repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
tsnaomi/finnsyll
finnsyll/phonology.py
sonseq
def sonseq(word): '''Return True if 'word' does not violate sonority sequencing.''' parts = re.split(r'([ieaouäöy]+)', word, flags=re.I | re.U) onset, coda = parts[0], parts[-1] # simplex onset Finnish complex onset if len(onset) <= 1 or onset.lower() in ONSETS: # simplex coda Finnish complex coda return len(coda) <= 1 # or coda in codas_inventory return False
python
def sonseq(word): '''Return True if 'word' does not violate sonority sequencing.''' parts = re.split(r'([ieaouäöy]+)', word, flags=re.I | re.U) onset, coda = parts[0], parts[-1] # simplex onset Finnish complex onset if len(onset) <= 1 or onset.lower() in ONSETS: # simplex coda Finnish complex coda return len(coda) <= 1 # or coda in codas_inventory return False
[ "def", "sonseq", "(", "word", ")", ":", "parts", "=", "re", ".", "split", "(", "r'([ieaouäöy]+)', ", "w", "rd, ", "f", "ags=r", "e", ".I", " ", "|", "r", ".U", ")", "", "", "onset", ",", "coda", "=", "parts", "[", "0", "]", ",", "parts", "[", "-", "1", "]", "# simplex onset Finnish complex onset", "if", "len", "(", "onset", ")", "<=", "1", "or", "onset", ".", "lower", "(", ")", "in", "ONSETS", ":", "# simplex coda Finnish complex coda", "return", "len", "(", "coda", ")", "<=", "1", "# or coda in codas_inventory", "return", "False" ]
Return True if 'word' does not violate sonority sequencing.
[ "Return", "True", "if", "word", "does", "not", "violate", "sonority", "sequencing", "." ]
train
https://github.com/tsnaomi/finnsyll/blob/6a42740311688c946a636a3e2304866c7aa041b3/finnsyll/phonology.py#L154-L164
tsnaomi/finnsyll
finnsyll/phonology.py
harmonic
def harmonic(word): '''Return True if the word's vowels agree in frontness/backness.''' depth = {'ä': 0, 'ö': 0, 'y': 0, 'a': 1, 'o': 1, 'u': 1} vowels = filter(lambda ch: is_front(ch) or is_back(ch), word) depths = (depth[x.lower()] for x in vowels) return len(set(depths)) < 2
python
def harmonic(word): '''Return True if the word's vowels agree in frontness/backness.''' depth = {'ä': 0, 'ö': 0, 'y': 0, 'a': 1, 'o': 1, 'u': 1} vowels = filter(lambda ch: is_front(ch) or is_back(ch), word) depths = (depth[x.lower()] for x in vowels) return len(set(depths)) < 2
[ "def", "harmonic", "(", "word", ")", ":", "depth", "=", "{", "'ä':", " ", ",", " ", "ö': ", "0", " ", "'", "': ", "0", " ", "'", "': ", "1", " ", "'", "': ", "1", " ", "'", "': ", "1", "", "", "vowels", "=", "filter", "(", "lambda", "ch", ":", "is_front", "(", "ch", ")", "or", "is_back", "(", "ch", ")", ",", "word", ")", "depths", "=", "(", "depth", "[", "x", ".", "lower", "(", ")", "]", "for", "x", "in", "vowels", ")", "return", "len", "(", "set", "(", "depths", ")", ")", "<", "2" ]
Return True if the word's vowels agree in frontness/backness.
[ "Return", "True", "if", "the", "word", "s", "vowels", "agree", "in", "frontness", "/", "backness", "." ]
train
https://github.com/tsnaomi/finnsyll/blob/6a42740311688c946a636a3e2304866c7aa041b3/finnsyll/phonology.py#L172-L178
saltant-org/saltant-py
saltant/models/executable_task_type.py
ExecutableTaskType.put
def put(self): """Updates this task type on the saltant server. Returns: :class:`saltant.models.container_task_type.ExecutableTaskType`: An executable task type model instance representing the task type just updated. """ return self.manager.put( id=self.id, name=self.name, description=self.description, command_to_run=self.command_to_run, environment_variables=self.environment_variables, required_arguments=self.required_arguments, required_arguments_default_values=( self.required_arguments_default_values ), json_file_option=self.json_file_option, )
python
def put(self): """Updates this task type on the saltant server. Returns: :class:`saltant.models.container_task_type.ExecutableTaskType`: An executable task type model instance representing the task type just updated. """ return self.manager.put( id=self.id, name=self.name, description=self.description, command_to_run=self.command_to_run, environment_variables=self.environment_variables, required_arguments=self.required_arguments, required_arguments_default_values=( self.required_arguments_default_values ), json_file_option=self.json_file_option, )
[ "def", "put", "(", "self", ")", ":", "return", "self", ".", "manager", ".", "put", "(", "id", "=", "self", ".", "id", ",", "name", "=", "self", ".", "name", ",", "description", "=", "self", ".", "description", ",", "command_to_run", "=", "self", ".", "command_to_run", ",", "environment_variables", "=", "self", ".", "environment_variables", ",", "required_arguments", "=", "self", ".", "required_arguments", ",", "required_arguments_default_values", "=", "(", "self", ".", "required_arguments_default_values", ")", ",", "json_file_option", "=", "self", ".", "json_file_option", ",", ")" ]
Updates this task type on the saltant server. Returns: :class:`saltant.models.container_task_type.ExecutableTaskType`: An executable task type model instance representing the task type just updated.
[ "Updates", "this", "task", "type", "on", "the", "saltant", "server", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/executable_task_type.py#L84-L103
saltant-org/saltant-py
saltant/models/executable_task_type.py
ExecutableTaskTypeManager.create
def create( self, name, command_to_run, description="", environment_variables=None, required_arguments=None, required_arguments_default_values=None, json_file_option=None, extra_data_to_post=None, ): """Create a container task type. Args: name (str): The name of the task. command_to_run (str): The command to run to execute the task. description (str, optional): The description of the task type. environment_variables (list, optional): The environment variables required on the host to execute the task. required_arguments (list, optional): The argument names for the task type. required_arguments_default_values (dict, optional): Default values for the task's required arguments. json_file_option (str, optional): The name of a command line option, e.g., --json-file, which accepts a JSON-encoded file for the command to run. extra_data_to_post (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.container_task_type.ExecutableTaskType`: An executable task type model instance representing the task type just created. """ # Add in extra data specific to container task types if extra_data_to_post is None: extra_data_to_post = {} extra_data_to_post.update({"json_file_option": json_file_option}) # Call the parent create function return super(ExecutableTaskTypeManager, self).create( name=name, command_to_run=command_to_run, description=description, environment_variables=environment_variables, required_arguments=required_arguments, required_arguments_default_values=required_arguments_default_values, extra_data_to_post=extra_data_to_post, )
python
def create( self, name, command_to_run, description="", environment_variables=None, required_arguments=None, required_arguments_default_values=None, json_file_option=None, extra_data_to_post=None, ): """Create a container task type. Args: name (str): The name of the task. command_to_run (str): The command to run to execute the task. description (str, optional): The description of the task type. environment_variables (list, optional): The environment variables required on the host to execute the task. required_arguments (list, optional): The argument names for the task type. required_arguments_default_values (dict, optional): Default values for the task's required arguments. json_file_option (str, optional): The name of a command line option, e.g., --json-file, which accepts a JSON-encoded file for the command to run. extra_data_to_post (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.container_task_type.ExecutableTaskType`: An executable task type model instance representing the task type just created. """ # Add in extra data specific to container task types if extra_data_to_post is None: extra_data_to_post = {} extra_data_to_post.update({"json_file_option": json_file_option}) # Call the parent create function return super(ExecutableTaskTypeManager, self).create( name=name, command_to_run=command_to_run, description=description, environment_variables=environment_variables, required_arguments=required_arguments, required_arguments_default_values=required_arguments_default_values, extra_data_to_post=extra_data_to_post, )
[ "def", "create", "(", "self", ",", "name", ",", "command_to_run", ",", "description", "=", "\"\"", ",", "environment_variables", "=", "None", ",", "required_arguments", "=", "None", ",", "required_arguments_default_values", "=", "None", ",", "json_file_option", "=", "None", ",", "extra_data_to_post", "=", "None", ",", ")", ":", "# Add in extra data specific to container task types", "if", "extra_data_to_post", "is", "None", ":", "extra_data_to_post", "=", "{", "}", "extra_data_to_post", ".", "update", "(", "{", "\"json_file_option\"", ":", "json_file_option", "}", ")", "# Call the parent create function", "return", "super", "(", "ExecutableTaskTypeManager", ",", "self", ")", ".", "create", "(", "name", "=", "name", ",", "command_to_run", "=", "command_to_run", ",", "description", "=", "description", ",", "environment_variables", "=", "environment_variables", ",", "required_arguments", "=", "required_arguments", ",", "required_arguments_default_values", "=", "required_arguments_default_values", ",", "extra_data_to_post", "=", "extra_data_to_post", ",", ")" ]
Create a container task type. Args: name (str): The name of the task. command_to_run (str): The command to run to execute the task. description (str, optional): The description of the task type. environment_variables (list, optional): The environment variables required on the host to execute the task. required_arguments (list, optional): The argument names for the task type. required_arguments_default_values (dict, optional): Default values for the task's required arguments. json_file_option (str, optional): The name of a command line option, e.g., --json-file, which accepts a JSON-encoded file for the command to run. extra_data_to_post (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. Returns: :class:`saltant.models.container_task_type.ExecutableTaskType`: An executable task type model instance representing the task type just created.
[ "Create", "a", "container", "task", "type", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/executable_task_type.py#L122-L172
saltant-org/saltant-py
saltant/models/executable_task_type.py
ExecutableTaskTypeManager.put
def put( self, id, name, description, command_to_run, environment_variables, required_arguments, required_arguments_default_values, json_file_option, extra_data_to_put=None, ): """Updates a task type on the saltant server. Args: id (int): The ID of the task type. name (str): The name of the task type. description (str): The description of the task type. command_to_run (str): The command to run to execute the task. environment_variables (list): The environment variables required on the host to execute the task. required_arguments (list): The argument names for the task type. required_arguments_default_values (dict): Default values for the tasks required arguments. json_file_option (str): The name of a command line option, e.g., --json-file, which accepts a JSON-encoded file for the command to run. extra_data_to_put (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. """ # Add in extra data specific to container task types if extra_data_to_put is None: extra_data_to_put = {} extra_data_to_put.update({"json_file_option": json_file_option}) # Call the parent create function return super(ExecutableTaskTypeManager, self).put( id=id, name=name, description=description, command_to_run=command_to_run, environment_variables=environment_variables, required_arguments=required_arguments, required_arguments_default_values=( required_arguments_default_values ), extra_data_to_put=extra_data_to_put, )
python
def put( self, id, name, description, command_to_run, environment_variables, required_arguments, required_arguments_default_values, json_file_option, extra_data_to_put=None, ): """Updates a task type on the saltant server. Args: id (int): The ID of the task type. name (str): The name of the task type. description (str): The description of the task type. command_to_run (str): The command to run to execute the task. environment_variables (list): The environment variables required on the host to execute the task. required_arguments (list): The argument names for the task type. required_arguments_default_values (dict): Default values for the tasks required arguments. json_file_option (str): The name of a command line option, e.g., --json-file, which accepts a JSON-encoded file for the command to run. extra_data_to_put (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters. """ # Add in extra data specific to container task types if extra_data_to_put is None: extra_data_to_put = {} extra_data_to_put.update({"json_file_option": json_file_option}) # Call the parent create function return super(ExecutableTaskTypeManager, self).put( id=id, name=name, description=description, command_to_run=command_to_run, environment_variables=environment_variables, required_arguments=required_arguments, required_arguments_default_values=( required_arguments_default_values ), extra_data_to_put=extra_data_to_put, )
[ "def", "put", "(", "self", ",", "id", ",", "name", ",", "description", ",", "command_to_run", ",", "environment_variables", ",", "required_arguments", ",", "required_arguments_default_values", ",", "json_file_option", ",", "extra_data_to_put", "=", "None", ",", ")", ":", "# Add in extra data specific to container task types", "if", "extra_data_to_put", "is", "None", ":", "extra_data_to_put", "=", "{", "}", "extra_data_to_put", ".", "update", "(", "{", "\"json_file_option\"", ":", "json_file_option", "}", ")", "# Call the parent create function", "return", "super", "(", "ExecutableTaskTypeManager", ",", "self", ")", ".", "put", "(", "id", "=", "id", ",", "name", "=", "name", ",", "description", "=", "description", ",", "command_to_run", "=", "command_to_run", ",", "environment_variables", "=", "environment_variables", ",", "required_arguments", "=", "required_arguments", ",", "required_arguments_default_values", "=", "(", "required_arguments_default_values", ")", ",", "extra_data_to_put", "=", "extra_data_to_put", ",", ")" ]
Updates a task type on the saltant server. Args: id (int): The ID of the task type. name (str): The name of the task type. description (str): The description of the task type. command_to_run (str): The command to run to execute the task. environment_variables (list): The environment variables required on the host to execute the task. required_arguments (list): The argument names for the task type. required_arguments_default_values (dict): Default values for the tasks required arguments. json_file_option (str): The name of a command line option, e.g., --json-file, which accepts a JSON-encoded file for the command to run. extra_data_to_put (dict, optional): Extra key-value pairs to add to the request data. This is useful for subclasses which require extra parameters.
[ "Updates", "a", "task", "type", "on", "the", "saltant", "server", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/executable_task_type.py#L174-L223
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
Reports.reporter
def reporter(self, analysistype='genesippr'): """ Creates a report of the genesippr results :param analysistype: The variable to use when accessing attributes in the metadata object """ logging.info('Creating {} report'.format(analysistype)) # Create a dictionary to link all the genera with their genes genusgenes = dict() # The organism-specific targets are in .tfa files in the target path targetpath = str() for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': targetpath = sample[analysistype].targetpath for organismfile in glob(os.path.join(targetpath, '*.tfa')): organism = os.path.splitext(os.path.basename(organismfile))[0] # Use BioPython to extract all the gene names from the file for record in SeqIO.parse(open(organismfile), 'fasta'): # Append the gene names to the genus-specific list try: genusgenes[organism].add(record.id.split('_')[0]) except (KeyError, IndexError): genusgenes[organism] = set() genusgenes[organism].add(record.id.split('_')[0]) # Determine from which genera the gene hits were sourced for sample in self.runmetadata.samples: # Initialise the list to store the genera sample[analysistype].targetgenera = list() if sample.general.bestassemblyfile != 'NA': for organism in genusgenes: # Iterate through all the genesippr hits and attribute each gene to the appropriate genus for gene in sample[analysistype].results: # If the gene name is in the genes from that organism, add the genus name to the list of # genera found in the sample if gene.split('_')[0] in genusgenes[organism]: if organism not in sample[analysistype].targetgenera: sample[analysistype].targetgenera.append(organism) # Create the path in which the reports are stored make_path(self.reportpath) # The report will have every gene for all genera in the header header = 'Strain,Genus,{},\n'.format(','.join(self.genelist)) data = str() with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report: for sample in self.runmetadata.samples: sample[analysistype].report_output = list() if sample.general.bestassemblyfile != 'NA': # Add the genus/genera found in the sample data += '{},{},'.format(sample.name, ';'.join(sample[analysistype].targetgenera)) best_dict = dict() if sample[analysistype].results: gene_check = list() # Find the best match for all the hits for target, pid in sample[analysistype].results.items(): gene_name = target.split('_')[0] for gene in self.genelist: # If the key matches a gene in the list of genes if gene == gene_name: # If the percent identity is better, update the dictionary try: if float(pid) > best_dict[gene]: best_dict[gene] = float(pid) except KeyError: best_dict[gene] = float(pid) for gene in self.genelist: # If the gene was not found in the sample, print an empty cell in the report try: best_dict[gene] except KeyError: data += ',' # Print the required information for the gene for name, identity in sample[analysistype].results.items(): if name.split('_')[0] == gene and gene not in gene_check: data += '{pid}%'.format(pid=best_dict[gene]) try: if not sample.general.trimmedcorrectedfastqfiles[0].endswith('.fasta'): data += ' ({avgd} +/- {std}),'\ .format(avgd=sample[analysistype].avgdepth[name], std=sample[analysistype].standarddev[name]) else: data += ',' except IndexError: data += ',' gene_check.append(gene) # Add the simplified results to the object - used in the assembly pipeline report sample[analysistype].report_output.append(gene) # Add a newline after each sample data += '\n' # Add a newline if the sample did not have any gene hits else: data += '\n' # Write the header and data to file report.write(header) report.write(data)
python
def reporter(self, analysistype='genesippr'): """ Creates a report of the genesippr results :param analysistype: The variable to use when accessing attributes in the metadata object """ logging.info('Creating {} report'.format(analysistype)) # Create a dictionary to link all the genera with their genes genusgenes = dict() # The organism-specific targets are in .tfa files in the target path targetpath = str() for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': targetpath = sample[analysistype].targetpath for organismfile in glob(os.path.join(targetpath, '*.tfa')): organism = os.path.splitext(os.path.basename(organismfile))[0] # Use BioPython to extract all the gene names from the file for record in SeqIO.parse(open(organismfile), 'fasta'): # Append the gene names to the genus-specific list try: genusgenes[organism].add(record.id.split('_')[0]) except (KeyError, IndexError): genusgenes[organism] = set() genusgenes[organism].add(record.id.split('_')[0]) # Determine from which genera the gene hits were sourced for sample in self.runmetadata.samples: # Initialise the list to store the genera sample[analysistype].targetgenera = list() if sample.general.bestassemblyfile != 'NA': for organism in genusgenes: # Iterate through all the genesippr hits and attribute each gene to the appropriate genus for gene in sample[analysistype].results: # If the gene name is in the genes from that organism, add the genus name to the list of # genera found in the sample if gene.split('_')[0] in genusgenes[organism]: if organism not in sample[analysistype].targetgenera: sample[analysistype].targetgenera.append(organism) # Create the path in which the reports are stored make_path(self.reportpath) # The report will have every gene for all genera in the header header = 'Strain,Genus,{},\n'.format(','.join(self.genelist)) data = str() with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report: for sample in self.runmetadata.samples: sample[analysistype].report_output = list() if sample.general.bestassemblyfile != 'NA': # Add the genus/genera found in the sample data += '{},{},'.format(sample.name, ';'.join(sample[analysistype].targetgenera)) best_dict = dict() if sample[analysistype].results: gene_check = list() # Find the best match for all the hits for target, pid in sample[analysistype].results.items(): gene_name = target.split('_')[0] for gene in self.genelist: # If the key matches a gene in the list of genes if gene == gene_name: # If the percent identity is better, update the dictionary try: if float(pid) > best_dict[gene]: best_dict[gene] = float(pid) except KeyError: best_dict[gene] = float(pid) for gene in self.genelist: # If the gene was not found in the sample, print an empty cell in the report try: best_dict[gene] except KeyError: data += ',' # Print the required information for the gene for name, identity in sample[analysistype].results.items(): if name.split('_')[0] == gene and gene not in gene_check: data += '{pid}%'.format(pid=best_dict[gene]) try: if not sample.general.trimmedcorrectedfastqfiles[0].endswith('.fasta'): data += ' ({avgd} +/- {std}),'\ .format(avgd=sample[analysistype].avgdepth[name], std=sample[analysistype].standarddev[name]) else: data += ',' except IndexError: data += ',' gene_check.append(gene) # Add the simplified results to the object - used in the assembly pipeline report sample[analysistype].report_output.append(gene) # Add a newline after each sample data += '\n' # Add a newline if the sample did not have any gene hits else: data += '\n' # Write the header and data to file report.write(header) report.write(data)
[ "def", "reporter", "(", "self", ",", "analysistype", "=", "'genesippr'", ")", ":", "logging", ".", "info", "(", "'Creating {} report'", ".", "format", "(", "analysistype", ")", ")", "# Create a dictionary to link all the genera with their genes", "genusgenes", "=", "dict", "(", ")", "# The organism-specific targets are in .tfa files in the target path", "targetpath", "=", "str", "(", ")", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "targetpath", "=", "sample", "[", "analysistype", "]", ".", "targetpath", "for", "organismfile", "in", "glob", "(", "os", ".", "path", ".", "join", "(", "targetpath", ",", "'*.tfa'", ")", ")", ":", "organism", "=", "os", ".", "path", ".", "splitext", "(", "os", ".", "path", ".", "basename", "(", "organismfile", ")", ")", "[", "0", "]", "# Use BioPython to extract all the gene names from the file", "for", "record", "in", "SeqIO", ".", "parse", "(", "open", "(", "organismfile", ")", ",", "'fasta'", ")", ":", "# Append the gene names to the genus-specific list", "try", ":", "genusgenes", "[", "organism", "]", ".", "add", "(", "record", ".", "id", ".", "split", "(", "'_'", ")", "[", "0", "]", ")", "except", "(", "KeyError", ",", "IndexError", ")", ":", "genusgenes", "[", "organism", "]", "=", "set", "(", ")", "genusgenes", "[", "organism", "]", ".", "add", "(", "record", ".", "id", ".", "split", "(", "'_'", ")", "[", "0", "]", ")", "# Determine from which genera the gene hits were sourced", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "# Initialise the list to store the genera", "sample", "[", "analysistype", "]", ".", "targetgenera", "=", "list", "(", ")", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "for", "organism", "in", "genusgenes", ":", "# Iterate through all the genesippr hits and attribute each gene to the appropriate genus", "for", "gene", "in", "sample", "[", "analysistype", "]", ".", "results", ":", "# If the gene name is in the genes from that organism, add the genus name to the list of", "# genera found in the sample", "if", "gene", ".", "split", "(", "'_'", ")", "[", "0", "]", "in", "genusgenes", "[", "organism", "]", ":", "if", "organism", "not", "in", "sample", "[", "analysistype", "]", ".", "targetgenera", ":", "sample", "[", "analysistype", "]", ".", "targetgenera", ".", "append", "(", "organism", ")", "# Create the path in which the reports are stored", "make_path", "(", "self", ".", "reportpath", ")", "# The report will have every gene for all genera in the header", "header", "=", "'Strain,Genus,{},\\n'", ".", "format", "(", "','", ".", "join", "(", "self", ".", "genelist", ")", ")", "data", "=", "str", "(", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "analysistype", "+", "'.csv'", ")", ",", "'w'", ")", "as", "report", ":", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "sample", "[", "analysistype", "]", ".", "report_output", "=", "list", "(", ")", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "# Add the genus/genera found in the sample", "data", "+=", "'{},{},'", ".", "format", "(", "sample", ".", "name", ",", "';'", ".", "join", "(", "sample", "[", "analysistype", "]", ".", "targetgenera", ")", ")", "best_dict", "=", "dict", "(", ")", "if", "sample", "[", "analysistype", "]", ".", "results", ":", "gene_check", "=", "list", "(", ")", "# Find the best match for all the hits", "for", "target", ",", "pid", "in", "sample", "[", "analysistype", "]", ".", "results", ".", "items", "(", ")", ":", "gene_name", "=", "target", ".", "split", "(", "'_'", ")", "[", "0", "]", "for", "gene", "in", "self", ".", "genelist", ":", "# If the key matches a gene in the list of genes", "if", "gene", "==", "gene_name", ":", "# If the percent identity is better, update the dictionary", "try", ":", "if", "float", "(", "pid", ")", ">", "best_dict", "[", "gene", "]", ":", "best_dict", "[", "gene", "]", "=", "float", "(", "pid", ")", "except", "KeyError", ":", "best_dict", "[", "gene", "]", "=", "float", "(", "pid", ")", "for", "gene", "in", "self", ".", "genelist", ":", "# If the gene was not found in the sample, print an empty cell in the report", "try", ":", "best_dict", "[", "gene", "]", "except", "KeyError", ":", "data", "+=", "','", "# Print the required information for the gene", "for", "name", ",", "identity", "in", "sample", "[", "analysistype", "]", ".", "results", ".", "items", "(", ")", ":", "if", "name", ".", "split", "(", "'_'", ")", "[", "0", "]", "==", "gene", "and", "gene", "not", "in", "gene_check", ":", "data", "+=", "'{pid}%'", ".", "format", "(", "pid", "=", "best_dict", "[", "gene", "]", ")", "try", ":", "if", "not", "sample", ".", "general", ".", "trimmedcorrectedfastqfiles", "[", "0", "]", ".", "endswith", "(", "'.fasta'", ")", ":", "data", "+=", "' ({avgd} +/- {std}),'", ".", "format", "(", "avgd", "=", "sample", "[", "analysistype", "]", ".", "avgdepth", "[", "name", "]", ",", "std", "=", "sample", "[", "analysistype", "]", ".", "standarddev", "[", "name", "]", ")", "else", ":", "data", "+=", "','", "except", "IndexError", ":", "data", "+=", "','", "gene_check", ".", "append", "(", "gene", ")", "# Add the simplified results to the object - used in the assembly pipeline report", "sample", "[", "analysistype", "]", ".", "report_output", ".", "append", "(", "gene", ")", "# Add a newline after each sample", "data", "+=", "'\\n'", "# Add a newline if the sample did not have any gene hits", "else", ":", "data", "+=", "'\\n'", "# Write the header and data to file", "report", ".", "write", "(", "header", ")", "report", ".", "write", "(", "data", ")" ]
Creates a report of the genesippr results :param analysistype: The variable to use when accessing attributes in the metadata object
[ "Creates", "a", "report", "of", "the", "genesippr", "results", ":", "param", "analysistype", ":", "The", "variable", "to", "use", "when", "accessing", "attributes", "in", "the", "metadata", "object" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L24-L115
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
Reports.genusspecific
def genusspecific(self, analysistype='genesippr'): """ Creates simplified genus-specific reports. Instead of the % ID and the fold coverage, a simple +/- scheme is used for presence/absence :param analysistype: The variable to use when accessing attributes in the metadata object """ # Dictionary to store all the output strings results = dict() for genus, genelist in self.genedict.items(): # Initialise the dictionary with the appropriate genus results[genus] = str() for sample in self.runmetadata.samples: try: # Find the samples that match the current genus - note that samples with multiple hits will be # represented in multiple outputs if genus in sample[analysistype].targetgenera: # Populate the results string with the sample name results[genus] += '{},'.format(sample.name) # Iterate through all the genes associated with this genus. If the gene is in the current # sample, add a + to the string, otherwise, add a - for gene in genelist: if gene.lower() in [target[0].lower().split('_')[0] for target in sample[analysistype].results.items()]: results[genus] += '+,' else: results[genus] += '-,' results[genus] += '\n' # If the sample is missing the targetgenera attribute, then it is ignored for these reports except AttributeError: pass # Create and populate the genus-specific reports for genus, resultstring in results.items(): # Only create the report if there are results for the current genus if resultstring: with open(os.path.join(self.reportpath, '{}_genesippr.csv'.format(genus)), 'w') as genusreport: # Write the header to the report - Strain plus add the genes associated with the genus genusreport.write('Strain,{}\n'.format(','.join(self.genedict[genus]))) # Write the results to the report genusreport.write(resultstring)
python
def genusspecific(self, analysistype='genesippr'): """ Creates simplified genus-specific reports. Instead of the % ID and the fold coverage, a simple +/- scheme is used for presence/absence :param analysistype: The variable to use when accessing attributes in the metadata object """ # Dictionary to store all the output strings results = dict() for genus, genelist in self.genedict.items(): # Initialise the dictionary with the appropriate genus results[genus] = str() for sample in self.runmetadata.samples: try: # Find the samples that match the current genus - note that samples with multiple hits will be # represented in multiple outputs if genus in sample[analysistype].targetgenera: # Populate the results string with the sample name results[genus] += '{},'.format(sample.name) # Iterate through all the genes associated with this genus. If the gene is in the current # sample, add a + to the string, otherwise, add a - for gene in genelist: if gene.lower() in [target[0].lower().split('_')[0] for target in sample[analysistype].results.items()]: results[genus] += '+,' else: results[genus] += '-,' results[genus] += '\n' # If the sample is missing the targetgenera attribute, then it is ignored for these reports except AttributeError: pass # Create and populate the genus-specific reports for genus, resultstring in results.items(): # Only create the report if there are results for the current genus if resultstring: with open(os.path.join(self.reportpath, '{}_genesippr.csv'.format(genus)), 'w') as genusreport: # Write the header to the report - Strain plus add the genes associated with the genus genusreport.write('Strain,{}\n'.format(','.join(self.genedict[genus]))) # Write the results to the report genusreport.write(resultstring)
[ "def", "genusspecific", "(", "self", ",", "analysistype", "=", "'genesippr'", ")", ":", "# Dictionary to store all the output strings", "results", "=", "dict", "(", ")", "for", "genus", ",", "genelist", "in", "self", ".", "genedict", ".", "items", "(", ")", ":", "# Initialise the dictionary with the appropriate genus", "results", "[", "genus", "]", "=", "str", "(", ")", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "try", ":", "# Find the samples that match the current genus - note that samples with multiple hits will be", "# represented in multiple outputs", "if", "genus", "in", "sample", "[", "analysistype", "]", ".", "targetgenera", ":", "# Populate the results string with the sample name", "results", "[", "genus", "]", "+=", "'{},'", ".", "format", "(", "sample", ".", "name", ")", "# Iterate through all the genes associated with this genus. If the gene is in the current", "# sample, add a + to the string, otherwise, add a -", "for", "gene", "in", "genelist", ":", "if", "gene", ".", "lower", "(", ")", "in", "[", "target", "[", "0", "]", ".", "lower", "(", ")", ".", "split", "(", "'_'", ")", "[", "0", "]", "for", "target", "in", "sample", "[", "analysistype", "]", ".", "results", ".", "items", "(", ")", "]", ":", "results", "[", "genus", "]", "+=", "'+,'", "else", ":", "results", "[", "genus", "]", "+=", "'-,'", "results", "[", "genus", "]", "+=", "'\\n'", "# If the sample is missing the targetgenera attribute, then it is ignored for these reports", "except", "AttributeError", ":", "pass", "# Create and populate the genus-specific reports", "for", "genus", ",", "resultstring", "in", "results", ".", "items", "(", ")", ":", "# Only create the report if there are results for the current genus", "if", "resultstring", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'{}_genesippr.csv'", ".", "format", "(", "genus", ")", ")", ",", "'w'", ")", "as", "genusreport", ":", "# Write the header to the report - Strain plus add the genes associated with the genus", "genusreport", ".", "write", "(", "'Strain,{}\\n'", ".", "format", "(", "','", ".", "join", "(", "self", ".", "genedict", "[", "genus", "]", ")", ")", ")", "# Write the results to the report", "genusreport", ".", "write", "(", "resultstring", ")" ]
Creates simplified genus-specific reports. Instead of the % ID and the fold coverage, a simple +/- scheme is used for presence/absence :param analysistype: The variable to use when accessing attributes in the metadata object
[ "Creates", "simplified", "genus", "-", "specific", "reports", ".", "Instead", "of", "the", "%", "ID", "and", "the", "fold", "coverage", "a", "simple", "+", "/", "-", "scheme", "is", "used", "for", "presence", "/", "absence", ":", "param", "analysistype", ":", "The", "variable", "to", "use", "when", "accessing", "attributes", "in", "the", "metadata", "object" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L117-L155
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
Reports.gdcsreporter
def gdcsreporter(self, analysistype='GDCS'): """ Creates a report of the GDCS results :param analysistype: The variable to use when accessing attributes in the metadata object """ logging.info('Creating {} report'.format(analysistype)) # Initialise list to store all the GDCS genes, and genera in the analysis gdcs = list() genera = list() for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': if os.path.isdir(sample[analysistype].targetpath): # Update the fai dict with all the genes in the analysis, rather than just those with baited hits self.gdcs_fai(sample) sample[analysistype].createreport = True # Determine which genera are present in the analysis if sample.general.closestrefseqgenus not in genera: genera.append(sample.general.closestrefseqgenus) try: # Add all the GDCS genes to the list for gene in sorted(sample[analysistype].faidict): if gene not in gdcs: gdcs.append(gene) except AttributeError: sample[analysistype].createreport = False else: sample[analysistype].createreport = False else: sample[analysistype].createreport = False sample.general.incomplete = True header = 'Strain,Genus,Matches,MeanCoverage,Pass/Fail,{},\n'.format(','.join(gdcs)) data = str() with open(os.path.join(self.reportpath, '{}.csv'.format(analysistype)), 'w') as report: # Sort the samples in the report based on the closest refseq genus e.g. all samples with the same genus # will be grouped together in the report for genus in genera: for sample in self.runmetadata.samples: if sample.general.closestrefseqgenus == genus: if sample[analysistype].createreport: sample[analysistype].totaldepth = list() # Add the sample to the report if it matches the current genus # if genus == sample.general.closestrefseqgenus: data += '{},{},'.format(sample.name, genus) # Initialise a variable to store the number of GDCS genes were matched count = 0 # As I want the count to be in the report before all the gene results, this string will # store the specific sample information, and will be added to data once count is known specific = str() for gene in gdcs: # As there are different genes present in the GDCS databases for each organism of # interest, genes that did not match because they're absent in the specific database are # indicated using an X if gene not in [result for result in sample[analysistype].faidict]: specific += 'X,' else: try: # Report the necessary information for each gene result identity = sample[analysistype].results[gene] specific += '{}% ({} +/- {}),'\ .format(identity, sample[analysistype].avgdepth[gene], sample[analysistype].standarddev[gene]) sample[analysistype].totaldepth.append( float(sample[analysistype].avgdepth[gene])) count += 1 # If the gene was missing from the results attribute, add a - to the cell except (KeyError, AttributeError): sample.general.incomplete = True specific += '-,' # Calculate the mean depth of the genes and the standard deviation sample[analysistype].mean = numpy.mean(sample[analysistype].totaldepth) sample[analysistype].stddev = numpy.std(sample[analysistype].totaldepth) # Determine whether the sample pass the necessary quality criteria: # Pass, all GDCS, mean coverage greater than 20X coverage; # ?: Indeterminate value; # -: Fail value # Allow one missing GDCS to still be considered a pass if count >= len(sample[analysistype].faidict) - 1: if sample[analysistype].mean > 20: quality = '+' else: quality = '?' sample.general.incomplete = True else: quality = '-' sample.general.incomplete = True # Add the count, mean depth with standard deviation, the pass/fail determination, # and the total number of GDCS genes as well as the results data += '{hits}/{total},{mean} +/- {std},{fail},{gdcs}\n'\ .format(hits=str(count), total=len(sample[analysistype].faidict), mean='{:.2f}'.format(sample[analysistype].mean), std='{:.2f}'.format(sample[analysistype].stddev), fail=quality, gdcs=specific) # # Any samples with a best assembly of 'NA' are considered incomplete. # else: # data += '{},{},,,-\n'.format(sample.name, sample.general.closestrefseqgenus) # sample.general.incomplete = True elif sample.general.closestrefseqgenus == 'NA': data += '{}\n'.format(sample.name) sample.general.incomplete = True # Write the header and data to file report.write(header) report.write(data)
python
def gdcsreporter(self, analysistype='GDCS'): """ Creates a report of the GDCS results :param analysistype: The variable to use when accessing attributes in the metadata object """ logging.info('Creating {} report'.format(analysistype)) # Initialise list to store all the GDCS genes, and genera in the analysis gdcs = list() genera = list() for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': if os.path.isdir(sample[analysistype].targetpath): # Update the fai dict with all the genes in the analysis, rather than just those with baited hits self.gdcs_fai(sample) sample[analysistype].createreport = True # Determine which genera are present in the analysis if sample.general.closestrefseqgenus not in genera: genera.append(sample.general.closestrefseqgenus) try: # Add all the GDCS genes to the list for gene in sorted(sample[analysistype].faidict): if gene not in gdcs: gdcs.append(gene) except AttributeError: sample[analysistype].createreport = False else: sample[analysistype].createreport = False else: sample[analysistype].createreport = False sample.general.incomplete = True header = 'Strain,Genus,Matches,MeanCoverage,Pass/Fail,{},\n'.format(','.join(gdcs)) data = str() with open(os.path.join(self.reportpath, '{}.csv'.format(analysistype)), 'w') as report: # Sort the samples in the report based on the closest refseq genus e.g. all samples with the same genus # will be grouped together in the report for genus in genera: for sample in self.runmetadata.samples: if sample.general.closestrefseqgenus == genus: if sample[analysistype].createreport: sample[analysistype].totaldepth = list() # Add the sample to the report if it matches the current genus # if genus == sample.general.closestrefseqgenus: data += '{},{},'.format(sample.name, genus) # Initialise a variable to store the number of GDCS genes were matched count = 0 # As I want the count to be in the report before all the gene results, this string will # store the specific sample information, and will be added to data once count is known specific = str() for gene in gdcs: # As there are different genes present in the GDCS databases for each organism of # interest, genes that did not match because they're absent in the specific database are # indicated using an X if gene not in [result for result in sample[analysistype].faidict]: specific += 'X,' else: try: # Report the necessary information for each gene result identity = sample[analysistype].results[gene] specific += '{}% ({} +/- {}),'\ .format(identity, sample[analysistype].avgdepth[gene], sample[analysistype].standarddev[gene]) sample[analysistype].totaldepth.append( float(sample[analysistype].avgdepth[gene])) count += 1 # If the gene was missing from the results attribute, add a - to the cell except (KeyError, AttributeError): sample.general.incomplete = True specific += '-,' # Calculate the mean depth of the genes and the standard deviation sample[analysistype].mean = numpy.mean(sample[analysistype].totaldepth) sample[analysistype].stddev = numpy.std(sample[analysistype].totaldepth) # Determine whether the sample pass the necessary quality criteria: # Pass, all GDCS, mean coverage greater than 20X coverage; # ?: Indeterminate value; # -: Fail value # Allow one missing GDCS to still be considered a pass if count >= len(sample[analysistype].faidict) - 1: if sample[analysistype].mean > 20: quality = '+' else: quality = '?' sample.general.incomplete = True else: quality = '-' sample.general.incomplete = True # Add the count, mean depth with standard deviation, the pass/fail determination, # and the total number of GDCS genes as well as the results data += '{hits}/{total},{mean} +/- {std},{fail},{gdcs}\n'\ .format(hits=str(count), total=len(sample[analysistype].faidict), mean='{:.2f}'.format(sample[analysistype].mean), std='{:.2f}'.format(sample[analysistype].stddev), fail=quality, gdcs=specific) # # Any samples with a best assembly of 'NA' are considered incomplete. # else: # data += '{},{},,,-\n'.format(sample.name, sample.general.closestrefseqgenus) # sample.general.incomplete = True elif sample.general.closestrefseqgenus == 'NA': data += '{}\n'.format(sample.name) sample.general.incomplete = True # Write the header and data to file report.write(header) report.write(data)
[ "def", "gdcsreporter", "(", "self", ",", "analysistype", "=", "'GDCS'", ")", ":", "logging", ".", "info", "(", "'Creating {} report'", ".", "format", "(", "analysistype", ")", ")", "# Initialise list to store all the GDCS genes, and genera in the analysis", "gdcs", "=", "list", "(", ")", "genera", "=", "list", "(", ")", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "if", "os", ".", "path", ".", "isdir", "(", "sample", "[", "analysistype", "]", ".", "targetpath", ")", ":", "# Update the fai dict with all the genes in the analysis, rather than just those with baited hits", "self", ".", "gdcs_fai", "(", "sample", ")", "sample", "[", "analysistype", "]", ".", "createreport", "=", "True", "# Determine which genera are present in the analysis", "if", "sample", ".", "general", ".", "closestrefseqgenus", "not", "in", "genera", ":", "genera", ".", "append", "(", "sample", ".", "general", ".", "closestrefseqgenus", ")", "try", ":", "# Add all the GDCS genes to the list", "for", "gene", "in", "sorted", "(", "sample", "[", "analysistype", "]", ".", "faidict", ")", ":", "if", "gene", "not", "in", "gdcs", ":", "gdcs", ".", "append", "(", "gene", ")", "except", "AttributeError", ":", "sample", "[", "analysistype", "]", ".", "createreport", "=", "False", "else", ":", "sample", "[", "analysistype", "]", ".", "createreport", "=", "False", "else", ":", "sample", "[", "analysistype", "]", ".", "createreport", "=", "False", "sample", ".", "general", ".", "incomplete", "=", "True", "header", "=", "'Strain,Genus,Matches,MeanCoverage,Pass/Fail,{},\\n'", ".", "format", "(", "','", ".", "join", "(", "gdcs", ")", ")", "data", "=", "str", "(", ")", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'{}.csv'", ".", "format", "(", "analysistype", ")", ")", ",", "'w'", ")", "as", "report", ":", "# Sort the samples in the report based on the closest refseq genus e.g. all samples with the same genus", "# will be grouped together in the report", "for", "genus", "in", "genera", ":", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "if", "sample", ".", "general", ".", "closestrefseqgenus", "==", "genus", ":", "if", "sample", "[", "analysistype", "]", ".", "createreport", ":", "sample", "[", "analysistype", "]", ".", "totaldepth", "=", "list", "(", ")", "# Add the sample to the report if it matches the current genus", "# if genus == sample.general.closestrefseqgenus:", "data", "+=", "'{},{},'", ".", "format", "(", "sample", ".", "name", ",", "genus", ")", "# Initialise a variable to store the number of GDCS genes were matched", "count", "=", "0", "# As I want the count to be in the report before all the gene results, this string will", "# store the specific sample information, and will be added to data once count is known", "specific", "=", "str", "(", ")", "for", "gene", "in", "gdcs", ":", "# As there are different genes present in the GDCS databases for each organism of", "# interest, genes that did not match because they're absent in the specific database are", "# indicated using an X", "if", "gene", "not", "in", "[", "result", "for", "result", "in", "sample", "[", "analysistype", "]", ".", "faidict", "]", ":", "specific", "+=", "'X,'", "else", ":", "try", ":", "# Report the necessary information for each gene result", "identity", "=", "sample", "[", "analysistype", "]", ".", "results", "[", "gene", "]", "specific", "+=", "'{}% ({} +/- {}),'", ".", "format", "(", "identity", ",", "sample", "[", "analysistype", "]", ".", "avgdepth", "[", "gene", "]", ",", "sample", "[", "analysistype", "]", ".", "standarddev", "[", "gene", "]", ")", "sample", "[", "analysistype", "]", ".", "totaldepth", ".", "append", "(", "float", "(", "sample", "[", "analysistype", "]", ".", "avgdepth", "[", "gene", "]", ")", ")", "count", "+=", "1", "# If the gene was missing from the results attribute, add a - to the cell", "except", "(", "KeyError", ",", "AttributeError", ")", ":", "sample", ".", "general", ".", "incomplete", "=", "True", "specific", "+=", "'-,'", "# Calculate the mean depth of the genes and the standard deviation", "sample", "[", "analysistype", "]", ".", "mean", "=", "numpy", ".", "mean", "(", "sample", "[", "analysistype", "]", ".", "totaldepth", ")", "sample", "[", "analysistype", "]", ".", "stddev", "=", "numpy", ".", "std", "(", "sample", "[", "analysistype", "]", ".", "totaldepth", ")", "# Determine whether the sample pass the necessary quality criteria:", "# Pass, all GDCS, mean coverage greater than 20X coverage;", "# ?: Indeterminate value;", "# -: Fail value", "# Allow one missing GDCS to still be considered a pass", "if", "count", ">=", "len", "(", "sample", "[", "analysistype", "]", ".", "faidict", ")", "-", "1", ":", "if", "sample", "[", "analysistype", "]", ".", "mean", ">", "20", ":", "quality", "=", "'+'", "else", ":", "quality", "=", "'?'", "sample", ".", "general", ".", "incomplete", "=", "True", "else", ":", "quality", "=", "'-'", "sample", ".", "general", ".", "incomplete", "=", "True", "# Add the count, mean depth with standard deviation, the pass/fail determination,", "# and the total number of GDCS genes as well as the results", "data", "+=", "'{hits}/{total},{mean} +/- {std},{fail},{gdcs}\\n'", ".", "format", "(", "hits", "=", "str", "(", "count", ")", ",", "total", "=", "len", "(", "sample", "[", "analysistype", "]", ".", "faidict", ")", ",", "mean", "=", "'{:.2f}'", ".", "format", "(", "sample", "[", "analysistype", "]", ".", "mean", ")", ",", "std", "=", "'{:.2f}'", ".", "format", "(", "sample", "[", "analysistype", "]", ".", "stddev", ")", ",", "fail", "=", "quality", ",", "gdcs", "=", "specific", ")", "# # Any samples with a best assembly of 'NA' are considered incomplete.", "# else:", "# data += '{},{},,,-\\n'.format(sample.name, sample.general.closestrefseqgenus)", "# sample.general.incomplete = True", "elif", "sample", ".", "general", ".", "closestrefseqgenus", "==", "'NA'", ":", "data", "+=", "'{}\\n'", ".", "format", "(", "sample", ".", "name", ")", "sample", ".", "general", ".", "incomplete", "=", "True", "# Write the header and data to file", "report", ".", "write", "(", "header", ")", "report", ".", "write", "(", "data", ")" ]
Creates a report of the GDCS results :param analysistype: The variable to use when accessing attributes in the metadata object
[ "Creates", "a", "report", "of", "the", "GDCS", "results", ":", "param", "analysistype", ":", "The", "variable", "to", "use", "when", "accessing", "attributes", "in", "the", "metadata", "object" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L157-L260
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
Reports.gdcs_fai
def gdcs_fai(sample, analysistype='GDCS'): """ GDCS analyses need to use the .fai file supplied in the targets folder rather than the one created following reverse baiting :param sample: sample object :param analysistype: current analysis being performed """ try: # Find the .fai file in the target path sample[analysistype].faifile = glob(os.path.join(sample[analysistype].targetpath, '*.fai'))[0] except IndexError: target_file = glob(os.path.join(sample[analysistype].targetpath, '*.fasta'))[0] samindex = SamtoolsFaidxCommandline(reference=target_file) map(StringIO, samindex(cwd=sample[analysistype].targetpath)) sample[analysistype].faifile = glob(os.path.join(sample[analysistype].targetpath, '*.fai'))[0] # Get the fai file into a dictionary to be used in parsing results try: with open(sample[analysistype].faifile, 'r') as faifile: for line in faifile: data = line.split('\t') try: sample[analysistype].faidict[data[0]] = int(data[1]) except KeyError: sample[analysistype].faidict = dict() sample[analysistype].faidict[data[0]] = int(data[1]) except FileNotFoundError: pass
python
def gdcs_fai(sample, analysistype='GDCS'): """ GDCS analyses need to use the .fai file supplied in the targets folder rather than the one created following reverse baiting :param sample: sample object :param analysistype: current analysis being performed """ try: # Find the .fai file in the target path sample[analysistype].faifile = glob(os.path.join(sample[analysistype].targetpath, '*.fai'))[0] except IndexError: target_file = glob(os.path.join(sample[analysistype].targetpath, '*.fasta'))[0] samindex = SamtoolsFaidxCommandline(reference=target_file) map(StringIO, samindex(cwd=sample[analysistype].targetpath)) sample[analysistype].faifile = glob(os.path.join(sample[analysistype].targetpath, '*.fai'))[0] # Get the fai file into a dictionary to be used in parsing results try: with open(sample[analysistype].faifile, 'r') as faifile: for line in faifile: data = line.split('\t') try: sample[analysistype].faidict[data[0]] = int(data[1]) except KeyError: sample[analysistype].faidict = dict() sample[analysistype].faidict[data[0]] = int(data[1]) except FileNotFoundError: pass
[ "def", "gdcs_fai", "(", "sample", ",", "analysistype", "=", "'GDCS'", ")", ":", "try", ":", "# Find the .fai file in the target path", "sample", "[", "analysistype", "]", ".", "faifile", "=", "glob", "(", "os", ".", "path", ".", "join", "(", "sample", "[", "analysistype", "]", ".", "targetpath", ",", "'*.fai'", ")", ")", "[", "0", "]", "except", "IndexError", ":", "target_file", "=", "glob", "(", "os", ".", "path", ".", "join", "(", "sample", "[", "analysistype", "]", ".", "targetpath", ",", "'*.fasta'", ")", ")", "[", "0", "]", "samindex", "=", "SamtoolsFaidxCommandline", "(", "reference", "=", "target_file", ")", "map", "(", "StringIO", ",", "samindex", "(", "cwd", "=", "sample", "[", "analysistype", "]", ".", "targetpath", ")", ")", "sample", "[", "analysistype", "]", ".", "faifile", "=", "glob", "(", "os", ".", "path", ".", "join", "(", "sample", "[", "analysistype", "]", ".", "targetpath", ",", "'*.fai'", ")", ")", "[", "0", "]", "# Get the fai file into a dictionary to be used in parsing results", "try", ":", "with", "open", "(", "sample", "[", "analysistype", "]", ".", "faifile", ",", "'r'", ")", "as", "faifile", ":", "for", "line", "in", "faifile", ":", "data", "=", "line", ".", "split", "(", "'\\t'", ")", "try", ":", "sample", "[", "analysistype", "]", ".", "faidict", "[", "data", "[", "0", "]", "]", "=", "int", "(", "data", "[", "1", "]", ")", "except", "KeyError", ":", "sample", "[", "analysistype", "]", ".", "faidict", "=", "dict", "(", ")", "sample", "[", "analysistype", "]", ".", "faidict", "[", "data", "[", "0", "]", "]", "=", "int", "(", "data", "[", "1", "]", ")", "except", "FileNotFoundError", ":", "pass" ]
GDCS analyses need to use the .fai file supplied in the targets folder rather than the one created following reverse baiting :param sample: sample object :param analysistype: current analysis being performed
[ "GDCS", "analyses", "need", "to", "use", "the", ".", "fai", "file", "supplied", "in", "the", "targets", "folder", "rather", "than", "the", "one", "created", "following", "reverse", "baiting", ":", "param", "sample", ":", "sample", "object", ":", "param", "analysistype", ":", "current", "analysis", "being", "performed" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L263-L289
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
Reports.sixteensreporter
def sixteensreporter(self, analysistype='sixteens_full'): """ Creates a report of the results :param analysistype: The variable to use when accessing attributes in the metadata object """ # Create the path in which the reports are stored make_path(self.reportpath) # Initialise the header and data strings header = 'Strain,Gene,PercentIdentity,Genus,FoldCoverage\n' data = '' with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report: with open(os.path.join(self.reportpath, analysistype + '_sequences.fa'), 'w') as sequences: for sample in self.runmetadata.samples: try: # Select the best hit of all the full-length 16S genes mapped sample[analysistype].besthit = sorted(sample[analysistype].results.items(), key=operator.itemgetter(1), reverse=True)[0][0] # Add the sample name to the data string data += sample.name + ',' # Find the record that matches the best hit, and extract the necessary values to be place in the # data string for name, identity in sample[analysistype].results.items(): if name == sample[analysistype].besthit: data += '{},{},{},{}\n'.format(name, identity, sample[analysistype].genus, sample[analysistype].avgdepth[name]) # Create a FASTA-formatted sequence output of the 16S sequence record = SeqRecord(Seq(sample[analysistype].sequences[name], IUPAC.unambiguous_dna), id='{}_{}'.format(sample.name, '16S'), description='') SeqIO.write(record, sequences, 'fasta') except (KeyError, IndexError): data += '{}\n'.format(sample.name) # Write the results to the report report.write(header) report.write(data)
python
def sixteensreporter(self, analysistype='sixteens_full'): """ Creates a report of the results :param analysistype: The variable to use when accessing attributes in the metadata object """ # Create the path in which the reports are stored make_path(self.reportpath) # Initialise the header and data strings header = 'Strain,Gene,PercentIdentity,Genus,FoldCoverage\n' data = '' with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report: with open(os.path.join(self.reportpath, analysistype + '_sequences.fa'), 'w') as sequences: for sample in self.runmetadata.samples: try: # Select the best hit of all the full-length 16S genes mapped sample[analysistype].besthit = sorted(sample[analysistype].results.items(), key=operator.itemgetter(1), reverse=True)[0][0] # Add the sample name to the data string data += sample.name + ',' # Find the record that matches the best hit, and extract the necessary values to be place in the # data string for name, identity in sample[analysistype].results.items(): if name == sample[analysistype].besthit: data += '{},{},{},{}\n'.format(name, identity, sample[analysistype].genus, sample[analysistype].avgdepth[name]) # Create a FASTA-formatted sequence output of the 16S sequence record = SeqRecord(Seq(sample[analysistype].sequences[name], IUPAC.unambiguous_dna), id='{}_{}'.format(sample.name, '16S'), description='') SeqIO.write(record, sequences, 'fasta') except (KeyError, IndexError): data += '{}\n'.format(sample.name) # Write the results to the report report.write(header) report.write(data)
[ "def", "sixteensreporter", "(", "self", ",", "analysistype", "=", "'sixteens_full'", ")", ":", "# Create the path in which the reports are stored", "make_path", "(", "self", ".", "reportpath", ")", "# Initialise the header and data strings", "header", "=", "'Strain,Gene,PercentIdentity,Genus,FoldCoverage\\n'", "data", "=", "''", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "analysistype", "+", "'.csv'", ")", ",", "'w'", ")", "as", "report", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "analysistype", "+", "'_sequences.fa'", ")", ",", "'w'", ")", "as", "sequences", ":", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "try", ":", "# Select the best hit of all the full-length 16S genes mapped", "sample", "[", "analysistype", "]", ".", "besthit", "=", "sorted", "(", "sample", "[", "analysistype", "]", ".", "results", ".", "items", "(", ")", ",", "key", "=", "operator", ".", "itemgetter", "(", "1", ")", ",", "reverse", "=", "True", ")", "[", "0", "]", "[", "0", "]", "# Add the sample name to the data string", "data", "+=", "sample", ".", "name", "+", "','", "# Find the record that matches the best hit, and extract the necessary values to be place in the", "# data string", "for", "name", ",", "identity", "in", "sample", "[", "analysistype", "]", ".", "results", ".", "items", "(", ")", ":", "if", "name", "==", "sample", "[", "analysistype", "]", ".", "besthit", ":", "data", "+=", "'{},{},{},{}\\n'", ".", "format", "(", "name", ",", "identity", ",", "sample", "[", "analysistype", "]", ".", "genus", ",", "sample", "[", "analysistype", "]", ".", "avgdepth", "[", "name", "]", ")", "# Create a FASTA-formatted sequence output of the 16S sequence", "record", "=", "SeqRecord", "(", "Seq", "(", "sample", "[", "analysistype", "]", ".", "sequences", "[", "name", "]", ",", "IUPAC", ".", "unambiguous_dna", ")", ",", "id", "=", "'{}_{}'", ".", "format", "(", "sample", ".", "name", ",", "'16S'", ")", ",", "description", "=", "''", ")", "SeqIO", ".", "write", "(", "record", ",", "sequences", ",", "'fasta'", ")", "except", "(", "KeyError", ",", "IndexError", ")", ":", "data", "+=", "'{}\\n'", ".", "format", "(", "sample", ".", "name", ")", "# Write the results to the report", "report", ".", "write", "(", "header", ")", "report", ".", "write", "(", "data", ")" ]
Creates a report of the results :param analysistype: The variable to use when accessing attributes in the metadata object
[ "Creates", "a", "report", "of", "the", "results", ":", "param", "analysistype", ":", "The", "variable", "to", "use", "when", "accessing", "attributes", "in", "the", "metadata", "object" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L291-L326
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
Reports.confindr_reporter
def confindr_reporter(self, analysistype='confindr'): """ Creates a final report of all the ConFindr results """ # Initialise the data strings data = 'Strain,Genus,NumContamSNVs,ContamStatus,PercentContam,PercentContamSTD\n' with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report: # Iterate through all the results for sample in self.runmetadata.samples: data += '{str},{genus},{numcontamsnv},{status},{pc},{pcs}\n'.format( str=sample.name, genus=sample.confindr.genus, numcontamsnv=sample.confindr.num_contaminated_snvs, status=sample.confindr.contam_status, pc=sample.confindr.percent_contam, pcs=sample.confindr.percent_contam_std ) # Write the string to the report report.write(data)
python
def confindr_reporter(self, analysistype='confindr'): """ Creates a final report of all the ConFindr results """ # Initialise the data strings data = 'Strain,Genus,NumContamSNVs,ContamStatus,PercentContam,PercentContamSTD\n' with open(os.path.join(self.reportpath, analysistype + '.csv'), 'w') as report: # Iterate through all the results for sample in self.runmetadata.samples: data += '{str},{genus},{numcontamsnv},{status},{pc},{pcs}\n'.format( str=sample.name, genus=sample.confindr.genus, numcontamsnv=sample.confindr.num_contaminated_snvs, status=sample.confindr.contam_status, pc=sample.confindr.percent_contam, pcs=sample.confindr.percent_contam_std ) # Write the string to the report report.write(data)
[ "def", "confindr_reporter", "(", "self", ",", "analysistype", "=", "'confindr'", ")", ":", "# Initialise the data strings", "data", "=", "'Strain,Genus,NumContamSNVs,ContamStatus,PercentContam,PercentContamSTD\\n'", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "analysistype", "+", "'.csv'", ")", ",", "'w'", ")", "as", "report", ":", "# Iterate through all the results", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "data", "+=", "'{str},{genus},{numcontamsnv},{status},{pc},{pcs}\\n'", ".", "format", "(", "str", "=", "sample", ".", "name", ",", "genus", "=", "sample", ".", "confindr", ".", "genus", ",", "numcontamsnv", "=", "sample", ".", "confindr", ".", "num_contaminated_snvs", ",", "status", "=", "sample", ".", "confindr", ".", "contam_status", ",", "pc", "=", "sample", ".", "confindr", ".", "percent_contam", ",", "pcs", "=", "sample", ".", "confindr", ".", "percent_contam_std", ")", "# Write the string to the report", "report", ".", "write", "(", "data", ")" ]
Creates a final report of all the ConFindr results
[ "Creates", "a", "final", "report", "of", "all", "the", "ConFindr", "results" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L328-L346
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
Reports.methodreporter
def methodreporter(self): """ Create final reports collating results from all the individual iterations through the method pipeline """ # Ensure that the analyses are set to complete self.analysescomplete = True # Reset the report path to original value self.reportpath = os.path.join(self.path, 'reports') # Clear the runmetadata - it will be populated with all the metadata from completemetadata self.runmetadata = MetadataObject() self.runmetadata.samples = list() # As the samples were entered into self.completemetadata depending on when they passed the quality threshold, # this list is not ordered numerically/alphabetically like the original runmetadata. Reset the order. for strain in self.samples: for sample in self.completemetadata: if sample.name == strain: # Append the sample to the ordered list of objects self.runmetadata.samples.append(sample) # Create the reports self.reporter() self.genusspecific() self.sixteensreporter() self.gdcsreporter() self.confindr_reporter()
python
def methodreporter(self): """ Create final reports collating results from all the individual iterations through the method pipeline """ # Ensure that the analyses are set to complete self.analysescomplete = True # Reset the report path to original value self.reportpath = os.path.join(self.path, 'reports') # Clear the runmetadata - it will be populated with all the metadata from completemetadata self.runmetadata = MetadataObject() self.runmetadata.samples = list() # As the samples were entered into self.completemetadata depending on when they passed the quality threshold, # this list is not ordered numerically/alphabetically like the original runmetadata. Reset the order. for strain in self.samples: for sample in self.completemetadata: if sample.name == strain: # Append the sample to the ordered list of objects self.runmetadata.samples.append(sample) # Create the reports self.reporter() self.genusspecific() self.sixteensreporter() self.gdcsreporter() self.confindr_reporter()
[ "def", "methodreporter", "(", "self", ")", ":", "# Ensure that the analyses are set to complete", "self", ".", "analysescomplete", "=", "True", "# Reset the report path to original value", "self", ".", "reportpath", "=", "os", ".", "path", ".", "join", "(", "self", ".", "path", ",", "'reports'", ")", "# Clear the runmetadata - it will be populated with all the metadata from completemetadata", "self", ".", "runmetadata", "=", "MetadataObject", "(", ")", "self", ".", "runmetadata", ".", "samples", "=", "list", "(", ")", "# As the samples were entered into self.completemetadata depending on when they passed the quality threshold,", "# this list is not ordered numerically/alphabetically like the original runmetadata. Reset the order.", "for", "strain", "in", "self", ".", "samples", ":", "for", "sample", "in", "self", ".", "completemetadata", ":", "if", "sample", ".", "name", "==", "strain", ":", "# Append the sample to the ordered list of objects", "self", ".", "runmetadata", ".", "samples", ".", "append", "(", "sample", ")", "# Create the reports", "self", ".", "reporter", "(", ")", "self", ".", "genusspecific", "(", ")", "self", ".", "sixteensreporter", "(", ")", "self", ".", "gdcsreporter", "(", ")", "self", ".", "confindr_reporter", "(", ")" ]
Create final reports collating results from all the individual iterations through the method pipeline
[ "Create", "final", "reports", "collating", "results", "from", "all", "the", "individual", "iterations", "through", "the", "method", "pipeline" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L348-L371
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
ReportImage.main
def main(self): """ Run the methods required to create the genesippr report summary image """ self.dataframe_setup() self.figure_populate(self.outputfolder, self.image_report, self.header_list, self.samples, 'genesippr', 'report', fail=self.fail)
python
def main(self): """ Run the methods required to create the genesippr report summary image """ self.dataframe_setup() self.figure_populate(self.outputfolder, self.image_report, self.header_list, self.samples, 'genesippr', 'report', fail=self.fail)
[ "def", "main", "(", "self", ")", ":", "self", ".", "dataframe_setup", "(", ")", "self", ".", "figure_populate", "(", "self", ".", "outputfolder", ",", "self", ".", "image_report", ",", "self", ".", "header_list", ",", "self", ".", "samples", ",", "'genesippr'", ",", "'report'", ",", "fail", "=", "self", ".", "fail", ")" ]
Run the methods required to create the genesippr report summary image
[ "Run", "the", "methods", "required", "to", "create", "the", "genesippr", "report", "summary", "image" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L417-L428
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
ReportImage.data_sanitise
def data_sanitise(self, inputstring, header=None): """ Format the data to be consistent with heatmaps :param inputstring: string containing data to be formatted :param header: class of the data - certain categories have specific formatting requirements :return: the formatted output string """ if str(inputstring) == 'nan': outputstring = 0 elif '%' in str(inputstring): group = re.findall('(\d+)\..+', str(inputstring)) outputstring = group[0] elif header == 'Pass/Fail': if str(inputstring) == '+': outputstring = '100' else: outputstring = -100 self.fail = True elif header == 'ContamStatus': if str(inputstring) == 'Clean': outputstring = '100' else: outputstring = -100 self.fail = True elif header == 'MeanCoverage': cov = float(str(inputstring).split(' ')[0]) if cov >= 20: outputstring = 100 else: outputstring = -100 self.fail = True else: outputstring = str(inputstring) return outputstring
python
def data_sanitise(self, inputstring, header=None): """ Format the data to be consistent with heatmaps :param inputstring: string containing data to be formatted :param header: class of the data - certain categories have specific formatting requirements :return: the formatted output string """ if str(inputstring) == 'nan': outputstring = 0 elif '%' in str(inputstring): group = re.findall('(\d+)\..+', str(inputstring)) outputstring = group[0] elif header == 'Pass/Fail': if str(inputstring) == '+': outputstring = '100' else: outputstring = -100 self.fail = True elif header == 'ContamStatus': if str(inputstring) == 'Clean': outputstring = '100' else: outputstring = -100 self.fail = True elif header == 'MeanCoverage': cov = float(str(inputstring).split(' ')[0]) if cov >= 20: outputstring = 100 else: outputstring = -100 self.fail = True else: outputstring = str(inputstring) return outputstring
[ "def", "data_sanitise", "(", "self", ",", "inputstring", ",", "header", "=", "None", ")", ":", "if", "str", "(", "inputstring", ")", "==", "'nan'", ":", "outputstring", "=", "0", "elif", "'%'", "in", "str", "(", "inputstring", ")", ":", "group", "=", "re", ".", "findall", "(", "'(\\d+)\\..+'", ",", "str", "(", "inputstring", ")", ")", "outputstring", "=", "group", "[", "0", "]", "elif", "header", "==", "'Pass/Fail'", ":", "if", "str", "(", "inputstring", ")", "==", "'+'", ":", "outputstring", "=", "'100'", "else", ":", "outputstring", "=", "-", "100", "self", ".", "fail", "=", "True", "elif", "header", "==", "'ContamStatus'", ":", "if", "str", "(", "inputstring", ")", "==", "'Clean'", ":", "outputstring", "=", "'100'", "else", ":", "outputstring", "=", "-", "100", "self", ".", "fail", "=", "True", "elif", "header", "==", "'MeanCoverage'", ":", "cov", "=", "float", "(", "str", "(", "inputstring", ")", ".", "split", "(", "' '", ")", "[", "0", "]", ")", "if", "cov", ">=", "20", ":", "outputstring", "=", "100", "else", ":", "outputstring", "=", "-", "100", "self", ".", "fail", "=", "True", "else", ":", "outputstring", "=", "str", "(", "inputstring", ")", "return", "outputstring" ]
Format the data to be consistent with heatmaps :param inputstring: string containing data to be formatted :param header: class of the data - certain categories have specific formatting requirements :return: the formatted output string
[ "Format", "the", "data", "to", "be", "consistent", "with", "heatmaps", ":", "param", "inputstring", ":", "string", "containing", "data", "to", "be", "formatted", ":", "param", "header", ":", "class", "of", "the", "data", "-", "certain", "categories", "have", "specific", "formatting", "requirements", ":", "return", ":", "the", "formatted", "output", "string" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L430-L463
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
ReportImage.dataframe_setup
def dataframe_setup(self): """ Set-up a report to store the desired header: sanitized string combinations """ # Initialise a dictionary to store the sanitized headers and strings genesippr_dict = dict() # Try to open all the reports - use pandas to extract the results from any report that exists try: sippr_matrix = pd.read_csv(os.path.join(self.reportpath, 'genesippr.csv'), delimiter=',', index_col=0).T.to_dict() except FileNotFoundError: sippr_matrix = dict() try: conf_matrix = pd.read_csv(os.path.join(self.reportpath, 'confindr_report.csv'), delimiter=',', index_col=0).T.to_dict() except FileNotFoundError: conf_matrix = dict() try: gdcs_matrix = pd.read_csv(os.path.join(self.reportpath, 'GDCS.csv'), delimiter=',', index_col=0).T.to_dict() except FileNotFoundError: gdcs_matrix = dict() # Populate the header:sanitized string dictionary with results from all strains for sample in self.metadata: genesippr_dict[sample.name] = dict() try: genesippr_dict[sample.name]['eae'] = self.data_sanitise(sippr_matrix[sample.name]['eae']) except KeyError: genesippr_dict[sample.name]['eae'] = 0 try: genesippr_dict[sample.name]['hlyAEc'] = self.data_sanitise(sippr_matrix[sample.name]['hlyAEc']) except KeyError: genesippr_dict[sample.name]['hlyAEc'] = 0 try: genesippr_dict[sample.name]['VT1'] = self.data_sanitise(sippr_matrix[sample.name]['VT1']) except KeyError: genesippr_dict[sample.name]['VT1'] = 0 try: genesippr_dict[sample.name]['VT2'] = self.data_sanitise(sippr_matrix[sample.name]['VT2']) except KeyError: genesippr_dict[sample.name]['VT2'] = 0 try: genesippr_dict[sample.name]['hlyALm'] = self.data_sanitise(sippr_matrix[sample.name]['hlyALm']) except KeyError: genesippr_dict[sample.name]['hlyALm'] = 0 try: genesippr_dict[sample.name]['IGS'] = self.data_sanitise(sippr_matrix[sample.name]['IGS']) except KeyError: genesippr_dict[sample.name]['IGS'] = 0 try: genesippr_dict[sample.name]['inlJ'] = self.data_sanitise(sippr_matrix[sample.name]['inlJ']) except KeyError: genesippr_dict[sample.name]['inlJ'] = 0 try: genesippr_dict[sample.name]['invA'] = self.data_sanitise(sippr_matrix[sample.name]['invA']) except KeyError: genesippr_dict[sample.name]['invA'] = 0 try: genesippr_dict[sample.name]['stn'] = self.data_sanitise(sippr_matrix[sample.name]['stn']) except KeyError: genesippr_dict[sample.name]['stn'] = 0 try: genesippr_dict[sample.name]['GDCS'] = self.data_sanitise(gdcs_matrix[sample.name]['Pass/Fail'], header='Pass/Fail') except KeyError: genesippr_dict[sample.name]['GDCS'] = 0 try: genesippr_dict[sample.name]['Contamination'] = self.data_sanitise( conf_matrix[sample.name]['ContamStatus'], header='ContamStatus') except KeyError: genesippr_dict[sample.name]['Contamination'] = 0 try: genesippr_dict[sample.name]['Coverage'] = self.data_sanitise( gdcs_matrix[sample.name]['MeanCoverage'], header='MeanCoverage') except KeyError: genesippr_dict[sample.name]['Coverage'] = 0 # Create a report from the header: sanitized string dictionary to be used in the creation of the report image with open(self.image_report, 'w') as csv: data = '{}\n'.format(','.join(self.header_list)) for strain in sorted(genesippr_dict): data += '{str},'.format(str=strain) for header in self.header_list[1:]: data += '{value},'.format(value=genesippr_dict[strain][header]) data = data.rstrip(',') data += '\n' csv.write(data)
python
def dataframe_setup(self): """ Set-up a report to store the desired header: sanitized string combinations """ # Initialise a dictionary to store the sanitized headers and strings genesippr_dict = dict() # Try to open all the reports - use pandas to extract the results from any report that exists try: sippr_matrix = pd.read_csv(os.path.join(self.reportpath, 'genesippr.csv'), delimiter=',', index_col=0).T.to_dict() except FileNotFoundError: sippr_matrix = dict() try: conf_matrix = pd.read_csv(os.path.join(self.reportpath, 'confindr_report.csv'), delimiter=',', index_col=0).T.to_dict() except FileNotFoundError: conf_matrix = dict() try: gdcs_matrix = pd.read_csv(os.path.join(self.reportpath, 'GDCS.csv'), delimiter=',', index_col=0).T.to_dict() except FileNotFoundError: gdcs_matrix = dict() # Populate the header:sanitized string dictionary with results from all strains for sample in self.metadata: genesippr_dict[sample.name] = dict() try: genesippr_dict[sample.name]['eae'] = self.data_sanitise(sippr_matrix[sample.name]['eae']) except KeyError: genesippr_dict[sample.name]['eae'] = 0 try: genesippr_dict[sample.name]['hlyAEc'] = self.data_sanitise(sippr_matrix[sample.name]['hlyAEc']) except KeyError: genesippr_dict[sample.name]['hlyAEc'] = 0 try: genesippr_dict[sample.name]['VT1'] = self.data_sanitise(sippr_matrix[sample.name]['VT1']) except KeyError: genesippr_dict[sample.name]['VT1'] = 0 try: genesippr_dict[sample.name]['VT2'] = self.data_sanitise(sippr_matrix[sample.name]['VT2']) except KeyError: genesippr_dict[sample.name]['VT2'] = 0 try: genesippr_dict[sample.name]['hlyALm'] = self.data_sanitise(sippr_matrix[sample.name]['hlyALm']) except KeyError: genesippr_dict[sample.name]['hlyALm'] = 0 try: genesippr_dict[sample.name]['IGS'] = self.data_sanitise(sippr_matrix[sample.name]['IGS']) except KeyError: genesippr_dict[sample.name]['IGS'] = 0 try: genesippr_dict[sample.name]['inlJ'] = self.data_sanitise(sippr_matrix[sample.name]['inlJ']) except KeyError: genesippr_dict[sample.name]['inlJ'] = 0 try: genesippr_dict[sample.name]['invA'] = self.data_sanitise(sippr_matrix[sample.name]['invA']) except KeyError: genesippr_dict[sample.name]['invA'] = 0 try: genesippr_dict[sample.name]['stn'] = self.data_sanitise(sippr_matrix[sample.name]['stn']) except KeyError: genesippr_dict[sample.name]['stn'] = 0 try: genesippr_dict[sample.name]['GDCS'] = self.data_sanitise(gdcs_matrix[sample.name]['Pass/Fail'], header='Pass/Fail') except KeyError: genesippr_dict[sample.name]['GDCS'] = 0 try: genesippr_dict[sample.name]['Contamination'] = self.data_sanitise( conf_matrix[sample.name]['ContamStatus'], header='ContamStatus') except KeyError: genesippr_dict[sample.name]['Contamination'] = 0 try: genesippr_dict[sample.name]['Coverage'] = self.data_sanitise( gdcs_matrix[sample.name]['MeanCoverage'], header='MeanCoverage') except KeyError: genesippr_dict[sample.name]['Coverage'] = 0 # Create a report from the header: sanitized string dictionary to be used in the creation of the report image with open(self.image_report, 'w') as csv: data = '{}\n'.format(','.join(self.header_list)) for strain in sorted(genesippr_dict): data += '{str},'.format(str=strain) for header in self.header_list[1:]: data += '{value},'.format(value=genesippr_dict[strain][header]) data = data.rstrip(',') data += '\n' csv.write(data)
[ "def", "dataframe_setup", "(", "self", ")", ":", "# Initialise a dictionary to store the sanitized headers and strings", "genesippr_dict", "=", "dict", "(", ")", "# Try to open all the reports - use pandas to extract the results from any report that exists", "try", ":", "sippr_matrix", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'genesippr.csv'", ")", ",", "delimiter", "=", "','", ",", "index_col", "=", "0", ")", ".", "T", ".", "to_dict", "(", ")", "except", "FileNotFoundError", ":", "sippr_matrix", "=", "dict", "(", ")", "try", ":", "conf_matrix", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'confindr_report.csv'", ")", ",", "delimiter", "=", "','", ",", "index_col", "=", "0", ")", ".", "T", ".", "to_dict", "(", ")", "except", "FileNotFoundError", ":", "conf_matrix", "=", "dict", "(", ")", "try", ":", "gdcs_matrix", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "'GDCS.csv'", ")", ",", "delimiter", "=", "','", ",", "index_col", "=", "0", ")", ".", "T", ".", "to_dict", "(", ")", "except", "FileNotFoundError", ":", "gdcs_matrix", "=", "dict", "(", ")", "# Populate the header:sanitized string dictionary with results from all strains", "for", "sample", "in", "self", ".", "metadata", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "=", "dict", "(", ")", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'eae'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'eae'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'eae'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'hlyAEc'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'hlyAEc'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'hlyAEc'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'VT1'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'VT1'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'VT1'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'VT2'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'VT2'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'VT2'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'hlyALm'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'hlyALm'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'hlyALm'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'IGS'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'IGS'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'IGS'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'inlJ'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'inlJ'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'inlJ'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'invA'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'invA'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'invA'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'stn'", "]", "=", "self", ".", "data_sanitise", "(", "sippr_matrix", "[", "sample", ".", "name", "]", "[", "'stn'", "]", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'stn'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'GDCS'", "]", "=", "self", ".", "data_sanitise", "(", "gdcs_matrix", "[", "sample", ".", "name", "]", "[", "'Pass/Fail'", "]", ",", "header", "=", "'Pass/Fail'", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'GDCS'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'Contamination'", "]", "=", "self", ".", "data_sanitise", "(", "conf_matrix", "[", "sample", ".", "name", "]", "[", "'ContamStatus'", "]", ",", "header", "=", "'ContamStatus'", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'Contamination'", "]", "=", "0", "try", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'Coverage'", "]", "=", "self", ".", "data_sanitise", "(", "gdcs_matrix", "[", "sample", ".", "name", "]", "[", "'MeanCoverage'", "]", ",", "header", "=", "'MeanCoverage'", ")", "except", "KeyError", ":", "genesippr_dict", "[", "sample", ".", "name", "]", "[", "'Coverage'", "]", "=", "0", "# Create a report from the header: sanitized string dictionary to be used in the creation of the report image", "with", "open", "(", "self", ".", "image_report", ",", "'w'", ")", "as", "csv", ":", "data", "=", "'{}\\n'", ".", "format", "(", "','", ".", "join", "(", "self", ".", "header_list", ")", ")", "for", "strain", "in", "sorted", "(", "genesippr_dict", ")", ":", "data", "+=", "'{str},'", ".", "format", "(", "str", "=", "strain", ")", "for", "header", "in", "self", ".", "header_list", "[", "1", ":", "]", ":", "data", "+=", "'{value},'", ".", "format", "(", "value", "=", "genesippr_dict", "[", "strain", "]", "[", "header", "]", ")", "data", "=", "data", ".", "rstrip", "(", "','", ")", "data", "+=", "'\\n'", "csv", ".", "write", "(", "data", ")" ]
Set-up a report to store the desired header: sanitized string combinations
[ "Set", "-", "up", "a", "report", "to", "store", "the", "desired", "header", ":", "sanitized", "string", "combinations" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L465-L551
OLC-Bioinformatics/sipprverse
sipprverse_reporter/reports.py
ReportImage.figure_populate
def figure_populate(outputpath, csv, xlabels, ylabels, analysistype, description, fail=False): """ Create the report image from the summary report created in self.dataframesetup :param outputpath: Path in which the outputs are to be created :param csv: Name of the report file from which data are to be extracted :param xlabels: List of all the labels to use on the x-axis :param ylabels: List of all the labels to use on the y-axis :param analysistype: String of the analysis type :param description: String describing the analysis: set to either template for the empty heatmap created prior to analyses or report for normal functionality :param fail: Boolean of whether any samples have failed the quality checks - used for determining the palette """ # Create a data frame from the summary report df = pd.read_csv( os.path.join(outputpath, csv), delimiter=',', index_col=0) # Set the palette appropriately - 'template' uses only grey if description == 'template': cmap = ['#a0a0a0'] # 'fail' uses red (fail), grey (not detected), and green (detected/pass) elif fail: cmap = ['#ff0000', '#a0a0a0', '#00cc00'] # Otherwise only use grey (not detected) and green (detected/pass) else: cmap = ['#a0a0a0', '#00cc00'] # Use seaborn to create a heatmap of the data plot = sns.heatmap(df, cbar=False, linewidths=.5, cmap=cmap) # Move the x-axis to the top of the plot plot.xaxis.set_ticks_position('top') # Remove the y-labels plot.set_ylabel('') # Set the x-tick labels as a slice of the x-labels list (first entry is not required, as it makes the # report image look crowded. Rotate the x-tick labels 90 degrees plot.set_xticklabels(xlabels[1:], rotation=90) # Set the y-tick labels from the supplied list plot.set_yticklabels(ylabels, rotation=0) # Create the figure fig = plot.get_figure() # Save the figure in .png format, using the bbox_inches='tight' option to ensure that everything is scaled fig.savefig(os.path.join(outputpath, '{at}_{desc}.png'.format(at=analysistype, desc=description)), bbox_inches='tight' )
python
def figure_populate(outputpath, csv, xlabels, ylabels, analysistype, description, fail=False): """ Create the report image from the summary report created in self.dataframesetup :param outputpath: Path in which the outputs are to be created :param csv: Name of the report file from which data are to be extracted :param xlabels: List of all the labels to use on the x-axis :param ylabels: List of all the labels to use on the y-axis :param analysistype: String of the analysis type :param description: String describing the analysis: set to either template for the empty heatmap created prior to analyses or report for normal functionality :param fail: Boolean of whether any samples have failed the quality checks - used for determining the palette """ # Create a data frame from the summary report df = pd.read_csv( os.path.join(outputpath, csv), delimiter=',', index_col=0) # Set the palette appropriately - 'template' uses only grey if description == 'template': cmap = ['#a0a0a0'] # 'fail' uses red (fail), grey (not detected), and green (detected/pass) elif fail: cmap = ['#ff0000', '#a0a0a0', '#00cc00'] # Otherwise only use grey (not detected) and green (detected/pass) else: cmap = ['#a0a0a0', '#00cc00'] # Use seaborn to create a heatmap of the data plot = sns.heatmap(df, cbar=False, linewidths=.5, cmap=cmap) # Move the x-axis to the top of the plot plot.xaxis.set_ticks_position('top') # Remove the y-labels plot.set_ylabel('') # Set the x-tick labels as a slice of the x-labels list (first entry is not required, as it makes the # report image look crowded. Rotate the x-tick labels 90 degrees plot.set_xticklabels(xlabels[1:], rotation=90) # Set the y-tick labels from the supplied list plot.set_yticklabels(ylabels, rotation=0) # Create the figure fig = plot.get_figure() # Save the figure in .png format, using the bbox_inches='tight' option to ensure that everything is scaled fig.savefig(os.path.join(outputpath, '{at}_{desc}.png'.format(at=analysistype, desc=description)), bbox_inches='tight' )
[ "def", "figure_populate", "(", "outputpath", ",", "csv", ",", "xlabels", ",", "ylabels", ",", "analysistype", ",", "description", ",", "fail", "=", "False", ")", ":", "# Create a data frame from the summary report", "df", "=", "pd", ".", "read_csv", "(", "os", ".", "path", ".", "join", "(", "outputpath", ",", "csv", ")", ",", "delimiter", "=", "','", ",", "index_col", "=", "0", ")", "# Set the palette appropriately - 'template' uses only grey", "if", "description", "==", "'template'", ":", "cmap", "=", "[", "'#a0a0a0'", "]", "# 'fail' uses red (fail), grey (not detected), and green (detected/pass)", "elif", "fail", ":", "cmap", "=", "[", "'#ff0000'", ",", "'#a0a0a0'", ",", "'#00cc00'", "]", "# Otherwise only use grey (not detected) and green (detected/pass)", "else", ":", "cmap", "=", "[", "'#a0a0a0'", ",", "'#00cc00'", "]", "# Use seaborn to create a heatmap of the data", "plot", "=", "sns", ".", "heatmap", "(", "df", ",", "cbar", "=", "False", ",", "linewidths", "=", ".5", ",", "cmap", "=", "cmap", ")", "# Move the x-axis to the top of the plot", "plot", ".", "xaxis", ".", "set_ticks_position", "(", "'top'", ")", "# Remove the y-labels", "plot", ".", "set_ylabel", "(", "''", ")", "# Set the x-tick labels as a slice of the x-labels list (first entry is not required, as it makes the", "# report image look crowded. Rotate the x-tick labels 90 degrees", "plot", ".", "set_xticklabels", "(", "xlabels", "[", "1", ":", "]", ",", "rotation", "=", "90", ")", "# Set the y-tick labels from the supplied list", "plot", ".", "set_yticklabels", "(", "ylabels", ",", "rotation", "=", "0", ")", "# Create the figure", "fig", "=", "plot", ".", "get_figure", "(", ")", "# Save the figure in .png format, using the bbox_inches='tight' option to ensure that everything is scaled", "fig", ".", "savefig", "(", "os", ".", "path", ".", "join", "(", "outputpath", ",", "'{at}_{desc}.png'", ".", "format", "(", "at", "=", "analysistype", ",", "desc", "=", "description", ")", ")", ",", "bbox_inches", "=", "'tight'", ")" ]
Create the report image from the summary report created in self.dataframesetup :param outputpath: Path in which the outputs are to be created :param csv: Name of the report file from which data are to be extracted :param xlabels: List of all the labels to use on the x-axis :param ylabels: List of all the labels to use on the y-axis :param analysistype: String of the analysis type :param description: String describing the analysis: set to either template for the empty heatmap created prior to analyses or report for normal functionality :param fail: Boolean of whether any samples have failed the quality checks - used for determining the palette
[ "Create", "the", "report", "image", "from", "the", "summary", "report", "created", "in", "self", ".", "dataframesetup", ":", "param", "outputpath", ":", "Path", "in", "which", "the", "outputs", "are", "to", "be", "created", ":", "param", "csv", ":", "Name", "of", "the", "report", "file", "from", "which", "data", "are", "to", "be", "extracted", ":", "param", "xlabels", ":", "List", "of", "all", "the", "labels", "to", "use", "on", "the", "x", "-", "axis", ":", "param", "ylabels", ":", "List", "of", "all", "the", "labels", "to", "use", "on", "the", "y", "-", "axis", ":", "param", "analysistype", ":", "String", "of", "the", "analysis", "type", ":", "param", "description", ":", "String", "describing", "the", "analysis", ":", "set", "to", "either", "template", "for", "the", "empty", "heatmap", "created", "prior", "to", "analyses", "or", "report", "for", "normal", "functionality", ":", "param", "fail", ":", "Boolean", "of", "whether", "any", "samples", "have", "failed", "the", "quality", "checks", "-", "used", "for", "determining", "the", "palette" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sipprverse_reporter/reports.py#L554-L600
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
add_usr_local_bin_to_path
def add_usr_local_bin_to_path(log=False): """ adds /usr/local/bin to $PATH """ if log: bookshelf2.logging_helpers.log_green('inserts /usr/local/bin into PATH') with settings(hide('warnings', 'running', 'stdout', 'stderr'), capture=True): try: sudo('echo "export PATH=/usr/local/bin:$PATH" ' '|sudo /usr/bin/tee /etc/profile.d/fix-path.sh') return True except: raise SystemExit(1)
python
def add_usr_local_bin_to_path(log=False): """ adds /usr/local/bin to $PATH """ if log: bookshelf2.logging_helpers.log_green('inserts /usr/local/bin into PATH') with settings(hide('warnings', 'running', 'stdout', 'stderr'), capture=True): try: sudo('echo "export PATH=/usr/local/bin:$PATH" ' '|sudo /usr/bin/tee /etc/profile.d/fix-path.sh') return True except: raise SystemExit(1)
[ "def", "add_usr_local_bin_to_path", "(", "log", "=", "False", ")", ":", "if", "log", ":", "bookshelf2", ".", "logging_helpers", ".", "log_green", "(", "'inserts /usr/local/bin into PATH'", ")", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ",", "'stdout'", ",", "'stderr'", ")", ",", "capture", "=", "True", ")", ":", "try", ":", "sudo", "(", "'echo \"export PATH=/usr/local/bin:$PATH\" '", "'|sudo /usr/bin/tee /etc/profile.d/fix-path.sh'", ")", "return", "True", "except", ":", "raise", "SystemExit", "(", "1", ")" ]
adds /usr/local/bin to $PATH
[ "adds", "/", "usr", "/", "local", "/", "bin", "to", "$PATH" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L12-L24
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
dir_attribs
def dir_attribs(location, mode=None, owner=None, group=None, recursive=False, use_sudo=False): """ cuisine dir_attribs doesn't do sudo, so we implement our own Updates the mode/owner/group for the given remote directory.""" args = '' if recursive: args = args + ' -R ' if mode: if use_sudo: sudo('chmod %s %s %s' % (args, mode, location)) else: run('chmod %s %s %s' % (args, mode, location)) if owner: if use_sudo: sudo('chown %s %s %s' % (args, owner, location)) else: run('chown %s %s %s' % (args, owner, location)) if group: if use_sudo: sudo('chgrp %s %s %s' % (args, group, location)) else: run('chgrp %s %s %s' % (args, group, location)) return True
python
def dir_attribs(location, mode=None, owner=None, group=None, recursive=False, use_sudo=False): """ cuisine dir_attribs doesn't do sudo, so we implement our own Updates the mode/owner/group for the given remote directory.""" args = '' if recursive: args = args + ' -R ' if mode: if use_sudo: sudo('chmod %s %s %s' % (args, mode, location)) else: run('chmod %s %s %s' % (args, mode, location)) if owner: if use_sudo: sudo('chown %s %s %s' % (args, owner, location)) else: run('chown %s %s %s' % (args, owner, location)) if group: if use_sudo: sudo('chgrp %s %s %s' % (args, group, location)) else: run('chgrp %s %s %s' % (args, group, location)) return True
[ "def", "dir_attribs", "(", "location", ",", "mode", "=", "None", ",", "owner", "=", "None", ",", "group", "=", "None", ",", "recursive", "=", "False", ",", "use_sudo", "=", "False", ")", ":", "args", "=", "''", "if", "recursive", ":", "args", "=", "args", "+", "' -R '", "if", "mode", ":", "if", "use_sudo", ":", "sudo", "(", "'chmod %s %s %s'", "%", "(", "args", ",", "mode", ",", "location", ")", ")", "else", ":", "run", "(", "'chmod %s %s %s'", "%", "(", "args", ",", "mode", ",", "location", ")", ")", "if", "owner", ":", "if", "use_sudo", ":", "sudo", "(", "'chown %s %s %s'", "%", "(", "args", ",", "owner", ",", "location", ")", ")", "else", ":", "run", "(", "'chown %s %s %s'", "%", "(", "args", ",", "owner", ",", "location", ")", ")", "if", "group", ":", "if", "use_sudo", ":", "sudo", "(", "'chgrp %s %s %s'", "%", "(", "args", ",", "group", ",", "location", ")", ")", "else", ":", "run", "(", "'chgrp %s %s %s'", "%", "(", "args", ",", "group", ",", "location", ")", ")", "return", "True" ]
cuisine dir_attribs doesn't do sudo, so we implement our own Updates the mode/owner/group for the given remote directory.
[ "cuisine", "dir_attribs", "doesn", "t", "do", "sudo", "so", "we", "implement", "our", "own", "Updates", "the", "mode", "/", "owner", "/", "group", "for", "the", "given", "remote", "directory", "." ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L35-L58
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
dir_ensure
def dir_ensure(location, recursive=False, mode=None, owner=None, group=None, use_sudo=False): """ cuisine dir_ensure doesn't do sudo, so we implement our own Ensures that there is a remote directory at the given location, optionally updating its mode/owner/group. If we are not updating the owner/group then this can be done as a single ssh call, so use that method, otherwise set owner/group after creation.""" args = '' if recursive: args = args + ' -p ' if not dir_exists(location): if use_sudo: sudo('mkdir %s %s' % (args, location)) else: run('mkdir %s %s' % (args, location)) if owner or group or mode: if use_sudo: dir_attribs(location, owner=owner, group=group, mode=mode, recursive=recursive, use_sudo=True) else: dir_attribs(location, owner=owner, group=group, mode=mode, recursive=recursive) return True
python
def dir_ensure(location, recursive=False, mode=None, owner=None, group=None, use_sudo=False): """ cuisine dir_ensure doesn't do sudo, so we implement our own Ensures that there is a remote directory at the given location, optionally updating its mode/owner/group. If we are not updating the owner/group then this can be done as a single ssh call, so use that method, otherwise set owner/group after creation.""" args = '' if recursive: args = args + ' -p ' if not dir_exists(location): if use_sudo: sudo('mkdir %s %s' % (args, location)) else: run('mkdir %s %s' % (args, location)) if owner or group or mode: if use_sudo: dir_attribs(location, owner=owner, group=group, mode=mode, recursive=recursive, use_sudo=True) else: dir_attribs(location, owner=owner, group=group, mode=mode, recursive=recursive) return True
[ "def", "dir_ensure", "(", "location", ",", "recursive", "=", "False", ",", "mode", "=", "None", ",", "owner", "=", "None", ",", "group", "=", "None", ",", "use_sudo", "=", "False", ")", ":", "args", "=", "''", "if", "recursive", ":", "args", "=", "args", "+", "' -p '", "if", "not", "dir_exists", "(", "location", ")", ":", "if", "use_sudo", ":", "sudo", "(", "'mkdir %s %s'", "%", "(", "args", ",", "location", ")", ")", "else", ":", "run", "(", "'mkdir %s %s'", "%", "(", "args", ",", "location", ")", ")", "if", "owner", "or", "group", "or", "mode", ":", "if", "use_sudo", ":", "dir_attribs", "(", "location", ",", "owner", "=", "owner", ",", "group", "=", "group", ",", "mode", "=", "mode", ",", "recursive", "=", "recursive", ",", "use_sudo", "=", "True", ")", "else", ":", "dir_attribs", "(", "location", ",", "owner", "=", "owner", ",", "group", "=", "group", ",", "mode", "=", "mode", ",", "recursive", "=", "recursive", ")", "return", "True" ]
cuisine dir_ensure doesn't do sudo, so we implement our own Ensures that there is a remote directory at the given location, optionally updating its mode/owner/group. If we are not updating the owner/group then this can be done as a single ssh call, so use that method, otherwise set owner/group after creation.
[ "cuisine", "dir_ensure", "doesn", "t", "do", "sudo", "so", "we", "implement", "our", "own", "Ensures", "that", "there", "is", "a", "remote", "directory", "at", "the", "given", "location", "optionally", "updating", "its", "mode", "/", "owner", "/", "group", ".", "If", "we", "are", "not", "updating", "the", "owner", "/", "group", "then", "this", "can", "be", "done", "as", "a", "single", "ssh", "call", "so", "use", "that", "method", "otherwise", "set", "owner", "/", "group", "after", "creation", "." ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L61-L93
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
dir_exists
def dir_exists(location, use_sudo=False): """Tells if there is a remote directory at the given location.""" with settings(hide('running', 'stdout', 'stderr'), warn_only=True): if use_sudo: # convert return code 0 to True return not bool(sudo('test -d %s' % (location)).return_code) else: return not bool(run('test -d %s' % (location)).return_code)
python
def dir_exists(location, use_sudo=False): """Tells if there is a remote directory at the given location.""" with settings(hide('running', 'stdout', 'stderr'), warn_only=True): if use_sudo: # convert return code 0 to True return not bool(sudo('test -d %s' % (location)).return_code) else: return not bool(run('test -d %s' % (location)).return_code)
[ "def", "dir_exists", "(", "location", ",", "use_sudo", "=", "False", ")", ":", "with", "settings", "(", "hide", "(", "'running'", ",", "'stdout'", ",", "'stderr'", ")", ",", "warn_only", "=", "True", ")", ":", "if", "use_sudo", ":", "# convert return code 0 to True", "return", "not", "bool", "(", "sudo", "(", "'test -d %s'", "%", "(", "location", ")", ")", ".", "return_code", ")", "else", ":", "return", "not", "bool", "(", "run", "(", "'test -d %s'", "%", "(", "location", ")", ")", ".", "return_code", ")" ]
Tells if there is a remote directory at the given location.
[ "Tells", "if", "there", "is", "a", "remote", "directory", "at", "the", "given", "location", "." ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L96-L103
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
disable_env_reset_on_sudo
def disable_env_reset_on_sudo(log=False): """ updates /etc/sudoers so that users from %wheel keep their environment when executing a sudo call """ if log: bookshelf2.logging_helpers.log_green('disabling env reset on sudo') file_append('/etc/sudoers', 'Defaults:%wheel !env_reset,!secure_path', use_sudo=True, partial=True) return True
python
def disable_env_reset_on_sudo(log=False): """ updates /etc/sudoers so that users from %wheel keep their environment when executing a sudo call """ if log: bookshelf2.logging_helpers.log_green('disabling env reset on sudo') file_append('/etc/sudoers', 'Defaults:%wheel !env_reset,!secure_path', use_sudo=True, partial=True) return True
[ "def", "disable_env_reset_on_sudo", "(", "log", "=", "False", ")", ":", "if", "log", ":", "bookshelf2", ".", "logging_helpers", ".", "log_green", "(", "'disabling env reset on sudo'", ")", "file_append", "(", "'/etc/sudoers'", ",", "'Defaults:%wheel !env_reset,!secure_path'", ",", "use_sudo", "=", "True", ",", "partial", "=", "True", ")", "return", "True" ]
updates /etc/sudoers so that users from %wheel keep their environment when executing a sudo call
[ "updates", "/", "etc", "/", "sudoers", "so", "that", "users", "from", "%wheel", "keep", "their", "environment", "when", "executing", "a", "sudo", "call" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L106-L117
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
disable_requiretty_on_sudoers
def disable_requiretty_on_sudoers(log=False): """ allow sudo calls through ssh without a tty """ if log: bookshelf2.logging_helpers.log_green( 'disabling requiretty on sudo calls') comment_line('/etc/sudoers', '^Defaults.*requiretty', use_sudo=True) return True
python
def disable_requiretty_on_sudoers(log=False): """ allow sudo calls through ssh without a tty """ if log: bookshelf2.logging_helpers.log_green( 'disabling requiretty on sudo calls') comment_line('/etc/sudoers', '^Defaults.*requiretty', use_sudo=True) return True
[ "def", "disable_requiretty_on_sudoers", "(", "log", "=", "False", ")", ":", "if", "log", ":", "bookshelf2", ".", "logging_helpers", ".", "log_green", "(", "'disabling requiretty on sudo calls'", ")", "comment_line", "(", "'/etc/sudoers'", ",", "'^Defaults.*requiretty'", ",", "use_sudo", "=", "True", ")", "return", "True" ]
allow sudo calls through ssh without a tty
[ "allow", "sudo", "calls", "through", "ssh", "without", "a", "tty" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L120-L128
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
file_attribs
def file_attribs(location, mode=None, owner=None, group=None, use_sudo=False, recursive=True): """Updates the mode/owner/group for the remote file at the given location.""" return dir_attribs(location=location, mode=mode, owner=owner, group=group, recursive=recursive, use_sudo=False)
python
def file_attribs(location, mode=None, owner=None, group=None, use_sudo=False, recursive=True): """Updates the mode/owner/group for the remote file at the given location.""" return dir_attribs(location=location, mode=mode, owner=owner, group=group, recursive=recursive, use_sudo=False)
[ "def", "file_attribs", "(", "location", ",", "mode", "=", "None", ",", "owner", "=", "None", ",", "group", "=", "None", ",", "use_sudo", "=", "False", ",", "recursive", "=", "True", ")", ":", "return", "dir_attribs", "(", "location", "=", "location", ",", "mode", "=", "mode", ",", "owner", "=", "owner", ",", "group", "=", "group", ",", "recursive", "=", "recursive", ",", "use_sudo", "=", "False", ")" ]
Updates the mode/owner/group for the remote file at the given location.
[ "Updates", "the", "mode", "/", "owner", "/", "group", "for", "the", "remote", "file", "at", "the", "given", "location", "." ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L182-L195
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
os_release
def os_release(): """ returns /etc/os-release in a dictionary """ with settings(hide('warnings', 'running', 'stderr'), warn_only=True, capture=True): release = {} data = run('cat /etc/os-release') for line in data.split('\n'): if not line: continue parts = line.split('=') if len(parts) == 2: release[parts[0]] = parts[1].strip('\n\r"') return release
python
def os_release(): """ returns /etc/os-release in a dictionary """ with settings(hide('warnings', 'running', 'stderr'), warn_only=True, capture=True): release = {} data = run('cat /etc/os-release') for line in data.split('\n'): if not line: continue parts = line.split('=') if len(parts) == 2: release[parts[0]] = parts[1].strip('\n\r"') return release
[ "def", "os_release", "(", ")", ":", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ",", "'stderr'", ")", ",", "warn_only", "=", "True", ",", "capture", "=", "True", ")", ":", "release", "=", "{", "}", "data", "=", "run", "(", "'cat /etc/os-release'", ")", "for", "line", "in", "data", ".", "split", "(", "'\\n'", ")", ":", "if", "not", "line", ":", "continue", "parts", "=", "line", ".", "split", "(", "'='", ")", "if", "len", "(", "parts", ")", "==", "2", ":", "release", "[", "parts", "[", "0", "]", "]", "=", "parts", "[", "1", "]", ".", "strip", "(", "'\\n\\r\"'", ")", "return", "release" ]
returns /etc/os-release in a dictionary
[ "returns", "/", "etc", "/", "os", "-", "release", "in", "a", "dictionary" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L198-L212
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
linux_distribution
def linux_distribution(): """ returns the linux distribution in lower case """ with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): data = os_release() return(data['ID'])
python
def linux_distribution(): """ returns the linux distribution in lower case """ with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): data = os_release() return(data['ID'])
[ "def", "linux_distribution", "(", ")", ":", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ",", "'stdout'", ",", "'stderr'", ")", ",", "warn_only", "=", "True", ",", "capture", "=", "True", ")", ":", "data", "=", "os_release", "(", ")", "return", "(", "data", "[", "'ID'", "]", ")" ]
returns the linux distribution in lower case
[ "returns", "the", "linux", "distribution", "in", "lower", "case" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L215-L220
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
lsb_release
def lsb_release(): """ returns /etc/lsb-release in a dictionary """ with settings(hide('warnings', 'running'), capture=True): _lsb_release = {} data = sudo('cat /etc/lsb-release') for line in data.split('\n'): if not line: continue parts = line.split('=') if len(parts) == 2: _lsb_release[parts[0]] = parts[1].strip('\n\r"') return _lsb_release
python
def lsb_release(): """ returns /etc/lsb-release in a dictionary """ with settings(hide('warnings', 'running'), capture=True): _lsb_release = {} data = sudo('cat /etc/lsb-release') for line in data.split('\n'): if not line: continue parts = line.split('=') if len(parts) == 2: _lsb_release[parts[0]] = parts[1].strip('\n\r"') return _lsb_release
[ "def", "lsb_release", "(", ")", ":", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ")", ",", "capture", "=", "True", ")", ":", "_lsb_release", "=", "{", "}", "data", "=", "sudo", "(", "'cat /etc/lsb-release'", ")", "for", "line", "in", "data", ".", "split", "(", "'\\n'", ")", ":", "if", "not", "line", ":", "continue", "parts", "=", "line", ".", "split", "(", "'='", ")", "if", "len", "(", "parts", ")", "==", "2", ":", "_lsb_release", "[", "parts", "[", "0", "]", "]", "=", "parts", "[", "1", "]", ".", "strip", "(", "'\\n\\r\"'", ")", "return", "_lsb_release" ]
returns /etc/lsb-release in a dictionary
[ "returns", "/", "etc", "/", "lsb", "-", "release", "in", "a", "dictionary" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L223-L236
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
restart_service
def restart_service(service, log=False): """ restarts a service """ with settings(): if log: bookshelf2.logging_helpers.log_yellow( 'stoping service %s' % service) sudo('service %s stop' % service) if log: bookshelf2.logging_helpers.log_yellow( 'starting service %s' % service) sudo('service %s start' % service) return True
python
def restart_service(service, log=False): """ restarts a service """ with settings(): if log: bookshelf2.logging_helpers.log_yellow( 'stoping service %s' % service) sudo('service %s stop' % service) if log: bookshelf2.logging_helpers.log_yellow( 'starting service %s' % service) sudo('service %s start' % service) return True
[ "def", "restart_service", "(", "service", ",", "log", "=", "False", ")", ":", "with", "settings", "(", ")", ":", "if", "log", ":", "bookshelf2", ".", "logging_helpers", ".", "log_yellow", "(", "'stoping service %s'", "%", "service", ")", "sudo", "(", "'service %s stop'", "%", "service", ")", "if", "log", ":", "bookshelf2", ".", "logging_helpers", ".", "log_yellow", "(", "'starting service %s'", "%", "service", ")", "sudo", "(", "'service %s start'", "%", "service", ")", "return", "True" ]
restarts a service
[ "restarts", "a", "service" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L246-L257
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
systemd
def systemd(service, start=True, enabled=True, unmask=False, restart=False): """ manipulates systemd services """ with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): if restart: sudo('systemctl restart %s' % service) else: if start: sudo('systemctl start %s' % service) else: sudo('systemctl stop %s' % service) if enabled: sudo('systemctl enable %s' % service) else: sudo('systemctl disable %s' % service) if unmask: sudo('systemctl unmask %s' % service)
python
def systemd(service, start=True, enabled=True, unmask=False, restart=False): """ manipulates systemd services """ with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=True, capture=True): if restart: sudo('systemctl restart %s' % service) else: if start: sudo('systemctl start %s' % service) else: sudo('systemctl stop %s' % service) if enabled: sudo('systemctl enable %s' % service) else: sudo('systemctl disable %s' % service) if unmask: sudo('systemctl unmask %s' % service)
[ "def", "systemd", "(", "service", ",", "start", "=", "True", ",", "enabled", "=", "True", ",", "unmask", "=", "False", ",", "restart", "=", "False", ")", ":", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ",", "'stdout'", ",", "'stderr'", ")", ",", "warn_only", "=", "True", ",", "capture", "=", "True", ")", ":", "if", "restart", ":", "sudo", "(", "'systemctl restart %s'", "%", "service", ")", "else", ":", "if", "start", ":", "sudo", "(", "'systemctl start %s'", "%", "service", ")", "else", ":", "sudo", "(", "'systemctl stop %s'", "%", "service", ")", "if", "enabled", ":", "sudo", "(", "'systemctl enable %s'", "%", "service", ")", "else", ":", "sudo", "(", "'systemctl disable %s'", "%", "service", ")", "if", "unmask", ":", "sudo", "(", "'systemctl unmask %s'", "%", "service", ")" ]
manipulates systemd services
[ "manipulates", "systemd", "services" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L260-L280
pyBookshelf/bookshelf
bookshelf/api_v2/os_helpers.py
install_os_updates
def install_os_updates(distribution, force=False): """ installs OS updates """ if ('centos' in distribution or 'rhel' in distribution or 'redhat' in distribution): bookshelf2.logging_helpers.log_green('installing OS updates') sudo("yum -y --quiet clean all") sudo("yum group mark convert") sudo("yum -y --quiet update") if ('ubuntu' in distribution or 'debian' in distribution): with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=False, capture=True): sudo("DEBIAN_FRONTEND=noninteractive apt-get update") if force: sudo("sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o " "Dpkg::Options::='--force-confdef' " "-o Dpkg::Options::='--force-confold' upgrade --force-yes") else: sudo("sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o " "Dpkg::Options::='--force-confdef' -o " "Dpkg::Options::='--force-confold' upgrade")
python
def install_os_updates(distribution, force=False): """ installs OS updates """ if ('centos' in distribution or 'rhel' in distribution or 'redhat' in distribution): bookshelf2.logging_helpers.log_green('installing OS updates') sudo("yum -y --quiet clean all") sudo("yum group mark convert") sudo("yum -y --quiet update") if ('ubuntu' in distribution or 'debian' in distribution): with settings(hide('warnings', 'running', 'stdout', 'stderr'), warn_only=False, capture=True): sudo("DEBIAN_FRONTEND=noninteractive apt-get update") if force: sudo("sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o " "Dpkg::Options::='--force-confdef' " "-o Dpkg::Options::='--force-confold' upgrade --force-yes") else: sudo("sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o " "Dpkg::Options::='--force-confdef' -o " "Dpkg::Options::='--force-confold' upgrade")
[ "def", "install_os_updates", "(", "distribution", ",", "force", "=", "False", ")", ":", "if", "(", "'centos'", "in", "distribution", "or", "'rhel'", "in", "distribution", "or", "'redhat'", "in", "distribution", ")", ":", "bookshelf2", ".", "logging_helpers", ".", "log_green", "(", "'installing OS updates'", ")", "sudo", "(", "\"yum -y --quiet clean all\"", ")", "sudo", "(", "\"yum group mark convert\"", ")", "sudo", "(", "\"yum -y --quiet update\"", ")", "if", "(", "'ubuntu'", "in", "distribution", "or", "'debian'", "in", "distribution", ")", ":", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ",", "'stdout'", ",", "'stderr'", ")", ",", "warn_only", "=", "False", ",", "capture", "=", "True", ")", ":", "sudo", "(", "\"DEBIAN_FRONTEND=noninteractive apt-get update\"", ")", "if", "force", ":", "sudo", "(", "\"sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o \"", "\"Dpkg::Options::='--force-confdef' \"", "\"-o Dpkg::Options::='--force-confold' upgrade --force-yes\"", ")", "else", ":", "sudo", "(", "\"sudo DEBIAN_FRONTEND=noninteractive apt-get -y -o \"", "\"Dpkg::Options::='--force-confdef' -o \"", "\"Dpkg::Options::='--force-confold' upgrade\"", ")" ]
installs OS updates
[ "installs", "OS", "updates" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/os_helpers.py#L319-L341
moralrecordings/mrcrowbar
mrcrowbar/statistics.py
Stats.ansi_format
def ansi_format( self, width=64, height=12 ): """Return a human readable ANSI-terminal printout of the stats. width Custom width for the graph (in characters). height Custom height for the graph (in characters). """ from mrcrowbar.ansi import format_bar_graph_iter if (256 % width) != 0: raise ValueError( 'Width of the histogram must be a divisor of 256' ) elif (width <= 0): raise ValueError( 'Width of the histogram must be greater than zero' ) elif (width > 256): raise ValueError( 'Width of the histogram must be less than or equal to 256' ) buckets = self.histogram( width ) result = [] for line in format_bar_graph_iter( buckets, width=width, height=height ): result.append( ' {}\n'.format( line ) ) result.append( '╘'+('═'*width)+'╛\n' ) result.append( 'entropy: {:.10f}\n'.format( self.entropy ) ) result.append( 'samples: {}'.format( self.samples ) ) return ''.join( result )
python
def ansi_format( self, width=64, height=12 ): """Return a human readable ANSI-terminal printout of the stats. width Custom width for the graph (in characters). height Custom height for the graph (in characters). """ from mrcrowbar.ansi import format_bar_graph_iter if (256 % width) != 0: raise ValueError( 'Width of the histogram must be a divisor of 256' ) elif (width <= 0): raise ValueError( 'Width of the histogram must be greater than zero' ) elif (width > 256): raise ValueError( 'Width of the histogram must be less than or equal to 256' ) buckets = self.histogram( width ) result = [] for line in format_bar_graph_iter( buckets, width=width, height=height ): result.append( ' {}\n'.format( line ) ) result.append( '╘'+('═'*width)+'╛\n' ) result.append( 'entropy: {:.10f}\n'.format( self.entropy ) ) result.append( 'samples: {}'.format( self.samples ) ) return ''.join( result )
[ "def", "ansi_format", "(", "self", ",", "width", "=", "64", ",", "height", "=", "12", ")", ":", "from", "mrcrowbar", ".", "ansi", "import", "format_bar_graph_iter", "if", "(", "256", "%", "width", ")", "!=", "0", ":", "raise", "ValueError", "(", "'Width of the histogram must be a divisor of 256'", ")", "elif", "(", "width", "<=", "0", ")", ":", "raise", "ValueError", "(", "'Width of the histogram must be greater than zero'", ")", "elif", "(", "width", ">", "256", ")", ":", "raise", "ValueError", "(", "'Width of the histogram must be less than or equal to 256'", ")", "buckets", "=", "self", ".", "histogram", "(", "width", ")", "result", "=", "[", "]", "for", "line", "in", "format_bar_graph_iter", "(", "buckets", ",", "width", "=", "width", ",", "height", "=", "height", ")", ":", "result", ".", "append", "(", "' {}\\n'", ".", "format", "(", "line", ")", ")", "result", ".", "append", "(", "'╘'+(", "'", "═", "'*wid", "t", "h)+'╛", "\\", "n", "' )", "", "result", ".", "append", "(", "'entropy: {:.10f}\\n'", ".", "format", "(", "self", ".", "entropy", ")", ")", "result", ".", "append", "(", "'samples: {}'", ".", "format", "(", "self", ".", "samples", ")", ")", "return", "''", ".", "join", "(", "result", ")" ]
Return a human readable ANSI-terminal printout of the stats. width Custom width for the graph (in characters). height Custom height for the graph (in characters).
[ "Return", "a", "human", "readable", "ANSI", "-", "terminal", "printout", "of", "the", "stats", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/statistics.py#L34-L59
saltant-org/saltant-py
saltant/models/task_whitelist.py
TaskWhitelist.put
def put(self): """Updates this task whitelist on the saltant server. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just updated. """ return self.manager.put( id=self.id, name=self.name, description=self.description, whitelisted_container_task_types=( self.whitelisted_container_task_types ), whitelisted_executable_task_types=( self.whitelisted_executable_task_types ), )
python
def put(self): """Updates this task whitelist on the saltant server. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just updated. """ return self.manager.put( id=self.id, name=self.name, description=self.description, whitelisted_container_task_types=( self.whitelisted_container_task_types ), whitelisted_executable_task_types=( self.whitelisted_executable_task_types ), )
[ "def", "put", "(", "self", ")", ":", "return", "self", ".", "manager", ".", "put", "(", "id", "=", "self", ".", "id", ",", "name", "=", "self", ".", "name", ",", "description", "=", "self", ".", "description", ",", "whitelisted_container_task_types", "=", "(", "self", ".", "whitelisted_container_task_types", ")", ",", "whitelisted_executable_task_types", "=", "(", "self", ".", "whitelisted_executable_task_types", ")", ",", ")" ]
Updates this task whitelist on the saltant server. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just updated.
[ "Updates", "this", "task", "whitelist", "on", "the", "saltant", "server", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_whitelist.py#L96-L114
saltant-org/saltant-py
saltant/models/task_whitelist.py
TaskWhitelistManager.create
def create( self, name, description="", whitelisted_container_task_types=None, whitelisted_executable_task_types=None, ): """Create a task whitelist. Args: name (str): The name of the task whitelist. description (str, optional): A description of the task whitelist. whitelisted_container_task_types (list, optional): A list of whitelisted container task type IDs. whitelisted_executable_task_types (list, optional): A list of whitelisted executable task type IDs. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just created. """ # Translate whitelists None to [] if necessary if whitelisted_container_task_types is None: whitelisted_container_task_types = [] if whitelisted_executable_task_types is None: whitelisted_executable_task_types = [] # Create the object request_url = self._client.base_api_url + self.list_url data_to_post = { "name": name, "description": description, "whitelisted_container_task_types": whitelisted_container_task_types, "whitelisted_executable_task_types": whitelisted_executable_task_types, } response = self._client.session.post(request_url, data=data_to_post) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_201_CREATED, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
python
def create( self, name, description="", whitelisted_container_task_types=None, whitelisted_executable_task_types=None, ): """Create a task whitelist. Args: name (str): The name of the task whitelist. description (str, optional): A description of the task whitelist. whitelisted_container_task_types (list, optional): A list of whitelisted container task type IDs. whitelisted_executable_task_types (list, optional): A list of whitelisted executable task type IDs. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just created. """ # Translate whitelists None to [] if necessary if whitelisted_container_task_types is None: whitelisted_container_task_types = [] if whitelisted_executable_task_types is None: whitelisted_executable_task_types = [] # Create the object request_url = self._client.base_api_url + self.list_url data_to_post = { "name": name, "description": description, "whitelisted_container_task_types": whitelisted_container_task_types, "whitelisted_executable_task_types": whitelisted_executable_task_types, } response = self._client.session.post(request_url, data=data_to_post) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_201_CREATED, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
[ "def", "create", "(", "self", ",", "name", ",", "description", "=", "\"\"", ",", "whitelisted_container_task_types", "=", "None", ",", "whitelisted_executable_task_types", "=", "None", ",", ")", ":", "# Translate whitelists None to [] if necessary", "if", "whitelisted_container_task_types", "is", "None", ":", "whitelisted_container_task_types", "=", "[", "]", "if", "whitelisted_executable_task_types", "is", "None", ":", "whitelisted_executable_task_types", "=", "[", "]", "# Create the object", "request_url", "=", "self", ".", "_client", ".", "base_api_url", "+", "self", ".", "list_url", "data_to_post", "=", "{", "\"name\"", ":", "name", ",", "\"description\"", ":", "description", ",", "\"whitelisted_container_task_types\"", ":", "whitelisted_container_task_types", ",", "\"whitelisted_executable_task_types\"", ":", "whitelisted_executable_task_types", ",", "}", "response", "=", "self", ".", "_client", ".", "session", ".", "post", "(", "request_url", ",", "data", "=", "data_to_post", ")", "# Validate that the request was successful", "self", ".", "validate_request_success", "(", "response_text", "=", "response", ".", "text", ",", "request_url", "=", "request_url", ",", "status_code", "=", "response", ".", "status_code", ",", "expected_status_code", "=", "HTTP_201_CREATED", ",", ")", "# Return a model instance representing the task instance", "return", "self", ".", "response_data_to_model_instance", "(", "response", ".", "json", "(", ")", ")" ]
Create a task whitelist. Args: name (str): The name of the task whitelist. description (str, optional): A description of the task whitelist. whitelisted_container_task_types (list, optional): A list of whitelisted container task type IDs. whitelisted_executable_task_types (list, optional): A list of whitelisted executable task type IDs. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just created.
[ "Create", "a", "task", "whitelist", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_whitelist.py#L163-L212
saltant-org/saltant-py
saltant/models/task_whitelist.py
TaskWhitelistManager.patch
def patch( self, id, name=None, description=None, whitelisted_container_task_types=None, whitelisted_executable_task_types=None, ): """Partially updates a task whitelist on the saltant server. Args: id (int): The ID of the task whitelist. name (str, optional): The name of the task whitelist. description (str, optional): A description of the task whitelist. whitelisted_container_task_types (list, optional): A list of whitelisted container task type IDs. whitelisted_executable_task_types (list, optional): A list of whitelisted executable task type IDs. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just updated. """ # Update the object request_url = self._client.base_api_url + self.detail_url.format(id=id) data_to_patch = {} if name is not None: data_to_patch["name"] = name if description is not None: data_to_patch["description"] = description if whitelisted_container_task_types is not None: data_to_patch[ "whitelisted_container_task_types" ] = whitelisted_container_task_types if whitelisted_executable_task_types is not None: data_to_patch[ "whitelisted_executable_task_types" ] = whitelisted_executable_task_types response = self._client.session.patch(request_url, data=data_to_patch) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_200_OK, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
python
def patch( self, id, name=None, description=None, whitelisted_container_task_types=None, whitelisted_executable_task_types=None, ): """Partially updates a task whitelist on the saltant server. Args: id (int): The ID of the task whitelist. name (str, optional): The name of the task whitelist. description (str, optional): A description of the task whitelist. whitelisted_container_task_types (list, optional): A list of whitelisted container task type IDs. whitelisted_executable_task_types (list, optional): A list of whitelisted executable task type IDs. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just updated. """ # Update the object request_url = self._client.base_api_url + self.detail_url.format(id=id) data_to_patch = {} if name is not None: data_to_patch["name"] = name if description is not None: data_to_patch["description"] = description if whitelisted_container_task_types is not None: data_to_patch[ "whitelisted_container_task_types" ] = whitelisted_container_task_types if whitelisted_executable_task_types is not None: data_to_patch[ "whitelisted_executable_task_types" ] = whitelisted_executable_task_types response = self._client.session.patch(request_url, data=data_to_patch) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_200_OK, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
[ "def", "patch", "(", "self", ",", "id", ",", "name", "=", "None", ",", "description", "=", "None", ",", "whitelisted_container_task_types", "=", "None", ",", "whitelisted_executable_task_types", "=", "None", ",", ")", ":", "# Update the object", "request_url", "=", "self", ".", "_client", ".", "base_api_url", "+", "self", ".", "detail_url", ".", "format", "(", "id", "=", "id", ")", "data_to_patch", "=", "{", "}", "if", "name", "is", "not", "None", ":", "data_to_patch", "[", "\"name\"", "]", "=", "name", "if", "description", "is", "not", "None", ":", "data_to_patch", "[", "\"description\"", "]", "=", "description", "if", "whitelisted_container_task_types", "is", "not", "None", ":", "data_to_patch", "[", "\"whitelisted_container_task_types\"", "]", "=", "whitelisted_container_task_types", "if", "whitelisted_executable_task_types", "is", "not", "None", ":", "data_to_patch", "[", "\"whitelisted_executable_task_types\"", "]", "=", "whitelisted_executable_task_types", "response", "=", "self", ".", "_client", ".", "session", ".", "patch", "(", "request_url", ",", "data", "=", "data_to_patch", ")", "# Validate that the request was successful", "self", ".", "validate_request_success", "(", "response_text", "=", "response", ".", "text", ",", "request_url", "=", "request_url", ",", "status_code", "=", "response", ".", "status_code", ",", "expected_status_code", "=", "HTTP_200_OK", ",", ")", "# Return a model instance representing the task instance", "return", "self", ".", "response_data_to_model_instance", "(", "response", ".", "json", "(", ")", ")" ]
Partially updates a task whitelist on the saltant server. Args: id (int): The ID of the task whitelist. name (str, optional): The name of the task whitelist. description (str, optional): A description of the task whitelist. whitelisted_container_task_types (list, optional): A list of whitelisted container task type IDs. whitelisted_executable_task_types (list, optional): A list of whitelisted executable task type IDs. Returns: :class:`saltant.models.task_whitelist.TaskWhitelist`: A task whitelist model instance representing the task whitelist just updated.
[ "Partially", "updates", "a", "task", "whitelist", "on", "the", "saltant", "server", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_whitelist.py#L214-L270
moralrecordings/mrcrowbar
mrcrowbar/utils.py
enable_logging
def enable_logging( level='WARNING' ): """Enable sending logs to stderr. Useful for shell sessions. level Logging threshold, as defined in the logging module of the Python standard library. Defaults to 'WARNING'. """ log = logging.getLogger( 'mrcrowbar' ) log.setLevel( level ) out = logging.StreamHandler() out.setLevel( level ) form = logging.Formatter( '[%(levelname)s] %(name)s - %(message)s' ) out.setFormatter( form ) log.addHandler( out )
python
def enable_logging( level='WARNING' ): """Enable sending logs to stderr. Useful for shell sessions. level Logging threshold, as defined in the logging module of the Python standard library. Defaults to 'WARNING'. """ log = logging.getLogger( 'mrcrowbar' ) log.setLevel( level ) out = logging.StreamHandler() out.setLevel( level ) form = logging.Formatter( '[%(levelname)s] %(name)s - %(message)s' ) out.setFormatter( form ) log.addHandler( out )
[ "def", "enable_logging", "(", "level", "=", "'WARNING'", ")", ":", "log", "=", "logging", ".", "getLogger", "(", "'mrcrowbar'", ")", "log", ".", "setLevel", "(", "level", ")", "out", "=", "logging", ".", "StreamHandler", "(", ")", "out", ".", "setLevel", "(", "level", ")", "form", "=", "logging", ".", "Formatter", "(", "'[%(levelname)s] %(name)s - %(message)s'", ")", "out", ".", "setFormatter", "(", "form", ")", "log", ".", "addHandler", "(", "out", ")" ]
Enable sending logs to stderr. Useful for shell sessions. level Logging threshold, as defined in the logging module of the Python standard library. Defaults to 'WARNING'.
[ "Enable", "sending", "logs", "to", "stderr", ".", "Useful", "for", "shell", "sessions", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L15-L28
moralrecordings/mrcrowbar
mrcrowbar/utils.py
find_all_iter
def find_all_iter( source, substring, start=None, end=None, overlap=False ): """Iterate through every location a substring can be found in a source string. source The source string to search. start Start offset to read from (default: start) end End offset to stop reading at (default: end) overlap Whether to return overlapping matches (default: false) """ data = source base = 0 if end is not None: data = data[:end] if start is not None: data = data[start:] base = start pointer = 0 increment = 1 if overlap else (len( substring ) or 1) while True: pointer = data.find( substring, pointer ) if pointer == -1: return yield base+pointer pointer += increment
python
def find_all_iter( source, substring, start=None, end=None, overlap=False ): """Iterate through every location a substring can be found in a source string. source The source string to search. start Start offset to read from (default: start) end End offset to stop reading at (default: end) overlap Whether to return overlapping matches (default: false) """ data = source base = 0 if end is not None: data = data[:end] if start is not None: data = data[start:] base = start pointer = 0 increment = 1 if overlap else (len( substring ) or 1) while True: pointer = data.find( substring, pointer ) if pointer == -1: return yield base+pointer pointer += increment
[ "def", "find_all_iter", "(", "source", ",", "substring", ",", "start", "=", "None", ",", "end", "=", "None", ",", "overlap", "=", "False", ")", ":", "data", "=", "source", "base", "=", "0", "if", "end", "is", "not", "None", ":", "data", "=", "data", "[", ":", "end", "]", "if", "start", "is", "not", "None", ":", "data", "=", "data", "[", "start", ":", "]", "base", "=", "start", "pointer", "=", "0", "increment", "=", "1", "if", "overlap", "else", "(", "len", "(", "substring", ")", "or", "1", ")", "while", "True", ":", "pointer", "=", "data", ".", "find", "(", "substring", ",", "pointer", ")", "if", "pointer", "==", "-", "1", ":", "return", "yield", "base", "+", "pointer", "pointer", "+=", "increment" ]
Iterate through every location a substring can be found in a source string. source The source string to search. start Start offset to read from (default: start) end End offset to stop reading at (default: end) overlap Whether to return overlapping matches (default: false)
[ "Iterate", "through", "every", "location", "a", "substring", "can", "be", "found", "in", "a", "source", "string", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L51-L80
moralrecordings/mrcrowbar
mrcrowbar/utils.py
find_all
def find_all( source, substring, start=None, end=None, overlap=False ): """Return every location a substring can be found in a source string. source The source string to search. start Start offset to read from (default: start) end End offset to stop reading at (default: end) overlap Whether to return overlapping matches (default: false) """ return [x for x in find_all_iter( source, substring, start, end, overlap )]
python
def find_all( source, substring, start=None, end=None, overlap=False ): """Return every location a substring can be found in a source string. source The source string to search. start Start offset to read from (default: start) end End offset to stop reading at (default: end) overlap Whether to return overlapping matches (default: false) """ return [x for x in find_all_iter( source, substring, start, end, overlap )]
[ "def", "find_all", "(", "source", ",", "substring", ",", "start", "=", "None", ",", "end", "=", "None", ",", "overlap", "=", "False", ")", ":", "return", "[", "x", "for", "x", "in", "find_all_iter", "(", "source", ",", "substring", ",", "start", ",", "end", ",", "overlap", ")", "]" ]
Return every location a substring can be found in a source string. source The source string to search. start Start offset to read from (default: start) end End offset to stop reading at (default: end) overlap Whether to return overlapping matches (default: false)
[ "Return", "every", "location", "a", "substring", "can", "be", "found", "in", "a", "source", "string", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L83-L98
moralrecordings/mrcrowbar
mrcrowbar/utils.py
basic_diff
def basic_diff( source1, source2, start=None, end=None ): """Perform a basic diff between two equal-sized binary strings and return a list of (offset, size) tuples denoting the differences. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) """ start = start if start is not None else 0 end = end if end is not None else min( len( source1 ), len( source2 ) ) end_point = min( end, len( source1 ), len( source2 ) ) pointer = start diff_start = None results = [] while pointer < end_point: if source1[pointer] != source2[pointer]: if diff_start is None: diff_start = pointer else: if diff_start is not None: results.append( (diff_start, pointer-diff_start) ) diff_start = None pointer += 1 if diff_start is not None: results.append( (diff_start, pointer-diff_start) ) diff_start = None return results
python
def basic_diff( source1, source2, start=None, end=None ): """Perform a basic diff between two equal-sized binary strings and return a list of (offset, size) tuples denoting the differences. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) """ start = start if start is not None else 0 end = end if end is not None else min( len( source1 ), len( source2 ) ) end_point = min( end, len( source1 ), len( source2 ) ) pointer = start diff_start = None results = [] while pointer < end_point: if source1[pointer] != source2[pointer]: if diff_start is None: diff_start = pointer else: if diff_start is not None: results.append( (diff_start, pointer-diff_start) ) diff_start = None pointer += 1 if diff_start is not None: results.append( (diff_start, pointer-diff_start) ) diff_start = None return results
[ "def", "basic_diff", "(", "source1", ",", "source2", ",", "start", "=", "None", ",", "end", "=", "None", ")", ":", "start", "=", "start", "if", "start", "is", "not", "None", "else", "0", "end", "=", "end", "if", "end", "is", "not", "None", "else", "min", "(", "len", "(", "source1", ")", ",", "len", "(", "source2", ")", ")", "end_point", "=", "min", "(", "end", ",", "len", "(", "source1", ")", ",", "len", "(", "source2", ")", ")", "pointer", "=", "start", "diff_start", "=", "None", "results", "=", "[", "]", "while", "pointer", "<", "end_point", ":", "if", "source1", "[", "pointer", "]", "!=", "source2", "[", "pointer", "]", ":", "if", "diff_start", "is", "None", ":", "diff_start", "=", "pointer", "else", ":", "if", "diff_start", "is", "not", "None", ":", "results", ".", "append", "(", "(", "diff_start", ",", "pointer", "-", "diff_start", ")", ")", "diff_start", "=", "None", "pointer", "+=", "1", "if", "diff_start", "is", "not", "None", ":", "results", ".", "append", "(", "(", "diff_start", ",", "pointer", "-", "diff_start", ")", ")", "diff_start", "=", "None", "return", "results" ]
Perform a basic diff between two equal-sized binary strings and return a list of (offset, size) tuples denoting the differences. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end)
[ "Perform", "a", "basic", "diff", "between", "two", "equal", "-", "sized", "binary", "strings", "and", "return", "a", "list", "of", "(", "offset", "size", ")", "tuples", "denoting", "the", "differences", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L101-L137
moralrecordings/mrcrowbar
mrcrowbar/utils.py
hexdump_iter
def hexdump_iter( source, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, address_base=None ): """Return the contents of a byte string in tabular hexadecimal/ASCII format. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ assert is_bytes( source ) start, end = bounds( start, end, length, len( source ) ) start = max( start, 0 ) end = min( end, len( source ) ) if len( source ) == 0 or (start == end == 0): return address_base_offset = address_base-start if address_base is not None else 0 for offset in range( start, end, minor_len*major_len ): yield ansi.format_hexdump_line( source, offset, end, major_len, minor_len, colour, address_base_offset=address_base_offset ) return
python
def hexdump_iter( source, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, address_base=None ): """Return the contents of a byte string in tabular hexadecimal/ASCII format. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ assert is_bytes( source ) start, end = bounds( start, end, length, len( source ) ) start = max( start, 0 ) end = min( end, len( source ) ) if len( source ) == 0 or (start == end == 0): return address_base_offset = address_base-start if address_base is not None else 0 for offset in range( start, end, minor_len*major_len ): yield ansi.format_hexdump_line( source, offset, end, major_len, minor_len, colour, address_base_offset=address_base_offset ) return
[ "def", "hexdump_iter", "(", "source", ",", "start", "=", "None", ",", "end", "=", "None", ",", "length", "=", "None", ",", "major_len", "=", "8", ",", "minor_len", "=", "4", ",", "colour", "=", "True", ",", "address_base", "=", "None", ")", ":", "assert", "is_bytes", "(", "source", ")", "start", ",", "end", "=", "bounds", "(", "start", ",", "end", ",", "length", ",", "len", "(", "source", ")", ")", "start", "=", "max", "(", "start", ",", "0", ")", "end", "=", "min", "(", "end", ",", "len", "(", "source", ")", ")", "if", "len", "(", "source", ")", "==", "0", "or", "(", "start", "==", "end", "==", "0", ")", ":", "return", "address_base_offset", "=", "address_base", "-", "start", "if", "address_base", "is", "not", "None", "else", "0", "for", "offset", "in", "range", "(", "start", ",", "end", ",", "minor_len", "*", "major_len", ")", ":", "yield", "ansi", ".", "format_hexdump_line", "(", "source", ",", "offset", ",", "end", ",", "major_len", ",", "minor_len", ",", "colour", ",", "address_base_offset", "=", "address_base_offset", ")", "return" ]
Return the contents of a byte string in tabular hexadecimal/ASCII format. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined.
[ "Return", "the", "contents", "of", "a", "byte", "string", "in", "tabular", "hexadecimal", "/", "ASCII", "format", ".", "source", "The", "byte", "string", "to", "print", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L160-L200
moralrecordings/mrcrowbar
mrcrowbar/utils.py
hexdump
def hexdump( source, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, address_base=None ): """Print the contents of a byte string in tabular hexadecimal/ASCII format. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ for line in hexdump_iter( source, start, end, length, major_len, minor_len, colour, address_base ): print( line )
python
def hexdump( source, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, address_base=None ): """Print the contents of a byte string in tabular hexadecimal/ASCII format. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ for line in hexdump_iter( source, start, end, length, major_len, minor_len, colour, address_base ): print( line )
[ "def", "hexdump", "(", "source", ",", "start", "=", "None", ",", "end", "=", "None", ",", "length", "=", "None", ",", "major_len", "=", "8", ",", "minor_len", "=", "4", ",", "colour", "=", "True", ",", "address_base", "=", "None", ")", ":", "for", "line", "in", "hexdump_iter", "(", "source", ",", "start", ",", "end", ",", "length", ",", "major_len", ",", "minor_len", ",", "colour", ",", "address_base", ")", ":", "print", "(", "line", ")" ]
Print the contents of a byte string in tabular hexadecimal/ASCII format. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined.
[ "Print", "the", "contents", "of", "a", "byte", "string", "in", "tabular", "hexadecimal", "/", "ASCII", "format", ".", "source", "The", "byte", "string", "to", "print", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L203-L233
moralrecordings/mrcrowbar
mrcrowbar/utils.py
hexdump_diff_iter
def hexdump_diff_iter( source1, source2, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, before=2, after=2, address_base=None ): """Returns the differences between two byte strings in tabular hexadecimal/ASCII format. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) before Number of lines of context preceeding a match to show after Number of lines of context following a match to show address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ stride = minor_len*major_len start = start if start is not None else 0 end = end if end is not None else max( len( source1 ), len( source2 ) ) start = max( start, 0 ) end = min( end, max( len( source1 ), len( source2 ) ) ) address_base_offset = address_base-start if address_base is not None else 0 diff_lines = [] for offset in range( start, end, stride ): if source1[offset:offset+stride] != source2[offset:offset+stride]: diff_lines.append( offset ) show_all = before is None or after is None if show_all: show_lines = {x: (2 if x in diff_lines else 1) for x in range( start, end, stride )} else: show_lines = {x: (2 if x in diff_lines else 0) for x in range( start, end, stride )} for index in diff_lines: for b in [index-(x+1)*stride for x in range( before )]: if b in show_lines and show_lines[b] == 0: show_lines[b] = 1 for a in [index+(x+1)*stride for x in range( after )]: if a in show_lines and show_lines[a] == 0: show_lines[a] = 1 skip = False for offset in sorted( show_lines.keys() ): if skip == True and show_lines[offset] != 0: yield '...' skip = False if show_lines[offset] == 2: check = basic_diff( source1, source2, start=offset, end=offset+stride ) highlights = {} for (o, l) in check: for i in range( o, o+l ): highlights[i] = DIFF_COLOUR_MAP[0] if offset < len( source1 ): yield ansi.format_hexdump_line( source1, offset, min( end, len( source1 ) ), major_len, minor_len, colour, prefix='-', highlight_addr=DIFF_COLOUR_MAP[0], highlight_map=highlights, address_base_offset=address_base_offset ) highlights = {k: DIFF_COLOUR_MAP[1] for k in highlights.keys()} if offset < len( source2 ): yield ansi.format_hexdump_line( source2, offset, min( end, len( source2 ) ), major_len, minor_len, colour, prefix='+' , highlight_addr=DIFF_COLOUR_MAP[1], highlight_map=highlights, address_base_offset=address_base_offset ) elif show_lines[offset] == 1: yield ansi.format_hexdump_line( source1, offset, end, major_len, minor_len, colour, prefix=' ', address_base_offset=address_base_offset ) elif show_lines[offset] == 0: skip = True if skip == True: yield '...' skip = False return
python
def hexdump_diff_iter( source1, source2, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, before=2, after=2, address_base=None ): """Returns the differences between two byte strings in tabular hexadecimal/ASCII format. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) before Number of lines of context preceeding a match to show after Number of lines of context following a match to show address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ stride = minor_len*major_len start = start if start is not None else 0 end = end if end is not None else max( len( source1 ), len( source2 ) ) start = max( start, 0 ) end = min( end, max( len( source1 ), len( source2 ) ) ) address_base_offset = address_base-start if address_base is not None else 0 diff_lines = [] for offset in range( start, end, stride ): if source1[offset:offset+stride] != source2[offset:offset+stride]: diff_lines.append( offset ) show_all = before is None or after is None if show_all: show_lines = {x: (2 if x in diff_lines else 1) for x in range( start, end, stride )} else: show_lines = {x: (2 if x in diff_lines else 0) for x in range( start, end, stride )} for index in diff_lines: for b in [index-(x+1)*stride for x in range( before )]: if b in show_lines and show_lines[b] == 0: show_lines[b] = 1 for a in [index+(x+1)*stride for x in range( after )]: if a in show_lines and show_lines[a] == 0: show_lines[a] = 1 skip = False for offset in sorted( show_lines.keys() ): if skip == True and show_lines[offset] != 0: yield '...' skip = False if show_lines[offset] == 2: check = basic_diff( source1, source2, start=offset, end=offset+stride ) highlights = {} for (o, l) in check: for i in range( o, o+l ): highlights[i] = DIFF_COLOUR_MAP[0] if offset < len( source1 ): yield ansi.format_hexdump_line( source1, offset, min( end, len( source1 ) ), major_len, minor_len, colour, prefix='-', highlight_addr=DIFF_COLOUR_MAP[0], highlight_map=highlights, address_base_offset=address_base_offset ) highlights = {k: DIFF_COLOUR_MAP[1] for k in highlights.keys()} if offset < len( source2 ): yield ansi.format_hexdump_line( source2, offset, min( end, len( source2 ) ), major_len, minor_len, colour, prefix='+' , highlight_addr=DIFF_COLOUR_MAP[1], highlight_map=highlights, address_base_offset=address_base_offset ) elif show_lines[offset] == 1: yield ansi.format_hexdump_line( source1, offset, end, major_len, minor_len, colour, prefix=' ', address_base_offset=address_base_offset ) elif show_lines[offset] == 0: skip = True if skip == True: yield '...' skip = False return
[ "def", "hexdump_diff_iter", "(", "source1", ",", "source2", ",", "start", "=", "None", ",", "end", "=", "None", ",", "length", "=", "None", ",", "major_len", "=", "8", ",", "minor_len", "=", "4", ",", "colour", "=", "True", ",", "before", "=", "2", ",", "after", "=", "2", ",", "address_base", "=", "None", ")", ":", "stride", "=", "minor_len", "*", "major_len", "start", "=", "start", "if", "start", "is", "not", "None", "else", "0", "end", "=", "end", "if", "end", "is", "not", "None", "else", "max", "(", "len", "(", "source1", ")", ",", "len", "(", "source2", ")", ")", "start", "=", "max", "(", "start", ",", "0", ")", "end", "=", "min", "(", "end", ",", "max", "(", "len", "(", "source1", ")", ",", "len", "(", "source2", ")", ")", ")", "address_base_offset", "=", "address_base", "-", "start", "if", "address_base", "is", "not", "None", "else", "0", "diff_lines", "=", "[", "]", "for", "offset", "in", "range", "(", "start", ",", "end", ",", "stride", ")", ":", "if", "source1", "[", "offset", ":", "offset", "+", "stride", "]", "!=", "source2", "[", "offset", ":", "offset", "+", "stride", "]", ":", "diff_lines", ".", "append", "(", "offset", ")", "show_all", "=", "before", "is", "None", "or", "after", "is", "None", "if", "show_all", ":", "show_lines", "=", "{", "x", ":", "(", "2", "if", "x", "in", "diff_lines", "else", "1", ")", "for", "x", "in", "range", "(", "start", ",", "end", ",", "stride", ")", "}", "else", ":", "show_lines", "=", "{", "x", ":", "(", "2", "if", "x", "in", "diff_lines", "else", "0", ")", "for", "x", "in", "range", "(", "start", ",", "end", ",", "stride", ")", "}", "for", "index", "in", "diff_lines", ":", "for", "b", "in", "[", "index", "-", "(", "x", "+", "1", ")", "*", "stride", "for", "x", "in", "range", "(", "before", ")", "]", ":", "if", "b", "in", "show_lines", "and", "show_lines", "[", "b", "]", "==", "0", ":", "show_lines", "[", "b", "]", "=", "1", "for", "a", "in", "[", "index", "+", "(", "x", "+", "1", ")", "*", "stride", "for", "x", "in", "range", "(", "after", ")", "]", ":", "if", "a", "in", "show_lines", "and", "show_lines", "[", "a", "]", "==", "0", ":", "show_lines", "[", "a", "]", "=", "1", "skip", "=", "False", "for", "offset", "in", "sorted", "(", "show_lines", ".", "keys", "(", ")", ")", ":", "if", "skip", "==", "True", "and", "show_lines", "[", "offset", "]", "!=", "0", ":", "yield", "'...'", "skip", "=", "False", "if", "show_lines", "[", "offset", "]", "==", "2", ":", "check", "=", "basic_diff", "(", "source1", ",", "source2", ",", "start", "=", "offset", ",", "end", "=", "offset", "+", "stride", ")", "highlights", "=", "{", "}", "for", "(", "o", ",", "l", ")", "in", "check", ":", "for", "i", "in", "range", "(", "o", ",", "o", "+", "l", ")", ":", "highlights", "[", "i", "]", "=", "DIFF_COLOUR_MAP", "[", "0", "]", "if", "offset", "<", "len", "(", "source1", ")", ":", "yield", "ansi", ".", "format_hexdump_line", "(", "source1", ",", "offset", ",", "min", "(", "end", ",", "len", "(", "source1", ")", ")", ",", "major_len", ",", "minor_len", ",", "colour", ",", "prefix", "=", "'-'", ",", "highlight_addr", "=", "DIFF_COLOUR_MAP", "[", "0", "]", ",", "highlight_map", "=", "highlights", ",", "address_base_offset", "=", "address_base_offset", ")", "highlights", "=", "{", "k", ":", "DIFF_COLOUR_MAP", "[", "1", "]", "for", "k", "in", "highlights", ".", "keys", "(", ")", "}", "if", "offset", "<", "len", "(", "source2", ")", ":", "yield", "ansi", ".", "format_hexdump_line", "(", "source2", ",", "offset", ",", "min", "(", "end", ",", "len", "(", "source2", ")", ")", ",", "major_len", ",", "minor_len", ",", "colour", ",", "prefix", "=", "'+'", ",", "highlight_addr", "=", "DIFF_COLOUR_MAP", "[", "1", "]", ",", "highlight_map", "=", "highlights", ",", "address_base_offset", "=", "address_base_offset", ")", "elif", "show_lines", "[", "offset", "]", "==", "1", ":", "yield", "ansi", ".", "format_hexdump_line", "(", "source1", ",", "offset", ",", "end", ",", "major_len", ",", "minor_len", ",", "colour", ",", "prefix", "=", "' '", ",", "address_base_offset", "=", "address_base_offset", ")", "elif", "show_lines", "[", "offset", "]", "==", "0", ":", "skip", "=", "True", "if", "skip", "==", "True", ":", "yield", "'...'", "skip", "=", "False", "return" ]
Returns the differences between two byte strings in tabular hexadecimal/ASCII format. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) before Number of lines of context preceeding a match to show after Number of lines of context following a match to show address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined.
[ "Returns", "the", "differences", "between", "two", "byte", "strings", "in", "tabular", "hexadecimal", "/", "ASCII", "format", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L236-L324
moralrecordings/mrcrowbar
mrcrowbar/utils.py
hexdump_diff
def hexdump_diff( source1, source2, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, before=2, after=2, address_base=None ): """Returns the differences between two byte strings in tabular hexadecimal/ASCII format. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) before Number of lines of context preceeding a match to show after Number of lines of context following a match to show address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ for line in hexdump_diff_iter( source1, source2, start, end, length, major_len, minor_len, colour, before, after, address_base ): print( line )
python
def hexdump_diff( source1, source2, start=None, end=None, length=None, major_len=8, minor_len=4, colour=True, before=2, after=2, address_base=None ): """Returns the differences between two byte strings in tabular hexadecimal/ASCII format. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) before Number of lines of context preceeding a match to show after Number of lines of context following a match to show address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined. """ for line in hexdump_diff_iter( source1, source2, start, end, length, major_len, minor_len, colour, before, after, address_base ): print( line )
[ "def", "hexdump_diff", "(", "source1", ",", "source2", ",", "start", "=", "None", ",", "end", "=", "None", ",", "length", "=", "None", ",", "major_len", "=", "8", ",", "minor_len", "=", "4", ",", "colour", "=", "True", ",", "before", "=", "2", ",", "after", "=", "2", ",", "address_base", "=", "None", ")", ":", "for", "line", "in", "hexdump_diff_iter", "(", "source1", ",", "source2", ",", "start", ",", "end", ",", "length", ",", "major_len", ",", "minor_len", ",", "colour", ",", "before", ",", "after", ",", "address_base", ")", ":", "print", "(", "line", ")" ]
Returns the differences between two byte strings in tabular hexadecimal/ASCII format. source1 The first byte string source. source2 The second byte string source. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) major_len Number of hexadecimal groups per line minor_len Number of bytes per hexadecimal group colour Add ANSI colour formatting to output (default: true) before Number of lines of context preceeding a match to show after Number of lines of context following a match to show address_base Base address to use for labels (default: start) Raises ValueError if both end and length are defined.
[ "Returns", "the", "differences", "between", "two", "byte", "strings", "in", "tabular", "hexadecimal", "/", "ASCII", "format", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L327-L366
moralrecordings/mrcrowbar
mrcrowbar/utils.py
unpack_bits
def unpack_bits( byte ): """Expand a bitfield into a 64-bit int (8 bool bytes).""" longbits = byte & (0x00000000000000ff) longbits = (longbits | (longbits<<28)) & (0x0000000f0000000f) longbits = (longbits | (longbits<<14)) & (0x0003000300030003) longbits = (longbits | (longbits<<7)) & (0x0101010101010101) return longbits
python
def unpack_bits( byte ): """Expand a bitfield into a 64-bit int (8 bool bytes).""" longbits = byte & (0x00000000000000ff) longbits = (longbits | (longbits<<28)) & (0x0000000f0000000f) longbits = (longbits | (longbits<<14)) & (0x0003000300030003) longbits = (longbits | (longbits<<7)) & (0x0101010101010101) return longbits
[ "def", "unpack_bits", "(", "byte", ")", ":", "longbits", "=", "byte", "&", "(", "0x00000000000000ff", ")", "longbits", "=", "(", "longbits", "|", "(", "longbits", "<<", "28", ")", ")", "&", "(", "0x0000000f0000000f", ")", "longbits", "=", "(", "longbits", "|", "(", "longbits", "<<", "14", ")", ")", "&", "(", "0x0003000300030003", ")", "longbits", "=", "(", "longbits", "|", "(", "longbits", "<<", "7", ")", ")", "&", "(", "0x0101010101010101", ")", "return", "longbits" ]
Expand a bitfield into a 64-bit int (8 bool bytes).
[ "Expand", "a", "bitfield", "into", "a", "64", "-", "bit", "int", "(", "8", "bool", "bytes", ")", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L376-L382
moralrecordings/mrcrowbar
mrcrowbar/utils.py
pack_bits
def pack_bits( longbits ): """Crunch a 64-bit int (8 bool bytes) into a bitfield.""" byte = longbits & (0x0101010101010101) byte = (byte | (byte>>7)) & (0x0003000300030003) byte = (byte | (byte>>14)) & (0x0000000f0000000f) byte = (byte | (byte>>28)) & (0x00000000000000ff) return byte
python
def pack_bits( longbits ): """Crunch a 64-bit int (8 bool bytes) into a bitfield.""" byte = longbits & (0x0101010101010101) byte = (byte | (byte>>7)) & (0x0003000300030003) byte = (byte | (byte>>14)) & (0x0000000f0000000f) byte = (byte | (byte>>28)) & (0x00000000000000ff) return byte
[ "def", "pack_bits", "(", "longbits", ")", ":", "byte", "=", "longbits", "&", "(", "0x0101010101010101", ")", "byte", "=", "(", "byte", "|", "(", "byte", ">>", "7", ")", ")", "&", "(", "0x0003000300030003", ")", "byte", "=", "(", "byte", "|", "(", "byte", ">>", "14", ")", ")", "&", "(", "0x0000000f0000000f", ")", "byte", "=", "(", "byte", "|", "(", "byte", ">>", "28", ")", ")", "&", "(", "0x00000000000000ff", ")", "return", "byte" ]
Crunch a 64-bit int (8 bool bytes) into a bitfield.
[ "Crunch", "a", "64", "-", "bit", "int", "(", "8", "bool", "bytes", ")", "into", "a", "bitfield", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L385-L391
moralrecordings/mrcrowbar
mrcrowbar/utils.py
pixdump_iter
def pixdump_iter( source, start=None, end=None, length=None, width=64, height=None, palette=None ): """Return the contents of a byte string as a 256 colour image. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) width Width of image to render in pixels (default: 64) height Height of image to render in pixels (default: auto) palette List of Colours to use (default: test palette) """ assert is_bytes( source ) if not palette: palette = colour.TEST_PALETTE start = 0 if (start is None) else start if (end is not None) and (length is not None): raise ValueError( 'Can\'t define both an end and a length!' ) elif (length is not None): end = start+length elif (end is not None): pass else: end = len( source ) start = max( start, 0 ) end = min( end, len( source ) ) if len( source ) == 0 or (start == end == 0): return iter(()) if height is None: height = math.ceil( (end-start)/width ) def data_fetch( x_pos, y_pos, frame ): index = y_pos*width + x_pos + start if index >= end: return (0, 0, 0, 0) return palette[source[index]] return ansi.format_image_iter( data_fetch, width=width, height=height )
python
def pixdump_iter( source, start=None, end=None, length=None, width=64, height=None, palette=None ): """Return the contents of a byte string as a 256 colour image. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) width Width of image to render in pixels (default: 64) height Height of image to render in pixels (default: auto) palette List of Colours to use (default: test palette) """ assert is_bytes( source ) if not palette: palette = colour.TEST_PALETTE start = 0 if (start is None) else start if (end is not None) and (length is not None): raise ValueError( 'Can\'t define both an end and a length!' ) elif (length is not None): end = start+length elif (end is not None): pass else: end = len( source ) start = max( start, 0 ) end = min( end, len( source ) ) if len( source ) == 0 or (start == end == 0): return iter(()) if height is None: height = math.ceil( (end-start)/width ) def data_fetch( x_pos, y_pos, frame ): index = y_pos*width + x_pos + start if index >= end: return (0, 0, 0, 0) return palette[source[index]] return ansi.format_image_iter( data_fetch, width=width, height=height )
[ "def", "pixdump_iter", "(", "source", ",", "start", "=", "None", ",", "end", "=", "None", ",", "length", "=", "None", ",", "width", "=", "64", ",", "height", "=", "None", ",", "palette", "=", "None", ")", ":", "assert", "is_bytes", "(", "source", ")", "if", "not", "palette", ":", "palette", "=", "colour", ".", "TEST_PALETTE", "start", "=", "0", "if", "(", "start", "is", "None", ")", "else", "start", "if", "(", "end", "is", "not", "None", ")", "and", "(", "length", "is", "not", "None", ")", ":", "raise", "ValueError", "(", "'Can\\'t define both an end and a length!'", ")", "elif", "(", "length", "is", "not", "None", ")", ":", "end", "=", "start", "+", "length", "elif", "(", "end", "is", "not", "None", ")", ":", "pass", "else", ":", "end", "=", "len", "(", "source", ")", "start", "=", "max", "(", "start", ",", "0", ")", "end", "=", "min", "(", "end", ",", "len", "(", "source", ")", ")", "if", "len", "(", "source", ")", "==", "0", "or", "(", "start", "==", "end", "==", "0", ")", ":", "return", "iter", "(", "(", ")", ")", "if", "height", "is", "None", ":", "height", "=", "math", ".", "ceil", "(", "(", "end", "-", "start", ")", "/", "width", ")", "def", "data_fetch", "(", "x_pos", ",", "y_pos", ",", "frame", ")", ":", "index", "=", "y_pos", "*", "width", "+", "x_pos", "+", "start", "if", "index", ">=", "end", ":", "return", "(", "0", ",", "0", ",", "0", ",", "0", ")", "return", "palette", "[", "source", "[", "index", "]", "]", "return", "ansi", ".", "format_image_iter", "(", "data_fetch", ",", "width", "=", "width", ",", "height", "=", "height", ")" ]
Return the contents of a byte string as a 256 colour image. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) width Width of image to render in pixels (default: 64) height Height of image to render in pixels (default: auto) palette List of Colours to use (default: test palette)
[ "Return", "the", "contents", "of", "a", "byte", "string", "as", "a", "256", "colour", "image", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L394-L447
moralrecordings/mrcrowbar
mrcrowbar/utils.py
pixdump
def pixdump( source, start=None, end=None, length=None, width=64, height=None, palette=None ): """Print the contents of a byte string as a 256 colour image. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) width Width of image to render in pixels (default: 64) height Height of image to render in pixels (default: auto) palette List of Colours to use (default: test palette) """ for line in pixdump_iter( source, start, end, length, width, height, palette ): print( line )
python
def pixdump( source, start=None, end=None, length=None, width=64, height=None, palette=None ): """Print the contents of a byte string as a 256 colour image. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) width Width of image to render in pixels (default: 64) height Height of image to render in pixels (default: auto) palette List of Colours to use (default: test palette) """ for line in pixdump_iter( source, start, end, length, width, height, palette ): print( line )
[ "def", "pixdump", "(", "source", ",", "start", "=", "None", ",", "end", "=", "None", ",", "length", "=", "None", ",", "width", "=", "64", ",", "height", "=", "None", ",", "palette", "=", "None", ")", ":", "for", "line", "in", "pixdump_iter", "(", "source", ",", "start", ",", "end", ",", "length", ",", "width", ",", "height", ",", "palette", ")", ":", "print", "(", "line", ")" ]
Print the contents of a byte string as a 256 colour image. source The byte string to print. start Start offset to read from (default: start) end End offset to stop reading at (default: end) length Length to read in (optional replacement for end) width Width of image to render in pixels (default: 64) height Height of image to render in pixels (default: auto) palette List of Colours to use (default: test palette)
[ "Print", "the", "contents", "of", "a", "byte", "string", "as", "a", "256", "colour", "image", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L450-L476
moralrecordings/mrcrowbar
mrcrowbar/utils.py
BitReader.set_offset
def set_offset( self, offset ): """Set the current read offset (in bytes) for the instance.""" assert offset in range( len( self.buffer ) ) self.pos = offset self._fill_buffer()
python
def set_offset( self, offset ): """Set the current read offset (in bytes) for the instance.""" assert offset in range( len( self.buffer ) ) self.pos = offset self._fill_buffer()
[ "def", "set_offset", "(", "self", ",", "offset", ")", ":", "assert", "offset", "in", "range", "(", "len", "(", "self", ".", "buffer", ")", ")", "self", ".", "pos", "=", "offset", "self", ".", "_fill_buffer", "(", ")" ]
Set the current read offset (in bytes) for the instance.
[ "Set", "the", "current", "read", "offset", "(", "in", "bytes", ")", "for", "the", "instance", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L538-L542
moralrecordings/mrcrowbar
mrcrowbar/utils.py
BitReader.get_bits
def get_bits( self, count ): """Get an integer containing the next [count] bits from the source.""" result = 0 for i in range( count ): if self.bits_remaining <= 0: self._fill_buffer() if self.bits_reverse: bit = (1 if (self.current_bits & (0x80 << 8*(self.bytes_to_cache-1))) else 0) self.current_bits <<= 1 self.current_bits &= 0xff else: bit = (self.current_bits & 1) self.current_bits >>= 1 self.bits_remaining -= 1 if self.output_reverse: result <<= 1 result |= bit else: result |= bit << i return result
python
def get_bits( self, count ): """Get an integer containing the next [count] bits from the source.""" result = 0 for i in range( count ): if self.bits_remaining <= 0: self._fill_buffer() if self.bits_reverse: bit = (1 if (self.current_bits & (0x80 << 8*(self.bytes_to_cache-1))) else 0) self.current_bits <<= 1 self.current_bits &= 0xff else: bit = (self.current_bits & 1) self.current_bits >>= 1 self.bits_remaining -= 1 if self.output_reverse: result <<= 1 result |= bit else: result |= bit << i return result
[ "def", "get_bits", "(", "self", ",", "count", ")", ":", "result", "=", "0", "for", "i", "in", "range", "(", "count", ")", ":", "if", "self", ".", "bits_remaining", "<=", "0", ":", "self", ".", "_fill_buffer", "(", ")", "if", "self", ".", "bits_reverse", ":", "bit", "=", "(", "1", "if", "(", "self", ".", "current_bits", "&", "(", "0x80", "<<", "8", "*", "(", "self", ".", "bytes_to_cache", "-", "1", ")", ")", ")", "else", "0", ")", "self", ".", "current_bits", "<<=", "1", "self", ".", "current_bits", "&=", "0xff", "else", ":", "bit", "=", "(", "self", ".", "current_bits", "&", "1", ")", "self", ".", "current_bits", ">>=", "1", "self", ".", "bits_remaining", "-=", "1", "if", "self", ".", "output_reverse", ":", "result", "<<=", "1", "result", "|=", "bit", "else", ":", "result", "|=", "bit", "<<", "i", "return", "result" ]
Get an integer containing the next [count] bits from the source.
[ "Get", "an", "integer", "containing", "the", "next", "[", "count", "]", "bits", "from", "the", "source", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L545-L566
moralrecordings/mrcrowbar
mrcrowbar/utils.py
BitWriter.put_bits
def put_bits( self, value, count ): """Push bits into the target. value Integer containing bits to push, ordered from least-significant bit to most-significant bit. count Number of bits to push to the target. """ for _ in range( count ): # bits are retrieved from the source LSB first bit = (value & 1) value >>= 1 # however, bits are put into the result based on the rule if self.bits_reverse: if self.insert_at_msb: self.current_bits |= (bit << (self.bits_remaining-1)) else: self.current_bits <<= 1 self.current_bits |= bit else: if self.insert_at_msb: self.current_bits >>= 1 self.current_bits |= (bit << 7) else: self.current_bits |= (bit << (8-self.bits_remaining)) self.bits_remaining -= 1 if self.bits_remaining <= 0: self.output.append( self.current_bits ) self.current_bits = 0 self.bits_remaining = 8
python
def put_bits( self, value, count ): """Push bits into the target. value Integer containing bits to push, ordered from least-significant bit to most-significant bit. count Number of bits to push to the target. """ for _ in range( count ): # bits are retrieved from the source LSB first bit = (value & 1) value >>= 1 # however, bits are put into the result based on the rule if self.bits_reverse: if self.insert_at_msb: self.current_bits |= (bit << (self.bits_remaining-1)) else: self.current_bits <<= 1 self.current_bits |= bit else: if self.insert_at_msb: self.current_bits >>= 1 self.current_bits |= (bit << 7) else: self.current_bits |= (bit << (8-self.bits_remaining)) self.bits_remaining -= 1 if self.bits_remaining <= 0: self.output.append( self.current_bits ) self.current_bits = 0 self.bits_remaining = 8
[ "def", "put_bits", "(", "self", ",", "value", ",", "count", ")", ":", "for", "_", "in", "range", "(", "count", ")", ":", "# bits are retrieved from the source LSB first", "bit", "=", "(", "value", "&", "1", ")", "value", ">>=", "1", "# however, bits are put into the result based on the rule", "if", "self", ".", "bits_reverse", ":", "if", "self", ".", "insert_at_msb", ":", "self", ".", "current_bits", "|=", "(", "bit", "<<", "(", "self", ".", "bits_remaining", "-", "1", ")", ")", "else", ":", "self", ".", "current_bits", "<<=", "1", "self", ".", "current_bits", "|=", "bit", "else", ":", "if", "self", ".", "insert_at_msb", ":", "self", ".", "current_bits", ">>=", "1", "self", ".", "current_bits", "|=", "(", "bit", "<<", "7", ")", "else", ":", "self", ".", "current_bits", "|=", "(", "bit", "<<", "(", "8", "-", "self", ".", "bits_remaining", ")", ")", "self", ".", "bits_remaining", "-=", "1", "if", "self", ".", "bits_remaining", "<=", "0", ":", "self", ".", "output", ".", "append", "(", "self", ".", "current_bits", ")", "self", ".", "current_bits", "=", "0", "self", ".", "bits_remaining", "=", "8" ]
Push bits into the target. value Integer containing bits to push, ordered from least-significant bit to most-significant bit. count Number of bits to push to the target.
[ "Push", "bits", "into", "the", "target", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L592-L627
moralrecordings/mrcrowbar
mrcrowbar/utils.py
BitWriter.get_buffer
def get_buffer( self ): """Return a byte string containing the target as currently written.""" last_byte = self.current_bits if (self.bits_remaining < 8) else None result = self.output if last_byte is not None: result = bytearray( result ) result.append( last_byte ) if self.bytes_reverse: return bytes( reversed( result ) ) else: return bytes( result )
python
def get_buffer( self ): """Return a byte string containing the target as currently written.""" last_byte = self.current_bits if (self.bits_remaining < 8) else None result = self.output if last_byte is not None: result = bytearray( result ) result.append( last_byte ) if self.bytes_reverse: return bytes( reversed( result ) ) else: return bytes( result )
[ "def", "get_buffer", "(", "self", ")", ":", "last_byte", "=", "self", ".", "current_bits", "if", "(", "self", ".", "bits_remaining", "<", "8", ")", "else", "None", "result", "=", "self", ".", "output", "if", "last_byte", "is", "not", "None", ":", "result", "=", "bytearray", "(", "result", ")", "result", ".", "append", "(", "last_byte", ")", "if", "self", ".", "bytes_reverse", ":", "return", "bytes", "(", "reversed", "(", "result", ")", ")", "else", ":", "return", "bytes", "(", "result", ")" ]
Return a byte string containing the target as currently written.
[ "Return", "a", "byte", "string", "containing", "the", "target", "as", "currently", "written", "." ]
train
https://github.com/moralrecordings/mrcrowbar/blob/b1ed882c4555552e7656b2d84aca543184577fa3/mrcrowbar/utils.py#L629-L641
Riffstation/Flask-Philo-SQLAlchemy
flask_philo_sqlalchemy/orm.py
BaseManager.get_for_update
def get_for_update(self, connection_name='DEFAULT', **kwargs): """ http://docs.sqlalchemy.org/en/latest/orm/query.html?highlight=update#sqlalchemy.orm.query.Query.with_for_update # noqa """ if not kwargs: raise InvalidQueryError( "Can not execute a query without parameters") obj = self.pool.connections[connection_name].session.query( self._model).with_for_update( nowait=True, of=self._model).filter_by(**kwargs).first() if not obj: raise NotFoundError('Object not found') return obj
python
def get_for_update(self, connection_name='DEFAULT', **kwargs): """ http://docs.sqlalchemy.org/en/latest/orm/query.html?highlight=update#sqlalchemy.orm.query.Query.with_for_update # noqa """ if not kwargs: raise InvalidQueryError( "Can not execute a query without parameters") obj = self.pool.connections[connection_name].session.query( self._model).with_for_update( nowait=True, of=self._model).filter_by(**kwargs).first() if not obj: raise NotFoundError('Object not found') return obj
[ "def", "get_for_update", "(", "self", ",", "connection_name", "=", "'DEFAULT'", ",", "*", "*", "kwargs", ")", ":", "if", "not", "kwargs", ":", "raise", "InvalidQueryError", "(", "\"Can not execute a query without parameters\"", ")", "obj", "=", "self", ".", "pool", ".", "connections", "[", "connection_name", "]", ".", "session", ".", "query", "(", "self", ".", "_model", ")", ".", "with_for_update", "(", "nowait", "=", "True", ",", "of", "=", "self", ".", "_model", ")", ".", "filter_by", "(", "*", "*", "kwargs", ")", ".", "first", "(", ")", "if", "not", "obj", ":", "raise", "NotFoundError", "(", "'Object not found'", ")", "return", "obj" ]
http://docs.sqlalchemy.org/en/latest/orm/query.html?highlight=update#sqlalchemy.orm.query.Query.with_for_update # noqa
[ "http", ":", "//", "docs", ".", "sqlalchemy", ".", "org", "/", "en", "/", "latest", "/", "orm", "/", "query", ".", "html?highlight", "=", "update#sqlalchemy", ".", "orm", ".", "query", ".", "Query", ".", "with_for_update", "#", "noqa" ]
train
https://github.com/Riffstation/Flask-Philo-SQLAlchemy/blob/71598bb603b8458a2cf9f7989f71d8f1c77fafb9/flask_philo_sqlalchemy/orm.py#L35-L49
tsnaomi/finnsyll
finnsyll/prev/v07.py
syllabify
def syllabify(word, compound=None): '''Syllabify the given word, whether simplex or complex.''' if compound is None: compound = bool(re.search(r'(-| |=)', word)) syllabify = _syllabify_compound if compound else _syllabify syll, rules = syllabify(word) yield syll, rules n = 7 if 'T4' in rules: yield syllabify(word, T4=False) n -= 1 if 'e' in rules: yield syllabify(word, T1E=False) n -= 1 if 'e' in rules and 'T4' in rules: yield syllabify(word, T4=False, T1E=False) n -= 1 # yield empty syllabifications and rules for i in range(n): yield '', ''
python
def syllabify(word, compound=None): '''Syllabify the given word, whether simplex or complex.''' if compound is None: compound = bool(re.search(r'(-| |=)', word)) syllabify = _syllabify_compound if compound else _syllabify syll, rules = syllabify(word) yield syll, rules n = 7 if 'T4' in rules: yield syllabify(word, T4=False) n -= 1 if 'e' in rules: yield syllabify(word, T1E=False) n -= 1 if 'e' in rules and 'T4' in rules: yield syllabify(word, T4=False, T1E=False) n -= 1 # yield empty syllabifications and rules for i in range(n): yield '', ''
[ "def", "syllabify", "(", "word", ",", "compound", "=", "None", ")", ":", "if", "compound", "is", "None", ":", "compound", "=", "bool", "(", "re", ".", "search", "(", "r'(-| |=)'", ",", "word", ")", ")", "syllabify", "=", "_syllabify_compound", "if", "compound", "else", "_syllabify", "syll", ",", "rules", "=", "syllabify", "(", "word", ")", "yield", "syll", ",", "rules", "n", "=", "7", "if", "'T4'", "in", "rules", ":", "yield", "syllabify", "(", "word", ",", "T4", "=", "False", ")", "n", "-=", "1", "if", "'e'", "in", "rules", ":", "yield", "syllabify", "(", "word", ",", "T1E", "=", "False", ")", "n", "-=", "1", "if", "'e'", "in", "rules", "and", "'T4'", "in", "rules", ":", "yield", "syllabify", "(", "word", ",", "T4", "=", "False", ",", "T1E", "=", "False", ")", "n", "-=", "1", "# yield empty syllabifications and rules", "for", "i", "in", "range", "(", "n", ")", ":", "yield", "''", ",", "''" ]
Syllabify the given word, whether simplex or complex.
[ "Syllabify", "the", "given", "word", "whether", "simplex", "or", "complex", "." ]
train
https://github.com/tsnaomi/finnsyll/blob/6a42740311688c946a636a3e2304866c7aa041b3/finnsyll/prev/v07.py#L17-L43
danishabdullah/algen
algen/compilers.py
ModelCompiler.convert_case
def convert_case(name): """Converts name from CamelCase to snake_case""" s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
python
def convert_case(name): """Converts name from CamelCase to snake_case""" s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()
[ "def", "convert_case", "(", "name", ")", ":", "s1", "=", "re", ".", "sub", "(", "'(.)([A-Z][a-z]+)'", ",", "r'\\1_\\2'", ",", "name", ")", "return", "re", ".", "sub", "(", "'([a-z0-9])([A-Z])'", ",", "r'\\1_\\2'", ",", "s1", ")", ".", "lower", "(", ")" ]
Converts name from CamelCase to snake_case
[ "Converts", "name", "from", "CamelCase", "to", "snake_case" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L35-L38
danishabdullah/algen
algen/compilers.py
ModelCompiler.table_name
def table_name(self): """Pluralises the class_name using utterly simple algo and returns as table_name""" if not self.class_name: raise ValueError else: tbl_name = ModelCompiler.convert_case(self.class_name) last_letter = tbl_name[-1] if last_letter in ("y",): return "{}ies".format(tbl_name[:-1]) elif last_letter in ("s",): return "{}es".format(tbl_name) else: return "{}s".format(tbl_name)
python
def table_name(self): """Pluralises the class_name using utterly simple algo and returns as table_name""" if not self.class_name: raise ValueError else: tbl_name = ModelCompiler.convert_case(self.class_name) last_letter = tbl_name[-1] if last_letter in ("y",): return "{}ies".format(tbl_name[:-1]) elif last_letter in ("s",): return "{}es".format(tbl_name) else: return "{}s".format(tbl_name)
[ "def", "table_name", "(", "self", ")", ":", "if", "not", "self", ".", "class_name", ":", "raise", "ValueError", "else", ":", "tbl_name", "=", "ModelCompiler", ".", "convert_case", "(", "self", ".", "class_name", ")", "last_letter", "=", "tbl_name", "[", "-", "1", "]", "if", "last_letter", "in", "(", "\"y\"", ",", ")", ":", "return", "\"{}ies\"", ".", "format", "(", "tbl_name", "[", ":", "-", "1", "]", ")", "elif", "last_letter", "in", "(", "\"s\"", ",", ")", ":", "return", "\"{}es\"", ".", "format", "(", "tbl_name", ")", "else", ":", "return", "\"{}s\"", ".", "format", "(", "tbl_name", ")" ]
Pluralises the class_name using utterly simple algo and returns as table_name
[ "Pluralises", "the", "class_name", "using", "utterly", "simple", "algo", "and", "returns", "as", "table_name" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L41-L53
danishabdullah/algen
algen/compilers.py
ModelCompiler.types
def types(self): """All the unique types found in user supplied model""" res = [] for column in self.column_definitions: tmp = column.get('type', None) res.append(ModelCompiler.get_column_type(tmp)) if tmp else False res = list(set(res)) return res
python
def types(self): """All the unique types found in user supplied model""" res = [] for column in self.column_definitions: tmp = column.get('type', None) res.append(ModelCompiler.get_column_type(tmp)) if tmp else False res = list(set(res)) return res
[ "def", "types", "(", "self", ")", ":", "res", "=", "[", "]", "for", "column", "in", "self", ".", "column_definitions", ":", "tmp", "=", "column", ".", "get", "(", "'type'", ",", "None", ")", "res", ".", "append", "(", "ModelCompiler", ".", "get_column_type", "(", "tmp", ")", ")", "if", "tmp", "else", "False", "res", "=", "list", "(", "set", "(", "res", ")", ")", "return", "res" ]
All the unique types found in user supplied model
[ "All", "the", "unique", "types", "found", "in", "user", "supplied", "model" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L71-L78
danishabdullah/algen
algen/compilers.py
ModelCompiler.basic_types
def basic_types(self): """Returns non-postgres types referenced in user supplied model """ if not self.foreign_key_definitions: return self.standard_types else: tmp = self.standard_types tmp.append('ForeignKey') return tmp
python
def basic_types(self): """Returns non-postgres types referenced in user supplied model """ if not self.foreign_key_definitions: return self.standard_types else: tmp = self.standard_types tmp.append('ForeignKey') return tmp
[ "def", "basic_types", "(", "self", ")", ":", "if", "not", "self", ".", "foreign_key_definitions", ":", "return", "self", ".", "standard_types", "else", ":", "tmp", "=", "self", ".", "standard_types", "tmp", ".", "append", "(", "'ForeignKey'", ")", "return", "tmp" ]
Returns non-postgres types referenced in user supplied model
[ "Returns", "non", "-", "postgres", "types", "referenced", "in", "user", "supplied", "model" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L91-L98
danishabdullah/algen
algen/compilers.py
ModelCompiler.primary_keys
def primary_keys(self): """Returns the primary keys referenced in user supplied model""" res = [] for column in self.column_definitions: if 'primary_key' in column.keys(): tmp = column.get('primary_key', None) res.append(column['name']) if tmp else False return res
python
def primary_keys(self): """Returns the primary keys referenced in user supplied model""" res = [] for column in self.column_definitions: if 'primary_key' in column.keys(): tmp = column.get('primary_key', None) res.append(column['name']) if tmp else False return res
[ "def", "primary_keys", "(", "self", ")", ":", "res", "=", "[", "]", "for", "column", "in", "self", ".", "column_definitions", ":", "if", "'primary_key'", "in", "column", ".", "keys", "(", ")", ":", "tmp", "=", "column", ".", "get", "(", "'primary_key'", ",", "None", ")", "res", ".", "append", "(", "column", "[", "'name'", "]", ")", "if", "tmp", "else", "False", "return", "res" ]
Returns the primary keys referenced in user supplied model
[ "Returns", "the", "primary", "keys", "referenced", "in", "user", "supplied", "model" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L105-L112
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_named_imports
def compiled_named_imports(self): """Returns compiled named imports required for the model""" res = [] if self.postgres_types: res.append( ALCHEMY_TEMPLATES.named_import.safe_substitute( module='sqlalchemy.dialects.postgresql', labels=", ".join(self.postgres_types))) if self.mutable_dict_types: res.append( ALCHEMY_TEMPLATES.named_import.safe_substitute( module='sqlalchemy.ext.mutable', labels='MutableDict' )) return "\n".join(res)
python
def compiled_named_imports(self): """Returns compiled named imports required for the model""" res = [] if self.postgres_types: res.append( ALCHEMY_TEMPLATES.named_import.safe_substitute( module='sqlalchemy.dialects.postgresql', labels=", ".join(self.postgres_types))) if self.mutable_dict_types: res.append( ALCHEMY_TEMPLATES.named_import.safe_substitute( module='sqlalchemy.ext.mutable', labels='MutableDict' )) return "\n".join(res)
[ "def", "compiled_named_imports", "(", "self", ")", ":", "res", "=", "[", "]", "if", "self", ".", "postgres_types", ":", "res", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "named_import", ".", "safe_substitute", "(", "module", "=", "'sqlalchemy.dialects.postgresql'", ",", "labels", "=", "\", \"", ".", "join", "(", "self", ".", "postgres_types", ")", ")", ")", "if", "self", ".", "mutable_dict_types", ":", "res", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "named_import", ".", "safe_substitute", "(", "module", "=", "'sqlalchemy.ext.mutable'", ",", "labels", "=", "'MutableDict'", ")", ")", "return", "\"\\n\"", ".", "join", "(", "res", ")" ]
Returns compiled named imports required for the model
[ "Returns", "compiled", "named", "imports", "required", "for", "the", "model" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L115-L128
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_orm_imports
def compiled_orm_imports(self): """Returns compiled named imports required for the model""" module = 'sqlalchemy.orm' labels = [] if self.relationship_definitions: labels.append("relationship") return ALCHEMY_TEMPLATES.named_import.safe_substitute(module=module, labels=", ".join(labels))
python
def compiled_orm_imports(self): """Returns compiled named imports required for the model""" module = 'sqlalchemy.orm' labels = [] if self.relationship_definitions: labels.append("relationship") return ALCHEMY_TEMPLATES.named_import.safe_substitute(module=module, labels=", ".join(labels))
[ "def", "compiled_orm_imports", "(", "self", ")", ":", "module", "=", "'sqlalchemy.orm'", "labels", "=", "[", "]", "if", "self", ".", "relationship_definitions", ":", "labels", ".", "append", "(", "\"relationship\"", ")", "return", "ALCHEMY_TEMPLATES", ".", "named_import", ".", "safe_substitute", "(", "module", "=", "module", ",", "labels", "=", "\", \"", ".", "join", "(", "labels", ")", ")" ]
Returns compiled named imports required for the model
[ "Returns", "compiled", "named", "imports", "required", "for", "the", "model" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L131-L137
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_columns
def compiled_columns(self): """Returns compiled column definitions""" def get_column_args(column): tmp = [] for arg_name, arg_val in column.items(): if arg_name not in ('name', 'type'): if arg_name in ('server_default', 'server_onupdate'): arg_val = '"{}"'.format(arg_val) tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name, arg_val=arg_val)) return ", ".join(tmp) res = [] for column in self.column_definitions: column_args = get_column_args(column) column_type, type_params = ModelCompiler.get_col_type_info(column.get('type')) column_name = column.get('name') if column_type in MUTABLE_DICT_TYPES: column_type = ALCHEMY_TEMPLATES.mutable_dict_type.safe_substitute(type=column_type, type_params=type_params) type_params = '' res.append( ALCHEMY_TEMPLATES.column_definition.safe_substitute(column_name=column_name, column_type=column_type, column_args=column_args, type_params=type_params)) join_string = "\n" + self.tab return join_string.join(res)
python
def compiled_columns(self): """Returns compiled column definitions""" def get_column_args(column): tmp = [] for arg_name, arg_val in column.items(): if arg_name not in ('name', 'type'): if arg_name in ('server_default', 'server_onupdate'): arg_val = '"{}"'.format(arg_val) tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name, arg_val=arg_val)) return ", ".join(tmp) res = [] for column in self.column_definitions: column_args = get_column_args(column) column_type, type_params = ModelCompiler.get_col_type_info(column.get('type')) column_name = column.get('name') if column_type in MUTABLE_DICT_TYPES: column_type = ALCHEMY_TEMPLATES.mutable_dict_type.safe_substitute(type=column_type, type_params=type_params) type_params = '' res.append( ALCHEMY_TEMPLATES.column_definition.safe_substitute(column_name=column_name, column_type=column_type, column_args=column_args, type_params=type_params)) join_string = "\n" + self.tab return join_string.join(res)
[ "def", "compiled_columns", "(", "self", ")", ":", "def", "get_column_args", "(", "column", ")", ":", "tmp", "=", "[", "]", "for", "arg_name", ",", "arg_val", "in", "column", ".", "items", "(", ")", ":", "if", "arg_name", "not", "in", "(", "'name'", ",", "'type'", ")", ":", "if", "arg_name", "in", "(", "'server_default'", ",", "'server_onupdate'", ")", ":", "arg_val", "=", "'\"{}\"'", ".", "format", "(", "arg_val", ")", "tmp", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "column_arg", ".", "safe_substitute", "(", "arg_name", "=", "arg_name", ",", "arg_val", "=", "arg_val", ")", ")", "return", "\", \"", ".", "join", "(", "tmp", ")", "res", "=", "[", "]", "for", "column", "in", "self", ".", "column_definitions", ":", "column_args", "=", "get_column_args", "(", "column", ")", "column_type", ",", "type_params", "=", "ModelCompiler", ".", "get_col_type_info", "(", "column", ".", "get", "(", "'type'", ")", ")", "column_name", "=", "column", ".", "get", "(", "'name'", ")", "if", "column_type", "in", "MUTABLE_DICT_TYPES", ":", "column_type", "=", "ALCHEMY_TEMPLATES", ".", "mutable_dict_type", ".", "safe_substitute", "(", "type", "=", "column_type", ",", "type_params", "=", "type_params", ")", "type_params", "=", "''", "res", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "column_definition", ".", "safe_substitute", "(", "column_name", "=", "column_name", ",", "column_type", "=", "column_type", ",", "column_args", "=", "column_args", ",", "type_params", "=", "type_params", ")", ")", "join_string", "=", "\"\\n\"", "+", "self", ".", "tab", "return", "join_string", ".", "join", "(", "res", ")" ]
Returns compiled column definitions
[ "Returns", "compiled", "column", "definitions" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L140-L168
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_foreign_keys
def compiled_foreign_keys(self): """Returns compiled foreign key definitions""" def get_column_args(column): tmp = [] for arg_name, arg_val in column.items(): if arg_name not in ('name', 'type', 'reference'): if arg_name in ('server_default', 'server_onupdate'): arg_val = '"{}"'.format(arg_val) tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name, arg_val=arg_val)) return ", ".join(tmp) def get_fkey_args(column): table = column['reference']['table'] column = column['reference']['column'] return ALCHEMY_TEMPLATES.foreign_key_arg.safe_substitute(reference_table=table, reference_column=column) res = [] for column in self.foreign_key_definitions: column_args = get_column_args(column) column_type, type_params = ModelCompiler.get_col_type_info(column.get('type')) column_name = column.get('name') reference = get_fkey_args(column) if column_type in MUTABLE_DICT_TYPES: column_type = ALCHEMY_TEMPLATES.mutable_dict_type.safe_substitute(type=column_type, type_params=type_params) type_params = '' res.append( ALCHEMY_TEMPLATES.foreign_key.safe_substitute(column_name=column_name, column_type=column_type, column_args=column_args, foreign_key_args=reference, type_params=type_params)) join_string = "\n" + self.tab return join_string.join(res)
python
def compiled_foreign_keys(self): """Returns compiled foreign key definitions""" def get_column_args(column): tmp = [] for arg_name, arg_val in column.items(): if arg_name not in ('name', 'type', 'reference'): if arg_name in ('server_default', 'server_onupdate'): arg_val = '"{}"'.format(arg_val) tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name, arg_val=arg_val)) return ", ".join(tmp) def get_fkey_args(column): table = column['reference']['table'] column = column['reference']['column'] return ALCHEMY_TEMPLATES.foreign_key_arg.safe_substitute(reference_table=table, reference_column=column) res = [] for column in self.foreign_key_definitions: column_args = get_column_args(column) column_type, type_params = ModelCompiler.get_col_type_info(column.get('type')) column_name = column.get('name') reference = get_fkey_args(column) if column_type in MUTABLE_DICT_TYPES: column_type = ALCHEMY_TEMPLATES.mutable_dict_type.safe_substitute(type=column_type, type_params=type_params) type_params = '' res.append( ALCHEMY_TEMPLATES.foreign_key.safe_substitute(column_name=column_name, column_type=column_type, column_args=column_args, foreign_key_args=reference, type_params=type_params)) join_string = "\n" + self.tab return join_string.join(res)
[ "def", "compiled_foreign_keys", "(", "self", ")", ":", "def", "get_column_args", "(", "column", ")", ":", "tmp", "=", "[", "]", "for", "arg_name", ",", "arg_val", "in", "column", ".", "items", "(", ")", ":", "if", "arg_name", "not", "in", "(", "'name'", ",", "'type'", ",", "'reference'", ")", ":", "if", "arg_name", "in", "(", "'server_default'", ",", "'server_onupdate'", ")", ":", "arg_val", "=", "'\"{}\"'", ".", "format", "(", "arg_val", ")", "tmp", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "column_arg", ".", "safe_substitute", "(", "arg_name", "=", "arg_name", ",", "arg_val", "=", "arg_val", ")", ")", "return", "\", \"", ".", "join", "(", "tmp", ")", "def", "get_fkey_args", "(", "column", ")", ":", "table", "=", "column", "[", "'reference'", "]", "[", "'table'", "]", "column", "=", "column", "[", "'reference'", "]", "[", "'column'", "]", "return", "ALCHEMY_TEMPLATES", ".", "foreign_key_arg", ".", "safe_substitute", "(", "reference_table", "=", "table", ",", "reference_column", "=", "column", ")", "res", "=", "[", "]", "for", "column", "in", "self", ".", "foreign_key_definitions", ":", "column_args", "=", "get_column_args", "(", "column", ")", "column_type", ",", "type_params", "=", "ModelCompiler", ".", "get_col_type_info", "(", "column", ".", "get", "(", "'type'", ")", ")", "column_name", "=", "column", ".", "get", "(", "'name'", ")", "reference", "=", "get_fkey_args", "(", "column", ")", "if", "column_type", "in", "MUTABLE_DICT_TYPES", ":", "column_type", "=", "ALCHEMY_TEMPLATES", ".", "mutable_dict_type", ".", "safe_substitute", "(", "type", "=", "column_type", ",", "type_params", "=", "type_params", ")", "type_params", "=", "''", "res", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "foreign_key", ".", "safe_substitute", "(", "column_name", "=", "column_name", ",", "column_type", "=", "column_type", ",", "column_args", "=", "column_args", ",", "foreign_key_args", "=", "reference", ",", "type_params", "=", "type_params", ")", ")", "join_string", "=", "\"\\n\"", "+", "self", ".", "tab", "return", "join_string", ".", "join", "(", "res", ")" ]
Returns compiled foreign key definitions
[ "Returns", "compiled", "foreign", "key", "definitions" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L171-L206
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_relationships
def compiled_relationships(self): """Returns compiled relationship definitions""" def get_column_args(column): tmp = [] for arg_name, arg_val in column.items(): if arg_name not in ('name', 'type', 'reference', 'class'): if arg_name in ('back_populates', ): arg_val = "'{}'".format(arg_val) tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name, arg_val=arg_val)) return ", ".join(tmp) res = [] for column in self.relationship_definitions: column_args = get_column_args(column) column_name = column.get('name') cls_name = column.get("class") res.append( ALCHEMY_TEMPLATES.relationship.safe_substitute(column_name=column_name, column_args=column_args, class_name=cls_name)) join_string = "\n" + self.tab return join_string.join(res)
python
def compiled_relationships(self): """Returns compiled relationship definitions""" def get_column_args(column): tmp = [] for arg_name, arg_val in column.items(): if arg_name not in ('name', 'type', 'reference', 'class'): if arg_name in ('back_populates', ): arg_val = "'{}'".format(arg_val) tmp.append(ALCHEMY_TEMPLATES.column_arg.safe_substitute(arg_name=arg_name, arg_val=arg_val)) return ", ".join(tmp) res = [] for column in self.relationship_definitions: column_args = get_column_args(column) column_name = column.get('name') cls_name = column.get("class") res.append( ALCHEMY_TEMPLATES.relationship.safe_substitute(column_name=column_name, column_args=column_args, class_name=cls_name)) join_string = "\n" + self.tab return join_string.join(res)
[ "def", "compiled_relationships", "(", "self", ")", ":", "def", "get_column_args", "(", "column", ")", ":", "tmp", "=", "[", "]", "for", "arg_name", ",", "arg_val", "in", "column", ".", "items", "(", ")", ":", "if", "arg_name", "not", "in", "(", "'name'", ",", "'type'", ",", "'reference'", ",", "'class'", ")", ":", "if", "arg_name", "in", "(", "'back_populates'", ",", ")", ":", "arg_val", "=", "\"'{}'\"", ".", "format", "(", "arg_val", ")", "tmp", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "column_arg", ".", "safe_substitute", "(", "arg_name", "=", "arg_name", ",", "arg_val", "=", "arg_val", ")", ")", "return", "\", \"", ".", "join", "(", "tmp", ")", "res", "=", "[", "]", "for", "column", "in", "self", ".", "relationship_definitions", ":", "column_args", "=", "get_column_args", "(", "column", ")", "column_name", "=", "column", ".", "get", "(", "'name'", ")", "cls_name", "=", "column", ".", "get", "(", "\"class\"", ")", "res", ".", "append", "(", "ALCHEMY_TEMPLATES", ".", "relationship", ".", "safe_substitute", "(", "column_name", "=", "column_name", ",", "column_args", "=", "column_args", ",", "class_name", "=", "cls_name", ")", ")", "join_string", "=", "\"\\n\"", "+", "self", ".", "tab", "return", "join_string", ".", "join", "(", "res", ")" ]
Returns compiled relationship definitions
[ "Returns", "compiled", "relationship", "definitions" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L209-L232
danishabdullah/algen
algen/compilers.py
ModelCompiler.columns
def columns(self): """Return names of all the addressable columns (including foreign keys) referenced in user supplied model""" res = [col['name'] for col in self.column_definitions] res.extend([col['name'] for col in self.foreign_key_definitions]) return res
python
def columns(self): """Return names of all the addressable columns (including foreign keys) referenced in user supplied model""" res = [col['name'] for col in self.column_definitions] res.extend([col['name'] for col in self.foreign_key_definitions]) return res
[ "def", "columns", "(", "self", ")", ":", "res", "=", "[", "col", "[", "'name'", "]", "for", "col", "in", "self", ".", "column_definitions", "]", "res", ".", "extend", "(", "[", "col", "[", "'name'", "]", "for", "col", "in", "self", ".", "foreign_key_definitions", "]", ")", "return", "res" ]
Return names of all the addressable columns (including foreign keys) referenced in user supplied model
[ "Return", "names", "of", "all", "the", "addressable", "columns", "(", "including", "foreign", "keys", ")", "referenced", "in", "user", "supplied", "model" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L235-L239
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_init_func
def compiled_init_func(self): """Returns compiled init function""" def get_column_assignment(column_name): return ALCHEMY_TEMPLATES.col_assignment.safe_substitute(col_name=column_name) def get_compiled_args(arg_name): return ALCHEMY_TEMPLATES.func_arg.safe_substitute(arg_name=arg_name) join_string = "\n" + self.tab + self.tab column_assignments = join_string.join([get_column_assignment(n) for n in self.columns]) init_args = ", ".join(get_compiled_args(n) for n in self.columns) return ALCHEMY_TEMPLATES.init_function.safe_substitute(col_assignments=column_assignments, init_args=init_args)
python
def compiled_init_func(self): """Returns compiled init function""" def get_column_assignment(column_name): return ALCHEMY_TEMPLATES.col_assignment.safe_substitute(col_name=column_name) def get_compiled_args(arg_name): return ALCHEMY_TEMPLATES.func_arg.safe_substitute(arg_name=arg_name) join_string = "\n" + self.tab + self.tab column_assignments = join_string.join([get_column_assignment(n) for n in self.columns]) init_args = ", ".join(get_compiled_args(n) for n in self.columns) return ALCHEMY_TEMPLATES.init_function.safe_substitute(col_assignments=column_assignments, init_args=init_args)
[ "def", "compiled_init_func", "(", "self", ")", ":", "def", "get_column_assignment", "(", "column_name", ")", ":", "return", "ALCHEMY_TEMPLATES", ".", "col_assignment", ".", "safe_substitute", "(", "col_name", "=", "column_name", ")", "def", "get_compiled_args", "(", "arg_name", ")", ":", "return", "ALCHEMY_TEMPLATES", ".", "func_arg", ".", "safe_substitute", "(", "arg_name", "=", "arg_name", ")", "join_string", "=", "\"\\n\"", "+", "self", ".", "tab", "+", "self", ".", "tab", "column_assignments", "=", "join_string", ".", "join", "(", "[", "get_column_assignment", "(", "n", ")", "for", "n", "in", "self", ".", "columns", "]", ")", "init_args", "=", "\", \"", ".", "join", "(", "get_compiled_args", "(", "n", ")", "for", "n", "in", "self", ".", "columns", ")", "return", "ALCHEMY_TEMPLATES", ".", "init_function", ".", "safe_substitute", "(", "col_assignments", "=", "column_assignments", ",", "init_args", "=", "init_args", ")" ]
Returns compiled init function
[ "Returns", "compiled", "init", "function" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L242-L255
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_update_func
def compiled_update_func(self): """Returns compiled update function""" def get_not_none_col_assignment(column_name): return ALCHEMY_TEMPLATES.not_none_col_assignment.safe_substitute(col_name=column_name) def get_compiled_args(arg_name): return ALCHEMY_TEMPLATES.func_arg.safe_substitute(arg_name=arg_name) join_string = "\n" + self.tab + self.tab columns = [n for n in self.columns if n not in self.primary_keys] not_none_col_assignments = join_string.join([get_not_none_col_assignment(n) for n in columns]) update_args = ", ".join(get_compiled_args(n) for n in columns) return ALCHEMY_TEMPLATES.update_function.safe_substitute(not_none_col_assignments=not_none_col_assignments, update_args=update_args, class_name=self.class_name)
python
def compiled_update_func(self): """Returns compiled update function""" def get_not_none_col_assignment(column_name): return ALCHEMY_TEMPLATES.not_none_col_assignment.safe_substitute(col_name=column_name) def get_compiled_args(arg_name): return ALCHEMY_TEMPLATES.func_arg.safe_substitute(arg_name=arg_name) join_string = "\n" + self.tab + self.tab columns = [n for n in self.columns if n not in self.primary_keys] not_none_col_assignments = join_string.join([get_not_none_col_assignment(n) for n in columns]) update_args = ", ".join(get_compiled_args(n) for n in columns) return ALCHEMY_TEMPLATES.update_function.safe_substitute(not_none_col_assignments=not_none_col_assignments, update_args=update_args, class_name=self.class_name)
[ "def", "compiled_update_func", "(", "self", ")", ":", "def", "get_not_none_col_assignment", "(", "column_name", ")", ":", "return", "ALCHEMY_TEMPLATES", ".", "not_none_col_assignment", ".", "safe_substitute", "(", "col_name", "=", "column_name", ")", "def", "get_compiled_args", "(", "arg_name", ")", ":", "return", "ALCHEMY_TEMPLATES", ".", "func_arg", ".", "safe_substitute", "(", "arg_name", "=", "arg_name", ")", "join_string", "=", "\"\\n\"", "+", "self", ".", "tab", "+", "self", ".", "tab", "columns", "=", "[", "n", "for", "n", "in", "self", ".", "columns", "if", "n", "not", "in", "self", ".", "primary_keys", "]", "not_none_col_assignments", "=", "join_string", ".", "join", "(", "[", "get_not_none_col_assignment", "(", "n", ")", "for", "n", "in", "columns", "]", ")", "update_args", "=", "\", \"", ".", "join", "(", "get_compiled_args", "(", "n", ")", "for", "n", "in", "columns", ")", "return", "ALCHEMY_TEMPLATES", ".", "update_function", ".", "safe_substitute", "(", "not_none_col_assignments", "=", "not_none_col_assignments", ",", "update_args", "=", "update_args", ",", "class_name", "=", "self", ".", "class_name", ")" ]
Returns compiled update function
[ "Returns", "compiled", "update", "function" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L258-L273
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_hash_func
def compiled_hash_func(self): """Returns compiled hash function based on hash of stringified primary_keys. This isn't the most efficient way""" def get_primary_key_str(pkey_name): return "str(self.{})".format(pkey_name) hash_str = "+ ".join([get_primary_key_str(n) for n in self.primary_keys]) return ALCHEMY_TEMPLATES.hash_function.safe_substitute(concated_primary_key_strs=hash_str)
python
def compiled_hash_func(self): """Returns compiled hash function based on hash of stringified primary_keys. This isn't the most efficient way""" def get_primary_key_str(pkey_name): return "str(self.{})".format(pkey_name) hash_str = "+ ".join([get_primary_key_str(n) for n in self.primary_keys]) return ALCHEMY_TEMPLATES.hash_function.safe_substitute(concated_primary_key_strs=hash_str)
[ "def", "compiled_hash_func", "(", "self", ")", ":", "def", "get_primary_key_str", "(", "pkey_name", ")", ":", "return", "\"str(self.{})\"", ".", "format", "(", "pkey_name", ")", "hash_str", "=", "\"+ \"", ".", "join", "(", "[", "get_primary_key_str", "(", "n", ")", "for", "n", "in", "self", ".", "primary_keys", "]", ")", "return", "ALCHEMY_TEMPLATES", ".", "hash_function", ".", "safe_substitute", "(", "concated_primary_key_strs", "=", "hash_str", ")" ]
Returns compiled hash function based on hash of stringified primary_keys. This isn't the most efficient way
[ "Returns", "compiled", "hash", "function", "based", "on", "hash", "of", "stringified", "primary_keys", ".", "This", "isn", "t", "the", "most", "efficient", "way" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L276-L284
danishabdullah/algen
algen/compilers.py
ModelCompiler.representation_function_compiler
def representation_function_compiler(self, func_name): """Generic function can be used to compile __repr__ or __unicode__ or __str__""" def get_col_accessor(col): return ALCHEMY_TEMPLATES.col_accessor.safe_substitute(col=col) def get_col_evaluator(col): return ALCHEMY_TEMPLATES.col_evaluator.safe_substitute(col=col) col_evaluators = ", ".join([get_col_evaluator(n) for n in self.primary_keys]) col_accessors = ", ".join([get_col_accessor(n) for n in self.primary_keys]) return ALCHEMY_TEMPLATES.representor_function.safe_substitute(func_name=func_name, col_accessors=col_accessors, col_evaluators=col_evaluators, class_name=self.class_name)
python
def representation_function_compiler(self, func_name): """Generic function can be used to compile __repr__ or __unicode__ or __str__""" def get_col_accessor(col): return ALCHEMY_TEMPLATES.col_accessor.safe_substitute(col=col) def get_col_evaluator(col): return ALCHEMY_TEMPLATES.col_evaluator.safe_substitute(col=col) col_evaluators = ", ".join([get_col_evaluator(n) for n in self.primary_keys]) col_accessors = ", ".join([get_col_accessor(n) for n in self.primary_keys]) return ALCHEMY_TEMPLATES.representor_function.safe_substitute(func_name=func_name, col_accessors=col_accessors, col_evaluators=col_evaluators, class_name=self.class_name)
[ "def", "representation_function_compiler", "(", "self", ",", "func_name", ")", ":", "def", "get_col_accessor", "(", "col", ")", ":", "return", "ALCHEMY_TEMPLATES", ".", "col_accessor", ".", "safe_substitute", "(", "col", "=", "col", ")", "def", "get_col_evaluator", "(", "col", ")", ":", "return", "ALCHEMY_TEMPLATES", ".", "col_evaluator", ".", "safe_substitute", "(", "col", "=", "col", ")", "col_evaluators", "=", "\", \"", ".", "join", "(", "[", "get_col_evaluator", "(", "n", ")", "for", "n", "in", "self", ".", "primary_keys", "]", ")", "col_accessors", "=", "\", \"", ".", "join", "(", "[", "get_col_accessor", "(", "n", ")", "for", "n", "in", "self", ".", "primary_keys", "]", ")", "return", "ALCHEMY_TEMPLATES", ".", "representor_function", ".", "safe_substitute", "(", "func_name", "=", "func_name", ",", "col_accessors", "=", "col_accessors", ",", "col_evaluators", "=", "col_evaluators", ",", "class_name", "=", "self", ".", "class_name", ")" ]
Generic function can be used to compile __repr__ or __unicode__ or __str__
[ "Generic", "function", "can", "be", "used", "to", "compile", "__repr__", "or", "__unicode__", "or", "__str__" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L308-L323
danishabdullah/algen
algen/compilers.py
ModelCompiler.compiled_model
def compiled_model(self): """Returns compile ORM class for the user supplied model""" return ALCHEMY_TEMPLATES.model.safe_substitute(class_name=self.class_name, table_name=self.table_name, column_definitions=self.compiled_columns, init_function=self.compiled_init_func, update_function=self.compiled_update_func, hash_function=self.compiled_hash_func, eq_function=self.compiled_eq_func, neq_function=self.compiled_neq_func, str_function=self.compiled_str_func, unicode_function=self.compiled_unicode_func, repr_function=self.compiled_repr_func, types=", ".join(self.basic_types), username=self.username, foreign_keys=self.compiled_foreign_keys, relationships=self.compiled_relationships, named_imports=self.compiled_named_imports, orm_imports=self.compiled_orm_imports, get_proxy_cls_function=self.compiled_proxy_cls_func, add_function=ALCHEMY_TEMPLATES.add_function.template, delete_function=ALCHEMY_TEMPLATES.delete_function.template, to_dict_function=ALCHEMY_TEMPLATES.to_dict_function.template, to_proxy_function=ALCHEMY_TEMPLATES.to_proxy_function.template, from_proxy_function=ALCHEMY_TEMPLATES.from_proxy_function.template)
python
def compiled_model(self): """Returns compile ORM class for the user supplied model""" return ALCHEMY_TEMPLATES.model.safe_substitute(class_name=self.class_name, table_name=self.table_name, column_definitions=self.compiled_columns, init_function=self.compiled_init_func, update_function=self.compiled_update_func, hash_function=self.compiled_hash_func, eq_function=self.compiled_eq_func, neq_function=self.compiled_neq_func, str_function=self.compiled_str_func, unicode_function=self.compiled_unicode_func, repr_function=self.compiled_repr_func, types=", ".join(self.basic_types), username=self.username, foreign_keys=self.compiled_foreign_keys, relationships=self.compiled_relationships, named_imports=self.compiled_named_imports, orm_imports=self.compiled_orm_imports, get_proxy_cls_function=self.compiled_proxy_cls_func, add_function=ALCHEMY_TEMPLATES.add_function.template, delete_function=ALCHEMY_TEMPLATES.delete_function.template, to_dict_function=ALCHEMY_TEMPLATES.to_dict_function.template, to_proxy_function=ALCHEMY_TEMPLATES.to_proxy_function.template, from_proxy_function=ALCHEMY_TEMPLATES.from_proxy_function.template)
[ "def", "compiled_model", "(", "self", ")", ":", "return", "ALCHEMY_TEMPLATES", ".", "model", ".", "safe_substitute", "(", "class_name", "=", "self", ".", "class_name", ",", "table_name", "=", "self", ".", "table_name", ",", "column_definitions", "=", "self", ".", "compiled_columns", ",", "init_function", "=", "self", ".", "compiled_init_func", ",", "update_function", "=", "self", ".", "compiled_update_func", ",", "hash_function", "=", "self", ".", "compiled_hash_func", ",", "eq_function", "=", "self", ".", "compiled_eq_func", ",", "neq_function", "=", "self", ".", "compiled_neq_func", ",", "str_function", "=", "self", ".", "compiled_str_func", ",", "unicode_function", "=", "self", ".", "compiled_unicode_func", ",", "repr_function", "=", "self", ".", "compiled_repr_func", ",", "types", "=", "\", \"", ".", "join", "(", "self", ".", "basic_types", ")", ",", "username", "=", "self", ".", "username", ",", "foreign_keys", "=", "self", ".", "compiled_foreign_keys", ",", "relationships", "=", "self", ".", "compiled_relationships", ",", "named_imports", "=", "self", ".", "compiled_named_imports", ",", "orm_imports", "=", "self", ".", "compiled_orm_imports", ",", "get_proxy_cls_function", "=", "self", ".", "compiled_proxy_cls_func", ",", "add_function", "=", "ALCHEMY_TEMPLATES", ".", "add_function", ".", "template", ",", "delete_function", "=", "ALCHEMY_TEMPLATES", ".", "delete_function", ".", "template", ",", "to_dict_function", "=", "ALCHEMY_TEMPLATES", ".", "to_dict_function", ".", "template", ",", "to_proxy_function", "=", "ALCHEMY_TEMPLATES", ".", "to_proxy_function", ".", "template", ",", "from_proxy_function", "=", "ALCHEMY_TEMPLATES", ".", "from_proxy_function", ".", "template", ")" ]
Returns compile ORM class for the user supplied model
[ "Returns", "compile", "ORM", "class", "for", "the", "user", "supplied", "model" ]
train
https://github.com/danishabdullah/algen/blob/642ba26d8721c588fce505ac67528070c1edc264/algen/compilers.py#L346-L370
saltant-org/saltant-py
saltant/models/task_queue.py
TaskQueue.put
def put(self): """Updates this task queue on the saltant server. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated. """ return self.manager.put( id=self.id, name=self.name, description=self.description, private=self.private, runs_executable_tasks=self.runs_executable_tasks, runs_docker_container_tasks=self.runs_docker_container_tasks, runs_singularity_container_tasks=self.runs_singularity_container_tasks, active=self.active, whitelists=self.whitelists, )
python
def put(self): """Updates this task queue on the saltant server. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated. """ return self.manager.put( id=self.id, name=self.name, description=self.description, private=self.private, runs_executable_tasks=self.runs_executable_tasks, runs_docker_container_tasks=self.runs_docker_container_tasks, runs_singularity_container_tasks=self.runs_singularity_container_tasks, active=self.active, whitelists=self.whitelists, )
[ "def", "put", "(", "self", ")", ":", "return", "self", ".", "manager", ".", "put", "(", "id", "=", "self", ".", "id", ",", "name", "=", "self", ".", "name", ",", "description", "=", "self", ".", "description", ",", "private", "=", "self", ".", "private", ",", "runs_executable_tasks", "=", "self", ".", "runs_executable_tasks", ",", "runs_docker_container_tasks", "=", "self", ".", "runs_docker_container_tasks", ",", "runs_singularity_container_tasks", "=", "self", ".", "runs_singularity_container_tasks", ",", "active", "=", "self", ".", "active", ",", "whitelists", "=", "self", ".", "whitelists", ",", ")" ]
Updates this task queue on the saltant server. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated.
[ "Updates", "this", "task", "queue", "on", "the", "saltant", "server", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_queue.py#L119-L137
saltant-org/saltant-py
saltant/models/task_queue.py
TaskQueueManager.get
def get(self, id=None, name=None): """Get a task queue. Either the id xor the name of the task type must be specified. Args: id (int, optional): The id of the task type to get. name (str, optional): The name of the task type to get. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue requested. Raises: ValueError: Neither id nor name were set *or* both id and name were set. """ # Validate arguments - use an xor if not (id is None) ^ (name is None): raise ValueError("Either id or name must be set (but not both!)") # If it's just ID provided, call the parent function if id is not None: return super(TaskQueueManager, self).get(id=id) # Try getting the task queue by name return self.list(filters={"name": name})[0]
python
def get(self, id=None, name=None): """Get a task queue. Either the id xor the name of the task type must be specified. Args: id (int, optional): The id of the task type to get. name (str, optional): The name of the task type to get. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue requested. Raises: ValueError: Neither id nor name were set *or* both id and name were set. """ # Validate arguments - use an xor if not (id is None) ^ (name is None): raise ValueError("Either id or name must be set (but not both!)") # If it's just ID provided, call the parent function if id is not None: return super(TaskQueueManager, self).get(id=id) # Try getting the task queue by name return self.list(filters={"name": name})[0]
[ "def", "get", "(", "self", ",", "id", "=", "None", ",", "name", "=", "None", ")", ":", "# Validate arguments - use an xor", "if", "not", "(", "id", "is", "None", ")", "^", "(", "name", "is", "None", ")", ":", "raise", "ValueError", "(", "\"Either id or name must be set (but not both!)\"", ")", "# If it's just ID provided, call the parent function", "if", "id", "is", "not", "None", ":", "return", "super", "(", "TaskQueueManager", ",", "self", ")", ".", "get", "(", "id", "=", "id", ")", "# Try getting the task queue by name", "return", "self", ".", "list", "(", "filters", "=", "{", "\"name\"", ":", "name", "}", ")", "[", "0", "]" ]
Get a task queue. Either the id xor the name of the task type must be specified. Args: id (int, optional): The id of the task type to get. name (str, optional): The name of the task type to get. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue requested. Raises: ValueError: Neither id nor name were set *or* both id and name were set.
[ "Get", "a", "task", "queue", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_queue.py#L156-L183
saltant-org/saltant-py
saltant/models/task_queue.py
TaskQueueManager.create
def create( self, name, description="", private=False, runs_executable_tasks=True, runs_docker_container_tasks=True, runs_singularity_container_tasks=True, active=True, whitelists=None, ): """Create a task queue. Args: name (str): The name of the task queue. description (str, optional): A description of the task queue. private (bool, optional): A boolean specifying whether the queue is exclusive to its creator. Defaults to False. runs_executable_tasks (bool, optional): A Boolean specifying whether the queue runs executable tasks. Defaults to True. runs_docker_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Docker containers. Defaults to True. runs_singularity_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. Defaults to True. active (bool, optional): A boolean specifying whether the queue is active. Default to True. whitelists (list, optional): A list of task whitelist IDs. Defaults to None (which gets translated to []). Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just created. """ # Translate whitelists None to [] if necessary if whitelists is None: whitelists = [] # Create the object request_url = self._client.base_api_url + self.list_url data_to_post = { "name": name, "description": description, "private": private, "runs_executable_tasks": runs_executable_tasks, "runs_docker_container_tasks": runs_docker_container_tasks, "runs_singularity_container_tasks": runs_singularity_container_tasks, "active": active, "whitelists": whitelists, } response = self._client.session.post(request_url, data=data_to_post) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_201_CREATED, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
python
def create( self, name, description="", private=False, runs_executable_tasks=True, runs_docker_container_tasks=True, runs_singularity_container_tasks=True, active=True, whitelists=None, ): """Create a task queue. Args: name (str): The name of the task queue. description (str, optional): A description of the task queue. private (bool, optional): A boolean specifying whether the queue is exclusive to its creator. Defaults to False. runs_executable_tasks (bool, optional): A Boolean specifying whether the queue runs executable tasks. Defaults to True. runs_docker_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Docker containers. Defaults to True. runs_singularity_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. Defaults to True. active (bool, optional): A boolean specifying whether the queue is active. Default to True. whitelists (list, optional): A list of task whitelist IDs. Defaults to None (which gets translated to []). Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just created. """ # Translate whitelists None to [] if necessary if whitelists is None: whitelists = [] # Create the object request_url = self._client.base_api_url + self.list_url data_to_post = { "name": name, "description": description, "private": private, "runs_executable_tasks": runs_executable_tasks, "runs_docker_container_tasks": runs_docker_container_tasks, "runs_singularity_container_tasks": runs_singularity_container_tasks, "active": active, "whitelists": whitelists, } response = self._client.session.post(request_url, data=data_to_post) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_201_CREATED, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
[ "def", "create", "(", "self", ",", "name", ",", "description", "=", "\"\"", ",", "private", "=", "False", ",", "runs_executable_tasks", "=", "True", ",", "runs_docker_container_tasks", "=", "True", ",", "runs_singularity_container_tasks", "=", "True", ",", "active", "=", "True", ",", "whitelists", "=", "None", ",", ")", ":", "# Translate whitelists None to [] if necessary", "if", "whitelists", "is", "None", ":", "whitelists", "=", "[", "]", "# Create the object", "request_url", "=", "self", ".", "_client", ".", "base_api_url", "+", "self", ".", "list_url", "data_to_post", "=", "{", "\"name\"", ":", "name", ",", "\"description\"", ":", "description", ",", "\"private\"", ":", "private", ",", "\"runs_executable_tasks\"", ":", "runs_executable_tasks", ",", "\"runs_docker_container_tasks\"", ":", "runs_docker_container_tasks", ",", "\"runs_singularity_container_tasks\"", ":", "runs_singularity_container_tasks", ",", "\"active\"", ":", "active", ",", "\"whitelists\"", ":", "whitelists", ",", "}", "response", "=", "self", ".", "_client", ".", "session", ".", "post", "(", "request_url", ",", "data", "=", "data_to_post", ")", "# Validate that the request was successful", "self", ".", "validate_request_success", "(", "response_text", "=", "response", ".", "text", ",", "request_url", "=", "request_url", ",", "status_code", "=", "response", ".", "status_code", ",", "expected_status_code", "=", "HTTP_201_CREATED", ",", ")", "# Return a model instance representing the task instance", "return", "self", ".", "response_data_to_model_instance", "(", "response", ".", "json", "(", ")", ")" ]
Create a task queue. Args: name (str): The name of the task queue. description (str, optional): A description of the task queue. private (bool, optional): A boolean specifying whether the queue is exclusive to its creator. Defaults to False. runs_executable_tasks (bool, optional): A Boolean specifying whether the queue runs executable tasks. Defaults to True. runs_docker_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Docker containers. Defaults to True. runs_singularity_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. Defaults to True. active (bool, optional): A boolean specifying whether the queue is active. Default to True. whitelists (list, optional): A list of task whitelist IDs. Defaults to None (which gets translated to []). Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just created.
[ "Create", "a", "task", "queue", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_queue.py#L185-L250
saltant-org/saltant-py
saltant/models/task_queue.py
TaskQueueManager.patch
def patch( self, id, name=None, description=None, private=None, runs_executable_tasks=None, runs_docker_container_tasks=None, runs_singularity_container_tasks=None, active=None, whitelists=None, ): """Partially updates a task queue on the saltant server. Args: id (int): The ID of the task queue. name (str, optional): The name of the task queue. description (str, optional): The description of the task queue. private (bool, optional): A Booleon signalling whether the queue can only be used by its associated user. runs_executable_tasks (bool, optional): A Boolean specifying whether the queue runs executable tasks. runs_docker_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Docker containers. runs_singularity_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. active (bool, optional): A Booleon signalling whether the queue is active. whitelists (list, optional): A list of task whitelist IDs. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated. """ # Update the object request_url = self._client.base_api_url + self.detail_url.format(id=id) data_to_patch = {} if name is not None: data_to_patch["name"] = name if description is not None: data_to_patch["description"] = description if private is not None: data_to_patch["private"] = private if runs_executable_tasks is not None: data_to_patch["runs_executable_tasks"] = runs_executable_tasks if runs_docker_container_tasks is not None: data_to_patch[ "runs_docker_container_tasks" ] = runs_docker_container_tasks if runs_singularity_container_tasks is not None: data_to_patch[ "runs_singularity_container_tasks" ] = runs_singularity_container_tasks if active is not None: data_to_patch["active"] = active if whitelists is not None: data_to_patch["whitelists"] = whitelists response = self._client.session.patch(request_url, data=data_to_patch) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_200_OK, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
python
def patch( self, id, name=None, description=None, private=None, runs_executable_tasks=None, runs_docker_container_tasks=None, runs_singularity_container_tasks=None, active=None, whitelists=None, ): """Partially updates a task queue on the saltant server. Args: id (int): The ID of the task queue. name (str, optional): The name of the task queue. description (str, optional): The description of the task queue. private (bool, optional): A Booleon signalling whether the queue can only be used by its associated user. runs_executable_tasks (bool, optional): A Boolean specifying whether the queue runs executable tasks. runs_docker_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Docker containers. runs_singularity_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. active (bool, optional): A Booleon signalling whether the queue is active. whitelists (list, optional): A list of task whitelist IDs. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated. """ # Update the object request_url = self._client.base_api_url + self.detail_url.format(id=id) data_to_patch = {} if name is not None: data_to_patch["name"] = name if description is not None: data_to_patch["description"] = description if private is not None: data_to_patch["private"] = private if runs_executable_tasks is not None: data_to_patch["runs_executable_tasks"] = runs_executable_tasks if runs_docker_container_tasks is not None: data_to_patch[ "runs_docker_container_tasks" ] = runs_docker_container_tasks if runs_singularity_container_tasks is not None: data_to_patch[ "runs_singularity_container_tasks" ] = runs_singularity_container_tasks if active is not None: data_to_patch["active"] = active if whitelists is not None: data_to_patch["whitelists"] = whitelists response = self._client.session.patch(request_url, data=data_to_patch) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_200_OK, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
[ "def", "patch", "(", "self", ",", "id", ",", "name", "=", "None", ",", "description", "=", "None", ",", "private", "=", "None", ",", "runs_executable_tasks", "=", "None", ",", "runs_docker_container_tasks", "=", "None", ",", "runs_singularity_container_tasks", "=", "None", ",", "active", "=", "None", ",", "whitelists", "=", "None", ",", ")", ":", "# Update the object", "request_url", "=", "self", ".", "_client", ".", "base_api_url", "+", "self", ".", "detail_url", ".", "format", "(", "id", "=", "id", ")", "data_to_patch", "=", "{", "}", "if", "name", "is", "not", "None", ":", "data_to_patch", "[", "\"name\"", "]", "=", "name", "if", "description", "is", "not", "None", ":", "data_to_patch", "[", "\"description\"", "]", "=", "description", "if", "private", "is", "not", "None", ":", "data_to_patch", "[", "\"private\"", "]", "=", "private", "if", "runs_executable_tasks", "is", "not", "None", ":", "data_to_patch", "[", "\"runs_executable_tasks\"", "]", "=", "runs_executable_tasks", "if", "runs_docker_container_tasks", "is", "not", "None", ":", "data_to_patch", "[", "\"runs_docker_container_tasks\"", "]", "=", "runs_docker_container_tasks", "if", "runs_singularity_container_tasks", "is", "not", "None", ":", "data_to_patch", "[", "\"runs_singularity_container_tasks\"", "]", "=", "runs_singularity_container_tasks", "if", "active", "is", "not", "None", ":", "data_to_patch", "[", "\"active\"", "]", "=", "active", "if", "whitelists", "is", "not", "None", ":", "data_to_patch", "[", "\"whitelists\"", "]", "=", "whitelists", "response", "=", "self", ".", "_client", ".", "session", ".", "patch", "(", "request_url", ",", "data", "=", "data_to_patch", ")", "# Validate that the request was successful", "self", ".", "validate_request_success", "(", "response_text", "=", "response", ".", "text", ",", "request_url", "=", "request_url", ",", "status_code", "=", "response", ".", "status_code", ",", "expected_status_code", "=", "HTTP_200_OK", ",", ")", "# Return a model instance representing the task instance", "return", "self", ".", "response_data_to_model_instance", "(", "response", ".", "json", "(", ")", ")" ]
Partially updates a task queue on the saltant server. Args: id (int): The ID of the task queue. name (str, optional): The name of the task queue. description (str, optional): The description of the task queue. private (bool, optional): A Booleon signalling whether the queue can only be used by its associated user. runs_executable_tasks (bool, optional): A Boolean specifying whether the queue runs executable tasks. runs_docker_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Docker containers. runs_singularity_container_tasks (bool, optional): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. active (bool, optional): A Booleon signalling whether the queue is active. whitelists (list, optional): A list of task whitelist IDs. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated.
[ "Partially", "updates", "a", "task", "queue", "on", "the", "saltant", "server", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_queue.py#L252-L334
saltant-org/saltant-py
saltant/models/task_queue.py
TaskQueueManager.put
def put( self, id, name, description, private, runs_executable_tasks, runs_docker_container_tasks, runs_singularity_container_tasks, active, whitelists, ): """Updates a task queue on the saltant server. Args: id (int): The ID of the task queue. name (str): The name of the task queue. description (str): The description of the task queue. private (bool): A Booleon signalling whether the queue can only be used by its associated user. runs_executable_tasks (bool): A Boolean specifying whether the queue runs executable tasks. runs_docker_container_tasks (bool): A Boolean specifying whether the queue runs container tasks that run in Docker containers. runs_singularity_container_tasks (bool): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. active (bool): A Booleon signalling whether the queue is active. whitelists (list): A list of task whitelist IDs. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated. """ # Update the object request_url = self._client.base_api_url + self.detail_url.format(id=id) data_to_put = { "name": name, "description": description, "private": private, "runs_executable_tasks": runs_executable_tasks, "runs_docker_container_tasks": runs_docker_container_tasks, "runs_singularity_container_tasks": runs_singularity_container_tasks, "active": active, "whitelists": whitelists, } response = self._client.session.put(request_url, data=data_to_put) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_200_OK, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
python
def put( self, id, name, description, private, runs_executable_tasks, runs_docker_container_tasks, runs_singularity_container_tasks, active, whitelists, ): """Updates a task queue on the saltant server. Args: id (int): The ID of the task queue. name (str): The name of the task queue. description (str): The description of the task queue. private (bool): A Booleon signalling whether the queue can only be used by its associated user. runs_executable_tasks (bool): A Boolean specifying whether the queue runs executable tasks. runs_docker_container_tasks (bool): A Boolean specifying whether the queue runs container tasks that run in Docker containers. runs_singularity_container_tasks (bool): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. active (bool): A Booleon signalling whether the queue is active. whitelists (list): A list of task whitelist IDs. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated. """ # Update the object request_url = self._client.base_api_url + self.detail_url.format(id=id) data_to_put = { "name": name, "description": description, "private": private, "runs_executable_tasks": runs_executable_tasks, "runs_docker_container_tasks": runs_docker_container_tasks, "runs_singularity_container_tasks": runs_singularity_container_tasks, "active": active, "whitelists": whitelists, } response = self._client.session.put(request_url, data=data_to_put) # Validate that the request was successful self.validate_request_success( response_text=response.text, request_url=request_url, status_code=response.status_code, expected_status_code=HTTP_200_OK, ) # Return a model instance representing the task instance return self.response_data_to_model_instance(response.json())
[ "def", "put", "(", "self", ",", "id", ",", "name", ",", "description", ",", "private", ",", "runs_executable_tasks", ",", "runs_docker_container_tasks", ",", "runs_singularity_container_tasks", ",", "active", ",", "whitelists", ",", ")", ":", "# Update the object", "request_url", "=", "self", ".", "_client", ".", "base_api_url", "+", "self", ".", "detail_url", ".", "format", "(", "id", "=", "id", ")", "data_to_put", "=", "{", "\"name\"", ":", "name", ",", "\"description\"", ":", "description", ",", "\"private\"", ":", "private", ",", "\"runs_executable_tasks\"", ":", "runs_executable_tasks", ",", "\"runs_docker_container_tasks\"", ":", "runs_docker_container_tasks", ",", "\"runs_singularity_container_tasks\"", ":", "runs_singularity_container_tasks", ",", "\"active\"", ":", "active", ",", "\"whitelists\"", ":", "whitelists", ",", "}", "response", "=", "self", ".", "_client", ".", "session", ".", "put", "(", "request_url", ",", "data", "=", "data_to_put", ")", "# Validate that the request was successful", "self", ".", "validate_request_success", "(", "response_text", "=", "response", ".", "text", ",", "request_url", "=", "request_url", ",", "status_code", "=", "response", ".", "status_code", ",", "expected_status_code", "=", "HTTP_200_OK", ",", ")", "# Return a model instance representing the task instance", "return", "self", ".", "response_data_to_model_instance", "(", "response", ".", "json", "(", ")", ")" ]
Updates a task queue on the saltant server. Args: id (int): The ID of the task queue. name (str): The name of the task queue. description (str): The description of the task queue. private (bool): A Booleon signalling whether the queue can only be used by its associated user. runs_executable_tasks (bool): A Boolean specifying whether the queue runs executable tasks. runs_docker_container_tasks (bool): A Boolean specifying whether the queue runs container tasks that run in Docker containers. runs_singularity_container_tasks (bool): A Boolean specifying whether the queue runs container tasks that run in Singularity containers. active (bool): A Booleon signalling whether the queue is active. whitelists (list): A list of task whitelist IDs. Returns: :class:`saltant.models.task_queue.TaskQueue`: A task queue model instance representing the task queue just updated.
[ "Updates", "a", "task", "queue", "on", "the", "saltant", "server", "." ]
train
https://github.com/saltant-org/saltant-py/blob/bf3bdbc4ec9c772c7f621f8bd6a76c5932af68be/saltant/models/task_queue.py#L336-L397
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenSBait.main
def main(self): """ Run the required methods in the appropriate order """ self.targets() self.bait(k=49) self.reversebait(maskmiddle='t', k=19) self.subsample_reads()
python
def main(self): """ Run the required methods in the appropriate order """ self.targets() self.bait(k=49) self.reversebait(maskmiddle='t', k=19) self.subsample_reads()
[ "def", "main", "(", "self", ")", ":", "self", ".", "targets", "(", ")", "self", ".", "bait", "(", "k", "=", "49", ")", "self", ".", "reversebait", "(", "maskmiddle", "=", "'t'", ",", "k", "=", "19", ")", "self", ".", "subsample_reads", "(", ")" ]
Run the required methods in the appropriate order
[ "Run", "the", "required", "methods", "in", "the", "appropriate", "order" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L31-L38
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenSBait.targets
def targets(self): """ Create the GenObject for the analysis type, create the hash file for baiting (if necessary) """ for sample in self.runmetadata: if sample.general.bestassemblyfile != 'NA': setattr(sample, self.analysistype, GenObject()) sample[self.analysistype].runanalysis = True sample[self.analysistype].targetpath = self.targetpath baitpath = os.path.join(self.targetpath, 'bait') sample[self.analysistype].baitfile = glob(os.path.join(baitpath, '*.fa'))[0] try: sample[self.analysistype].outputdir = os.path.join(sample.run.outputdirectory, self.analysistype) except AttributeError: sample[self.analysistype].outputdir = \ os.path.join(sample.general.outputdirectory, self.analysistype) sample.run.outputdirectory = sample.general.outputdirectory sample[self.analysistype].logout = os.path.join(sample[self.analysistype].outputdir, 'logout.txt') sample[self.analysistype].logerr = os.path.join(sample[self.analysistype].outputdir, 'logerr.txt') sample[self.analysistype].baitedfastq = os.path.join(sample[self.analysistype].outputdir, '{}_targetMatches.fastq'.format(self.analysistype)) sample[self.analysistype].complete = False
python
def targets(self): """ Create the GenObject for the analysis type, create the hash file for baiting (if necessary) """ for sample in self.runmetadata: if sample.general.bestassemblyfile != 'NA': setattr(sample, self.analysistype, GenObject()) sample[self.analysistype].runanalysis = True sample[self.analysistype].targetpath = self.targetpath baitpath = os.path.join(self.targetpath, 'bait') sample[self.analysistype].baitfile = glob(os.path.join(baitpath, '*.fa'))[0] try: sample[self.analysistype].outputdir = os.path.join(sample.run.outputdirectory, self.analysistype) except AttributeError: sample[self.analysistype].outputdir = \ os.path.join(sample.general.outputdirectory, self.analysistype) sample.run.outputdirectory = sample.general.outputdirectory sample[self.analysistype].logout = os.path.join(sample[self.analysistype].outputdir, 'logout.txt') sample[self.analysistype].logerr = os.path.join(sample[self.analysistype].outputdir, 'logerr.txt') sample[self.analysistype].baitedfastq = os.path.join(sample[self.analysistype].outputdir, '{}_targetMatches.fastq'.format(self.analysistype)) sample[self.analysistype].complete = False
[ "def", "targets", "(", "self", ")", ":", "for", "sample", "in", "self", ".", "runmetadata", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "setattr", "(", "sample", ",", "self", ".", "analysistype", ",", "GenObject", "(", ")", ")", "sample", "[", "self", ".", "analysistype", "]", ".", "runanalysis", "=", "True", "sample", "[", "self", ".", "analysistype", "]", ".", "targetpath", "=", "self", ".", "targetpath", "baitpath", "=", "os", ".", "path", ".", "join", "(", "self", ".", "targetpath", ",", "'bait'", ")", "sample", "[", "self", ".", "analysistype", "]", ".", "baitfile", "=", "glob", "(", "os", ".", "path", ".", "join", "(", "baitpath", ",", "'*.fa'", ")", ")", "[", "0", "]", "try", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "outputdir", "=", "os", ".", "path", ".", "join", "(", "sample", ".", "run", ".", "outputdirectory", ",", "self", ".", "analysistype", ")", "except", "AttributeError", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "outputdir", "=", "os", ".", "path", ".", "join", "(", "sample", ".", "general", ".", "outputdirectory", ",", "self", ".", "analysistype", ")", "sample", ".", "run", ".", "outputdirectory", "=", "sample", ".", "general", ".", "outputdirectory", "sample", "[", "self", ".", "analysistype", "]", ".", "logout", "=", "os", ".", "path", ".", "join", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "outputdir", ",", "'logout.txt'", ")", "sample", "[", "self", ".", "analysistype", "]", ".", "logerr", "=", "os", ".", "path", ".", "join", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "outputdir", ",", "'logerr.txt'", ")", "sample", "[", "self", ".", "analysistype", "]", ".", "baitedfastq", "=", "os", ".", "path", ".", "join", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "outputdir", ",", "'{}_targetMatches.fastq'", ".", "format", "(", "self", ".", "analysistype", ")", ")", "sample", "[", "self", ".", "analysistype", "]", ".", "complete", "=", "False" ]
Create the GenObject for the analysis type, create the hash file for baiting (if necessary)
[ "Create", "the", "GenObject", "for", "the", "analysis", "type", "create", "the", "hash", "file", "for", "baiting", "(", "if", "necessary", ")" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L40-L61
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenSSipper.targets
def targets(self): """ Using the data from the BLAST analyses, set the targets folder, and create the 'mapping file'. This is the genera-specific FASTA file that will be used for all the reference mapping; it replaces the 'bait file' in the code """ logging.info('Performing analysis with {} targets folder'.format(self.analysistype)) for sample in self.runmetadata: if sample.general.bestassemblyfile != 'NA': sample[self.analysistype].targetpath = \ os.path.join(self.targetpath, 'genera', sample[self.analysistype].genus, '') # There is a relatively strict databasing scheme necessary for the custom targets. Eventually, # there will be a helper script to combine individual files into a properly formatted combined file try: sample[self.analysistype].mappingfile = glob('{}*.fa' .format(sample[self.analysistype].targetpath))[0] # If the fasta file is missing, raise a custom error except IndexError as e: # noinspection PyPropertyAccess e.args = ['Cannot find the combined fasta file in {}. Please note that the file must have a ' '.fasta extension'.format(sample[self.analysistype].targetpath)] if os.path.isdir(sample[self.analysistype].targetpath): raise else: sample.general.bestassemblyfile = 'NA'
python
def targets(self): """ Using the data from the BLAST analyses, set the targets folder, and create the 'mapping file'. This is the genera-specific FASTA file that will be used for all the reference mapping; it replaces the 'bait file' in the code """ logging.info('Performing analysis with {} targets folder'.format(self.analysistype)) for sample in self.runmetadata: if sample.general.bestassemblyfile != 'NA': sample[self.analysistype].targetpath = \ os.path.join(self.targetpath, 'genera', sample[self.analysistype].genus, '') # There is a relatively strict databasing scheme necessary for the custom targets. Eventually, # there will be a helper script to combine individual files into a properly formatted combined file try: sample[self.analysistype].mappingfile = glob('{}*.fa' .format(sample[self.analysistype].targetpath))[0] # If the fasta file is missing, raise a custom error except IndexError as e: # noinspection PyPropertyAccess e.args = ['Cannot find the combined fasta file in {}. Please note that the file must have a ' '.fasta extension'.format(sample[self.analysistype].targetpath)] if os.path.isdir(sample[self.analysistype].targetpath): raise else: sample.general.bestassemblyfile = 'NA'
[ "def", "targets", "(", "self", ")", ":", "logging", ".", "info", "(", "'Performing analysis with {} targets folder'", ".", "format", "(", "self", ".", "analysistype", ")", ")", "for", "sample", "in", "self", ".", "runmetadata", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "targetpath", "=", "os", ".", "path", ".", "join", "(", "self", ".", "targetpath", ",", "'genera'", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "genus", ",", "''", ")", "# There is a relatively strict databasing scheme necessary for the custom targets. Eventually,", "# there will be a helper script to combine individual files into a properly formatted combined file", "try", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "mappingfile", "=", "glob", "(", "'{}*.fa'", ".", "format", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "targetpath", ")", ")", "[", "0", "]", "# If the fasta file is missing, raise a custom error", "except", "IndexError", "as", "e", ":", "# noinspection PyPropertyAccess", "e", ".", "args", "=", "[", "'Cannot find the combined fasta file in {}. Please note that the file must have a '", "'.fasta extension'", ".", "format", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "targetpath", ")", "]", "if", "os", ".", "path", ".", "isdir", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "targetpath", ")", ":", "raise", "else", ":", "sample", ".", "general", ".", "bestassemblyfile", "=", "'NA'" ]
Using the data from the BLAST analyses, set the targets folder, and create the 'mapping file'. This is the genera-specific FASTA file that will be used for all the reference mapping; it replaces the 'bait file' in the code
[ "Using", "the", "data", "from", "the", "BLAST", "analyses", "set", "the", "targets", "folder", "and", "create", "the", "mapping", "file", ".", "This", "is", "the", "genera", "-", "specific", "FASTA", "file", "that", "will", "be", "used", "for", "all", "the", "reference", "mapping", ";", "it", "replaces", "the", "bait", "file", "in", "the", "code" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L82-L106
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenS.runner
def runner(self): """ Run the necessary methods in the correct order """ logging.info('Starting {} analysis pipeline'.format(self.analysistype)) if not self.pipeline: # If the metadata has been passed from the method script, self.pipeline must still be false in order to # get Sippr() to function correctly, but the metadata shouldn't be recreated try: _ = vars(self.runmetadata)['samples'] except AttributeError: # Create the objects to be used in the analyses objects = Objectprep(self) objects.objectprep() self.runmetadata = objects.samples else: for sample in self.runmetadata.samples: setattr(sample, self.analysistype, GenObject()) sample.run.outputdirectory = sample.general.outputdirectory self.threads = int(self.cpus / len(self.runmetadata.samples)) \ if self.cpus / len(self.runmetadata.samples) > 1 \ else 1 # Use a custom sippr method to use the full reference database as bait, and run mirabait against the FASTQ # reads - do not perform reference mapping yet SixteenSBait(self, self.cutoff) # Subsample 1000 reads from the FASTQ files self.subsample() # Convert the subsampled FASTQ files to FASTA format self.fasta() # Create BLAST databases if required self.makeblastdb() # Run BLAST analyses of the subsampled FASTA files against the NCBI 16S reference database self.blast() # Parse the BLAST results self.blastparse() # Feed the BLAST results into a modified sippr method to perform reference mapping using the calculated # genus of the sample as the mapping file SixteenSSipper(self, self.cutoff) # Create reports self.reporter()
python
def runner(self): """ Run the necessary methods in the correct order """ logging.info('Starting {} analysis pipeline'.format(self.analysistype)) if not self.pipeline: # If the metadata has been passed from the method script, self.pipeline must still be false in order to # get Sippr() to function correctly, but the metadata shouldn't be recreated try: _ = vars(self.runmetadata)['samples'] except AttributeError: # Create the objects to be used in the analyses objects = Objectprep(self) objects.objectprep() self.runmetadata = objects.samples else: for sample in self.runmetadata.samples: setattr(sample, self.analysistype, GenObject()) sample.run.outputdirectory = sample.general.outputdirectory self.threads = int(self.cpus / len(self.runmetadata.samples)) \ if self.cpus / len(self.runmetadata.samples) > 1 \ else 1 # Use a custom sippr method to use the full reference database as bait, and run mirabait against the FASTQ # reads - do not perform reference mapping yet SixteenSBait(self, self.cutoff) # Subsample 1000 reads from the FASTQ files self.subsample() # Convert the subsampled FASTQ files to FASTA format self.fasta() # Create BLAST databases if required self.makeblastdb() # Run BLAST analyses of the subsampled FASTA files against the NCBI 16S reference database self.blast() # Parse the BLAST results self.blastparse() # Feed the BLAST results into a modified sippr method to perform reference mapping using the calculated # genus of the sample as the mapping file SixteenSSipper(self, self.cutoff) # Create reports self.reporter()
[ "def", "runner", "(", "self", ")", ":", "logging", ".", "info", "(", "'Starting {} analysis pipeline'", ".", "format", "(", "self", ".", "analysistype", ")", ")", "if", "not", "self", ".", "pipeline", ":", "# If the metadata has been passed from the method script, self.pipeline must still be false in order to", "# get Sippr() to function correctly, but the metadata shouldn't be recreated", "try", ":", "_", "=", "vars", "(", "self", ".", "runmetadata", ")", "[", "'samples'", "]", "except", "AttributeError", ":", "# Create the objects to be used in the analyses", "objects", "=", "Objectprep", "(", "self", ")", "objects", ".", "objectprep", "(", ")", "self", ".", "runmetadata", "=", "objects", ".", "samples", "else", ":", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "setattr", "(", "sample", ",", "self", ".", "analysistype", ",", "GenObject", "(", ")", ")", "sample", ".", "run", ".", "outputdirectory", "=", "sample", ".", "general", ".", "outputdirectory", "self", ".", "threads", "=", "int", "(", "self", ".", "cpus", "/", "len", "(", "self", ".", "runmetadata", ".", "samples", ")", ")", "if", "self", ".", "cpus", "/", "len", "(", "self", ".", "runmetadata", ".", "samples", ")", ">", "1", "else", "1", "# Use a custom sippr method to use the full reference database as bait, and run mirabait against the FASTQ", "# reads - do not perform reference mapping yet", "SixteenSBait", "(", "self", ",", "self", ".", "cutoff", ")", "# Subsample 1000 reads from the FASTQ files", "self", ".", "subsample", "(", ")", "# Convert the subsampled FASTQ files to FASTA format", "self", ".", "fasta", "(", ")", "# Create BLAST databases if required", "self", ".", "makeblastdb", "(", ")", "# Run BLAST analyses of the subsampled FASTA files against the NCBI 16S reference database", "self", ".", "blast", "(", ")", "# Parse the BLAST results", "self", ".", "blastparse", "(", ")", "# Feed the BLAST results into a modified sippr method to perform reference mapping using the calculated", "# genus of the sample as the mapping file", "SixteenSSipper", "(", "self", ",", "self", ".", "cutoff", ")", "# Create reports", "self", ".", "reporter", "(", ")" ]
Run the necessary methods in the correct order
[ "Run", "the", "necessary", "methods", "in", "the", "correct", "order" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L111-L151
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenS.subsample
def subsample(self): """ Subsample 1000 reads from the baited files """ # Create the threads for the analysis logging.info('Subsampling FASTQ reads') for _ in range(self.cpus): threads = Thread(target=self.subsamplethreads, args=()) threads.setDaemon(True) threads.start() with progressbar(self.runmetadata.samples) as bar: for sample in bar: if sample.general.bestassemblyfile != 'NA': # Set the name of the subsampled FASTQ file sample[self.analysistype].subsampledfastq = \ os.path.splitext(sample[self.analysistype].baitedfastq)[0] + '_subsampled.fastq' # Set the system call sample[self.analysistype].seqtkcall = 'reformat.sh in={} out={} samplereadstarget=1000'\ .format(sample[self.analysistype].baitedfastq, sample[self.analysistype].subsampledfastq) # Add the sample to the queue self.samplequeue.put(sample) self.samplequeue.join()
python
def subsample(self): """ Subsample 1000 reads from the baited files """ # Create the threads for the analysis logging.info('Subsampling FASTQ reads') for _ in range(self.cpus): threads = Thread(target=self.subsamplethreads, args=()) threads.setDaemon(True) threads.start() with progressbar(self.runmetadata.samples) as bar: for sample in bar: if sample.general.bestassemblyfile != 'NA': # Set the name of the subsampled FASTQ file sample[self.analysistype].subsampledfastq = \ os.path.splitext(sample[self.analysistype].baitedfastq)[0] + '_subsampled.fastq' # Set the system call sample[self.analysistype].seqtkcall = 'reformat.sh in={} out={} samplereadstarget=1000'\ .format(sample[self.analysistype].baitedfastq, sample[self.analysistype].subsampledfastq) # Add the sample to the queue self.samplequeue.put(sample) self.samplequeue.join()
[ "def", "subsample", "(", "self", ")", ":", "# Create the threads for the analysis", "logging", ".", "info", "(", "'Subsampling FASTQ reads'", ")", "for", "_", "in", "range", "(", "self", ".", "cpus", ")", ":", "threads", "=", "Thread", "(", "target", "=", "self", ".", "subsamplethreads", ",", "args", "=", "(", ")", ")", "threads", ".", "setDaemon", "(", "True", ")", "threads", ".", "start", "(", ")", "with", "progressbar", "(", "self", ".", "runmetadata", ".", "samples", ")", "as", "bar", ":", "for", "sample", "in", "bar", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "# Set the name of the subsampled FASTQ file", "sample", "[", "self", ".", "analysistype", "]", ".", "subsampledfastq", "=", "os", ".", "path", ".", "splitext", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "baitedfastq", ")", "[", "0", "]", "+", "'_subsampled.fastq'", "# Set the system call", "sample", "[", "self", ".", "analysistype", "]", ".", "seqtkcall", "=", "'reformat.sh in={} out={} samplereadstarget=1000'", ".", "format", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "baitedfastq", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "subsampledfastq", ")", "# Add the sample to the queue", "self", ".", "samplequeue", ".", "put", "(", "sample", ")", "self", ".", "samplequeue", ".", "join", "(", ")" ]
Subsample 1000 reads from the baited files
[ "Subsample", "1000", "reads", "from", "the", "baited", "files" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L153-L175
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenS.fasta
def fasta(self): """ Convert the subsampled reads to FASTA format using reformat.sh """ logging.info('Converting FASTQ files to FASTA format') # Create the threads for the analysis for _ in range(self.cpus): threads = Thread(target=self.fastathreads, args=()) threads.setDaemon(True) threads.start() with progressbar(self.runmetadata.samples) as bar: for sample in bar: if sample.general.bestassemblyfile != 'NA': # Set the name as the FASTA file - the same as the FASTQ, but with .fa file extension sample[self.analysistype].fasta = \ os.path.splitext(sample[self.analysistype].subsampledfastq)[0] + '.fa' # Set the system call sample[self.analysistype].reformatcall = 'reformat.sh in={fastq} out={fasta}'\ .format(fastq=sample[self.analysistype].subsampledfastq, fasta=sample[self.analysistype].fasta) # Add the sample to the queue self.fastaqueue.put(sample) self.fastaqueue.join()
python
def fasta(self): """ Convert the subsampled reads to FASTA format using reformat.sh """ logging.info('Converting FASTQ files to FASTA format') # Create the threads for the analysis for _ in range(self.cpus): threads = Thread(target=self.fastathreads, args=()) threads.setDaemon(True) threads.start() with progressbar(self.runmetadata.samples) as bar: for sample in bar: if sample.general.bestassemblyfile != 'NA': # Set the name as the FASTA file - the same as the FASTQ, but with .fa file extension sample[self.analysistype].fasta = \ os.path.splitext(sample[self.analysistype].subsampledfastq)[0] + '.fa' # Set the system call sample[self.analysistype].reformatcall = 'reformat.sh in={fastq} out={fasta}'\ .format(fastq=sample[self.analysistype].subsampledfastq, fasta=sample[self.analysistype].fasta) # Add the sample to the queue self.fastaqueue.put(sample) self.fastaqueue.join()
[ "def", "fasta", "(", "self", ")", ":", "logging", ".", "info", "(", "'Converting FASTQ files to FASTA format'", ")", "# Create the threads for the analysis", "for", "_", "in", "range", "(", "self", ".", "cpus", ")", ":", "threads", "=", "Thread", "(", "target", "=", "self", ".", "fastathreads", ",", "args", "=", "(", ")", ")", "threads", ".", "setDaemon", "(", "True", ")", "threads", ".", "start", "(", ")", "with", "progressbar", "(", "self", ".", "runmetadata", ".", "samples", ")", "as", "bar", ":", "for", "sample", "in", "bar", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "# Set the name as the FASTA file - the same as the FASTQ, but with .fa file extension", "sample", "[", "self", ".", "analysistype", "]", ".", "fasta", "=", "os", ".", "path", ".", "splitext", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "subsampledfastq", ")", "[", "0", "]", "+", "'.fa'", "# Set the system call", "sample", "[", "self", ".", "analysistype", "]", ".", "reformatcall", "=", "'reformat.sh in={fastq} out={fasta}'", ".", "format", "(", "fastq", "=", "sample", "[", "self", ".", "analysistype", "]", ".", "subsampledfastq", ",", "fasta", "=", "sample", "[", "self", ".", "analysistype", "]", ".", "fasta", ")", "# Add the sample to the queue", "self", ".", "fastaqueue", ".", "put", "(", "sample", ")", "self", ".", "fastaqueue", ".", "join", "(", ")" ]
Convert the subsampled reads to FASTA format using reformat.sh
[ "Convert", "the", "subsampled", "reads", "to", "FASTA", "format", "using", "reformat", ".", "sh" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L194-L216
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenS.makeblastdb
def makeblastdb(self): """ Makes blast database files from targets as necessary """ # Iterate through the samples to set the bait file. for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': # Remove the file extension db = os.path.splitext(sample[self.analysistype].baitfile)[0] # Add '.nhr' for searching below nhr = '{}.nhr'.format(db) # Check for already existing database files if not os.path.isfile(str(nhr)): # Create the databases command = 'makeblastdb -in {} -parse_seqids -max_file_sz 2GB -dbtype nucl -out {}'\ .format(sample[self.analysistype].baitfile, db) out, err = run_subprocess(command) write_to_logfile(command, command, self.logfile, sample.general.logout, sample.general.logerr, sample[self.analysistype].logout, sample[self.analysistype].logerr) write_to_logfile(out, err, self.logfile, sample.general.logout, sample.general.logerr, sample[self.analysistype].logout, sample[self.analysistype].logerr)
python
def makeblastdb(self): """ Makes blast database files from targets as necessary """ # Iterate through the samples to set the bait file. for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': # Remove the file extension db = os.path.splitext(sample[self.analysistype].baitfile)[0] # Add '.nhr' for searching below nhr = '{}.nhr'.format(db) # Check for already existing database files if not os.path.isfile(str(nhr)): # Create the databases command = 'makeblastdb -in {} -parse_seqids -max_file_sz 2GB -dbtype nucl -out {}'\ .format(sample[self.analysistype].baitfile, db) out, err = run_subprocess(command) write_to_logfile(command, command, self.logfile, sample.general.logout, sample.general.logerr, sample[self.analysistype].logout, sample[self.analysistype].logerr) write_to_logfile(out, err, self.logfile, sample.general.logout, sample.general.logerr, sample[self.analysistype].logout, sample[self.analysistype].logerr)
[ "def", "makeblastdb", "(", "self", ")", ":", "# Iterate through the samples to set the bait file.", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "# Remove the file extension", "db", "=", "os", ".", "path", ".", "splitext", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "baitfile", ")", "[", "0", "]", "# Add '.nhr' for searching below", "nhr", "=", "'{}.nhr'", ".", "format", "(", "db", ")", "# Check for already existing database files", "if", "not", "os", ".", "path", ".", "isfile", "(", "str", "(", "nhr", ")", ")", ":", "# Create the databases", "command", "=", "'makeblastdb -in {} -parse_seqids -max_file_sz 2GB -dbtype nucl -out {}'", ".", "format", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "baitfile", ",", "db", ")", "out", ",", "err", "=", "run_subprocess", "(", "command", ")", "write_to_logfile", "(", "command", ",", "command", ",", "self", ".", "logfile", ",", "sample", ".", "general", ".", "logout", ",", "sample", ".", "general", ".", "logerr", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "logout", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "logerr", ")", "write_to_logfile", "(", "out", ",", "err", ",", "self", ".", "logfile", ",", "sample", ".", "general", ".", "logout", ",", "sample", ".", "general", ".", "logerr", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "logout", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "logerr", ")" ]
Makes blast database files from targets as necessary
[ "Makes", "blast", "database", "files", "from", "targets", "as", "necessary" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L235-L259
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenS.blast
def blast(self): """ Run BLAST analyses of the subsampled FASTQ reads against the NCBI 16S reference database """ logging.info('BLASTing FASTA files against {} database'.format(self.analysistype)) for _ in range(self.cpus): threads = Thread(target=self.blastthreads, args=()) threads.setDaemon(True) threads.start() with progressbar(self.runmetadata.samples) as bar: for sample in bar: if sample.general.bestassemblyfile != 'NA': # Set the name of the BLAST report sample[self.analysistype].blastreport = os.path.join( sample[self.analysistype].outputdir, '{}_{}_blastresults.csv'.format(sample.name, self.analysistype)) # Use the NCBI BLASTn command line wrapper module from BioPython to set the parameters of the search blastn = NcbiblastnCommandline(query=sample[self.analysistype].fasta, db=os.path.splitext(sample[self.analysistype].baitfile)[0], max_target_seqs=1, num_threads=self.threads, outfmt="'6 qseqid sseqid positive mismatch gaps evalue " "bitscore slen length qstart qend qseq sstart send sseq'", out=sample[self.analysistype].blastreport) # Add a string of the command to the metadata object sample[self.analysistype].blastcall = str(blastn) # Add the object and the command to the BLAST queue self.blastqueue.put((sample, blastn)) self.blastqueue.join()
python
def blast(self): """ Run BLAST analyses of the subsampled FASTQ reads against the NCBI 16S reference database """ logging.info('BLASTing FASTA files against {} database'.format(self.analysistype)) for _ in range(self.cpus): threads = Thread(target=self.blastthreads, args=()) threads.setDaemon(True) threads.start() with progressbar(self.runmetadata.samples) as bar: for sample in bar: if sample.general.bestassemblyfile != 'NA': # Set the name of the BLAST report sample[self.analysistype].blastreport = os.path.join( sample[self.analysistype].outputdir, '{}_{}_blastresults.csv'.format(sample.name, self.analysistype)) # Use the NCBI BLASTn command line wrapper module from BioPython to set the parameters of the search blastn = NcbiblastnCommandline(query=sample[self.analysistype].fasta, db=os.path.splitext(sample[self.analysistype].baitfile)[0], max_target_seqs=1, num_threads=self.threads, outfmt="'6 qseqid sseqid positive mismatch gaps evalue " "bitscore slen length qstart qend qseq sstart send sseq'", out=sample[self.analysistype].blastreport) # Add a string of the command to the metadata object sample[self.analysistype].blastcall = str(blastn) # Add the object and the command to the BLAST queue self.blastqueue.put((sample, blastn)) self.blastqueue.join()
[ "def", "blast", "(", "self", ")", ":", "logging", ".", "info", "(", "'BLASTing FASTA files against {} database'", ".", "format", "(", "self", ".", "analysistype", ")", ")", "for", "_", "in", "range", "(", "self", ".", "cpus", ")", ":", "threads", "=", "Thread", "(", "target", "=", "self", ".", "blastthreads", ",", "args", "=", "(", ")", ")", "threads", ".", "setDaemon", "(", "True", ")", "threads", ".", "start", "(", ")", "with", "progressbar", "(", "self", ".", "runmetadata", ".", "samples", ")", "as", "bar", ":", "for", "sample", "in", "bar", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "# Set the name of the BLAST report", "sample", "[", "self", ".", "analysistype", "]", ".", "blastreport", "=", "os", ".", "path", ".", "join", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "outputdir", ",", "'{}_{}_blastresults.csv'", ".", "format", "(", "sample", ".", "name", ",", "self", ".", "analysistype", ")", ")", "# Use the NCBI BLASTn command line wrapper module from BioPython to set the parameters of the search", "blastn", "=", "NcbiblastnCommandline", "(", "query", "=", "sample", "[", "self", ".", "analysistype", "]", ".", "fasta", ",", "db", "=", "os", ".", "path", ".", "splitext", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "baitfile", ")", "[", "0", "]", ",", "max_target_seqs", "=", "1", ",", "num_threads", "=", "self", ".", "threads", ",", "outfmt", "=", "\"'6 qseqid sseqid positive mismatch gaps evalue \"", "\"bitscore slen length qstart qend qseq sstart send sseq'\"", ",", "out", "=", "sample", "[", "self", ".", "analysistype", "]", ".", "blastreport", ")", "# Add a string of the command to the metadata object", "sample", "[", "self", ".", "analysistype", "]", ".", "blastcall", "=", "str", "(", "blastn", ")", "# Add the object and the command to the BLAST queue", "self", ".", "blastqueue", ".", "put", "(", "(", "sample", ",", "blastn", ")", ")", "self", ".", "blastqueue", ".", "join", "(", ")" ]
Run BLAST analyses of the subsampled FASTQ reads against the NCBI 16S reference database
[ "Run", "BLAST", "analyses", "of", "the", "subsampled", "FASTQ", "reads", "against", "the", "NCBI", "16S", "reference", "database" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L261-L289
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenS.blastparse
def blastparse(self): """ Parse the blast results, and store necessary data in dictionaries in sample object """ logging.info('Parsing BLAST results') # Load the NCBI 16S reference database as a dictionary for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': # Load the NCBI 16S reference database as a dictionary dbrecords = SeqIO.to_dict(SeqIO.parse(sample[self.analysistype].baitfile, 'fasta')) # Allow for no BLAST results if os.path.isfile(sample[self.analysistype].blastreport): # Initialise a dictionary to store the number of times a genus is the best hit sample[self.analysistype].frequency = dict() # Open the sequence profile file as a dictionary blastdict = DictReader(open(sample[self.analysistype].blastreport), fieldnames=self.fieldnames, dialect='excel-tab') recorddict = dict() for record in blastdict: # Create the subject id. It will look like this: gi|1018196593|ref|NR_136472.1| subject = record['subject_id'] # Extract the genus name. Use the subject id as a key in the dictionary of the reference db. # It will return the full record e.g. gi|1018196593|ref|NR_136472.1| Escherichia marmotae # strain HT073016 16S ribosomal RNA, partial sequence # This full description can be manipulated to extract the genus e.g. Escherichia genus = dbrecords[subject].description.split('|')[-1].split()[0] # Increment the number of times this genus was found, or initialise the dictionary with this # genus the first time it is seen try: sample[self.analysistype].frequency[genus] += 1 except KeyError: sample[self.analysistype].frequency[genus] = 1 try: recorddict[dbrecords[subject].description] += 1 except KeyError: recorddict[dbrecords[subject].description] = 1 # Sort the dictionary based on the number of times a genus is seen sample[self.analysistype].sortedgenera = sorted(sample[self.analysistype].frequency.items(), key=operator.itemgetter(1), reverse=True) try: # Extract the top result, and set it as the genus of the sample sample[self.analysistype].genus = sample[self.analysistype].sortedgenera[0][0] # Previous code relies on having the closest refseq genus, so set this as above # sample.general.closestrefseqgenus = sample[self.analysistype].genus except IndexError: # Populate attributes with 'NA' sample[self.analysistype].sortedgenera = 'NA' sample[self.analysistype].genus = 'NA' # sample.general.closestrefseqgenus = 'NA' else: # Populate attributes with 'NA' sample[self.analysistype].sortedgenera = 'NA' sample[self.analysistype].genus = 'NA' # sample.general.closestrefseqgenus = 'NA' else: # Populate attributes with 'NA' sample[self.analysistype].sortedgenera = 'NA' sample[self.analysistype].genus = 'NA'
python
def blastparse(self): """ Parse the blast results, and store necessary data in dictionaries in sample object """ logging.info('Parsing BLAST results') # Load the NCBI 16S reference database as a dictionary for sample in self.runmetadata.samples: if sample.general.bestassemblyfile != 'NA': # Load the NCBI 16S reference database as a dictionary dbrecords = SeqIO.to_dict(SeqIO.parse(sample[self.analysistype].baitfile, 'fasta')) # Allow for no BLAST results if os.path.isfile(sample[self.analysistype].blastreport): # Initialise a dictionary to store the number of times a genus is the best hit sample[self.analysistype].frequency = dict() # Open the sequence profile file as a dictionary blastdict = DictReader(open(sample[self.analysistype].blastreport), fieldnames=self.fieldnames, dialect='excel-tab') recorddict = dict() for record in blastdict: # Create the subject id. It will look like this: gi|1018196593|ref|NR_136472.1| subject = record['subject_id'] # Extract the genus name. Use the subject id as a key in the dictionary of the reference db. # It will return the full record e.g. gi|1018196593|ref|NR_136472.1| Escherichia marmotae # strain HT073016 16S ribosomal RNA, partial sequence # This full description can be manipulated to extract the genus e.g. Escherichia genus = dbrecords[subject].description.split('|')[-1].split()[0] # Increment the number of times this genus was found, or initialise the dictionary with this # genus the first time it is seen try: sample[self.analysistype].frequency[genus] += 1 except KeyError: sample[self.analysistype].frequency[genus] = 1 try: recorddict[dbrecords[subject].description] += 1 except KeyError: recorddict[dbrecords[subject].description] = 1 # Sort the dictionary based on the number of times a genus is seen sample[self.analysistype].sortedgenera = sorted(sample[self.analysistype].frequency.items(), key=operator.itemgetter(1), reverse=True) try: # Extract the top result, and set it as the genus of the sample sample[self.analysistype].genus = sample[self.analysistype].sortedgenera[0][0] # Previous code relies on having the closest refseq genus, so set this as above # sample.general.closestrefseqgenus = sample[self.analysistype].genus except IndexError: # Populate attributes with 'NA' sample[self.analysistype].sortedgenera = 'NA' sample[self.analysistype].genus = 'NA' # sample.general.closestrefseqgenus = 'NA' else: # Populate attributes with 'NA' sample[self.analysistype].sortedgenera = 'NA' sample[self.analysistype].genus = 'NA' # sample.general.closestrefseqgenus = 'NA' else: # Populate attributes with 'NA' sample[self.analysistype].sortedgenera = 'NA' sample[self.analysistype].genus = 'NA'
[ "def", "blastparse", "(", "self", ")", ":", "logging", ".", "info", "(", "'Parsing BLAST results'", ")", "# Load the NCBI 16S reference database as a dictionary", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "if", "sample", ".", "general", ".", "bestassemblyfile", "!=", "'NA'", ":", "# Load the NCBI 16S reference database as a dictionary", "dbrecords", "=", "SeqIO", ".", "to_dict", "(", "SeqIO", ".", "parse", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "baitfile", ",", "'fasta'", ")", ")", "# Allow for no BLAST results", "if", "os", ".", "path", ".", "isfile", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "blastreport", ")", ":", "# Initialise a dictionary to store the number of times a genus is the best hit", "sample", "[", "self", ".", "analysistype", "]", ".", "frequency", "=", "dict", "(", ")", "# Open the sequence profile file as a dictionary", "blastdict", "=", "DictReader", "(", "open", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "blastreport", ")", ",", "fieldnames", "=", "self", ".", "fieldnames", ",", "dialect", "=", "'excel-tab'", ")", "recorddict", "=", "dict", "(", ")", "for", "record", "in", "blastdict", ":", "# Create the subject id. It will look like this: gi|1018196593|ref|NR_136472.1|", "subject", "=", "record", "[", "'subject_id'", "]", "# Extract the genus name. Use the subject id as a key in the dictionary of the reference db.", "# It will return the full record e.g. gi|1018196593|ref|NR_136472.1| Escherichia marmotae", "# strain HT073016 16S ribosomal RNA, partial sequence", "# This full description can be manipulated to extract the genus e.g. Escherichia", "genus", "=", "dbrecords", "[", "subject", "]", ".", "description", ".", "split", "(", "'|'", ")", "[", "-", "1", "]", ".", "split", "(", ")", "[", "0", "]", "# Increment the number of times this genus was found, or initialise the dictionary with this", "# genus the first time it is seen", "try", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "frequency", "[", "genus", "]", "+=", "1", "except", "KeyError", ":", "sample", "[", "self", ".", "analysistype", "]", ".", "frequency", "[", "genus", "]", "=", "1", "try", ":", "recorddict", "[", "dbrecords", "[", "subject", "]", ".", "description", "]", "+=", "1", "except", "KeyError", ":", "recorddict", "[", "dbrecords", "[", "subject", "]", ".", "description", "]", "=", "1", "# Sort the dictionary based on the number of times a genus is seen", "sample", "[", "self", ".", "analysistype", "]", ".", "sortedgenera", "=", "sorted", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "frequency", ".", "items", "(", ")", ",", "key", "=", "operator", ".", "itemgetter", "(", "1", ")", ",", "reverse", "=", "True", ")", "try", ":", "# Extract the top result, and set it as the genus of the sample", "sample", "[", "self", ".", "analysistype", "]", ".", "genus", "=", "sample", "[", "self", ".", "analysistype", "]", ".", "sortedgenera", "[", "0", "]", "[", "0", "]", "# Previous code relies on having the closest refseq genus, so set this as above", "# sample.general.closestrefseqgenus = sample[self.analysistype].genus", "except", "IndexError", ":", "# Populate attributes with 'NA'", "sample", "[", "self", ".", "analysistype", "]", ".", "sortedgenera", "=", "'NA'", "sample", "[", "self", ".", "analysistype", "]", ".", "genus", "=", "'NA'", "# sample.general.closestrefseqgenus = 'NA'", "else", ":", "# Populate attributes with 'NA'", "sample", "[", "self", ".", "analysistype", "]", ".", "sortedgenera", "=", "'NA'", "sample", "[", "self", ".", "analysistype", "]", ".", "genus", "=", "'NA'", "# sample.general.closestrefseqgenus = 'NA'", "else", ":", "# Populate attributes with 'NA'", "sample", "[", "self", ".", "analysistype", "]", ".", "sortedgenera", "=", "'NA'", "sample", "[", "self", ".", "analysistype", "]", ".", "genus", "=", "'NA'" ]
Parse the blast results, and store necessary data in dictionaries in sample object
[ "Parse", "the", "blast", "results", "and", "store", "necessary", "data", "in", "dictionaries", "in", "sample", "object" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L304-L361
OLC-Bioinformatics/sipprverse
sixteenS/sixteens_full.py
SixteenS.reporter
def reporter(self): """ Creates a report of the results """ # Create the path in which the reports are stored make_path(self.reportpath) logging.info('Creating {} report'.format(self.analysistype)) # Initialise the header and data strings header = 'Strain,Gene,PercentIdentity,Genus,FoldCoverage\n' data = '' with open(self.sixteens_report, 'w') as report: with open(os.path.join(self.reportpath, self.analysistype + '_sequences.fa'), 'w') as sequences: for sample in self.runmetadata.samples: # Initialise sample[self.analysistype].sixteens_match = 'NA' sample[self.analysistype].species = 'NA' try: # Select the best hit of all the full-length 16S genes mapped - for 16S use the hit with the # fewest number of SNPs rather than the highest percent identity sample[self.analysistype].besthit = sorted(sample[self.analysistype].resultssnp.items(), key=operator.itemgetter(1))[0][0] # Parse the baited FASTA file to pull out the the description of the hit for record in SeqIO.parse(sample[self.analysistype].baitfile, 'fasta'): # If the best hit e.g. gi|631251361|ref|NR_112558.1| is present in the current record, # gi|631251361|ref|NR_112558.1| Escherichia coli strain JCM 1649 16S ribosomal RNA ..., # extract the match and the species if sample[self.analysistype].besthit in record.id: # Set the best match and species from the records sample[self.analysistype].sixteens_match = record.description.split(' 16S')[0] sample[self.analysistype].species = \ sample[self.analysistype].sixteens_match.split('|')[-1].split()[1] # Add the sample name to the data string data += sample.name + ',' # Find the record that matches the best hit, and extract the necessary values to be place in the # data string for name, identity in sample[self.analysistype].results.items(): if name == sample[self.analysistype].besthit: data += '{},{},{},{}\n'.format(name, identity, sample[self.analysistype].genus, sample[self.analysistype].avgdepth[name]) # Create a FASTA-formatted sequence output of the 16S sequence record = SeqRecord(Seq(sample[self.analysistype].sequences[name], IUPAC.unambiguous_dna), id='{}_{}'.format(sample.name, '16S'), description='') SeqIO.write(record, sequences, 'fasta') except (AttributeError, IndexError): data += '{}\n'.format(sample.name) # Write the results to the report report.write(header) report.write(data)
python
def reporter(self): """ Creates a report of the results """ # Create the path in which the reports are stored make_path(self.reportpath) logging.info('Creating {} report'.format(self.analysistype)) # Initialise the header and data strings header = 'Strain,Gene,PercentIdentity,Genus,FoldCoverage\n' data = '' with open(self.sixteens_report, 'w') as report: with open(os.path.join(self.reportpath, self.analysistype + '_sequences.fa'), 'w') as sequences: for sample in self.runmetadata.samples: # Initialise sample[self.analysistype].sixteens_match = 'NA' sample[self.analysistype].species = 'NA' try: # Select the best hit of all the full-length 16S genes mapped - for 16S use the hit with the # fewest number of SNPs rather than the highest percent identity sample[self.analysistype].besthit = sorted(sample[self.analysistype].resultssnp.items(), key=operator.itemgetter(1))[0][0] # Parse the baited FASTA file to pull out the the description of the hit for record in SeqIO.parse(sample[self.analysistype].baitfile, 'fasta'): # If the best hit e.g. gi|631251361|ref|NR_112558.1| is present in the current record, # gi|631251361|ref|NR_112558.1| Escherichia coli strain JCM 1649 16S ribosomal RNA ..., # extract the match and the species if sample[self.analysistype].besthit in record.id: # Set the best match and species from the records sample[self.analysistype].sixteens_match = record.description.split(' 16S')[0] sample[self.analysistype].species = \ sample[self.analysistype].sixteens_match.split('|')[-1].split()[1] # Add the sample name to the data string data += sample.name + ',' # Find the record that matches the best hit, and extract the necessary values to be place in the # data string for name, identity in sample[self.analysistype].results.items(): if name == sample[self.analysistype].besthit: data += '{},{},{},{}\n'.format(name, identity, sample[self.analysistype].genus, sample[self.analysistype].avgdepth[name]) # Create a FASTA-formatted sequence output of the 16S sequence record = SeqRecord(Seq(sample[self.analysistype].sequences[name], IUPAC.unambiguous_dna), id='{}_{}'.format(sample.name, '16S'), description='') SeqIO.write(record, sequences, 'fasta') except (AttributeError, IndexError): data += '{}\n'.format(sample.name) # Write the results to the report report.write(header) report.write(data)
[ "def", "reporter", "(", "self", ")", ":", "# Create the path in which the reports are stored", "make_path", "(", "self", ".", "reportpath", ")", "logging", ".", "info", "(", "'Creating {} report'", ".", "format", "(", "self", ".", "analysistype", ")", ")", "# Initialise the header and data strings", "header", "=", "'Strain,Gene,PercentIdentity,Genus,FoldCoverage\\n'", "data", "=", "''", "with", "open", "(", "self", ".", "sixteens_report", ",", "'w'", ")", "as", "report", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "self", ".", "reportpath", ",", "self", ".", "analysistype", "+", "'_sequences.fa'", ")", ",", "'w'", ")", "as", "sequences", ":", "for", "sample", "in", "self", ".", "runmetadata", ".", "samples", ":", "# Initialise", "sample", "[", "self", ".", "analysistype", "]", ".", "sixteens_match", "=", "'NA'", "sample", "[", "self", ".", "analysistype", "]", ".", "species", "=", "'NA'", "try", ":", "# Select the best hit of all the full-length 16S genes mapped - for 16S use the hit with the", "# fewest number of SNPs rather than the highest percent identity", "sample", "[", "self", ".", "analysistype", "]", ".", "besthit", "=", "sorted", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "resultssnp", ".", "items", "(", ")", ",", "key", "=", "operator", ".", "itemgetter", "(", "1", ")", ")", "[", "0", "]", "[", "0", "]", "# Parse the baited FASTA file to pull out the the description of the hit", "for", "record", "in", "SeqIO", ".", "parse", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "baitfile", ",", "'fasta'", ")", ":", "# If the best hit e.g. gi|631251361|ref|NR_112558.1| is present in the current record,", "# gi|631251361|ref|NR_112558.1| Escherichia coli strain JCM 1649 16S ribosomal RNA ...,", "# extract the match and the species", "if", "sample", "[", "self", ".", "analysistype", "]", ".", "besthit", "in", "record", ".", "id", ":", "# Set the best match and species from the records", "sample", "[", "self", ".", "analysistype", "]", ".", "sixteens_match", "=", "record", ".", "description", ".", "split", "(", "' 16S'", ")", "[", "0", "]", "sample", "[", "self", ".", "analysistype", "]", ".", "species", "=", "sample", "[", "self", ".", "analysistype", "]", ".", "sixteens_match", ".", "split", "(", "'|'", ")", "[", "-", "1", "]", ".", "split", "(", ")", "[", "1", "]", "# Add the sample name to the data string", "data", "+=", "sample", ".", "name", "+", "','", "# Find the record that matches the best hit, and extract the necessary values to be place in the", "# data string", "for", "name", ",", "identity", "in", "sample", "[", "self", ".", "analysistype", "]", ".", "results", ".", "items", "(", ")", ":", "if", "name", "==", "sample", "[", "self", ".", "analysistype", "]", ".", "besthit", ":", "data", "+=", "'{},{},{},{}\\n'", ".", "format", "(", "name", ",", "identity", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "genus", ",", "sample", "[", "self", ".", "analysistype", "]", ".", "avgdepth", "[", "name", "]", ")", "# Create a FASTA-formatted sequence output of the 16S sequence", "record", "=", "SeqRecord", "(", "Seq", "(", "sample", "[", "self", ".", "analysistype", "]", ".", "sequences", "[", "name", "]", ",", "IUPAC", ".", "unambiguous_dna", ")", ",", "id", "=", "'{}_{}'", ".", "format", "(", "sample", ".", "name", ",", "'16S'", ")", ",", "description", "=", "''", ")", "SeqIO", ".", "write", "(", "record", ",", "sequences", ",", "'fasta'", ")", "except", "(", "AttributeError", ",", "IndexError", ")", ":", "data", "+=", "'{}\\n'", ".", "format", "(", "sample", ".", "name", ")", "# Write the results to the report", "report", ".", "write", "(", "header", ")", "report", ".", "write", "(", "data", ")" ]
Creates a report of the results
[ "Creates", "a", "report", "of", "the", "results" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/sixteenS/sixteens_full.py#L364-L413
QunarOPS/qg.core
qg/core/observer.py
Observable.add_listener
def add_listener(self, evt_name, fn): """添加观察者函数。 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 .. note:: 允许一个函数多次注册,多次注册意味着一次 :func:`fire_event` 多次调用。 """ self._listeners.setdefault(evt_name, []) listeners = self.__get_listeners(evt_name) listeners.append(fn)
python
def add_listener(self, evt_name, fn): """添加观察者函数。 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 .. note:: 允许一个函数多次注册,多次注册意味着一次 :func:`fire_event` 多次调用。 """ self._listeners.setdefault(evt_name, []) listeners = self.__get_listeners(evt_name) listeners.append(fn)
[ "def", "add_listener", "(", "self", ",", "evt_name", ",", "fn", ")", ":", "self", ".", "_listeners", ".", "setdefault", "(", "evt_name", ",", "[", "]", ")", "listeners", "=", "self", ".", "__get_listeners", "(", "evt_name", ")", "listeners", ".", "append", "(", "fn", ")" ]
添加观察者函数。 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 .. note:: 允许一个函数多次注册,多次注册意味着一次 :func:`fire_event` 多次调用。
[ "添加观察者函数。" ]
train
https://github.com/QunarOPS/qg.core/blob/d5d7e36ea140cfe73e1b1850e8c96960b02a1ed3/qg/core/observer.py#L59-L70
QunarOPS/qg.core
qg/core/observer.py
Observable.remove_listener
def remove_listener(self, evt_name, fn, remove_all=False): """删除观察者函数。 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 :params remove_all: 是否删除fn在evt_name中的所有注册\n 如果为 `True`,则删除所有\n 如果为 `False`,则按注册先后顺序删除第一个\n .. note:: 允许一个函数多次注册,多次注册意味着一次时间多次调用。 """ listeners = self.__get_listeners(evt_name) if not self.has_listener(evt_name, fn): raise ObservableError( "function %r does not exist in the %r event", fn, evt_name) if remove_all: listeners[:] = [i for i in listeners if i != fn] else: listeners.remove(fn)
python
def remove_listener(self, evt_name, fn, remove_all=False): """删除观察者函数。 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 :params remove_all: 是否删除fn在evt_name中的所有注册\n 如果为 `True`,则删除所有\n 如果为 `False`,则按注册先后顺序删除第一个\n .. note:: 允许一个函数多次注册,多次注册意味着一次时间多次调用。 """ listeners = self.__get_listeners(evt_name) if not self.has_listener(evt_name, fn): raise ObservableError( "function %r does not exist in the %r event", fn, evt_name) if remove_all: listeners[:] = [i for i in listeners if i != fn] else: listeners.remove(fn)
[ "def", "remove_listener", "(", "self", ",", "evt_name", ",", "fn", ",", "remove_all", "=", "False", ")", ":", "listeners", "=", "self", ".", "__get_listeners", "(", "evt_name", ")", "if", "not", "self", ".", "has_listener", "(", "evt_name", ",", "fn", ")", ":", "raise", "ObservableError", "(", "\"function %r does not exist in the %r event\"", ",", "fn", ",", "evt_name", ")", "if", "remove_all", ":", "listeners", "[", ":", "]", "=", "[", "i", "for", "i", "in", "listeners", "if", "i", "!=", "fn", "]", "else", ":", "listeners", ".", "remove", "(", "fn", ")" ]
删除观察者函数。 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 :params remove_all: 是否删除fn在evt_name中的所有注册\n 如果为 `True`,则删除所有\n 如果为 `False`,则按注册先后顺序删除第一个\n .. note:: 允许一个函数多次注册,多次注册意味着一次时间多次调用。
[ "删除观察者函数。" ]
train
https://github.com/QunarOPS/qg.core/blob/d5d7e36ea140cfe73e1b1850e8c96960b02a1ed3/qg/core/observer.py#L72-L92
QunarOPS/qg.core
qg/core/observer.py
Observable.has_listener
def has_listener(self, evt_name, fn): """指定listener是否存在 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 """ listeners = self.__get_listeners(evt_name) return fn in listeners
python
def has_listener(self, evt_name, fn): """指定listener是否存在 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数 """ listeners = self.__get_listeners(evt_name) return fn in listeners
[ "def", "has_listener", "(", "self", ",", "evt_name", ",", "fn", ")", ":", "listeners", "=", "self", ".", "__get_listeners", "(", "evt_name", ")", "return", "fn", "in", "listeners" ]
指定listener是否存在 :params evt_name: 事件名称 :params fn: 要注册的触发函数函数
[ "指定listener是否存在" ]
train
https://github.com/QunarOPS/qg.core/blob/d5d7e36ea140cfe73e1b1850e8c96960b02a1ed3/qg/core/observer.py#L94-L101
QunarOPS/qg.core
qg/core/observer.py
Observable.fire_event
def fire_event(self, evt_name, *args, **kwargs): """触发事件 :params evt_name: 事件名称 :params args: 给事件接受者的参数 :params kwargs: 给事件接受者的参数 """ listeners = self.__get_listeners(evt_name) evt = self.generate_event(evt_name) for listener in listeners: listener(evt, *args, **kwargs)
python
def fire_event(self, evt_name, *args, **kwargs): """触发事件 :params evt_name: 事件名称 :params args: 给事件接受者的参数 :params kwargs: 给事件接受者的参数 """ listeners = self.__get_listeners(evt_name) evt = self.generate_event(evt_name) for listener in listeners: listener(evt, *args, **kwargs)
[ "def", "fire_event", "(", "self", ",", "evt_name", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "listeners", "=", "self", ".", "__get_listeners", "(", "evt_name", ")", "evt", "=", "self", ".", "generate_event", "(", "evt_name", ")", "for", "listener", "in", "listeners", ":", "listener", "(", "evt", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
触发事件 :params evt_name: 事件名称 :params args: 给事件接受者的参数 :params kwargs: 给事件接受者的参数
[ "触发事件" ]
train
https://github.com/QunarOPS/qg.core/blob/d5d7e36ea140cfe73e1b1850e8c96960b02a1ed3/qg/core/observer.py#L118-L128
pyBookshelf/bookshelf
bookshelf/api_v2/ec2.py
create_server_ec2
def create_server_ec2(connection, region, disk_name, disk_size, ami, key_pair, instance_type, tags={}, security_groups=None, delete_on_termination=True, log=False, wait_for_ssh_available=True): """ Creates EC2 Instance """ if log: log_green("Started...") log_yellow("...Creating EC2 instance...") ebs_volume = EBSBlockDeviceType() ebs_volume.size = disk_size bdm = BlockDeviceMapping() bdm[disk_name] = ebs_volume # get an ec2 ami image object with our choosen ami image = connection.get_all_images(ami)[0] # start a new instance reservation = image.run(1, 1, key_name=key_pair, security_groups=security_groups, block_device_map=bdm, instance_type=instance_type) # and get our instance_id instance = reservation.instances[0] # and loop and wait until ssh is available while instance.state == u'pending': if log: log_yellow("Instance state: %s" % instance.state) sleep(10) instance.update() if log: log_green("Instance state: %s" % instance.state) if wait_for_ssh_available: wait_for_ssh(instance.public_dns_name) # update the EBS volumes to be deleted on instance termination if delete_on_termination: for dev, bd in instance.block_device_mapping.items(): instance.modify_attribute('BlockDeviceMapping', ["%s=%d" % (dev, 1)]) # add a tag to our instance connection.create_tags([instance.id], tags) if log: log_green("Public dns: %s" % instance.public_dns_name) # returns our new instance return instance
python
def create_server_ec2(connection, region, disk_name, disk_size, ami, key_pair, instance_type, tags={}, security_groups=None, delete_on_termination=True, log=False, wait_for_ssh_available=True): """ Creates EC2 Instance """ if log: log_green("Started...") log_yellow("...Creating EC2 instance...") ebs_volume = EBSBlockDeviceType() ebs_volume.size = disk_size bdm = BlockDeviceMapping() bdm[disk_name] = ebs_volume # get an ec2 ami image object with our choosen ami image = connection.get_all_images(ami)[0] # start a new instance reservation = image.run(1, 1, key_name=key_pair, security_groups=security_groups, block_device_map=bdm, instance_type=instance_type) # and get our instance_id instance = reservation.instances[0] # and loop and wait until ssh is available while instance.state == u'pending': if log: log_yellow("Instance state: %s" % instance.state) sleep(10) instance.update() if log: log_green("Instance state: %s" % instance.state) if wait_for_ssh_available: wait_for_ssh(instance.public_dns_name) # update the EBS volumes to be deleted on instance termination if delete_on_termination: for dev, bd in instance.block_device_mapping.items(): instance.modify_attribute('BlockDeviceMapping', ["%s=%d" % (dev, 1)]) # add a tag to our instance connection.create_tags([instance.id], tags) if log: log_green("Public dns: %s" % instance.public_dns_name) # returns our new instance return instance
[ "def", "create_server_ec2", "(", "connection", ",", "region", ",", "disk_name", ",", "disk_size", ",", "ami", ",", "key_pair", ",", "instance_type", ",", "tags", "=", "{", "}", ",", "security_groups", "=", "None", ",", "delete_on_termination", "=", "True", ",", "log", "=", "False", ",", "wait_for_ssh_available", "=", "True", ")", ":", "if", "log", ":", "log_green", "(", "\"Started...\"", ")", "log_yellow", "(", "\"...Creating EC2 instance...\"", ")", "ebs_volume", "=", "EBSBlockDeviceType", "(", ")", "ebs_volume", ".", "size", "=", "disk_size", "bdm", "=", "BlockDeviceMapping", "(", ")", "bdm", "[", "disk_name", "]", "=", "ebs_volume", "# get an ec2 ami image object with our choosen ami", "image", "=", "connection", ".", "get_all_images", "(", "ami", ")", "[", "0", "]", "# start a new instance", "reservation", "=", "image", ".", "run", "(", "1", ",", "1", ",", "key_name", "=", "key_pair", ",", "security_groups", "=", "security_groups", ",", "block_device_map", "=", "bdm", ",", "instance_type", "=", "instance_type", ")", "# and get our instance_id", "instance", "=", "reservation", ".", "instances", "[", "0", "]", "# and loop and wait until ssh is available", "while", "instance", ".", "state", "==", "u'pending'", ":", "if", "log", ":", "log_yellow", "(", "\"Instance state: %s\"", "%", "instance", ".", "state", ")", "sleep", "(", "10", ")", "instance", ".", "update", "(", ")", "if", "log", ":", "log_green", "(", "\"Instance state: %s\"", "%", "instance", ".", "state", ")", "if", "wait_for_ssh_available", ":", "wait_for_ssh", "(", "instance", ".", "public_dns_name", ")", "# update the EBS volumes to be deleted on instance termination", "if", "delete_on_termination", ":", "for", "dev", ",", "bd", "in", "instance", ".", "block_device_mapping", ".", "items", "(", ")", ":", "instance", ".", "modify_attribute", "(", "'BlockDeviceMapping'", ",", "[", "\"%s=%d\"", "%", "(", "dev", ",", "1", ")", "]", ")", "# add a tag to our instance", "connection", ".", "create_tags", "(", "[", "instance", ".", "id", "]", ",", "tags", ")", "if", "log", ":", "log_green", "(", "\"Public dns: %s\"", "%", "instance", ".", "public_dns_name", ")", "# returns our new instance", "return", "instance" ]
Creates EC2 Instance
[ "Creates", "EC2", "Instance" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/ec2.py#L54-L115
pyBookshelf/bookshelf
bookshelf/api_v2/ec2.py
destroy_ebs_volume
def destroy_ebs_volume(connection, region, volume_id, log=False): """ destroys an ebs volume """ if ebs_volume_exists(connection, region, volume_id): if log: log_yellow('destroying EBS volume ...') try: connection.delete_volume(volume_id) except: # our EBS volume may be gone, but AWS info tables are stale # wait a bit and ask again sleep(5) if not ebs_volume_exists(connection, region, volume_id): pass else: raise("Couldn't delete EBS volume")
python
def destroy_ebs_volume(connection, region, volume_id, log=False): """ destroys an ebs volume """ if ebs_volume_exists(connection, region, volume_id): if log: log_yellow('destroying EBS volume ...') try: connection.delete_volume(volume_id) except: # our EBS volume may be gone, but AWS info tables are stale # wait a bit and ask again sleep(5) if not ebs_volume_exists(connection, region, volume_id): pass else: raise("Couldn't delete EBS volume")
[ "def", "destroy_ebs_volume", "(", "connection", ",", "region", ",", "volume_id", ",", "log", "=", "False", ")", ":", "if", "ebs_volume_exists", "(", "connection", ",", "region", ",", "volume_id", ")", ":", "if", "log", ":", "log_yellow", "(", "'destroying EBS volume ...'", ")", "try", ":", "connection", ".", "delete_volume", "(", "volume_id", ")", "except", ":", "# our EBS volume may be gone, but AWS info tables are stale", "# wait a bit and ask again", "sleep", "(", "5", ")", "if", "not", "ebs_volume_exists", "(", "connection", ",", "region", ",", "volume_id", ")", ":", "pass", "else", ":", "raise", "(", "\"Couldn't delete EBS volume\"", ")" ]
destroys an ebs volume
[ "destroys", "an", "ebs", "volume" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/ec2.py#L118-L133
pyBookshelf/bookshelf
bookshelf/api_v2/ec2.py
destroy_ec2
def destroy_ec2(connection, region, instance_id, log=False): """ terminates the instance """ data = get_ec2_info(connection=connection, instance_id=instance_id, region=region) instance = connection.terminate_instances(instance_ids=[data['id']])[0] if log: log_yellow('destroying instance ...') while instance.state != "terminated": if log: log_yellow("Instance state: %s" % instance.state) sleep(10) instance.update() volume_id = data['volume'] if volume_id: destroy_ebs_volume(connection, region, volume_id)
python
def destroy_ec2(connection, region, instance_id, log=False): """ terminates the instance """ data = get_ec2_info(connection=connection, instance_id=instance_id, region=region) instance = connection.terminate_instances(instance_ids=[data['id']])[0] if log: log_yellow('destroying instance ...') while instance.state != "terminated": if log: log_yellow("Instance state: %s" % instance.state) sleep(10) instance.update() volume_id = data['volume'] if volume_id: destroy_ebs_volume(connection, region, volume_id)
[ "def", "destroy_ec2", "(", "connection", ",", "region", ",", "instance_id", ",", "log", "=", "False", ")", ":", "data", "=", "get_ec2_info", "(", "connection", "=", "connection", ",", "instance_id", "=", "instance_id", ",", "region", "=", "region", ")", "instance", "=", "connection", ".", "terminate_instances", "(", "instance_ids", "=", "[", "data", "[", "'id'", "]", "]", ")", "[", "0", "]", "if", "log", ":", "log_yellow", "(", "'destroying instance ...'", ")", "while", "instance", ".", "state", "!=", "\"terminated\"", ":", "if", "log", ":", "log_yellow", "(", "\"Instance state: %s\"", "%", "instance", ".", "state", ")", "sleep", "(", "10", ")", "instance", ".", "update", "(", ")", "volume_id", "=", "data", "[", "'volume'", "]", "if", "volume_id", ":", "destroy_ebs_volume", "(", "connection", ",", "region", ",", "volume_id", ")" ]
terminates the instance
[ "terminates", "the", "instance" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/ec2.py#L136-L153
pyBookshelf/bookshelf
bookshelf/api_v2/ec2.py
down_ec2
def down_ec2(connection, instance_id, region, log=False): """ shutdown of an existing EC2 instance """ # get the instance_id from the state file, and stop the instance instance = connection.stop_instances(instance_ids=instance_id)[0] while instance.state != "stopped": if log: log_yellow("Instance state: %s" % instance.state) sleep(10) instance.update() if log: log_green('Instance state: %s' % instance.state)
python
def down_ec2(connection, instance_id, region, log=False): """ shutdown of an existing EC2 instance """ # get the instance_id from the state file, and stop the instance instance = connection.stop_instances(instance_ids=instance_id)[0] while instance.state != "stopped": if log: log_yellow("Instance state: %s" % instance.state) sleep(10) instance.update() if log: log_green('Instance state: %s' % instance.state)
[ "def", "down_ec2", "(", "connection", ",", "instance_id", ",", "region", ",", "log", "=", "False", ")", ":", "# get the instance_id from the state file, and stop the instance", "instance", "=", "connection", ".", "stop_instances", "(", "instance_ids", "=", "instance_id", ")", "[", "0", "]", "while", "instance", ".", "state", "!=", "\"stopped\"", ":", "if", "log", ":", "log_yellow", "(", "\"Instance state: %s\"", "%", "instance", ".", "state", ")", "sleep", "(", "10", ")", "instance", ".", "update", "(", ")", "if", "log", ":", "log_green", "(", "'Instance state: %s'", "%", "instance", ".", "state", ")" ]
shutdown of an existing EC2 instance
[ "shutdown", "of", "an", "existing", "EC2", "instance" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/ec2.py#L156-L166
pyBookshelf/bookshelf
bookshelf/api_v2/ec2.py
ebs_volume_exists
def ebs_volume_exists(connection, region, volume_id): """ finds out if a ebs volume exists """ for vol in connection.get_all_volumes(): if vol.id == volume_id: return True return False
python
def ebs_volume_exists(connection, region, volume_id): """ finds out if a ebs volume exists """ for vol in connection.get_all_volumes(): if vol.id == volume_id: return True return False
[ "def", "ebs_volume_exists", "(", "connection", ",", "region", ",", "volume_id", ")", ":", "for", "vol", "in", "connection", ".", "get_all_volumes", "(", ")", ":", "if", "vol", ".", "id", "==", "volume_id", ":", "return", "True", "return", "False" ]
finds out if a ebs volume exists
[ "finds", "out", "if", "a", "ebs", "volume", "exists" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/ec2.py#L169-L174
pyBookshelf/bookshelf
bookshelf/api_v2/ec2.py
get_ec2_info
def get_ec2_info(connection, instance_id, region, username=None): """ queries EC2 for details about a particular instance_id """ instance = connection.get_only_instances( filters={'instance_id': instance_id} )[0] data = instance.__dict__ data['state'] = instance.state data['cloud_type'] = 'ec2' try: volume = connection.get_all_volumes( filters={'attachment.instance-id': instance.id} )[0].id data['volume'] = volume except: data['volume'] = '' return data
python
def get_ec2_info(connection, instance_id, region, username=None): """ queries EC2 for details about a particular instance_id """ instance = connection.get_only_instances( filters={'instance_id': instance_id} )[0] data = instance.__dict__ data['state'] = instance.state data['cloud_type'] = 'ec2' try: volume = connection.get_all_volumes( filters={'attachment.instance-id': instance.id} )[0].id data['volume'] = volume except: data['volume'] = '' return data
[ "def", "get_ec2_info", "(", "connection", ",", "instance_id", ",", "region", ",", "username", "=", "None", ")", ":", "instance", "=", "connection", ".", "get_only_instances", "(", "filters", "=", "{", "'instance_id'", ":", "instance_id", "}", ")", "[", "0", "]", "data", "=", "instance", ".", "__dict__", "data", "[", "'state'", "]", "=", "instance", ".", "state", "data", "[", "'cloud_type'", "]", "=", "'ec2'", "try", ":", "volume", "=", "connection", ".", "get_all_volumes", "(", "filters", "=", "{", "'attachment.instance-id'", ":", "instance", ".", "id", "}", ")", "[", "0", "]", ".", "id", "data", "[", "'volume'", "]", "=", "volume", "except", ":", "data", "[", "'volume'", "]", "=", "''", "return", "data" ]
queries EC2 for details about a particular instance_id
[ "queries", "EC2", "for", "details", "about", "a", "particular", "instance_id" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/ec2.py#L181-L202
pyBookshelf/bookshelf
bookshelf/api_v2/ec2.py
up_ec2
def up_ec2(connection, region, instance_id, wait_for_ssh_available=True, log=False, timeout=600): """ boots an existing ec2_instance """ # boot the ec2 instance instance = connection.start_instances(instance_ids=instance_id)[0] instance.update() while instance.state != "running" and timeout > 1: log_yellow("Instance state: %s" % instance.state) if log: log_yellow("Instance state: %s" % instance.state) sleep(10) timeout = timeout - 10 instance.update() # and make sure we don't return until the instance is fully up if wait_for_ssh_available: wait_for_ssh(instance.ip_address)
python
def up_ec2(connection, region, instance_id, wait_for_ssh_available=True, log=False, timeout=600): """ boots an existing ec2_instance """ # boot the ec2 instance instance = connection.start_instances(instance_ids=instance_id)[0] instance.update() while instance.state != "running" and timeout > 1: log_yellow("Instance state: %s" % instance.state) if log: log_yellow("Instance state: %s" % instance.state) sleep(10) timeout = timeout - 10 instance.update() # and make sure we don't return until the instance is fully up if wait_for_ssh_available: wait_for_ssh(instance.ip_address)
[ "def", "up_ec2", "(", "connection", ",", "region", ",", "instance_id", ",", "wait_for_ssh_available", "=", "True", ",", "log", "=", "False", ",", "timeout", "=", "600", ")", ":", "# boot the ec2 instance", "instance", "=", "connection", ".", "start_instances", "(", "instance_ids", "=", "instance_id", ")", "[", "0", "]", "instance", ".", "update", "(", ")", "while", "instance", ".", "state", "!=", "\"running\"", "and", "timeout", ">", "1", ":", "log_yellow", "(", "\"Instance state: %s\"", "%", "instance", ".", "state", ")", "if", "log", ":", "log_yellow", "(", "\"Instance state: %s\"", "%", "instance", ".", "state", ")", "sleep", "(", "10", ")", "timeout", "=", "timeout", "-", "10", "instance", ".", "update", "(", ")", "# and make sure we don't return until the instance is fully up", "if", "wait_for_ssh_available", ":", "wait_for_ssh", "(", "instance", ".", "ip_address", ")" ]
boots an existing ec2_instance
[ "boots", "an", "existing", "ec2_instance" ]
train
https://github.com/pyBookshelf/bookshelf/blob/a6770678e735de95b194f6e6989223970db5f654/bookshelf/api_v2/ec2.py#L205-L226
tsnaomi/finnsyll
finnsyll/prev/v03.py
apply_T4
def apply_T4(word): '''An agglutination diphthong that ends in /u, y/ usually contains a syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us], [va.ka.ut.taa].''' WORD = word.split('.') for i, v in enumerate(WORD): # i % 2 != 0 prevents this rule from applying to first, third, etc. # syllables, which receive stress (WSP) if is_consonant(v[-1]) and i % 2 != 0: if i + 1 == len(WORD) or is_consonant(WORD[i + 1][0]): vv = u_or_y_final_diphthongs(v) if vv and not is_long(vv.group(1)): I = vv.start(1) + 1 WORD[i] = v[:I] + '.' + v[I:] WORD = '.'.join(WORD) RULE = ' T4' if word != WORD else '' return WORD, RULE
python
def apply_T4(word): '''An agglutination diphthong that ends in /u, y/ usually contains a syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us], [va.ka.ut.taa].''' WORD = word.split('.') for i, v in enumerate(WORD): # i % 2 != 0 prevents this rule from applying to first, third, etc. # syllables, which receive stress (WSP) if is_consonant(v[-1]) and i % 2 != 0: if i + 1 == len(WORD) or is_consonant(WORD[i + 1][0]): vv = u_or_y_final_diphthongs(v) if vv and not is_long(vv.group(1)): I = vv.start(1) + 1 WORD[i] = v[:I] + '.' + v[I:] WORD = '.'.join(WORD) RULE = ' T4' if word != WORD else '' return WORD, RULE
[ "def", "apply_T4", "(", "word", ")", ":", "WORD", "=", "word", ".", "split", "(", "'.'", ")", "for", "i", ",", "v", "in", "enumerate", "(", "WORD", ")", ":", "# i % 2 != 0 prevents this rule from applying to first, third, etc.", "# syllables, which receive stress (WSP)", "if", "is_consonant", "(", "v", "[", "-", "1", "]", ")", "and", "i", "%", "2", "!=", "0", ":", "if", "i", "+", "1", "==", "len", "(", "WORD", ")", "or", "is_consonant", "(", "WORD", "[", "i", "+", "1", "]", "[", "0", "]", ")", ":", "vv", "=", "u_or_y_final_diphthongs", "(", "v", ")", "if", "vv", "and", "not", "is_long", "(", "vv", ".", "group", "(", "1", ")", ")", ":", "I", "=", "vv", ".", "start", "(", "1", ")", "+", "1", "WORD", "[", "i", "]", "=", "v", "[", ":", "I", "]", "+", "'.'", "+", "v", "[", "I", ":", "]", "WORD", "=", "'.'", ".", "join", "(", "WORD", ")", "RULE", "=", "' T4'", "if", "word", "!=", "WORD", "else", "''", "return", "WORD", ",", "RULE" ]
An agglutination diphthong that ends in /u, y/ usually contains a syllable boundary when -C# or -CCV follow, e.g., [lau.ka.us], [va.ka.ut.taa].
[ "An", "agglutination", "diphthong", "that", "ends", "in", "/", "u", "y", "/", "usually", "contains", "a", "syllable", "boundary", "when", "-", "C#", "or", "-", "CCV", "follow", "e", ".", "g", ".", "[", "lau", ".", "ka", ".", "us", "]", "[", "va", ".", "ka", ".", "ut", ".", "taa", "]", "." ]
train
https://github.com/tsnaomi/finnsyll/blob/6a42740311688c946a636a3e2304866c7aa041b3/finnsyll/prev/v03.py#L137-L159
OLC-Bioinformatics/sipprverse
cgecore/utility.py
seqs_from_file
def seqs_from_file(filename, exit_on_err=False, return_qual=False): """Extract sequences from a file Name: seqs_from_file Author(s): Martin C F Thomsen Date: 18 Jul 2013 Description: Iterator which extract sequence data from the input file Args: filename: string which contain a path to the input file Supported Formats: fasta, fastq USAGE: >>> import os, sys >>> # Create fasta test file >>> file_content = ('>head1 desc1\nthis_is_seq_1\n>head2 desc2\n' 'this_is_seq_2\n>head3 desc3\nthis_is_seq_3\n') >>> with open_('test.fsa', 'w') as f: f.write(file_content) >>> # Parse and print the fasta file >>> for seq, name, desc in SeqsFromFile('test.fsa'): ... print ">%s %s\n%s"%(name, desc, seq) ... >head1 desc1 this_is_seq_1 >head2 desc2 this_is_seq_2 >head3 desc3 this_is_seq_3 """ # VALIDATE INPUT if not isinstance(filename, str): msg = 'Filename has to be a string.' if exit_on_err: sys.stderr.write('Error: %s\n'%msg) sys.exit(1) else: raise IOError(msg) if not os.path.exists(filename): msg = 'File "%s" does not exist.'%filename if exit_on_err: sys.stderr.write('Error: %s\n'%msg) sys.exit(1) else: raise IOError(msg) # EXTRACT DATA with open_(filename,"rt") as f: query_seq_segments = [] seq, name, desc, qual = '', '', '', '' add_segment = query_seq_segments.append for l in f: if len(l.strip()) == 0: continue #sys.stderr.write("%s\n"%line) fields=l.strip().split() if l.startswith(">"): # FASTA HEADER FOUND if query_seq_segments != []: # YIELD SEQUENCE AND RESET seq = ''.join(query_seq_segments) yield (seq, name, desc) seq, name, desc = '', '', '' del query_seq_segments[:] name = fields[0][1:] desc = ' '.join(fields[1:]) elif l.startswith("@"): # FASTQ HEADER FOUND name = fields[0][1:] desc = ' '.join(fields[1:]) try: # EXTRACT FASTQ SEQUENCE seq = next(f).strip().split()[0] # SKIP SECOND HEADER LINE AND QUALITY SCORES l = next(f) qual = next(f).strip() # Qualities except: break else: # YIELD SEQUENCE AND RESET if return_qual: yield (seq, qual, name, desc) else: yield (seq, name, desc) seq, name, desc, qual = '', '', '', '' elif len(fields[0])>0: # EXTRACT FASTA SEQUENCE add_segment(fields[0]) # CHECK FOR LAST FASTA SEQUENCE if query_seq_segments != []: # YIELD SEQUENCE seq = ''.join(query_seq_segments) yield (seq, name, desc)
python
def seqs_from_file(filename, exit_on_err=False, return_qual=False): """Extract sequences from a file Name: seqs_from_file Author(s): Martin C F Thomsen Date: 18 Jul 2013 Description: Iterator which extract sequence data from the input file Args: filename: string which contain a path to the input file Supported Formats: fasta, fastq USAGE: >>> import os, sys >>> # Create fasta test file >>> file_content = ('>head1 desc1\nthis_is_seq_1\n>head2 desc2\n' 'this_is_seq_2\n>head3 desc3\nthis_is_seq_3\n') >>> with open_('test.fsa', 'w') as f: f.write(file_content) >>> # Parse and print the fasta file >>> for seq, name, desc in SeqsFromFile('test.fsa'): ... print ">%s %s\n%s"%(name, desc, seq) ... >head1 desc1 this_is_seq_1 >head2 desc2 this_is_seq_2 >head3 desc3 this_is_seq_3 """ # VALIDATE INPUT if not isinstance(filename, str): msg = 'Filename has to be a string.' if exit_on_err: sys.stderr.write('Error: %s\n'%msg) sys.exit(1) else: raise IOError(msg) if not os.path.exists(filename): msg = 'File "%s" does not exist.'%filename if exit_on_err: sys.stderr.write('Error: %s\n'%msg) sys.exit(1) else: raise IOError(msg) # EXTRACT DATA with open_(filename,"rt") as f: query_seq_segments = [] seq, name, desc, qual = '', '', '', '' add_segment = query_seq_segments.append for l in f: if len(l.strip()) == 0: continue #sys.stderr.write("%s\n"%line) fields=l.strip().split() if l.startswith(">"): # FASTA HEADER FOUND if query_seq_segments != []: # YIELD SEQUENCE AND RESET seq = ''.join(query_seq_segments) yield (seq, name, desc) seq, name, desc = '', '', '' del query_seq_segments[:] name = fields[0][1:] desc = ' '.join(fields[1:]) elif l.startswith("@"): # FASTQ HEADER FOUND name = fields[0][1:] desc = ' '.join(fields[1:]) try: # EXTRACT FASTQ SEQUENCE seq = next(f).strip().split()[0] # SKIP SECOND HEADER LINE AND QUALITY SCORES l = next(f) qual = next(f).strip() # Qualities except: break else: # YIELD SEQUENCE AND RESET if return_qual: yield (seq, qual, name, desc) else: yield (seq, name, desc) seq, name, desc, qual = '', '', '', '' elif len(fields[0])>0: # EXTRACT FASTA SEQUENCE add_segment(fields[0]) # CHECK FOR LAST FASTA SEQUENCE if query_seq_segments != []: # YIELD SEQUENCE seq = ''.join(query_seq_segments) yield (seq, name, desc)
[ "def", "seqs_from_file", "(", "filename", ",", "exit_on_err", "=", "False", ",", "return_qual", "=", "False", ")", ":", "# VALIDATE INPUT", "if", "not", "isinstance", "(", "filename", ",", "str", ")", ":", "msg", "=", "'Filename has to be a string.'", "if", "exit_on_err", ":", "sys", ".", "stderr", ".", "write", "(", "'Error: %s\\n'", "%", "msg", ")", "sys", ".", "exit", "(", "1", ")", "else", ":", "raise", "IOError", "(", "msg", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "filename", ")", ":", "msg", "=", "'File \"%s\" does not exist.'", "%", "filename", "if", "exit_on_err", ":", "sys", ".", "stderr", ".", "write", "(", "'Error: %s\\n'", "%", "msg", ")", "sys", ".", "exit", "(", "1", ")", "else", ":", "raise", "IOError", "(", "msg", ")", "# EXTRACT DATA", "with", "open_", "(", "filename", ",", "\"rt\"", ")", "as", "f", ":", "query_seq_segments", "=", "[", "]", "seq", ",", "name", ",", "desc", ",", "qual", "=", "''", ",", "''", ",", "''", ",", "''", "add_segment", "=", "query_seq_segments", ".", "append", "for", "l", "in", "f", ":", "if", "len", "(", "l", ".", "strip", "(", ")", ")", "==", "0", ":", "continue", "#sys.stderr.write(\"%s\\n\"%line)", "fields", "=", "l", ".", "strip", "(", ")", ".", "split", "(", ")", "if", "l", ".", "startswith", "(", "\">\"", ")", ":", "# FASTA HEADER FOUND", "if", "query_seq_segments", "!=", "[", "]", ":", "# YIELD SEQUENCE AND RESET", "seq", "=", "''", ".", "join", "(", "query_seq_segments", ")", "yield", "(", "seq", ",", "name", ",", "desc", ")", "seq", ",", "name", ",", "desc", "=", "''", ",", "''", ",", "''", "del", "query_seq_segments", "[", ":", "]", "name", "=", "fields", "[", "0", "]", "[", "1", ":", "]", "desc", "=", "' '", ".", "join", "(", "fields", "[", "1", ":", "]", ")", "elif", "l", ".", "startswith", "(", "\"@\"", ")", ":", "# FASTQ HEADER FOUND", "name", "=", "fields", "[", "0", "]", "[", "1", ":", "]", "desc", "=", "' '", ".", "join", "(", "fields", "[", "1", ":", "]", ")", "try", ":", "# EXTRACT FASTQ SEQUENCE", "seq", "=", "next", "(", "f", ")", ".", "strip", "(", ")", ".", "split", "(", ")", "[", "0", "]", "# SKIP SECOND HEADER LINE AND QUALITY SCORES", "l", "=", "next", "(", "f", ")", "qual", "=", "next", "(", "f", ")", ".", "strip", "(", ")", "# Qualities", "except", ":", "break", "else", ":", "# YIELD SEQUENCE AND RESET", "if", "return_qual", ":", "yield", "(", "seq", ",", "qual", ",", "name", ",", "desc", ")", "else", ":", "yield", "(", "seq", ",", "name", ",", "desc", ")", "seq", ",", "name", ",", "desc", ",", "qual", "=", "''", ",", "''", ",", "''", ",", "''", "elif", "len", "(", "fields", "[", "0", "]", ")", ">", "0", ":", "# EXTRACT FASTA SEQUENCE", "add_segment", "(", "fields", "[", "0", "]", ")", "# CHECK FOR LAST FASTA SEQUENCE", "if", "query_seq_segments", "!=", "[", "]", ":", "# YIELD SEQUENCE", "seq", "=", "''", ".", "join", "(", "query_seq_segments", ")", "yield", "(", "seq", ",", "name", ",", "desc", ")" ]
Extract sequences from a file Name: seqs_from_file Author(s): Martin C F Thomsen Date: 18 Jul 2013 Description: Iterator which extract sequence data from the input file Args: filename: string which contain a path to the input file Supported Formats: fasta, fastq USAGE: >>> import os, sys >>> # Create fasta test file >>> file_content = ('>head1 desc1\nthis_is_seq_1\n>head2 desc2\n' 'this_is_seq_2\n>head3 desc3\nthis_is_seq_3\n') >>> with open_('test.fsa', 'w') as f: f.write(file_content) >>> # Parse and print the fasta file >>> for seq, name, desc in SeqsFromFile('test.fsa'): ... print ">%s %s\n%s"%(name, desc, seq) ... >head1 desc1 this_is_seq_1 >head2 desc2 this_is_seq_2 >head3 desc3 this_is_seq_3
[ "Extract", "sequences", "from", "a", "file", "Name", ":", "seqs_from_file", "Author", "(", "s", ")", ":", "Martin", "C", "F", "Thomsen", "Date", ":", "18", "Jul", "2013", "Description", ":", "Iterator", "which", "extract", "sequence", "data", "from", "the", "input", "file", "Args", ":", "filename", ":", "string", "which", "contain", "a", "path", "to", "the", "input", "file", "Supported", "Formats", ":", "fasta", "fastq", "USAGE", ":", ">>>", "import", "os", "sys", ">>>", "#", "Create", "fasta", "test", "file", ">>>", "file_content", "=", "(", ">", "head1", "desc1", "\\", "nthis_is_seq_1", "\\", "n", ">", "head2", "desc2", "\\", "n", "this_is_seq_2", "\\", "n", ">", "head3", "desc3", "\\", "nthis_is_seq_3", "\\", "n", ")", ">>>", "with", "open_", "(", "test", ".", "fsa", "w", ")", "as", "f", ":", "f", ".", "write", "(", "file_content", ")", ">>>", "#", "Parse", "and", "print", "the", "fasta", "file", ">>>", "for", "seq", "name", "desc", "in", "SeqsFromFile", "(", "test", ".", "fsa", ")", ":", "...", "print", ">", "%s", "%s", "\\", "n%s", "%", "(", "name", "desc", "seq", ")", "...", ">", "head1", "desc1", "this_is_seq_1", ">", "head2", "desc2", "this_is_seq_2", ">", "head3", "desc3", "this_is_seq_3" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/cgecore/utility.py#L223-L318
OLC-Bioinformatics/sipprverse
cgecore/utility.py
open_
def open_(filename, mode=None, compresslevel=9): """Switch for both open() and gzip.open(). Determines if the file is normal or gzipped by looking at the file extension. The filename argument is required; mode defaults to 'rb' for gzip and 'r' for normal and compresslevel defaults to 9 for gzip. >>> import gzip >>> from contextlib import closing >>> with open_(filename) as f: ... f.read() """ if filename[-3:] == '.gz': if mode is None: mode = 'rt' return closing(gzip.open(filename, mode, compresslevel)) else: if mode is None: mode = 'r' return open(filename, mode)
python
def open_(filename, mode=None, compresslevel=9): """Switch for both open() and gzip.open(). Determines if the file is normal or gzipped by looking at the file extension. The filename argument is required; mode defaults to 'rb' for gzip and 'r' for normal and compresslevel defaults to 9 for gzip. >>> import gzip >>> from contextlib import closing >>> with open_(filename) as f: ... f.read() """ if filename[-3:] == '.gz': if mode is None: mode = 'rt' return closing(gzip.open(filename, mode, compresslevel)) else: if mode is None: mode = 'r' return open(filename, mode)
[ "def", "open_", "(", "filename", ",", "mode", "=", "None", ",", "compresslevel", "=", "9", ")", ":", "if", "filename", "[", "-", "3", ":", "]", "==", "'.gz'", ":", "if", "mode", "is", "None", ":", "mode", "=", "'rt'", "return", "closing", "(", "gzip", ".", "open", "(", "filename", ",", "mode", ",", "compresslevel", ")", ")", "else", ":", "if", "mode", "is", "None", ":", "mode", "=", "'r'", "return", "open", "(", "filename", ",", "mode", ")" ]
Switch for both open() and gzip.open(). Determines if the file is normal or gzipped by looking at the file extension. The filename argument is required; mode defaults to 'rb' for gzip and 'r' for normal and compresslevel defaults to 9 for gzip. >>> import gzip >>> from contextlib import closing >>> with open_(filename) as f: ... f.read()
[ "Switch", "for", "both", "open", "()", "and", "gzip", ".", "open", "()", ".", "Determines", "if", "the", "file", "is", "normal", "or", "gzipped", "by", "looking", "at", "the", "file", "extension", ".", "The", "filename", "argument", "is", "required", ";", "mode", "defaults", "to", "rb", "for", "gzip", "and", "r", "for", "normal", "and", "compresslevel", "defaults", "to", "9", "for", "gzip", ".", ">>>", "import", "gzip", ">>>", "from", "contextlib", "import", "closing", ">>>", "with", "open_", "(", "filename", ")", "as", "f", ":", "...", "f", ".", "read", "()" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/cgecore/utility.py#L321-L340
OLC-Bioinformatics/sipprverse
cgecore/utility.py
load_json
def load_json(json_object): ''' Load json from file or file name ''' content = None if isinstance(json_object, str) and os.path.exists(json_object): with open_(json_object) as f: try: content = json.load(f) except Exception as e: debug.log("Warning: Content of '%s' file is not json."%f.name) elif hasattr(json_object, 'read'): try: content = json.load(json_object) except Exception as e: debug.log("Warning: Content of '%s' file is not json."%json_object.name) else: debug.log("%s\nWarning: Object type invalid!"%json_object) return content
python
def load_json(json_object): ''' Load json from file or file name ''' content = None if isinstance(json_object, str) and os.path.exists(json_object): with open_(json_object) as f: try: content = json.load(f) except Exception as e: debug.log("Warning: Content of '%s' file is not json."%f.name) elif hasattr(json_object, 'read'): try: content = json.load(json_object) except Exception as e: debug.log("Warning: Content of '%s' file is not json."%json_object.name) else: debug.log("%s\nWarning: Object type invalid!"%json_object) return content
[ "def", "load_json", "(", "json_object", ")", ":", "content", "=", "None", "if", "isinstance", "(", "json_object", ",", "str", ")", "and", "os", ".", "path", ".", "exists", "(", "json_object", ")", ":", "with", "open_", "(", "json_object", ")", "as", "f", ":", "try", ":", "content", "=", "json", ".", "load", "(", "f", ")", "except", "Exception", "as", "e", ":", "debug", ".", "log", "(", "\"Warning: Content of '%s' file is not json.\"", "%", "f", ".", "name", ")", "elif", "hasattr", "(", "json_object", ",", "'read'", ")", ":", "try", ":", "content", "=", "json", ".", "load", "(", "json_object", ")", "except", "Exception", "as", "e", ":", "debug", ".", "log", "(", "\"Warning: Content of '%s' file is not json.\"", "%", "json_object", ".", "name", ")", "else", ":", "debug", ".", "log", "(", "\"%s\\nWarning: Object type invalid!\"", "%", "json_object", ")", "return", "content" ]
Load json from file or file name
[ "Load", "json", "from", "file", "or", "file", "name" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/cgecore/utility.py#L342-L358
OLC-Bioinformatics/sipprverse
cgecore/utility.py
sort2groups
def sort2groups(array, gpat=['_R1','_R2']): """ Sort an array of strings to groups by patterns """ groups = [REGroup(gp) for gp in gpat] unmatched = [] for item in array: matched = False for m in groups: if m.match(item): matched = True break if not matched: unmatched.append(item) return [sorted(m.list) for m in groups], sorted(unmatched)
python
def sort2groups(array, gpat=['_R1','_R2']): """ Sort an array of strings to groups by patterns """ groups = [REGroup(gp) for gp in gpat] unmatched = [] for item in array: matched = False for m in groups: if m.match(item): matched = True break if not matched: unmatched.append(item) return [sorted(m.list) for m in groups], sorted(unmatched)
[ "def", "sort2groups", "(", "array", ",", "gpat", "=", "[", "'_R1'", ",", "'_R2'", "]", ")", ":", "groups", "=", "[", "REGroup", "(", "gp", ")", "for", "gp", "in", "gpat", "]", "unmatched", "=", "[", "]", "for", "item", "in", "array", ":", "matched", "=", "False", "for", "m", "in", "groups", ":", "if", "m", ".", "match", "(", "item", ")", ":", "matched", "=", "True", "break", "if", "not", "matched", ":", "unmatched", ".", "append", "(", "item", ")", "return", "[", "sorted", "(", "m", ".", "list", ")", "for", "m", "in", "groups", "]", ",", "sorted", "(", "unmatched", ")" ]
Sort an array of strings to groups by patterns
[ "Sort", "an", "array", "of", "strings", "to", "groups", "by", "patterns" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/cgecore/utility.py#L360-L371
OLC-Bioinformatics/sipprverse
cgecore/utility.py
sort_and_distribute
def sort_and_distribute(array, splits=2): """ Sort an array of strings to groups by alphabetically continuous distribution """ if not isinstance(array, (list,tuple)): raise TypeError("array must be a list") if not isinstance(splits, int): raise TypeError("splits must be an integer") remaining = sorted(array) if sys.version_info < (3, 0): myrange = xrange(splits) else: myrange = range(splits) groups = [[] for i in myrange] while len(remaining) > 0: for i in myrange: if len(remaining) > 0: groups[i].append(remaining.pop(0)) return groups
python
def sort_and_distribute(array, splits=2): """ Sort an array of strings to groups by alphabetically continuous distribution """ if not isinstance(array, (list,tuple)): raise TypeError("array must be a list") if not isinstance(splits, int): raise TypeError("splits must be an integer") remaining = sorted(array) if sys.version_info < (3, 0): myrange = xrange(splits) else: myrange = range(splits) groups = [[] for i in myrange] while len(remaining) > 0: for i in myrange: if len(remaining) > 0: groups[i].append(remaining.pop(0)) return groups
[ "def", "sort_and_distribute", "(", "array", ",", "splits", "=", "2", ")", ":", "if", "not", "isinstance", "(", "array", ",", "(", "list", ",", "tuple", ")", ")", ":", "raise", "TypeError", "(", "\"array must be a list\"", ")", "if", "not", "isinstance", "(", "splits", ",", "int", ")", ":", "raise", "TypeError", "(", "\"splits must be an integer\"", ")", "remaining", "=", "sorted", "(", "array", ")", "if", "sys", ".", "version_info", "<", "(", "3", ",", "0", ")", ":", "myrange", "=", "xrange", "(", "splits", ")", "else", ":", "myrange", "=", "range", "(", "splits", ")", "groups", "=", "[", "[", "]", "for", "i", "in", "myrange", "]", "while", "len", "(", "remaining", ")", ">", "0", ":", "for", "i", "in", "myrange", ":", "if", "len", "(", "remaining", ")", ">", "0", ":", "groups", "[", "i", "]", ".", "append", "(", "remaining", ".", "pop", "(", "0", ")", ")", "return", "groups" ]
Sort an array of strings to groups by alphabetically continuous distribution
[ "Sort", "an", "array", "of", "strings", "to", "groups", "by", "alphabetically", "continuous", "distribution" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/cgecore/utility.py#L373-L388
OLC-Bioinformatics/sipprverse
cgecore/utility.py
mkpath
def mkpath(filepath, permissions=0o777): """ This function executes a mkdir command for filepath and with permissions (octal number with leading 0 or string only) # eg. mkpath("path/to/file", "0o775") """ # Converting string of octal to integer, if string is given. if isinstance(permissions, str): permissions = sum([int(x)*8**i for i,x in enumerate(reversed(permissions))]) # Creating directory if not os.path.exists(filepath): debug.log("Creating Directory %s (permissions: %s)"%( filepath, permissions)) os.makedirs(filepath, permissions) else: debug.log("Warning: The directory "+ filepath +" already exists") return filepath
python
def mkpath(filepath, permissions=0o777): """ This function executes a mkdir command for filepath and with permissions (octal number with leading 0 or string only) # eg. mkpath("path/to/file", "0o775") """ # Converting string of octal to integer, if string is given. if isinstance(permissions, str): permissions = sum([int(x)*8**i for i,x in enumerate(reversed(permissions))]) # Creating directory if not os.path.exists(filepath): debug.log("Creating Directory %s (permissions: %s)"%( filepath, permissions)) os.makedirs(filepath, permissions) else: debug.log("Warning: The directory "+ filepath +" already exists") return filepath
[ "def", "mkpath", "(", "filepath", ",", "permissions", "=", "0o777", ")", ":", "# Converting string of octal to integer, if string is given.", "if", "isinstance", "(", "permissions", ",", "str", ")", ":", "permissions", "=", "sum", "(", "[", "int", "(", "x", ")", "*", "8", "**", "i", "for", "i", ",", "x", "in", "enumerate", "(", "reversed", "(", "permissions", ")", ")", "]", ")", "# Creating directory", "if", "not", "os", ".", "path", ".", "exists", "(", "filepath", ")", ":", "debug", ".", "log", "(", "\"Creating Directory %s (permissions: %s)\"", "%", "(", "filepath", ",", "permissions", ")", ")", "os", ".", "makedirs", "(", "filepath", ",", "permissions", ")", "else", ":", "debug", ".", "log", "(", "\"Warning: The directory \"", "+", "filepath", "+", "\" already exists\"", ")", "return", "filepath" ]
This function executes a mkdir command for filepath and with permissions (octal number with leading 0 or string only) # eg. mkpath("path/to/file", "0o775")
[ "This", "function", "executes", "a", "mkdir", "command", "for", "filepath", "and", "with", "permissions", "(", "octal", "number", "with", "leading", "0", "or", "string", "only", ")", "#", "eg", ".", "mkpath", "(", "path", "/", "to", "/", "file", "0o775", ")" ]
train
https://github.com/OLC-Bioinformatics/sipprverse/blob/d4f10cdf8e1a39dac0953db61c21c97efc6006de/cgecore/utility.py#L390-L405