.err_dec = -1 if model[prefix + 'theta'].vary: # pa error off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) # offset by 1 degree off2 = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + 1)), yo + sy * np.sin(np.radians(theta + 1))]) # scale the initial theta error by this amount source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(ref[0], ref[1], off2[0], off2[1])) * err_theta else: source.err_pa = ERR_MASK if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary: # major axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) # offset by 0.1 pixels offset = wcshelper.pix2sky( [xo + (sx + 0.1) * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) source.err_a = gcd(ref[0], ref[1], offset[0], offset[1])/0.1 * err_sx * 3600 # minor axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), yo + sy * np.sin(np.radians(theta + 90))]) # offset by 0.1 pixels offset = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + 90)), yo + (sy + 0.1) * np.sin(np.radians(theta + 90))]) source.err_b = gcd(ref[0], ref[1], offset[0], offset[1])/0.1*err_sy * 3600 else: source.err_a = source.err_b = ERR_MASK sqerr = 0 sqerr += (source.err_peak_flux / source.peak_flux) ** 2 if source.err_peak_flux > 0 else 0 sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0 sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0 source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr)) return source
python
def new_errors(source, model, wcshelper): # pragma: no cover """ Convert pixel based errors into sky coord errors Uses covariance matrix for ra/dec errors and calculus approach to a/b/pa errors Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. model : lmfit.Parameters The model which was fit. wcshelper : :class:`AegeanTools.wcs_helpers.WCSHelper` WCS information. Returns ------- source : :class:`AegeanTools.models.SimpleSource` The modified source obejct. """ # if the source wasn't fit then all errors are -1 if source.flags & (flags.NOTFIT | flags.FITERR): source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # copy the errors/values from the model prefix = "c{0}_".format(source.source) err_amp = model[prefix + 'amp'].stderr xo, yo = model[prefix + 'xo'].value, model[prefix + 'yo'].value err_xo = model[prefix + 'xo'].stderr err_yo = model[prefix + 'yo'].stderr sx, sy = model[prefix + 'sx'].value, model[prefix + 'sy'].value err_sx = model[prefix + 'sx'].stderr err_sy = model[prefix + 'sy'].stderr theta = model[prefix + 'theta'].value err_theta = model[prefix + 'theta'].stderr # the peak flux error doesn't need to be converted, just copied source.err_peak_flux = err_amp pix_errs = [err_xo, err_yo, err_sx, err_sy, err_theta] # check for inf/nan errors -> these sources have poor fits. if not all(a is not None and np.isfinite(a) for a in pix_errs): source.flags |= flags.FITERR source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # calculate the reference coordinate ref = wcshelper.pix2sky([xo, yo]) # check to see if the reference position has a valid WCS coordinate # It is possible for this to fail, even if the ra/dec conversion works elsewhere if not all(np.isfinite(ref)): source.flags |= flags.WCSERR source.err_peak_flux = source.err_a = source.err_b = source.err_pa = ERR_MASK source.err_ra = source.err_dec = source.err_int_flux = ERR_MASK return source # calculate position errors by transforming the error ellipse if model[prefix + 'xo'].vary and model[prefix + 'yo'].vary: # determine the error ellipse from the Jacobian mat = model.covar[1:3, 1:3] if not(np.all(np.isfinite(mat))): source.err_ra = source.err_dec = ERR_MASK else: (a, b), e = np.linalg.eig(mat) pa = np.degrees(np.arctan2(*e[0])) # transform this ellipse into sky coordinates _, _, major, minor, pa = wcshelper.pix2sky_ellipse([xo, yo], a, b, pa) # now determine the radius of the ellipse along the ra/dec directions. source.err_ra = major*minor / np.hypot(major*np.sin(np.radians(pa)), minor*np.cos(np.radians(pa))) source.err_dec = major*minor / np.hypot(major*np.cos(np.radians(pa)), minor*np.sin(np.radians(pa))) else: source.err_ra = source.err_dec = -1 if model[prefix + 'theta'].vary: # pa error off1 = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) # offset by 1 degree off2 = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + 1)), yo + sy * np.sin(np.radians(theta + 1))]) # scale the initial theta error by this amount source.err_pa = abs(bear(ref[0], ref[1], off1[0], off1[1]) - bear(ref[0], ref[1], off2[0], off2[1])) * err_theta else: source.err_pa = ERR_MASK if model[prefix + 'sx'].vary and model[prefix + 'sy'].vary: # major axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) # offset by 0.1 pixels offset = wcshelper.pix2sky( [xo + (sx + 0.1) * np.cos(np.radians(theta)), yo + sy * np.sin(np.radians(theta))]) source.err_a = gcd(ref[0], ref[1], offset[0], offset[1])/0.1 * err_sx * 3600 # minor axis error ref = wcshelper.pix2sky([xo + sx * np.cos(np.radians(theta + 90)), yo + sy * np.sin(np.radians(theta + 90))]) # offset by 0.1 pixels offset = wcshelper.pix2sky( [xo + sx * np.cos(np.radians(theta + 90)), yo + (sy + 0.1) * np.sin(np.radians(theta + 90))]) source.err_b = gcd(ref[0], ref[1], offset[0], offset[1])/0.1*err_sy * 3600 else: source.err_a = source.err_b = ERR_MASK sqerr = 0 sqerr += (source.err_peak_flux / source.peak_flux) ** 2 if source.err_peak_flux > 0 else 0 sqerr += (source.err_a / source.a) ** 2 if source.err_a > 0 else 0 sqerr += (source.err_b / source.b) ** 2 if source.err_b > 0 else 0 source.err_int_flux = abs(source.int_flux * np.sqrt(sqerr)) return source
[ "def", "new_errors", "(", "source", ",", "model", ",", "wcshelper", ")", ":", "# pragma: no cover", "# if the source wasn't fit then all errors are -1", "if", "source", ".", "flags", "&", "(", "flags", ".", "NOTFIT", "|", "flags", ".", "FITERR", ")", ":", "source", ".", "err_peak_flux", "=", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "source", ".", "err_pa", "=", "ERR_MASK", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "source", ".", "err_int_flux", "=", "ERR_MASK", "return", "source", "# copy the errors/values from the model", "prefix", "=", "\"c{0}_\"", ".", "format", "(", "source", ".", "source", ")", "err_amp", "=", "model", "[", "prefix", "+", "'amp'", "]", ".", "stderr", "xo", ",", "yo", "=", "model", "[", "prefix", "+", "'xo'", "]", ".", "value", ",", "model", "[", "prefix", "+", "'yo'", "]", ".", "value", "err_xo", "=", "model", "[", "prefix", "+", "'xo'", "]", ".", "stderr", "err_yo", "=", "model", "[", "prefix", "+", "'yo'", "]", ".", "stderr", "sx", ",", "sy", "=", "model", "[", "prefix", "+", "'sx'", "]", ".", "value", ",", "model", "[", "prefix", "+", "'sy'", "]", ".", "value", "err_sx", "=", "model", "[", "prefix", "+", "'sx'", "]", ".", "stderr", "err_sy", "=", "model", "[", "prefix", "+", "'sy'", "]", ".", "stderr", "theta", "=", "model", "[", "prefix", "+", "'theta'", "]", ".", "value", "err_theta", "=", "model", "[", "prefix", "+", "'theta'", "]", ".", "stderr", "# the peak flux error doesn't need to be converted, just copied", "source", ".", "err_peak_flux", "=", "err_amp", "pix_errs", "=", "[", "err_xo", ",", "err_yo", ",", "err_sx", ",", "err_sy", ",", "err_theta", "]", "# check for inf/nan errors -> these sources have poor fits.", "if", "not", "all", "(", "a", "is", "not", "None", "and", "np", ".", "isfinite", "(", "a", ")", "for", "a", "in", "pix_errs", ")", ":", "source", ".", "flags", "|=", "flags", ".", "FITERR", "source", ".", "err_peak_flux", "=", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "source", ".", "err_pa", "=", "ERR_MASK", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "source", ".", "err_int_flux", "=", "ERR_MASK", "return", "source", "# calculate the reference coordinate", "ref", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", ",", "yo", "]", ")", "# check to see if the reference position has a valid WCS coordinate", "# It is possible for this to fail, even if the ra/dec conversion works elsewhere", "if", "not", "all", "(", "np", ".", "isfinite", "(", "ref", ")", ")", ":", "source", ".", "flags", "|=", "flags", ".", "WCSERR", "source", ".", "err_peak_flux", "=", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "source", ".", "err_pa", "=", "ERR_MASK", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "source", ".", "err_int_flux", "=", "ERR_MASK", "return", "source", "# calculate position errors by transforming the error ellipse", "if", "model", "[", "prefix", "+", "'xo'", "]", ".", "vary", "and", "model", "[", "prefix", "+", "'yo'", "]", ".", "vary", ":", "# determine the error ellipse from the Jacobian", "mat", "=", "model", ".", "covar", "[", "1", ":", "3", ",", "1", ":", "3", "]", "if", "not", "(", "np", ".", "all", "(", "np", ".", "isfinite", "(", "mat", ")", ")", ")", ":", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "ERR_MASK", "else", ":", "(", "a", ",", "b", ")", ",", "e", "=", "np", ".", "linalg", ".", "eig", "(", "mat", ")", "pa", "=", "np", ".", "degrees", "(", "np", ".", "arctan2", "(", "*", "e", "[", "0", "]", ")", ")", "# transform this ellipse into sky coordinates", "_", ",", "_", ",", "major", ",", "minor", ",", "pa", "=", "wcshelper", ".", "pix2sky_ellipse", "(", "[", "xo", ",", "yo", "]", ",", "a", ",", "b", ",", "pa", ")", "# now determine the radius of the ellipse along the ra/dec directions.", "source", ".", "err_ra", "=", "major", "*", "minor", "/", "np", ".", "hypot", "(", "major", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "pa", ")", ")", ",", "minor", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "pa", ")", ")", ")", "source", ".", "err_dec", "=", "major", "*", "minor", "/", "np", ".", "hypot", "(", "major", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "pa", ")", ")", ",", "minor", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "pa", ")", ")", ")", "else", ":", "source", ".", "err_ra", "=", "source", ".", "err_dec", "=", "-", "1", "if", "model", "[", "prefix", "+", "'theta'", "]", ".", "vary", ":", "# pa error", "off1", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", ")", "# offset by 1 degree", "off2", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", "+", "1", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", "+", "1", ")", ")", "]", ")", "# scale the initial theta error by this amount", "source", ".", "err_pa", "=", "abs", "(", "bear", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "off1", "[", "0", "]", ",", "off1", "[", "1", "]", ")", "-", "bear", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "off2", "[", "0", "]", ",", "off2", "[", "1", "]", ")", ")", "*", "err_theta", "else", ":", "source", ".", "err_pa", "=", "ERR_MASK", "if", "model", "[", "prefix", "+", "'sx'", "]", ".", "vary", "and", "model", "[", "prefix", "+", "'sy'", "]", ".", "vary", ":", "# major axis error", "ref", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", ")", "# offset by 0.1 pixels", "offset", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "(", "sx", "+", "0.1", ")", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "]", ")", "source", ".", "err_a", "=", "gcd", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "offset", "[", "0", "]", ",", "offset", "[", "1", "]", ")", "/", "0.1", "*", "err_sx", "*", "3600", "# minor axis error", "ref", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", ",", "yo", "+", "sy", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", "]", ")", "# offset by 0.1 pixels", "offset", "=", "wcshelper", ".", "pix2sky", "(", "[", "xo", "+", "sx", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", ",", "yo", "+", "(", "sy", "+", "0.1", ")", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", "+", "90", ")", ")", "]", ")", "source", ".", "err_b", "=", "gcd", "(", "ref", "[", "0", "]", ",", "ref", "[", "1", "]", ",", "offset", "[", "0", "]", ",", "offset", "[", "1", "]", ")", "/", "0.1", "*", "err_sy", "*", "3600", "else", ":", "source", ".", "err_a", "=", "source", ".", "err_b", "=", "ERR_MASK", "sqerr", "=", "0", "sqerr", "+=", "(", "source", ".", "err_peak_flux", "/", "source", ".", "peak_flux", ")", "**", "2", "if", "source", ".", "err_peak_flux", ">", "0", "else", "0", "sqerr", "+=", "(", "source", ".", "err_a", "/", "source", ".", "a", ")", "**", "2", "if", "source", ".", "err_a", ">", "0", "else", "0", "sqerr", "+=", "(", "source", ".", "err_b", "/", "source", ".", "b", ")", "**", "2", "if", "source", ".", "err_b", ">", "0", "else", "0", "source", ".", "err_int_flux", "=", "abs", "(", "source", ".", "int_flux", "*", "np", ".", "sqrt", "(", "sqerr", ")", ")", "return", "source" ]
Convert pixel based errors into sky coord errors Uses covariance matrix for ra/dec errors and calculus approach to a/b/pa errors Parameters ---------- source : :class:`AegeanTools.models.SimpleSource` The source which was fit. model : lmfit.Parameters The model which was fit. wcshelper : :class:`AegeanTools.wcs_helpers.WCSHelper` WCS information. Returns ------- source : :class:`AegeanTools.models.SimpleSource` The modified source obejct.
[ "Convert", "pixel", "based", "errors", "into", "sky", "coord", "errors", "Uses", "covariance", "matrix", "for", "ra", "/", "dec", "errors", "and", "calculus", "approach", "to", "a", "/", "b", "/", "pa", "errors" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L972-L1088
PaulHancock/Aegean
AegeanTools/fitting.py
ntwodgaussian_lmfit
def ntwodgaussian_lmfit(params): """ Convert an lmfit.Parameters object into a function which calculates the model. Parameters ---------- params : lmfit.Parameters Model parameters, can have multiple components. Returns ------- model : func A function f(x,y) that will compute the model. """ def rfunc(x, y): """ Compute the model given by params, at pixel coordinates x,y Parameters ---------- x, y : numpy.ndarray The x/y pixel coordinates at which the model is being evaluated Returns ------- result : numpy.ndarray Model """ result = None for i in range(params['components'].value): prefix = "c{0}_".format(i) # I hope this doesn't kill our run time amp = np.nan_to_num(params[prefix + 'amp'].value) xo = params[prefix + 'xo'].value yo = params[prefix + 'yo'].value sx = params[prefix + 'sx'].value sy = params[prefix + 'sy'].value theta = params[prefix + 'theta'].value if result is not None: result += elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) else: result = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) return result return rfunc
python
def ntwodgaussian_lmfit(params): """ Convert an lmfit.Parameters object into a function which calculates the model. Parameters ---------- params : lmfit.Parameters Model parameters, can have multiple components. Returns ------- model : func A function f(x,y) that will compute the model. """ def rfunc(x, y): """ Compute the model given by params, at pixel coordinates x,y Parameters ---------- x, y : numpy.ndarray The x/y pixel coordinates at which the model is being evaluated Returns ------- result : numpy.ndarray Model """ result = None for i in range(params['components'].value): prefix = "c{0}_".format(i) # I hope this doesn't kill our run time amp = np.nan_to_num(params[prefix + 'amp'].value) xo = params[prefix + 'xo'].value yo = params[prefix + 'yo'].value sx = params[prefix + 'sx'].value sy = params[prefix + 'sy'].value theta = params[prefix + 'theta'].value if result is not None: result += elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) else: result = elliptical_gaussian(x, y, amp, xo, yo, sx, sy, theta) return result return rfunc
[ "def", "ntwodgaussian_lmfit", "(", "params", ")", ":", "def", "rfunc", "(", "x", ",", "y", ")", ":", "\"\"\"\n Compute the model given by params, at pixel coordinates x,y\n\n Parameters\n ----------\n x, y : numpy.ndarray\n The x/y pixel coordinates at which the model is being evaluated\n\n Returns\n -------\n result : numpy.ndarray\n Model\n \"\"\"", "result", "=", "None", "for", "i", "in", "range", "(", "params", "[", "'components'", "]", ".", "value", ")", ":", "prefix", "=", "\"c{0}_\"", ".", "format", "(", "i", ")", "# I hope this doesn't kill our run time", "amp", "=", "np", ".", "nan_to_num", "(", "params", "[", "prefix", "+", "'amp'", "]", ".", "value", ")", "xo", "=", "params", "[", "prefix", "+", "'xo'", "]", ".", "value", "yo", "=", "params", "[", "prefix", "+", "'yo'", "]", ".", "value", "sx", "=", "params", "[", "prefix", "+", "'sx'", "]", ".", "value", "sy", "=", "params", "[", "prefix", "+", "'sy'", "]", ".", "value", "theta", "=", "params", "[", "prefix", "+", "'theta'", "]", ".", "value", "if", "result", "is", "not", "None", ":", "result", "+=", "elliptical_gaussian", "(", "x", ",", "y", ",", "amp", ",", "xo", ",", "yo", ",", "sx", ",", "sy", ",", "theta", ")", "else", ":", "result", "=", "elliptical_gaussian", "(", "x", ",", "y", ",", "amp", ",", "xo", ",", "yo", ",", "sx", ",", "sy", ",", "theta", ")", "return", "result", "return", "rfunc" ]
Convert an lmfit.Parameters object into a function which calculates the model. Parameters ---------- params : lmfit.Parameters Model parameters, can have multiple components. Returns ------- model : func A function f(x,y) that will compute the model.
[ "Convert", "an", "lmfit", ".", "Parameters", "object", "into", "a", "function", "which", "calculates", "the", "model", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L1091-L1137
PaulHancock/Aegean
AegeanTools/fitting.py
do_lmfit
def do_lmfit(data, params, B=None, errs=None, dojac=True): """ Fit the model to the data data may contain 'flagged' or 'masked' data with the value of np.NaN Parameters ---------- data : 2d-array Image data params : lmfit.Parameters Initial model guess. B : 2d-array B matrix to be used in residual calculations. Default = None. errs : 1d-array dojac : bool If true then an analytic jacobian will be passed to the fitting routine. Returns ------- result : ? lmfit.minimize result. params : lmfit.Params Fitted model. See Also -------- :func:`AegeanTools.fitting.lmfit_jacobian` """ # copy the params so as not to change the initial conditions # in case we want to use them elsewhere params = copy.deepcopy(params) data = np.array(data) mask = np.where(np.isfinite(data)) def residual(params, **kwargs): """ The residual function required by lmfit Parameters ---------- params: lmfit.Params The parameters of the model being fit Returns ------- result : numpy.ndarray Model - Data """ f = ntwodgaussian_lmfit(params) # A function describing the model model = f(*mask) # The actual model if B is None: return model - data[mask] else: return (model - data[mask]).dot(B) if dojac: result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs}, Dfun=lmfit_jacobian) else: result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs}) # Remake the residual so that it is once again (model - data) if B is not None: result.residual = result.residual.dot(inv(B)) return result, params
python
def do_lmfit(data, params, B=None, errs=None, dojac=True): """ Fit the model to the data data may contain 'flagged' or 'masked' data with the value of np.NaN Parameters ---------- data : 2d-array Image data params : lmfit.Parameters Initial model guess. B : 2d-array B matrix to be used in residual calculations. Default = None. errs : 1d-array dojac : bool If true then an analytic jacobian will be passed to the fitting routine. Returns ------- result : ? lmfit.minimize result. params : lmfit.Params Fitted model. See Also -------- :func:`AegeanTools.fitting.lmfit_jacobian` """ # copy the params so as not to change the initial conditions # in case we want to use them elsewhere params = copy.deepcopy(params) data = np.array(data) mask = np.where(np.isfinite(data)) def residual(params, **kwargs): """ The residual function required by lmfit Parameters ---------- params: lmfit.Params The parameters of the model being fit Returns ------- result : numpy.ndarray Model - Data """ f = ntwodgaussian_lmfit(params) # A function describing the model model = f(*mask) # The actual model if B is None: return model - data[mask] else: return (model - data[mask]).dot(B) if dojac: result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs}, Dfun=lmfit_jacobian) else: result = lmfit.minimize(residual, params, kws={'x': mask[0], 'y': mask[1], 'B': B, 'errs': errs}) # Remake the residual so that it is once again (model - data) if B is not None: result.residual = result.residual.dot(inv(B)) return result, params
[ "def", "do_lmfit", "(", "data", ",", "params", ",", "B", "=", "None", ",", "errs", "=", "None", ",", "dojac", "=", "True", ")", ":", "# copy the params so as not to change the initial conditions", "# in case we want to use them elsewhere", "params", "=", "copy", ".", "deepcopy", "(", "params", ")", "data", "=", "np", ".", "array", "(", "data", ")", "mask", "=", "np", ".", "where", "(", "np", ".", "isfinite", "(", "data", ")", ")", "def", "residual", "(", "params", ",", "*", "*", "kwargs", ")", ":", "\"\"\"\n The residual function required by lmfit\n\n Parameters\n ----------\n params: lmfit.Params\n The parameters of the model being fit\n\n Returns\n -------\n result : numpy.ndarray\n Model - Data\n \"\"\"", "f", "=", "ntwodgaussian_lmfit", "(", "params", ")", "# A function describing the model", "model", "=", "f", "(", "*", "mask", ")", "# The actual model", "if", "B", "is", "None", ":", "return", "model", "-", "data", "[", "mask", "]", "else", ":", "return", "(", "model", "-", "data", "[", "mask", "]", ")", ".", "dot", "(", "B", ")", "if", "dojac", ":", "result", "=", "lmfit", ".", "minimize", "(", "residual", ",", "params", ",", "kws", "=", "{", "'x'", ":", "mask", "[", "0", "]", ",", "'y'", ":", "mask", "[", "1", "]", ",", "'B'", ":", "B", ",", "'errs'", ":", "errs", "}", ",", "Dfun", "=", "lmfit_jacobian", ")", "else", ":", "result", "=", "lmfit", ".", "minimize", "(", "residual", ",", "params", ",", "kws", "=", "{", "'x'", ":", "mask", "[", "0", "]", ",", "'y'", ":", "mask", "[", "1", "]", ",", "'B'", ":", "B", ",", "'errs'", ":", "errs", "}", ")", "# Remake the residual so that it is once again (model - data)", "if", "B", "is", "not", "None", ":", "result", ".", "residual", "=", "result", ".", "residual", ".", "dot", "(", "inv", "(", "B", ")", ")", "return", "result", ",", "params" ]
Fit the model to the data data may contain 'flagged' or 'masked' data with the value of np.NaN Parameters ---------- data : 2d-array Image data params : lmfit.Parameters Initial model guess. B : 2d-array B matrix to be used in residual calculations. Default = None. errs : 1d-array dojac : bool If true then an analytic jacobian will be passed to the fitting routine. Returns ------- result : ? lmfit.minimize result. params : lmfit.Params Fitted model. See Also -------- :func:`AegeanTools.fitting.lmfit_jacobian`
[ "Fit", "the", "model", "to", "the", "data", "data", "may", "contain", "flagged", "or", "masked", "data", "with", "the", "value", "of", "np", ".", "NaN" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L1140-L1210
PaulHancock/Aegean
AegeanTools/fitting.py
covar_errors
def covar_errors(params, data, errs, B, C=None): """ Take a set of parameters that were fit with lmfit, and replace the errors with the 1\sigma errors calculated using the covariance matrix. Parameters ---------- params : lmfit.Parameters Model data : 2d-array Image data errs : 2d-array ? Image noise. B : 2d-array B matrix. C : 2d-array C matrix. Optional. If supplied then Bmatrix will not be used. Returns ------- params : lmfit.Parameters Modified model. """ mask = np.where(np.isfinite(data)) # calculate the proper parameter errors and copy them across. if C is not None: try: J = lmfit_jacobian(params, mask[0], mask[1], errs=errs) covar = np.transpose(J).dot(inv(C)).dot(J) onesigma = np.sqrt(np.diag(inv(covar))) except (np.linalg.linalg.LinAlgError, ValueError) as _: C = None if C is None: try: J = lmfit_jacobian(params, mask[0], mask[1], B=B, errs=errs) covar = np.transpose(J).dot(J) onesigma = np.sqrt(np.diag(inv(covar))) except (np.linalg.linalg.LinAlgError, ValueError) as _: onesigma = [-2] * len(mask[0]) for i in range(params['components'].value): prefix = "c{0}_".format(i) j = 0 for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']: if params[prefix + p].vary: params[prefix + p].stderr = onesigma[j] j += 1 return params
python
def covar_errors(params, data, errs, B, C=None): """ Take a set of parameters that were fit with lmfit, and replace the errors with the 1\sigma errors calculated using the covariance matrix. Parameters ---------- params : lmfit.Parameters Model data : 2d-array Image data errs : 2d-array ? Image noise. B : 2d-array B matrix. C : 2d-array C matrix. Optional. If supplied then Bmatrix will not be used. Returns ------- params : lmfit.Parameters Modified model. """ mask = np.where(np.isfinite(data)) # calculate the proper parameter errors and copy them across. if C is not None: try: J = lmfit_jacobian(params, mask[0], mask[1], errs=errs) covar = np.transpose(J).dot(inv(C)).dot(J) onesigma = np.sqrt(np.diag(inv(covar))) except (np.linalg.linalg.LinAlgError, ValueError) as _: C = None if C is None: try: J = lmfit_jacobian(params, mask[0], mask[1], B=B, errs=errs) covar = np.transpose(J).dot(J) onesigma = np.sqrt(np.diag(inv(covar))) except (np.linalg.linalg.LinAlgError, ValueError) as _: onesigma = [-2] * len(mask[0]) for i in range(params['components'].value): prefix = "c{0}_".format(i) j = 0 for p in ['amp', 'xo', 'yo', 'sx', 'sy', 'theta']: if params[prefix + p].vary: params[prefix + p].stderr = onesigma[j] j += 1 return params
[ "def", "covar_errors", "(", "params", ",", "data", ",", "errs", ",", "B", ",", "C", "=", "None", ")", ":", "mask", "=", "np", ".", "where", "(", "np", ".", "isfinite", "(", "data", ")", ")", "# calculate the proper parameter errors and copy them across.", "if", "C", "is", "not", "None", ":", "try", ":", "J", "=", "lmfit_jacobian", "(", "params", ",", "mask", "[", "0", "]", ",", "mask", "[", "1", "]", ",", "errs", "=", "errs", ")", "covar", "=", "np", ".", "transpose", "(", "J", ")", ".", "dot", "(", "inv", "(", "C", ")", ")", ".", "dot", "(", "J", ")", "onesigma", "=", "np", ".", "sqrt", "(", "np", ".", "diag", "(", "inv", "(", "covar", ")", ")", ")", "except", "(", "np", ".", "linalg", ".", "linalg", ".", "LinAlgError", ",", "ValueError", ")", "as", "_", ":", "C", "=", "None", "if", "C", "is", "None", ":", "try", ":", "J", "=", "lmfit_jacobian", "(", "params", ",", "mask", "[", "0", "]", ",", "mask", "[", "1", "]", ",", "B", "=", "B", ",", "errs", "=", "errs", ")", "covar", "=", "np", ".", "transpose", "(", "J", ")", ".", "dot", "(", "J", ")", "onesigma", "=", "np", ".", "sqrt", "(", "np", ".", "diag", "(", "inv", "(", "covar", ")", ")", ")", "except", "(", "np", ".", "linalg", ".", "linalg", ".", "LinAlgError", ",", "ValueError", ")", "as", "_", ":", "onesigma", "=", "[", "-", "2", "]", "*", "len", "(", "mask", "[", "0", "]", ")", "for", "i", "in", "range", "(", "params", "[", "'components'", "]", ".", "value", ")", ":", "prefix", "=", "\"c{0}_\"", ".", "format", "(", "i", ")", "j", "=", "0", "for", "p", "in", "[", "'amp'", ",", "'xo'", ",", "'yo'", ",", "'sx'", ",", "'sy'", ",", "'theta'", "]", ":", "if", "params", "[", "prefix", "+", "p", "]", ".", "vary", ":", "params", "[", "prefix", "+", "p", "]", ".", "stderr", "=", "onesigma", "[", "j", "]", "j", "+=", "1", "return", "params" ]
Take a set of parameters that were fit with lmfit, and replace the errors with the 1\sigma errors calculated using the covariance matrix. Parameters ---------- params : lmfit.Parameters Model data : 2d-array Image data errs : 2d-array ? Image noise. B : 2d-array B matrix. C : 2d-array C matrix. Optional. If supplied then Bmatrix will not be used. Returns ------- params : lmfit.Parameters Modified model.
[ "Take", "a", "set", "of", "parameters", "that", "were", "fit", "with", "lmfit", "and", "replace", "the", "errors", "with", "the", "1", "\\", "sigma", "errors", "calculated", "using", "the", "covariance", "matrix", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fitting.py#L1213-L1269
PaulHancock/Aegean
AegeanTools/BANE.py
barrier
def barrier(events, sid, kind='neighbour'): """ act as a multiprocessing barrier """ events[sid].set() # only wait for the neighbours if kind=='neighbour': if sid > 0: logging.debug("{0} is waiting for {1}".format(sid, sid - 1)) events[sid - 1].wait() if sid < len(bkg_events) - 1: logging.debug("{0} is waiting for {1}".format(sid, sid + 1)) events[sid + 1].wait() # wait for all else: [e.wait() for e in events] return
python
def barrier(events, sid, kind='neighbour'): """ act as a multiprocessing barrier """ events[sid].set() # only wait for the neighbours if kind=='neighbour': if sid > 0: logging.debug("{0} is waiting for {1}".format(sid, sid - 1)) events[sid - 1].wait() if sid < len(bkg_events) - 1: logging.debug("{0} is waiting for {1}".format(sid, sid + 1)) events[sid + 1].wait() # wait for all else: [e.wait() for e in events] return
[ "def", "barrier", "(", "events", ",", "sid", ",", "kind", "=", "'neighbour'", ")", ":", "events", "[", "sid", "]", ".", "set", "(", ")", "# only wait for the neighbours", "if", "kind", "==", "'neighbour'", ":", "if", "sid", ">", "0", ":", "logging", ".", "debug", "(", "\"{0} is waiting for {1}\"", ".", "format", "(", "sid", ",", "sid", "-", "1", ")", ")", "events", "[", "sid", "-", "1", "]", ".", "wait", "(", ")", "if", "sid", "<", "len", "(", "bkg_events", ")", "-", "1", ":", "logging", ".", "debug", "(", "\"{0} is waiting for {1}\"", ".", "format", "(", "sid", ",", "sid", "+", "1", ")", ")", "events", "[", "sid", "+", "1", "]", ".", "wait", "(", ")", "# wait for all", "else", ":", "[", "e", ".", "wait", "(", ")", "for", "e", "in", "events", "]", "return" ]
act as a multiprocessing barrier
[ "act", "as", "a", "multiprocessing", "barrier" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/BANE.py#L34-L50
PaulHancock/Aegean
AegeanTools/BANE.py
sigmaclip
def sigmaclip(arr, lo, hi, reps=3): """ Perform sigma clipping on an array, ignoring non finite values. During each iteration return an array whose elements c obey: mean -std*lo < c < mean + std*hi where mean/std are the mean std of the input array. Parameters ---------- arr : iterable An iterable array of numeric types. lo : float The negative clipping level. hi : float The positive clipping level. reps : int The number of iterations to perform. Default = 3. Returns ------- mean : float The mean of the array, possibly nan std : float The std of the array, possibly nan Notes ----- Scipy v0.16 now contains a comparable method that will ignore nan/inf values. """ clipped = np.array(arr)[np.isfinite(arr)] if len(clipped) < 1: return np.nan, np.nan std = np.std(clipped) mean = np.mean(clipped) for _ in range(int(reps)): clipped = clipped[np.where(clipped > mean-std*lo)] clipped = clipped[np.where(clipped < mean+std*hi)] pstd = std if len(clipped) < 1: break std = np.std(clipped) mean = np.mean(clipped) if 2*abs(pstd-std)/(pstd+std) < 0.2: break return mean, std
python
def sigmaclip(arr, lo, hi, reps=3): """ Perform sigma clipping on an array, ignoring non finite values. During each iteration return an array whose elements c obey: mean -std*lo < c < mean + std*hi where mean/std are the mean std of the input array. Parameters ---------- arr : iterable An iterable array of numeric types. lo : float The negative clipping level. hi : float The positive clipping level. reps : int The number of iterations to perform. Default = 3. Returns ------- mean : float The mean of the array, possibly nan std : float The std of the array, possibly nan Notes ----- Scipy v0.16 now contains a comparable method that will ignore nan/inf values. """ clipped = np.array(arr)[np.isfinite(arr)] if len(clipped) < 1: return np.nan, np.nan std = np.std(clipped) mean = np.mean(clipped) for _ in range(int(reps)): clipped = clipped[np.where(clipped > mean-std*lo)] clipped = clipped[np.where(clipped < mean+std*hi)] pstd = std if len(clipped) < 1: break std = np.std(clipped) mean = np.mean(clipped) if 2*abs(pstd-std)/(pstd+std) < 0.2: break return mean, std
[ "def", "sigmaclip", "(", "arr", ",", "lo", ",", "hi", ",", "reps", "=", "3", ")", ":", "clipped", "=", "np", ".", "array", "(", "arr", ")", "[", "np", ".", "isfinite", "(", "arr", ")", "]", "if", "len", "(", "clipped", ")", "<", "1", ":", "return", "np", ".", "nan", ",", "np", ".", "nan", "std", "=", "np", ".", "std", "(", "clipped", ")", "mean", "=", "np", ".", "mean", "(", "clipped", ")", "for", "_", "in", "range", "(", "int", "(", "reps", ")", ")", ":", "clipped", "=", "clipped", "[", "np", ".", "where", "(", "clipped", ">", "mean", "-", "std", "*", "lo", ")", "]", "clipped", "=", "clipped", "[", "np", ".", "where", "(", "clipped", "<", "mean", "+", "std", "*", "hi", ")", "]", "pstd", "=", "std", "if", "len", "(", "clipped", ")", "<", "1", ":", "break", "std", "=", "np", ".", "std", "(", "clipped", ")", "mean", "=", "np", ".", "mean", "(", "clipped", ")", "if", "2", "*", "abs", "(", "pstd", "-", "std", ")", "/", "(", "pstd", "+", "std", ")", "<", "0.2", ":", "break", "return", "mean", ",", "std" ]
Perform sigma clipping on an array, ignoring non finite values. During each iteration return an array whose elements c obey: mean -std*lo < c < mean + std*hi where mean/std are the mean std of the input array. Parameters ---------- arr : iterable An iterable array of numeric types. lo : float The negative clipping level. hi : float The positive clipping level. reps : int The number of iterations to perform. Default = 3. Returns ------- mean : float The mean of the array, possibly nan std : float The std of the array, possibly nan Notes ----- Scipy v0.16 now contains a comparable method that will ignore nan/inf values.
[ "Perform", "sigma", "clipping", "on", "an", "array", "ignoring", "non", "finite", "values", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/BANE.py#L53-L102
PaulHancock/Aegean
AegeanTools/BANE.py
_sf2
def _sf2(args): """ A shallow wrapper for sigma_filter. Parameters ---------- args : list A list of arguments for sigma_filter Returns ------- None """ # an easier to debug traceback when multiprocessing # thanks to https://stackoverflow.com/a/16618842/1710603 try: return sigma_filter(*args) except: import traceback raise Exception("".join(traceback.format_exception(*sys.exc_info())))
python
def _sf2(args): """ A shallow wrapper for sigma_filter. Parameters ---------- args : list A list of arguments for sigma_filter Returns ------- None """ # an easier to debug traceback when multiprocessing # thanks to https://stackoverflow.com/a/16618842/1710603 try: return sigma_filter(*args) except: import traceback raise Exception("".join(traceback.format_exception(*sys.exc_info())))
[ "def", "_sf2", "(", "args", ")", ":", "# an easier to debug traceback when multiprocessing", "# thanks to https://stackoverflow.com/a/16618842/1710603", "try", ":", "return", "sigma_filter", "(", "*", "args", ")", "except", ":", "import", "traceback", "raise", "Exception", "(", "\"\"", ".", "join", "(", "traceback", ".", "format_exception", "(", "*", "sys", ".", "exc_info", "(", ")", ")", ")", ")" ]
A shallow wrapper for sigma_filter. Parameters ---------- args : list A list of arguments for sigma_filter Returns ------- None
[ "A", "shallow", "wrapper", "for", "sigma_filter", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/BANE.py#L105-L124
PaulHancock/Aegean
AegeanTools/BANE.py
sigma_filter
def sigma_filter(filename, region, step_size, box_size, shape, domask, sid): """ Calculate the background and rms for a sub region of an image. The results are written to shared memory - irms and ibkg. Parameters ---------- filename : string Fits file to open region : list Region within the fits file that is to be processed. (row_min, row_max). step_size : (int, int) The filtering step size box_size : (int, int) The size of the box over which the filter is applied (each step). shape : tuple The shape of the fits image domask : bool If true then copy the data mask to the output. sid : int The stripe number Returns ------- None """ ymin, ymax = region logging.debug('rows {0}-{1} starting at {2}'.format(ymin, ymax, strftime("%Y-%m-%d %H:%M:%S", gmtime()))) # cut out the region of interest plus 1/2 the box size, but clip to the image size data_row_min = max(0, ymin - box_size[0]//2) data_row_max = min(shape[0], ymax + box_size[0]//2) # Figure out how many axes are in the datafile NAXIS = fits.getheader(filename)["NAXIS"] with fits.open(filename, memmap=True) as a: if NAXIS == 2: data = a[0].section[data_row_min:data_row_max, 0:shape[1]] elif NAXIS == 3: data = a[0].section[0, data_row_min:data_row_max, 0:shape[1]] elif NAXIS == 4: data = a[0].section[0, 0, data_row_min:data_row_max, 0:shape[1]] else: logging.error("Too many NAXIS for me {0}".format(NAXIS)) logging.error("fix your file to be more sane") raise Exception("Too many NAXIS") row_len = shape[1] logging.debug('data size is {0}'.format(data.shape)) def box(r, c): """ calculate the boundaries of the box centered at r,c with size = box_size """ r_min = max(0, r - box_size[0] // 2) r_max = min(data.shape[0] - 1, r + box_size[0] // 2) c_min = max(0, c - box_size[1] // 2) c_max = min(data.shape[1] - 1, c + box_size[1] // 2) return r_min, r_max, c_min, c_max # set up a grid of rows/cols at which we will compute the bkg/rms rows = list(range(ymin-data_row_min, ymax-data_row_min, step_size[0])) rows.append(ymax-data_row_min) cols = list(range(0, shape[1], step_size[1])) cols.append(shape[1]) # store the computed bkg/rms in this smaller array vals = np.zeros(shape=(len(rows),len(cols))) for i, row in enumerate(rows): for j, col in enumerate(cols): r_min, r_max, c_min, c_max = box(row, col) new = data[r_min:r_max, c_min:c_max] new = np.ravel(new) bkg, _ = sigmaclip(new, 3, 3) vals[i,j] = bkg # indices of all the pixels within our region gr, gc = np.mgrid[ymin-data_row_min:ymax-data_row_min, 0:shape[1]] logging.debug("Interpolating bkg to sharemem") ifunc = RegularGridInterpolator((rows, cols), vals) for i in range(gr.shape[0]): row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32) start_idx = np.ravel_multi_index((ymin+i, 0), shape) end_idx = start_idx + row_len ibkg[start_idx:end_idx] = row # np.ctypeslib.as_ctypes(row) del ifunc logging.debug(" ... done writing bkg") # signal that the bkg is done for this region, and wait for neighbours barrier(bkg_events, sid) logging.debug("{0} background subtraction".format(sid)) for i in range(data_row_max - data_row_min): start_idx = np.ravel_multi_index((data_row_min + i, 0), shape) end_idx = start_idx + row_len data[i, :] = data[i, :] - ibkg[start_idx:end_idx] # reset/recycle the vals array vals[:] = 0 for i, row in enumerate(rows): for j, col in enumerate(cols): r_min, r_max, c_min, c_max = box(row, col) new = data[r_min:r_max, c_min:c_max] new = np.ravel(new) _ , rms = sigmaclip(new, 3, 3) vals[i,j] = rms logging.debug("Interpolating rm to sharemem rms") ifunc = RegularGridInterpolator((rows, cols), vals) for i in range(gr.shape[0]): row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32) start_idx = np.ravel_multi_index((ymin+i, 0), shape) end_idx = start_idx + row_len irms[start_idx:end_idx] = row # np.ctypeslib.as_ctypes(row) del ifunc logging.debug(" .. done writing rms") if domask: barrier(mask_events, sid) logging.debug("applying mask") for i in range(gr.shape[0]): mask = np.where(np.bitwise_not(np.isfinite(data[i + ymin-data_row_min,:])))[0] for j in mask: idx = np.ravel_multi_index((i + ymin,j),shape) ibkg[idx] = np.nan irms[idx] = np.nan logging.debug(" ... done applying mask") logging.debug('rows {0}-{1} finished at {2}'.format(ymin, ymax, strftime("%Y-%m-%d %H:%M:%S", gmtime()))) return
python
def sigma_filter(filename, region, step_size, box_size, shape, domask, sid): """ Calculate the background and rms for a sub region of an image. The results are written to shared memory - irms and ibkg. Parameters ---------- filename : string Fits file to open region : list Region within the fits file that is to be processed. (row_min, row_max). step_size : (int, int) The filtering step size box_size : (int, int) The size of the box over which the filter is applied (each step). shape : tuple The shape of the fits image domask : bool If true then copy the data mask to the output. sid : int The stripe number Returns ------- None """ ymin, ymax = region logging.debug('rows {0}-{1} starting at {2}'.format(ymin, ymax, strftime("%Y-%m-%d %H:%M:%S", gmtime()))) # cut out the region of interest plus 1/2 the box size, but clip to the image size data_row_min = max(0, ymin - box_size[0]//2) data_row_max = min(shape[0], ymax + box_size[0]//2) # Figure out how many axes are in the datafile NAXIS = fits.getheader(filename)["NAXIS"] with fits.open(filename, memmap=True) as a: if NAXIS == 2: data = a[0].section[data_row_min:data_row_max, 0:shape[1]] elif NAXIS == 3: data = a[0].section[0, data_row_min:data_row_max, 0:shape[1]] elif NAXIS == 4: data = a[0].section[0, 0, data_row_min:data_row_max, 0:shape[1]] else: logging.error("Too many NAXIS for me {0}".format(NAXIS)) logging.error("fix your file to be more sane") raise Exception("Too many NAXIS") row_len = shape[1] logging.debug('data size is {0}'.format(data.shape)) def box(r, c): """ calculate the boundaries of the box centered at r,c with size = box_size """ r_min = max(0, r - box_size[0] // 2) r_max = min(data.shape[0] - 1, r + box_size[0] // 2) c_min = max(0, c - box_size[1] // 2) c_max = min(data.shape[1] - 1, c + box_size[1] // 2) return r_min, r_max, c_min, c_max # set up a grid of rows/cols at which we will compute the bkg/rms rows = list(range(ymin-data_row_min, ymax-data_row_min, step_size[0])) rows.append(ymax-data_row_min) cols = list(range(0, shape[1], step_size[1])) cols.append(shape[1]) # store the computed bkg/rms in this smaller array vals = np.zeros(shape=(len(rows),len(cols))) for i, row in enumerate(rows): for j, col in enumerate(cols): r_min, r_max, c_min, c_max = box(row, col) new = data[r_min:r_max, c_min:c_max] new = np.ravel(new) bkg, _ = sigmaclip(new, 3, 3) vals[i,j] = bkg # indices of all the pixels within our region gr, gc = np.mgrid[ymin-data_row_min:ymax-data_row_min, 0:shape[1]] logging.debug("Interpolating bkg to sharemem") ifunc = RegularGridInterpolator((rows, cols), vals) for i in range(gr.shape[0]): row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32) start_idx = np.ravel_multi_index((ymin+i, 0), shape) end_idx = start_idx + row_len ibkg[start_idx:end_idx] = row # np.ctypeslib.as_ctypes(row) del ifunc logging.debug(" ... done writing bkg") # signal that the bkg is done for this region, and wait for neighbours barrier(bkg_events, sid) logging.debug("{0} background subtraction".format(sid)) for i in range(data_row_max - data_row_min): start_idx = np.ravel_multi_index((data_row_min + i, 0), shape) end_idx = start_idx + row_len data[i, :] = data[i, :] - ibkg[start_idx:end_idx] # reset/recycle the vals array vals[:] = 0 for i, row in enumerate(rows): for j, col in enumerate(cols): r_min, r_max, c_min, c_max = box(row, col) new = data[r_min:r_max, c_min:c_max] new = np.ravel(new) _ , rms = sigmaclip(new, 3, 3) vals[i,j] = rms logging.debug("Interpolating rm to sharemem rms") ifunc = RegularGridInterpolator((rows, cols), vals) for i in range(gr.shape[0]): row = np.array(ifunc((gr[i], gc[i])), dtype=np.float32) start_idx = np.ravel_multi_index((ymin+i, 0), shape) end_idx = start_idx + row_len irms[start_idx:end_idx] = row # np.ctypeslib.as_ctypes(row) del ifunc logging.debug(" .. done writing rms") if domask: barrier(mask_events, sid) logging.debug("applying mask") for i in range(gr.shape[0]): mask = np.where(np.bitwise_not(np.isfinite(data[i + ymin-data_row_min,:])))[0] for j in mask: idx = np.ravel_multi_index((i + ymin,j),shape) ibkg[idx] = np.nan irms[idx] = np.nan logging.debug(" ... done applying mask") logging.debug('rows {0}-{1} finished at {2}'.format(ymin, ymax, strftime("%Y-%m-%d %H:%M:%S", gmtime()))) return
[ "def", "sigma_filter", "(", "filename", ",", "region", ",", "step_size", ",", "box_size", ",", "shape", ",", "domask", ",", "sid", ")", ":", "ymin", ",", "ymax", "=", "region", "logging", ".", "debug", "(", "'rows {0}-{1} starting at {2}'", ".", "format", "(", "ymin", ",", "ymax", ",", "strftime", "(", "\"%Y-%m-%d %H:%M:%S\"", ",", "gmtime", "(", ")", ")", ")", ")", "# cut out the region of interest plus 1/2 the box size, but clip to the image size", "data_row_min", "=", "max", "(", "0", ",", "ymin", "-", "box_size", "[", "0", "]", "//", "2", ")", "data_row_max", "=", "min", "(", "shape", "[", "0", "]", ",", "ymax", "+", "box_size", "[", "0", "]", "//", "2", ")", "# Figure out how many axes are in the datafile", "NAXIS", "=", "fits", ".", "getheader", "(", "filename", ")", "[", "\"NAXIS\"", "]", "with", "fits", ".", "open", "(", "filename", ",", "memmap", "=", "True", ")", "as", "a", ":", "if", "NAXIS", "==", "2", ":", "data", "=", "a", "[", "0", "]", ".", "section", "[", "data_row_min", ":", "data_row_max", ",", "0", ":", "shape", "[", "1", "]", "]", "elif", "NAXIS", "==", "3", ":", "data", "=", "a", "[", "0", "]", ".", "section", "[", "0", ",", "data_row_min", ":", "data_row_max", ",", "0", ":", "shape", "[", "1", "]", "]", "elif", "NAXIS", "==", "4", ":", "data", "=", "a", "[", "0", "]", ".", "section", "[", "0", ",", "0", ",", "data_row_min", ":", "data_row_max", ",", "0", ":", "shape", "[", "1", "]", "]", "else", ":", "logging", ".", "error", "(", "\"Too many NAXIS for me {0}\"", ".", "format", "(", "NAXIS", ")", ")", "logging", ".", "error", "(", "\"fix your file to be more sane\"", ")", "raise", "Exception", "(", "\"Too many NAXIS\"", ")", "row_len", "=", "shape", "[", "1", "]", "logging", ".", "debug", "(", "'data size is {0}'", ".", "format", "(", "data", ".", "shape", ")", ")", "def", "box", "(", "r", ",", "c", ")", ":", "\"\"\"\n calculate the boundaries of the box centered at r,c\n with size = box_size\n \"\"\"", "r_min", "=", "max", "(", "0", ",", "r", "-", "box_size", "[", "0", "]", "//", "2", ")", "r_max", "=", "min", "(", "data", ".", "shape", "[", "0", "]", "-", "1", ",", "r", "+", "box_size", "[", "0", "]", "//", "2", ")", "c_min", "=", "max", "(", "0", ",", "c", "-", "box_size", "[", "1", "]", "//", "2", ")", "c_max", "=", "min", "(", "data", ".", "shape", "[", "1", "]", "-", "1", ",", "c", "+", "box_size", "[", "1", "]", "//", "2", ")", "return", "r_min", ",", "r_max", ",", "c_min", ",", "c_max", "# set up a grid of rows/cols at which we will compute the bkg/rms", "rows", "=", "list", "(", "range", "(", "ymin", "-", "data_row_min", ",", "ymax", "-", "data_row_min", ",", "step_size", "[", "0", "]", ")", ")", "rows", ".", "append", "(", "ymax", "-", "data_row_min", ")", "cols", "=", "list", "(", "range", "(", "0", ",", "shape", "[", "1", "]", ",", "step_size", "[", "1", "]", ")", ")", "cols", ".", "append", "(", "shape", "[", "1", "]", ")", "# store the computed bkg/rms in this smaller array", "vals", "=", "np", ".", "zeros", "(", "shape", "=", "(", "len", "(", "rows", ")", ",", "len", "(", "cols", ")", ")", ")", "for", "i", ",", "row", "in", "enumerate", "(", "rows", ")", ":", "for", "j", ",", "col", "in", "enumerate", "(", "cols", ")", ":", "r_min", ",", "r_max", ",", "c_min", ",", "c_max", "=", "box", "(", "row", ",", "col", ")", "new", "=", "data", "[", "r_min", ":", "r_max", ",", "c_min", ":", "c_max", "]", "new", "=", "np", ".", "ravel", "(", "new", ")", "bkg", ",", "_", "=", "sigmaclip", "(", "new", ",", "3", ",", "3", ")", "vals", "[", "i", ",", "j", "]", "=", "bkg", "# indices of all the pixels within our region", "gr", ",", "gc", "=", "np", ".", "mgrid", "[", "ymin", "-", "data_row_min", ":", "ymax", "-", "data_row_min", ",", "0", ":", "shape", "[", "1", "]", "]", "logging", ".", "debug", "(", "\"Interpolating bkg to sharemem\"", ")", "ifunc", "=", "RegularGridInterpolator", "(", "(", "rows", ",", "cols", ")", ",", "vals", ")", "for", "i", "in", "range", "(", "gr", ".", "shape", "[", "0", "]", ")", ":", "row", "=", "np", ".", "array", "(", "ifunc", "(", "(", "gr", "[", "i", "]", ",", "gc", "[", "i", "]", ")", ")", ",", "dtype", "=", "np", ".", "float32", ")", "start_idx", "=", "np", ".", "ravel_multi_index", "(", "(", "ymin", "+", "i", ",", "0", ")", ",", "shape", ")", "end_idx", "=", "start_idx", "+", "row_len", "ibkg", "[", "start_idx", ":", "end_idx", "]", "=", "row", "# np.ctypeslib.as_ctypes(row)", "del", "ifunc", "logging", ".", "debug", "(", "\" ... done writing bkg\"", ")", "# signal that the bkg is done for this region, and wait for neighbours", "barrier", "(", "bkg_events", ",", "sid", ")", "logging", ".", "debug", "(", "\"{0} background subtraction\"", ".", "format", "(", "sid", ")", ")", "for", "i", "in", "range", "(", "data_row_max", "-", "data_row_min", ")", ":", "start_idx", "=", "np", ".", "ravel_multi_index", "(", "(", "data_row_min", "+", "i", ",", "0", ")", ",", "shape", ")", "end_idx", "=", "start_idx", "+", "row_len", "data", "[", "i", ",", ":", "]", "=", "data", "[", "i", ",", ":", "]", "-", "ibkg", "[", "start_idx", ":", "end_idx", "]", "# reset/recycle the vals array", "vals", "[", ":", "]", "=", "0", "for", "i", ",", "row", "in", "enumerate", "(", "rows", ")", ":", "for", "j", ",", "col", "in", "enumerate", "(", "cols", ")", ":", "r_min", ",", "r_max", ",", "c_min", ",", "c_max", "=", "box", "(", "row", ",", "col", ")", "new", "=", "data", "[", "r_min", ":", "r_max", ",", "c_min", ":", "c_max", "]", "new", "=", "np", ".", "ravel", "(", "new", ")", "_", ",", "rms", "=", "sigmaclip", "(", "new", ",", "3", ",", "3", ")", "vals", "[", "i", ",", "j", "]", "=", "rms", "logging", ".", "debug", "(", "\"Interpolating rm to sharemem rms\"", ")", "ifunc", "=", "RegularGridInterpolator", "(", "(", "rows", ",", "cols", ")", ",", "vals", ")", "for", "i", "in", "range", "(", "gr", ".", "shape", "[", "0", "]", ")", ":", "row", "=", "np", ".", "array", "(", "ifunc", "(", "(", "gr", "[", "i", "]", ",", "gc", "[", "i", "]", ")", ")", ",", "dtype", "=", "np", ".", "float32", ")", "start_idx", "=", "np", ".", "ravel_multi_index", "(", "(", "ymin", "+", "i", ",", "0", ")", ",", "shape", ")", "end_idx", "=", "start_idx", "+", "row_len", "irms", "[", "start_idx", ":", "end_idx", "]", "=", "row", "# np.ctypeslib.as_ctypes(row)", "del", "ifunc", "logging", ".", "debug", "(", "\" .. done writing rms\"", ")", "if", "domask", ":", "barrier", "(", "mask_events", ",", "sid", ")", "logging", ".", "debug", "(", "\"applying mask\"", ")", "for", "i", "in", "range", "(", "gr", ".", "shape", "[", "0", "]", ")", ":", "mask", "=", "np", ".", "where", "(", "np", ".", "bitwise_not", "(", "np", ".", "isfinite", "(", "data", "[", "i", "+", "ymin", "-", "data_row_min", ",", ":", "]", ")", ")", ")", "[", "0", "]", "for", "j", "in", "mask", ":", "idx", "=", "np", ".", "ravel_multi_index", "(", "(", "i", "+", "ymin", ",", "j", ")", ",", "shape", ")", "ibkg", "[", "idx", "]", "=", "np", ".", "nan", "irms", "[", "idx", "]", "=", "np", ".", "nan", "logging", ".", "debug", "(", "\" ... done applying mask\"", ")", "logging", ".", "debug", "(", "'rows {0}-{1} finished at {2}'", ".", "format", "(", "ymin", ",", "ymax", ",", "strftime", "(", "\"%Y-%m-%d %H:%M:%S\"", ",", "gmtime", "(", ")", ")", ")", ")", "return" ]
Calculate the background and rms for a sub region of an image. The results are written to shared memory - irms and ibkg. Parameters ---------- filename : string Fits file to open region : list Region within the fits file that is to be processed. (row_min, row_max). step_size : (int, int) The filtering step size box_size : (int, int) The size of the box over which the filter is applied (each step). shape : tuple The shape of the fits image domask : bool If true then copy the data mask to the output. sid : int The stripe number Returns ------- None
[ "Calculate", "the", "background", "and", "rms", "for", "a", "sub", "region", "of", "an", "image", ".", "The", "results", "are", "written", "to", "shared", "memory", "-", "irms", "and", "ibkg", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/BANE.py#L127-L267
PaulHancock/Aegean
AegeanTools/BANE.py
filter_mc_sharemem
def filter_mc_sharemem(filename, step_size, box_size, cores, shape, nslice=None, domask=True): """ Calculate the background and noise images corresponding to the input file. The calculation is done via a box-car approach and uses multiple cores and shared memory. Parameters ---------- filename : str Filename to be filtered. step_size : (int, int) Step size for the filter. box_size : (int, int) Box size for the filter. cores : int Number of cores to use. If None then use all available. nslice : int The image will be divided into this many horizontal stripes for processing. Default = None = equal to cores shape : (int, int) The shape of the image in the given file. domask : bool True(Default) = copy data mask to output. Returns ------- bkg, rms : numpy.ndarray The interpolated background and noise images. """ if cores is None: cores = multiprocessing.cpu_count() if (nslice is None) or (cores==1): nslice = cores img_y, img_x = shape # initialise some shared memory global ibkg # bkg = np.ctypeslib.as_ctypes(np.empty(shape, dtype=np.float32)) # ibkg = multiprocessing.sharedctypes.Array(bkg._type_, bkg, lock=True) ibkg = multiprocessing.Array('f', img_y*img_x) global irms #rms = np.ctypeslib.as_ctypes(np.empty(shape, dtype=np.float32)) #irms = multiprocessing.sharedctypes.Array(rms._type_, rms, lock=True) irms = multiprocessing.Array('f', img_y * img_x) logging.info("using {0} cores".format(cores)) logging.info("using {0} stripes".format(nslice)) if nslice > 1: # box widths should be multiples of the step_size, and not zero width_y = int(max(img_y/nslice/step_size[1], 1) * step_size[1]) # locations of the box edges ymins = list(range(0, img_y, width_y)) ymaxs = list(range(width_y, img_y, width_y)) ymaxs.append(img_y) else: ymins = [0] ymaxs = [img_y] logging.debug("ymins {0}".format(ymins)) logging.debug("ymaxs {0}".format(ymaxs)) # create an event per stripe global bkg_events, mask_events bkg_events = [multiprocessing.Event() for _ in range(len(ymaxs))] mask_events = [multiprocessing.Event() for _ in range(len(ymaxs))] args = [] for i, region in enumerate(zip(ymins, ymaxs)): args.append((filename, region, step_size, box_size, shape, domask, i)) # start a new process for each task, hopefully to reduce residual memory use pool = multiprocessing.Pool(processes=cores, maxtasksperchild=1) try: # chunksize=1 ensures that we only send a single task to each process pool.map_async(_sf2, args, chunksize=1).get(timeout=10000000) except KeyboardInterrupt: logging.error("Caught keyboard interrupt") pool.close() sys.exit(1) pool.close() pool.join() bkg = np.reshape(np.array(ibkg[:], dtype=np.float32), shape) rms = np.reshape(np.array(irms[:], dtype=np.float32), shape) del ibkg, irms return bkg, rms
python
def filter_mc_sharemem(filename, step_size, box_size, cores, shape, nslice=None, domask=True): """ Calculate the background and noise images corresponding to the input file. The calculation is done via a box-car approach and uses multiple cores and shared memory. Parameters ---------- filename : str Filename to be filtered. step_size : (int, int) Step size for the filter. box_size : (int, int) Box size for the filter. cores : int Number of cores to use. If None then use all available. nslice : int The image will be divided into this many horizontal stripes for processing. Default = None = equal to cores shape : (int, int) The shape of the image in the given file. domask : bool True(Default) = copy data mask to output. Returns ------- bkg, rms : numpy.ndarray The interpolated background and noise images. """ if cores is None: cores = multiprocessing.cpu_count() if (nslice is None) or (cores==1): nslice = cores img_y, img_x = shape # initialise some shared memory global ibkg # bkg = np.ctypeslib.as_ctypes(np.empty(shape, dtype=np.float32)) # ibkg = multiprocessing.sharedctypes.Array(bkg._type_, bkg, lock=True) ibkg = multiprocessing.Array('f', img_y*img_x) global irms #rms = np.ctypeslib.as_ctypes(np.empty(shape, dtype=np.float32)) #irms = multiprocessing.sharedctypes.Array(rms._type_, rms, lock=True) irms = multiprocessing.Array('f', img_y * img_x) logging.info("using {0} cores".format(cores)) logging.info("using {0} stripes".format(nslice)) if nslice > 1: # box widths should be multiples of the step_size, and not zero width_y = int(max(img_y/nslice/step_size[1], 1) * step_size[1]) # locations of the box edges ymins = list(range(0, img_y, width_y)) ymaxs = list(range(width_y, img_y, width_y)) ymaxs.append(img_y) else: ymins = [0] ymaxs = [img_y] logging.debug("ymins {0}".format(ymins)) logging.debug("ymaxs {0}".format(ymaxs)) # create an event per stripe global bkg_events, mask_events bkg_events = [multiprocessing.Event() for _ in range(len(ymaxs))] mask_events = [multiprocessing.Event() for _ in range(len(ymaxs))] args = [] for i, region in enumerate(zip(ymins, ymaxs)): args.append((filename, region, step_size, box_size, shape, domask, i)) # start a new process for each task, hopefully to reduce residual memory use pool = multiprocessing.Pool(processes=cores, maxtasksperchild=1) try: # chunksize=1 ensures that we only send a single task to each process pool.map_async(_sf2, args, chunksize=1).get(timeout=10000000) except KeyboardInterrupt: logging.error("Caught keyboard interrupt") pool.close() sys.exit(1) pool.close() pool.join() bkg = np.reshape(np.array(ibkg[:], dtype=np.float32), shape) rms = np.reshape(np.array(irms[:], dtype=np.float32), shape) del ibkg, irms return bkg, rms
[ "def", "filter_mc_sharemem", "(", "filename", ",", "step_size", ",", "box_size", ",", "cores", ",", "shape", ",", "nslice", "=", "None", ",", "domask", "=", "True", ")", ":", "if", "cores", "is", "None", ":", "cores", "=", "multiprocessing", ".", "cpu_count", "(", ")", "if", "(", "nslice", "is", "None", ")", "or", "(", "cores", "==", "1", ")", ":", "nslice", "=", "cores", "img_y", ",", "img_x", "=", "shape", "# initialise some shared memory", "global", "ibkg", "# bkg = np.ctypeslib.as_ctypes(np.empty(shape, dtype=np.float32))", "# ibkg = multiprocessing.sharedctypes.Array(bkg._type_, bkg, lock=True)", "ibkg", "=", "multiprocessing", ".", "Array", "(", "'f'", ",", "img_y", "*", "img_x", ")", "global", "irms", "#rms = np.ctypeslib.as_ctypes(np.empty(shape, dtype=np.float32))", "#irms = multiprocessing.sharedctypes.Array(rms._type_, rms, lock=True)", "irms", "=", "multiprocessing", ".", "Array", "(", "'f'", ",", "img_y", "*", "img_x", ")", "logging", ".", "info", "(", "\"using {0} cores\"", ".", "format", "(", "cores", ")", ")", "logging", ".", "info", "(", "\"using {0} stripes\"", ".", "format", "(", "nslice", ")", ")", "if", "nslice", ">", "1", ":", "# box widths should be multiples of the step_size, and not zero", "width_y", "=", "int", "(", "max", "(", "img_y", "/", "nslice", "/", "step_size", "[", "1", "]", ",", "1", ")", "*", "step_size", "[", "1", "]", ")", "# locations of the box edges", "ymins", "=", "list", "(", "range", "(", "0", ",", "img_y", ",", "width_y", ")", ")", "ymaxs", "=", "list", "(", "range", "(", "width_y", ",", "img_y", ",", "width_y", ")", ")", "ymaxs", ".", "append", "(", "img_y", ")", "else", ":", "ymins", "=", "[", "0", "]", "ymaxs", "=", "[", "img_y", "]", "logging", ".", "debug", "(", "\"ymins {0}\"", ".", "format", "(", "ymins", ")", ")", "logging", ".", "debug", "(", "\"ymaxs {0}\"", ".", "format", "(", "ymaxs", ")", ")", "# create an event per stripe", "global", "bkg_events", ",", "mask_events", "bkg_events", "=", "[", "multiprocessing", ".", "Event", "(", ")", "for", "_", "in", "range", "(", "len", "(", "ymaxs", ")", ")", "]", "mask_events", "=", "[", "multiprocessing", ".", "Event", "(", ")", "for", "_", "in", "range", "(", "len", "(", "ymaxs", ")", ")", "]", "args", "=", "[", "]", "for", "i", ",", "region", "in", "enumerate", "(", "zip", "(", "ymins", ",", "ymaxs", ")", ")", ":", "args", ".", "append", "(", "(", "filename", ",", "region", ",", "step_size", ",", "box_size", ",", "shape", ",", "domask", ",", "i", ")", ")", "# start a new process for each task, hopefully to reduce residual memory use", "pool", "=", "multiprocessing", ".", "Pool", "(", "processes", "=", "cores", ",", "maxtasksperchild", "=", "1", ")", "try", ":", "# chunksize=1 ensures that we only send a single task to each process", "pool", ".", "map_async", "(", "_sf2", ",", "args", ",", "chunksize", "=", "1", ")", ".", "get", "(", "timeout", "=", "10000000", ")", "except", "KeyboardInterrupt", ":", "logging", ".", "error", "(", "\"Caught keyboard interrupt\"", ")", "pool", ".", "close", "(", ")", "sys", ".", "exit", "(", "1", ")", "pool", ".", "close", "(", ")", "pool", ".", "join", "(", ")", "bkg", "=", "np", ".", "reshape", "(", "np", ".", "array", "(", "ibkg", "[", ":", "]", ",", "dtype", "=", "np", ".", "float32", ")", ",", "shape", ")", "rms", "=", "np", ".", "reshape", "(", "np", ".", "array", "(", "irms", "[", ":", "]", ",", "dtype", "=", "np", ".", "float32", ")", ",", "shape", ")", "del", "ibkg", ",", "irms", "return", "bkg", ",", "rms" ]
Calculate the background and noise images corresponding to the input file. The calculation is done via a box-car approach and uses multiple cores and shared memory. Parameters ---------- filename : str Filename to be filtered. step_size : (int, int) Step size for the filter. box_size : (int, int) Box size for the filter. cores : int Number of cores to use. If None then use all available. nslice : int The image will be divided into this many horizontal stripes for processing. Default = None = equal to cores shape : (int, int) The shape of the image in the given file. domask : bool True(Default) = copy data mask to output. Returns ------- bkg, rms : numpy.ndarray The interpolated background and noise images.
[ "Calculate", "the", "background", "and", "noise", "images", "corresponding", "to", "the", "input", "file", ".", "The", "calculation", "is", "done", "via", "a", "box", "-", "car", "approach", "and", "uses", "multiple", "cores", "and", "shared", "memory", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/BANE.py#L270-L363
PaulHancock/Aegean
AegeanTools/BANE.py
filter_image
def filter_image(im_name, out_base, step_size=None, box_size=None, twopass=False, cores=None, mask=True, compressed=False, nslice=None): """ Create a background and noise image from an input image. Resulting images are written to `outbase_bkg.fits` and `outbase_rms.fits` Parameters ---------- im_name : str or HDUList Image to filter. Either a string filename or an astropy.io.fits.HDUList. out_base : str The output filename base. Will be modified to make _bkg and _rms files. step_size : (int,int) Tuple of the x,y step size in pixels box_size : (int,int) The size of the box in piexls twopass : bool Perform a second pass calculation to ensure that the noise is not contaminated by the background. Default = False cores : int Number of CPU corse to use. Default = all available nslice : int The image will be divided into this many horizontal stripes for processing. Default = None = equal to cores mask : bool Mask the output array to contain np.nna wherever the input array is nan or not finite. Default = true compressed : bool Return a compressed version of the background/noise images. Default = False Returns ------- None """ header = fits.getheader(im_name) shape = (header['NAXIS2'],header['NAXIS1']) if step_size is None: if 'BMAJ' in header and 'BMIN' in header: beam_size = np.sqrt(abs(header['BMAJ']*header['BMIN'])) if 'CDELT1' in header: pix_scale = np.sqrt(abs(header['CDELT1']*header['CDELT2'])) elif 'CD1_1' in header: pix_scale = np.sqrt(abs(header['CD1_1']*header['CD2_2'])) if 'CD1_2' in header and 'CD2_1' in header: if header['CD1_2'] != 0 or header['CD2_1']!=0: logging.warning("CD1_2 and/or CD2_1 are non-zero and I don't know what to do with them") logging.warning("Ingoring them") else: logging.warning("Cannot determine pixel scale, assuming 4 pixels per beam") pix_scale = beam_size/4. # default to 4x the synthesized beam width step_size = int(np.ceil(4*beam_size/pix_scale)) else: logging.info("BMAJ and/or BMIN not in fits header.") logging.info("Assuming 4 pix/beam, so we have step_size = 16 pixels") step_size = 16 step_size = (step_size, step_size) if box_size is None: # default to 6x the step size so we have ~ 30beams box_size = (step_size[0]*6, step_size[1]*6) if compressed: if not step_size[0] == step_size[1]: step_size = (min(step_size), min(step_size)) logging.info("Changing grid to be {0} so we can compress the output".format(step_size)) logging.info("using grid_size {0}, box_size {1}".format(step_size,box_size)) logging.info("on data shape {0}".format(shape)) bkg, rms = filter_mc_sharemem(im_name, step_size=step_size, box_size=box_size, cores=cores, shape=shape, nslice=nslice, domask=mask) logging.info("done") bkg_out = '_'.join([os.path.expanduser(out_base), 'bkg.fits']) rms_out = '_'.join([os.path.expanduser(out_base), 'rms.fits']) # add a comment to the fits header header['HISTORY'] = 'BANE {0}-({1})'.format(__version__, __date__) # compress if compressed: hdu = fits.PrimaryHDU(bkg) hdu.header = copy.deepcopy(header) hdulist = fits.HDUList([hdu]) compress(hdulist, step_size[0], bkg_out) hdulist[0].header = copy.deepcopy(header) hdulist[0].data = rms compress(hdulist, step_size[0], rms_out) return write_fits(bkg, header, bkg_out) write_fits(rms, header, rms_out)
python
def filter_image(im_name, out_base, step_size=None, box_size=None, twopass=False, cores=None, mask=True, compressed=False, nslice=None): """ Create a background and noise image from an input image. Resulting images are written to `outbase_bkg.fits` and `outbase_rms.fits` Parameters ---------- im_name : str or HDUList Image to filter. Either a string filename or an astropy.io.fits.HDUList. out_base : str The output filename base. Will be modified to make _bkg and _rms files. step_size : (int,int) Tuple of the x,y step size in pixels box_size : (int,int) The size of the box in piexls twopass : bool Perform a second pass calculation to ensure that the noise is not contaminated by the background. Default = False cores : int Number of CPU corse to use. Default = all available nslice : int The image will be divided into this many horizontal stripes for processing. Default = None = equal to cores mask : bool Mask the output array to contain np.nna wherever the input array is nan or not finite. Default = true compressed : bool Return a compressed version of the background/noise images. Default = False Returns ------- None """ header = fits.getheader(im_name) shape = (header['NAXIS2'],header['NAXIS1']) if step_size is None: if 'BMAJ' in header and 'BMIN' in header: beam_size = np.sqrt(abs(header['BMAJ']*header['BMIN'])) if 'CDELT1' in header: pix_scale = np.sqrt(abs(header['CDELT1']*header['CDELT2'])) elif 'CD1_1' in header: pix_scale = np.sqrt(abs(header['CD1_1']*header['CD2_2'])) if 'CD1_2' in header and 'CD2_1' in header: if header['CD1_2'] != 0 or header['CD2_1']!=0: logging.warning("CD1_2 and/or CD2_1 are non-zero and I don't know what to do with them") logging.warning("Ingoring them") else: logging.warning("Cannot determine pixel scale, assuming 4 pixels per beam") pix_scale = beam_size/4. # default to 4x the synthesized beam width step_size = int(np.ceil(4*beam_size/pix_scale)) else: logging.info("BMAJ and/or BMIN not in fits header.") logging.info("Assuming 4 pix/beam, so we have step_size = 16 pixels") step_size = 16 step_size = (step_size, step_size) if box_size is None: # default to 6x the step size so we have ~ 30beams box_size = (step_size[0]*6, step_size[1]*6) if compressed: if not step_size[0] == step_size[1]: step_size = (min(step_size), min(step_size)) logging.info("Changing grid to be {0} so we can compress the output".format(step_size)) logging.info("using grid_size {0}, box_size {1}".format(step_size,box_size)) logging.info("on data shape {0}".format(shape)) bkg, rms = filter_mc_sharemem(im_name, step_size=step_size, box_size=box_size, cores=cores, shape=shape, nslice=nslice, domask=mask) logging.info("done") bkg_out = '_'.join([os.path.expanduser(out_base), 'bkg.fits']) rms_out = '_'.join([os.path.expanduser(out_base), 'rms.fits']) # add a comment to the fits header header['HISTORY'] = 'BANE {0}-({1})'.format(__version__, __date__) # compress if compressed: hdu = fits.PrimaryHDU(bkg) hdu.header = copy.deepcopy(header) hdulist = fits.HDUList([hdu]) compress(hdulist, step_size[0], bkg_out) hdulist[0].header = copy.deepcopy(header) hdulist[0].data = rms compress(hdulist, step_size[0], rms_out) return write_fits(bkg, header, bkg_out) write_fits(rms, header, rms_out)
[ "def", "filter_image", "(", "im_name", ",", "out_base", ",", "step_size", "=", "None", ",", "box_size", "=", "None", ",", "twopass", "=", "False", ",", "cores", "=", "None", ",", "mask", "=", "True", ",", "compressed", "=", "False", ",", "nslice", "=", "None", ")", ":", "header", "=", "fits", ".", "getheader", "(", "im_name", ")", "shape", "=", "(", "header", "[", "'NAXIS2'", "]", ",", "header", "[", "'NAXIS1'", "]", ")", "if", "step_size", "is", "None", ":", "if", "'BMAJ'", "in", "header", "and", "'BMIN'", "in", "header", ":", "beam_size", "=", "np", ".", "sqrt", "(", "abs", "(", "header", "[", "'BMAJ'", "]", "*", "header", "[", "'BMIN'", "]", ")", ")", "if", "'CDELT1'", "in", "header", ":", "pix_scale", "=", "np", ".", "sqrt", "(", "abs", "(", "header", "[", "'CDELT1'", "]", "*", "header", "[", "'CDELT2'", "]", ")", ")", "elif", "'CD1_1'", "in", "header", ":", "pix_scale", "=", "np", ".", "sqrt", "(", "abs", "(", "header", "[", "'CD1_1'", "]", "*", "header", "[", "'CD2_2'", "]", ")", ")", "if", "'CD1_2'", "in", "header", "and", "'CD2_1'", "in", "header", ":", "if", "header", "[", "'CD1_2'", "]", "!=", "0", "or", "header", "[", "'CD2_1'", "]", "!=", "0", ":", "logging", ".", "warning", "(", "\"CD1_2 and/or CD2_1 are non-zero and I don't know what to do with them\"", ")", "logging", ".", "warning", "(", "\"Ingoring them\"", ")", "else", ":", "logging", ".", "warning", "(", "\"Cannot determine pixel scale, assuming 4 pixels per beam\"", ")", "pix_scale", "=", "beam_size", "/", "4.", "# default to 4x the synthesized beam width", "step_size", "=", "int", "(", "np", ".", "ceil", "(", "4", "*", "beam_size", "/", "pix_scale", ")", ")", "else", ":", "logging", ".", "info", "(", "\"BMAJ and/or BMIN not in fits header.\"", ")", "logging", ".", "info", "(", "\"Assuming 4 pix/beam, so we have step_size = 16 pixels\"", ")", "step_size", "=", "16", "step_size", "=", "(", "step_size", ",", "step_size", ")", "if", "box_size", "is", "None", ":", "# default to 6x the step size so we have ~ 30beams", "box_size", "=", "(", "step_size", "[", "0", "]", "*", "6", ",", "step_size", "[", "1", "]", "*", "6", ")", "if", "compressed", ":", "if", "not", "step_size", "[", "0", "]", "==", "step_size", "[", "1", "]", ":", "step_size", "=", "(", "min", "(", "step_size", ")", ",", "min", "(", "step_size", ")", ")", "logging", ".", "info", "(", "\"Changing grid to be {0} so we can compress the output\"", ".", "format", "(", "step_size", ")", ")", "logging", ".", "info", "(", "\"using grid_size {0}, box_size {1}\"", ".", "format", "(", "step_size", ",", "box_size", ")", ")", "logging", ".", "info", "(", "\"on data shape {0}\"", ".", "format", "(", "shape", ")", ")", "bkg", ",", "rms", "=", "filter_mc_sharemem", "(", "im_name", ",", "step_size", "=", "step_size", ",", "box_size", "=", "box_size", ",", "cores", "=", "cores", ",", "shape", "=", "shape", ",", "nslice", "=", "nslice", ",", "domask", "=", "mask", ")", "logging", ".", "info", "(", "\"done\"", ")", "bkg_out", "=", "'_'", ".", "join", "(", "[", "os", ".", "path", ".", "expanduser", "(", "out_base", ")", ",", "'bkg.fits'", "]", ")", "rms_out", "=", "'_'", ".", "join", "(", "[", "os", ".", "path", ".", "expanduser", "(", "out_base", ")", ",", "'rms.fits'", "]", ")", "# add a comment to the fits header", "header", "[", "'HISTORY'", "]", "=", "'BANE {0}-({1})'", ".", "format", "(", "__version__", ",", "__date__", ")", "# compress", "if", "compressed", ":", "hdu", "=", "fits", ".", "PrimaryHDU", "(", "bkg", ")", "hdu", ".", "header", "=", "copy", ".", "deepcopy", "(", "header", ")", "hdulist", "=", "fits", ".", "HDUList", "(", "[", "hdu", "]", ")", "compress", "(", "hdulist", ",", "step_size", "[", "0", "]", ",", "bkg_out", ")", "hdulist", "[", "0", "]", ".", "header", "=", "copy", ".", "deepcopy", "(", "header", ")", "hdulist", "[", "0", "]", ".", "data", "=", "rms", "compress", "(", "hdulist", ",", "step_size", "[", "0", "]", ",", "rms_out", ")", "return", "write_fits", "(", "bkg", ",", "header", ",", "bkg_out", ")", "write_fits", "(", "rms", ",", "header", ",", "rms_out", ")" ]
Create a background and noise image from an input image. Resulting images are written to `outbase_bkg.fits` and `outbase_rms.fits` Parameters ---------- im_name : str or HDUList Image to filter. Either a string filename or an astropy.io.fits.HDUList. out_base : str The output filename base. Will be modified to make _bkg and _rms files. step_size : (int,int) Tuple of the x,y step size in pixels box_size : (int,int) The size of the box in piexls twopass : bool Perform a second pass calculation to ensure that the noise is not contaminated by the background. Default = False cores : int Number of CPU corse to use. Default = all available nslice : int The image will be divided into this many horizontal stripes for processing. Default = None = equal to cores mask : bool Mask the output array to contain np.nna wherever the input array is nan or not finite. Default = true compressed : bool Return a compressed version of the background/noise images. Default = False Returns ------- None
[ "Create", "a", "background", "and", "noise", "image", "from", "an", "input", "image", ".", "Resulting", "images", "are", "written", "to", "outbase_bkg", ".", "fits", "and", "outbase_rms", ".", "fits" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/BANE.py#L366-L461
PaulHancock/Aegean
AegeanTools/BANE.py
write_fits
def write_fits(data, header, file_name): """ Combine data and a fits header to write a fits file. Parameters ---------- data : numpy.ndarray The data to be written. header : astropy.io.fits.hduheader The header for the fits file. file_name : string The file to write Returns ------- None """ hdu = fits.PrimaryHDU(data) hdu.header = header hdulist = fits.HDUList([hdu]) hdulist.writeto(file_name, overwrite=True) logging.info("Wrote {0}".format(file_name)) return
python
def write_fits(data, header, file_name): """ Combine data and a fits header to write a fits file. Parameters ---------- data : numpy.ndarray The data to be written. header : astropy.io.fits.hduheader The header for the fits file. file_name : string The file to write Returns ------- None """ hdu = fits.PrimaryHDU(data) hdu.header = header hdulist = fits.HDUList([hdu]) hdulist.writeto(file_name, overwrite=True) logging.info("Wrote {0}".format(file_name)) return
[ "def", "write_fits", "(", "data", ",", "header", ",", "file_name", ")", ":", "hdu", "=", "fits", ".", "PrimaryHDU", "(", "data", ")", "hdu", ".", "header", "=", "header", "hdulist", "=", "fits", ".", "HDUList", "(", "[", "hdu", "]", ")", "hdulist", ".", "writeto", "(", "file_name", ",", "overwrite", "=", "True", ")", "logging", ".", "info", "(", "\"Wrote {0}\"", ".", "format", "(", "file_name", ")", ")", "return" ]
Combine data and a fits header to write a fits file. Parameters ---------- data : numpy.ndarray The data to be written. header : astropy.io.fits.hduheader The header for the fits file. file_name : string The file to write Returns ------- None
[ "Combine", "data", "and", "a", "fits", "header", "to", "write", "a", "fits", "file", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/BANE.py#L467-L491
PaulHancock/Aegean
AegeanTools/angle_tools.py
dec2dec
def dec2dec(dec): """ Convert sexegessimal RA string into a float in degrees. Parameters ---------- dec : string A string separated representing the Dec. Expected format is `[+- ]hh:mm[:ss.s]` Colons can be replaced with any whit space character. Returns ------- dec : float The Dec in degrees. """ d = dec.replace(':', ' ').split() if len(d) == 2: d.append(0.0) if d[0].startswith('-') or float(d[0]) < 0: return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0 return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0
python
def dec2dec(dec): """ Convert sexegessimal RA string into a float in degrees. Parameters ---------- dec : string A string separated representing the Dec. Expected format is `[+- ]hh:mm[:ss.s]` Colons can be replaced with any whit space character. Returns ------- dec : float The Dec in degrees. """ d = dec.replace(':', ' ').split() if len(d) == 2: d.append(0.0) if d[0].startswith('-') or float(d[0]) < 0: return float(d[0]) - float(d[1]) / 60.0 - float(d[2]) / 3600.0 return float(d[0]) + float(d[1]) / 60.0 + float(d[2]) / 3600.0
[ "def", "dec2dec", "(", "dec", ")", ":", "d", "=", "dec", ".", "replace", "(", "':'", ",", "' '", ")", ".", "split", "(", ")", "if", "len", "(", "d", ")", "==", "2", ":", "d", ".", "append", "(", "0.0", ")", "if", "d", "[", "0", "]", ".", "startswith", "(", "'-'", ")", "or", "float", "(", "d", "[", "0", "]", ")", "<", "0", ":", "return", "float", "(", "d", "[", "0", "]", ")", "-", "float", "(", "d", "[", "1", "]", ")", "/", "60.0", "-", "float", "(", "d", "[", "2", "]", ")", "/", "3600.0", "return", "float", "(", "d", "[", "0", "]", ")", "+", "float", "(", "d", "[", "1", "]", ")", "/", "60.0", "+", "float", "(", "d", "[", "2", "]", ")", "/", "3600.0" ]
Convert sexegessimal RA string into a float in degrees. Parameters ---------- dec : string A string separated representing the Dec. Expected format is `[+- ]hh:mm[:ss.s]` Colons can be replaced with any whit space character. Returns ------- dec : float The Dec in degrees.
[ "Convert", "sexegessimal", "RA", "string", "into", "a", "float", "in", "degrees", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L38-L59
PaulHancock/Aegean
AegeanTools/angle_tools.py
dec2dms
def dec2dms(x): """ Convert decimal degrees into a sexagessimal string in degrees. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format [+-]DD:MM:SS.SS or XX:XX:XX.XX if x is not finite. """ if not np.isfinite(x): return 'XX:XX:XX.XX' if x < 0: sign = '-' else: sign = '+' x = abs(x) d = int(math.floor(x)) m = int(math.floor((x - d) * 60)) s = float(( (x - d) * 60 - m) * 60) return '{0}{1:02d}:{2:02d}:{3:05.2f}'.format(sign, d, m, s)
python
def dec2dms(x): """ Convert decimal degrees into a sexagessimal string in degrees. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format [+-]DD:MM:SS.SS or XX:XX:XX.XX if x is not finite. """ if not np.isfinite(x): return 'XX:XX:XX.XX' if x < 0: sign = '-' else: sign = '+' x = abs(x) d = int(math.floor(x)) m = int(math.floor((x - d) * 60)) s = float(( (x - d) * 60 - m) * 60) return '{0}{1:02d}:{2:02d}:{3:05.2f}'.format(sign, d, m, s)
[ "def", "dec2dms", "(", "x", ")", ":", "if", "not", "np", ".", "isfinite", "(", "x", ")", ":", "return", "'XX:XX:XX.XX'", "if", "x", "<", "0", ":", "sign", "=", "'-'", "else", ":", "sign", "=", "'+'", "x", "=", "abs", "(", "x", ")", "d", "=", "int", "(", "math", ".", "floor", "(", "x", ")", ")", "m", "=", "int", "(", "math", ".", "floor", "(", "(", "x", "-", "d", ")", "*", "60", ")", ")", "s", "=", "float", "(", "(", "(", "x", "-", "d", ")", "*", "60", "-", "m", ")", "*", "60", ")", "return", "'{0}{1:02d}:{2:02d}:{3:05.2f}'", ".", "format", "(", "sign", ",", "d", ",", "m", ",", "s", ")" ]
Convert decimal degrees into a sexagessimal string in degrees. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format [+-]DD:MM:SS.SS or XX:XX:XX.XX if x is not finite.
[ "Convert", "decimal", "degrees", "into", "a", "sexagessimal", "string", "in", "degrees", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L62-L87
PaulHancock/Aegean
AegeanTools/angle_tools.py
dec2hms
def dec2hms(x): """ Convert decimal degrees into a sexagessimal string in hours. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format HH:MM:SS.SS or XX:XX:XX.XX if x is not finite. """ if not np.isfinite(x): return 'XX:XX:XX.XX' # wrap negative RA's if x < 0: x += 360 x /= 15.0 h = int(x) x = (x - h) * 60 m = int(x) s = (x - m) * 60 return '{0:02d}:{1:02d}:{2:05.2f}'.format(h, m, s)
python
def dec2hms(x): """ Convert decimal degrees into a sexagessimal string in hours. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format HH:MM:SS.SS or XX:XX:XX.XX if x is not finite. """ if not np.isfinite(x): return 'XX:XX:XX.XX' # wrap negative RA's if x < 0: x += 360 x /= 15.0 h = int(x) x = (x - h) * 60 m = int(x) s = (x - m) * 60 return '{0:02d}:{1:02d}:{2:05.2f}'.format(h, m, s)
[ "def", "dec2hms", "(", "x", ")", ":", "if", "not", "np", ".", "isfinite", "(", "x", ")", ":", "return", "'XX:XX:XX.XX'", "# wrap negative RA's", "if", "x", "<", "0", ":", "x", "+=", "360", "x", "/=", "15.0", "h", "=", "int", "(", "x", ")", "x", "=", "(", "x", "-", "h", ")", "*", "60", "m", "=", "int", "(", "x", ")", "s", "=", "(", "x", "-", "m", ")", "*", "60", "return", "'{0:02d}:{1:02d}:{2:05.2f}'", ".", "format", "(", "h", ",", "m", ",", "s", ")" ]
Convert decimal degrees into a sexagessimal string in hours. Parameters ---------- x : float Angle in degrees Returns ------- dms : string String of format HH:MM:SS.SS or XX:XX:XX.XX if x is not finite.
[ "Convert", "decimal", "degrees", "into", "a", "sexagessimal", "string", "in", "hours", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L90-L115
PaulHancock/Aegean
AegeanTools/angle_tools.py
gcd
def gcd(ra1, dec1, ra2, dec2): """ Calculate the great circle distance between to points using the haversine formula [1]_. Parameters ---------- ra1, dec1, ra2, dec2 : float The coordinates of the two points of interest. Units are in degrees. Returns ------- dist : float The distance between the two points in degrees. Notes ----- This duplicates the functionality of astropy but is faster as there is no creation of SkyCoords objects. .. [1] `Haversine formula <https://en.wikipedia.org/wiki/Haversine_formula>`_ """ # TODO: Vincenty formula see - https://en.wikipedia.org/wiki/Great-circle_distance dlon = ra2 - ra1 dlat = dec2 - dec1 a = np.sin(np.radians(dlat) / 2) ** 2 a += np.cos(np.radians(dec1)) * np.cos(np.radians(dec2)) * np.sin(np.radians(dlon) / 2) ** 2 sep = np.degrees(2 * np.arcsin(np.minimum(1, np.sqrt(a)))) return sep
python
def gcd(ra1, dec1, ra2, dec2): """ Calculate the great circle distance between to points using the haversine formula [1]_. Parameters ---------- ra1, dec1, ra2, dec2 : float The coordinates of the two points of interest. Units are in degrees. Returns ------- dist : float The distance between the two points in degrees. Notes ----- This duplicates the functionality of astropy but is faster as there is no creation of SkyCoords objects. .. [1] `Haversine formula <https://en.wikipedia.org/wiki/Haversine_formula>`_ """ # TODO: Vincenty formula see - https://en.wikipedia.org/wiki/Great-circle_distance dlon = ra2 - ra1 dlat = dec2 - dec1 a = np.sin(np.radians(dlat) / 2) ** 2 a += np.cos(np.radians(dec1)) * np.cos(np.radians(dec2)) * np.sin(np.radians(dlon) / 2) ** 2 sep = np.degrees(2 * np.arcsin(np.minimum(1, np.sqrt(a)))) return sep
[ "def", "gcd", "(", "ra1", ",", "dec1", ",", "ra2", ",", "dec2", ")", ":", "# TODO: Vincenty formula see - https://en.wikipedia.org/wiki/Great-circle_distance", "dlon", "=", "ra2", "-", "ra1", "dlat", "=", "dec2", "-", "dec1", "a", "=", "np", ".", "sin", "(", "np", ".", "radians", "(", "dlat", ")", "/", "2", ")", "**", "2", "a", "+=", "np", ".", "cos", "(", "np", ".", "radians", "(", "dec1", ")", ")", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "dec2", ")", ")", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "dlon", ")", "/", "2", ")", "**", "2", "sep", "=", "np", ".", "degrees", "(", "2", "*", "np", ".", "arcsin", "(", "np", ".", "minimum", "(", "1", ",", "np", ".", "sqrt", "(", "a", ")", ")", ")", ")", "return", "sep" ]
Calculate the great circle distance between to points using the haversine formula [1]_. Parameters ---------- ra1, dec1, ra2, dec2 : float The coordinates of the two points of interest. Units are in degrees. Returns ------- dist : float The distance between the two points in degrees. Notes ----- This duplicates the functionality of astropy but is faster as there is no creation of SkyCoords objects. .. [1] `Haversine formula <https://en.wikipedia.org/wiki/Haversine_formula>`_
[ "Calculate", "the", "great", "circle", "distance", "between", "to", "points", "using", "the", "haversine", "formula", "[", "1", "]", "_", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L121-L149
PaulHancock/Aegean
AegeanTools/angle_tools.py
bear
def bear(ra1, dec1, ra2, dec2): """ Calculate the bearing of point 2 from point 1 along a great circle. The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180] Parameters ---------- ra1, dec1, ra2, dec2 : float The sky coordinates (degrees) of the two points. Returns ------- bear : float The bearing of point 2 from point 1 (degrees). """ rdec1 = np.radians(dec1) rdec2 = np.radians(dec2) rdlon = np.radians(ra2-ra1) y = np.sin(rdlon) * np.cos(rdec2) x = np.cos(rdec1) * np.sin(rdec2) x -= np.sin(rdec1) * np.cos(rdec2) * np.cos(rdlon) return np.degrees(np.arctan2(y, x))
python
def bear(ra1, dec1, ra2, dec2): """ Calculate the bearing of point 2 from point 1 along a great circle. The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180] Parameters ---------- ra1, dec1, ra2, dec2 : float The sky coordinates (degrees) of the two points. Returns ------- bear : float The bearing of point 2 from point 1 (degrees). """ rdec1 = np.radians(dec1) rdec2 = np.radians(dec2) rdlon = np.radians(ra2-ra1) y = np.sin(rdlon) * np.cos(rdec2) x = np.cos(rdec1) * np.sin(rdec2) x -= np.sin(rdec1) * np.cos(rdec2) * np.cos(rdlon) return np.degrees(np.arctan2(y, x))
[ "def", "bear", "(", "ra1", ",", "dec1", ",", "ra2", ",", "dec2", ")", ":", "rdec1", "=", "np", ".", "radians", "(", "dec1", ")", "rdec2", "=", "np", ".", "radians", "(", "dec2", ")", "rdlon", "=", "np", ".", "radians", "(", "ra2", "-", "ra1", ")", "y", "=", "np", ".", "sin", "(", "rdlon", ")", "*", "np", ".", "cos", "(", "rdec2", ")", "x", "=", "np", ".", "cos", "(", "rdec1", ")", "*", "np", ".", "sin", "(", "rdec2", ")", "x", "-=", "np", ".", "sin", "(", "rdec1", ")", "*", "np", ".", "cos", "(", "rdec2", ")", "*", "np", ".", "cos", "(", "rdlon", ")", "return", "np", ".", "degrees", "(", "np", ".", "arctan2", "(", "y", ",", "x", ")", ")" ]
Calculate the bearing of point 2 from point 1 along a great circle. The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180] Parameters ---------- ra1, dec1, ra2, dec2 : float The sky coordinates (degrees) of the two points. Returns ------- bear : float The bearing of point 2 from point 1 (degrees).
[ "Calculate", "the", "bearing", "of", "point", "2", "from", "point", "1", "along", "a", "great", "circle", ".", "The", "bearing", "is", "East", "of", "North", "and", "is", "in", "[", "0", "360", ")", "whereas", "position", "angle", "is", "also", "East", "of", "North", "but", "(", "-", "180", "180", "]" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L152-L173
PaulHancock/Aegean
AegeanTools/angle_tools.py
translate
def translate(ra, dec, r, theta): """ Translate a given point a distance r in the (initial) direction theta, along a great circle. Parameters ---------- ra, dec : float The initial point of interest (degrees). r, theta : float The distance and initial direction to translate (degrees). Returns ------- ra, dec : float The translated position (degrees). """ factor = np.sin(np.radians(dec)) * np.cos(np.radians(r)) factor += np.cos(np.radians(dec)) * np.sin(np.radians(r)) * np.cos(np.radians(theta)) dec_out = np.degrees(np.arcsin(factor)) y = np.sin(np.radians(theta)) * np.sin(np.radians(r)) * np.cos(np.radians(dec)) x = np.cos(np.radians(r)) - np.sin(np.radians(dec)) * np.sin(np.radians(dec_out)) ra_out = ra + np.degrees(np.arctan2(y, x)) return ra_out, dec_out
python
def translate(ra, dec, r, theta): """ Translate a given point a distance r in the (initial) direction theta, along a great circle. Parameters ---------- ra, dec : float The initial point of interest (degrees). r, theta : float The distance and initial direction to translate (degrees). Returns ------- ra, dec : float The translated position (degrees). """ factor = np.sin(np.radians(dec)) * np.cos(np.radians(r)) factor += np.cos(np.radians(dec)) * np.sin(np.radians(r)) * np.cos(np.radians(theta)) dec_out = np.degrees(np.arcsin(factor)) y = np.sin(np.radians(theta)) * np.sin(np.radians(r)) * np.cos(np.radians(dec)) x = np.cos(np.radians(r)) - np.sin(np.radians(dec)) * np.sin(np.radians(dec_out)) ra_out = ra + np.degrees(np.arctan2(y, x)) return ra_out, dec_out
[ "def", "translate", "(", "ra", ",", "dec", ",", "r", ",", "theta", ")", ":", "factor", "=", "np", ".", "sin", "(", "np", ".", "radians", "(", "dec", ")", ")", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "r", ")", ")", "factor", "+=", "np", ".", "cos", "(", "np", ".", "radians", "(", "dec", ")", ")", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "r", ")", ")", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", "dec_out", "=", "np", ".", "degrees", "(", "np", ".", "arcsin", "(", "factor", ")", ")", "y", "=", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "r", ")", ")", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "dec", ")", ")", "x", "=", "np", ".", "cos", "(", "np", ".", "radians", "(", "r", ")", ")", "-", "np", ".", "sin", "(", "np", ".", "radians", "(", "dec", ")", ")", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "dec_out", ")", ")", "ra_out", "=", "ra", "+", "np", ".", "degrees", "(", "np", ".", "arctan2", "(", "y", ",", "x", ")", ")", "return", "ra_out", ",", "dec_out" ]
Translate a given point a distance r in the (initial) direction theta, along a great circle. Parameters ---------- ra, dec : float The initial point of interest (degrees). r, theta : float The distance and initial direction to translate (degrees). Returns ------- ra, dec : float The translated position (degrees).
[ "Translate", "a", "given", "point", "a", "distance", "r", "in", "the", "(", "initial", ")", "direction", "theta", "along", "a", "great", "circle", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L176-L200
PaulHancock/Aegean
AegeanTools/angle_tools.py
dist_rhumb
def dist_rhumb(ra1, dec1, ra2, dec2): """ Calculate the Rhumb line distance between two points [1]_. A Rhumb line between two points is one which follows a constant bearing. Parameters ---------- ra1, dec1, ra2, dec2 : float The position of the two points (degrees). Returns ------- dist : float The distance between the two points along a line of constant bearing. Notes ----- .. [1] `Rhumb line <https://en.wikipedia.org/wiki/Rhumb_line>`_ """ # verified against website to give correct results phi1 = np.radians(dec1) phi2 = np.radians(dec2) dphi = phi2 - phi1 lambda1 = np.radians(ra1) lambda2 = np.radians(ra2) dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) if dpsi < 1e-12: q = np.cos(phi1) else: q = dpsi / dphi dlambda = lambda2 - lambda1 if dlambda > np.pi: dlambda -= 2 * np.pi dist = np.hypot(dphi, q * dlambda) return np.degrees(dist)
python
def dist_rhumb(ra1, dec1, ra2, dec2): """ Calculate the Rhumb line distance between two points [1]_. A Rhumb line between two points is one which follows a constant bearing. Parameters ---------- ra1, dec1, ra2, dec2 : float The position of the two points (degrees). Returns ------- dist : float The distance between the two points along a line of constant bearing. Notes ----- .. [1] `Rhumb line <https://en.wikipedia.org/wiki/Rhumb_line>`_ """ # verified against website to give correct results phi1 = np.radians(dec1) phi2 = np.radians(dec2) dphi = phi2 - phi1 lambda1 = np.radians(ra1) lambda2 = np.radians(ra2) dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) if dpsi < 1e-12: q = np.cos(phi1) else: q = dpsi / dphi dlambda = lambda2 - lambda1 if dlambda > np.pi: dlambda -= 2 * np.pi dist = np.hypot(dphi, q * dlambda) return np.degrees(dist)
[ "def", "dist_rhumb", "(", "ra1", ",", "dec1", ",", "ra2", ",", "dec2", ")", ":", "# verified against website to give correct results", "phi1", "=", "np", ".", "radians", "(", "dec1", ")", "phi2", "=", "np", ".", "radians", "(", "dec2", ")", "dphi", "=", "phi2", "-", "phi1", "lambda1", "=", "np", ".", "radians", "(", "ra1", ")", "lambda2", "=", "np", ".", "radians", "(", "ra2", ")", "dpsi", "=", "np", ".", "log", "(", "np", ".", "tan", "(", "np", ".", "pi", "/", "4", "+", "phi2", "/", "2", ")", "/", "np", ".", "tan", "(", "np", ".", "pi", "/", "4", "+", "phi1", "/", "2", ")", ")", "if", "dpsi", "<", "1e-12", ":", "q", "=", "np", ".", "cos", "(", "phi1", ")", "else", ":", "q", "=", "dpsi", "/", "dphi", "dlambda", "=", "lambda2", "-", "lambda1", "if", "dlambda", ">", "np", ".", "pi", ":", "dlambda", "-=", "2", "*", "np", ".", "pi", "dist", "=", "np", ".", "hypot", "(", "dphi", ",", "q", "*", "dlambda", ")", "return", "np", ".", "degrees", "(", "dist", ")" ]
Calculate the Rhumb line distance between two points [1]_. A Rhumb line between two points is one which follows a constant bearing. Parameters ---------- ra1, dec1, ra2, dec2 : float The position of the two points (degrees). Returns ------- dist : float The distance between the two points along a line of constant bearing. Notes ----- .. [1] `Rhumb line <https://en.wikipedia.org/wiki/Rhumb_line>`_
[ "Calculate", "the", "Rhumb", "line", "distance", "between", "two", "points", "[", "1", "]", "_", ".", "A", "Rhumb", "line", "between", "two", "points", "is", "one", "which", "follows", "a", "constant", "bearing", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L203-L237
PaulHancock/Aegean
AegeanTools/angle_tools.py
bear_rhumb
def bear_rhumb(ra1, dec1, ra2, dec2): """ Calculate the bearing of point 2 from point 1 along a Rhumb line. The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180] Parameters ---------- ra1, dec1, ra2, dec2 : float The sky coordinates (degrees) of the two points. Returns ------- dist : float The bearing of point 2 from point 1 along a Rhumb line (degrees). """ # verified against website to give correct results phi1 = np.radians(dec1) phi2 = np.radians(dec2) lambda1 = np.radians(ra1) lambda2 = np.radians(ra2) dlambda = lambda2 - lambda1 dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) theta = np.arctan2(dlambda, dpsi) return np.degrees(theta)
python
def bear_rhumb(ra1, dec1, ra2, dec2): """ Calculate the bearing of point 2 from point 1 along a Rhumb line. The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180] Parameters ---------- ra1, dec1, ra2, dec2 : float The sky coordinates (degrees) of the two points. Returns ------- dist : float The bearing of point 2 from point 1 along a Rhumb line (degrees). """ # verified against website to give correct results phi1 = np.radians(dec1) phi2 = np.radians(dec2) lambda1 = np.radians(ra1) lambda2 = np.radians(ra2) dlambda = lambda2 - lambda1 dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) theta = np.arctan2(dlambda, dpsi) return np.degrees(theta)
[ "def", "bear_rhumb", "(", "ra1", ",", "dec1", ",", "ra2", ",", "dec2", ")", ":", "# verified against website to give correct results", "phi1", "=", "np", ".", "radians", "(", "dec1", ")", "phi2", "=", "np", ".", "radians", "(", "dec2", ")", "lambda1", "=", "np", ".", "radians", "(", "ra1", ")", "lambda2", "=", "np", ".", "radians", "(", "ra2", ")", "dlambda", "=", "lambda2", "-", "lambda1", "dpsi", "=", "np", ".", "log", "(", "np", ".", "tan", "(", "np", ".", "pi", "/", "4", "+", "phi2", "/", "2", ")", "/", "np", ".", "tan", "(", "np", ".", "pi", "/", "4", "+", "phi1", "/", "2", ")", ")", "theta", "=", "np", ".", "arctan2", "(", "dlambda", ",", "dpsi", ")", "return", "np", ".", "degrees", "(", "theta", ")" ]
Calculate the bearing of point 2 from point 1 along a Rhumb line. The bearing is East of North and is in [0, 360), whereas position angle is also East of North but (-180,180] Parameters ---------- ra1, dec1, ra2, dec2 : float The sky coordinates (degrees) of the two points. Returns ------- dist : float The bearing of point 2 from point 1 along a Rhumb line (degrees).
[ "Calculate", "the", "bearing", "of", "point", "2", "from", "point", "1", "along", "a", "Rhumb", "line", ".", "The", "bearing", "is", "East", "of", "North", "and", "is", "in", "[", "0", "360", ")", "whereas", "position", "angle", "is", "also", "East", "of", "North", "but", "(", "-", "180", "180", "]" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L240-L265
PaulHancock/Aegean
AegeanTools/angle_tools.py
translate_rhumb
def translate_rhumb(ra, dec, r, theta): """ Translate a given point a distance r in the (initial) direction theta, along a Rhumb line. Parameters ---------- ra, dec : float The initial point of interest (degrees). r, theta : float The distance and initial direction to translate (degrees). Returns ------- ra, dec : float The translated position (degrees). """ # verified against website to give correct results # with the help of http://williams.best.vwh.net/avform.htm#Rhumb delta = np.radians(r) phi1 = np.radians(dec) phi2 = phi1 + delta * np.cos(np.radians(theta)) dphi = phi2 - phi1 if abs(dphi) < 1e-9: q = np.cos(phi1) else: dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) q = dphi / dpsi lambda1 = np.radians(ra) dlambda = delta * np.sin(np.radians(theta)) / q lambda2 = lambda1 + dlambda ra_out = np.degrees(lambda2) dec_out = np.degrees(phi2) return ra_out, dec_out
python
def translate_rhumb(ra, dec, r, theta): """ Translate a given point a distance r in the (initial) direction theta, along a Rhumb line. Parameters ---------- ra, dec : float The initial point of interest (degrees). r, theta : float The distance and initial direction to translate (degrees). Returns ------- ra, dec : float The translated position (degrees). """ # verified against website to give correct results # with the help of http://williams.best.vwh.net/avform.htm#Rhumb delta = np.radians(r) phi1 = np.radians(dec) phi2 = phi1 + delta * np.cos(np.radians(theta)) dphi = phi2 - phi1 if abs(dphi) < 1e-9: q = np.cos(phi1) else: dpsi = np.log(np.tan(np.pi / 4 + phi2 / 2) / np.tan(np.pi / 4 + phi1 / 2)) q = dphi / dpsi lambda1 = np.radians(ra) dlambda = delta * np.sin(np.radians(theta)) / q lambda2 = lambda1 + dlambda ra_out = np.degrees(lambda2) dec_out = np.degrees(phi2) return ra_out, dec_out
[ "def", "translate_rhumb", "(", "ra", ",", "dec", ",", "r", ",", "theta", ")", ":", "# verified against website to give correct results", "# with the help of http://williams.best.vwh.net/avform.htm#Rhumb", "delta", "=", "np", ".", "radians", "(", "r", ")", "phi1", "=", "np", ".", "radians", "(", "dec", ")", "phi2", "=", "phi1", "+", "delta", "*", "np", ".", "cos", "(", "np", ".", "radians", "(", "theta", ")", ")", "dphi", "=", "phi2", "-", "phi1", "if", "abs", "(", "dphi", ")", "<", "1e-9", ":", "q", "=", "np", ".", "cos", "(", "phi1", ")", "else", ":", "dpsi", "=", "np", ".", "log", "(", "np", ".", "tan", "(", "np", ".", "pi", "/", "4", "+", "phi2", "/", "2", ")", "/", "np", ".", "tan", "(", "np", ".", "pi", "/", "4", "+", "phi1", "/", "2", ")", ")", "q", "=", "dphi", "/", "dpsi", "lambda1", "=", "np", ".", "radians", "(", "ra", ")", "dlambda", "=", "delta", "*", "np", ".", "sin", "(", "np", ".", "radians", "(", "theta", ")", ")", "/", "q", "lambda2", "=", "lambda1", "+", "dlambda", "ra_out", "=", "np", ".", "degrees", "(", "lambda2", ")", "dec_out", "=", "np", ".", "degrees", "(", "phi2", ")", "return", "ra_out", ",", "dec_out" ]
Translate a given point a distance r in the (initial) direction theta, along a Rhumb line. Parameters ---------- ra, dec : float The initial point of interest (degrees). r, theta : float The distance and initial direction to translate (degrees). Returns ------- ra, dec : float The translated position (degrees).
[ "Translate", "a", "given", "point", "a", "distance", "r", "in", "the", "(", "initial", ")", "direction", "theta", "along", "a", "Rhumb", "line", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/angle_tools.py#L268-L303
PaulHancock/Aegean
AegeanTools/MIMAS.py
galactic2fk5
def galactic2fk5(l, b): """ Convert galactic l/b to fk5 ra/dec Parameters ---------- l, b : float Galactic coordinates in radians. Returns ------- ra, dec : float FK5 ecliptic coordinates in radians. """ a = SkyCoord(l, b, unit=(u.radian, u.radian), frame='galactic') return a.fk5.ra.radian, a.fk5.dec.radian
python
def galactic2fk5(l, b): """ Convert galactic l/b to fk5 ra/dec Parameters ---------- l, b : float Galactic coordinates in radians. Returns ------- ra, dec : float FK5 ecliptic coordinates in radians. """ a = SkyCoord(l, b, unit=(u.radian, u.radian), frame='galactic') return a.fk5.ra.radian, a.fk5.dec.radian
[ "def", "galactic2fk5", "(", "l", ",", "b", ")", ":", "a", "=", "SkyCoord", "(", "l", ",", "b", ",", "unit", "=", "(", "u", ".", "radian", ",", "u", ".", "radian", ")", ",", "frame", "=", "'galactic'", ")", "return", "a", ".", "fk5", ".", "ra", ".", "radian", ",", "a", ".", "fk5", ".", "dec", ".", "radian" ]
Convert galactic l/b to fk5 ra/dec Parameters ---------- l, b : float Galactic coordinates in radians. Returns ------- ra, dec : float FK5 ecliptic coordinates in radians.
[ "Convert", "galactic", "l", "/", "b", "to", "fk5", "ra", "/", "dec" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L77-L92
PaulHancock/Aegean
AegeanTools/MIMAS.py
mask_plane
def mask_plane(data, wcs, region, negate=False): """ Mask a 2d image (data) such that pixels within 'region' are set to nan. Parameters ---------- data : 2d-array Image array. wcs : astropy.wcs.WCS WCS for the image in question. region : :class:`AegeanTools.regions.Region` A region within which the image pixels will be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. Returns ------- masked : 2d-array The original array, but masked as required. """ # create an array but don't set the values (they are random) indexes = np.empty((data.shape[0]*data.shape[1], 2), dtype=int) # since I know exactly what the index array needs to look like i can construct # it faster than list comprehension would allow # we do this only once and then recycle it idx = np.array([(j, 0) for j in range(data.shape[1])]) j = data.shape[1] for i in range(data.shape[0]): idx[:, 1] = i indexes[i*j:(i+1)*j] = idx # put ALL the pixles into our vectorized functions and minimise our overheads ra, dec = wcs.wcs_pix2world(indexes, 1).transpose() bigmask = region.sky_within(ra, dec, degin=True) if not negate: bigmask = np.bitwise_not(bigmask) # rework our 1d list into a 2d array bigmask = bigmask.reshape(data.shape) # and apply the mask data[bigmask] = np.nan return data
python
def mask_plane(data, wcs, region, negate=False): """ Mask a 2d image (data) such that pixels within 'region' are set to nan. Parameters ---------- data : 2d-array Image array. wcs : astropy.wcs.WCS WCS for the image in question. region : :class:`AegeanTools.regions.Region` A region within which the image pixels will be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. Returns ------- masked : 2d-array The original array, but masked as required. """ # create an array but don't set the values (they are random) indexes = np.empty((data.shape[0]*data.shape[1], 2), dtype=int) # since I know exactly what the index array needs to look like i can construct # it faster than list comprehension would allow # we do this only once and then recycle it idx = np.array([(j, 0) for j in range(data.shape[1])]) j = data.shape[1] for i in range(data.shape[0]): idx[:, 1] = i indexes[i*j:(i+1)*j] = idx # put ALL the pixles into our vectorized functions and minimise our overheads ra, dec = wcs.wcs_pix2world(indexes, 1).transpose() bigmask = region.sky_within(ra, dec, degin=True) if not negate: bigmask = np.bitwise_not(bigmask) # rework our 1d list into a 2d array bigmask = bigmask.reshape(data.shape) # and apply the mask data[bigmask] = np.nan return data
[ "def", "mask_plane", "(", "data", ",", "wcs", ",", "region", ",", "negate", "=", "False", ")", ":", "# create an array but don't set the values (they are random)", "indexes", "=", "np", ".", "empty", "(", "(", "data", ".", "shape", "[", "0", "]", "*", "data", ".", "shape", "[", "1", "]", ",", "2", ")", ",", "dtype", "=", "int", ")", "# since I know exactly what the index array needs to look like i can construct", "# it faster than list comprehension would allow", "# we do this only once and then recycle it", "idx", "=", "np", ".", "array", "(", "[", "(", "j", ",", "0", ")", "for", "j", "in", "range", "(", "data", ".", "shape", "[", "1", "]", ")", "]", ")", "j", "=", "data", ".", "shape", "[", "1", "]", "for", "i", "in", "range", "(", "data", ".", "shape", "[", "0", "]", ")", ":", "idx", "[", ":", ",", "1", "]", "=", "i", "indexes", "[", "i", "*", "j", ":", "(", "i", "+", "1", ")", "*", "j", "]", "=", "idx", "# put ALL the pixles into our vectorized functions and minimise our overheads", "ra", ",", "dec", "=", "wcs", ".", "wcs_pix2world", "(", "indexes", ",", "1", ")", ".", "transpose", "(", ")", "bigmask", "=", "region", ".", "sky_within", "(", "ra", ",", "dec", ",", "degin", "=", "True", ")", "if", "not", "negate", ":", "bigmask", "=", "np", ".", "bitwise_not", "(", "bigmask", ")", "# rework our 1d list into a 2d array", "bigmask", "=", "bigmask", ".", "reshape", "(", "data", ".", "shape", ")", "# and apply the mask", "data", "[", "bigmask", "]", "=", "np", ".", "nan", "return", "data" ]
Mask a 2d image (data) such that pixels within 'region' are set to nan. Parameters ---------- data : 2d-array Image array. wcs : astropy.wcs.WCS WCS for the image in question. region : :class:`AegeanTools.regions.Region` A region within which the image pixels will be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. Returns ------- masked : 2d-array The original array, but masked as required.
[ "Mask", "a", "2d", "image", "(", "data", ")", "such", "that", "pixels", "within", "region", "are", "set", "to", "nan", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L95-L139
PaulHancock/Aegean
AegeanTools/MIMAS.py
mask_file
def mask_file(regionfile, infile, outfile, negate=False): """ Created a masked version of file, using a region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`AegeanTools.regions.Region`. The image will be masked according to this region. infile : str Input FITS image. outfile : str Output FITS image. negate : bool If True then pixels *outside* the region are masked. Default = False. See Also -------- :func:`AegeanTools.MIMAS.mask_plane` """ # Check that the input file is accessible and then open it if not os.path.exists(infile): raise AssertionError("Cannot locate fits file {0}".format(infile)) im = pyfits.open(infile) if not os.path.exists(regionfile): raise AssertionError("Cannot locate region file {0}".format(regionfile)) region = Region.load(regionfile) try: wcs = pywcs.WCS(im[0].header, naxis=2) except: # TODO: figure out what error is being thrown wcs = pywcs.WCS(str(im[0].header), naxis=2) if len(im[0].data.shape) > 2: data = np.squeeze(im[0].data) else: data = im[0].data print(data.shape) if len(data.shape) == 3: for plane in range(data.shape[0]): mask_plane(data[plane], wcs, region, negate) else: mask_plane(data, wcs, region, negate) im[0].data = data im.writeto(outfile, overwrite=True) logging.info("Wrote {0}".format(outfile)) return
python
def mask_file(regionfile, infile, outfile, negate=False): """ Created a masked version of file, using a region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`AegeanTools.regions.Region`. The image will be masked according to this region. infile : str Input FITS image. outfile : str Output FITS image. negate : bool If True then pixels *outside* the region are masked. Default = False. See Also -------- :func:`AegeanTools.MIMAS.mask_plane` """ # Check that the input file is accessible and then open it if not os.path.exists(infile): raise AssertionError("Cannot locate fits file {0}".format(infile)) im = pyfits.open(infile) if not os.path.exists(regionfile): raise AssertionError("Cannot locate region file {0}".format(regionfile)) region = Region.load(regionfile) try: wcs = pywcs.WCS(im[0].header, naxis=2) except: # TODO: figure out what error is being thrown wcs = pywcs.WCS(str(im[0].header), naxis=2) if len(im[0].data.shape) > 2: data = np.squeeze(im[0].data) else: data = im[0].data print(data.shape) if len(data.shape) == 3: for plane in range(data.shape[0]): mask_plane(data[plane], wcs, region, negate) else: mask_plane(data, wcs, region, negate) im[0].data = data im.writeto(outfile, overwrite=True) logging.info("Wrote {0}".format(outfile)) return
[ "def", "mask_file", "(", "regionfile", ",", "infile", ",", "outfile", ",", "negate", "=", "False", ")", ":", "# Check that the input file is accessible and then open it", "if", "not", "os", ".", "path", ".", "exists", "(", "infile", ")", ":", "raise", "AssertionError", "(", "\"Cannot locate fits file {0}\"", ".", "format", "(", "infile", ")", ")", "im", "=", "pyfits", ".", "open", "(", "infile", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "regionfile", ")", ":", "raise", "AssertionError", "(", "\"Cannot locate region file {0}\"", ".", "format", "(", "regionfile", ")", ")", "region", "=", "Region", ".", "load", "(", "regionfile", ")", "try", ":", "wcs", "=", "pywcs", ".", "WCS", "(", "im", "[", "0", "]", ".", "header", ",", "naxis", "=", "2", ")", "except", ":", "# TODO: figure out what error is being thrown", "wcs", "=", "pywcs", ".", "WCS", "(", "str", "(", "im", "[", "0", "]", ".", "header", ")", ",", "naxis", "=", "2", ")", "if", "len", "(", "im", "[", "0", "]", ".", "data", ".", "shape", ")", ">", "2", ":", "data", "=", "np", ".", "squeeze", "(", "im", "[", "0", "]", ".", "data", ")", "else", ":", "data", "=", "im", "[", "0", "]", ".", "data", "print", "(", "data", ".", "shape", ")", "if", "len", "(", "data", ".", "shape", ")", "==", "3", ":", "for", "plane", "in", "range", "(", "data", ".", "shape", "[", "0", "]", ")", ":", "mask_plane", "(", "data", "[", "plane", "]", ",", "wcs", ",", "region", ",", "negate", ")", "else", ":", "mask_plane", "(", "data", ",", "wcs", ",", "region", ",", "negate", ")", "im", "[", "0", "]", ".", "data", "=", "data", "im", ".", "writeto", "(", "outfile", ",", "overwrite", "=", "True", ")", "logging", ".", "info", "(", "\"Wrote {0}\"", ".", "format", "(", "outfile", ")", ")", "return" ]
Created a masked version of file, using a region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`AegeanTools.regions.Region`. The image will be masked according to this region. infile : str Input FITS image. outfile : str Output FITS image. negate : bool If True then pixels *outside* the region are masked. Default = False. See Also -------- :func:`AegeanTools.MIMAS.mask_plane`
[ "Created", "a", "masked", "version", "of", "file", "using", "a", "region", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L142-L191
PaulHancock/Aegean
AegeanTools/MIMAS.py
mask_table
def mask_table(region, table, negate=False, racol='ra', deccol='dec'): """ Apply a given mask (region) to the table, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- region : :class:`AegeanTools.regions.Region` Region to mask. table : Astropy.table.Table Table to be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' Returns ------- masked : Astropy.table.Table A view of the given table which has been masked. """ inside = region.sky_within(table[racol], table[deccol], degin=True) if not negate: mask = np.bitwise_not(inside) else: mask = inside return table[mask]
python
def mask_table(region, table, negate=False, racol='ra', deccol='dec'): """ Apply a given mask (region) to the table, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- region : :class:`AegeanTools.regions.Region` Region to mask. table : Astropy.table.Table Table to be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' Returns ------- masked : Astropy.table.Table A view of the given table which has been masked. """ inside = region.sky_within(table[racol], table[deccol], degin=True) if not negate: mask = np.bitwise_not(inside) else: mask = inside return table[mask]
[ "def", "mask_table", "(", "region", ",", "table", ",", "negate", "=", "False", ",", "racol", "=", "'ra'", ",", "deccol", "=", "'dec'", ")", ":", "inside", "=", "region", ".", "sky_within", "(", "table", "[", "racol", "]", ",", "table", "[", "deccol", "]", ",", "degin", "=", "True", ")", "if", "not", "negate", ":", "mask", "=", "np", ".", "bitwise_not", "(", "inside", ")", "else", ":", "mask", "=", "inside", "return", "table", "[", "mask", "]" ]
Apply a given mask (region) to the table, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- region : :class:`AegeanTools.regions.Region` Region to mask. table : Astropy.table.Table Table to be masked. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' Returns ------- masked : Astropy.table.Table A view of the given table which has been masked.
[ "Apply", "a", "given", "mask", "(", "region", ")", "to", "the", "table", "removing", "all", "the", "rows", "with", "ra", "/", "dec", "inside", "the", "region", "If", "negate", "=", "False", "then", "remove", "the", "rows", "with", "ra", "/", "dec", "outside", "the", "region", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L194-L226
PaulHancock/Aegean
AegeanTools/MIMAS.py
mask_catalog
def mask_catalog(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec'): """ Apply a region file as a mask to a catalog, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`AegeanTools.regions.Region`. The catalogue will be masked according to this region. infile : str Input catalogue. outfile : str Output catalogue. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' See Also -------- :func:`AegeanTools.MIMAS.mask_table` :func:`AegeanTools.catalogs.load_table` """ logging.info("Loading region from {0}".format(regionfile)) region = Region.load(regionfile) logging.info("Loading catalog from {0}".format(infile)) table = load_table(infile) masked_table = mask_table(region, table, negate=negate, racol=racol, deccol=deccol) write_table(masked_table, outfile) return
python
def mask_catalog(regionfile, infile, outfile, negate=False, racol='ra', deccol='dec'): """ Apply a region file as a mask to a catalog, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`AegeanTools.regions.Region`. The catalogue will be masked according to this region. infile : str Input catalogue. outfile : str Output catalogue. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' See Also -------- :func:`AegeanTools.MIMAS.mask_table` :func:`AegeanTools.catalogs.load_table` """ logging.info("Loading region from {0}".format(regionfile)) region = Region.load(regionfile) logging.info("Loading catalog from {0}".format(infile)) table = load_table(infile) masked_table = mask_table(region, table, negate=negate, racol=racol, deccol=deccol) write_table(masked_table, outfile) return
[ "def", "mask_catalog", "(", "regionfile", ",", "infile", ",", "outfile", ",", "negate", "=", "False", ",", "racol", "=", "'ra'", ",", "deccol", "=", "'dec'", ")", ":", "logging", ".", "info", "(", "\"Loading region from {0}\"", ".", "format", "(", "regionfile", ")", ")", "region", "=", "Region", ".", "load", "(", "regionfile", ")", "logging", ".", "info", "(", "\"Loading catalog from {0}\"", ".", "format", "(", "infile", ")", ")", "table", "=", "load_table", "(", "infile", ")", "masked_table", "=", "mask_table", "(", "region", ",", "table", ",", "negate", "=", "negate", ",", "racol", "=", "racol", ",", "deccol", "=", "deccol", ")", "write_table", "(", "masked_table", ",", "outfile", ")", "return" ]
Apply a region file as a mask to a catalog, removing all the rows with ra/dec inside the region If negate=False then remove the rows with ra/dec outside the region. Parameters ---------- regionfile : str A file which can be loaded as a :class:`AegeanTools.regions.Region`. The catalogue will be masked according to this region. infile : str Input catalogue. outfile : str Output catalogue. negate : bool If True then pixels *outside* the region are masked. Default = False. racol, deccol : str The name of the columns in `table` that should be interpreted as ra and dec. Default = 'ra', 'dec' See Also -------- :func:`AegeanTools.MIMAS.mask_table` :func:`AegeanTools.catalogs.load_table`
[ "Apply", "a", "region", "file", "as", "a", "mask", "to", "a", "catalog", "removing", "all", "the", "rows", "with", "ra", "/", "dec", "inside", "the", "region", "If", "negate", "=", "False", "then", "remove", "the", "rows", "with", "ra", "/", "dec", "outside", "the", "region", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L229-L267
PaulHancock/Aegean
AegeanTools/MIMAS.py
mim2reg
def mim2reg(mimfile, regfile): """ Convert a MIMAS region (.mim) file into a DS9 region (.reg) file. Parameters ---------- mimfile : str Input file in MIMAS format. regfile : str Output file. """ region = Region.load(mimfile) region.write_reg(regfile) logging.info("Converted {0} -> {1}".format(mimfile, regfile)) return
python
def mim2reg(mimfile, regfile): """ Convert a MIMAS region (.mim) file into a DS9 region (.reg) file. Parameters ---------- mimfile : str Input file in MIMAS format. regfile : str Output file. """ region = Region.load(mimfile) region.write_reg(regfile) logging.info("Converted {0} -> {1}".format(mimfile, regfile)) return
[ "def", "mim2reg", "(", "mimfile", ",", "regfile", ")", ":", "region", "=", "Region", ".", "load", "(", "mimfile", ")", "region", ".", "write_reg", "(", "regfile", ")", "logging", ".", "info", "(", "\"Converted {0} -> {1}\"", ".", "format", "(", "mimfile", ",", "regfile", ")", ")", "return" ]
Convert a MIMAS region (.mim) file into a DS9 region (.reg) file. Parameters ---------- mimfile : str Input file in MIMAS format. regfile : str Output file.
[ "Convert", "a", "MIMAS", "region", "(", ".", "mim", ")", "file", "into", "a", "DS9", "region", "(", ".", "reg", ")", "file", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L270-L286
PaulHancock/Aegean
AegeanTools/MIMAS.py
mim2fits
def mim2fits(mimfile, fitsfile): """ Convert a MIMAS region (.mim) file into a MOC region (.fits) file. Parameters ---------- mimfile : str Input file in MIMAS format. fitsfile : str Output file. """ region = Region.load(mimfile) region.write_fits(fitsfile, moctool='MIMAS {0}-{1}'.format(__version__, __date__)) logging.info("Converted {0} -> {1}".format(mimfile, fitsfile)) return
python
def mim2fits(mimfile, fitsfile): """ Convert a MIMAS region (.mim) file into a MOC region (.fits) file. Parameters ---------- mimfile : str Input file in MIMAS format. fitsfile : str Output file. """ region = Region.load(mimfile) region.write_fits(fitsfile, moctool='MIMAS {0}-{1}'.format(__version__, __date__)) logging.info("Converted {0} -> {1}".format(mimfile, fitsfile)) return
[ "def", "mim2fits", "(", "mimfile", ",", "fitsfile", ")", ":", "region", "=", "Region", ".", "load", "(", "mimfile", ")", "region", ".", "write_fits", "(", "fitsfile", ",", "moctool", "=", "'MIMAS {0}-{1}'", ".", "format", "(", "__version__", ",", "__date__", ")", ")", "logging", ".", "info", "(", "\"Converted {0} -> {1}\"", ".", "format", "(", "mimfile", ",", "fitsfile", ")", ")", "return" ]
Convert a MIMAS region (.mim) file into a MOC region (.fits) file. Parameters ---------- mimfile : str Input file in MIMAS format. fitsfile : str Output file.
[ "Convert", "a", "MIMAS", "region", "(", ".", "mim", ")", "file", "into", "a", "MOC", "region", "(", ".", "fits", ")", "file", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L289-L304
PaulHancock/Aegean
AegeanTools/MIMAS.py
box2poly
def box2poly(line): """ Convert a string that describes a box in ds9 format, into a polygon that is given by the corners of the box Parameters ---------- line : str A string containing a DS9 region command for a box. Returns ------- poly : [ra, dec, ...] The corners of the box in clockwise order from top left. """ words = re.split('[(\s,)]', line) ra = words[1] dec = words[2] width = words[3] height = words[4] if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) width = Angle(float(width[:-1])/2, unit=u.arcsecond) # strip the " height = Angle(float(height[:-1])/2, unit=u.arcsecond) # strip the " center = SkyCoord(ra, dec) tl = center.ra.degree+width.degree, center.dec.degree+height.degree tr = center.ra.degree-width.degree, center.dec.degree+height.degree bl = center.ra.degree+width.degree, center.dec.degree-height.degree br = center.ra.degree-width.degree, center.dec.degree-height.degree return np.ravel([tl, tr, br, bl]).tolist()
python
def box2poly(line): """ Convert a string that describes a box in ds9 format, into a polygon that is given by the corners of the box Parameters ---------- line : str A string containing a DS9 region command for a box. Returns ------- poly : [ra, dec, ...] The corners of the box in clockwise order from top left. """ words = re.split('[(\s,)]', line) ra = words[1] dec = words[2] width = words[3] height = words[4] if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) width = Angle(float(width[:-1])/2, unit=u.arcsecond) # strip the " height = Angle(float(height[:-1])/2, unit=u.arcsecond) # strip the " center = SkyCoord(ra, dec) tl = center.ra.degree+width.degree, center.dec.degree+height.degree tr = center.ra.degree-width.degree, center.dec.degree+height.degree bl = center.ra.degree+width.degree, center.dec.degree-height.degree br = center.ra.degree-width.degree, center.dec.degree-height.degree return np.ravel([tl, tr, br, bl]).tolist()
[ "def", "box2poly", "(", "line", ")", ":", "words", "=", "re", ".", "split", "(", "'[(\\s,)]'", ",", "line", ")", "ra", "=", "words", "[", "1", "]", "dec", "=", "words", "[", "2", "]", "width", "=", "words", "[", "3", "]", "height", "=", "words", "[", "4", "]", "if", "\":\"", "in", "ra", ":", "ra", "=", "Angle", "(", "ra", ",", "unit", "=", "u", ".", "hour", ")", "else", ":", "ra", "=", "Angle", "(", "ra", ",", "unit", "=", "u", ".", "degree", ")", "dec", "=", "Angle", "(", "dec", ",", "unit", "=", "u", ".", "degree", ")", "width", "=", "Angle", "(", "float", "(", "width", "[", ":", "-", "1", "]", ")", "/", "2", ",", "unit", "=", "u", ".", "arcsecond", ")", "# strip the \"", "height", "=", "Angle", "(", "float", "(", "height", "[", ":", "-", "1", "]", ")", "/", "2", ",", "unit", "=", "u", ".", "arcsecond", ")", "# strip the \"", "center", "=", "SkyCoord", "(", "ra", ",", "dec", ")", "tl", "=", "center", ".", "ra", ".", "degree", "+", "width", ".", "degree", ",", "center", ".", "dec", ".", "degree", "+", "height", ".", "degree", "tr", "=", "center", ".", "ra", ".", "degree", "-", "width", ".", "degree", ",", "center", ".", "dec", ".", "degree", "+", "height", ".", "degree", "bl", "=", "center", ".", "ra", ".", "degree", "+", "width", ".", "degree", ",", "center", ".", "dec", ".", "degree", "-", "height", ".", "degree", "br", "=", "center", ".", "ra", ".", "degree", "-", "width", ".", "degree", ",", "center", ".", "dec", ".", "degree", "-", "height", ".", "degree", "return", "np", ".", "ravel", "(", "[", "tl", ",", "tr", ",", "br", ",", "bl", "]", ")", ".", "tolist", "(", ")" ]
Convert a string that describes a box in ds9 format, into a polygon that is given by the corners of the box Parameters ---------- line : str A string containing a DS9 region command for a box. Returns ------- poly : [ra, dec, ...] The corners of the box in clockwise order from top left.
[ "Convert", "a", "string", "that", "describes", "a", "box", "in", "ds9", "format", "into", "a", "polygon", "that", "is", "given", "by", "the", "corners", "of", "the", "box" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L307-L338
PaulHancock/Aegean
AegeanTools/MIMAS.py
circle2circle
def circle2circle(line): """ Parse a string that describes a circle in ds9 format. Parameters ---------- line : str A string containing a DS9 region command for a circle. Returns ------- circle : [ra, dec, radius] The center and radius of the circle. """ words = re.split('[(,\s)]', line) ra = words[1] dec = words[2] radius = words[3][:-1] # strip the " if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) radius = Angle(radius, unit=u.arcsecond) return [ra.degree, dec.degree, radius.degree]
python
def circle2circle(line): """ Parse a string that describes a circle in ds9 format. Parameters ---------- line : str A string containing a DS9 region command for a circle. Returns ------- circle : [ra, dec, radius] The center and radius of the circle. """ words = re.split('[(,\s)]', line) ra = words[1] dec = words[2] radius = words[3][:-1] # strip the " if ":" in ra: ra = Angle(ra, unit=u.hour) else: ra = Angle(ra, unit=u.degree) dec = Angle(dec, unit=u.degree) radius = Angle(radius, unit=u.arcsecond) return [ra.degree, dec.degree, radius.degree]
[ "def", "circle2circle", "(", "line", ")", ":", "words", "=", "re", ".", "split", "(", "'[(,\\s)]'", ",", "line", ")", "ra", "=", "words", "[", "1", "]", "dec", "=", "words", "[", "2", "]", "radius", "=", "words", "[", "3", "]", "[", ":", "-", "1", "]", "# strip the \"", "if", "\":\"", "in", "ra", ":", "ra", "=", "Angle", "(", "ra", ",", "unit", "=", "u", ".", "hour", ")", "else", ":", "ra", "=", "Angle", "(", "ra", ",", "unit", "=", "u", ".", "degree", ")", "dec", "=", "Angle", "(", "dec", ",", "unit", "=", "u", ".", "degree", ")", "radius", "=", "Angle", "(", "radius", ",", "unit", "=", "u", ".", "arcsecond", ")", "return", "[", "ra", ".", "degree", ",", "dec", ".", "degree", ",", "radius", ".", "degree", "]" ]
Parse a string that describes a circle in ds9 format. Parameters ---------- line : str A string containing a DS9 region command for a circle. Returns ------- circle : [ra, dec, radius] The center and radius of the circle.
[ "Parse", "a", "string", "that", "describes", "a", "circle", "in", "ds9", "format", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L341-L365
PaulHancock/Aegean
AegeanTools/MIMAS.py
poly2poly
def poly2poly(line): """ Parse a string of text containing a DS9 description of a polygon. This function works but is not very robust due to the constraints of healpy. Parameters ---------- line : str A string containing a DS9 region command for a polygon. Returns ------- poly : [ra, dec, ...] The coordinates of the polygon. """ words = re.split('[(\s,)]', line) ras = np.array(words[1::2]) decs = np.array(words[2::2]) coords = [] for ra, dec in zip(ras, decs): if ra.strip() == '' or dec.strip() == '': continue if ":" in ra: pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree)) else: pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree)) # only add this point if it is some distance from the previous one coords.extend([pos.ra.degree, pos.dec.degree]) return coords
python
def poly2poly(line): """ Parse a string of text containing a DS9 description of a polygon. This function works but is not very robust due to the constraints of healpy. Parameters ---------- line : str A string containing a DS9 region command for a polygon. Returns ------- poly : [ra, dec, ...] The coordinates of the polygon. """ words = re.split('[(\s,)]', line) ras = np.array(words[1::2]) decs = np.array(words[2::2]) coords = [] for ra, dec in zip(ras, decs): if ra.strip() == '' or dec.strip() == '': continue if ":" in ra: pos = SkyCoord(Angle(ra, unit=u.hour), Angle(dec, unit=u.degree)) else: pos = SkyCoord(Angle(ra, unit=u.degree), Angle(dec, unit=u.degree)) # only add this point if it is some distance from the previous one coords.extend([pos.ra.degree, pos.dec.degree]) return coords
[ "def", "poly2poly", "(", "line", ")", ":", "words", "=", "re", ".", "split", "(", "'[(\\s,)]'", ",", "line", ")", "ras", "=", "np", ".", "array", "(", "words", "[", "1", ":", ":", "2", "]", ")", "decs", "=", "np", ".", "array", "(", "words", "[", "2", ":", ":", "2", "]", ")", "coords", "=", "[", "]", "for", "ra", ",", "dec", "in", "zip", "(", "ras", ",", "decs", ")", ":", "if", "ra", ".", "strip", "(", ")", "==", "''", "or", "dec", ".", "strip", "(", ")", "==", "''", ":", "continue", "if", "\":\"", "in", "ra", ":", "pos", "=", "SkyCoord", "(", "Angle", "(", "ra", ",", "unit", "=", "u", ".", "hour", ")", ",", "Angle", "(", "dec", ",", "unit", "=", "u", ".", "degree", ")", ")", "else", ":", "pos", "=", "SkyCoord", "(", "Angle", "(", "ra", ",", "unit", "=", "u", ".", "degree", ")", ",", "Angle", "(", "dec", ",", "unit", "=", "u", ".", "degree", ")", ")", "# only add this point if it is some distance from the previous one", "coords", ".", "extend", "(", "[", "pos", ".", "ra", ".", "degree", ",", "pos", ".", "dec", ".", "degree", "]", ")", "return", "coords" ]
Parse a string of text containing a DS9 description of a polygon. This function works but is not very robust due to the constraints of healpy. Parameters ---------- line : str A string containing a DS9 region command for a polygon. Returns ------- poly : [ra, dec, ...] The coordinates of the polygon.
[ "Parse", "a", "string", "of", "text", "containing", "a", "DS9", "description", "of", "a", "polygon", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L368-L397
PaulHancock/Aegean
AegeanTools/MIMAS.py
reg2mim
def reg2mim(regfile, mimfile, maxdepth): """ Parse a DS9 region file and write a MIMAS region (.mim) file. Parameters ---------- regfile : str DS9 region (.reg) file. mimfile : str MIMAS region (.mim) file. maxdepth : str Depth/resolution of the region file. """ logging.info("Reading regions from {0}".format(regfile)) lines = (l for l in open(regfile, 'r') if not l.startswith('#')) poly = [] circles = [] for line in lines: if line.startswith('box'): poly.append(box2poly(line)) elif line.startswith('circle'): circles.append(circle2circle(line)) elif line.startswith('polygon'): logging.warning("Polygons break a lot, but I'll try this one anyway.") poly.append(poly2poly(line)) else: logging.warning("Not sure what to do with {0}".format(line[:-1])) container = Dummy(maxdepth=maxdepth) container.include_circles = circles container.include_polygons = poly region = combine_regions(container) save_region(region, mimfile) return
python
def reg2mim(regfile, mimfile, maxdepth): """ Parse a DS9 region file and write a MIMAS region (.mim) file. Parameters ---------- regfile : str DS9 region (.reg) file. mimfile : str MIMAS region (.mim) file. maxdepth : str Depth/resolution of the region file. """ logging.info("Reading regions from {0}".format(regfile)) lines = (l for l in open(regfile, 'r') if not l.startswith('#')) poly = [] circles = [] for line in lines: if line.startswith('box'): poly.append(box2poly(line)) elif line.startswith('circle'): circles.append(circle2circle(line)) elif line.startswith('polygon'): logging.warning("Polygons break a lot, but I'll try this one anyway.") poly.append(poly2poly(line)) else: logging.warning("Not sure what to do with {0}".format(line[:-1])) container = Dummy(maxdepth=maxdepth) container.include_circles = circles container.include_polygons = poly region = combine_regions(container) save_region(region, mimfile) return
[ "def", "reg2mim", "(", "regfile", ",", "mimfile", ",", "maxdepth", ")", ":", "logging", ".", "info", "(", "\"Reading regions from {0}\"", ".", "format", "(", "regfile", ")", ")", "lines", "=", "(", "l", "for", "l", "in", "open", "(", "regfile", ",", "'r'", ")", "if", "not", "l", ".", "startswith", "(", "'#'", ")", ")", "poly", "=", "[", "]", "circles", "=", "[", "]", "for", "line", "in", "lines", ":", "if", "line", ".", "startswith", "(", "'box'", ")", ":", "poly", ".", "append", "(", "box2poly", "(", "line", ")", ")", "elif", "line", ".", "startswith", "(", "'circle'", ")", ":", "circles", ".", "append", "(", "circle2circle", "(", "line", ")", ")", "elif", "line", ".", "startswith", "(", "'polygon'", ")", ":", "logging", ".", "warning", "(", "\"Polygons break a lot, but I'll try this one anyway.\"", ")", "poly", ".", "append", "(", "poly2poly", "(", "line", ")", ")", "else", ":", "logging", ".", "warning", "(", "\"Not sure what to do with {0}\"", ".", "format", "(", "line", "[", ":", "-", "1", "]", ")", ")", "container", "=", "Dummy", "(", "maxdepth", "=", "maxdepth", ")", "container", ".", "include_circles", "=", "circles", "container", ".", "include_polygons", "=", "poly", "region", "=", "combine_regions", "(", "container", ")", "save_region", "(", "region", ",", "mimfile", ")", "return" ]
Parse a DS9 region file and write a MIMAS region (.mim) file. Parameters ---------- regfile : str DS9 region (.reg) file. mimfile : str MIMAS region (.mim) file. maxdepth : str Depth/resolution of the region file.
[ "Parse", "a", "DS9", "region", "file", "and", "write", "a", "MIMAS", "region", "(", ".", "mim", ")", "file", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L400-L436
PaulHancock/Aegean
AegeanTools/MIMAS.py
combine_regions
def combine_regions(container): """ Return a region that is the combination of those specified in the container. The container is typically a results instance that comes from argparse. Order of construction is: add regions, subtract regions, add circles, subtract circles, add polygons, subtract polygons. Parameters ---------- container : :class:`AegeanTools.MIMAS.Dummy` The regions to be combined. Returns ------- region : :class:`AegeanTools.regions.Region` The constructed region. """ # create empty region region = Region(container.maxdepth) # add/rem all the regions from files for r in container.add_region: logging.info("adding region from {0}".format(r)) r2 = Region.load(r[0]) region.union(r2) for r in container.rem_region: logging.info("removing region from {0}".format(r)) r2 = Region.load(r[0]) region.without(r2) # add circles if len(container.include_circles) > 0: for c in container.include_circles: circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0]//3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0]//3) region.add_circles(ras, decs, radii) # remove circles if len(container.exclude_circles) > 0: for c in container.exclude_circles: r2 = Region(container.maxdepth) circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0]//3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0]//3) r2.add_circles(ras, decs, radii) region.without(r2) # add polygons if len(container.include_polygons) > 0: for p in container.include_polygons: poly = np.radians(np.array(p)) poly = poly.reshape((poly.shape[0]//2, 2)) region.add_poly(poly) # remove polygons if len(container.exclude_polygons) > 0: for p in container.include_polygons: poly = np.array(np.radians(p)) r2 = Region(container.maxdepth) r2.add_poly(poly) region.without(r2) return region
python
def combine_regions(container): """ Return a region that is the combination of those specified in the container. The container is typically a results instance that comes from argparse. Order of construction is: add regions, subtract regions, add circles, subtract circles, add polygons, subtract polygons. Parameters ---------- container : :class:`AegeanTools.MIMAS.Dummy` The regions to be combined. Returns ------- region : :class:`AegeanTools.regions.Region` The constructed region. """ # create empty region region = Region(container.maxdepth) # add/rem all the regions from files for r in container.add_region: logging.info("adding region from {0}".format(r)) r2 = Region.load(r[0]) region.union(r2) for r in container.rem_region: logging.info("removing region from {0}".format(r)) r2 = Region.load(r[0]) region.without(r2) # add circles if len(container.include_circles) > 0: for c in container.include_circles: circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0]//3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0]//3) region.add_circles(ras, decs, radii) # remove circles if len(container.exclude_circles) > 0: for c in container.exclude_circles: r2 = Region(container.maxdepth) circles = np.radians(np.array(c)) if container.galactic: l, b, radii = circles.reshape(3, circles.shape[0]//3) ras, decs = galactic2fk5(l, b) else: ras, decs, radii = circles.reshape(3, circles.shape[0]//3) r2.add_circles(ras, decs, radii) region.without(r2) # add polygons if len(container.include_polygons) > 0: for p in container.include_polygons: poly = np.radians(np.array(p)) poly = poly.reshape((poly.shape[0]//2, 2)) region.add_poly(poly) # remove polygons if len(container.exclude_polygons) > 0: for p in container.include_polygons: poly = np.array(np.radians(p)) r2 = Region(container.maxdepth) r2.add_poly(poly) region.without(r2) return region
[ "def", "combine_regions", "(", "container", ")", ":", "# create empty region", "region", "=", "Region", "(", "container", ".", "maxdepth", ")", "# add/rem all the regions from files", "for", "r", "in", "container", ".", "add_region", ":", "logging", ".", "info", "(", "\"adding region from {0}\"", ".", "format", "(", "r", ")", ")", "r2", "=", "Region", ".", "load", "(", "r", "[", "0", "]", ")", "region", ".", "union", "(", "r2", ")", "for", "r", "in", "container", ".", "rem_region", ":", "logging", ".", "info", "(", "\"removing region from {0}\"", ".", "format", "(", "r", ")", ")", "r2", "=", "Region", ".", "load", "(", "r", "[", "0", "]", ")", "region", ".", "without", "(", "r2", ")", "# add circles", "if", "len", "(", "container", ".", "include_circles", ")", ">", "0", ":", "for", "c", "in", "container", ".", "include_circles", ":", "circles", "=", "np", ".", "radians", "(", "np", ".", "array", "(", "c", ")", ")", "if", "container", ".", "galactic", ":", "l", ",", "b", ",", "radii", "=", "circles", ".", "reshape", "(", "3", ",", "circles", ".", "shape", "[", "0", "]", "//", "3", ")", "ras", ",", "decs", "=", "galactic2fk5", "(", "l", ",", "b", ")", "else", ":", "ras", ",", "decs", ",", "radii", "=", "circles", ".", "reshape", "(", "3", ",", "circles", ".", "shape", "[", "0", "]", "//", "3", ")", "region", ".", "add_circles", "(", "ras", ",", "decs", ",", "radii", ")", "# remove circles", "if", "len", "(", "container", ".", "exclude_circles", ")", ">", "0", ":", "for", "c", "in", "container", ".", "exclude_circles", ":", "r2", "=", "Region", "(", "container", ".", "maxdepth", ")", "circles", "=", "np", ".", "radians", "(", "np", ".", "array", "(", "c", ")", ")", "if", "container", ".", "galactic", ":", "l", ",", "b", ",", "radii", "=", "circles", ".", "reshape", "(", "3", ",", "circles", ".", "shape", "[", "0", "]", "//", "3", ")", "ras", ",", "decs", "=", "galactic2fk5", "(", "l", ",", "b", ")", "else", ":", "ras", ",", "decs", ",", "radii", "=", "circles", ".", "reshape", "(", "3", ",", "circles", ".", "shape", "[", "0", "]", "//", "3", ")", "r2", ".", "add_circles", "(", "ras", ",", "decs", ",", "radii", ")", "region", ".", "without", "(", "r2", ")", "# add polygons", "if", "len", "(", "container", ".", "include_polygons", ")", ">", "0", ":", "for", "p", "in", "container", ".", "include_polygons", ":", "poly", "=", "np", ".", "radians", "(", "np", ".", "array", "(", "p", ")", ")", "poly", "=", "poly", ".", "reshape", "(", "(", "poly", ".", "shape", "[", "0", "]", "//", "2", ",", "2", ")", ")", "region", ".", "add_poly", "(", "poly", ")", "# remove polygons", "if", "len", "(", "container", ".", "exclude_polygons", ")", ">", "0", ":", "for", "p", "in", "container", ".", "include_polygons", ":", "poly", "=", "np", ".", "array", "(", "np", ".", "radians", "(", "p", ")", ")", "r2", "=", "Region", "(", "container", ".", "maxdepth", ")", "r2", ".", "add_poly", "(", "poly", ")", "region", ".", "without", "(", "r2", ")", "return", "region" ]
Return a region that is the combination of those specified in the container. The container is typically a results instance that comes from argparse. Order of construction is: add regions, subtract regions, add circles, subtract circles, add polygons, subtract polygons. Parameters ---------- container : :class:`AegeanTools.MIMAS.Dummy` The regions to be combined. Returns ------- region : :class:`AegeanTools.regions.Region` The constructed region.
[ "Return", "a", "region", "that", "is", "the", "combination", "of", "those", "specified", "in", "the", "container", ".", "The", "container", "is", "typically", "a", "results", "instance", "that", "comes", "from", "argparse", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L439-L511
PaulHancock/Aegean
AegeanTools/MIMAS.py
intersect_regions
def intersect_regions(flist): """ Construct a region which is the intersection of all regions described in the given list of file names. Parameters ---------- flist : list A list of region filenames. Returns ------- region : :class:`AegeanTools.regions.Region` The intersection of all regions, possibly empty. """ if len(flist) < 2: raise Exception("Require at least two regions to perform intersection") a = Region.load(flist[0]) for b in [Region.load(f) for f in flist[1:]]: a.intersect(b) return a
python
def intersect_regions(flist): """ Construct a region which is the intersection of all regions described in the given list of file names. Parameters ---------- flist : list A list of region filenames. Returns ------- region : :class:`AegeanTools.regions.Region` The intersection of all regions, possibly empty. """ if len(flist) < 2: raise Exception("Require at least two regions to perform intersection") a = Region.load(flist[0]) for b in [Region.load(f) for f in flist[1:]]: a.intersect(b) return a
[ "def", "intersect_regions", "(", "flist", ")", ":", "if", "len", "(", "flist", ")", "<", "2", ":", "raise", "Exception", "(", "\"Require at least two regions to perform intersection\"", ")", "a", "=", "Region", ".", "load", "(", "flist", "[", "0", "]", ")", "for", "b", "in", "[", "Region", ".", "load", "(", "f", ")", "for", "f", "in", "flist", "[", "1", ":", "]", "]", ":", "a", ".", "intersect", "(", "b", ")", "return", "a" ]
Construct a region which is the intersection of all regions described in the given list of file names. Parameters ---------- flist : list A list of region filenames. Returns ------- region : :class:`AegeanTools.regions.Region` The intersection of all regions, possibly empty.
[ "Construct", "a", "region", "which", "is", "the", "intersection", "of", "all", "regions", "described", "in", "the", "given", "list", "of", "file", "names", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L514-L534
PaulHancock/Aegean
AegeanTools/MIMAS.py
save_region
def save_region(region, filename): """ Save the given region to a file Parameters ---------- region : :class:`AegeanTools.regions.Region` A region. filename : str Output file name. """ region.save(filename) logging.info("Wrote {0}".format(filename)) return
python
def save_region(region, filename): """ Save the given region to a file Parameters ---------- region : :class:`AegeanTools.regions.Region` A region. filename : str Output file name. """ region.save(filename) logging.info("Wrote {0}".format(filename)) return
[ "def", "save_region", "(", "region", ",", "filename", ")", ":", "region", ".", "save", "(", "filename", ")", "logging", ".", "info", "(", "\"Wrote {0}\"", ".", "format", "(", "filename", ")", ")", "return" ]
Save the given region to a file Parameters ---------- region : :class:`AegeanTools.regions.Region` A region. filename : str Output file name.
[ "Save", "the", "given", "region", "to", "a", "file" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L537-L551
PaulHancock/Aegean
AegeanTools/MIMAS.py
save_as_image
def save_as_image(region, filename): """ Convert a MIMAS region (.mim) file into a image (eg .png) Parameters ---------- region : :class:`AegeanTools.regions.Region` Region of interest. filename : str Output filename. """ import healpy as hp pixels = list(region.get_demoted()) order = region.maxdepth m = np.arange(hp.nside2npix(2**order)) m[:] = 0 m[pixels] = 1 hp.write_map(filename, m, nest=True, coord='C') return
python
def save_as_image(region, filename): """ Convert a MIMAS region (.mim) file into a image (eg .png) Parameters ---------- region : :class:`AegeanTools.regions.Region` Region of interest. filename : str Output filename. """ import healpy as hp pixels = list(region.get_demoted()) order = region.maxdepth m = np.arange(hp.nside2npix(2**order)) m[:] = 0 m[pixels] = 1 hp.write_map(filename, m, nest=True, coord='C') return
[ "def", "save_as_image", "(", "region", ",", "filename", ")", ":", "import", "healpy", "as", "hp", "pixels", "=", "list", "(", "region", ".", "get_demoted", "(", ")", ")", "order", "=", "region", ".", "maxdepth", "m", "=", "np", ".", "arange", "(", "hp", ".", "nside2npix", "(", "2", "**", "order", ")", ")", "m", "[", ":", "]", "=", "0", "m", "[", "pixels", "]", "=", "1", "hp", ".", "write_map", "(", "filename", ",", "m", ",", "nest", "=", "True", ",", "coord", "=", "'C'", ")", "return" ]
Convert a MIMAS region (.mim) file into a image (eg .png) Parameters ---------- region : :class:`AegeanTools.regions.Region` Region of interest. filename : str Output filename.
[ "Convert", "a", "MIMAS", "region", "(", ".", "mim", ")", "file", "into", "a", "image", "(", "eg", ".", "png", ")" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/MIMAS.py#L554-L573
PaulHancock/Aegean
AegeanTools/fits_image.py
get_pixinfo
def get_pixinfo(header): """ Return some pixel information based on the given hdu header pixarea - the area of a single pixel in deg2 pixscale - the side lengths of a pixel (assuming they are square) Parameters ---------- header : HDUHeader or dict FITS header information Returns ------- pixarea : float The are of a single pixel at the reference location, in square degrees. pixscale : (float, float) The pixel scale in degrees, at the reference location. Notes ----- The reference location is not always at the image center, and the pixel scale/area may change over the image, depending on the projection. """ if all(a in header for a in ["CDELT1", "CDELT2"]): pixarea = abs(header["CDELT1"]*header["CDELT2"]) pixscale = (header["CDELT1"], header["CDELT2"]) elif all(a in header for a in ["CD1_1", "CD1_2", "CD2_1", "CD2_2"]): pixarea = abs(header["CD1_1"]*header["CD2_2"] - header["CD1_2"]*header["CD2_1"]) pixscale = (header["CD1_1"], header["CD2_2"]) if not (header["CD1_2"] == 0 and header["CD2_1"] == 0): log.warning("Pixels don't appear to be square -> pixscale is wrong") elif all(a in header for a in ["CD1_1", "CD2_2"]): pixarea = abs(header["CD1_1"]*header["CD2_2"]) pixscale = (header["CD1_1"], header["CD2_2"]) else: log.critical("cannot determine pixel area, using zero EVEN THOUGH THIS IS WRONG!") pixarea = 0 pixscale = (0, 0) return pixarea, pixscale
python
def get_pixinfo(header): """ Return some pixel information based on the given hdu header pixarea - the area of a single pixel in deg2 pixscale - the side lengths of a pixel (assuming they are square) Parameters ---------- header : HDUHeader or dict FITS header information Returns ------- pixarea : float The are of a single pixel at the reference location, in square degrees. pixscale : (float, float) The pixel scale in degrees, at the reference location. Notes ----- The reference location is not always at the image center, and the pixel scale/area may change over the image, depending on the projection. """ if all(a in header for a in ["CDELT1", "CDELT2"]): pixarea = abs(header["CDELT1"]*header["CDELT2"]) pixscale = (header["CDELT1"], header["CDELT2"]) elif all(a in header for a in ["CD1_1", "CD1_2", "CD2_1", "CD2_2"]): pixarea = abs(header["CD1_1"]*header["CD2_2"] - header["CD1_2"]*header["CD2_1"]) pixscale = (header["CD1_1"], header["CD2_2"]) if not (header["CD1_2"] == 0 and header["CD2_1"] == 0): log.warning("Pixels don't appear to be square -> pixscale is wrong") elif all(a in header for a in ["CD1_1", "CD2_2"]): pixarea = abs(header["CD1_1"]*header["CD2_2"]) pixscale = (header["CD1_1"], header["CD2_2"]) else: log.critical("cannot determine pixel area, using zero EVEN THOUGH THIS IS WRONG!") pixarea = 0 pixscale = (0, 0) return pixarea, pixscale
[ "def", "get_pixinfo", "(", "header", ")", ":", "if", "all", "(", "a", "in", "header", "for", "a", "in", "[", "\"CDELT1\"", ",", "\"CDELT2\"", "]", ")", ":", "pixarea", "=", "abs", "(", "header", "[", "\"CDELT1\"", "]", "*", "header", "[", "\"CDELT2\"", "]", ")", "pixscale", "=", "(", "header", "[", "\"CDELT1\"", "]", ",", "header", "[", "\"CDELT2\"", "]", ")", "elif", "all", "(", "a", "in", "header", "for", "a", "in", "[", "\"CD1_1\"", ",", "\"CD1_2\"", ",", "\"CD2_1\"", ",", "\"CD2_2\"", "]", ")", ":", "pixarea", "=", "abs", "(", "header", "[", "\"CD1_1\"", "]", "*", "header", "[", "\"CD2_2\"", "]", "-", "header", "[", "\"CD1_2\"", "]", "*", "header", "[", "\"CD2_1\"", "]", ")", "pixscale", "=", "(", "header", "[", "\"CD1_1\"", "]", ",", "header", "[", "\"CD2_2\"", "]", ")", "if", "not", "(", "header", "[", "\"CD1_2\"", "]", "==", "0", "and", "header", "[", "\"CD2_1\"", "]", "==", "0", ")", ":", "log", ".", "warning", "(", "\"Pixels don't appear to be square -> pixscale is wrong\"", ")", "elif", "all", "(", "a", "in", "header", "for", "a", "in", "[", "\"CD1_1\"", ",", "\"CD2_2\"", "]", ")", ":", "pixarea", "=", "abs", "(", "header", "[", "\"CD1_1\"", "]", "*", "header", "[", "\"CD2_2\"", "]", ")", "pixscale", "=", "(", "header", "[", "\"CD1_1\"", "]", ",", "header", "[", "\"CD2_2\"", "]", ")", "else", ":", "log", ".", "critical", "(", "\"cannot determine pixel area, using zero EVEN THOUGH THIS IS WRONG!\"", ")", "pixarea", "=", "0", "pixscale", "=", "(", "0", ",", "0", ")", "return", "pixarea", ",", "pixscale" ]
Return some pixel information based on the given hdu header pixarea - the area of a single pixel in deg2 pixscale - the side lengths of a pixel (assuming they are square) Parameters ---------- header : HDUHeader or dict FITS header information Returns ------- pixarea : float The are of a single pixel at the reference location, in square degrees. pixscale : (float, float) The pixel scale in degrees, at the reference location. Notes ----- The reference location is not always at the image center, and the pixel scale/area may change over the image, depending on the projection.
[ "Return", "some", "pixel", "information", "based", "on", "the", "given", "hdu", "header", "pixarea", "-", "the", "area", "of", "a", "single", "pixel", "in", "deg2", "pixscale", "-", "the", "side", "lengths", "of", "a", "pixel", "(", "assuming", "they", "are", "square", ")" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fits_image.py#L20-L60
PaulHancock/Aegean
AegeanTools/fits_image.py
get_beam
def get_beam(header): """ Create a :class:`AegeanTools.fits_image.Beam` object from a fits header. BPA may be missing but will be assumed to be zero. if BMAJ or BMIN are missing then return None instead of a beam object. Parameters ---------- header : HDUHeader The fits header. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` Beam object, with a, b, and pa in degrees. """ if "BPA" not in header: log.warning("BPA not present in fits header, using 0") bpa = 0 else: bpa = header["BPA"] if "BMAJ" not in header: log.warning("BMAJ not present in fits header.") bmaj = None else: bmaj = header["BMAJ"] if "BMIN" not in header: log.warning("BMIN not present in fits header.") bmin = None else: bmin = header["BMIN"] if None in [bmaj, bmin, bpa]: return None beam = Beam(bmaj, bmin, bpa) return beam
python
def get_beam(header): """ Create a :class:`AegeanTools.fits_image.Beam` object from a fits header. BPA may be missing but will be assumed to be zero. if BMAJ or BMIN are missing then return None instead of a beam object. Parameters ---------- header : HDUHeader The fits header. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` Beam object, with a, b, and pa in degrees. """ if "BPA" not in header: log.warning("BPA not present in fits header, using 0") bpa = 0 else: bpa = header["BPA"] if "BMAJ" not in header: log.warning("BMAJ not present in fits header.") bmaj = None else: bmaj = header["BMAJ"] if "BMIN" not in header: log.warning("BMIN not present in fits header.") bmin = None else: bmin = header["BMIN"] if None in [bmaj, bmin, bpa]: return None beam = Beam(bmaj, bmin, bpa) return beam
[ "def", "get_beam", "(", "header", ")", ":", "if", "\"BPA\"", "not", "in", "header", ":", "log", ".", "warning", "(", "\"BPA not present in fits header, using 0\"", ")", "bpa", "=", "0", "else", ":", "bpa", "=", "header", "[", "\"BPA\"", "]", "if", "\"BMAJ\"", "not", "in", "header", ":", "log", ".", "warning", "(", "\"BMAJ not present in fits header.\"", ")", "bmaj", "=", "None", "else", ":", "bmaj", "=", "header", "[", "\"BMAJ\"", "]", "if", "\"BMIN\"", "not", "in", "header", ":", "log", ".", "warning", "(", "\"BMIN not present in fits header.\"", ")", "bmin", "=", "None", "else", ":", "bmin", "=", "header", "[", "\"BMIN\"", "]", "if", "None", "in", "[", "bmaj", ",", "bmin", ",", "bpa", "]", ":", "return", "None", "beam", "=", "Beam", "(", "bmaj", ",", "bmin", ",", "bpa", ")", "return", "beam" ]
Create a :class:`AegeanTools.fits_image.Beam` object from a fits header. BPA may be missing but will be assumed to be zero. if BMAJ or BMIN are missing then return None instead of a beam object. Parameters ---------- header : HDUHeader The fits header. Returns ------- beam : :class:`AegeanTools.fits_image.Beam` Beam object, with a, b, and pa in degrees.
[ "Create", "a", ":", "class", ":", "AegeanTools", ".", "fits_image", ".", "Beam", "object", "from", "a", "fits", "header", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fits_image.py#L63-L102
PaulHancock/Aegean
AegeanTools/fits_image.py
fix_aips_header
def fix_aips_header(header): """ Search through an image header. If the keywords BMAJ/BMIN/BPA are not set, but there are AIPS history cards, then we can populate the BMAJ/BMIN/BPA. Fix the header if possible, otherwise don't. Either way, don't complain. Parameters ---------- header : HDUHeader Fits header which may or may not have AIPS history cards. Returns ------- header : HDUHeader A header which has BMAJ, BMIN, and BPA keys, as well as a new HISTORY card. """ if 'BMAJ' in header and 'BMIN' in header and 'BPA' in header: # The header already has the required keys so there is nothing to do return header aips_hist = [a for a in header['HISTORY'] if a.startswith("AIPS")] if len(aips_hist) == 0: # There are no AIPS history items to process return header for a in aips_hist: if "BMAJ" in a: # this line looks like # 'AIPS CLEAN BMAJ= 1.2500E-02 BMIN= 1.2500E-02 BPA= 0.00' words = a.split() bmaj = float(words[3]) bmin = float(words[5]) bpa = float(words[7]) break else: # there are AIPS cards but there is no BMAJ/BMIN/BPA return header header['BMAJ'] = bmaj header['BMIN'] = bmin header['BPA'] = bpa header['HISTORY'] = 'Beam information AIPS->fits by AegeanTools' return header
python
def fix_aips_header(header): """ Search through an image header. If the keywords BMAJ/BMIN/BPA are not set, but there are AIPS history cards, then we can populate the BMAJ/BMIN/BPA. Fix the header if possible, otherwise don't. Either way, don't complain. Parameters ---------- header : HDUHeader Fits header which may or may not have AIPS history cards. Returns ------- header : HDUHeader A header which has BMAJ, BMIN, and BPA keys, as well as a new HISTORY card. """ if 'BMAJ' in header and 'BMIN' in header and 'BPA' in header: # The header already has the required keys so there is nothing to do return header aips_hist = [a for a in header['HISTORY'] if a.startswith("AIPS")] if len(aips_hist) == 0: # There are no AIPS history items to process return header for a in aips_hist: if "BMAJ" in a: # this line looks like # 'AIPS CLEAN BMAJ= 1.2500E-02 BMIN= 1.2500E-02 BPA= 0.00' words = a.split() bmaj = float(words[3]) bmin = float(words[5]) bpa = float(words[7]) break else: # there are AIPS cards but there is no BMAJ/BMIN/BPA return header header['BMAJ'] = bmaj header['BMIN'] = bmin header['BPA'] = bpa header['HISTORY'] = 'Beam information AIPS->fits by AegeanTools' return header
[ "def", "fix_aips_header", "(", "header", ")", ":", "if", "'BMAJ'", "in", "header", "and", "'BMIN'", "in", "header", "and", "'BPA'", "in", "header", ":", "# The header already has the required keys so there is nothing to do", "return", "header", "aips_hist", "=", "[", "a", "for", "a", "in", "header", "[", "'HISTORY'", "]", "if", "a", ".", "startswith", "(", "\"AIPS\"", ")", "]", "if", "len", "(", "aips_hist", ")", "==", "0", ":", "# There are no AIPS history items to process", "return", "header", "for", "a", "in", "aips_hist", ":", "if", "\"BMAJ\"", "in", "a", ":", "# this line looks like", "# 'AIPS CLEAN BMAJ= 1.2500E-02 BMIN= 1.2500E-02 BPA= 0.00'", "words", "=", "a", ".", "split", "(", ")", "bmaj", "=", "float", "(", "words", "[", "3", "]", ")", "bmin", "=", "float", "(", "words", "[", "5", "]", ")", "bpa", "=", "float", "(", "words", "[", "7", "]", ")", "break", "else", ":", "# there are AIPS cards but there is no BMAJ/BMIN/BPA", "return", "header", "header", "[", "'BMAJ'", "]", "=", "bmaj", "header", "[", "'BMIN'", "]", "=", "bmin", "header", "[", "'BPA'", "]", "=", "bpa", "header", "[", "'HISTORY'", "]", "=", "'Beam information AIPS->fits by AegeanTools'", "return", "header" ]
Search through an image header. If the keywords BMAJ/BMIN/BPA are not set, but there are AIPS history cards, then we can populate the BMAJ/BMIN/BPA. Fix the header if possible, otherwise don't. Either way, don't complain. Parameters ---------- header : HDUHeader Fits header which may or may not have AIPS history cards. Returns ------- header : HDUHeader A header which has BMAJ, BMIN, and BPA keys, as well as a new HISTORY card.
[ "Search", "through", "an", "image", "header", ".", "If", "the", "keywords", "BMAJ", "/", "BMIN", "/", "BPA", "are", "not", "set", "but", "there", "are", "AIPS", "history", "cards", "then", "we", "can", "populate", "the", "BMAJ", "/", "BMIN", "/", "BPA", ".", "Fix", "the", "header", "if", "possible", "otherwise", "don", "t", ".", "Either", "way", "don", "t", "complain", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fits_image.py#L105-L145
PaulHancock/Aegean
AegeanTools/fits_image.py
FitsImage.set_pixels
def set_pixels(self, pixels): """ Set the image data. Will not work if the new image has a different shape than the current image. Parameters ---------- pixels : numpy.ndarray New image data Returns ------- None """ if not (pixels.shape == self._pixels.shape): raise AssertionError("Shape mismatch between pixels supplied {0} and existing image pixels {1}".format(pixels.shape,self._pixels.shape)) self._pixels = pixels # reset this so that it is calculated next time the function is called self._rms = None return
python
def set_pixels(self, pixels): """ Set the image data. Will not work if the new image has a different shape than the current image. Parameters ---------- pixels : numpy.ndarray New image data Returns ------- None """ if not (pixels.shape == self._pixels.shape): raise AssertionError("Shape mismatch between pixels supplied {0} and existing image pixels {1}".format(pixels.shape,self._pixels.shape)) self._pixels = pixels # reset this so that it is calculated next time the function is called self._rms = None return
[ "def", "set_pixels", "(", "self", ",", "pixels", ")", ":", "if", "not", "(", "pixels", ".", "shape", "==", "self", ".", "_pixels", ".", "shape", ")", ":", "raise", "AssertionError", "(", "\"Shape mismatch between pixels supplied {0} and existing image pixels {1}\"", ".", "format", "(", "pixels", ".", "shape", ",", "self", ".", "_pixels", ".", "shape", ")", ")", "self", ".", "_pixels", "=", "pixels", "# reset this so that it is calculated next time the function is called", "self", ".", "_rms", "=", "None", "return" ]
Set the image data. Will not work if the new image has a different shape than the current image. Parameters ---------- pixels : numpy.ndarray New image data Returns ------- None
[ "Set", "the", "image", "data", ".", "Will", "not", "work", "if", "the", "new", "image", "has", "a", "different", "shape", "than", "the", "current", "image", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fits_image.py#L235-L254
PaulHancock/Aegean
AegeanTools/fits_image.py
FitsImage.get_background_rms
def get_background_rms(self): """ Calculate the rms of the image. The rms is calculated from the interqurtile range (IQR), to reduce bias from source pixels. Returns ------- rms : float The image rms. Notes ----- The rms value is cached after first calculation. """ # TODO: return a proper background RMS ignoring the sources # This is an approximate method suggested by PaulH. # I have no idea where this magic 1.34896 number comes from... if self._rms is None: # Get the pixels values without the NaNs data = numpy.extract(self.hdu.data > -9999999, self.hdu.data) p25 = scipy.stats.scoreatpercentile(data, 25) p75 = scipy.stats.scoreatpercentile(data, 75) iqr = p75 - p25 self._rms = iqr / 1.34896 return self._rms
python
def get_background_rms(self): """ Calculate the rms of the image. The rms is calculated from the interqurtile range (IQR), to reduce bias from source pixels. Returns ------- rms : float The image rms. Notes ----- The rms value is cached after first calculation. """ # TODO: return a proper background RMS ignoring the sources # This is an approximate method suggested by PaulH. # I have no idea where this magic 1.34896 number comes from... if self._rms is None: # Get the pixels values without the NaNs data = numpy.extract(self.hdu.data > -9999999, self.hdu.data) p25 = scipy.stats.scoreatpercentile(data, 25) p75 = scipy.stats.scoreatpercentile(data, 75) iqr = p75 - p25 self._rms = iqr / 1.34896 return self._rms
[ "def", "get_background_rms", "(", "self", ")", ":", "# TODO: return a proper background RMS ignoring the sources", "# This is an approximate method suggested by PaulH.", "# I have no idea where this magic 1.34896 number comes from...", "if", "self", ".", "_rms", "is", "None", ":", "# Get the pixels values without the NaNs", "data", "=", "numpy", ".", "extract", "(", "self", ".", "hdu", ".", "data", ">", "-", "9999999", ",", "self", ".", "hdu", ".", "data", ")", "p25", "=", "scipy", ".", "stats", ".", "scoreatpercentile", "(", "data", ",", "25", ")", "p75", "=", "scipy", ".", "stats", ".", "scoreatpercentile", "(", "data", ",", "75", ")", "iqr", "=", "p75", "-", "p25", "self", ".", "_rms", "=", "iqr", "/", "1.34896", "return", "self", ".", "_rms" ]
Calculate the rms of the image. The rms is calculated from the interqurtile range (IQR), to reduce bias from source pixels. Returns ------- rms : float The image rms. Notes ----- The rms value is cached after first calculation.
[ "Calculate", "the", "rms", "of", "the", "image", ".", "The", "rms", "is", "calculated", "from", "the", "interqurtile", "range", "(", "IQR", ")", "to", "reduce", "bias", "from", "source", "pixels", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fits_image.py#L256-L280
PaulHancock/Aegean
AegeanTools/fits_image.py
FitsImage.pix2sky
def pix2sky(self, pixel): """ Get the sky coordinates for a given image pixel. Parameters ---------- pixel : (float, float) Image coordinates. Returns ------- ra,dec : float Sky coordinates (degrees) """ pixbox = numpy.array([pixel, pixel]) skybox = self.wcs.all_pix2world(pixbox, 1) return [float(skybox[0][0]), float(skybox[0][1])]
python
def pix2sky(self, pixel): """ Get the sky coordinates for a given image pixel. Parameters ---------- pixel : (float, float) Image coordinates. Returns ------- ra,dec : float Sky coordinates (degrees) """ pixbox = numpy.array([pixel, pixel]) skybox = self.wcs.all_pix2world(pixbox, 1) return [float(skybox[0][0]), float(skybox[0][1])]
[ "def", "pix2sky", "(", "self", ",", "pixel", ")", ":", "pixbox", "=", "numpy", ".", "array", "(", "[", "pixel", ",", "pixel", "]", ")", "skybox", "=", "self", ".", "wcs", ".", "all_pix2world", "(", "pixbox", ",", "1", ")", "return", "[", "float", "(", "skybox", "[", "0", "]", "[", "0", "]", ")", ",", "float", "(", "skybox", "[", "0", "]", "[", "1", "]", ")", "]" ]
Get the sky coordinates for a given image pixel. Parameters ---------- pixel : (float, float) Image coordinates. Returns ------- ra,dec : float Sky coordinates (degrees)
[ "Get", "the", "sky", "coordinates", "for", "a", "given", "image", "pixel", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fits_image.py#L282-L299
PaulHancock/Aegean
AegeanTools/fits_image.py
FitsImage.sky2pix
def sky2pix(self, skypos): """ Get the pixel coordinates for a given sky position (degrees). Parameters ---------- skypos : (float,float) ra,dec position in degrees. Returns ------- x,y : float Pixel coordinates. """ skybox = [skypos, skypos] pixbox = self.wcs.all_world2pix(skybox, 1) return [float(pixbox[0][0]), float(pixbox[0][1])]
python
def sky2pix(self, skypos): """ Get the pixel coordinates for a given sky position (degrees). Parameters ---------- skypos : (float,float) ra,dec position in degrees. Returns ------- x,y : float Pixel coordinates. """ skybox = [skypos, skypos] pixbox = self.wcs.all_world2pix(skybox, 1) return [float(pixbox[0][0]), float(pixbox[0][1])]
[ "def", "sky2pix", "(", "self", ",", "skypos", ")", ":", "skybox", "=", "[", "skypos", ",", "skypos", "]", "pixbox", "=", "self", ".", "wcs", ".", "all_world2pix", "(", "skybox", ",", "1", ")", "return", "[", "float", "(", "pixbox", "[", "0", "]", "[", "0", "]", ")", ",", "float", "(", "pixbox", "[", "0", "]", "[", "1", "]", ")", "]" ]
Get the pixel coordinates for a given sky position (degrees). Parameters ---------- skypos : (float,float) ra,dec position in degrees. Returns ------- x,y : float Pixel coordinates.
[ "Get", "the", "pixel", "coordinates", "for", "a", "given", "sky", "position", "(", "degrees", ")", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/fits_image.py#L307-L324
PaulHancock/Aegean
AegeanTools/AeRes.py
load_sources
def load_sources(filename): """ Open a file, read contents, return a list of all the sources in that file. @param filename: @return: list of OutputSource objects """ catalog = catalogs.table_to_source_list(catalogs.load_table(filename)) logging.info("read {0} sources from {1}".format(len(catalog), filename)) return catalog
python
def load_sources(filename): """ Open a file, read contents, return a list of all the sources in that file. @param filename: @return: list of OutputSource objects """ catalog = catalogs.table_to_source_list(catalogs.load_table(filename)) logging.info("read {0} sources from {1}".format(len(catalog), filename)) return catalog
[ "def", "load_sources", "(", "filename", ")", ":", "catalog", "=", "catalogs", ".", "table_to_source_list", "(", "catalogs", ".", "load_table", "(", "filename", ")", ")", "logging", ".", "info", "(", "\"read {0} sources from {1}\"", ".", "format", "(", "len", "(", "catalog", ")", ",", "filename", ")", ")", "return", "catalog" ]
Open a file, read contents, return a list of all the sources in that file. @param filename: @return: list of OutputSource objects
[ "Open", "a", "file", "read", "contents", "return", "a", "list", "of", "all", "the", "sources", "in", "that", "file", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/AeRes.py#L19-L27
PaulHancock/Aegean
scripts/fix_beam.py
search_beam
def search_beam(hdulist): """ Will search the beam info from the HISTORY :param hdulist: :return: """ header = hdulist[0].header history = header['HISTORY'] history_str = str(history) #AIPS CLEAN BMAJ= 1.2500E-02 BMIN= 1.2500E-02 BPA= 0.00 if 'BMAJ' in history_str: return True else: return False
python
def search_beam(hdulist): """ Will search the beam info from the HISTORY :param hdulist: :return: """ header = hdulist[0].header history = header['HISTORY'] history_str = str(history) #AIPS CLEAN BMAJ= 1.2500E-02 BMIN= 1.2500E-02 BPA= 0.00 if 'BMAJ' in history_str: return True else: return False
[ "def", "search_beam", "(", "hdulist", ")", ":", "header", "=", "hdulist", "[", "0", "]", ".", "header", "history", "=", "header", "[", "'HISTORY'", "]", "history_str", "=", "str", "(", "history", ")", "#AIPS CLEAN BMAJ= 1.2500E-02 BMIN= 1.2500E-02 BPA= 0.00", "if", "'BMAJ'", "in", "history_str", ":", "return", "True", "else", ":", "return", "False" ]
Will search the beam info from the HISTORY :param hdulist: :return:
[ "Will", "search", "the", "beam", "info", "from", "the", "HISTORY", ":", "param", "hdulist", ":", ":", "return", ":" ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/scripts/fix_beam.py#L22-L35
PaulHancock/Aegean
AegeanTools/source_finder.py
fix_shape
def fix_shape(source): """ Ensure that a>=b for a given source object. If a<b then swap a/b and increment pa by 90. err_a/err_b are also swapped as needed. Parameters ---------- source : object any object with a/b/pa/err_a/err_b properties """ if source.a < source.b: source.a, source.b = source.b, source.a source.err_a, source.err_b = source.err_b, source.err_a source.pa += 90 return
python
def fix_shape(source): """ Ensure that a>=b for a given source object. If a<b then swap a/b and increment pa by 90. err_a/err_b are also swapped as needed. Parameters ---------- source : object any object with a/b/pa/err_a/err_b properties """ if source.a < source.b: source.a, source.b = source.b, source.a source.err_a, source.err_b = source.err_b, source.err_a source.pa += 90 return
[ "def", "fix_shape", "(", "source", ")", ":", "if", "source", ".", "a", "<", "source", ".", "b", ":", "source", ".", "a", ",", "source", ".", "b", "=", "source", ".", "b", ",", "source", ".", "a", "source", ".", "err_a", ",", "source", ".", "err_b", "=", "source", ".", "err_b", ",", "source", ".", "err_a", "source", ".", "pa", "+=", "90", "return" ]
Ensure that a>=b for a given source object. If a<b then swap a/b and increment pa by 90. err_a/err_b are also swapped as needed. Parameters ---------- source : object any object with a/b/pa/err_a/err_b properties
[ "Ensure", "that", "a", ">", "=", "b", "for", "a", "given", "source", "object", ".", "If", "a<b", "then", "swap", "a", "/", "b", "and", "increment", "pa", "by", "90", ".", "err_a", "/", "err_b", "are", "also", "swapped", "as", "needed", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/source_finder.py#L1786-L1802
PaulHancock/Aegean
AegeanTools/source_finder.py
theta_limit
def theta_limit(theta): """ Angle theta is periodic with period pi. Constrain theta such that -pi/2<theta<=pi/2. Parameters ---------- theta : float Input angle. Returns ------- theta : float Rotate angle. """ while theta <= -1 * np.pi / 2: theta += np.pi while theta > np.pi / 2: theta -= np.pi return theta
python
def theta_limit(theta): """ Angle theta is periodic with period pi. Constrain theta such that -pi/2<theta<=pi/2. Parameters ---------- theta : float Input angle. Returns ------- theta : float Rotate angle. """ while theta <= -1 * np.pi / 2: theta += np.pi while theta > np.pi / 2: theta -= np.pi return theta
[ "def", "theta_limit", "(", "theta", ")", ":", "while", "theta", "<=", "-", "1", "*", "np", ".", "pi", "/", "2", ":", "theta", "+=", "np", ".", "pi", "while", "theta", ">", "np", ".", "pi", "/", "2", ":", "theta", "-=", "np", ".", "pi", "return", "theta" ]
Angle theta is periodic with period pi. Constrain theta such that -pi/2<theta<=pi/2. Parameters ---------- theta : float Input angle. Returns ------- theta : float Rotate angle.
[ "Angle", "theta", "is", "periodic", "with", "period", "pi", ".", "Constrain", "theta", "such", "that", "-", "pi", "/", "2<theta<", "=", "pi", "/", "2", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/source_finder.py#L1827-L1846
PaulHancock/Aegean
AegeanTools/source_finder.py
scope2lat
def scope2lat(telescope): """ Convert a telescope name into a latitude returns None when the telescope is unknown. Parameters ---------- telescope : str Acronym (name) of telescope, eg MWA. Returns ------- lat : float The latitude of the telescope. Notes ----- These values were taken from wikipedia so have varying precision/accuracy """ scopes = {'MWA': -26.703319, "ATCA": -30.3128, "VLA": 34.0790, "LOFAR": 52.9088, "KAT7": -30.721, "MEERKAT": -30.721, "PAPER": -30.7224, "GMRT": 19.096516666667, "OOTY": 11.383404, "ASKAP": -26.7, "MOST": -35.3707, "PARKES": -32.999944, "WSRT": 52.914722, "AMILA": 52.16977, "AMISA": 52.164303, "ATA": 40.817, "CHIME": 49.321, "CARMA": 37.28044, "DRAO": 49.321, "GBT": 38.433056, "LWA": 34.07, "ALMA": -23.019283, "FAST": 25.6525 } if telescope.upper() in scopes: return scopes[telescope.upper()] else: log = logging.getLogger("Aegean") log.warn("Telescope {0} is unknown".format(telescope)) log.warn("integrated fluxes may be incorrect") return None
python
def scope2lat(telescope): """ Convert a telescope name into a latitude returns None when the telescope is unknown. Parameters ---------- telescope : str Acronym (name) of telescope, eg MWA. Returns ------- lat : float The latitude of the telescope. Notes ----- These values were taken from wikipedia so have varying precision/accuracy """ scopes = {'MWA': -26.703319, "ATCA": -30.3128, "VLA": 34.0790, "LOFAR": 52.9088, "KAT7": -30.721, "MEERKAT": -30.721, "PAPER": -30.7224, "GMRT": 19.096516666667, "OOTY": 11.383404, "ASKAP": -26.7, "MOST": -35.3707, "PARKES": -32.999944, "WSRT": 52.914722, "AMILA": 52.16977, "AMISA": 52.164303, "ATA": 40.817, "CHIME": 49.321, "CARMA": 37.28044, "DRAO": 49.321, "GBT": 38.433056, "LWA": 34.07, "ALMA": -23.019283, "FAST": 25.6525 } if telescope.upper() in scopes: return scopes[telescope.upper()] else: log = logging.getLogger("Aegean") log.warn("Telescope {0} is unknown".format(telescope)) log.warn("integrated fluxes may be incorrect") return None
[ "def", "scope2lat", "(", "telescope", ")", ":", "scopes", "=", "{", "'MWA'", ":", "-", "26.703319", ",", "\"ATCA\"", ":", "-", "30.3128", ",", "\"VLA\"", ":", "34.0790", ",", "\"LOFAR\"", ":", "52.9088", ",", "\"KAT7\"", ":", "-", "30.721", ",", "\"MEERKAT\"", ":", "-", "30.721", ",", "\"PAPER\"", ":", "-", "30.7224", ",", "\"GMRT\"", ":", "19.096516666667", ",", "\"OOTY\"", ":", "11.383404", ",", "\"ASKAP\"", ":", "-", "26.7", ",", "\"MOST\"", ":", "-", "35.3707", ",", "\"PARKES\"", ":", "-", "32.999944", ",", "\"WSRT\"", ":", "52.914722", ",", "\"AMILA\"", ":", "52.16977", ",", "\"AMISA\"", ":", "52.164303", ",", "\"ATA\"", ":", "40.817", ",", "\"CHIME\"", ":", "49.321", ",", "\"CARMA\"", ":", "37.28044", ",", "\"DRAO\"", ":", "49.321", ",", "\"GBT\"", ":", "38.433056", ",", "\"LWA\"", ":", "34.07", ",", "\"ALMA\"", ":", "-", "23.019283", ",", "\"FAST\"", ":", "25.6525", "}", "if", "telescope", ".", "upper", "(", ")", "in", "scopes", ":", "return", "scopes", "[", "telescope", ".", "upper", "(", ")", "]", "else", ":", "log", "=", "logging", ".", "getLogger", "(", "\"Aegean\"", ")", "log", ".", "warn", "(", "\"Telescope {0} is unknown\"", ".", "format", "(", "telescope", ")", ")", "log", ".", "warn", "(", "\"integrated fluxes may be incorrect\"", ")", "return", "None" ]
Convert a telescope name into a latitude returns None when the telescope is unknown. Parameters ---------- telescope : str Acronym (name) of telescope, eg MWA. Returns ------- lat : float The latitude of the telescope. Notes ----- These values were taken from wikipedia so have varying precision/accuracy
[ "Convert", "a", "telescope", "name", "into", "a", "latitude", "returns", "None", "when", "the", "telescope", "is", "unknown", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/source_finder.py#L1849-L1898
PaulHancock/Aegean
AegeanTools/source_finder.py
check_cores
def check_cores(cores): """ Determine how many cores we are able to use. Return 1 if we are not able to make a queue via pprocess. Parameters ---------- cores : int The number of cores that are requested. Returns ------- cores : int The number of cores available. """ cores = min(multiprocessing.cpu_count(), cores) if six.PY3: log = logging.getLogger("Aegean") log.info("Multi-cores not supported in python 3+, using one core") return 1 try: queue = pprocess.Queue(limit=cores, reuse=1) except: # TODO: figure out what error is being thrown cores = 1 else: try: _ = queue.manage(pprocess.MakeReusable(fix_shape)) except: cores = 1 return cores
python
def check_cores(cores): """ Determine how many cores we are able to use. Return 1 if we are not able to make a queue via pprocess. Parameters ---------- cores : int The number of cores that are requested. Returns ------- cores : int The number of cores available. """ cores = min(multiprocessing.cpu_count(), cores) if six.PY3: log = logging.getLogger("Aegean") log.info("Multi-cores not supported in python 3+, using one core") return 1 try: queue = pprocess.Queue(limit=cores, reuse=1) except: # TODO: figure out what error is being thrown cores = 1 else: try: _ = queue.manage(pprocess.MakeReusable(fix_shape)) except: cores = 1 return cores
[ "def", "check_cores", "(", "cores", ")", ":", "cores", "=", "min", "(", "multiprocessing", ".", "cpu_count", "(", ")", ",", "cores", ")", "if", "six", ".", "PY3", ":", "log", "=", "logging", ".", "getLogger", "(", "\"Aegean\"", ")", "log", ".", "info", "(", "\"Multi-cores not supported in python 3+, using one core\"", ")", "return", "1", "try", ":", "queue", "=", "pprocess", ".", "Queue", "(", "limit", "=", "cores", ",", "reuse", "=", "1", ")", "except", ":", "# TODO: figure out what error is being thrown", "cores", "=", "1", "else", ":", "try", ":", "_", "=", "queue", ".", "manage", "(", "pprocess", ".", "MakeReusable", "(", "fix_shape", ")", ")", "except", ":", "cores", "=", "1", "return", "cores" ]
Determine how many cores we are able to use. Return 1 if we are not able to make a queue via pprocess. Parameters ---------- cores : int The number of cores that are requested. Returns ------- cores : int The number of cores available.
[ "Determine", "how", "many", "cores", "we", "are", "able", "to", "use", ".", "Return", "1", "if", "we", "are", "not", "able", "to", "make", "a", "queue", "via", "pprocess", "." ]
train
https://github.com/PaulHancock/Aegean/blob/185d2b4a51b48441a1df747efc9a5271c79399fd/AegeanTools/source_finder.py#L1901-L1931