repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
rbuffat/pyepw
pyepw/epw.py
GroundTemperature.depth_september_average_ground_temperature
def depth_september_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_september_average_ground_temperature` Args: value (float): value for IDD Field `depth_september_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_september_average_ground_temperature`'.format(value)) self._depth_september_average_ground_temperature = value
python
def depth_september_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_september_average_ground_temperature` Args: value (float): value for IDD Field `depth_september_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_september_average_ground_temperature`'.format(value)) self._depth_september_average_ground_temperature = value
[ "def", "depth_september_average_ground_temperature", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `depth_september_average_ground_temperature`'", ".", "format", "(", "value", ")", ")", "self", ".", "_depth_september_average_ground_temperature", "=", "value" ]
Corresponds to IDD Field `depth_september_average_ground_temperature` Args: value (float): value for IDD Field `depth_september_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "depth_september_average_ground_temperature" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4268-L4290
rbuffat/pyepw
pyepw/epw.py
GroundTemperature.depth_october_average_ground_temperature
def depth_october_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_october_average_ground_temperature` Args: value (float): value for IDD Field `depth_october_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_october_average_ground_temperature`'.format(value)) self._depth_october_average_ground_temperature = value
python
def depth_october_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_october_average_ground_temperature` Args: value (float): value for IDD Field `depth_october_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_october_average_ground_temperature`'.format(value)) self._depth_october_average_ground_temperature = value
[ "def", "depth_october_average_ground_temperature", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `depth_october_average_ground_temperature`'", ".", "format", "(", "value", ")", ")", "self", ".", "_depth_october_average_ground_temperature", "=", "value" ]
Corresponds to IDD Field `depth_october_average_ground_temperature` Args: value (float): value for IDD Field `depth_october_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "depth_october_average_ground_temperature" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4303-L4324
rbuffat/pyepw
pyepw/epw.py
GroundTemperature.depth_november_average_ground_temperature
def depth_november_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_november_average_ground_temperature` Args: value (float): value for IDD Field `depth_november_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_november_average_ground_temperature`'.format(value)) self._depth_november_average_ground_temperature = value
python
def depth_november_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_november_average_ground_temperature` Args: value (float): value for IDD Field `depth_november_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_november_average_ground_temperature`'.format(value)) self._depth_november_average_ground_temperature = value
[ "def", "depth_november_average_ground_temperature", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `depth_november_average_ground_temperature`'", ".", "format", "(", "value", ")", ")", "self", ".", "_depth_november_average_ground_temperature", "=", "value" ]
Corresponds to IDD Field `depth_november_average_ground_temperature` Args: value (float): value for IDD Field `depth_november_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "depth_november_average_ground_temperature" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4337-L4358
rbuffat/pyepw
pyepw/epw.py
GroundTemperature.depth_december_average_ground_temperature
def depth_december_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_december_average_ground_temperature` Args: value (float): value for IDD Field `depth_december_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_december_average_ground_temperature`'.format(value)) self._depth_december_average_ground_temperature = value
python
def depth_december_average_ground_temperature(self, value=None): """Corresponds to IDD Field `depth_december_average_ground_temperature` Args: value (float): value for IDD Field `depth_december_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `depth_december_average_ground_temperature`'.format(value)) self._depth_december_average_ground_temperature = value
[ "def", "depth_december_average_ground_temperature", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `depth_december_average_ground_temperature`'", ".", "format", "(", "value", ")", ")", "self", ".", "_depth_december_average_ground_temperature", "=", "value" ]
Corresponds to IDD Field `depth_december_average_ground_temperature` Args: value (float): value for IDD Field `depth_december_average_ground_temperature` Unit: C if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "depth_december_average_ground_temperature" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4371-L4392
rbuffat/pyepw
pyepw/epw.py
GroundTemperature.export
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.ground_temperature_depth)) out.append(self._to_str(self.depth_soil_conductivity)) out.append(self._to_str(self.depth_soil_density)) out.append(self._to_str(self.depth_soil_specific_heat)) out.append(self._to_str(self.depth_january_average_ground_temperature)) out.append( self._to_str( self.depth_february_average_ground_temperature)) out.append(self._to_str(self.depth_march_average_ground_temperature)) out.append(self._to_str(self.depth_april_average_ground_temperature)) out.append(self._to_str(self.depth_may_average_ground_temperature)) out.append(self._to_str(self.depth_june_average_ground_temperature)) out.append(self._to_str(self.depth_july_average_ground_temperature)) out.append(self._to_str(self.depth_august_average_ground_temperature)) out.append( self._to_str( self.depth_september_average_ground_temperature)) out.append(self._to_str(self.depth_october_average_ground_temperature)) out.append( self._to_str( self.depth_november_average_ground_temperature)) out.append( self._to_str( self.depth_december_average_ground_temperature)) return ",".join(out)
python
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.ground_temperature_depth)) out.append(self._to_str(self.depth_soil_conductivity)) out.append(self._to_str(self.depth_soil_density)) out.append(self._to_str(self.depth_soil_specific_heat)) out.append(self._to_str(self.depth_january_average_ground_temperature)) out.append( self._to_str( self.depth_february_average_ground_temperature)) out.append(self._to_str(self.depth_march_average_ground_temperature)) out.append(self._to_str(self.depth_april_average_ground_temperature)) out.append(self._to_str(self.depth_may_average_ground_temperature)) out.append(self._to_str(self.depth_june_average_ground_temperature)) out.append(self._to_str(self.depth_july_average_ground_temperature)) out.append(self._to_str(self.depth_august_average_ground_temperature)) out.append( self._to_str( self.depth_september_average_ground_temperature)) out.append(self._to_str(self.depth_october_average_ground_temperature)) out.append( self._to_str( self.depth_november_average_ground_temperature)) out.append( self._to_str( self.depth_december_average_ground_temperature)) return ",".join(out)
[ "def", "export", "(", "self", ",", "top", "=", "True", ")", ":", "out", "=", "[", "]", "if", "top", ":", "out", ".", "append", "(", "self", ".", "_internal_name", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "ground_temperature_depth", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_soil_conductivity", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_soil_density", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_soil_specific_heat", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_january_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_february_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_march_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_april_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_may_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_june_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_july_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_august_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_september_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_october_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_november_average_ground_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "depth_december_average_ground_temperature", ")", ")", "return", "\",\"", ".", "join", "(", "out", ")" ]
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
[ "Exports", "object", "to", "its", "string", "representation", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4407-L4447
rbuffat/pyepw
pyepw/epw.py
GroundTemperatures.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 count = int(vals[i]) i += 1 for _ in range(count): obj = GroundTemperature() obj.read(vals[i:i + obj.field_count]) self.add_ground_temperature(obj) i += obj.field_count
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 count = int(vals[i]) i += 1 for _ in range(count): obj = GroundTemperature() obj.read(vals[i:i + obj.field_count]) self.add_ground_temperature(obj) i += obj.field_count
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "count", "=", "int", "(", "vals", "[", "i", "]", ")", "i", "+=", "1", "for", "_", "in", "range", "(", "count", ")", ":", "obj", "=", "GroundTemperature", "(", ")", "obj", ".", "read", "(", "vals", "[", "i", ":", "i", "+", "obj", ".", "field_count", "]", ")", "self", ".", "add_ground_temperature", "(", "obj", ")", "i", "+=", "obj", ".", "field_count" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4463-L4477
rbuffat/pyepw
pyepw/epw.py
Holiday.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.holiday_name = None else: self.holiday_name = vals[i] i += 1 if len(vals[i]) == 0: self.holiday_day = None else: self.holiday_day = vals[i] i += 1
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.holiday_name = None else: self.holiday_name = vals[i] i += 1 if len(vals[i]) == 0: self.holiday_day = None else: self.holiday_day = vals[i] i += 1
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "holiday_name", "=", "None", "else", ":", "self", ".", "holiday_name", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "holiday_day", "=", "None", "else", ":", "self", ".", "holiday_day", "=", "vals", "[", "i", "]", "i", "+=", "1" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4547-L4564
rbuffat/pyepw
pyepw/epw.py
Holiday.holiday_name
def holiday_name(self, value=None): """Corresponds to IDD Field `holiday_name` Args: value (str): value for IDD Field `holiday_name` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `holiday_name`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `holiday_name`') self._holiday_name = value
python
def holiday_name(self, value=None): """Corresponds to IDD Field `holiday_name` Args: value (str): value for IDD Field `holiday_name` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `holiday_name`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `holiday_name`') self._holiday_name = value
[ "def", "holiday_name", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `holiday_name`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `holiday_name`'", ")", "self", ".", "_holiday_name", "=", "value" ]
Corresponds to IDD Field `holiday_name` Args: value (str): value for IDD Field `holiday_name` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "holiday_name" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4577-L4599
rbuffat/pyepw
pyepw/epw.py
Holiday.holiday_day
def holiday_day(self, value=None): """Corresponds to IDD Field `holiday_day` Args: value (str): value for IDD Field `holiday_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `holiday_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `holiday_day`') self._holiday_day = value
python
def holiday_day(self, value=None): """Corresponds to IDD Field `holiday_day` Args: value (str): value for IDD Field `holiday_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `holiday_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `holiday_day`') self._holiday_day = value
[ "def", "holiday_day", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `holiday_day`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `holiday_day`'", ")", "self", ".", "_holiday_day", "=", "value" ]
Corresponds to IDD Field `holiday_day` Args: value (str): value for IDD Field `holiday_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "holiday_day" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4612-L4634
rbuffat/pyepw
pyepw/epw.py
Holiday.export
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.holiday_name)) out.append(self._to_str(self.holiday_day)) return ",".join(out)
python
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.holiday_name)) out.append(self._to_str(self.holiday_day)) return ",".join(out)
[ "def", "export", "(", "self", ",", "top", "=", "True", ")", ":", "out", "=", "[", "]", "if", "top", ":", "out", ".", "append", "(", "self", ".", "_internal_name", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "holiday_name", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "holiday_day", ")", ")", "return", "\",\"", ".", "join", "(", "out", ")" ]
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
[ "Exports", "object", "to", "its", "string", "representation", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4649-L4667
rbuffat/pyepw
pyepw/epw.py
HolidaysOrDaylightSavings.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.leapyear_observed = None else: self.leapyear_observed = vals[i] i += 1 if len(vals[i]) == 0: self.daylight_saving_start_day = None else: self.daylight_saving_start_day = vals[i] i += 1 if len(vals[i]) == 0: self.daylight_saving_end_day = None else: self.daylight_saving_end_day = vals[i] i += 1 count = int(vals[i]) i += 1 for _ in range(count): obj = Holiday() obj.read(vals[i:i + obj.field_count]) self.add_holiday(obj) i += obj.field_count
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.leapyear_observed = None else: self.leapyear_observed = vals[i] i += 1 if len(vals[i]) == 0: self.daylight_saving_start_day = None else: self.daylight_saving_start_day = vals[i] i += 1 if len(vals[i]) == 0: self.daylight_saving_end_day = None else: self.daylight_saving_end_day = vals[i] i += 1 count = int(vals[i]) i += 1 for _ in range(count): obj = Holiday() obj.read(vals[i:i + obj.field_count]) self.add_holiday(obj) i += obj.field_count
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "leapyear_observed", "=", "None", "else", ":", "self", ".", "leapyear_observed", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "daylight_saving_start_day", "=", "None", "else", ":", "self", ".", "daylight_saving_start_day", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "daylight_saving_end_day", "=", "None", "else", ":", "self", ".", "daylight_saving_end_day", "=", "vals", "[", "i", "]", "i", "+=", "1", "count", "=", "int", "(", "vals", "[", "i", "]", ")", "i", "+=", "1", "for", "_", "in", "range", "(", "count", ")", ":", "obj", "=", "Holiday", "(", ")", "obj", ".", "read", "(", "vals", "[", "i", ":", "i", "+", "obj", ".", "field_count", "]", ")", "self", ".", "add_holiday", "(", "obj", ")", "i", "+=", "obj", ".", "field_count" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4687-L4716
rbuffat/pyepw
pyepw/epw.py
HolidaysOrDaylightSavings.leapyear_observed
def leapyear_observed(self, value=None): """Corresponds to IDD Field `leapyear_observed` Yes if Leap Year will be observed for this file No if Leap Year days (29 Feb) should be ignored in this file. Args: value (str): value for IDD Field `leapyear_observed` Accepted values are: - Yes - No if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `leapyear_observed`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `leapyear_observed`') vals = set() vals.add("Yes") vals.add("No") if value not in vals: raise ValueError('value {} is not an accepted value for ' 'field `leapyear_observed`'.format(value)) self._leapyear_observed = value
python
def leapyear_observed(self, value=None): """Corresponds to IDD Field `leapyear_observed` Yes if Leap Year will be observed for this file No if Leap Year days (29 Feb) should be ignored in this file. Args: value (str): value for IDD Field `leapyear_observed` Accepted values are: - Yes - No if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `leapyear_observed`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `leapyear_observed`') vals = set() vals.add("Yes") vals.add("No") if value not in vals: raise ValueError('value {} is not an accepted value for ' 'field `leapyear_observed`'.format(value)) self._leapyear_observed = value
[ "def", "leapyear_observed", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `leapyear_observed`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `leapyear_observed`'", ")", "vals", "=", "set", "(", ")", "vals", ".", "add", "(", "\"Yes\"", ")", "vals", ".", "add", "(", "\"No\"", ")", "if", "value", "not", "in", "vals", ":", "raise", "ValueError", "(", "'value {} is not an accepted value for '", "'field `leapyear_observed`'", ".", "format", "(", "value", ")", ")", "self", ".", "_leapyear_observed", "=", "value" ]
Corresponds to IDD Field `leapyear_observed` Yes if Leap Year will be observed for this file No if Leap Year days (29 Feb) should be ignored in this file. Args: value (str): value for IDD Field `leapyear_observed` Accepted values are: - Yes - No if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "leapyear_observed", "Yes", "if", "Leap", "Year", "will", "be", "observed", "for", "this", "file", "No", "if", "Leap", "Year", "days", "(", "29", "Feb", ")", "should", "be", "ignored", "in", "this", "file", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4729-L4762
rbuffat/pyepw
pyepw/epw.py
HolidaysOrDaylightSavings.daylight_saving_start_day
def daylight_saving_start_day(self, value=None): """Corresponds to IDD Field `daylight_saving_start_day` Args: value (str): value for IDD Field `daylight_saving_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `daylight_saving_start_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `daylight_saving_start_day`') self._daylight_saving_start_day = value
python
def daylight_saving_start_day(self, value=None): """Corresponds to IDD Field `daylight_saving_start_day` Args: value (str): value for IDD Field `daylight_saving_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `daylight_saving_start_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `daylight_saving_start_day`') self._daylight_saving_start_day = value
[ "def", "daylight_saving_start_day", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `daylight_saving_start_day`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `daylight_saving_start_day`'", ")", "self", ".", "_daylight_saving_start_day", "=", "value" ]
Corresponds to IDD Field `daylight_saving_start_day` Args: value (str): value for IDD Field `daylight_saving_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "daylight_saving_start_day" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4775-L4798
rbuffat/pyepw
pyepw/epw.py
HolidaysOrDaylightSavings.daylight_saving_end_day
def daylight_saving_end_day(self, value=None): """Corresponds to IDD Field `daylight_saving_end_day` Args: value (str): value for IDD Field `daylight_saving_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `daylight_saving_end_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `daylight_saving_end_day`') self._daylight_saving_end_day = value
python
def daylight_saving_end_day(self, value=None): """Corresponds to IDD Field `daylight_saving_end_day` Args: value (str): value for IDD Field `daylight_saving_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `daylight_saving_end_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `daylight_saving_end_day`') self._daylight_saving_end_day = value
[ "def", "daylight_saving_end_day", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `daylight_saving_end_day`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `daylight_saving_end_day`'", ")", "self", ".", "_daylight_saving_end_day", "=", "value" ]
Corresponds to IDD Field `daylight_saving_end_day` Args: value (str): value for IDD Field `daylight_saving_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "daylight_saving_end_day" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4811-L4834
rbuffat/pyepw
pyepw/epw.py
HolidaysOrDaylightSavings.export
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.leapyear_observed)) out.append(self._to_str(self.daylight_saving_start_day)) out.append(self._to_str(self.daylight_saving_end_day)) out.append(str(len(self.holidays))) for obj in self.holidays: out.append(obj.export(top=False)) return ",".join(out)
python
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.leapyear_observed)) out.append(self._to_str(self.daylight_saving_start_day)) out.append(self._to_str(self.daylight_saving_end_day)) out.append(str(len(self.holidays))) for obj in self.holidays: out.append(obj.export(top=False)) return ",".join(out)
[ "def", "export", "(", "self", ",", "top", "=", "True", ")", ":", "out", "=", "[", "]", "if", "top", ":", "out", ".", "append", "(", "self", ".", "_internal_name", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "leapyear_observed", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "daylight_saving_start_day", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "daylight_saving_end_day", ")", ")", "out", ".", "append", "(", "str", "(", "len", "(", "self", ".", "holidays", ")", ")", ")", "for", "obj", "in", "self", ".", "holidays", ":", "out", ".", "append", "(", "obj", ".", "export", "(", "top", "=", "False", ")", ")", "return", "\",\"", ".", "join", "(", "out", ")" ]
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
[ "Exports", "object", "to", "its", "string", "representation", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4868-L4890
rbuffat/pyepw
pyepw/epw.py
Comments1.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.comments_1 = None else: self.comments_1 = vals[i] i += 1
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.comments_1 = None else: self.comments_1 = vals[i] i += 1
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "comments_1", "=", "None", "else", ":", "self", ".", "comments_1", "=", "vals", "[", "i", "]", "i", "+=", "1" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4906-L4918
rbuffat/pyepw
pyepw/epw.py
Comments1.comments_1
def comments_1(self, value=None): """Corresponds to IDD Field `comments_1` Args: value (str): value for IDD Field `comments_1` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `comments_1`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `comments_1`') self._comments_1 = value
python
def comments_1(self, value=None): """Corresponds to IDD Field `comments_1` Args: value (str): value for IDD Field `comments_1` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `comments_1`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `comments_1`') self._comments_1 = value
[ "def", "comments_1", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `comments_1`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `comments_1`'", ")", "self", ".", "_comments_1", "=", "value" ]
Corresponds to IDD Field `comments_1` Args: value (str): value for IDD Field `comments_1` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "comments_1" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L4931-L4953
rbuffat/pyepw
pyepw/epw.py
Comments2.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.comments_2 = None else: self.comments_2 = vals[i] i += 1
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.comments_2 = None else: self.comments_2 = vals[i] i += 1
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "comments_2", "=", "None", "else", ":", "self", ".", "comments_2", "=", "vals", "[", "i", "]", "i", "+=", "1" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5001-L5013
rbuffat/pyepw
pyepw/epw.py
Comments2.comments_2
def comments_2(self, value=None): """Corresponds to IDD Field `comments_2` Args: value (str): value for IDD Field `comments_2` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `comments_2`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `comments_2`') self._comments_2 = value
python
def comments_2(self, value=None): """Corresponds to IDD Field `comments_2` Args: value (str): value for IDD Field `comments_2` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError('value {} need to be of type str ' 'for field `comments_2`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `comments_2`') self._comments_2 = value
[ "def", "comments_2", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `comments_2`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `comments_2`'", ")", "self", ".", "_comments_2", "=", "value" ]
Corresponds to IDD Field `comments_2` Args: value (str): value for IDD Field `comments_2` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "comments_2" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5026-L5048
rbuffat/pyepw
pyepw/epw.py
Comments2.export
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.comments_2)) return ",".join(out)
python
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.comments_2)) return ",".join(out)
[ "def", "export", "(", "self", ",", "top", "=", "True", ")", ":", "out", "=", "[", "]", "if", "top", ":", "out", ".", "append", "(", "self", ".", "_internal_name", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "comments_2", ")", ")", "return", "\",\"", ".", "join", "(", "out", ")" ]
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
[ "Exports", "object", "to", "its", "string", "representation", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5063-L5080
rbuffat/pyepw
pyepw/epw.py
DataPeriod.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.number_of_records_per_hour = None else: self.number_of_records_per_hour = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_name_or_description = None else: self.data_period_name_or_description = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_start_day_of_week = None else: self.data_period_start_day_of_week = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_start_day = None else: self.data_period_start_day = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_end_day = None else: self.data_period_end_day = vals[i] i += 1
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.number_of_records_per_hour = None else: self.number_of_records_per_hour = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_name_or_description = None else: self.data_period_name_or_description = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_start_day_of_week = None else: self.data_period_start_day_of_week = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_start_day = None else: self.data_period_start_day = vals[i] i += 1 if len(vals[i]) == 0: self.data_period_end_day = None else: self.data_period_end_day = vals[i] i += 1
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "number_of_records_per_hour", "=", "None", "else", ":", "self", ".", "number_of_records_per_hour", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "data_period_name_or_description", "=", "None", "else", ":", "self", ".", "data_period_name_or_description", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "data_period_start_day_of_week", "=", "None", "else", ":", "self", ".", "data_period_start_day_of_week", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "data_period_start_day", "=", "None", "else", ":", "self", ".", "data_period_start_day", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "data_period_end_day", "=", "None", "else", ":", "self", ".", "data_period_end_day", "=", "vals", "[", "i", "]", "i", "+=", "1" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5100-L5132
rbuffat/pyepw
pyepw/epw.py
DataPeriod.number_of_records_per_hour
def number_of_records_per_hour(self, value=None): """Corresponds to IDD Field `number_of_records_per_hour` Args: value (int): value for IDD Field `number_of_records_per_hour` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `number_of_records_per_hour`'.format(value)) self._number_of_records_per_hour = value
python
def number_of_records_per_hour(self, value=None): """Corresponds to IDD Field `number_of_records_per_hour` Args: value (int): value for IDD Field `number_of_records_per_hour` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `number_of_records_per_hour`'.format(value)) self._number_of_records_per_hour = value
[ "def", "number_of_records_per_hour", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `number_of_records_per_hour`'", ".", "format", "(", "value", ")", ")", "self", ".", "_number_of_records_per_hour", "=", "value" ]
Corresponds to IDD Field `number_of_records_per_hour` Args: value (int): value for IDD Field `number_of_records_per_hour` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "number_of_records_per_hour" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5145-L5165
rbuffat/pyepw
pyepw/epw.py
DataPeriod.data_period_name_or_description
def data_period_name_or_description(self, value=None): """Corresponds to IDD Field `data_period_name_or_description` Args: value (str): value for IDD Field `data_period_name_or_description` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_name_or_description`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_name_or_description`') self._data_period_name_or_description = value
python
def data_period_name_or_description(self, value=None): """Corresponds to IDD Field `data_period_name_or_description` Args: value (str): value for IDD Field `data_period_name_or_description` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_name_or_description`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_name_or_description`') self._data_period_name_or_description = value
[ "def", "data_period_name_or_description", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `data_period_name_or_description`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `data_period_name_or_description`'", ")", "self", ".", "_data_period_name_or_description", "=", "value" ]
Corresponds to IDD Field `data_period_name_or_description` Args: value (str): value for IDD Field `data_period_name_or_description` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "data_period_name_or_description" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5178-L5201
rbuffat/pyepw
pyepw/epw.py
DataPeriod.data_period_start_day_of_week
def data_period_start_day_of_week(self, value=None): """Corresponds to IDD Field `data_period_start_day_of_week` Args: value (str): value for IDD Field `data_period_start_day_of_week` Accepted values are: - Sunday - Monday - Tuesday - Wednesday - Thursday - Friday - Saturday if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_start_day_of_week`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_start_day_of_week`') vals = set() vals.add("Sunday") vals.add("Monday") vals.add("Tuesday") vals.add("Wednesday") vals.add("Thursday") vals.add("Friday") vals.add("Saturday") if value not in vals: raise ValueError( 'value {} is not an accepted value for ' 'field `data_period_start_day_of_week`'.format(value)) self._data_period_start_day_of_week = value
python
def data_period_start_day_of_week(self, value=None): """Corresponds to IDD Field `data_period_start_day_of_week` Args: value (str): value for IDD Field `data_period_start_day_of_week` Accepted values are: - Sunday - Monday - Tuesday - Wednesday - Thursday - Friday - Saturday if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_start_day_of_week`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_start_day_of_week`') vals = set() vals.add("Sunday") vals.add("Monday") vals.add("Tuesday") vals.add("Wednesday") vals.add("Thursday") vals.add("Friday") vals.add("Saturday") if value not in vals: raise ValueError( 'value {} is not an accepted value for ' 'field `data_period_start_day_of_week`'.format(value)) self._data_period_start_day_of_week = value
[ "def", "data_period_start_day_of_week", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `data_period_start_day_of_week`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `data_period_start_day_of_week`'", ")", "vals", "=", "set", "(", ")", "vals", ".", "add", "(", "\"Sunday\"", ")", "vals", ".", "add", "(", "\"Monday\"", ")", "vals", ".", "add", "(", "\"Tuesday\"", ")", "vals", ".", "add", "(", "\"Wednesday\"", ")", "vals", ".", "add", "(", "\"Thursday\"", ")", "vals", ".", "add", "(", "\"Friday\"", ")", "vals", ".", "add", "(", "\"Saturday\"", ")", "if", "value", "not", "in", "vals", ":", "raise", "ValueError", "(", "'value {} is not an accepted value for '", "'field `data_period_start_day_of_week`'", ".", "format", "(", "value", ")", ")", "self", ".", "_data_period_start_day_of_week", "=", "value" ]
Corresponds to IDD Field `data_period_start_day_of_week` Args: value (str): value for IDD Field `data_period_start_day_of_week` Accepted values are: - Sunday - Monday - Tuesday - Wednesday - Thursday - Friday - Saturday if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "data_period_start_day_of_week" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5214-L5257
rbuffat/pyepw
pyepw/epw.py
DataPeriod.data_period_start_day
def data_period_start_day(self, value=None): """Corresponds to IDD Field `data_period_start_day` Args: value (str): value for IDD Field `data_period_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_start_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_start_day`') self._data_period_start_day = value
python
def data_period_start_day(self, value=None): """Corresponds to IDD Field `data_period_start_day` Args: value (str): value for IDD Field `data_period_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_start_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_start_day`') self._data_period_start_day = value
[ "def", "data_period_start_day", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `data_period_start_day`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `data_period_start_day`'", ")", "self", ".", "_data_period_start_day", "=", "value" ]
Corresponds to IDD Field `data_period_start_day` Args: value (str): value for IDD Field `data_period_start_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "data_period_start_day" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5270-L5293
rbuffat/pyepw
pyepw/epw.py
DataPeriod.data_period_end_day
def data_period_end_day(self, value=None): """Corresponds to IDD Field `data_period_end_day` Args: value (str): value for IDD Field `data_period_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_end_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_end_day`') self._data_period_end_day = value
python
def data_period_end_day(self, value=None): """Corresponds to IDD Field `data_period_end_day` Args: value (str): value for IDD Field `data_period_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_period_end_day`'.format(value)) if ',' in value: raise ValueError('value should not contain a comma ' 'for field `data_period_end_day`') self._data_period_end_day = value
[ "def", "data_period_end_day", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `data_period_end_day`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `data_period_end_day`'", ")", "self", ".", "_data_period_end_day", "=", "value" ]
Corresponds to IDD Field `data_period_end_day` Args: value (str): value for IDD Field `data_period_end_day` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "data_period_end_day" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5306-L5329
rbuffat/pyepw
pyepw/epw.py
DataPeriod.export
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.number_of_records_per_hour)) out.append(self._to_str(self.data_period_name_or_description)) out.append(self._to_str(self.data_period_start_day_of_week)) out.append(self._to_str(self.data_period_start_day)) out.append(self._to_str(self.data_period_end_day)) return ",".join(out)
python
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.number_of_records_per_hour)) out.append(self._to_str(self.data_period_name_or_description)) out.append(self._to_str(self.data_period_start_day_of_week)) out.append(self._to_str(self.data_period_start_day)) out.append(self._to_str(self.data_period_end_day)) return ",".join(out)
[ "def", "export", "(", "self", ",", "top", "=", "True", ")", ":", "out", "=", "[", "]", "if", "top", ":", "out", ".", "append", "(", "self", ".", "_internal_name", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "number_of_records_per_hour", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "data_period_name_or_description", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "data_period_start_day_of_week", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "data_period_start_day", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "data_period_end_day", ")", ")", "return", "\",\"", ".", "join", "(", "out", ")" ]
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
[ "Exports", "object", "to", "its", "string", "representation", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5344-L5365
rbuffat/pyepw
pyepw/epw.py
DataPeriods.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 count = int(vals[i]) i += 1 for _ in range(count): obj = DataPeriod() obj.read(vals[i:i + obj.field_count]) self.add_data_period(obj) i += obj.field_count
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 count = int(vals[i]) i += 1 for _ in range(count): obj = DataPeriod() obj.read(vals[i:i + obj.field_count]) self.add_data_period(obj) i += obj.field_count
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "count", "=", "int", "(", "vals", "[", "i", "]", ")", "i", "+=", "1", "for", "_", "in", "range", "(", "count", ")", ":", "obj", "=", "DataPeriod", "(", ")", "obj", ".", "read", "(", "vals", "[", "i", ":", "i", "+", "obj", ".", "field_count", "]", ")", "self", ".", "add_data_period", "(", "obj", ")", "i", "+=", "obj", ".", "field_count" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5381-L5395
rbuffat/pyepw
pyepw/epw.py
WeatherData.read
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.year = None else: self.year = vals[i] i += 1 if len(vals[i]) == 0: self.month = None else: self.month = vals[i] i += 1 if len(vals[i]) == 0: self.day = None else: self.day = vals[i] i += 1 if len(vals[i]) == 0: self.hour = None else: self.hour = vals[i] i += 1 if len(vals[i]) == 0: self.minute = None else: self.minute = vals[i] i += 1 if len(vals[i]) == 0: self.data_source_and_uncertainty_flags = None else: self.data_source_and_uncertainty_flags = vals[i] i += 1 if len(vals[i]) == 0: self.dry_bulb_temperature = None else: self.dry_bulb_temperature = vals[i] i += 1 if len(vals[i]) == 0: self.dew_point_temperature = None else: self.dew_point_temperature = vals[i] i += 1 if len(vals[i]) == 0: self.relative_humidity = None else: self.relative_humidity = vals[i] i += 1 if len(vals[i]) == 0: self.atmospheric_station_pressure = None else: self.atmospheric_station_pressure = vals[i] i += 1 if len(vals[i]) == 0: self.extraterrestrial_horizontal_radiation = None else: self.extraterrestrial_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.extraterrestrial_direct_normal_radiation = None else: self.extraterrestrial_direct_normal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.horizontal_infrared_radiation_intensity = None else: self.horizontal_infrared_radiation_intensity = vals[i] i += 1 if len(vals[i]) == 0: self.global_horizontal_radiation = None else: self.global_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.direct_normal_radiation = None else: self.direct_normal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.diffuse_horizontal_radiation = None else: self.diffuse_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.global_horizontal_illuminance = None else: self.global_horizontal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.direct_normal_illuminance = None else: self.direct_normal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.diffuse_horizontal_illuminance = None else: self.diffuse_horizontal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.zenith_luminance = None else: self.zenith_luminance = vals[i] i += 1 if len(vals[i]) == 0: self.wind_direction = None else: self.wind_direction = vals[i] i += 1 if len(vals[i]) == 0: self.wind_speed = None else: self.wind_speed = vals[i] i += 1 if len(vals[i]) == 0: self.total_sky_cover = None else: self.total_sky_cover = vals[i] i += 1 if len(vals[i]) == 0: self.opaque_sky_cover = None else: self.opaque_sky_cover = vals[i] i += 1 if len(vals[i]) == 0: self.visibility = None else: self.visibility = vals[i] i += 1 if len(vals[i]) == 0: self.ceiling_height = None else: self.ceiling_height = vals[i] i += 1 if len(vals[i]) == 0: self.present_weather_observation = None else: self.present_weather_observation = vals[i] i += 1 if len(vals[i]) == 0: self.present_weather_codes = None else: self.present_weather_codes = vals[i] i += 1 if len(vals[i]) == 0: self.precipitable_water = None else: self.precipitable_water = vals[i] i += 1 if len(vals[i]) == 0: self.aerosol_optical_depth = None else: self.aerosol_optical_depth = vals[i] i += 1 if len(vals[i]) == 0: self.snow_depth = None else: self.snow_depth = vals[i] i += 1 if len(vals[i]) == 0: self.days_since_last_snowfall = None else: self.days_since_last_snowfall = vals[i] i += 1 if len(vals[i]) == 0: self.albedo = None else: self.albedo = vals[i] i += 1 if len(vals[i]) == 0: self.liquid_precipitation_depth = None else: self.liquid_precipitation_depth = vals[i] i += 1 if len(vals[i]) == 0: self.liquid_precipitation_quantity = None else: self.liquid_precipitation_quantity = vals[i] i += 1
python
def read(self, vals): """Read values. Args: vals (list): list of strings representing values """ i = 0 if len(vals[i]) == 0: self.year = None else: self.year = vals[i] i += 1 if len(vals[i]) == 0: self.month = None else: self.month = vals[i] i += 1 if len(vals[i]) == 0: self.day = None else: self.day = vals[i] i += 1 if len(vals[i]) == 0: self.hour = None else: self.hour = vals[i] i += 1 if len(vals[i]) == 0: self.minute = None else: self.minute = vals[i] i += 1 if len(vals[i]) == 0: self.data_source_and_uncertainty_flags = None else: self.data_source_and_uncertainty_flags = vals[i] i += 1 if len(vals[i]) == 0: self.dry_bulb_temperature = None else: self.dry_bulb_temperature = vals[i] i += 1 if len(vals[i]) == 0: self.dew_point_temperature = None else: self.dew_point_temperature = vals[i] i += 1 if len(vals[i]) == 0: self.relative_humidity = None else: self.relative_humidity = vals[i] i += 1 if len(vals[i]) == 0: self.atmospheric_station_pressure = None else: self.atmospheric_station_pressure = vals[i] i += 1 if len(vals[i]) == 0: self.extraterrestrial_horizontal_radiation = None else: self.extraterrestrial_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.extraterrestrial_direct_normal_radiation = None else: self.extraterrestrial_direct_normal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.horizontal_infrared_radiation_intensity = None else: self.horizontal_infrared_radiation_intensity = vals[i] i += 1 if len(vals[i]) == 0: self.global_horizontal_radiation = None else: self.global_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.direct_normal_radiation = None else: self.direct_normal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.diffuse_horizontal_radiation = None else: self.diffuse_horizontal_radiation = vals[i] i += 1 if len(vals[i]) == 0: self.global_horizontal_illuminance = None else: self.global_horizontal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.direct_normal_illuminance = None else: self.direct_normal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.diffuse_horizontal_illuminance = None else: self.diffuse_horizontal_illuminance = vals[i] i += 1 if len(vals[i]) == 0: self.zenith_luminance = None else: self.zenith_luminance = vals[i] i += 1 if len(vals[i]) == 0: self.wind_direction = None else: self.wind_direction = vals[i] i += 1 if len(vals[i]) == 0: self.wind_speed = None else: self.wind_speed = vals[i] i += 1 if len(vals[i]) == 0: self.total_sky_cover = None else: self.total_sky_cover = vals[i] i += 1 if len(vals[i]) == 0: self.opaque_sky_cover = None else: self.opaque_sky_cover = vals[i] i += 1 if len(vals[i]) == 0: self.visibility = None else: self.visibility = vals[i] i += 1 if len(vals[i]) == 0: self.ceiling_height = None else: self.ceiling_height = vals[i] i += 1 if len(vals[i]) == 0: self.present_weather_observation = None else: self.present_weather_observation = vals[i] i += 1 if len(vals[i]) == 0: self.present_weather_codes = None else: self.present_weather_codes = vals[i] i += 1 if len(vals[i]) == 0: self.precipitable_water = None else: self.precipitable_water = vals[i] i += 1 if len(vals[i]) == 0: self.aerosol_optical_depth = None else: self.aerosol_optical_depth = vals[i] i += 1 if len(vals[i]) == 0: self.snow_depth = None else: self.snow_depth = vals[i] i += 1 if len(vals[i]) == 0: self.days_since_last_snowfall = None else: self.days_since_last_snowfall = vals[i] i += 1 if len(vals[i]) == 0: self.albedo = None else: self.albedo = vals[i] i += 1 if len(vals[i]) == 0: self.liquid_precipitation_depth = None else: self.liquid_precipitation_depth = vals[i] i += 1 if len(vals[i]) == 0: self.liquid_precipitation_quantity = None else: self.liquid_precipitation_quantity = vals[i] i += 1
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "year", "=", "None", "else", ":", "self", ".", "year", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "month", "=", "None", "else", ":", "self", ".", "month", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "day", "=", "None", "else", ":", "self", ".", "day", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "hour", "=", "None", "else", ":", "self", ".", "hour", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "minute", "=", "None", "else", ":", "self", ".", "minute", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "data_source_and_uncertainty_flags", "=", "None", "else", ":", "self", ".", "data_source_and_uncertainty_flags", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "dry_bulb_temperature", "=", "None", "else", ":", "self", ".", "dry_bulb_temperature", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "dew_point_temperature", "=", "None", "else", ":", "self", ".", "dew_point_temperature", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "relative_humidity", "=", "None", "else", ":", "self", ".", "relative_humidity", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "atmospheric_station_pressure", "=", "None", "else", ":", "self", ".", "atmospheric_station_pressure", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "extraterrestrial_horizontal_radiation", "=", "None", "else", ":", "self", ".", "extraterrestrial_horizontal_radiation", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "extraterrestrial_direct_normal_radiation", "=", "None", "else", ":", "self", ".", "extraterrestrial_direct_normal_radiation", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "horizontal_infrared_radiation_intensity", "=", "None", "else", ":", "self", ".", "horizontal_infrared_radiation_intensity", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "global_horizontal_radiation", "=", "None", "else", ":", "self", ".", "global_horizontal_radiation", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "direct_normal_radiation", "=", "None", "else", ":", "self", ".", "direct_normal_radiation", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "diffuse_horizontal_radiation", "=", "None", "else", ":", "self", ".", "diffuse_horizontal_radiation", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "global_horizontal_illuminance", "=", "None", "else", ":", "self", ".", "global_horizontal_illuminance", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "direct_normal_illuminance", "=", "None", "else", ":", "self", ".", "direct_normal_illuminance", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "diffuse_horizontal_illuminance", "=", "None", "else", ":", "self", ".", "diffuse_horizontal_illuminance", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "zenith_luminance", "=", "None", "else", ":", "self", ".", "zenith_luminance", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "wind_direction", "=", "None", "else", ":", "self", ".", "wind_direction", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "wind_speed", "=", "None", "else", ":", "self", ".", "wind_speed", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "total_sky_cover", "=", "None", "else", ":", "self", ".", "total_sky_cover", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "opaque_sky_cover", "=", "None", "else", ":", "self", ".", "opaque_sky_cover", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "visibility", "=", "None", "else", ":", "self", ".", "visibility", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "ceiling_height", "=", "None", "else", ":", "self", ".", "ceiling_height", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "present_weather_observation", "=", "None", "else", ":", "self", ".", "present_weather_observation", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "present_weather_codes", "=", "None", "else", ":", "self", ".", "present_weather_codes", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "precipitable_water", "=", "None", "else", ":", "self", ".", "precipitable_water", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "aerosol_optical_depth", "=", "None", "else", ":", "self", ".", "aerosol_optical_depth", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "snow_depth", "=", "None", "else", ":", "self", ".", "snow_depth", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "days_since_last_snowfall", "=", "None", "else", ":", "self", ".", "days_since_last_snowfall", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "albedo", "=", "None", "else", ":", "self", ".", "albedo", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "liquid_precipitation_depth", "=", "None", "else", ":", "self", ".", "liquid_precipitation_depth", "=", "vals", "[", "i", "]", "i", "+=", "1", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "liquid_precipitation_quantity", "=", "None", "else", ":", "self", ".", "liquid_precipitation_quantity", "=", "vals", "[", "i", "]", "i", "+=", "1" ]
Read values. Args: vals (list): list of strings representing values
[ "Read", "values", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5498-L5680
rbuffat/pyepw
pyepw/epw.py
WeatherData.year
def year(self, value=None): """Corresponds to IDD Field `year` Args: value (int): value for IDD Field `year` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `year`'.format(value)) self._year = value
python
def year(self, value=None): """Corresponds to IDD Field `year` Args: value (int): value for IDD Field `year` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `year`'.format(value)) self._year = value
[ "def", "year", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `year`'", ".", "format", "(", "value", ")", ")", "self", ".", "_year", "=", "value" ]
Corresponds to IDD Field `year` Args: value (int): value for IDD Field `year` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "year" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5693-L5712
rbuffat/pyepw
pyepw/epw.py
WeatherData.month
def month(self, value=None): """Corresponds to IDD Field `month` Args: value (int): value for IDD Field `month` value >= 1 value <= 12 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `month`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `month`') if value > 12: raise ValueError('value need to be smaller 12 ' 'for field `month`') self._month = value
python
def month(self, value=None): """Corresponds to IDD Field `month` Args: value (int): value for IDD Field `month` value >= 1 value <= 12 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `month`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `month`') if value > 12: raise ValueError('value need to be smaller 12 ' 'for field `month`') self._month = value
[ "def", "month", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `month`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "1", ":", "raise", "ValueError", "(", "'value need to be greater or equal 1 '", "'for field `month`'", ")", "if", "value", ">", "12", ":", "raise", "ValueError", "(", "'value need to be smaller 12 '", "'for field `month`'", ")", "self", ".", "_month", "=", "value" ]
Corresponds to IDD Field `month` Args: value (int): value for IDD Field `month` value >= 1 value <= 12 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "month" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5725-L5752
rbuffat/pyepw
pyepw/epw.py
WeatherData.day
def day(self, value=None): """Corresponds to IDD Field `day` Args: value (int): value for IDD Field `day` value >= 1 value <= 31 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `day`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `day`') if value > 31: raise ValueError('value need to be smaller 31 ' 'for field `day`') self._day = value
python
def day(self, value=None): """Corresponds to IDD Field `day` Args: value (int): value for IDD Field `day` value >= 1 value <= 31 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `day`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `day`') if value > 31: raise ValueError('value need to be smaller 31 ' 'for field `day`') self._day = value
[ "def", "day", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `day`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "1", ":", "raise", "ValueError", "(", "'value need to be greater or equal 1 '", "'for field `day`'", ")", "if", "value", ">", "31", ":", "raise", "ValueError", "(", "'value need to be smaller 31 '", "'for field `day`'", ")", "self", ".", "_day", "=", "value" ]
Corresponds to IDD Field `day` Args: value (int): value for IDD Field `day` value >= 1 value <= 31 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "day" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5765-L5792
rbuffat/pyepw
pyepw/epw.py
WeatherData.hour
def hour(self, value=None): """Corresponds to IDD Field `hour` Args: value (int): value for IDD Field `hour` value >= 1 value <= 24 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `hour`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `hour`') if value > 24: raise ValueError('value need to be smaller 24 ' 'for field `hour`') self._hour = value
python
def hour(self, value=None): """Corresponds to IDD Field `hour` Args: value (int): value for IDD Field `hour` value >= 1 value <= 24 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `hour`'.format(value)) if value < 1: raise ValueError('value need to be greater or equal 1 ' 'for field `hour`') if value > 24: raise ValueError('value need to be smaller 24 ' 'for field `hour`') self._hour = value
[ "def", "hour", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `hour`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "1", ":", "raise", "ValueError", "(", "'value need to be greater or equal 1 '", "'for field `hour`'", ")", "if", "value", ">", "24", ":", "raise", "ValueError", "(", "'value need to be smaller 24 '", "'for field `hour`'", ")", "self", ".", "_hour", "=", "value" ]
Corresponds to IDD Field `hour` Args: value (int): value for IDD Field `hour` value >= 1 value <= 24 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "hour" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5805-L5832
rbuffat/pyepw
pyepw/epw.py
WeatherData.minute
def minute(self, value=None): """Corresponds to IDD Field `minute` Args: value (int): value for IDD Field `minute` value >= 0 value <= 60 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `minute`'.format(value)) if value < 0: raise ValueError('value need to be greater or equal 0 ' 'for field `minute`') if value > 60: raise ValueError('value need to be smaller 60 ' 'for field `minute`') self._minute = value
python
def minute(self, value=None): """Corresponds to IDD Field `minute` Args: value (int): value for IDD Field `minute` value >= 0 value <= 60 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `minute`'.format(value)) if value < 0: raise ValueError('value need to be greater or equal 0 ' 'for field `minute`') if value > 60: raise ValueError('value need to be smaller 60 ' 'for field `minute`') self._minute = value
[ "def", "minute", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `minute`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0 '", "'for field `minute`'", ")", "if", "value", ">", "60", ":", "raise", "ValueError", "(", "'value need to be smaller 60 '", "'for field `minute`'", ")", "self", ".", "_minute", "=", "value" ]
Corresponds to IDD Field `minute` Args: value (int): value for IDD Field `minute` value >= 0 value <= 60 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "minute" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5845-L5872
rbuffat/pyepw
pyepw/epw.py
WeatherData.data_source_and_uncertainty_flags
def data_source_and_uncertainty_flags(self, value=None): """Corresponds to IDD Field `data_source_and_uncertainty_flags` Initial day of weather file is checked by EnergyPlus for validity (as shown below) Each field is checked for "missing" as shown below. Reasonable values, calculated values or the last "good" value is substituted. Args: value (str): value for IDD Field `data_source_and_uncertainty_flags` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_source_and_uncertainty_flags`'.format(value)) if ',' in value: raise ValueError( 'value should not contain a comma ' 'for field `data_source_and_uncertainty_flags`') self._data_source_and_uncertainty_flags = value
python
def data_source_and_uncertainty_flags(self, value=None): """Corresponds to IDD Field `data_source_and_uncertainty_flags` Initial day of weather file is checked by EnergyPlus for validity (as shown below) Each field is checked for "missing" as shown below. Reasonable values, calculated values or the last "good" value is substituted. Args: value (str): value for IDD Field `data_source_and_uncertainty_flags` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = str(value) except ValueError: raise ValueError( 'value {} need to be of type str ' 'for field `data_source_and_uncertainty_flags`'.format(value)) if ',' in value: raise ValueError( 'value should not contain a comma ' 'for field `data_source_and_uncertainty_flags`') self._data_source_and_uncertainty_flags = value
[ "def", "data_source_and_uncertainty_flags", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "str", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type str '", "'for field `data_source_and_uncertainty_flags`'", ".", "format", "(", "value", ")", ")", "if", "','", "in", "value", ":", "raise", "ValueError", "(", "'value should not contain a comma '", "'for field `data_source_and_uncertainty_flags`'", ")", "self", ".", "_data_source_and_uncertainty_flags", "=", "value" ]
Corresponds to IDD Field `data_source_and_uncertainty_flags` Initial day of weather file is checked by EnergyPlus for validity (as shown below) Each field is checked for "missing" as shown below. Reasonable values, calculated values or the last "good" value is substituted. Args: value (str): value for IDD Field `data_source_and_uncertainty_flags` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "data_source_and_uncertainty_flags", "Initial", "day", "of", "weather", "file", "is", "checked", "by", "EnergyPlus", "for", "validity", "(", "as", "shown", "below", ")", "Each", "field", "is", "checked", "for", "missing", "as", "shown", "below", ".", "Reasonable", "values", "calculated", "values", "or", "the", "last", "good", "value", "is", "substituted", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5885-L5912
rbuffat/pyepw
pyepw/epw.py
WeatherData.dry_bulb_temperature
def dry_bulb_temperature(self, value=99.9): """Corresponds to IDD Field `dry_bulb_temperature` Args: value (float): value for IDD Field `dry_bulb_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `dry_bulb_temperature`'.format(value)) if value <= -70.0: raise ValueError('value need to be greater -70.0 ' 'for field `dry_bulb_temperature`') if value >= 70.0: raise ValueError('value need to be smaller 70.0 ' 'for field `dry_bulb_temperature`') self._dry_bulb_temperature = value
python
def dry_bulb_temperature(self, value=99.9): """Corresponds to IDD Field `dry_bulb_temperature` Args: value (float): value for IDD Field `dry_bulb_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `dry_bulb_temperature`'.format(value)) if value <= -70.0: raise ValueError('value need to be greater -70.0 ' 'for field `dry_bulb_temperature`') if value >= 70.0: raise ValueError('value need to be smaller 70.0 ' 'for field `dry_bulb_temperature`') self._dry_bulb_temperature = value
[ "def", "dry_bulb_temperature", "(", "self", ",", "value", "=", "99.9", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `dry_bulb_temperature`'", ".", "format", "(", "value", ")", ")", "if", "value", "<=", "-", "70.0", ":", "raise", "ValueError", "(", "'value need to be greater -70.0 '", "'for field `dry_bulb_temperature`'", ")", "if", "value", ">=", "70.0", ":", "raise", "ValueError", "(", "'value need to be smaller 70.0 '", "'for field `dry_bulb_temperature`'", ")", "self", ".", "_dry_bulb_temperature", "=", "value" ]
Corresponds to IDD Field `dry_bulb_temperature` Args: value (float): value for IDD Field `dry_bulb_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "dry_bulb_temperature" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5925-L5955
rbuffat/pyepw
pyepw/epw.py
WeatherData.dew_point_temperature
def dew_point_temperature(self, value=99.9): """Corresponds to IDD Field `dew_point_temperature` Args: value (float): value for IDD Field `dew_point_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `dew_point_temperature`'.format(value)) if value <= -70.0: raise ValueError('value need to be greater -70.0 ' 'for field `dew_point_temperature`') if value >= 70.0: raise ValueError('value need to be smaller 70.0 ' 'for field `dew_point_temperature`') self._dew_point_temperature = value
python
def dew_point_temperature(self, value=99.9): """Corresponds to IDD Field `dew_point_temperature` Args: value (float): value for IDD Field `dew_point_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `dew_point_temperature`'.format(value)) if value <= -70.0: raise ValueError('value need to be greater -70.0 ' 'for field `dew_point_temperature`') if value >= 70.0: raise ValueError('value need to be smaller 70.0 ' 'for field `dew_point_temperature`') self._dew_point_temperature = value
[ "def", "dew_point_temperature", "(", "self", ",", "value", "=", "99.9", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `dew_point_temperature`'", ".", "format", "(", "value", ")", ")", "if", "value", "<=", "-", "70.0", ":", "raise", "ValueError", "(", "'value need to be greater -70.0 '", "'for field `dew_point_temperature`'", ")", "if", "value", ">=", "70.0", ":", "raise", "ValueError", "(", "'value need to be smaller 70.0 '", "'for field `dew_point_temperature`'", ")", "self", ".", "_dew_point_temperature", "=", "value" ]
Corresponds to IDD Field `dew_point_temperature` Args: value (float): value for IDD Field `dew_point_temperature` Unit: C value > -70.0 value < 70.0 Missing value: 99.9 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "dew_point_temperature" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L5968-L5998
rbuffat/pyepw
pyepw/epw.py
WeatherData.relative_humidity
def relative_humidity(self, value=999): """Corresponds to IDD Field `relative_humidity` Args: value (int): value for IDD Field `relative_humidity` value >= 0 value <= 110 Missing value: 999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `relative_humidity`'.format(value)) if value < 0: raise ValueError('value need to be greater or equal 0 ' 'for field `relative_humidity`') if value > 110: raise ValueError('value need to be smaller 110 ' 'for field `relative_humidity`') self._relative_humidity = value
python
def relative_humidity(self, value=999): """Corresponds to IDD Field `relative_humidity` Args: value (int): value for IDD Field `relative_humidity` value >= 0 value <= 110 Missing value: 999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError('value {} need to be of type int ' 'for field `relative_humidity`'.format(value)) if value < 0: raise ValueError('value need to be greater or equal 0 ' 'for field `relative_humidity`') if value > 110: raise ValueError('value need to be smaller 110 ' 'for field `relative_humidity`') self._relative_humidity = value
[ "def", "relative_humidity", "(", "self", ",", "value", "=", "999", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `relative_humidity`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0 '", "'for field `relative_humidity`'", ")", "if", "value", ">", "110", ":", "raise", "ValueError", "(", "'value need to be smaller 110 '", "'for field `relative_humidity`'", ")", "self", ".", "_relative_humidity", "=", "value" ]
Corresponds to IDD Field `relative_humidity` Args: value (int): value for IDD Field `relative_humidity` value >= 0 value <= 110 Missing value: 999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "relative_humidity" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6011-L6039
rbuffat/pyepw
pyepw/epw.py
WeatherData.atmospheric_station_pressure
def atmospheric_station_pressure(self, value=999999): """Corresponds to IDD Field `atmospheric_station_pressure` Args: value (int): value for IDD Field `atmospheric_station_pressure` Unit: Pa value > 31000 value < 120000 Missing value: 999999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `atmospheric_station_pressure`'.format(value)) if value <= 31000: raise ValueError('value need to be greater 31000 ' 'for field `atmospheric_station_pressure`') if value >= 120000: raise ValueError('value need to be smaller 120000 ' 'for field `atmospheric_station_pressure`') self._atmospheric_station_pressure = value
python
def atmospheric_station_pressure(self, value=999999): """Corresponds to IDD Field `atmospheric_station_pressure` Args: value (int): value for IDD Field `atmospheric_station_pressure` Unit: Pa value > 31000 value < 120000 Missing value: 999999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `atmospheric_station_pressure`'.format(value)) if value <= 31000: raise ValueError('value need to be greater 31000 ' 'for field `atmospheric_station_pressure`') if value >= 120000: raise ValueError('value need to be smaller 120000 ' 'for field `atmospheric_station_pressure`') self._atmospheric_station_pressure = value
[ "def", "atmospheric_station_pressure", "(", "self", ",", "value", "=", "999999", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `atmospheric_station_pressure`'", ".", "format", "(", "value", ")", ")", "if", "value", "<=", "31000", ":", "raise", "ValueError", "(", "'value need to be greater 31000 '", "'for field `atmospheric_station_pressure`'", ")", "if", "value", ">=", "120000", ":", "raise", "ValueError", "(", "'value need to be smaller 120000 '", "'for field `atmospheric_station_pressure`'", ")", "self", ".", "_atmospheric_station_pressure", "=", "value" ]
Corresponds to IDD Field `atmospheric_station_pressure` Args: value (int): value for IDD Field `atmospheric_station_pressure` Unit: Pa value > 31000 value < 120000 Missing value: 999999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "atmospheric_station_pressure" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6052-L6082
rbuffat/pyepw
pyepw/epw.py
WeatherData.extraterrestrial_horizontal_radiation
def extraterrestrial_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `extraterrestrial_horizontal_radiation` Args: value (float): value for IDD Field `extraterrestrial_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `extraterrestrial_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `extraterrestrial_horizontal_radiation`') self._extraterrestrial_horizontal_radiation = value
python
def extraterrestrial_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `extraterrestrial_horizontal_radiation` Args: value (float): value for IDD Field `extraterrestrial_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `extraterrestrial_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `extraterrestrial_horizontal_radiation`') self._extraterrestrial_horizontal_radiation = value
[ "def", "extraterrestrial_horizontal_radiation", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `extraterrestrial_horizontal_radiation`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `extraterrestrial_horizontal_radiation`'", ")", "self", ".", "_extraterrestrial_horizontal_radiation", "=", "value" ]
Corresponds to IDD Field `extraterrestrial_horizontal_radiation` Args: value (float): value for IDD Field `extraterrestrial_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "extraterrestrial_horizontal_radiation" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6095-L6122
rbuffat/pyepw
pyepw/epw.py
WeatherData.extraterrestrial_direct_normal_radiation
def extraterrestrial_direct_normal_radiation(self, value=9999.0): """Corresponds to IDD Field `extraterrestrial_direct_normal_radiation` Args: value (float): value for IDD Field `extraterrestrial_direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `extraterrestrial_direct_normal_radiation`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `extraterrestrial_direct_normal_radiation`') self._extraterrestrial_direct_normal_radiation = value
python
def extraterrestrial_direct_normal_radiation(self, value=9999.0): """Corresponds to IDD Field `extraterrestrial_direct_normal_radiation` Args: value (float): value for IDD Field `extraterrestrial_direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `extraterrestrial_direct_normal_radiation`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `extraterrestrial_direct_normal_radiation`') self._extraterrestrial_direct_normal_radiation = value
[ "def", "extraterrestrial_direct_normal_radiation", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `extraterrestrial_direct_normal_radiation`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `extraterrestrial_direct_normal_radiation`'", ")", "self", ".", "_extraterrestrial_direct_normal_radiation", "=", "value" ]
Corresponds to IDD Field `extraterrestrial_direct_normal_radiation` Args: value (float): value for IDD Field `extraterrestrial_direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "extraterrestrial_direct_normal_radiation" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6135-L6162
rbuffat/pyepw
pyepw/epw.py
WeatherData.horizontal_infrared_radiation_intensity
def horizontal_infrared_radiation_intensity(self, value=9999.0): """Corresponds to IDD Field `horizontal_infrared_radiation_intensity` Args: value (float): value for IDD Field `horizontal_infrared_radiation_intensity` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `horizontal_infrared_radiation_intensity`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `horizontal_infrared_radiation_intensity`') self._horizontal_infrared_radiation_intensity = value
python
def horizontal_infrared_radiation_intensity(self, value=9999.0): """Corresponds to IDD Field `horizontal_infrared_radiation_intensity` Args: value (float): value for IDD Field `horizontal_infrared_radiation_intensity` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `horizontal_infrared_radiation_intensity`'.format(value)) if value < 0.0: raise ValueError( 'value need to be greater or equal 0.0 ' 'for field `horizontal_infrared_radiation_intensity`') self._horizontal_infrared_radiation_intensity = value
[ "def", "horizontal_infrared_radiation_intensity", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `horizontal_infrared_radiation_intensity`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `horizontal_infrared_radiation_intensity`'", ")", "self", ".", "_horizontal_infrared_radiation_intensity", "=", "value" ]
Corresponds to IDD Field `horizontal_infrared_radiation_intensity` Args: value (float): value for IDD Field `horizontal_infrared_radiation_intensity` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "horizontal_infrared_radiation_intensity" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6175-L6202
rbuffat/pyepw
pyepw/epw.py
WeatherData.global_horizontal_radiation
def global_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `global_horizontal_radiation` Args: value (float): value for IDD Field `global_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `global_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `global_horizontal_radiation`') self._global_horizontal_radiation = value
python
def global_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `global_horizontal_radiation` Args: value (float): value for IDD Field `global_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `global_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `global_horizontal_radiation`') self._global_horizontal_radiation = value
[ "def", "global_horizontal_radiation", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `global_horizontal_radiation`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `global_horizontal_radiation`'", ")", "self", ".", "_global_horizontal_radiation", "=", "value" ]
Corresponds to IDD Field `global_horizontal_radiation` Args: value (float): value for IDD Field `global_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "global_horizontal_radiation" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6215-L6241
rbuffat/pyepw
pyepw/epw.py
WeatherData.direct_normal_radiation
def direct_normal_radiation(self, value=9999.0): """Corresponds to IDD Field `direct_normal_radiation` Args: value (float): value for IDD Field `direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `direct_normal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `direct_normal_radiation`') self._direct_normal_radiation = value
python
def direct_normal_radiation(self, value=9999.0): """Corresponds to IDD Field `direct_normal_radiation` Args: value (float): value for IDD Field `direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `direct_normal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `direct_normal_radiation`') self._direct_normal_radiation = value
[ "def", "direct_normal_radiation", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `direct_normal_radiation`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `direct_normal_radiation`'", ")", "self", ".", "_direct_normal_radiation", "=", "value" ]
Corresponds to IDD Field `direct_normal_radiation` Args: value (float): value for IDD Field `direct_normal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "direct_normal_radiation" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6254-L6280
rbuffat/pyepw
pyepw/epw.py
WeatherData.diffuse_horizontal_radiation
def diffuse_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `diffuse_horizontal_radiation` Args: value (float): value for IDD Field `diffuse_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `diffuse_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `diffuse_horizontal_radiation`') self._diffuse_horizontal_radiation = value
python
def diffuse_horizontal_radiation(self, value=9999.0): """Corresponds to IDD Field `diffuse_horizontal_radiation` Args: value (float): value for IDD Field `diffuse_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `diffuse_horizontal_radiation`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `diffuse_horizontal_radiation`') self._diffuse_horizontal_radiation = value
[ "def", "diffuse_horizontal_radiation", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `diffuse_horizontal_radiation`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `diffuse_horizontal_radiation`'", ")", "self", ".", "_diffuse_horizontal_radiation", "=", "value" ]
Corresponds to IDD Field `diffuse_horizontal_radiation` Args: value (float): value for IDD Field `diffuse_horizontal_radiation` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "diffuse_horizontal_radiation" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6293-L6319
rbuffat/pyepw
pyepw/epw.py
WeatherData.global_horizontal_illuminance
def global_horizontal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `global_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `global_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `global_horizontal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `global_horizontal_illuminance`') self._global_horizontal_illuminance = value
python
def global_horizontal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `global_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `global_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `global_horizontal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `global_horizontal_illuminance`') self._global_horizontal_illuminance = value
[ "def", "global_horizontal_illuminance", "(", "self", ",", "value", "=", "999999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `global_horizontal_illuminance`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `global_horizontal_illuminance`'", ")", "self", ".", "_global_horizontal_illuminance", "=", "value" ]
Corresponds to IDD Field `global_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `global_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "global_horizontal_illuminance", "will", "be", "missing", "if", ">", "=", "999900" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6332-L6358
rbuffat/pyepw
pyepw/epw.py
WeatherData.direct_normal_illuminance
def direct_normal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `direct_normal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `direct_normal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `direct_normal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `direct_normal_illuminance`') self._direct_normal_illuminance = value
python
def direct_normal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `direct_normal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `direct_normal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `direct_normal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `direct_normal_illuminance`') self._direct_normal_illuminance = value
[ "def", "direct_normal_illuminance", "(", "self", ",", "value", "=", "999999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `direct_normal_illuminance`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `direct_normal_illuminance`'", ")", "self", ".", "_direct_normal_illuminance", "=", "value" ]
Corresponds to IDD Field `direct_normal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `direct_normal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "direct_normal_illuminance", "will", "be", "missing", "if", ">", "=", "999900" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6371-L6397
rbuffat/pyepw
pyepw/epw.py
WeatherData.diffuse_horizontal_illuminance
def diffuse_horizontal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `diffuse_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `diffuse_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `diffuse_horizontal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `diffuse_horizontal_illuminance`') self._diffuse_horizontal_illuminance = value
python
def diffuse_horizontal_illuminance(self, value=999999.0): """ Corresponds to IDD Field `diffuse_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `diffuse_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `diffuse_horizontal_illuminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `diffuse_horizontal_illuminance`') self._diffuse_horizontal_illuminance = value
[ "def", "diffuse_horizontal_illuminance", "(", "self", ",", "value", "=", "999999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `diffuse_horizontal_illuminance`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `diffuse_horizontal_illuminance`'", ")", "self", ".", "_diffuse_horizontal_illuminance", "=", "value" ]
Corresponds to IDD Field `diffuse_horizontal_illuminance` will be missing if >= 999900 Args: value (float): value for IDD Field `diffuse_horizontal_illuminance` Unit: lux value >= 0.0 Missing value: 999999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "diffuse_horizontal_illuminance", "will", "be", "missing", "if", ">", "=", "999900" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6410-L6436
rbuffat/pyepw
pyepw/epw.py
WeatherData.zenith_luminance
def zenith_luminance(self, value=9999.0): """ Corresponds to IDD Field `zenith_luminance` will be missing if >= 9999 Args: value (float): value for IDD Field `zenith_luminance` Unit: Cd/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `zenith_luminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `zenith_luminance`') self._zenith_luminance = value
python
def zenith_luminance(self, value=9999.0): """ Corresponds to IDD Field `zenith_luminance` will be missing if >= 9999 Args: value (float): value for IDD Field `zenith_luminance` Unit: Cd/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `zenith_luminance`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `zenith_luminance`') self._zenith_luminance = value
[ "def", "zenith_luminance", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `zenith_luminance`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `zenith_luminance`'", ")", "self", ".", "_zenith_luminance", "=", "value" ]
Corresponds to IDD Field `zenith_luminance` will be missing if >= 9999 Args: value (float): value for IDD Field `zenith_luminance` Unit: Cd/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "zenith_luminance", "will", "be", "missing", "if", ">", "=", "9999" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6449-L6474
rbuffat/pyepw
pyepw/epw.py
WeatherData.wind_direction
def wind_direction(self, value=999.0): """Corresponds to IDD Field `wind_direction` Args: value (float): value for IDD Field `wind_direction` Unit: degrees value >= 0.0 value <= 360.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `wind_direction`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `wind_direction`') if value > 360.0: raise ValueError('value need to be smaller 360.0 ' 'for field `wind_direction`') self._wind_direction = value
python
def wind_direction(self, value=999.0): """Corresponds to IDD Field `wind_direction` Args: value (float): value for IDD Field `wind_direction` Unit: degrees value >= 0.0 value <= 360.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `wind_direction`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `wind_direction`') if value > 360.0: raise ValueError('value need to be smaller 360.0 ' 'for field `wind_direction`') self._wind_direction = value
[ "def", "wind_direction", "(", "self", ",", "value", "=", "999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `wind_direction`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `wind_direction`'", ")", "if", "value", ">", "360.0", ":", "raise", "ValueError", "(", "'value need to be smaller 360.0 '", "'for field `wind_direction`'", ")", "self", ".", "_wind_direction", "=", "value" ]
Corresponds to IDD Field `wind_direction` Args: value (float): value for IDD Field `wind_direction` Unit: degrees value >= 0.0 value <= 360.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "wind_direction" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6487-L6516
rbuffat/pyepw
pyepw/epw.py
WeatherData.wind_speed
def wind_speed(self, value=999.0): """Corresponds to IDD Field `wind_speed` Args: value (float): value for IDD Field `wind_speed` Unit: m/s value >= 0.0 value <= 40.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `wind_speed`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `wind_speed`') if value > 40.0: raise ValueError('value need to be smaller 40.0 ' 'for field `wind_speed`') self._wind_speed = value
python
def wind_speed(self, value=999.0): """Corresponds to IDD Field `wind_speed` Args: value (float): value for IDD Field `wind_speed` Unit: m/s value >= 0.0 value <= 40.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `wind_speed`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `wind_speed`') if value > 40.0: raise ValueError('value need to be smaller 40.0 ' 'for field `wind_speed`') self._wind_speed = value
[ "def", "wind_speed", "(", "self", ",", "value", "=", "999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `wind_speed`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `wind_speed`'", ")", "if", "value", ">", "40.0", ":", "raise", "ValueError", "(", "'value need to be smaller 40.0 '", "'for field `wind_speed`'", ")", "self", ".", "_wind_speed", "=", "value" ]
Corresponds to IDD Field `wind_speed` Args: value (float): value for IDD Field `wind_speed` Unit: m/s value >= 0.0 value <= 40.0 Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "wind_speed" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6529-L6558
rbuffat/pyepw
pyepw/epw.py
WeatherData.total_sky_cover
def total_sky_cover(self, value=99.0): """Corresponds to IDD Field `total_sky_cover` This is the value for total sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena at the hour indicated at the time indicated.) Args: value (float): value for IDD Field `total_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `total_sky_cover`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `total_sky_cover`') if value > 10.0: raise ValueError('value need to be smaller 10.0 ' 'for field `total_sky_cover`') self._total_sky_cover = value
python
def total_sky_cover(self, value=99.0): """Corresponds to IDD Field `total_sky_cover` This is the value for total sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena at the hour indicated at the time indicated.) Args: value (float): value for IDD Field `total_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `total_sky_cover`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `total_sky_cover`') if value > 10.0: raise ValueError('value need to be smaller 10.0 ' 'for field `total_sky_cover`') self._total_sky_cover = value
[ "def", "total_sky_cover", "(", "self", ",", "value", "=", "99.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `total_sky_cover`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `total_sky_cover`'", ")", "if", "value", ">", "10.0", ":", "raise", "ValueError", "(", "'value need to be smaller 10.0 '", "'for field `total_sky_cover`'", ")", "self", ".", "_total_sky_cover", "=", "value" ]
Corresponds to IDD Field `total_sky_cover` This is the value for total sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena at the hour indicated at the time indicated.) Args: value (float): value for IDD Field `total_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "total_sky_cover", "This", "is", "the", "value", "for", "total", "sky", "cover", "(", "tenths", "of", "coverage", ")", ".", "(", "i", ".", "e", ".", "1", "is", "1", "/", "10", "covered", ".", "10", "is", "total", "coverage", ")", ".", "(", "Amount", "of", "sky", "dome", "in", "tenths", "covered", "by", "clouds", "or", "obscuring", "phenomena", "at", "the", "hour", "indicated", "at", "the", "time", "indicated", ".", ")" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6571-L6602
rbuffat/pyepw
pyepw/epw.py
WeatherData.opaque_sky_cover
def opaque_sky_cover(self, value=99.0): """Corresponds to IDD Field `opaque_sky_cover` This is the value for opaque sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena that prevent observing the sky or higher cloud layers at the time indicated.) This is not used unless the field for Horizontal Infrared Radiation Intensity is missing and then it is used to calculate Horizontal Infrared Radiation Intensity. Args: value (float): value for IDD Field `opaque_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `opaque_sky_cover`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `opaque_sky_cover`') if value > 10.0: raise ValueError('value need to be smaller 10.0 ' 'for field `opaque_sky_cover`') self._opaque_sky_cover = value
python
def opaque_sky_cover(self, value=99.0): """Corresponds to IDD Field `opaque_sky_cover` This is the value for opaque sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena that prevent observing the sky or higher cloud layers at the time indicated.) This is not used unless the field for Horizontal Infrared Radiation Intensity is missing and then it is used to calculate Horizontal Infrared Radiation Intensity. Args: value (float): value for IDD Field `opaque_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `opaque_sky_cover`'.format(value)) if value < 0.0: raise ValueError('value need to be greater or equal 0.0 ' 'for field `opaque_sky_cover`') if value > 10.0: raise ValueError('value need to be smaller 10.0 ' 'for field `opaque_sky_cover`') self._opaque_sky_cover = value
[ "def", "opaque_sky_cover", "(", "self", ",", "value", "=", "99.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `opaque_sky_cover`'", ".", "format", "(", "value", ")", ")", "if", "value", "<", "0.0", ":", "raise", "ValueError", "(", "'value need to be greater or equal 0.0 '", "'for field `opaque_sky_cover`'", ")", "if", "value", ">", "10.0", ":", "raise", "ValueError", "(", "'value need to be smaller 10.0 '", "'for field `opaque_sky_cover`'", ")", "self", ".", "_opaque_sky_cover", "=", "value" ]
Corresponds to IDD Field `opaque_sky_cover` This is the value for opaque sky cover (tenths of coverage). (i.e. 1 is 1/10 covered. 10 is total coverage). (Amount of sky dome in tenths covered by clouds or obscuring phenomena that prevent observing the sky or higher cloud layers at the time indicated.) This is not used unless the field for Horizontal Infrared Radiation Intensity is missing and then it is used to calculate Horizontal Infrared Radiation Intensity. Args: value (float): value for IDD Field `opaque_sky_cover` value >= 0.0 value <= 10.0 Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "opaque_sky_cover", "This", "is", "the", "value", "for", "opaque", "sky", "cover", "(", "tenths", "of", "coverage", ")", ".", "(", "i", ".", "e", ".", "1", "is", "1", "/", "10", "covered", ".", "10", "is", "total", "coverage", ")", ".", "(", "Amount", "of", "sky", "dome", "in", "tenths", "covered", "by", "clouds", "or", "obscuring", "phenomena", "that", "prevent", "observing", "the", "sky", "or", "higher", "cloud", "layers", "at", "the", "time", "indicated", ".", ")", "This", "is", "not", "used", "unless", "the", "field", "for", "Horizontal", "Infrared", "Radiation", "Intensity", "is", "missing", "and", "then", "it", "is", "used", "to", "calculate", "Horizontal", "Infrared", "Radiation", "Intensity", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6615-L6649
rbuffat/pyepw
pyepw/epw.py
WeatherData.visibility
def visibility(self, value=9999.0): """Corresponds to IDD Field `visibility` This is the value for visibility in km. (Horizontal visibility at the time indicated.) Args: value (float): value for IDD Field `visibility` Unit: km Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `visibility`'.format(value)) self._visibility = value
python
def visibility(self, value=9999.0): """Corresponds to IDD Field `visibility` This is the value for visibility in km. (Horizontal visibility at the time indicated.) Args: value (float): value for IDD Field `visibility` Unit: km Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `visibility`'.format(value)) self._visibility = value
[ "def", "visibility", "(", "self", ",", "value", "=", "9999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `visibility`'", ".", "format", "(", "value", ")", ")", "self", ".", "_visibility", "=", "value" ]
Corresponds to IDD Field `visibility` This is the value for visibility in km. (Horizontal visibility at the time indicated.) Args: value (float): value for IDD Field `visibility` Unit: km Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "visibility", "This", "is", "the", "value", "for", "visibility", "in", "km", ".", "(", "Horizontal", "visibility", "at", "the", "time", "indicated", ".", ")" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6662-L6684
rbuffat/pyepw
pyepw/epw.py
WeatherData.ceiling_height
def ceiling_height(self, value=99999.0): """Corresponds to IDD Field `ceiling_height` This is the value for ceiling height in m. (77777 is unlimited ceiling height. 88888 is cirroform ceiling.) It is not currently used in EnergyPlus calculations. Args: value (float): value for IDD Field `ceiling_height` Unit: m Missing value: 99999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `ceiling_height`'.format(value)) self._ceiling_height = value
python
def ceiling_height(self, value=99999.0): """Corresponds to IDD Field `ceiling_height` This is the value for ceiling height in m. (77777 is unlimited ceiling height. 88888 is cirroform ceiling.) It is not currently used in EnergyPlus calculations. Args: value (float): value for IDD Field `ceiling_height` Unit: m Missing value: 99999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `ceiling_height`'.format(value)) self._ceiling_height = value
[ "def", "ceiling_height", "(", "self", ",", "value", "=", "99999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `ceiling_height`'", ".", "format", "(", "value", ")", ")", "self", ".", "_ceiling_height", "=", "value" ]
Corresponds to IDD Field `ceiling_height` This is the value for ceiling height in m. (77777 is unlimited ceiling height. 88888 is cirroform ceiling.) It is not currently used in EnergyPlus calculations. Args: value (float): value for IDD Field `ceiling_height` Unit: m Missing value: 99999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "ceiling_height", "This", "is", "the", "value", "for", "ceiling", "height", "in", "m", ".", "(", "77777", "is", "unlimited", "ceiling", "height", ".", "88888", "is", "cirroform", "ceiling", ".", ")", "It", "is", "not", "currently", "used", "in", "EnergyPlus", "calculations", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6697-L6721
rbuffat/pyepw
pyepw/epw.py
WeatherData.present_weather_observation
def present_weather_observation(self, value=None): """Corresponds to IDD Field `present_weather_observation` If the value of the field is 0, then the observed weather codes are taken from the following field. If the value of the field is 9, then "missing" weather is assumed. Since the primary use of these fields (Present Weather Observation and Present Weather Codes) is for rain/wet surfaces, a missing observation field or a missing weather code implies "no rain". Args: value (int): value for IDD Field `present_weather_observation` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `present_weather_observation`'.format(value)) self._present_weather_observation = value
python
def present_weather_observation(self, value=None): """Corresponds to IDD Field `present_weather_observation` If the value of the field is 0, then the observed weather codes are taken from the following field. If the value of the field is 9, then "missing" weather is assumed. Since the primary use of these fields (Present Weather Observation and Present Weather Codes) is for rain/wet surfaces, a missing observation field or a missing weather code implies "no rain". Args: value (int): value for IDD Field `present_weather_observation` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `present_weather_observation`'.format(value)) self._present_weather_observation = value
[ "def", "present_weather_observation", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `present_weather_observation`'", ".", "format", "(", "value", ")", ")", "self", ".", "_present_weather_observation", "=", "value" ]
Corresponds to IDD Field `present_weather_observation` If the value of the field is 0, then the observed weather codes are taken from the following field. If the value of the field is 9, then "missing" weather is assumed. Since the primary use of these fields (Present Weather Observation and Present Weather Codes) is for rain/wet surfaces, a missing observation field or a missing weather code implies "no rain". Args: value (int): value for IDD Field `present_weather_observation` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "present_weather_observation", "If", "the", "value", "of", "the", "field", "is", "0", "then", "the", "observed", "weather", "codes", "are", "taken", "from", "the", "following", "field", ".", "If", "the", "value", "of", "the", "field", "is", "9", "then", "missing", "weather", "is", "assumed", ".", "Since", "the", "primary", "use", "of", "these", "fields", "(", "Present", "Weather", "Observation", "and", "Present", "Weather", "Codes", ")", "is", "for", "rain", "/", "wet", "surfaces", "a", "missing", "observation", "field", "or", "a", "missing", "weather", "code", "implies", "no", "rain", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6734-L6759
rbuffat/pyepw
pyepw/epw.py
WeatherData.present_weather_codes
def present_weather_codes(self, value=None): """Corresponds to IDD Field `present_weather_codes` Args: value (int): value for IDD Field `present_weather_codes` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `present_weather_codes`'.format(value)) self._present_weather_codes = value
python
def present_weather_codes(self, value=None): """Corresponds to IDD Field `present_weather_codes` Args: value (int): value for IDD Field `present_weather_codes` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `present_weather_codes`'.format(value)) self._present_weather_codes = value
[ "def", "present_weather_codes", "(", "self", ",", "value", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `present_weather_codes`'", ".", "format", "(", "value", ")", ")", "self", ".", "_present_weather_codes", "=", "value" ]
Corresponds to IDD Field `present_weather_codes` Args: value (int): value for IDD Field `present_weather_codes` if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "present_weather_codes" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6772-L6792
rbuffat/pyepw
pyepw/epw.py
WeatherData.precipitable_water
def precipitable_water(self, value=999.0): """Corresponds to IDD Field `precipitable_water` Args: value (float): value for IDD Field `precipitable_water` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `precipitable_water`'.format(value)) self._precipitable_water = value
python
def precipitable_water(self, value=999.0): """Corresponds to IDD Field `precipitable_water` Args: value (float): value for IDD Field `precipitable_water` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `precipitable_water`'.format(value)) self._precipitable_water = value
[ "def", "precipitable_water", "(", "self", ",", "value", "=", "999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `precipitable_water`'", ".", "format", "(", "value", ")", ")", "self", ".", "_precipitable_water", "=", "value" ]
Corresponds to IDD Field `precipitable_water` Args: value (float): value for IDD Field `precipitable_water` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "precipitable_water" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6805-L6827
rbuffat/pyepw
pyepw/epw.py
WeatherData.aerosol_optical_depth
def aerosol_optical_depth(self, value=0.999): """Corresponds to IDD Field `aerosol_optical_depth` Args: value (float): value for IDD Field `aerosol_optical_depth` Unit: thousandths Missing value: 0.999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `aerosol_optical_depth`'.format(value)) self._aerosol_optical_depth = value
python
def aerosol_optical_depth(self, value=0.999): """Corresponds to IDD Field `aerosol_optical_depth` Args: value (float): value for IDD Field `aerosol_optical_depth` Unit: thousandths Missing value: 0.999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `aerosol_optical_depth`'.format(value)) self._aerosol_optical_depth = value
[ "def", "aerosol_optical_depth", "(", "self", ",", "value", "=", "0.999", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `aerosol_optical_depth`'", ".", "format", "(", "value", ")", ")", "self", ".", "_aerosol_optical_depth", "=", "value" ]
Corresponds to IDD Field `aerosol_optical_depth` Args: value (float): value for IDD Field `aerosol_optical_depth` Unit: thousandths Missing value: 0.999 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "aerosol_optical_depth" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6840-L6862
rbuffat/pyepw
pyepw/epw.py
WeatherData.snow_depth
def snow_depth(self, value=999.0): """Corresponds to IDD Field `snow_depth` Args: value (float): value for IDD Field `snow_depth` Unit: cm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `snow_depth`'.format(value)) self._snow_depth = value
python
def snow_depth(self, value=999.0): """Corresponds to IDD Field `snow_depth` Args: value (float): value for IDD Field `snow_depth` Unit: cm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `snow_depth`'.format(value)) self._snow_depth = value
[ "def", "snow_depth", "(", "self", ",", "value", "=", "999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `snow_depth`'", ".", "format", "(", "value", ")", ")", "self", ".", "_snow_depth", "=", "value" ]
Corresponds to IDD Field `snow_depth` Args: value (float): value for IDD Field `snow_depth` Unit: cm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "snow_depth" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6875-L6896
rbuffat/pyepw
pyepw/epw.py
WeatherData.days_since_last_snowfall
def days_since_last_snowfall(self, value=99): """Corresponds to IDD Field `days_since_last_snowfall` Args: value (int): value for IDD Field `days_since_last_snowfall` Missing value: 99 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `days_since_last_snowfall`'.format(value)) self._days_since_last_snowfall = value
python
def days_since_last_snowfall(self, value=99): """Corresponds to IDD Field `days_since_last_snowfall` Args: value (int): value for IDD Field `days_since_last_snowfall` Missing value: 99 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = int(value) except ValueError: raise ValueError( 'value {} need to be of type int ' 'for field `days_since_last_snowfall`'.format(value)) self._days_since_last_snowfall = value
[ "def", "days_since_last_snowfall", "(", "self", ",", "value", "=", "99", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "int", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type int '", "'for field `days_since_last_snowfall`'", ".", "format", "(", "value", ")", ")", "self", ".", "_days_since_last_snowfall", "=", "value" ]
Corresponds to IDD Field `days_since_last_snowfall` Args: value (int): value for IDD Field `days_since_last_snowfall` Missing value: 99 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "days_since_last_snowfall" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6909-L6930
rbuffat/pyepw
pyepw/epw.py
WeatherData.albedo
def albedo(self, value=999.0): """Corresponds to IDD Field `albedo` Args: value (float): value for IDD Field `albedo` Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `albedo`'.format(value)) self._albedo = value
python
def albedo(self, value=999.0): """Corresponds to IDD Field `albedo` Args: value (float): value for IDD Field `albedo` Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float ' 'for field `albedo`'.format(value)) self._albedo = value
[ "def", "albedo", "(", "self", ",", "value", "=", "999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `albedo`'", ".", "format", "(", "value", ")", ")", "self", ".", "_albedo", "=", "value" ]
Corresponds to IDD Field `albedo` Args: value (float): value for IDD Field `albedo` Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "albedo" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6943-L6963
rbuffat/pyepw
pyepw/epw.py
WeatherData.liquid_precipitation_depth
def liquid_precipitation_depth(self, value=999.0): """Corresponds to IDD Field `liquid_precipitation_depth` Args: value (float): value for IDD Field `liquid_precipitation_depth` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `liquid_precipitation_depth`'.format(value)) self._liquid_precipitation_depth = value
python
def liquid_precipitation_depth(self, value=999.0): """Corresponds to IDD Field `liquid_precipitation_depth` Args: value (float): value for IDD Field `liquid_precipitation_depth` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `liquid_precipitation_depth`'.format(value)) self._liquid_precipitation_depth = value
[ "def", "liquid_precipitation_depth", "(", "self", ",", "value", "=", "999.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `liquid_precipitation_depth`'", ".", "format", "(", "value", ")", ")", "self", ".", "_liquid_precipitation_depth", "=", "value" ]
Corresponds to IDD Field `liquid_precipitation_depth` Args: value (float): value for IDD Field `liquid_precipitation_depth` Unit: mm Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "liquid_precipitation_depth" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L6976-L6998
rbuffat/pyepw
pyepw/epw.py
WeatherData.liquid_precipitation_quantity
def liquid_precipitation_quantity(self, value=99.0): """Corresponds to IDD Field `liquid_precipitation_quantity` Args: value (float): value for IDD Field `liquid_precipitation_quantity` Unit: hr Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `liquid_precipitation_quantity`'.format(value)) self._liquid_precipitation_quantity = value
python
def liquid_precipitation_quantity(self, value=99.0): """Corresponds to IDD Field `liquid_precipitation_quantity` Args: value (float): value for IDD Field `liquid_precipitation_quantity` Unit: hr Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value """ if value is not None: try: value = float(value) except ValueError: raise ValueError( 'value {} need to be of type float ' 'for field `liquid_precipitation_quantity`'.format(value)) self._liquid_precipitation_quantity = value
[ "def", "liquid_precipitation_quantity", "(", "self", ",", "value", "=", "99.0", ")", ":", "if", "value", "is", "not", "None", ":", "try", ":", "value", "=", "float", "(", "value", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "'value {} need to be of type float '", "'for field `liquid_precipitation_quantity`'", ".", "format", "(", "value", ")", ")", "self", ".", "_liquid_precipitation_quantity", "=", "value" ]
Corresponds to IDD Field `liquid_precipitation_quantity` Args: value (float): value for IDD Field `liquid_precipitation_quantity` Unit: hr Missing value: 99.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
[ "Corresponds", "to", "IDD", "Field", "liquid_precipitation_quantity" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L7011-L7033
rbuffat/pyepw
pyepw/epw.py
WeatherData.export
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.year)) out.append(self._to_str(self.month)) out.append(self._to_str(self.day)) out.append(self._to_str(self.hour)) out.append(self._to_str(self.minute)) out.append(self._to_str(self.data_source_and_uncertainty_flags)) out.append(self._to_str(self.dry_bulb_temperature)) out.append(self._to_str(self.dew_point_temperature)) out.append(self._to_str(self.relative_humidity)) out.append(self._to_str(self.atmospheric_station_pressure)) out.append(self._to_str(self.extraterrestrial_horizontal_radiation)) out.append(self._to_str(self.extraterrestrial_direct_normal_radiation)) out.append(self._to_str(self.horizontal_infrared_radiation_intensity)) out.append(self._to_str(self.global_horizontal_radiation)) out.append(self._to_str(self.direct_normal_radiation)) out.append(self._to_str(self.diffuse_horizontal_radiation)) out.append(self._to_str(self.global_horizontal_illuminance)) out.append(self._to_str(self.direct_normal_illuminance)) out.append(self._to_str(self.diffuse_horizontal_illuminance)) out.append(self._to_str(self.zenith_luminance)) out.append(self._to_str(self.wind_direction)) out.append(self._to_str(self.wind_speed)) out.append(self._to_str(self.total_sky_cover)) out.append(self._to_str(self.opaque_sky_cover)) out.append(self._to_str(self.visibility)) out.append(self._to_str(self.ceiling_height)) out.append(self._to_str(self.present_weather_observation)) out.append(self._to_str(self.present_weather_codes)) out.append(self._to_str(self.precipitable_water)) out.append(self._to_str(self.aerosol_optical_depth)) out.append(self._to_str(self.snow_depth)) out.append(self._to_str(self.days_since_last_snowfall)) out.append(self._to_str(self.albedo)) out.append(self._to_str(self.liquid_precipitation_depth)) out.append(self._to_str(self.liquid_precipitation_quantity)) return ",".join(out)
python
def export(self, top=True): """Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation """ out = [] if top: out.append(self._internal_name) out.append(self._to_str(self.year)) out.append(self._to_str(self.month)) out.append(self._to_str(self.day)) out.append(self._to_str(self.hour)) out.append(self._to_str(self.minute)) out.append(self._to_str(self.data_source_and_uncertainty_flags)) out.append(self._to_str(self.dry_bulb_temperature)) out.append(self._to_str(self.dew_point_temperature)) out.append(self._to_str(self.relative_humidity)) out.append(self._to_str(self.atmospheric_station_pressure)) out.append(self._to_str(self.extraterrestrial_horizontal_radiation)) out.append(self._to_str(self.extraterrestrial_direct_normal_radiation)) out.append(self._to_str(self.horizontal_infrared_radiation_intensity)) out.append(self._to_str(self.global_horizontal_radiation)) out.append(self._to_str(self.direct_normal_radiation)) out.append(self._to_str(self.diffuse_horizontal_radiation)) out.append(self._to_str(self.global_horizontal_illuminance)) out.append(self._to_str(self.direct_normal_illuminance)) out.append(self._to_str(self.diffuse_horizontal_illuminance)) out.append(self._to_str(self.zenith_luminance)) out.append(self._to_str(self.wind_direction)) out.append(self._to_str(self.wind_speed)) out.append(self._to_str(self.total_sky_cover)) out.append(self._to_str(self.opaque_sky_cover)) out.append(self._to_str(self.visibility)) out.append(self._to_str(self.ceiling_height)) out.append(self._to_str(self.present_weather_observation)) out.append(self._to_str(self.present_weather_codes)) out.append(self._to_str(self.precipitable_water)) out.append(self._to_str(self.aerosol_optical_depth)) out.append(self._to_str(self.snow_depth)) out.append(self._to_str(self.days_since_last_snowfall)) out.append(self._to_str(self.albedo)) out.append(self._to_str(self.liquid_precipitation_depth)) out.append(self._to_str(self.liquid_precipitation_quantity)) return ",".join(out)
[ "def", "export", "(", "self", ",", "top", "=", "True", ")", ":", "out", "=", "[", "]", "if", "top", ":", "out", ".", "append", "(", "self", ".", "_internal_name", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "year", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "month", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "day", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "hour", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "minute", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "data_source_and_uncertainty_flags", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "dry_bulb_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "dew_point_temperature", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "relative_humidity", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "atmospheric_station_pressure", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "extraterrestrial_horizontal_radiation", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "extraterrestrial_direct_normal_radiation", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "horizontal_infrared_radiation_intensity", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "global_horizontal_radiation", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "direct_normal_radiation", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "diffuse_horizontal_radiation", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "global_horizontal_illuminance", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "direct_normal_illuminance", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "diffuse_horizontal_illuminance", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "zenith_luminance", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "wind_direction", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "wind_speed", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "total_sky_cover", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "opaque_sky_cover", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "visibility", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "ceiling_height", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "present_weather_observation", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "present_weather_codes", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "precipitable_water", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "aerosol_optical_depth", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "snow_depth", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "days_since_last_snowfall", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "albedo", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "liquid_precipitation_depth", ")", ")", "out", ".", "append", "(", "self", ".", "_to_str", "(", "self", ".", "liquid_precipitation_quantity", ")", ")", "return", "\",\"", ".", "join", "(", "out", ")" ]
Exports object to its string representation. Args: top (bool): if True appends `internal_name` before values. All non list objects should be exported with value top=True, all list objects, that are embedded in as fields inlist objects should be exported with `top`=False Returns: str: The objects string representation
[ "Exports", "object", "to", "its", "string", "representation", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L7048-L7099
rbuffat/pyepw
pyepw/epw.py
EPW.add_weatherdata
def add_weatherdata(self, data): """Appends weather data. Args: data (WeatherData): weather data object """ if not isinstance(data, WeatherData): raise ValueError('Weather data need to be of type WeatherData') self._data["WEATHER DATA"].append(data)
python
def add_weatherdata(self, data): """Appends weather data. Args: data (WeatherData): weather data object """ if not isinstance(data, WeatherData): raise ValueError('Weather data need to be of type WeatherData') self._data["WEATHER DATA"].append(data)
[ "def", "add_weatherdata", "(", "self", ",", "data", ")", ":", "if", "not", "isinstance", "(", "data", ",", "WeatherData", ")", ":", "raise", "ValueError", "(", "'Weather data need to be of type WeatherData'", ")", "self", ".", "_data", "[", "\"WEATHER DATA\"", "]", ".", "append", "(", "data", ")" ]
Appends weather data. Args: data (WeatherData): weather data object
[ "Appends", "weather", "data", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L7315-L7324
rbuffat/pyepw
pyepw/epw.py
EPW.save
def save(self, path, check=True): """Save WeatherData in EPW format to path. Args: path (str): path where EPW file should be saved """ with open(path, 'w') as f: if check: if ("LOCATION" not in self._data or self._data["LOCATION"] is None): raise ValueError('location is not valid.') if ("DESIGN CONDITIONS" not in self._data or self._data["DESIGN CONDITIONS"] is None): raise ValueError('design_conditions is not valid.') if ("TYPICAL/EXTREME PERIODS" not in self._data or self._data["TYPICAL/EXTREME PERIODS"] is None): raise ValueError( 'typical_or_extreme_periods is not valid.') if ("GROUND TEMPERATURES" not in self._data or self._data["GROUND TEMPERATURES"] is None): raise ValueError('ground_temperatures is not valid.') if ("HOLIDAYS/DAYLIGHT SAVINGS" not in self._data or self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is None): raise ValueError( 'holidays_or_daylight_savings is not valid.') if ("COMMENTS 1" not in self._data or self._data["COMMENTS 1"] is None): raise ValueError('comments_1 is not valid.') if ("COMMENTS 2" not in self._data or self._data["COMMENTS 2"] is None): raise ValueError('comments_2 is not valid.') if ("DATA PERIODS" not in self._data or self._data["DATA PERIODS"] is None): raise ValueError('data_periods is not valid.') if ("LOCATION" in self._data and self._data["LOCATION"] is not None): f.write(self._data["LOCATION"].export() + "\n") if ("DESIGN CONDITIONS" in self._data and self._data["DESIGN CONDITIONS"] is not None): f.write(self._data["DESIGN CONDITIONS"].export() + "\n") if ("TYPICAL/EXTREME PERIODS" in self._data and self._data["TYPICAL/EXTREME PERIODS"] is not None): f.write(self._data["TYPICAL/EXTREME PERIODS"].export() + "\n") if ("GROUND TEMPERATURES" in self._data and self._data["GROUND TEMPERATURES"] is not None): f.write(self._data["GROUND TEMPERATURES"].export() + "\n") if ("HOLIDAYS/DAYLIGHT SAVINGS" in self._data and self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is not None): f.write( self._data["HOLIDAYS/DAYLIGHT SAVINGS"].export() + "\n") if ("COMMENTS 1" in self._data and self._data["COMMENTS 1"] is not None): f.write(self._data["COMMENTS 1"].export() + "\n") if ("COMMENTS 2" in self._data and self._data["COMMENTS 2"] is not None): f.write(self._data["COMMENTS 2"].export() + "\n") if ("DATA PERIODS" in self._data and self._data["DATA PERIODS"] is not None): f.write(self._data["DATA PERIODS"].export() + "\n") for item in self._data["WEATHER DATA"]: f.write(item.export(False) + "\n")
python
def save(self, path, check=True): """Save WeatherData in EPW format to path. Args: path (str): path where EPW file should be saved """ with open(path, 'w') as f: if check: if ("LOCATION" not in self._data or self._data["LOCATION"] is None): raise ValueError('location is not valid.') if ("DESIGN CONDITIONS" not in self._data or self._data["DESIGN CONDITIONS"] is None): raise ValueError('design_conditions is not valid.') if ("TYPICAL/EXTREME PERIODS" not in self._data or self._data["TYPICAL/EXTREME PERIODS"] is None): raise ValueError( 'typical_or_extreme_periods is not valid.') if ("GROUND TEMPERATURES" not in self._data or self._data["GROUND TEMPERATURES"] is None): raise ValueError('ground_temperatures is not valid.') if ("HOLIDAYS/DAYLIGHT SAVINGS" not in self._data or self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is None): raise ValueError( 'holidays_or_daylight_savings is not valid.') if ("COMMENTS 1" not in self._data or self._data["COMMENTS 1"] is None): raise ValueError('comments_1 is not valid.') if ("COMMENTS 2" not in self._data or self._data["COMMENTS 2"] is None): raise ValueError('comments_2 is not valid.') if ("DATA PERIODS" not in self._data or self._data["DATA PERIODS"] is None): raise ValueError('data_periods is not valid.') if ("LOCATION" in self._data and self._data["LOCATION"] is not None): f.write(self._data["LOCATION"].export() + "\n") if ("DESIGN CONDITIONS" in self._data and self._data["DESIGN CONDITIONS"] is not None): f.write(self._data["DESIGN CONDITIONS"].export() + "\n") if ("TYPICAL/EXTREME PERIODS" in self._data and self._data["TYPICAL/EXTREME PERIODS"] is not None): f.write(self._data["TYPICAL/EXTREME PERIODS"].export() + "\n") if ("GROUND TEMPERATURES" in self._data and self._data["GROUND TEMPERATURES"] is not None): f.write(self._data["GROUND TEMPERATURES"].export() + "\n") if ("HOLIDAYS/DAYLIGHT SAVINGS" in self._data and self._data["HOLIDAYS/DAYLIGHT SAVINGS"] is not None): f.write( self._data["HOLIDAYS/DAYLIGHT SAVINGS"].export() + "\n") if ("COMMENTS 1" in self._data and self._data["COMMENTS 1"] is not None): f.write(self._data["COMMENTS 1"].export() + "\n") if ("COMMENTS 2" in self._data and self._data["COMMENTS 2"] is not None): f.write(self._data["COMMENTS 2"].export() + "\n") if ("DATA PERIODS" in self._data and self._data["DATA PERIODS"] is not None): f.write(self._data["DATA PERIODS"].export() + "\n") for item in self._data["WEATHER DATA"]: f.write(item.export(False) + "\n")
[ "def", "save", "(", "self", ",", "path", ",", "check", "=", "True", ")", ":", "with", "open", "(", "path", ",", "'w'", ")", "as", "f", ":", "if", "check", ":", "if", "(", "\"LOCATION\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"LOCATION\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'location is not valid.'", ")", "if", "(", "\"DESIGN CONDITIONS\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"DESIGN CONDITIONS\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'design_conditions is not valid.'", ")", "if", "(", "\"TYPICAL/EXTREME PERIODS\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"TYPICAL/EXTREME PERIODS\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'typical_or_extreme_periods is not valid.'", ")", "if", "(", "\"GROUND TEMPERATURES\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"GROUND TEMPERATURES\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'ground_temperatures is not valid.'", ")", "if", "(", "\"HOLIDAYS/DAYLIGHT SAVINGS\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"HOLIDAYS/DAYLIGHT SAVINGS\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'holidays_or_daylight_savings is not valid.'", ")", "if", "(", "\"COMMENTS 1\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"COMMENTS 1\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'comments_1 is not valid.'", ")", "if", "(", "\"COMMENTS 2\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"COMMENTS 2\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'comments_2 is not valid.'", ")", "if", "(", "\"DATA PERIODS\"", "not", "in", "self", ".", "_data", "or", "self", ".", "_data", "[", "\"DATA PERIODS\"", "]", "is", "None", ")", ":", "raise", "ValueError", "(", "'data_periods is not valid.'", ")", "if", "(", "\"LOCATION\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"LOCATION\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"LOCATION\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "if", "(", "\"DESIGN CONDITIONS\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"DESIGN CONDITIONS\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"DESIGN CONDITIONS\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "if", "(", "\"TYPICAL/EXTREME PERIODS\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"TYPICAL/EXTREME PERIODS\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"TYPICAL/EXTREME PERIODS\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "if", "(", "\"GROUND TEMPERATURES\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"GROUND TEMPERATURES\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"GROUND TEMPERATURES\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "if", "(", "\"HOLIDAYS/DAYLIGHT SAVINGS\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"HOLIDAYS/DAYLIGHT SAVINGS\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"HOLIDAYS/DAYLIGHT SAVINGS\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "if", "(", "\"COMMENTS 1\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"COMMENTS 1\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"COMMENTS 1\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "if", "(", "\"COMMENTS 2\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"COMMENTS 2\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"COMMENTS 2\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "if", "(", "\"DATA PERIODS\"", "in", "self", ".", "_data", "and", "self", ".", "_data", "[", "\"DATA PERIODS\"", "]", "is", "not", "None", ")", ":", "f", ".", "write", "(", "self", ".", "_data", "[", "\"DATA PERIODS\"", "]", ".", "export", "(", ")", "+", "\"\\n\"", ")", "for", "item", "in", "self", ".", "_data", "[", "\"WEATHER DATA\"", "]", ":", "f", ".", "write", "(", "item", ".", "export", "(", "False", ")", "+", "\"\\n\"", ")" ]
Save WeatherData in EPW format to path. Args: path (str): path where EPW file should be saved
[ "Save", "WeatherData", "in", "EPW", "format", "to", "path", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L7326-L7388
rbuffat/pyepw
pyepw/epw.py
EPW._create_datadict
def _create_datadict(cls, internal_name): """Creates an object depending on `internal_name` Args: internal_name (str): IDD name Raises: ValueError: if `internal_name` cannot be matched to a data dictionary object """ if internal_name == "LOCATION": return Location() if internal_name == "DESIGN CONDITIONS": return DesignConditions() if internal_name == "TYPICAL/EXTREME PERIODS": return TypicalOrExtremePeriods() if internal_name == "GROUND TEMPERATURES": return GroundTemperatures() if internal_name == "HOLIDAYS/DAYLIGHT SAVINGS": return HolidaysOrDaylightSavings() if internal_name == "COMMENTS 1": return Comments1() if internal_name == "COMMENTS 2": return Comments2() if internal_name == "DATA PERIODS": return DataPeriods() raise ValueError( "No DataDictionary known for {}".format(internal_name))
python
def _create_datadict(cls, internal_name): """Creates an object depending on `internal_name` Args: internal_name (str): IDD name Raises: ValueError: if `internal_name` cannot be matched to a data dictionary object """ if internal_name == "LOCATION": return Location() if internal_name == "DESIGN CONDITIONS": return DesignConditions() if internal_name == "TYPICAL/EXTREME PERIODS": return TypicalOrExtremePeriods() if internal_name == "GROUND TEMPERATURES": return GroundTemperatures() if internal_name == "HOLIDAYS/DAYLIGHT SAVINGS": return HolidaysOrDaylightSavings() if internal_name == "COMMENTS 1": return Comments1() if internal_name == "COMMENTS 2": return Comments2() if internal_name == "DATA PERIODS": return DataPeriods() raise ValueError( "No DataDictionary known for {}".format(internal_name))
[ "def", "_create_datadict", "(", "cls", ",", "internal_name", ")", ":", "if", "internal_name", "==", "\"LOCATION\"", ":", "return", "Location", "(", ")", "if", "internal_name", "==", "\"DESIGN CONDITIONS\"", ":", "return", "DesignConditions", "(", ")", "if", "internal_name", "==", "\"TYPICAL/EXTREME PERIODS\"", ":", "return", "TypicalOrExtremePeriods", "(", ")", "if", "internal_name", "==", "\"GROUND TEMPERATURES\"", ":", "return", "GroundTemperatures", "(", ")", "if", "internal_name", "==", "\"HOLIDAYS/DAYLIGHT SAVINGS\"", ":", "return", "HolidaysOrDaylightSavings", "(", ")", "if", "internal_name", "==", "\"COMMENTS 1\"", ":", "return", "Comments1", "(", ")", "if", "internal_name", "==", "\"COMMENTS 2\"", ":", "return", "Comments2", "(", ")", "if", "internal_name", "==", "\"DATA PERIODS\"", ":", "return", "DataPeriods", "(", ")", "raise", "ValueError", "(", "\"No DataDictionary known for {}\"", ".", "format", "(", "internal_name", ")", ")" ]
Creates an object depending on `internal_name` Args: internal_name (str): IDD name Raises: ValueError: if `internal_name` cannot be matched to a data dictionary object
[ "Creates", "an", "object", "depending", "on", "internal_name" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L7391-L7418
rbuffat/pyepw
pyepw/epw.py
EPW.read
def read(self, path): """Read EPW weather data from path. Args: path (str): path to read weather data from """ with open(path, "r") as f: for line in f: line = line.strip() match_obj_name = re.search(r"^([A-Z][A-Z/ \d]+),", line) if match_obj_name is not None: internal_name = match_obj_name.group(1) if internal_name in self._data: self._data[internal_name] = self._create_datadict( internal_name) data_line = line[len(internal_name) + 1:] vals = data_line.strip().split(',') self._data[internal_name].read(vals) else: wd = WeatherData() wd.read(line.strip().split(',')) self.add_weatherdata(wd)
python
def read(self, path): """Read EPW weather data from path. Args: path (str): path to read weather data from """ with open(path, "r") as f: for line in f: line = line.strip() match_obj_name = re.search(r"^([A-Z][A-Z/ \d]+),", line) if match_obj_name is not None: internal_name = match_obj_name.group(1) if internal_name in self._data: self._data[internal_name] = self._create_datadict( internal_name) data_line = line[len(internal_name) + 1:] vals = data_line.strip().split(',') self._data[internal_name].read(vals) else: wd = WeatherData() wd.read(line.strip().split(',')) self.add_weatherdata(wd)
[ "def", "read", "(", "self", ",", "path", ")", ":", "with", "open", "(", "path", ",", "\"r\"", ")", "as", "f", ":", "for", "line", "in", "f", ":", "line", "=", "line", ".", "strip", "(", ")", "match_obj_name", "=", "re", ".", "search", "(", "r\"^([A-Z][A-Z/ \\d]+),\"", ",", "line", ")", "if", "match_obj_name", "is", "not", "None", ":", "internal_name", "=", "match_obj_name", ".", "group", "(", "1", ")", "if", "internal_name", "in", "self", ".", "_data", ":", "self", ".", "_data", "[", "internal_name", "]", "=", "self", ".", "_create_datadict", "(", "internal_name", ")", "data_line", "=", "line", "[", "len", "(", "internal_name", ")", "+", "1", ":", "]", "vals", "=", "data_line", ".", "strip", "(", ")", ".", "split", "(", "','", ")", "self", ".", "_data", "[", "internal_name", "]", ".", "read", "(", "vals", ")", "else", ":", "wd", "=", "WeatherData", "(", ")", "wd", ".", "read", "(", "line", ".", "strip", "(", ")", ".", "split", "(", "','", ")", ")", "self", ".", "add_weatherdata", "(", "wd", ")" ]
Read EPW weather data from path. Args: path (str): path to read weather data from
[ "Read", "EPW", "weather", "data", "from", "path", "." ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/pyepw/epw.py#L7420-L7442
sods/ods
pods/notebook.py
display_url
def display_url(target): """Displaying URL in an IPython notebook to allow the user to click and check on information. With thanks to Fernando Perez for putting together the implementation! :param target: the url to display. :type target: string.""" prefix = u"http://" if not target.startswith("http") else u"" target = prefix + target display(HTML(u'<a href="{t}" target=_blank>{t}</a>'.format(t=target)))
python
def display_url(target): """Displaying URL in an IPython notebook to allow the user to click and check on information. With thanks to Fernando Perez for putting together the implementation! :param target: the url to display. :type target: string.""" prefix = u"http://" if not target.startswith("http") else u"" target = prefix + target display(HTML(u'<a href="{t}" target=_blank>{t}</a>'.format(t=target)))
[ "def", "display_url", "(", "target", ")", ":", "prefix", "=", "u\"http://\"", "if", "not", "target", ".", "startswith", "(", "\"http\"", ")", "else", "u\"\"", "target", "=", "prefix", "+", "target", "display", "(", "HTML", "(", "u'<a href=\"{t}\" target=_blank>{t}</a>'", ".", "format", "(", "t", "=", "target", ")", ")", ")" ]
Displaying URL in an IPython notebook to allow the user to click and check on information. With thanks to Fernando Perez for putting together the implementation! :param target: the url to display. :type target: string.
[ "Displaying", "URL", "in", "an", "IPython", "notebook", "to", "allow", "the", "user", "to", "click", "and", "check", "on", "information", ".", "With", "thanks", "to", "Fernando", "Perez", "for", "putting", "together", "the", "implementation!", ":", "param", "target", ":", "the", "url", "to", "display", ".", ":", "type", "target", ":", "string", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L11-L18
sods/ods
pods/notebook.py
iframe_url
def iframe_url(target, width=500, height=400, scrolling=True, border=0, frameborder=0): """Produce an iframe for displaying an item in HTML window. :param target: the target url. :type target: string :param width: the width of the iframe (default 500). :type width: int :param height: the height of the iframe (default 400). :type height: int :param scrolling: whether or not to allow scrolling (default True). :type scrolling: bool :param border: width of the border. :type border: int :param frameborder: width of the frameborder. :type frameborder: int""" prefix = u"http://" if not target.startswith("http") else u"" target = prefix + target if scrolling: scroll_val = 'yes' else: scroll_val = 'no' return u'<iframe frameborder="{frameborder}" scrolling="{scrolling}" style="border:{border}px" src="{url}", width={width} height={height}></iframe>'.format(frameborder=frameborder, scrolling=scroll_val, border=border, url=target, width=width, height=height)
python
def iframe_url(target, width=500, height=400, scrolling=True, border=0, frameborder=0): """Produce an iframe for displaying an item in HTML window. :param target: the target url. :type target: string :param width: the width of the iframe (default 500). :type width: int :param height: the height of the iframe (default 400). :type height: int :param scrolling: whether or not to allow scrolling (default True). :type scrolling: bool :param border: width of the border. :type border: int :param frameborder: width of the frameborder. :type frameborder: int""" prefix = u"http://" if not target.startswith("http") else u"" target = prefix + target if scrolling: scroll_val = 'yes' else: scroll_val = 'no' return u'<iframe frameborder="{frameborder}" scrolling="{scrolling}" style="border:{border}px" src="{url}", width={width} height={height}></iframe>'.format(frameborder=frameborder, scrolling=scroll_val, border=border, url=target, width=width, height=height)
[ "def", "iframe_url", "(", "target", ",", "width", "=", "500", ",", "height", "=", "400", ",", "scrolling", "=", "True", ",", "border", "=", "0", ",", "frameborder", "=", "0", ")", ":", "prefix", "=", "u\"http://\"", "if", "not", "target", ".", "startswith", "(", "\"http\"", ")", "else", "u\"\"", "target", "=", "prefix", "+", "target", "if", "scrolling", ":", "scroll_val", "=", "'yes'", "else", ":", "scroll_val", "=", "'no'", "return", "u'<iframe frameborder=\"{frameborder}\" scrolling=\"{scrolling}\" style=\"border:{border}px\" src=\"{url}\", width={width} height={height}></iframe>'", ".", "format", "(", "frameborder", "=", "frameborder", ",", "scrolling", "=", "scroll_val", ",", "border", "=", "border", ",", "url", "=", "target", ",", "width", "=", "width", ",", "height", "=", "height", ")" ]
Produce an iframe for displaying an item in HTML window. :param target: the target url. :type target: string :param width: the width of the iframe (default 500). :type width: int :param height: the height of the iframe (default 400). :type height: int :param scrolling: whether or not to allow scrolling (default True). :type scrolling: bool :param border: width of the border. :type border: int :param frameborder: width of the frameborder. :type frameborder: int
[ "Produce", "an", "iframe", "for", "displaying", "an", "item", "in", "HTML", "window", ".", ":", "param", "target", ":", "the", "target", "url", ".", ":", "type", "target", ":", "string", ":", "param", "width", ":", "the", "width", "of", "the", "iframe", "(", "default", "500", ")", ".", ":", "type", "width", ":", "int", ":", "param", "height", ":", "the", "height", "of", "the", "iframe", "(", "default", "400", ")", ".", ":", "type", "height", ":", "int", ":", "param", "scrolling", ":", "whether", "or", "not", "to", "allow", "scrolling", "(", "default", "True", ")", ".", ":", "type", "scrolling", ":", "bool", ":", "param", "border", ":", "width", "of", "the", "border", ".", ":", "type", "border", ":", "int", ":", "param", "frameborder", ":", "width", "of", "the", "frameborder", ".", ":", "type", "frameborder", ":", "int" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L20-L41
sods/ods
pods/notebook.py
display_iframe_url
def display_iframe_url(target, **kwargs): """Display the contents of a URL in an IPython notebook. :param target: the target url. :type target: string .. seealso:: `iframe_url()` for additional arguments.""" txt = iframe_url(target, **kwargs) display(HTML(txt))
python
def display_iframe_url(target, **kwargs): """Display the contents of a URL in an IPython notebook. :param target: the target url. :type target: string .. seealso:: `iframe_url()` for additional arguments.""" txt = iframe_url(target, **kwargs) display(HTML(txt))
[ "def", "display_iframe_url", "(", "target", ",", "*", "*", "kwargs", ")", ":", "txt", "=", "iframe_url", "(", "target", ",", "*", "*", "kwargs", ")", "display", "(", "HTML", "(", "txt", ")", ")" ]
Display the contents of a URL in an IPython notebook. :param target: the target url. :type target: string .. seealso:: `iframe_url()` for additional arguments.
[ "Display", "the", "contents", "of", "a", "URL", "in", "an", "IPython", "notebook", ".", ":", "param", "target", ":", "the", "target", "url", ".", ":", "type", "target", ":", "string" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L43-L52
sods/ods
pods/notebook.py
display_google_book
def display_google_book(id, page=None, width=700, height=500, **kwargs): """Display an embedded version of a Google book. :param id: the id of the google book to display. :type id: string :param page: the start page for the book. :type id: string or int.""" if isinstance(page, int): url = 'http://books.google.co.uk/books?id={id}&pg=PA{page}&output=embed'.format(id=id, page=page) else: url = 'http://books.google.co.uk/books?id={id}&pg={page}&output=embed'.format(id=id, page=page) display_iframe_url(url, width=width, height=height, **kwargs)
python
def display_google_book(id, page=None, width=700, height=500, **kwargs): """Display an embedded version of a Google book. :param id: the id of the google book to display. :type id: string :param page: the start page for the book. :type id: string or int.""" if isinstance(page, int): url = 'http://books.google.co.uk/books?id={id}&pg=PA{page}&output=embed'.format(id=id, page=page) else: url = 'http://books.google.co.uk/books?id={id}&pg={page}&output=embed'.format(id=id, page=page) display_iframe_url(url, width=width, height=height, **kwargs)
[ "def", "display_google_book", "(", "id", ",", "page", "=", "None", ",", "width", "=", "700", ",", "height", "=", "500", ",", "*", "*", "kwargs", ")", ":", "if", "isinstance", "(", "page", ",", "int", ")", ":", "url", "=", "'http://books.google.co.uk/books?id={id}&pg=PA{page}&output=embed'", ".", "format", "(", "id", "=", "id", ",", "page", "=", "page", ")", "else", ":", "url", "=", "'http://books.google.co.uk/books?id={id}&pg={page}&output=embed'", ".", "format", "(", "id", "=", "id", ",", "page", "=", "page", ")", "display_iframe_url", "(", "url", ",", "width", "=", "width", ",", "height", "=", "height", ",", "*", "*", "kwargs", ")" ]
Display an embedded version of a Google book. :param id: the id of the google book to display. :type id: string :param page: the start page for the book. :type id: string or int.
[ "Display", "an", "embedded", "version", "of", "a", "Google", "book", ".", ":", "param", "id", ":", "the", "id", "of", "the", "google", "book", "to", "display", ".", ":", "type", "id", ":", "string", ":", "param", "page", ":", "the", "start", "page", "for", "the", "book", ".", ":", "type", "id", ":", "string", "or", "int", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L55-L65
sods/ods
pods/notebook.py
code_toggle
def code_toggle(start_show=False, message=None): """Toggling on and off code in a notebook. :param start_show: Whether to display the code or not on first load (default is False). :type start_show: bool :param message: the message used to toggle display of the code. :type message: string The tip that this idea is based on is from Damian Kao (http://blog.nextgenetics.net/?e=102).""" html ='<script>\n' if message is None: message = u'The raw code for this jupyter notebook can be hidden for easier reading.' if start_show: html += u'code_show=true;\n' else: html += u'code_show=false;\n' html+='''function code_toggle() { if (code_show){ $('div.input').show(); } else { $('div.input').hide(); } code_show = !code_show } $( document ).ready(code_toggle); </script> ''' html += message + ' To toggle on/off the raw code, click <a href="javascript:code_toggle()">here</a>.' display(HTML(html))
python
def code_toggle(start_show=False, message=None): """Toggling on and off code in a notebook. :param start_show: Whether to display the code or not on first load (default is False). :type start_show: bool :param message: the message used to toggle display of the code. :type message: string The tip that this idea is based on is from Damian Kao (http://blog.nextgenetics.net/?e=102).""" html ='<script>\n' if message is None: message = u'The raw code for this jupyter notebook can be hidden for easier reading.' if start_show: html += u'code_show=true;\n' else: html += u'code_show=false;\n' html+='''function code_toggle() { if (code_show){ $('div.input').show(); } else { $('div.input').hide(); } code_show = !code_show } $( document ).ready(code_toggle); </script> ''' html += message + ' To toggle on/off the raw code, click <a href="javascript:code_toggle()">here</a>.' display(HTML(html))
[ "def", "code_toggle", "(", "start_show", "=", "False", ",", "message", "=", "None", ")", ":", "html", "=", "'<script>\\n'", "if", "message", "is", "None", ":", "message", "=", "u'The raw code for this jupyter notebook can be hidden for easier reading.'", "if", "start_show", ":", "html", "+=", "u'code_show=true;\\n'", "else", ":", "html", "+=", "u'code_show=false;\\n'", "html", "+=", "'''function code_toggle() {\n if (code_show){\n $('div.input').show();\n } else {\n $('div.input').hide();\n }\n code_show = !code_show\n} \n$( document ).ready(code_toggle);\n</script>\n'''", "html", "+=", "message", "+", "' To toggle on/off the raw code, click <a href=\"javascript:code_toggle()\">here</a>.'", "display", "(", "HTML", "(", "html", ")", ")" ]
Toggling on and off code in a notebook. :param start_show: Whether to display the code or not on first load (default is False). :type start_show: bool :param message: the message used to toggle display of the code. :type message: string The tip that this idea is based on is from Damian Kao (http://blog.nextgenetics.net/?e=102).
[ "Toggling", "on", "and", "off", "code", "in", "a", "notebook", ".", ":", "param", "start_show", ":", "Whether", "to", "display", "the", "code", "or", "not", "on", "first", "load", "(", "default", "is", "False", ")", ".", ":", "type", "start_show", ":", "bool", ":", "param", "message", ":", "the", "message", "used", "to", "toggle", "display", "of", "the", "code", ".", ":", "type", "message", ":", "string" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L68-L98
sods/ods
pods/notebook.py
display_prediction
def display_prediction(basis, num_basis=4, wlim=(-1.,1.), fig=None, ax=None, xlim=None, ylim=None, num_points=1000, offset=0.0, **kwargs): """Interactive widget for displaying a prediction function based on summing separate basis functions. :param basis: a function handle that calls the basis functions. :type basis: function handle. :param xlim: limits of the x axis to use. :param ylim: limits of the y axis to use. :param wlim: limits for the basis function weights.""" import numpy as np import pylab as plt if fig is not None: if ax is None: ax = fig.gca() if xlim is None: if ax is not None: xlim = ax.get_xlim() else: xlim = (-2., 2.) if ylim is None: if ax is not None: ylim = ax.get_ylim() else: ylim = (-1., 1.) # initialise X and set up W arguments. x = np.zeros((num_points, 1)) x[:, 0] = np.linspace(xlim[0], xlim[1], num_points) param_args = {} for i in range(num_basis): lim = list(wlim) if i ==0: lim[0] += offset lim[1] += offset param_args['w_' + str(i)] = tuple(lim) # helper function for making basis prediction. def predict_basis(w, basis, x, num_basis, **kwargs): Phi = basis(x, num_basis, **kwargs) f = np.dot(Phi, w) return f, Phi if type(basis) is dict: use_basis = basis[list(basis.keys())[0]] else: use_basis = basis f, Phi = predict_basis(np.zeros((num_basis, 1)), use_basis, x, num_basis, **kwargs) if fig is None: fig, ax=plt.subplots(figsize=(12,4)) ax.set_ylim(ylim) ax.set_xlim(xlim) predline = ax.plot(x, f, linewidth=2)[0] basislines = [] for i in range(num_basis): basislines.append(ax.plot(x, Phi[:, i], 'r')[0]) ax.set_ylim(ylim) ax.set_xlim(xlim) def generate_function(basis, num_basis, predline, basislines, basis_args, display_basis, offset, **kwargs): w = np.zeros((num_basis, 1)) for i in range(num_basis): w[i] = kwargs['w_'+ str(i)] f, Phi = predict_basis(w, basis, x, num_basis, **basis_args) predline.set_xdata(x[:, 0]) predline.set_ydata(f) for i in range(num_basis): basislines[i].set_xdata(x[:, 0]) basislines[i].set_ydata(Phi[:, i]) if display_basis: for i in range(num_basis): basislines[i].set_alpha(1) # make visible else: for i in range(num_basis): basislines[i].set_alpha(0) display(fig) if type(basis) is not dict: basis = fixed(basis) plt.close(fig) interact(generate_function, basis=basis, num_basis=fixed(num_basis), predline=fixed(predline), basislines=fixed(basislines), basis_args=fixed(kwargs), offset = fixed(offset), display_basis = False, **param_args)
python
def display_prediction(basis, num_basis=4, wlim=(-1.,1.), fig=None, ax=None, xlim=None, ylim=None, num_points=1000, offset=0.0, **kwargs): """Interactive widget for displaying a prediction function based on summing separate basis functions. :param basis: a function handle that calls the basis functions. :type basis: function handle. :param xlim: limits of the x axis to use. :param ylim: limits of the y axis to use. :param wlim: limits for the basis function weights.""" import numpy as np import pylab as plt if fig is not None: if ax is None: ax = fig.gca() if xlim is None: if ax is not None: xlim = ax.get_xlim() else: xlim = (-2., 2.) if ylim is None: if ax is not None: ylim = ax.get_ylim() else: ylim = (-1., 1.) # initialise X and set up W arguments. x = np.zeros((num_points, 1)) x[:, 0] = np.linspace(xlim[0], xlim[1], num_points) param_args = {} for i in range(num_basis): lim = list(wlim) if i ==0: lim[0] += offset lim[1] += offset param_args['w_' + str(i)] = tuple(lim) # helper function for making basis prediction. def predict_basis(w, basis, x, num_basis, **kwargs): Phi = basis(x, num_basis, **kwargs) f = np.dot(Phi, w) return f, Phi if type(basis) is dict: use_basis = basis[list(basis.keys())[0]] else: use_basis = basis f, Phi = predict_basis(np.zeros((num_basis, 1)), use_basis, x, num_basis, **kwargs) if fig is None: fig, ax=plt.subplots(figsize=(12,4)) ax.set_ylim(ylim) ax.set_xlim(xlim) predline = ax.plot(x, f, linewidth=2)[0] basislines = [] for i in range(num_basis): basislines.append(ax.plot(x, Phi[:, i], 'r')[0]) ax.set_ylim(ylim) ax.set_xlim(xlim) def generate_function(basis, num_basis, predline, basislines, basis_args, display_basis, offset, **kwargs): w = np.zeros((num_basis, 1)) for i in range(num_basis): w[i] = kwargs['w_'+ str(i)] f, Phi = predict_basis(w, basis, x, num_basis, **basis_args) predline.set_xdata(x[:, 0]) predline.set_ydata(f) for i in range(num_basis): basislines[i].set_xdata(x[:, 0]) basislines[i].set_ydata(Phi[:, i]) if display_basis: for i in range(num_basis): basislines[i].set_alpha(1) # make visible else: for i in range(num_basis): basislines[i].set_alpha(0) display(fig) if type(basis) is not dict: basis = fixed(basis) plt.close(fig) interact(generate_function, basis=basis, num_basis=fixed(num_basis), predline=fixed(predline), basislines=fixed(basislines), basis_args=fixed(kwargs), offset = fixed(offset), display_basis = False, **param_args)
[ "def", "display_prediction", "(", "basis", ",", "num_basis", "=", "4", ",", "wlim", "=", "(", "-", "1.", ",", "1.", ")", ",", "fig", "=", "None", ",", "ax", "=", "None", ",", "xlim", "=", "None", ",", "ylim", "=", "None", ",", "num_points", "=", "1000", ",", "offset", "=", "0.0", ",", "*", "*", "kwargs", ")", ":", "import", "numpy", "as", "np", "import", "pylab", "as", "plt", "if", "fig", "is", "not", "None", ":", "if", "ax", "is", "None", ":", "ax", "=", "fig", ".", "gca", "(", ")", "if", "xlim", "is", "None", ":", "if", "ax", "is", "not", "None", ":", "xlim", "=", "ax", ".", "get_xlim", "(", ")", "else", ":", "xlim", "=", "(", "-", "2.", ",", "2.", ")", "if", "ylim", "is", "None", ":", "if", "ax", "is", "not", "None", ":", "ylim", "=", "ax", ".", "get_ylim", "(", ")", "else", ":", "ylim", "=", "(", "-", "1.", ",", "1.", ")", "# initialise X and set up W arguments.", "x", "=", "np", ".", "zeros", "(", "(", "num_points", ",", "1", ")", ")", "x", "[", ":", ",", "0", "]", "=", "np", ".", "linspace", "(", "xlim", "[", "0", "]", ",", "xlim", "[", "1", "]", ",", "num_points", ")", "param_args", "=", "{", "}", "for", "i", "in", "range", "(", "num_basis", ")", ":", "lim", "=", "list", "(", "wlim", ")", "if", "i", "==", "0", ":", "lim", "[", "0", "]", "+=", "offset", "lim", "[", "1", "]", "+=", "offset", "param_args", "[", "'w_'", "+", "str", "(", "i", ")", "]", "=", "tuple", "(", "lim", ")", "# helper function for making basis prediction.", "def", "predict_basis", "(", "w", ",", "basis", ",", "x", ",", "num_basis", ",", "*", "*", "kwargs", ")", ":", "Phi", "=", "basis", "(", "x", ",", "num_basis", ",", "*", "*", "kwargs", ")", "f", "=", "np", ".", "dot", "(", "Phi", ",", "w", ")", "return", "f", ",", "Phi", "if", "type", "(", "basis", ")", "is", "dict", ":", "use_basis", "=", "basis", "[", "list", "(", "basis", ".", "keys", "(", ")", ")", "[", "0", "]", "]", "else", ":", "use_basis", "=", "basis", "f", ",", "Phi", "=", "predict_basis", "(", "np", ".", "zeros", "(", "(", "num_basis", ",", "1", ")", ")", ",", "use_basis", ",", "x", ",", "num_basis", ",", "*", "*", "kwargs", ")", "if", "fig", "is", "None", ":", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "figsize", "=", "(", "12", ",", "4", ")", ")", "ax", ".", "set_ylim", "(", "ylim", ")", "ax", ".", "set_xlim", "(", "xlim", ")", "predline", "=", "ax", ".", "plot", "(", "x", ",", "f", ",", "linewidth", "=", "2", ")", "[", "0", "]", "basislines", "=", "[", "]", "for", "i", "in", "range", "(", "num_basis", ")", ":", "basislines", ".", "append", "(", "ax", ".", "plot", "(", "x", ",", "Phi", "[", ":", ",", "i", "]", ",", "'r'", ")", "[", "0", "]", ")", "ax", ".", "set_ylim", "(", "ylim", ")", "ax", ".", "set_xlim", "(", "xlim", ")", "def", "generate_function", "(", "basis", ",", "num_basis", ",", "predline", ",", "basislines", ",", "basis_args", ",", "display_basis", ",", "offset", ",", "*", "*", "kwargs", ")", ":", "w", "=", "np", ".", "zeros", "(", "(", "num_basis", ",", "1", ")", ")", "for", "i", "in", "range", "(", "num_basis", ")", ":", "w", "[", "i", "]", "=", "kwargs", "[", "'w_'", "+", "str", "(", "i", ")", "]", "f", ",", "Phi", "=", "predict_basis", "(", "w", ",", "basis", ",", "x", ",", "num_basis", ",", "*", "*", "basis_args", ")", "predline", ".", "set_xdata", "(", "x", "[", ":", ",", "0", "]", ")", "predline", ".", "set_ydata", "(", "f", ")", "for", "i", "in", "range", "(", "num_basis", ")", ":", "basislines", "[", "i", "]", ".", "set_xdata", "(", "x", "[", ":", ",", "0", "]", ")", "basislines", "[", "i", "]", ".", "set_ydata", "(", "Phi", "[", ":", ",", "i", "]", ")", "if", "display_basis", ":", "for", "i", "in", "range", "(", "num_basis", ")", ":", "basislines", "[", "i", "]", ".", "set_alpha", "(", "1", ")", "# make visible", "else", ":", "for", "i", "in", "range", "(", "num_basis", ")", ":", "basislines", "[", "i", "]", ".", "set_alpha", "(", "0", ")", "display", "(", "fig", ")", "if", "type", "(", "basis", ")", "is", "not", "dict", ":", "basis", "=", "fixed", "(", "basis", ")", "plt", ".", "close", "(", "fig", ")", "interact", "(", "generate_function", ",", "basis", "=", "basis", ",", "num_basis", "=", "fixed", "(", "num_basis", ")", ",", "predline", "=", "fixed", "(", "predline", ")", ",", "basislines", "=", "fixed", "(", "basislines", ")", ",", "basis_args", "=", "fixed", "(", "kwargs", ")", ",", "offset", "=", "fixed", "(", "offset", ")", ",", "display_basis", "=", "False", ",", "*", "*", "param_args", ")" ]
Interactive widget for displaying a prediction function based on summing separate basis functions. :param basis: a function handle that calls the basis functions. :type basis: function handle. :param xlim: limits of the x axis to use. :param ylim: limits of the y axis to use. :param wlim: limits for the basis function weights.
[ "Interactive", "widget", "for", "displaying", "a", "prediction", "function", "based", "on", "summing", "separate", "basis", "functions", ".", ":", "param", "basis", ":", "a", "function", "handle", "that", "calls", "the", "basis", "functions", ".", ":", "type", "basis", ":", "function", "handle", ".", ":", "param", "xlim", ":", "limits", "of", "the", "x", "axis", "to", "use", ".", ":", "param", "ylim", ":", "limits", "of", "the", "y", "axis", "to", "use", ".", ":", "param", "wlim", ":", "limits", "for", "the", "basis", "function", "weights", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L102-L195
sods/ods
pods/notebook.py
display_plots
def display_plots(filebase, directory=None, width=700, height=500, **kwargs): """Display a series of plots controlled by sliders. The function relies on Python string format functionality to index through a series of plots.""" def show_figure(filebase, directory, **kwargs): """Helper function to load in the relevant plot for display.""" filename = filebase.format(**kwargs) if directory is not None: filename = directory + '/' + filename display(HTML("<img src='{filename}'>".format(filename=filename))) interact(show_figure, filebase=fixed(filebase), directory=fixed(directory), **kwargs)
python
def display_plots(filebase, directory=None, width=700, height=500, **kwargs): """Display a series of plots controlled by sliders. The function relies on Python string format functionality to index through a series of plots.""" def show_figure(filebase, directory, **kwargs): """Helper function to load in the relevant plot for display.""" filename = filebase.format(**kwargs) if directory is not None: filename = directory + '/' + filename display(HTML("<img src='{filename}'>".format(filename=filename))) interact(show_figure, filebase=fixed(filebase), directory=fixed(directory), **kwargs)
[ "def", "display_plots", "(", "filebase", ",", "directory", "=", "None", ",", "width", "=", "700", ",", "height", "=", "500", ",", "*", "*", "kwargs", ")", ":", "def", "show_figure", "(", "filebase", ",", "directory", ",", "*", "*", "kwargs", ")", ":", "\"\"\"Helper function to load in the relevant plot for display.\"\"\"", "filename", "=", "filebase", ".", "format", "(", "*", "*", "kwargs", ")", "if", "directory", "is", "not", "None", ":", "filename", "=", "directory", "+", "'/'", "+", "filename", "display", "(", "HTML", "(", "\"<img src='{filename}'>\"", ".", "format", "(", "filename", "=", "filename", ")", ")", ")", "interact", "(", "show_figure", ",", "filebase", "=", "fixed", "(", "filebase", ")", ",", "directory", "=", "fixed", "(", "directory", ")", ",", "*", "*", "kwargs", ")" ]
Display a series of plots controlled by sliders. The function relies on Python string format functionality to index through a series of plots.
[ "Display", "a", "series", "of", "plots", "controlled", "by", "sliders", ".", "The", "function", "relies", "on", "Python", "string", "format", "functionality", "to", "index", "through", "a", "series", "of", "plots", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/notebook.py#L198-L207
sods/ods
pods/assesser.py
answer
def answer(part, module='mlai2014.json'): """Returns the answers to the lab classes.""" marks = json.load(open(os.path.join(data_directory, module), 'rb')) return marks['Lab ' + str(part+1)]
python
def answer(part, module='mlai2014.json'): """Returns the answers to the lab classes.""" marks = json.load(open(os.path.join(data_directory, module), 'rb')) return marks['Lab ' + str(part+1)]
[ "def", "answer", "(", "part", ",", "module", "=", "'mlai2014.json'", ")", ":", "marks", "=", "json", ".", "load", "(", "open", "(", "os", ".", "path", ".", "join", "(", "data_directory", ",", "module", ")", ",", "'rb'", ")", ")", "return", "marks", "[", "'Lab '", "+", "str", "(", "part", "+", "1", ")", "]" ]
Returns the answers to the lab classes.
[ "Returns", "the", "answers", "to", "the", "lab", "classes", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/assesser.py#L289-L292
sods/ods
pods/assesser.py
assessment.latex
def latex(self): """Gives a latex representation of the assessment.""" output = self.latex_preamble output += self._repr_latex_() output += self.latex_post return output
python
def latex(self): """Gives a latex representation of the assessment.""" output = self.latex_preamble output += self._repr_latex_() output += self.latex_post return output
[ "def", "latex", "(", "self", ")", ":", "output", "=", "self", ".", "latex_preamble", "output", "+=", "self", ".", "_repr_latex_", "(", ")", "output", "+=", "self", ".", "latex_post", "return", "output" ]
Gives a latex representation of the assessment.
[ "Gives", "a", "latex", "representation", "of", "the", "assessment", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/assesser.py#L145-L150
sods/ods
pods/assesser.py
assessment.html
def html(self): """Gives an html representation of the assessment.""" output = self.html_preamble output += self._repr_html_() output += self.html_post return output
python
def html(self): """Gives an html representation of the assessment.""" output = self.html_preamble output += self._repr_html_() output += self.html_post return output
[ "def", "html", "(", "self", ")", ":", "output", "=", "self", ".", "html_preamble", "output", "+=", "self", ".", "_repr_html_", "(", ")", "output", "+=", "self", ".", "html_post", "return", "output" ]
Gives an html representation of the assessment.
[ "Gives", "an", "html", "representation", "of", "the", "assessment", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/assesser.py#L152-L157
sods/ods
pods/assesser.py
assessment.marksheet
def marksheet(self): """Returns an pandas empty dataframe object containing rows and columns for marking. This can then be passed to a google doc that is distributed to markers for editing with the mark for each section.""" columns=['Number', 'Question', 'Correct (a fraction)', 'Max Mark', 'Comments'] mark_sheet = pd.DataFrame() for qu_number, question in enumerate(self.answers): part_no = 0 for number, part in enumerate(question): if number>0: if part[2] > 0: part_no += 1 index = str(qu_number+1) +'_'+str(part_no) frame = pd.DataFrame(columns=columns, index=[index]) frame.loc[index]['Number'] = index frame.loc[index]['Question'] = part[0] frame.loc[index]['Max Mark'] = part[2] mark_sheet = mark_sheet.append(frame) return mark_sheet.sort(columns='Number')
python
def marksheet(self): """Returns an pandas empty dataframe object containing rows and columns for marking. This can then be passed to a google doc that is distributed to markers for editing with the mark for each section.""" columns=['Number', 'Question', 'Correct (a fraction)', 'Max Mark', 'Comments'] mark_sheet = pd.DataFrame() for qu_number, question in enumerate(self.answers): part_no = 0 for number, part in enumerate(question): if number>0: if part[2] > 0: part_no += 1 index = str(qu_number+1) +'_'+str(part_no) frame = pd.DataFrame(columns=columns, index=[index]) frame.loc[index]['Number'] = index frame.loc[index]['Question'] = part[0] frame.loc[index]['Max Mark'] = part[2] mark_sheet = mark_sheet.append(frame) return mark_sheet.sort(columns='Number')
[ "def", "marksheet", "(", "self", ")", ":", "columns", "=", "[", "'Number'", ",", "'Question'", ",", "'Correct (a fraction)'", ",", "'Max Mark'", ",", "'Comments'", "]", "mark_sheet", "=", "pd", ".", "DataFrame", "(", ")", "for", "qu_number", ",", "question", "in", "enumerate", "(", "self", ".", "answers", ")", ":", "part_no", "=", "0", "for", "number", ",", "part", "in", "enumerate", "(", "question", ")", ":", "if", "number", ">", "0", ":", "if", "part", "[", "2", "]", ">", "0", ":", "part_no", "+=", "1", "index", "=", "str", "(", "qu_number", "+", "1", ")", "+", "'_'", "+", "str", "(", "part_no", ")", "frame", "=", "pd", ".", "DataFrame", "(", "columns", "=", "columns", ",", "index", "=", "[", "index", "]", ")", "frame", ".", "loc", "[", "index", "]", "[", "'Number'", "]", "=", "index", "frame", ".", "loc", "[", "index", "]", "[", "'Question'", "]", "=", "part", "[", "0", "]", "frame", ".", "loc", "[", "index", "]", "[", "'Max Mark'", "]", "=", "part", "[", "2", "]", "mark_sheet", "=", "mark_sheet", ".", "append", "(", "frame", ")", "return", "mark_sheet", ".", "sort", "(", "columns", "=", "'Number'", ")" ]
Returns an pandas empty dataframe object containing rows and columns for marking. This can then be passed to a google doc that is distributed to markers for editing with the mark for each section.
[ "Returns", "an", "pandas", "empty", "dataframe", "object", "containing", "rows", "and", "columns", "for", "marking", ".", "This", "can", "then", "be", "passed", "to", "a", "google", "doc", "that", "is", "distributed", "to", "markers", "for", "editing", "with", "the", "mark", "for", "each", "section", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/assesser.py#L211-L228
sods/ods
pods/assesser.py
assessment.total_marks
def total_marks(self): """Compute the total mark for the assessment.""" total = 0 for answer in self.answers: for number, part in enumerate(answer): if number>0: if part[2]>0: total+=part[2] return total
python
def total_marks(self): """Compute the total mark for the assessment.""" total = 0 for answer in self.answers: for number, part in enumerate(answer): if number>0: if part[2]>0: total+=part[2] return total
[ "def", "total_marks", "(", "self", ")", ":", "total", "=", "0", "for", "answer", "in", "self", ".", "answers", ":", "for", "number", ",", "part", "in", "enumerate", "(", "answer", ")", ":", "if", "number", ">", "0", ":", "if", "part", "[", "2", "]", ">", "0", ":", "total", "+=", "part", "[", "2", "]", "return", "total" ]
Compute the total mark for the assessment.
[ "Compute", "the", "total", "mark", "for", "the", "assessment", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/assesser.py#L230-L238
sods/ods
pods/lab.py
download
def download(name, course, github='SheffieldML/notebook/master/lab_classes/'): """Download a lab class from the relevant course :param course: the course short name to download the class from. :type course: string :param reference: reference to the course for downloading the class. :type reference: string :param github: github repo for downloading the course from. :type string: github repo for downloading the lab.""" github_stub = 'https://raw.githubusercontent.com/' if not name.endswith('.ipynb'): name += '.ipynb' from pods.util import download_url download_url(os.path.join(github_stub, github, course, name), store_directory=course)
python
def download(name, course, github='SheffieldML/notebook/master/lab_classes/'): """Download a lab class from the relevant course :param course: the course short name to download the class from. :type course: string :param reference: reference to the course for downloading the class. :type reference: string :param github: github repo for downloading the course from. :type string: github repo for downloading the lab.""" github_stub = 'https://raw.githubusercontent.com/' if not name.endswith('.ipynb'): name += '.ipynb' from pods.util import download_url download_url(os.path.join(github_stub, github, course, name), store_directory=course)
[ "def", "download", "(", "name", ",", "course", ",", "github", "=", "'SheffieldML/notebook/master/lab_classes/'", ")", ":", "github_stub", "=", "'https://raw.githubusercontent.com/'", "if", "not", "name", ".", "endswith", "(", "'.ipynb'", ")", ":", "name", "+=", "'.ipynb'", "from", "pods", ".", "util", "import", "download_url", "download_url", "(", "os", ".", "path", ".", "join", "(", "github_stub", ",", "github", ",", "course", ",", "name", ")", ",", "store_directory", "=", "course", ")" ]
Download a lab class from the relevant course :param course: the course short name to download the class from. :type course: string :param reference: reference to the course for downloading the class. :type reference: string :param github: github repo for downloading the course from. :type string: github repo for downloading the lab.
[ "Download", "a", "lab", "class", "from", "the", "relevant", "course", ":", "param", "course", ":", "the", "course", "short", "name", "to", "download", "the", "class", "from", ".", ":", "type", "course", ":", "string", ":", "param", "reference", ":", "reference", "to", "the", "course", "for", "downloading", "the", "class", ".", ":", "type", "reference", ":", "string", ":", "param", "github", ":", "github", "repo", "for", "downloading", "the", "course", "from", ".", ":", "type", "string", ":", "github", "repo", "for", "downloading", "the", "lab", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/lab.py#L316-L329
rbuffat/pyepw
generator/templates/class.py
read
def read(self, vals): """ Read values Args: vals (list): list of strings representing values """ i = 0 {%- for field in fields %} {%- if field.is_list %} count = int(vals[i]) i += 1 for _ in range(count): obj = {{field.object_name}}() obj.read(vals[i:i + obj.field_count]) self.add_{{field.field_name}}(obj) i += obj.field_count {%- else %} if len(vals[i]) == 0: self.{{field.field_name}} = None else: self.{{field.field_name}} = vals[i] i += 1 {%- endif %} {%- endfor %}
python
def read(self, vals): """ Read values Args: vals (list): list of strings representing values """ i = 0 {%- for field in fields %} {%- if field.is_list %} count = int(vals[i]) i += 1 for _ in range(count): obj = {{field.object_name}}() obj.read(vals[i:i + obj.field_count]) self.add_{{field.field_name}}(obj) i += obj.field_count {%- else %} if len(vals[i]) == 0: self.{{field.field_name}} = None else: self.{{field.field_name}} = vals[i] i += 1 {%- endif %} {%- endfor %}
[ "def", "read", "(", "self", ",", "vals", ")", ":", "i", "=", "0", "{", "%", "-", "for", "field", "in", "fields", "%", "}", "{", "%", "-", "if", "field", ".", "is_list", "%", "}", "count", "=", "int", "(", "vals", "[", "i", "]", ")", "i", "+=", "1", "for", "_", "in", "range", "(", "count", ")", ":", "obj", "=", "{", "{", "field", ".", "object_name", "}", "}", "(", ")", "obj", ".", "read", "(", "vals", "[", "i", ":", "i", "+", "obj", ".", "field_count", "]", ")", "self", ".", "add_", "{", "{", "field", ".", "field_name", "}", "}", "(", "obj", ")", "i", "+=", "obj", ".", "field_count", "{", "%", "-", "else", "%", "}", "if", "len", "(", "vals", "[", "i", "]", ")", "==", "0", ":", "self", ".", "{", "{", "field", ".", "field_name", "}", "}", "=", "None", "else", ":", "self", ".", "{", "{", "field", ".", "field_name", "}", "}", "=", "vals", "[", "i", "]", "i", "+=", "1", "{", "%", "-", "endif", "%", "}", "{", "%", "-", "endfor", "%", "}" ]
Read values Args: vals (list): list of strings representing values
[ "Read", "values", "Args", ":", "vals", "(", "list", ")", ":", "list", "of", "strings", "representing", "values" ]
train
https://github.com/rbuffat/pyepw/blob/373d4d3c8386c8d35789f086ac5f6018c2711745/generator/templates/class.py#L18-L41
sods/ods
pods/datasets.py
permute
def permute(num): "Permutation for randomizing data order." if permute_data: return np.random.permutation(num) else: logging.warning("Warning not permuting data") return np.arange(num)
python
def permute(num): "Permutation for randomizing data order." if permute_data: return np.random.permutation(num) else: logging.warning("Warning not permuting data") return np.arange(num)
[ "def", "permute", "(", "num", ")", ":", "if", "permute_data", ":", "return", "np", ".", "random", ".", "permutation", "(", "num", ")", "else", ":", "logging", ".", "warning", "(", "\"Warning not permuting data\"", ")", "return", "np", ".", "arange", "(", "num", ")" ]
Permutation for randomizing data order.
[ "Permutation", "for", "randomizing", "data", "order", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L75-L81
sods/ods
pods/datasets.py
discrete
def discrete(cats, name='discrete'): """Return a class category that shows the encoding""" import json ks = list(cats) for key in ks: if isinstance(key, bytes): cats[key.decode('utf-8')] = cats.pop(key) return 'discrete(' + json.dumps([cats, name]) + ')'
python
def discrete(cats, name='discrete'): """Return a class category that shows the encoding""" import json ks = list(cats) for key in ks: if isinstance(key, bytes): cats[key.decode('utf-8')] = cats.pop(key) return 'discrete(' + json.dumps([cats, name]) + ')'
[ "def", "discrete", "(", "cats", ",", "name", "=", "'discrete'", ")", ":", "import", "json", "ks", "=", "list", "(", "cats", ")", "for", "key", "in", "ks", ":", "if", "isinstance", "(", "key", ",", "bytes", ")", ":", "cats", "[", "key", ".", "decode", "(", "'utf-8'", ")", "]", "=", "cats", ".", "pop", "(", "key", ")", "return", "'discrete('", "+", "json", ".", "dumps", "(", "[", "cats", ",", "name", "]", ")", "+", "')'" ]
Return a class category that shows the encoding
[ "Return", "a", "class", "category", "that", "shows", "the", "encoding" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L92-L99
sods/ods
pods/datasets.py
prompt_stdin
def prompt_stdin(prompt): """Ask user for agreeing to data set licenses.""" # raw_input returns the empty string for "enter" yes = set(['yes', 'y']) no = set(['no','n']) try: print(prompt) if sys.version_info>=(3,0): choice = input().lower() else: choice = raw_input().lower() # would like to test for which exceptions here except: print('Stdin is not implemented.') print('You need to set') print('overide_manual_authorize=True') print('to proceed with the download. Please set that variable and continue.') raise if choice in yes: return True elif choice in no: return False else: print("Your response was a " + choice) print("Please respond with 'yes', 'y' or 'no', 'n'")
python
def prompt_stdin(prompt): """Ask user for agreeing to data set licenses.""" # raw_input returns the empty string for "enter" yes = set(['yes', 'y']) no = set(['no','n']) try: print(prompt) if sys.version_info>=(3,0): choice = input().lower() else: choice = raw_input().lower() # would like to test for which exceptions here except: print('Stdin is not implemented.') print('You need to set') print('overide_manual_authorize=True') print('to proceed with the download. Please set that variable and continue.') raise if choice in yes: return True elif choice in no: return False else: print("Your response was a " + choice) print("Please respond with 'yes', 'y' or 'no', 'n'")
[ "def", "prompt_stdin", "(", "prompt", ")", ":", "# raw_input returns the empty string for \"enter\"", "yes", "=", "set", "(", "[", "'yes'", ",", "'y'", "]", ")", "no", "=", "set", "(", "[", "'no'", ",", "'n'", "]", ")", "try", ":", "print", "(", "prompt", ")", "if", "sys", ".", "version_info", ">=", "(", "3", ",", "0", ")", ":", "choice", "=", "input", "(", ")", ".", "lower", "(", ")", "else", ":", "choice", "=", "raw_input", "(", ")", ".", "lower", "(", ")", "# would like to test for which exceptions here", "except", ":", "print", "(", "'Stdin is not implemented.'", ")", "print", "(", "'You need to set'", ")", "print", "(", "'overide_manual_authorize=True'", ")", "print", "(", "'to proceed with the download. Please set that variable and continue.'", ")", "raise", "if", "choice", "in", "yes", ":", "return", "True", "elif", "choice", "in", "no", ":", "return", "False", "else", ":", "print", "(", "\"Your response was a \"", "+", "choice", ")", "print", "(", "\"Please respond with 'yes', 'y' or 'no', 'n'\"", ")" ]
Ask user for agreeing to data set licenses.
[ "Ask", "user", "for", "agreeing", "to", "data", "set", "licenses", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L117-L144
sods/ods
pods/datasets.py
clear_cache
def clear_cache(dataset_name=None): """Remove a data set from the cache""" dr = data_resources[dataset_name] if 'dirs' in dr: for dirs, files in zip(dr['dirs'], dr['files']): for dir, file in zip(dirs, files): path = os.path.join(data_path, dataset_name, dir, file) if os.path.exists(path): logging.info("clear_cache: removing " + path) os.unlink(path) for dir in dirs: path = os.path.join(data_path, dataset_name, dir) if os.path.exists(path): logging.info("clear_cache: remove directory " + path) os.rmdir(path) else: for file_list in dr['files']: for file in file_list: path = os.path.join(data_path, dataset_name, file) if os.path.exists(path): logging.info("clear_cache: remove " + path) os.unlink(path)
python
def clear_cache(dataset_name=None): """Remove a data set from the cache""" dr = data_resources[dataset_name] if 'dirs' in dr: for dirs, files in zip(dr['dirs'], dr['files']): for dir, file in zip(dirs, files): path = os.path.join(data_path, dataset_name, dir, file) if os.path.exists(path): logging.info("clear_cache: removing " + path) os.unlink(path) for dir in dirs: path = os.path.join(data_path, dataset_name, dir) if os.path.exists(path): logging.info("clear_cache: remove directory " + path) os.rmdir(path) else: for file_list in dr['files']: for file in file_list: path = os.path.join(data_path, dataset_name, file) if os.path.exists(path): logging.info("clear_cache: remove " + path) os.unlink(path)
[ "def", "clear_cache", "(", "dataset_name", "=", "None", ")", ":", "dr", "=", "data_resources", "[", "dataset_name", "]", "if", "'dirs'", "in", "dr", ":", "for", "dirs", ",", "files", "in", "zip", "(", "dr", "[", "'dirs'", "]", ",", "dr", "[", "'files'", "]", ")", ":", "for", "dir", ",", "file", "in", "zip", "(", "dirs", ",", "files", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "dataset_name", ",", "dir", ",", "file", ")", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "logging", ".", "info", "(", "\"clear_cache: removing \"", "+", "path", ")", "os", ".", "unlink", "(", "path", ")", "for", "dir", "in", "dirs", ":", "path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "dataset_name", ",", "dir", ")", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "logging", ".", "info", "(", "\"clear_cache: remove directory \"", "+", "path", ")", "os", ".", "rmdir", "(", "path", ")", "else", ":", "for", "file_list", "in", "dr", "[", "'files'", "]", ":", "for", "file", "in", "file_list", ":", "path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "dataset_name", ",", "file", ")", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "logging", ".", "info", "(", "\"clear_cache: remove \"", "+", "path", ")", "os", ".", "unlink", "(", "path", ")" ]
Remove a data set from the cache
[ "Remove", "a", "data", "set", "from", "the", "cache" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L147-L169
sods/ods
pods/datasets.py
data_available
def data_available(dataset_name=None): """Check if the data set is available on the local machine already.""" dr = data_resources[dataset_name] if 'dirs' in dr: for dirs, files in zip(dr['dirs'], dr['files']): for dir, file in zip(dirs, files): if not os.path.exists(os.path.join(data_path, dataset_name, dir, file)): return False else: for file_list in dr['files']: for file in file_list: if not os.path.exists(os.path.join(data_path, dataset_name, file)): return False return True
python
def data_available(dataset_name=None): """Check if the data set is available on the local machine already.""" dr = data_resources[dataset_name] if 'dirs' in dr: for dirs, files in zip(dr['dirs'], dr['files']): for dir, file in zip(dirs, files): if not os.path.exists(os.path.join(data_path, dataset_name, dir, file)): return False else: for file_list in dr['files']: for file in file_list: if not os.path.exists(os.path.join(data_path, dataset_name, file)): return False return True
[ "def", "data_available", "(", "dataset_name", "=", "None", ")", ":", "dr", "=", "data_resources", "[", "dataset_name", "]", "if", "'dirs'", "in", "dr", ":", "for", "dirs", ",", "files", "in", "zip", "(", "dr", "[", "'dirs'", "]", ",", "dr", "[", "'files'", "]", ")", ":", "for", "dir", ",", "file", "in", "zip", "(", "dirs", ",", "files", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "data_path", ",", "dataset_name", ",", "dir", ",", "file", ")", ")", ":", "return", "False", "else", ":", "for", "file_list", "in", "dr", "[", "'files'", "]", ":", "for", "file", "in", "file_list", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "data_path", ",", "dataset_name", ",", "file", ")", ")", ":", "return", "False", "return", "True" ]
Check if the data set is available on the local machine already.
[ "Check", "if", "the", "data", "set", "is", "available", "on", "the", "local", "machine", "already", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L172-L185
sods/ods
pods/datasets.py
download_data
def download_data(dataset_name=None, prompt=prompt_stdin): """Check with the user that the are happy with terms and conditions for the data set, then download it.""" dr = data_resources[dataset_name] if not authorize_download(dataset_name, prompt=prompt): raise Exception("Permission to download data set denied.") if 'suffices' in dr: for url, files, suffices in zip(dr['urls'], dr['files'], dr['suffices']): for file, suffix in zip(files, suffices): download_url(url=os.path.join(url,file), dir_name = data_path, store_directory=dataset_name, suffix=suffix) elif 'dirs' in dr: for url, dirs, files in zip(dr['urls'], dr['dirs'], dr['files']): for file, dir in zip(files, dirs): print(file, dir) download_url( url=os.path.join(url,dir,file), dir_name = data_path, store_directory=os.path.join(dataset_name,dir) ) else: for url, files in zip(dr['urls'], dr['files']): for file in files: download_url( url=os.path.join(url,file), dir_name = data_path, store_directory=dataset_name ) return True
python
def download_data(dataset_name=None, prompt=prompt_stdin): """Check with the user that the are happy with terms and conditions for the data set, then download it.""" dr = data_resources[dataset_name] if not authorize_download(dataset_name, prompt=prompt): raise Exception("Permission to download data set denied.") if 'suffices' in dr: for url, files, suffices in zip(dr['urls'], dr['files'], dr['suffices']): for file, suffix in zip(files, suffices): download_url(url=os.path.join(url,file), dir_name = data_path, store_directory=dataset_name, suffix=suffix) elif 'dirs' in dr: for url, dirs, files in zip(dr['urls'], dr['dirs'], dr['files']): for file, dir in zip(files, dirs): print(file, dir) download_url( url=os.path.join(url,dir,file), dir_name = data_path, store_directory=os.path.join(dataset_name,dir) ) else: for url, files in zip(dr['urls'], dr['files']): for file in files: download_url( url=os.path.join(url,file), dir_name = data_path, store_directory=dataset_name ) return True
[ "def", "download_data", "(", "dataset_name", "=", "None", ",", "prompt", "=", "prompt_stdin", ")", ":", "dr", "=", "data_resources", "[", "dataset_name", "]", "if", "not", "authorize_download", "(", "dataset_name", ",", "prompt", "=", "prompt", ")", ":", "raise", "Exception", "(", "\"Permission to download data set denied.\"", ")", "if", "'suffices'", "in", "dr", ":", "for", "url", ",", "files", ",", "suffices", "in", "zip", "(", "dr", "[", "'urls'", "]", ",", "dr", "[", "'files'", "]", ",", "dr", "[", "'suffices'", "]", ")", ":", "for", "file", ",", "suffix", "in", "zip", "(", "files", ",", "suffices", ")", ":", "download_url", "(", "url", "=", "os", ".", "path", ".", "join", "(", "url", ",", "file", ")", ",", "dir_name", "=", "data_path", ",", "store_directory", "=", "dataset_name", ",", "suffix", "=", "suffix", ")", "elif", "'dirs'", "in", "dr", ":", "for", "url", ",", "dirs", ",", "files", "in", "zip", "(", "dr", "[", "'urls'", "]", ",", "dr", "[", "'dirs'", "]", ",", "dr", "[", "'files'", "]", ")", ":", "for", "file", ",", "dir", "in", "zip", "(", "files", ",", "dirs", ")", ":", "print", "(", "file", ",", "dir", ")", "download_url", "(", "url", "=", "os", ".", "path", ".", "join", "(", "url", ",", "dir", ",", "file", ")", ",", "dir_name", "=", "data_path", ",", "store_directory", "=", "os", ".", "path", ".", "join", "(", "dataset_name", ",", "dir", ")", ")", "else", ":", "for", "url", ",", "files", "in", "zip", "(", "dr", "[", "'urls'", "]", ",", "dr", "[", "'files'", "]", ")", ":", "for", "file", "in", "files", ":", "download_url", "(", "url", "=", "os", ".", "path", ".", "join", "(", "url", ",", "file", ")", ",", "dir_name", "=", "data_path", ",", "store_directory", "=", "dataset_name", ")", "return", "True" ]
Check with the user that the are happy with terms and conditions for the data set, then download it.
[ "Check", "with", "the", "user", "that", "the", "are", "happy", "with", "terms", "and", "conditions", "for", "the", "data", "set", "then", "download", "it", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L220-L251
sods/ods
pods/datasets.py
df2arff
def df2arff(df, dataset_name, pods_data): """Write an arff file from a data set loaded in from pods""" def java_simple_date(date_format): date_format = date_format.replace('%Y', 'yyyy').replace('%m', 'MM').replace('%d', 'dd').replace('%H', 'HH') return date_format.replace('%h', 'hh').replace('%M', 'mm').replace('%S', 'ss').replace('%f', 'SSSSSS') def tidy_field(atr): return str(atr).replace(' / ', '/').replace(' ', '_') types = {'STRING': [str], 'INTEGER': [int, np.int64, np.uint8], 'REAL': [np.float64]} d = {} d['attributes'] = [] for atr in df.columns: if isinstance(atr, str): if len(atr)>8 and atr[:9] == 'discrete(': import json elements = json.loads(atr[9:-1]) d['attributes'].append((tidy_field(elements[1]), list(elements[0].keys()))) mask = {} c = pd.Series(index=df.index) for key, val in elements[0].items(): mask = df[atr]==val c[mask] = key df[atr] = c continue if len(atr)>7 and atr[:8] == 'integer(': name = atr[8:-1] d['attributes'].append((tidy_field(name), 'INTEGER')) df[atr] = df[atr].astype(int) continue if len(atr)>7 and atr[:8]=='datenum(': from matplotlib.dates import num2date elements = atr[8:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = num2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>9 and atr[:10]=='timestamp(': def timestamp2date(values): import datetime """Convert timestamp into a date object""" new = [] for value in values: new.append(np.datetime64(datetime.datetime.fromtimestamp(value))) return np.asarray(new) elements = atr[10:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = timestamp2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>10 and atr[:11]=='datetime64(': elements = atr[11:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>11 and atr[:12]=='decimalyear(': def decyear2date(values): """Convert decimal year into a date object""" new = [] for i, decyear in enumerate(values): year = int(np.floor(decyear)) dec = decyear-year end = np.datetime64(str(year+1)+'-01-01') start = np.datetime64(str(year)+'-01-01') diff=end-start days = dec*(diff/np.timedelta64(1, 'D')) # round to nearest day add = np.timedelta64(int(np.round(days)), 'D') new.append(start+add) return np.asarray(new) elements = atr[12:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = decyear2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue field = tidy_field(atr) el = df[atr][0] type_assigned=False for t in types: if isinstance(el, tuple(types[t])): d['attributes'].append((field, t)) type_assigned=True break if not type_assigned: import json d['attributes'].append((field+'_json', 'STRING')) df[atr] = df[atr].apply(json.dumps) d['data'] = [] for ind, row in df.iterrows(): d['data'].append(list(row)) import textwrap as tw width = 78 d['description'] = dataset_name + "\n\n" if 'info' in pods_data and pods_data['info']: d['description'] += "\n".join(tw.wrap(pods_data['info'], width)) + "\n\n" if 'details' in pods_data and pods_data['details']: d['description'] += "\n".join(tw.wrap(pods_data['details'], width)) if 'citation' in pods_data and pods_data['citation']: d['description'] += "\n\n" + "Citation" "\n\n" + "\n".join(tw.wrap(pods_data['citation'], width)) d['relation'] = dataset_name import arff string = arff.dumps(d) import re string = re.sub(r'\@ATTRIBUTE "?(.*)_datenum_(.*)"? STRING', r'@ATTRIBUTE "\1" DATE [\2]', string) f = open(dataset_name + '.arff', 'w') f.write(string) f.close()
python
def df2arff(df, dataset_name, pods_data): """Write an arff file from a data set loaded in from pods""" def java_simple_date(date_format): date_format = date_format.replace('%Y', 'yyyy').replace('%m', 'MM').replace('%d', 'dd').replace('%H', 'HH') return date_format.replace('%h', 'hh').replace('%M', 'mm').replace('%S', 'ss').replace('%f', 'SSSSSS') def tidy_field(atr): return str(atr).replace(' / ', '/').replace(' ', '_') types = {'STRING': [str], 'INTEGER': [int, np.int64, np.uint8], 'REAL': [np.float64]} d = {} d['attributes'] = [] for atr in df.columns: if isinstance(atr, str): if len(atr)>8 and atr[:9] == 'discrete(': import json elements = json.loads(atr[9:-1]) d['attributes'].append((tidy_field(elements[1]), list(elements[0].keys()))) mask = {} c = pd.Series(index=df.index) for key, val in elements[0].items(): mask = df[atr]==val c[mask] = key df[atr] = c continue if len(atr)>7 and atr[:8] == 'integer(': name = atr[8:-1] d['attributes'].append((tidy_field(name), 'INTEGER')) df[atr] = df[atr].astype(int) continue if len(atr)>7 and atr[:8]=='datenum(': from matplotlib.dates import num2date elements = atr[8:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = num2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>9 and atr[:10]=='timestamp(': def timestamp2date(values): import datetime """Convert timestamp into a date object""" new = [] for value in values: new.append(np.datetime64(datetime.datetime.fromtimestamp(value))) return np.asarray(new) elements = atr[10:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = timestamp2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>10 and atr[:11]=='datetime64(': elements = atr[11:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = df[atr].dt.strftime(elements[1]) continue if len(atr)>11 and atr[:12]=='decimalyear(': def decyear2date(values): """Convert decimal year into a date object""" new = [] for i, decyear in enumerate(values): year = int(np.floor(decyear)) dec = decyear-year end = np.datetime64(str(year+1)+'-01-01') start = np.datetime64(str(year)+'-01-01') diff=end-start days = dec*(diff/np.timedelta64(1, 'D')) # round to nearest day add = np.timedelta64(int(np.round(days)), 'D') new.append(start+add) return np.asarray(new) elements = atr[12:-1].split(',') d['attributes'].append((elements[0] + '_datenum_' + java_simple_date(elements[1]), 'STRING')) df[atr] = decyear2date(df[atr].values) # df[atr] = df[atr].dt.strftime(elements[1]) continue field = tidy_field(atr) el = df[atr][0] type_assigned=False for t in types: if isinstance(el, tuple(types[t])): d['attributes'].append((field, t)) type_assigned=True break if not type_assigned: import json d['attributes'].append((field+'_json', 'STRING')) df[atr] = df[atr].apply(json.dumps) d['data'] = [] for ind, row in df.iterrows(): d['data'].append(list(row)) import textwrap as tw width = 78 d['description'] = dataset_name + "\n\n" if 'info' in pods_data and pods_data['info']: d['description'] += "\n".join(tw.wrap(pods_data['info'], width)) + "\n\n" if 'details' in pods_data and pods_data['details']: d['description'] += "\n".join(tw.wrap(pods_data['details'], width)) if 'citation' in pods_data and pods_data['citation']: d['description'] += "\n\n" + "Citation" "\n\n" + "\n".join(tw.wrap(pods_data['citation'], width)) d['relation'] = dataset_name import arff string = arff.dumps(d) import re string = re.sub(r'\@ATTRIBUTE "?(.*)_datenum_(.*)"? STRING', r'@ATTRIBUTE "\1" DATE [\2]', string) f = open(dataset_name + '.arff', 'w') f.write(string) f.close()
[ "def", "df2arff", "(", "df", ",", "dataset_name", ",", "pods_data", ")", ":", "def", "java_simple_date", "(", "date_format", ")", ":", "date_format", "=", "date_format", ".", "replace", "(", "'%Y'", ",", "'yyyy'", ")", ".", "replace", "(", "'%m'", ",", "'MM'", ")", ".", "replace", "(", "'%d'", ",", "'dd'", ")", ".", "replace", "(", "'%H'", ",", "'HH'", ")", "return", "date_format", ".", "replace", "(", "'%h'", ",", "'hh'", ")", ".", "replace", "(", "'%M'", ",", "'mm'", ")", ".", "replace", "(", "'%S'", ",", "'ss'", ")", ".", "replace", "(", "'%f'", ",", "'SSSSSS'", ")", "def", "tidy_field", "(", "atr", ")", ":", "return", "str", "(", "atr", ")", ".", "replace", "(", "' / '", ",", "'/'", ")", ".", "replace", "(", "' '", ",", "'_'", ")", "types", "=", "{", "'STRING'", ":", "[", "str", "]", ",", "'INTEGER'", ":", "[", "int", ",", "np", ".", "int64", ",", "np", ".", "uint8", "]", ",", "'REAL'", ":", "[", "np", ".", "float64", "]", "}", "d", "=", "{", "}", "d", "[", "'attributes'", "]", "=", "[", "]", "for", "atr", "in", "df", ".", "columns", ":", "if", "isinstance", "(", "atr", ",", "str", ")", ":", "if", "len", "(", "atr", ")", ">", "8", "and", "atr", "[", ":", "9", "]", "==", "'discrete('", ":", "import", "json", "elements", "=", "json", ".", "loads", "(", "atr", "[", "9", ":", "-", "1", "]", ")", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "tidy_field", "(", "elements", "[", "1", "]", ")", ",", "list", "(", "elements", "[", "0", "]", ".", "keys", "(", ")", ")", ")", ")", "mask", "=", "{", "}", "c", "=", "pd", ".", "Series", "(", "index", "=", "df", ".", "index", ")", "for", "key", ",", "val", "in", "elements", "[", "0", "]", ".", "items", "(", ")", ":", "mask", "=", "df", "[", "atr", "]", "==", "val", "c", "[", "mask", "]", "=", "key", "df", "[", "atr", "]", "=", "c", "continue", "if", "len", "(", "atr", ")", ">", "7", "and", "atr", "[", ":", "8", "]", "==", "'integer('", ":", "name", "=", "atr", "[", "8", ":", "-", "1", "]", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "tidy_field", "(", "name", ")", ",", "'INTEGER'", ")", ")", "df", "[", "atr", "]", "=", "df", "[", "atr", "]", ".", "astype", "(", "int", ")", "continue", "if", "len", "(", "atr", ")", ">", "7", "and", "atr", "[", ":", "8", "]", "==", "'datenum('", ":", "from", "matplotlib", ".", "dates", "import", "num2date", "elements", "=", "atr", "[", "8", ":", "-", "1", "]", ".", "split", "(", "','", ")", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "elements", "[", "0", "]", "+", "'_datenum_'", "+", "java_simple_date", "(", "elements", "[", "1", "]", ")", ",", "'STRING'", ")", ")", "df", "[", "atr", "]", "=", "num2date", "(", "df", "[", "atr", "]", ".", "values", ")", "#", "df", "[", "atr", "]", "=", "df", "[", "atr", "]", ".", "dt", ".", "strftime", "(", "elements", "[", "1", "]", ")", "continue", "if", "len", "(", "atr", ")", ">", "9", "and", "atr", "[", ":", "10", "]", "==", "'timestamp('", ":", "def", "timestamp2date", "(", "values", ")", ":", "import", "datetime", "\"\"\"Convert timestamp into a date object\"\"\"", "new", "=", "[", "]", "for", "value", "in", "values", ":", "new", ".", "append", "(", "np", ".", "datetime64", "(", "datetime", ".", "datetime", ".", "fromtimestamp", "(", "value", ")", ")", ")", "return", "np", ".", "asarray", "(", "new", ")", "elements", "=", "atr", "[", "10", ":", "-", "1", "]", ".", "split", "(", "','", ")", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "elements", "[", "0", "]", "+", "'_datenum_'", "+", "java_simple_date", "(", "elements", "[", "1", "]", ")", ",", "'STRING'", ")", ")", "df", "[", "atr", "]", "=", "timestamp2date", "(", "df", "[", "atr", "]", ".", "values", ")", "#", "df", "[", "atr", "]", "=", "df", "[", "atr", "]", ".", "dt", ".", "strftime", "(", "elements", "[", "1", "]", ")", "continue", "if", "len", "(", "atr", ")", ">", "10", "and", "atr", "[", ":", "11", "]", "==", "'datetime64('", ":", "elements", "=", "atr", "[", "11", ":", "-", "1", "]", ".", "split", "(", "','", ")", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "elements", "[", "0", "]", "+", "'_datenum_'", "+", "java_simple_date", "(", "elements", "[", "1", "]", ")", ",", "'STRING'", ")", ")", "df", "[", "atr", "]", "=", "df", "[", "atr", "]", ".", "dt", ".", "strftime", "(", "elements", "[", "1", "]", ")", "continue", "if", "len", "(", "atr", ")", ">", "11", "and", "atr", "[", ":", "12", "]", "==", "'decimalyear('", ":", "def", "decyear2date", "(", "values", ")", ":", "\"\"\"Convert decimal year into a date object\"\"\"", "new", "=", "[", "]", "for", "i", ",", "decyear", "in", "enumerate", "(", "values", ")", ":", "year", "=", "int", "(", "np", ".", "floor", "(", "decyear", ")", ")", "dec", "=", "decyear", "-", "year", "end", "=", "np", ".", "datetime64", "(", "str", "(", "year", "+", "1", ")", "+", "'-01-01'", ")", "start", "=", "np", ".", "datetime64", "(", "str", "(", "year", ")", "+", "'-01-01'", ")", "diff", "=", "end", "-", "start", "days", "=", "dec", "*", "(", "diff", "/", "np", ".", "timedelta64", "(", "1", ",", "'D'", ")", ")", "# round to nearest day", "add", "=", "np", ".", "timedelta64", "(", "int", "(", "np", ".", "round", "(", "days", ")", ")", ",", "'D'", ")", "new", ".", "append", "(", "start", "+", "add", ")", "return", "np", ".", "asarray", "(", "new", ")", "elements", "=", "atr", "[", "12", ":", "-", "1", "]", ".", "split", "(", "','", ")", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "elements", "[", "0", "]", "+", "'_datenum_'", "+", "java_simple_date", "(", "elements", "[", "1", "]", ")", ",", "'STRING'", ")", ")", "df", "[", "atr", "]", "=", "decyear2date", "(", "df", "[", "atr", "]", ".", "values", ")", "#", "df", "[", "atr", "]", "=", "df", "[", "atr", "]", ".", "dt", ".", "strftime", "(", "elements", "[", "1", "]", ")", "continue", "field", "=", "tidy_field", "(", "atr", ")", "el", "=", "df", "[", "atr", "]", "[", "0", "]", "type_assigned", "=", "False", "for", "t", "in", "types", ":", "if", "isinstance", "(", "el", ",", "tuple", "(", "types", "[", "t", "]", ")", ")", ":", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "field", ",", "t", ")", ")", "type_assigned", "=", "True", "break", "if", "not", "type_assigned", ":", "import", "json", "d", "[", "'attributes'", "]", ".", "append", "(", "(", "field", "+", "'_json'", ",", "'STRING'", ")", ")", "df", "[", "atr", "]", "=", "df", "[", "atr", "]", ".", "apply", "(", "json", ".", "dumps", ")", "d", "[", "'data'", "]", "=", "[", "]", "for", "ind", ",", "row", "in", "df", ".", "iterrows", "(", ")", ":", "d", "[", "'data'", "]", ".", "append", "(", "list", "(", "row", ")", ")", "import", "textwrap", "as", "tw", "width", "=", "78", "d", "[", "'description'", "]", "=", "dataset_name", "+", "\"\\n\\n\"", "if", "'info'", "in", "pods_data", "and", "pods_data", "[", "'info'", "]", ":", "d", "[", "'description'", "]", "+=", "\"\\n\"", ".", "join", "(", "tw", ".", "wrap", "(", "pods_data", "[", "'info'", "]", ",", "width", ")", ")", "+", "\"\\n\\n\"", "if", "'details'", "in", "pods_data", "and", "pods_data", "[", "'details'", "]", ":", "d", "[", "'description'", "]", "+=", "\"\\n\"", ".", "join", "(", "tw", ".", "wrap", "(", "pods_data", "[", "'details'", "]", ",", "width", ")", ")", "if", "'citation'", "in", "pods_data", "and", "pods_data", "[", "'citation'", "]", ":", "d", "[", "'description'", "]", "+=", "\"\\n\\n\"", "+", "\"Citation\"", "\"\\n\\n\"", "+", "\"\\n\"", ".", "join", "(", "tw", ".", "wrap", "(", "pods_data", "[", "'citation'", "]", ",", "width", ")", ")", "d", "[", "'relation'", "]", "=", "dataset_name", "import", "arff", "string", "=", "arff", ".", "dumps", "(", "d", ")", "import", "re", "string", "=", "re", ".", "sub", "(", "r'\\@ATTRIBUTE \"?(.*)_datenum_(.*)\"? STRING'", ",", "r'@ATTRIBUTE \"\\1\" DATE [\\2]'", ",", "string", ")", "f", "=", "open", "(", "dataset_name", "+", "'.arff'", ",", "'w'", ")", "f", ".", "write", "(", "string", ")", "f", ".", "close", "(", ")" ]
Write an arff file from a data set loaded in from pods
[ "Write", "an", "arff", "file", "from", "a", "data", "set", "loaded", "in", "from", "pods" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L259-L371
sods/ods
pods/datasets.py
to_arff
def to_arff(dataset, **kwargs): """Take a pods data set and write it as an ARFF file""" pods_data = dataset(**kwargs) vals = list(kwargs.values()) for i, v in enumerate(vals): if isinstance(v, list): vals[i] = '|'.join(v) else: vals[i] = str(v) args = '_'.join(vals) n = dataset.__name__ if len(args)>0: n += '_' + args n = n.replace(' ', '-') ks = pods_data.keys() d = None if 'Y' in ks and 'X' in ks: d = pd.DataFrame(pods_data['X']) if 'Xtest' in ks: d = d.append(pd.DataFrame(pods_data['Xtest']), ignore_index=True) if 'covariates' in ks: d.columns = pods_data['covariates'] dy = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: dy = dy.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) if 'response' in ks: dy.columns = pods_data['response'] for c in dy.columns: if c not in d.columns: d[c] = dy[c] else: d['y'+str(c)] = dy[c] elif 'Y' in ks: d = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: d = d.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) elif 'data' in ks: d = pd.DataFrame(pods_data['data']) if d is not None: df2arff(d, n, pods_data)
python
def to_arff(dataset, **kwargs): """Take a pods data set and write it as an ARFF file""" pods_data = dataset(**kwargs) vals = list(kwargs.values()) for i, v in enumerate(vals): if isinstance(v, list): vals[i] = '|'.join(v) else: vals[i] = str(v) args = '_'.join(vals) n = dataset.__name__ if len(args)>0: n += '_' + args n = n.replace(' ', '-') ks = pods_data.keys() d = None if 'Y' in ks and 'X' in ks: d = pd.DataFrame(pods_data['X']) if 'Xtest' in ks: d = d.append(pd.DataFrame(pods_data['Xtest']), ignore_index=True) if 'covariates' in ks: d.columns = pods_data['covariates'] dy = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: dy = dy.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) if 'response' in ks: dy.columns = pods_data['response'] for c in dy.columns: if c not in d.columns: d[c] = dy[c] else: d['y'+str(c)] = dy[c] elif 'Y' in ks: d = pd.DataFrame(pods_data['Y']) if 'Ytest' in ks: d = d.append(pd.DataFrame(pods_data['Ytest']), ignore_index=True) elif 'data' in ks: d = pd.DataFrame(pods_data['data']) if d is not None: df2arff(d, n, pods_data)
[ "def", "to_arff", "(", "dataset", ",", "*", "*", "kwargs", ")", ":", "pods_data", "=", "dataset", "(", "*", "*", "kwargs", ")", "vals", "=", "list", "(", "kwargs", ".", "values", "(", ")", ")", "for", "i", ",", "v", "in", "enumerate", "(", "vals", ")", ":", "if", "isinstance", "(", "v", ",", "list", ")", ":", "vals", "[", "i", "]", "=", "'|'", ".", "join", "(", "v", ")", "else", ":", "vals", "[", "i", "]", "=", "str", "(", "v", ")", "args", "=", "'_'", ".", "join", "(", "vals", ")", "n", "=", "dataset", ".", "__name__", "if", "len", "(", "args", ")", ">", "0", ":", "n", "+=", "'_'", "+", "args", "n", "=", "n", ".", "replace", "(", "' '", ",", "'-'", ")", "ks", "=", "pods_data", ".", "keys", "(", ")", "d", "=", "None", "if", "'Y'", "in", "ks", "and", "'X'", "in", "ks", ":", "d", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'X'", "]", ")", "if", "'Xtest'", "in", "ks", ":", "d", "=", "d", ".", "append", "(", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Xtest'", "]", ")", ",", "ignore_index", "=", "True", ")", "if", "'covariates'", "in", "ks", ":", "d", ".", "columns", "=", "pods_data", "[", "'covariates'", "]", "dy", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Y'", "]", ")", "if", "'Ytest'", "in", "ks", ":", "dy", "=", "dy", ".", "append", "(", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Ytest'", "]", ")", ",", "ignore_index", "=", "True", ")", "if", "'response'", "in", "ks", ":", "dy", ".", "columns", "=", "pods_data", "[", "'response'", "]", "for", "c", "in", "dy", ".", "columns", ":", "if", "c", "not", "in", "d", ".", "columns", ":", "d", "[", "c", "]", "=", "dy", "[", "c", "]", "else", ":", "d", "[", "'y'", "+", "str", "(", "c", ")", "]", "=", "dy", "[", "c", "]", "elif", "'Y'", "in", "ks", ":", "d", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Y'", "]", ")", "if", "'Ytest'", "in", "ks", ":", "d", "=", "d", ".", "append", "(", "pd", ".", "DataFrame", "(", "pods_data", "[", "'Ytest'", "]", ")", ",", "ignore_index", "=", "True", ")", "elif", "'data'", "in", "ks", ":", "d", "=", "pd", ".", "DataFrame", "(", "pods_data", "[", "'data'", "]", ")", "if", "d", "is", "not", "None", ":", "df2arff", "(", "d", ",", "n", ",", "pods_data", ")" ]
Take a pods data set and write it as an ARFF file
[ "Take", "a", "pods", "data", "set", "and", "write", "it", "as", "an", "ARFF", "file" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L373-L413
sods/ods
pods/datasets.py
epomeo_gpx
def epomeo_gpx(data_set='epomeo_gpx', sample_every=4): """Data set of three GPS traces of the same movement on Mt Epomeo in Ischia. Requires gpxpy to run.""" import gpxpy import gpxpy.gpx if not data_available(data_set): download_data(data_set) files = ['endomondo_1', 'endomondo_2', 'garmin_watch_via_endomondo','viewranger_phone', 'viewranger_tablet'] X = [] for file in files: gpx_file = open(os.path.join(data_path, 'epomeo_gpx', file + '.gpx'), 'r') gpx = gpxpy.parse(gpx_file) segment = gpx.tracks[0].segments[0] points = [point for track in gpx.tracks for segment in track.segments for point in segment.points] data = [[(point.time-datetime.datetime(2013,8,21)).total_seconds(), point.latitude, point.longitude, point.elevation] for point in points] X.append(np.asarray(data)[::sample_every, :]) gpx_file.close() if pandas_available: X = pd.DataFrame(X[0], columns=['seconds', 'latitude', 'longitude', 'elevation']) X.set_index(keys='seconds', inplace=True) return data_details_return({'X' : X, 'info' : 'Data is an array containing time in seconds, latitude, longitude and elevation in that order.'}, data_set)
python
def epomeo_gpx(data_set='epomeo_gpx', sample_every=4): """Data set of three GPS traces of the same movement on Mt Epomeo in Ischia. Requires gpxpy to run.""" import gpxpy import gpxpy.gpx if not data_available(data_set): download_data(data_set) files = ['endomondo_1', 'endomondo_2', 'garmin_watch_via_endomondo','viewranger_phone', 'viewranger_tablet'] X = [] for file in files: gpx_file = open(os.path.join(data_path, 'epomeo_gpx', file + '.gpx'), 'r') gpx = gpxpy.parse(gpx_file) segment = gpx.tracks[0].segments[0] points = [point for track in gpx.tracks for segment in track.segments for point in segment.points] data = [[(point.time-datetime.datetime(2013,8,21)).total_seconds(), point.latitude, point.longitude, point.elevation] for point in points] X.append(np.asarray(data)[::sample_every, :]) gpx_file.close() if pandas_available: X = pd.DataFrame(X[0], columns=['seconds', 'latitude', 'longitude', 'elevation']) X.set_index(keys='seconds', inplace=True) return data_details_return({'X' : X, 'info' : 'Data is an array containing time in seconds, latitude, longitude and elevation in that order.'}, data_set)
[ "def", "epomeo_gpx", "(", "data_set", "=", "'epomeo_gpx'", ",", "sample_every", "=", "4", ")", ":", "import", "gpxpy", "import", "gpxpy", ".", "gpx", "if", "not", "data_available", "(", "data_set", ")", ":", "download_data", "(", "data_set", ")", "files", "=", "[", "'endomondo_1'", ",", "'endomondo_2'", ",", "'garmin_watch_via_endomondo'", ",", "'viewranger_phone'", ",", "'viewranger_tablet'", "]", "X", "=", "[", "]", "for", "file", "in", "files", ":", "gpx_file", "=", "open", "(", "os", ".", "path", ".", "join", "(", "data_path", ",", "'epomeo_gpx'", ",", "file", "+", "'.gpx'", ")", ",", "'r'", ")", "gpx", "=", "gpxpy", ".", "parse", "(", "gpx_file", ")", "segment", "=", "gpx", ".", "tracks", "[", "0", "]", ".", "segments", "[", "0", "]", "points", "=", "[", "point", "for", "track", "in", "gpx", ".", "tracks", "for", "segment", "in", "track", ".", "segments", "for", "point", "in", "segment", ".", "points", "]", "data", "=", "[", "[", "(", "point", ".", "time", "-", "datetime", ".", "datetime", "(", "2013", ",", "8", ",", "21", ")", ")", ".", "total_seconds", "(", ")", ",", "point", ".", "latitude", ",", "point", ".", "longitude", ",", "point", ".", "elevation", "]", "for", "point", "in", "points", "]", "X", ".", "append", "(", "np", ".", "asarray", "(", "data", ")", "[", ":", ":", "sample_every", ",", ":", "]", ")", "gpx_file", ".", "close", "(", ")", "if", "pandas_available", ":", "X", "=", "pd", ".", "DataFrame", "(", "X", "[", "0", "]", ",", "columns", "=", "[", "'seconds'", ",", "'latitude'", ",", "'longitude'", ",", "'elevation'", "]", ")", "X", ".", "set_index", "(", "keys", "=", "'seconds'", ",", "inplace", "=", "True", ")", "return", "data_details_return", "(", "{", "'X'", ":", "X", ",", "'info'", ":", "'Data is an array containing time in seconds, latitude, longitude and elevation in that order.'", "}", ",", "data_set", ")" ]
Data set of three GPS traces of the same movement on Mt Epomeo in Ischia. Requires gpxpy to run.
[ "Data", "set", "of", "three", "GPS", "traces", "of", "the", "same", "movement", "on", "Mt", "Epomeo", "in", "Ischia", ".", "Requires", "gpxpy", "to", "run", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L519-L540
sods/ods
pods/datasets.py
pmlr
def pmlr(volumes='all', data_set='pmlr'): """Abstracts from the Proceedings of Machine Learning Research""" if not data_available(data_set): download_data(data_set) proceedings_file = open(os.path.join(data_path, data_set, 'proceedings.yaml'), 'r') import yaml proceedings = yaml.load(proceedings_file) # Create a new resources entry for downloading contents of proceedings. data_name_full = 'pmlr_volumes' data_resources[data_name_full] = data_resources[data_set].copy() data_resources[data_name_full]['files'] = [] data_resources[data_name_full]['dirs'] = [] data_resources[data_name_full]['urls'] = [] for entry in proceedings: if volumes=='all' or entry['volume'] in volumes: file = entry['yaml'].split('/')[-1] dir = 'v' + str(entry['volume']) data_resources[data_name_full]['files'].append([file]) data_resources[data_name_full]['dirs'].append([dir]) data_resources[data_name_full]['urls'].append(data_resources[data_set]['urls'][0]) Y = [] # Download the volume data if not data_available(data_name_full): download_data(data_name_full) for entry in reversed(proceedings): volume = entry['volume'] if volumes == 'all' or volume in volumes: file = entry['yaml'].split('/')[-1] volume_file = open(os.path.join( data_path, data_name_full, 'v'+str(volume), file ), 'r') Y+=yaml.load(volume_file) if pandas_available: Y = pd.DataFrame(Y) Y['published'] = pd.to_datetime(Y['published']) #Y.columns.values[4] = json_object('authors') #Y.columns.values[7] = json_object('editors') Y['issued'] = Y['issued'].apply(lambda x: np.datetime64(datetime.datetime(*x['date-parts']))) Y['author'] = Y['author'].apply(lambda x: [str(author['given']) + ' ' + str(author['family']) for author in x]) Y['editor'] = Y['editor'].apply(lambda x: [str(editor['given']) + ' ' + str(editor['family']) for editor in x]) columns = list(Y.columns) columns[14] = datetime64_('published') columns[11] = datetime64_('issued') Y.columns = columns return data_details_return({'Y' : Y, 'info' : 'Data is a pandas data frame containing each paper, its abstract, authors, volumes and venue.'}, data_set)
python
def pmlr(volumes='all', data_set='pmlr'): """Abstracts from the Proceedings of Machine Learning Research""" if not data_available(data_set): download_data(data_set) proceedings_file = open(os.path.join(data_path, data_set, 'proceedings.yaml'), 'r') import yaml proceedings = yaml.load(proceedings_file) # Create a new resources entry for downloading contents of proceedings. data_name_full = 'pmlr_volumes' data_resources[data_name_full] = data_resources[data_set].copy() data_resources[data_name_full]['files'] = [] data_resources[data_name_full]['dirs'] = [] data_resources[data_name_full]['urls'] = [] for entry in proceedings: if volumes=='all' or entry['volume'] in volumes: file = entry['yaml'].split('/')[-1] dir = 'v' + str(entry['volume']) data_resources[data_name_full]['files'].append([file]) data_resources[data_name_full]['dirs'].append([dir]) data_resources[data_name_full]['urls'].append(data_resources[data_set]['urls'][0]) Y = [] # Download the volume data if not data_available(data_name_full): download_data(data_name_full) for entry in reversed(proceedings): volume = entry['volume'] if volumes == 'all' or volume in volumes: file = entry['yaml'].split('/')[-1] volume_file = open(os.path.join( data_path, data_name_full, 'v'+str(volume), file ), 'r') Y+=yaml.load(volume_file) if pandas_available: Y = pd.DataFrame(Y) Y['published'] = pd.to_datetime(Y['published']) #Y.columns.values[4] = json_object('authors') #Y.columns.values[7] = json_object('editors') Y['issued'] = Y['issued'].apply(lambda x: np.datetime64(datetime.datetime(*x['date-parts']))) Y['author'] = Y['author'].apply(lambda x: [str(author['given']) + ' ' + str(author['family']) for author in x]) Y['editor'] = Y['editor'].apply(lambda x: [str(editor['given']) + ' ' + str(editor['family']) for editor in x]) columns = list(Y.columns) columns[14] = datetime64_('published') columns[11] = datetime64_('issued') Y.columns = columns return data_details_return({'Y' : Y, 'info' : 'Data is a pandas data frame containing each paper, its abstract, authors, volumes and venue.'}, data_set)
[ "def", "pmlr", "(", "volumes", "=", "'all'", ",", "data_set", "=", "'pmlr'", ")", ":", "if", "not", "data_available", "(", "data_set", ")", ":", "download_data", "(", "data_set", ")", "proceedings_file", "=", "open", "(", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_set", ",", "'proceedings.yaml'", ")", ",", "'r'", ")", "import", "yaml", "proceedings", "=", "yaml", ".", "load", "(", "proceedings_file", ")", "# Create a new resources entry for downloading contents of proceedings.", "data_name_full", "=", "'pmlr_volumes'", "data_resources", "[", "data_name_full", "]", "=", "data_resources", "[", "data_set", "]", ".", "copy", "(", ")", "data_resources", "[", "data_name_full", "]", "[", "'files'", "]", "=", "[", "]", "data_resources", "[", "data_name_full", "]", "[", "'dirs'", "]", "=", "[", "]", "data_resources", "[", "data_name_full", "]", "[", "'urls'", "]", "=", "[", "]", "for", "entry", "in", "proceedings", ":", "if", "volumes", "==", "'all'", "or", "entry", "[", "'volume'", "]", "in", "volumes", ":", "file", "=", "entry", "[", "'yaml'", "]", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", "dir", "=", "'v'", "+", "str", "(", "entry", "[", "'volume'", "]", ")", "data_resources", "[", "data_name_full", "]", "[", "'files'", "]", ".", "append", "(", "[", "file", "]", ")", "data_resources", "[", "data_name_full", "]", "[", "'dirs'", "]", ".", "append", "(", "[", "dir", "]", ")", "data_resources", "[", "data_name_full", "]", "[", "'urls'", "]", ".", "append", "(", "data_resources", "[", "data_set", "]", "[", "'urls'", "]", "[", "0", "]", ")", "Y", "=", "[", "]", "# Download the volume data", "if", "not", "data_available", "(", "data_name_full", ")", ":", "download_data", "(", "data_name_full", ")", "for", "entry", "in", "reversed", "(", "proceedings", ")", ":", "volume", "=", "entry", "[", "'volume'", "]", "if", "volumes", "==", "'all'", "or", "volume", "in", "volumes", ":", "file", "=", "entry", "[", "'yaml'", "]", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", "volume_file", "=", "open", "(", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_name_full", ",", "'v'", "+", "str", "(", "volume", ")", ",", "file", ")", ",", "'r'", ")", "Y", "+=", "yaml", ".", "load", "(", "volume_file", ")", "if", "pandas_available", ":", "Y", "=", "pd", ".", "DataFrame", "(", "Y", ")", "Y", "[", "'published'", "]", "=", "pd", ".", "to_datetime", "(", "Y", "[", "'published'", "]", ")", "#Y.columns.values[4] = json_object('authors')", "#Y.columns.values[7] = json_object('editors')", "Y", "[", "'issued'", "]", "=", "Y", "[", "'issued'", "]", ".", "apply", "(", "lambda", "x", ":", "np", ".", "datetime64", "(", "datetime", ".", "datetime", "(", "*", "x", "[", "'date-parts'", "]", ")", ")", ")", "Y", "[", "'author'", "]", "=", "Y", "[", "'author'", "]", ".", "apply", "(", "lambda", "x", ":", "[", "str", "(", "author", "[", "'given'", "]", ")", "+", "' '", "+", "str", "(", "author", "[", "'family'", "]", ")", "for", "author", "in", "x", "]", ")", "Y", "[", "'editor'", "]", "=", "Y", "[", "'editor'", "]", ".", "apply", "(", "lambda", "x", ":", "[", "str", "(", "editor", "[", "'given'", "]", ")", "+", "' '", "+", "str", "(", "editor", "[", "'family'", "]", ")", "for", "editor", "in", "x", "]", ")", "columns", "=", "list", "(", "Y", ".", "columns", ")", "columns", "[", "14", "]", "=", "datetime64_", "(", "'published'", ")", "columns", "[", "11", "]", "=", "datetime64_", "(", "'issued'", ")", "Y", ".", "columns", "=", "columns", "return", "data_details_return", "(", "{", "'Y'", ":", "Y", ",", "'info'", ":", "'Data is a pandas data frame containing each paper, its abstract, authors, volumes and venue.'", "}", ",", "data_set", ")" ]
Abstracts from the Proceedings of Machine Learning Research
[ "Abstracts", "from", "the", "Proceedings", "of", "Machine", "Learning", "Research" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L542-L590
sods/ods
pods/datasets.py
football_data
def football_data(season='1617', data_set='football_data'): """Football data from English games since 1993. This downloads data from football-data.co.uk for the given season. """ league_dict = {'E0':0, 'E1':1, 'E2': 2, 'E3': 3, 'EC':4} def league2num(string): if isinstance(string, bytes): string = string.decode('utf-8') return league_dict[string] def football2num(string): if isinstance(string, bytes): string = string.decode('utf-8') if string in football_dict: return football_dict[string] else: football_dict[string] = len(football_dict)+1 return len(football_dict)+1 def datestr2num(s): import datetime from matplotlib.dates import date2num return date2num(datetime.datetime.strptime(s.decode('utf-8'),'%d/%m/%y')) data_set_season = data_set + '_' + season data_resources[data_set_season] = copy.deepcopy(data_resources[data_set]) data_resources[data_set_season]['urls'][0]+=season + '/' start_year = int(season[0:2]) end_year = int(season[2:4]) files = ['E0.csv', 'E1.csv', 'E2.csv', 'E3.csv'] if start_year>4 and start_year < 93: files += ['EC.csv'] data_resources[data_set_season]['files'] = [files] if not data_available(data_set_season): download_data(data_set_season) start = True for file in reversed(files): filename = os.path.join(data_path, data_set_season, file) # rewrite files removing blank rows. writename = os.path.join(data_path, data_set_season, 'temp.csv') input = open(filename, encoding='ISO-8859-1') output = open(writename, 'w') writer = csv.writer(output) for row in csv.reader(input): if any(field.strip() for field in row): writer.writerow(row) input.close() output.close() table = np.loadtxt(writename,skiprows=1, usecols=(0, 1, 2, 3, 4, 5), converters = {0: league2num, 1: datestr2num, 2:football2num, 3:football2num}, delimiter=',') if start: X = table[:, :4] Y = table[:, 4:] start=False else: X = np.append(X, table[:, :4], axis=0) Y = np.append(Y, table[:, 4:], axis=0) return data_details_return({'X': X, 'Y': Y, 'covariates': [discrete(league_dict, 'league'), datenum('match_day'), discrete(football_dict, 'home team'), discrete(football_dict, 'away team')], 'response': [integer('home score'), integer('away score')]}, data_set)
python
def football_data(season='1617', data_set='football_data'): """Football data from English games since 1993. This downloads data from football-data.co.uk for the given season. """ league_dict = {'E0':0, 'E1':1, 'E2': 2, 'E3': 3, 'EC':4} def league2num(string): if isinstance(string, bytes): string = string.decode('utf-8') return league_dict[string] def football2num(string): if isinstance(string, bytes): string = string.decode('utf-8') if string in football_dict: return football_dict[string] else: football_dict[string] = len(football_dict)+1 return len(football_dict)+1 def datestr2num(s): import datetime from matplotlib.dates import date2num return date2num(datetime.datetime.strptime(s.decode('utf-8'),'%d/%m/%y')) data_set_season = data_set + '_' + season data_resources[data_set_season] = copy.deepcopy(data_resources[data_set]) data_resources[data_set_season]['urls'][0]+=season + '/' start_year = int(season[0:2]) end_year = int(season[2:4]) files = ['E0.csv', 'E1.csv', 'E2.csv', 'E3.csv'] if start_year>4 and start_year < 93: files += ['EC.csv'] data_resources[data_set_season]['files'] = [files] if not data_available(data_set_season): download_data(data_set_season) start = True for file in reversed(files): filename = os.path.join(data_path, data_set_season, file) # rewrite files removing blank rows. writename = os.path.join(data_path, data_set_season, 'temp.csv') input = open(filename, encoding='ISO-8859-1') output = open(writename, 'w') writer = csv.writer(output) for row in csv.reader(input): if any(field.strip() for field in row): writer.writerow(row) input.close() output.close() table = np.loadtxt(writename,skiprows=1, usecols=(0, 1, 2, 3, 4, 5), converters = {0: league2num, 1: datestr2num, 2:football2num, 3:football2num}, delimiter=',') if start: X = table[:, :4] Y = table[:, 4:] start=False else: X = np.append(X, table[:, :4], axis=0) Y = np.append(Y, table[:, 4:], axis=0) return data_details_return({'X': X, 'Y': Y, 'covariates': [discrete(league_dict, 'league'), datenum('match_day'), discrete(football_dict, 'home team'), discrete(football_dict, 'away team')], 'response': [integer('home score'), integer('away score')]}, data_set)
[ "def", "football_data", "(", "season", "=", "'1617'", ",", "data_set", "=", "'football_data'", ")", ":", "league_dict", "=", "{", "'E0'", ":", "0", ",", "'E1'", ":", "1", ",", "'E2'", ":", "2", ",", "'E3'", ":", "3", ",", "'EC'", ":", "4", "}", "def", "league2num", "(", "string", ")", ":", "if", "isinstance", "(", "string", ",", "bytes", ")", ":", "string", "=", "string", ".", "decode", "(", "'utf-8'", ")", "return", "league_dict", "[", "string", "]", "def", "football2num", "(", "string", ")", ":", "if", "isinstance", "(", "string", ",", "bytes", ")", ":", "string", "=", "string", ".", "decode", "(", "'utf-8'", ")", "if", "string", "in", "football_dict", ":", "return", "football_dict", "[", "string", "]", "else", ":", "football_dict", "[", "string", "]", "=", "len", "(", "football_dict", ")", "+", "1", "return", "len", "(", "football_dict", ")", "+", "1", "def", "datestr2num", "(", "s", ")", ":", "import", "datetime", "from", "matplotlib", ".", "dates", "import", "date2num", "return", "date2num", "(", "datetime", ".", "datetime", ".", "strptime", "(", "s", ".", "decode", "(", "'utf-8'", ")", ",", "'%d/%m/%y'", ")", ")", "data_set_season", "=", "data_set", "+", "'_'", "+", "season", "data_resources", "[", "data_set_season", "]", "=", "copy", ".", "deepcopy", "(", "data_resources", "[", "data_set", "]", ")", "data_resources", "[", "data_set_season", "]", "[", "'urls'", "]", "[", "0", "]", "+=", "season", "+", "'/'", "start_year", "=", "int", "(", "season", "[", "0", ":", "2", "]", ")", "end_year", "=", "int", "(", "season", "[", "2", ":", "4", "]", ")", "files", "=", "[", "'E0.csv'", ",", "'E1.csv'", ",", "'E2.csv'", ",", "'E3.csv'", "]", "if", "start_year", ">", "4", "and", "start_year", "<", "93", ":", "files", "+=", "[", "'EC.csv'", "]", "data_resources", "[", "data_set_season", "]", "[", "'files'", "]", "=", "[", "files", "]", "if", "not", "data_available", "(", "data_set_season", ")", ":", "download_data", "(", "data_set_season", ")", "start", "=", "True", "for", "file", "in", "reversed", "(", "files", ")", ":", "filename", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_set_season", ",", "file", ")", "# rewrite files removing blank rows.", "writename", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_set_season", ",", "'temp.csv'", ")", "input", "=", "open", "(", "filename", ",", "encoding", "=", "'ISO-8859-1'", ")", "output", "=", "open", "(", "writename", ",", "'w'", ")", "writer", "=", "csv", ".", "writer", "(", "output", ")", "for", "row", "in", "csv", ".", "reader", "(", "input", ")", ":", "if", "any", "(", "field", ".", "strip", "(", ")", "for", "field", "in", "row", ")", ":", "writer", ".", "writerow", "(", "row", ")", "input", ".", "close", "(", ")", "output", ".", "close", "(", ")", "table", "=", "np", ".", "loadtxt", "(", "writename", ",", "skiprows", "=", "1", ",", "usecols", "=", "(", "0", ",", "1", ",", "2", ",", "3", ",", "4", ",", "5", ")", ",", "converters", "=", "{", "0", ":", "league2num", ",", "1", ":", "datestr2num", ",", "2", ":", "football2num", ",", "3", ":", "football2num", "}", ",", "delimiter", "=", "','", ")", "if", "start", ":", "X", "=", "table", "[", ":", ",", ":", "4", "]", "Y", "=", "table", "[", ":", ",", "4", ":", "]", "start", "=", "False", "else", ":", "X", "=", "np", ".", "append", "(", "X", ",", "table", "[", ":", ",", ":", "4", "]", ",", "axis", "=", "0", ")", "Y", "=", "np", ".", "append", "(", "Y", ",", "table", "[", ":", ",", "4", ":", "]", ",", "axis", "=", "0", ")", "return", "data_details_return", "(", "{", "'X'", ":", "X", ",", "'Y'", ":", "Y", ",", "'covariates'", ":", "[", "discrete", "(", "league_dict", ",", "'league'", ")", ",", "datenum", "(", "'match_day'", ")", ",", "discrete", "(", "football_dict", ",", "'home team'", ")", ",", "discrete", "(", "football_dict", ",", "'away team'", ")", "]", ",", "'response'", ":", "[", "integer", "(", "'home score'", ")", ",", "integer", "(", "'away score'", ")", "]", "}", ",", "data_set", ")" ]
Football data from English games since 1993. This downloads data from football-data.co.uk for the given season.
[ "Football", "data", "from", "English", "games", "since", "1993", ".", "This", "downloads", "data", "from", "football", "-", "data", ".", "co", ".", "uk", "for", "the", "given", "season", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L593-L646
sods/ods
pods/datasets.py
lee_yeast_ChIP
def lee_yeast_ChIP(data_set='lee_yeast_ChIP'): """Yeast ChIP data from Lee et al.""" if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'binding_by_gene.tsv') S = read_csv(filename, header=1, index_col=0, sep='\t') transcription_factors = [col for col in S.columns if col[:7] != 'Unnamed'] annotations = S[['Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3']] S = S[transcription_factors] return data_details_return({'annotations' : annotations, 'Y' : S, 'transcription_factors': transcription_factors}, data_set)
python
def lee_yeast_ChIP(data_set='lee_yeast_ChIP'): """Yeast ChIP data from Lee et al.""" if not data_available(data_set): download_data(data_set) from pandas import read_csv dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'binding_by_gene.tsv') S = read_csv(filename, header=1, index_col=0, sep='\t') transcription_factors = [col for col in S.columns if col[:7] != 'Unnamed'] annotations = S[['Unnamed: 1', 'Unnamed: 2', 'Unnamed: 3']] S = S[transcription_factors] return data_details_return({'annotations' : annotations, 'Y' : S, 'transcription_factors': transcription_factors}, data_set)
[ "def", "lee_yeast_ChIP", "(", "data_set", "=", "'lee_yeast_ChIP'", ")", ":", "if", "not", "data_available", "(", "data_set", ")", ":", "download_data", "(", "data_set", ")", "from", "pandas", "import", "read_csv", "dir_path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_set", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "'binding_by_gene.tsv'", ")", "S", "=", "read_csv", "(", "filename", ",", "header", "=", "1", ",", "index_col", "=", "0", ",", "sep", "=", "'\\t'", ")", "transcription_factors", "=", "[", "col", "for", "col", "in", "S", ".", "columns", "if", "col", "[", ":", "7", "]", "!=", "'Unnamed'", "]", "annotations", "=", "S", "[", "[", "'Unnamed: 1'", ",", "'Unnamed: 2'", ",", "'Unnamed: 3'", "]", "]", "S", "=", "S", "[", "transcription_factors", "]", "return", "data_details_return", "(", "{", "'annotations'", ":", "annotations", ",", "'Y'", ":", "S", ",", "'transcription_factors'", ":", "transcription_factors", "}", ",", "data_set", ")" ]
Yeast ChIP data from Lee et al.
[ "Yeast", "ChIP", "data", "from", "Lee", "et", "al", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L684-L695
sods/ods
pods/datasets.py
google_trends
def google_trends(query_terms=['big data', 'machine learning', 'data science'], data_set='google_trends', refresh_data=False): """ Data downloaded from Google trends for given query terms. Warning, if you use this function multiple times in a row you get blocked due to terms of service violations. The function will cache the result of any query in an attempt to avoid this. If you wish to refresh an old query set refresh_data to True. The function is inspired by this notebook: http://nbviewer.ipython.org/github/sahuguet/notebooks/blob/master/GoogleTrends%20meet%20Notebook.ipynb """ query_terms.sort() import pandas as pd # Create directory name for data dir_path = os.path.join(data_path,'google_trends') if not os.path.isdir(dir_path): os.makedirs(dir_path) dir_name = '-'.join(query_terms) dir_name = dir_name.replace(' ', '_') dir_path = os.path.join(dir_path,dir_name) file = 'data.csv' file_name = os.path.join(dir_path,file) if not os.path.exists(file_name) or refresh_data: print("Accessing Google trends to acquire the data. Note that repeated accesses will result in a block due to a google terms of service violation. Failure at this point may be due to such blocks.") # quote the query terms. quoted_terms = [] for term in query_terms: quoted_terms.append(quote(term)) print("Query terms: ", ', '.join(query_terms)) print("Fetching query:") query = 'http://www.google.com/trends/fetchComponent?q=%s&cid=TIMESERIES_GRAPH_0&export=3' % ",".join(quoted_terms) data = urlopen(query).read().decode('utf8') print("Done.") # In the notebook they did some data cleaning: remove Javascript header+footer, and translate new Date(....,..,..) into YYYY-MM-DD. header = """// Data table response\ngoogle.visualization.Query.setResponse(""" data = data[len(header):-2] data = re.sub('new Date\((\d+),(\d+),(\d+)\)', (lambda m: '"%s-%02d-%02d"' % (m.group(1).strip(), 1+int(m.group(2)), int(m.group(3)))), data) timeseries = json.loads(data) columns = [k['label'] for k in timeseries['table']['cols']] rows = list(map(lambda x: [k['v'] for k in x['c']], timeseries['table']['rows'])) df = pd.DataFrame(rows, columns=columns) if not os.path.isdir(dir_path): os.makedirs(dir_path) df.to_csv(file_name) else: print("Reading cached data for google trends. To refresh the cache set 'refresh_data=True' when calling this function.") print("Query terms: ", ', '.join(query_terms)) df = pd.read_csv(file_name, parse_dates=[0]) columns = df.columns terms = len(query_terms) import datetime from matplotlib.dates import date2num X = np.asarray([(date2num(datetime.datetime.strptime(df.ix[row]['Date'], '%Y-%m-%d')), i) for i in range(terms) for row in df.index]) Y = np.asarray([[df.ix[row][query_terms[i]]] for i in range(terms) for row in df.index ]) output_info = columns[1:] cats = {} for i in range(terms): cats[query_terms[i]] = i return data_details_return({'data frame' : df, 'X': X, 'Y': Y, 'query_terms': query_terms, 'info': "Data downloaded from google trends with query terms: " + ', '.join(query_terms) + '.', 'covariates' : [datenum('date'), discrete(cats, 'query_terms')], 'response' : ['normalized interest']}, data_set)
python
def google_trends(query_terms=['big data', 'machine learning', 'data science'], data_set='google_trends', refresh_data=False): """ Data downloaded from Google trends for given query terms. Warning, if you use this function multiple times in a row you get blocked due to terms of service violations. The function will cache the result of any query in an attempt to avoid this. If you wish to refresh an old query set refresh_data to True. The function is inspired by this notebook: http://nbviewer.ipython.org/github/sahuguet/notebooks/blob/master/GoogleTrends%20meet%20Notebook.ipynb """ query_terms.sort() import pandas as pd # Create directory name for data dir_path = os.path.join(data_path,'google_trends') if not os.path.isdir(dir_path): os.makedirs(dir_path) dir_name = '-'.join(query_terms) dir_name = dir_name.replace(' ', '_') dir_path = os.path.join(dir_path,dir_name) file = 'data.csv' file_name = os.path.join(dir_path,file) if not os.path.exists(file_name) or refresh_data: print("Accessing Google trends to acquire the data. Note that repeated accesses will result in a block due to a google terms of service violation. Failure at this point may be due to such blocks.") # quote the query terms. quoted_terms = [] for term in query_terms: quoted_terms.append(quote(term)) print("Query terms: ", ', '.join(query_terms)) print("Fetching query:") query = 'http://www.google.com/trends/fetchComponent?q=%s&cid=TIMESERIES_GRAPH_0&export=3' % ",".join(quoted_terms) data = urlopen(query).read().decode('utf8') print("Done.") # In the notebook they did some data cleaning: remove Javascript header+footer, and translate new Date(....,..,..) into YYYY-MM-DD. header = """// Data table response\ngoogle.visualization.Query.setResponse(""" data = data[len(header):-2] data = re.sub('new Date\((\d+),(\d+),(\d+)\)', (lambda m: '"%s-%02d-%02d"' % (m.group(1).strip(), 1+int(m.group(2)), int(m.group(3)))), data) timeseries = json.loads(data) columns = [k['label'] for k in timeseries['table']['cols']] rows = list(map(lambda x: [k['v'] for k in x['c']], timeseries['table']['rows'])) df = pd.DataFrame(rows, columns=columns) if not os.path.isdir(dir_path): os.makedirs(dir_path) df.to_csv(file_name) else: print("Reading cached data for google trends. To refresh the cache set 'refresh_data=True' when calling this function.") print("Query terms: ", ', '.join(query_terms)) df = pd.read_csv(file_name, parse_dates=[0]) columns = df.columns terms = len(query_terms) import datetime from matplotlib.dates import date2num X = np.asarray([(date2num(datetime.datetime.strptime(df.ix[row]['Date'], '%Y-%m-%d')), i) for i in range(terms) for row in df.index]) Y = np.asarray([[df.ix[row][query_terms[i]]] for i in range(terms) for row in df.index ]) output_info = columns[1:] cats = {} for i in range(terms): cats[query_terms[i]] = i return data_details_return({'data frame' : df, 'X': X, 'Y': Y, 'query_terms': query_terms, 'info': "Data downloaded from google trends with query terms: " + ', '.join(query_terms) + '.', 'covariates' : [datenum('date'), discrete(cats, 'query_terms')], 'response' : ['normalized interest']}, data_set)
[ "def", "google_trends", "(", "query_terms", "=", "[", "'big data'", ",", "'machine learning'", ",", "'data science'", "]", ",", "data_set", "=", "'google_trends'", ",", "refresh_data", "=", "False", ")", ":", "query_terms", ".", "sort", "(", ")", "import", "pandas", "as", "pd", "# Create directory name for data", "dir_path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "'google_trends'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "dir_path", ")", ":", "os", ".", "makedirs", "(", "dir_path", ")", "dir_name", "=", "'-'", ".", "join", "(", "query_terms", ")", "dir_name", "=", "dir_name", ".", "replace", "(", "' '", ",", "'_'", ")", "dir_path", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "dir_name", ")", "file", "=", "'data.csv'", "file_name", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "file", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "file_name", ")", "or", "refresh_data", ":", "print", "(", "\"Accessing Google trends to acquire the data. Note that repeated accesses will result in a block due to a google terms of service violation. Failure at this point may be due to such blocks.\"", ")", "# quote the query terms.", "quoted_terms", "=", "[", "]", "for", "term", "in", "query_terms", ":", "quoted_terms", ".", "append", "(", "quote", "(", "term", ")", ")", "print", "(", "\"Query terms: \"", ",", "', '", ".", "join", "(", "query_terms", ")", ")", "print", "(", "\"Fetching query:\"", ")", "query", "=", "'http://www.google.com/trends/fetchComponent?q=%s&cid=TIMESERIES_GRAPH_0&export=3'", "%", "\",\"", ".", "join", "(", "quoted_terms", ")", "data", "=", "urlopen", "(", "query", ")", ".", "read", "(", ")", ".", "decode", "(", "'utf8'", ")", "print", "(", "\"Done.\"", ")", "# In the notebook they did some data cleaning: remove Javascript header+footer, and translate new Date(....,..,..) into YYYY-MM-DD.", "header", "=", "\"\"\"// Data table response\\ngoogle.visualization.Query.setResponse(\"\"\"", "data", "=", "data", "[", "len", "(", "header", ")", ":", "-", "2", "]", "data", "=", "re", ".", "sub", "(", "'new Date\\((\\d+),(\\d+),(\\d+)\\)'", ",", "(", "lambda", "m", ":", "'\"%s-%02d-%02d\"'", "%", "(", "m", ".", "group", "(", "1", ")", ".", "strip", "(", ")", ",", "1", "+", "int", "(", "m", ".", "group", "(", "2", ")", ")", ",", "int", "(", "m", ".", "group", "(", "3", ")", ")", ")", ")", ",", "data", ")", "timeseries", "=", "json", ".", "loads", "(", "data", ")", "columns", "=", "[", "k", "[", "'label'", "]", "for", "k", "in", "timeseries", "[", "'table'", "]", "[", "'cols'", "]", "]", "rows", "=", "list", "(", "map", "(", "lambda", "x", ":", "[", "k", "[", "'v'", "]", "for", "k", "in", "x", "[", "'c'", "]", "]", ",", "timeseries", "[", "'table'", "]", "[", "'rows'", "]", ")", ")", "df", "=", "pd", ".", "DataFrame", "(", "rows", ",", "columns", "=", "columns", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "dir_path", ")", ":", "os", ".", "makedirs", "(", "dir_path", ")", "df", ".", "to_csv", "(", "file_name", ")", "else", ":", "print", "(", "\"Reading cached data for google trends. To refresh the cache set 'refresh_data=True' when calling this function.\"", ")", "print", "(", "\"Query terms: \"", ",", "', '", ".", "join", "(", "query_terms", ")", ")", "df", "=", "pd", ".", "read_csv", "(", "file_name", ",", "parse_dates", "=", "[", "0", "]", ")", "columns", "=", "df", ".", "columns", "terms", "=", "len", "(", "query_terms", ")", "import", "datetime", "from", "matplotlib", ".", "dates", "import", "date2num", "X", "=", "np", ".", "asarray", "(", "[", "(", "date2num", "(", "datetime", ".", "datetime", ".", "strptime", "(", "df", ".", "ix", "[", "row", "]", "[", "'Date'", "]", ",", "'%Y-%m-%d'", ")", ")", ",", "i", ")", "for", "i", "in", "range", "(", "terms", ")", "for", "row", "in", "df", ".", "index", "]", ")", "Y", "=", "np", ".", "asarray", "(", "[", "[", "df", ".", "ix", "[", "row", "]", "[", "query_terms", "[", "i", "]", "]", "]", "for", "i", "in", "range", "(", "terms", ")", "for", "row", "in", "df", ".", "index", "]", ")", "output_info", "=", "columns", "[", "1", ":", "]", "cats", "=", "{", "}", "for", "i", "in", "range", "(", "terms", ")", ":", "cats", "[", "query_terms", "[", "i", "]", "]", "=", "i", "return", "data_details_return", "(", "{", "'data frame'", ":", "df", ",", "'X'", ":", "X", ",", "'Y'", ":", "Y", ",", "'query_terms'", ":", "query_terms", ",", "'info'", ":", "\"Data downloaded from google trends with query terms: \"", "+", "', '", ".", "join", "(", "query_terms", ")", "+", "'.'", ",", "'covariates'", ":", "[", "datenum", "(", "'date'", ")", ",", "discrete", "(", "cats", ",", "'query_terms'", ")", "]", ",", "'response'", ":", "[", "'normalized interest'", "]", "}", ",", "data_set", ")" ]
Data downloaded from Google trends for given query terms. Warning, if you use this function multiple times in a row you get blocked due to terms of service violations. The function will cache the result of any query in an attempt to avoid this. If you wish to refresh an old query set refresh_data to True. The function is inspired by this notebook: http://nbviewer.ipython.org/github/sahuguet/notebooks/blob/master/GoogleTrends%20meet%20Notebook.ipynb
[ "Data", "downloaded", "from", "Google", "trends", "for", "given", "query", "terms", ".", "Warning", "if", "you", "use", "this", "function", "multiple", "times", "in", "a", "row", "you", "get", "blocked", "due", "to", "terms", "of", "service", "violations", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L750-L817
sods/ods
pods/datasets.py
osu_run1
def osu_run1(data_set='osu_run1', sample_every=4): """Ohio State University's Run1 motion capture data set.""" path = os.path.join(data_path, data_set) if not data_available(data_set): import zipfile download_data(data_set) zip = zipfile.ZipFile(os.path.join(data_path, data_set, 'run1TXT.ZIP'), 'r') for name in zip.namelist(): zip.extract(name, path) from . import mocap Y, connect = mocap.load_text_data('Aug210106', path) Y = Y[0:-1:sample_every, :] return data_details_return({'Y': Y, 'connect' : connect}, data_set)
python
def osu_run1(data_set='osu_run1', sample_every=4): """Ohio State University's Run1 motion capture data set.""" path = os.path.join(data_path, data_set) if not data_available(data_set): import zipfile download_data(data_set) zip = zipfile.ZipFile(os.path.join(data_path, data_set, 'run1TXT.ZIP'), 'r') for name in zip.namelist(): zip.extract(name, path) from . import mocap Y, connect = mocap.load_text_data('Aug210106', path) Y = Y[0:-1:sample_every, :] return data_details_return({'Y': Y, 'connect' : connect}, data_set)
[ "def", "osu_run1", "(", "data_set", "=", "'osu_run1'", ",", "sample_every", "=", "4", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_set", ")", "if", "not", "data_available", "(", "data_set", ")", ":", "import", "zipfile", "download_data", "(", "data_set", ")", "zip", "=", "zipfile", ".", "ZipFile", "(", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_set", ",", "'run1TXT.ZIP'", ")", ",", "'r'", ")", "for", "name", "in", "zip", ".", "namelist", "(", ")", ":", "zip", ".", "extract", "(", "name", ",", "path", ")", "from", ".", "import", "mocap", "Y", ",", "connect", "=", "mocap", ".", "load_text_data", "(", "'Aug210106'", ",", "path", ")", "Y", "=", "Y", "[", "0", ":", "-", "1", ":", "sample_every", ",", ":", "]", "return", "data_details_return", "(", "{", "'Y'", ":", "Y", ",", "'connect'", ":", "connect", "}", ",", "data_set", ")" ]
Ohio State University's Run1 motion capture data set.
[ "Ohio", "State", "University", "s", "Run1", "motion", "capture", "data", "set", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L1009-L1021
sods/ods
pods/datasets.py
toy_linear_1d_classification
def toy_linear_1d_classification(seed=default_seed): """Simple classification data in one dimension for illustrating models.""" def sample_class(f): p = 1. / (1. + np.exp(-f)) c = np.random.binomial(1, p) c = np.where(c, 1, -1) return c np.random.seed(seed=seed) x1 = np.random.normal(-3, 5, 20) x2 = np.random.normal(3, 5, 20) X = (np.r_[x1, x2])[:, None] return {'X': X, 'Y': sample_class(2.*X), 'F': 2.*X, 'covariates' : ['X'], 'response': [discrete({'positive': 1, 'negative': -1})],'seed' : seed}
python
def toy_linear_1d_classification(seed=default_seed): """Simple classification data in one dimension for illustrating models.""" def sample_class(f): p = 1. / (1. + np.exp(-f)) c = np.random.binomial(1, p) c = np.where(c, 1, -1) return c np.random.seed(seed=seed) x1 = np.random.normal(-3, 5, 20) x2 = np.random.normal(3, 5, 20) X = (np.r_[x1, x2])[:, None] return {'X': X, 'Y': sample_class(2.*X), 'F': 2.*X, 'covariates' : ['X'], 'response': [discrete({'positive': 1, 'negative': -1})],'seed' : seed}
[ "def", "toy_linear_1d_classification", "(", "seed", "=", "default_seed", ")", ":", "def", "sample_class", "(", "f", ")", ":", "p", "=", "1.", "/", "(", "1.", "+", "np", ".", "exp", "(", "-", "f", ")", ")", "c", "=", "np", ".", "random", ".", "binomial", "(", "1", ",", "p", ")", "c", "=", "np", ".", "where", "(", "c", ",", "1", ",", "-", "1", ")", "return", "c", "np", ".", "random", ".", "seed", "(", "seed", "=", "seed", ")", "x1", "=", "np", ".", "random", ".", "normal", "(", "-", "3", ",", "5", ",", "20", ")", "x2", "=", "np", ".", "random", ".", "normal", "(", "3", ",", "5", ",", "20", ")", "X", "=", "(", "np", ".", "r_", "[", "x1", ",", "x2", "]", ")", "[", ":", ",", "None", "]", "return", "{", "'X'", ":", "X", ",", "'Y'", ":", "sample_class", "(", "2.", "*", "X", ")", ",", "'F'", ":", "2.", "*", "X", ",", "'covariates'", ":", "[", "'X'", "]", ",", "'response'", ":", "[", "discrete", "(", "{", "'positive'", ":", "1", ",", "'negative'", ":", "-", "1", "}", ")", "]", ",", "'seed'", ":", "seed", "}" ]
Simple classification data in one dimension for illustrating models.
[ "Simple", "classification", "data", "in", "one", "dimension", "for", "illustrating", "models", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L1108-L1120
sods/ods
pods/datasets.py
airline_delay
def airline_delay(data_set='airline_delay', num_train=700000, num_test=100000, seed=default_seed): """Airline delay data used in Gaussian Processes for Big Data by Hensman, Fusi and Lawrence""" if not data_available(data_set): download_data(data_set) dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'filtered_data.pickle') # 1. Load the dataset import pandas as pd data = pd.read_pickle(filename) # WARNING: removing year data.pop('Year') # Get data matrices Yall = data.pop('ArrDelay').values[:,None] Xall = data.values # Subset the data (memory!!) all_data = num_train+num_test Xall = Xall[:all_data] Yall = Yall[:all_data] # Get testing points np.random.seed(seed=seed) N_shuffled = permute(Yall.shape[0]) train, test = N_shuffled[num_test:], N_shuffled[:num_test] X, Y = Xall[train], Yall[train] Xtest, Ytest = Xall[test], Yall[test] covariates = ['month', 'day of month', 'day of week', 'departure time', 'arrival time', 'air time', 'distance to travel', 'age of aircraft / years'] response = ['delay'] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'seed' : seed, 'info': "Airline delay data used for demonstrating Gaussian processes for big data.", 'covariates': covariates, 'response': response}, data_set)
python
def airline_delay(data_set='airline_delay', num_train=700000, num_test=100000, seed=default_seed): """Airline delay data used in Gaussian Processes for Big Data by Hensman, Fusi and Lawrence""" if not data_available(data_set): download_data(data_set) dir_path = os.path.join(data_path, data_set) filename = os.path.join(dir_path, 'filtered_data.pickle') # 1. Load the dataset import pandas as pd data = pd.read_pickle(filename) # WARNING: removing year data.pop('Year') # Get data matrices Yall = data.pop('ArrDelay').values[:,None] Xall = data.values # Subset the data (memory!!) all_data = num_train+num_test Xall = Xall[:all_data] Yall = Yall[:all_data] # Get testing points np.random.seed(seed=seed) N_shuffled = permute(Yall.shape[0]) train, test = N_shuffled[num_test:], N_shuffled[:num_test] X, Y = Xall[train], Yall[train] Xtest, Ytest = Xall[test], Yall[test] covariates = ['month', 'day of month', 'day of week', 'departure time', 'arrival time', 'air time', 'distance to travel', 'age of aircraft / years'] response = ['delay'] return data_details_return({'X': X, 'Y': Y, 'Xtest': Xtest, 'Ytest': Ytest, 'seed' : seed, 'info': "Airline delay data used for demonstrating Gaussian processes for big data.", 'covariates': covariates, 'response': response}, data_set)
[ "def", "airline_delay", "(", "data_set", "=", "'airline_delay'", ",", "num_train", "=", "700000", ",", "num_test", "=", "100000", ",", "seed", "=", "default_seed", ")", ":", "if", "not", "data_available", "(", "data_set", ")", ":", "download_data", "(", "data_set", ")", "dir_path", "=", "os", ".", "path", ".", "join", "(", "data_path", ",", "data_set", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "dir_path", ",", "'filtered_data.pickle'", ")", "# 1. Load the dataset", "import", "pandas", "as", "pd", "data", "=", "pd", ".", "read_pickle", "(", "filename", ")", "# WARNING: removing year", "data", ".", "pop", "(", "'Year'", ")", "# Get data matrices", "Yall", "=", "data", ".", "pop", "(", "'ArrDelay'", ")", ".", "values", "[", ":", ",", "None", "]", "Xall", "=", "data", ".", "values", "# Subset the data (memory!!)", "all_data", "=", "num_train", "+", "num_test", "Xall", "=", "Xall", "[", ":", "all_data", "]", "Yall", "=", "Yall", "[", ":", "all_data", "]", "# Get testing points", "np", ".", "random", ".", "seed", "(", "seed", "=", "seed", ")", "N_shuffled", "=", "permute", "(", "Yall", ".", "shape", "[", "0", "]", ")", "train", ",", "test", "=", "N_shuffled", "[", "num_test", ":", "]", ",", "N_shuffled", "[", ":", "num_test", "]", "X", ",", "Y", "=", "Xall", "[", "train", "]", ",", "Yall", "[", "train", "]", "Xtest", ",", "Ytest", "=", "Xall", "[", "test", "]", ",", "Yall", "[", "test", "]", "covariates", "=", "[", "'month'", ",", "'day of month'", ",", "'day of week'", ",", "'departure time'", ",", "'arrival time'", ",", "'air time'", ",", "'distance to travel'", ",", "'age of aircraft / years'", "]", "response", "=", "[", "'delay'", "]", "return", "data_details_return", "(", "{", "'X'", ":", "X", ",", "'Y'", ":", "Y", ",", "'Xtest'", ":", "Xtest", ",", "'Ytest'", ":", "Ytest", ",", "'seed'", ":", "seed", ",", "'info'", ":", "\"Airline delay data used for demonstrating Gaussian processes for big data.\"", ",", "'covariates'", ":", "covariates", ",", "'response'", ":", "response", "}", ",", "data_set", ")" ]
Airline delay data used in Gaussian Processes for Big Data by Hensman, Fusi and Lawrence
[ "Airline", "delay", "data", "used", "in", "Gaussian", "Processes", "for", "Big", "Data", "by", "Hensman", "Fusi", "and", "Lawrence" ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L1122-L1155
sods/ods
pods/datasets.py
olympic_sprints
def olympic_sprints(data_set='rogers_girolami_data'): """All olympics sprint winning times for multiple output prediction.""" X = np.zeros((0, 2)) Y = np.zeros((0, 1)) cats = {} for i, dataset in enumerate([olympic_100m_men, olympic_100m_women, olympic_200m_men, olympic_200m_women, olympic_400m_men, olympic_400m_women]): data = dataset() year = data['X'] time = data['Y'] X = np.vstack((X, np.hstack((year, np.ones_like(year)*i)))) Y = np.vstack((Y, time)) cats[dataset.__name__] = i data['X'] = X data['Y'] = Y data['info'] = "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning." return data_details_return({ 'X': X, 'Y': Y, 'covariates' : [decimalyear('year', '%Y'), discrete(cats, 'event')], 'response' : ['time'], 'info': "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning.", 'output_info': { 0:'100m Men', 1:'100m Women', 2:'200m Men', 3:'200m Women', 4:'400m Men', 5:'400m Women'} }, data_set)
python
def olympic_sprints(data_set='rogers_girolami_data'): """All olympics sprint winning times for multiple output prediction.""" X = np.zeros((0, 2)) Y = np.zeros((0, 1)) cats = {} for i, dataset in enumerate([olympic_100m_men, olympic_100m_women, olympic_200m_men, olympic_200m_women, olympic_400m_men, olympic_400m_women]): data = dataset() year = data['X'] time = data['Y'] X = np.vstack((X, np.hstack((year, np.ones_like(year)*i)))) Y = np.vstack((Y, time)) cats[dataset.__name__] = i data['X'] = X data['Y'] = Y data['info'] = "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning." return data_details_return({ 'X': X, 'Y': Y, 'covariates' : [decimalyear('year', '%Y'), discrete(cats, 'event')], 'response' : ['time'], 'info': "Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning.", 'output_info': { 0:'100m Men', 1:'100m Women', 2:'200m Men', 3:'200m Women', 4:'400m Men', 5:'400m Women'} }, data_set)
[ "def", "olympic_sprints", "(", "data_set", "=", "'rogers_girolami_data'", ")", ":", "X", "=", "np", ".", "zeros", "(", "(", "0", ",", "2", ")", ")", "Y", "=", "np", ".", "zeros", "(", "(", "0", ",", "1", ")", ")", "cats", "=", "{", "}", "for", "i", ",", "dataset", "in", "enumerate", "(", "[", "olympic_100m_men", ",", "olympic_100m_women", ",", "olympic_200m_men", ",", "olympic_200m_women", ",", "olympic_400m_men", ",", "olympic_400m_women", "]", ")", ":", "data", "=", "dataset", "(", ")", "year", "=", "data", "[", "'X'", "]", "time", "=", "data", "[", "'Y'", "]", "X", "=", "np", ".", "vstack", "(", "(", "X", ",", "np", ".", "hstack", "(", "(", "year", ",", "np", ".", "ones_like", "(", "year", ")", "*", "i", ")", ")", ")", ")", "Y", "=", "np", ".", "vstack", "(", "(", "Y", ",", "time", ")", ")", "cats", "[", "dataset", ".", "__name__", "]", "=", "i", "data", "[", "'X'", "]", "=", "X", "data", "[", "'Y'", "]", "=", "Y", "data", "[", "'info'", "]", "=", "\"Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning.\"", "return", "data_details_return", "(", "{", "'X'", ":", "X", ",", "'Y'", ":", "Y", ",", "'covariates'", ":", "[", "decimalyear", "(", "'year'", ",", "'%Y'", ")", ",", "discrete", "(", "cats", ",", "'event'", ")", "]", ",", "'response'", ":", "[", "'time'", "]", ",", "'info'", ":", "\"Olympics sprint event winning for men and women to 2008. Data is from Rogers and Girolami's First Course in Machine Learning.\"", ",", "'output_info'", ":", "{", "0", ":", "'100m Men'", ",", "1", ":", "'100m Women'", ",", "2", ":", "'200m Men'", ",", "3", ":", "'200m Women'", ",", "4", ":", "'400m Men'", ",", "5", ":", "'400m Women'", "}", "}", ",", "data_set", ")" ]
All olympics sprint winning times for multiple output prediction.
[ "All", "olympics", "sprint", "winning", "times", "for", "multiple", "output", "prediction", "." ]
train
https://github.com/sods/ods/blob/3995c659f25a0a640f6009ed7fcc2559ce659b1d/pods/datasets.py#L1271-L1304