repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
solve_dv_dt_v1
def solve_dv_dt_v1(self): """Solve the differential equation of HydPy-L. At the moment, HydPy-L only implements a simple numerical solution of its underlying ordinary differential equation. To increase the accuracy (or sometimes even to prevent instability) of this approximation, one can set the value of parameter |MaxDT| to a value smaller than the actual simulation step size. Method |solve_dv_dt_v1| then applies the methods related to the numerical approximation multiple times and aggregates the results. Note that the order of convergence is one only. It is hard to tell how short the internal simulation step needs to be to ensure a certain degree of accuracy. In most cases one hour or very often even one day should be sufficient to gain acceptable results. However, this strongly depends on the given water stage-volume-discharge relationship. Hence it seems advisable to always define a few test waves and apply the llake model with different |MaxDT| values. Afterwards, select a |MaxDT| value lower than one which results in acceptable approximations for all test waves. The computation time of the llake mode per substep is rather small, so always include a safety factor. Of course, an adaptive step size determination would be much more convenient... Required derived parameter: |NmbSubsteps| Used aide sequence: |llake_aides.V| |llake_aides.QA| Updated state sequence: |llake_states.V| Calculated flux sequence: |llake_fluxes.QA| Note that method |solve_dv_dt_v1| calls the versions of `calc_vq`, `interp_qa` and `calc_v_qa` selected by the respective application model. Hence, also their parameter and sequence specifications need to be considered. Basic equation: :math:`\\frac{dV}{dt}= QZ - QA(V)` """ der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new aid = self.sequences.aides.fastaccess flu.qa = 0. aid.v = old.v for _ in range(der.nmbsubsteps): self.calc_vq() self.interp_qa() self.calc_v_qa() flu.qa += aid.qa flu.qa /= der.nmbsubsteps new.v = aid.v
python
def solve_dv_dt_v1(self): """Solve the differential equation of HydPy-L. At the moment, HydPy-L only implements a simple numerical solution of its underlying ordinary differential equation. To increase the accuracy (or sometimes even to prevent instability) of this approximation, one can set the value of parameter |MaxDT| to a value smaller than the actual simulation step size. Method |solve_dv_dt_v1| then applies the methods related to the numerical approximation multiple times and aggregates the results. Note that the order of convergence is one only. It is hard to tell how short the internal simulation step needs to be to ensure a certain degree of accuracy. In most cases one hour or very often even one day should be sufficient to gain acceptable results. However, this strongly depends on the given water stage-volume-discharge relationship. Hence it seems advisable to always define a few test waves and apply the llake model with different |MaxDT| values. Afterwards, select a |MaxDT| value lower than one which results in acceptable approximations for all test waves. The computation time of the llake mode per substep is rather small, so always include a safety factor. Of course, an adaptive step size determination would be much more convenient... Required derived parameter: |NmbSubsteps| Used aide sequence: |llake_aides.V| |llake_aides.QA| Updated state sequence: |llake_states.V| Calculated flux sequence: |llake_fluxes.QA| Note that method |solve_dv_dt_v1| calls the versions of `calc_vq`, `interp_qa` and `calc_v_qa` selected by the respective application model. Hence, also their parameter and sequence specifications need to be considered. Basic equation: :math:`\\frac{dV}{dt}= QZ - QA(V)` """ der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new aid = self.sequences.aides.fastaccess flu.qa = 0. aid.v = old.v for _ in range(der.nmbsubsteps): self.calc_vq() self.interp_qa() self.calc_v_qa() flu.qa += aid.qa flu.qa /= der.nmbsubsteps new.v = aid.v
[ "def", "solve_dv_dt_v1", "(", "self", ")", ":", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "old", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_old", "new", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_new", "aid", "=", "self", ".", "sequences", ".", "aides", ".", "fastaccess", "flu", ".", "qa", "=", "0.", "aid", ".", "v", "=", "old", ".", "v", "for", "_", "in", "range", "(", "der", ".", "nmbsubsteps", ")", ":", "self", ".", "calc_vq", "(", ")", "self", ".", "interp_qa", "(", ")", "self", ".", "calc_v_qa", "(", ")", "flu", ".", "qa", "+=", "aid", ".", "qa", "flu", ".", "qa", "/=", "der", ".", "nmbsubsteps", "new", ".", "v", "=", "aid", ".", "v" ]
Solve the differential equation of HydPy-L. At the moment, HydPy-L only implements a simple numerical solution of its underlying ordinary differential equation. To increase the accuracy (or sometimes even to prevent instability) of this approximation, one can set the value of parameter |MaxDT| to a value smaller than the actual simulation step size. Method |solve_dv_dt_v1| then applies the methods related to the numerical approximation multiple times and aggregates the results. Note that the order of convergence is one only. It is hard to tell how short the internal simulation step needs to be to ensure a certain degree of accuracy. In most cases one hour or very often even one day should be sufficient to gain acceptable results. However, this strongly depends on the given water stage-volume-discharge relationship. Hence it seems advisable to always define a few test waves and apply the llake model with different |MaxDT| values. Afterwards, select a |MaxDT| value lower than one which results in acceptable approximations for all test waves. The computation time of the llake mode per substep is rather small, so always include a safety factor. Of course, an adaptive step size determination would be much more convenient... Required derived parameter: |NmbSubsteps| Used aide sequence: |llake_aides.V| |llake_aides.QA| Updated state sequence: |llake_states.V| Calculated flux sequence: |llake_fluxes.QA| Note that method |solve_dv_dt_v1| calls the versions of `calc_vq`, `interp_qa` and `calc_v_qa` selected by the respective application model. Hence, also their parameter and sequence specifications need to be considered. Basic equation: :math:`\\frac{dV}{dt}= QZ - QA(V)`
[ "Solve", "the", "differential", "equation", "of", "HydPy", "-", "L", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L10-L69
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
calc_vq_v1
def calc_vq_v1(self): """Calculate the auxiliary term. Required derived parameters: |Seconds| |NmbSubsteps| Required flux sequence: |QZ| Required aide sequence: |llake_aides.V| Calculated aide sequence: |llake_aides.VQ| Basic equation: :math:`VQ = 2 \\cdot V + \\frac{Seconds}{NmbSubsteps} \\cdot QZ` Example: The following example shows that the auxiliary term `vq` does not depend on the (outer) simulation step size but on the (inner) calculation step size defined by parameter `maxdt`: >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> simulationstep('12h') >>> maxdt('6h') >>> derived.seconds.update() >>> derived.nmbsubsteps.update() >>> fluxes.qz = 2. >>> aides.v = 1e5 >>> model.calc_vq_v1() >>> aides.vq vq(243200.0) """ der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess aid.vq = 2.*aid.v+der.seconds/der.nmbsubsteps*flu.qz
python
def calc_vq_v1(self): """Calculate the auxiliary term. Required derived parameters: |Seconds| |NmbSubsteps| Required flux sequence: |QZ| Required aide sequence: |llake_aides.V| Calculated aide sequence: |llake_aides.VQ| Basic equation: :math:`VQ = 2 \\cdot V + \\frac{Seconds}{NmbSubsteps} \\cdot QZ` Example: The following example shows that the auxiliary term `vq` does not depend on the (outer) simulation step size but on the (inner) calculation step size defined by parameter `maxdt`: >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> simulationstep('12h') >>> maxdt('6h') >>> derived.seconds.update() >>> derived.nmbsubsteps.update() >>> fluxes.qz = 2. >>> aides.v = 1e5 >>> model.calc_vq_v1() >>> aides.vq vq(243200.0) """ der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess aid.vq = 2.*aid.v+der.seconds/der.nmbsubsteps*flu.qz
[ "def", "calc_vq_v1", "(", "self", ")", ":", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "aid", "=", "self", ".", "sequences", ".", "aides", ".", "fastaccess", "aid", ".", "vq", "=", "2.", "*", "aid", ".", "v", "+", "der", ".", "seconds", "/", "der", ".", "nmbsubsteps", "*", "flu", ".", "qz" ]
Calculate the auxiliary term. Required derived parameters: |Seconds| |NmbSubsteps| Required flux sequence: |QZ| Required aide sequence: |llake_aides.V| Calculated aide sequence: |llake_aides.VQ| Basic equation: :math:`VQ = 2 \\cdot V + \\frac{Seconds}{NmbSubsteps} \\cdot QZ` Example: The following example shows that the auxiliary term `vq` does not depend on the (outer) simulation step size but on the (inner) calculation step size defined by parameter `maxdt`: >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> simulationstep('12h') >>> maxdt('6h') >>> derived.seconds.update() >>> derived.nmbsubsteps.update() >>> fluxes.qz = 2. >>> aides.v = 1e5 >>> model.calc_vq_v1() >>> aides.vq vq(243200.0)
[ "Calculate", "the", "auxiliary", "term", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L72-L112
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
interp_qa_v1
def interp_qa_v1(self): """Calculate the lake outflow based on linear interpolation. Required control parameters: |N| |llake_control.Q| Required derived parameters: |llake_derived.TOY| |llake_derived.VQ| Required aide sequence: |llake_aides.VQ| Calculated aide sequence: |llake_aides.QA| Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01','2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep() Next, for the sake of brevity, define a test function: >>> def test(*vqs): ... for vq in vqs: ... aides.vq(vq) ... model.interp_qa_v1() ... print(repr(aides.vq), repr(aides.qa)) The following three relationships between the auxiliary term `vq` and the tabulated discharge `q` are taken as examples. Each one is valid for one of the first three days in January and is defined via five nodes: >>> n(5) >>> derived.toy.update() >>> derived.vq(_1_1_6=[0., 1., 2., 2., 3.], ... _1_2_6=[0., 1., 2., 2., 3.], ... _1_3_6=[0., 1., 2., 3., 4.]) >>> q(_1_1_6=[0., 0., 0., 0., 0.], ... _1_2_6=[0., 2., 5., 6., 9.], ... _1_3_6=[0., 2., 1., 3., 2.]) In the first example, discharge does not depend on the actual value of the auxiliary term and is always zero: >>> model.idx_sim = pub.timegrids.init['2000.01.01'] >>> test(0., .75, 1., 4./3., 2., 7./3., 3., 10./3.) vq(0.0) qa(0.0) vq(0.75) qa(0.0) vq(1.0) qa(0.0) vq(1.333333) qa(0.0) vq(2.0) qa(0.0) vq(2.333333) qa(0.0) vq(3.0) qa(0.0) vq(3.333333) qa(0.0) The seconds example demonstrates that relationships are allowed to contain jumps, which is the case for the (`vq`,`q`) pairs (2,6) and (2,7). Also it demonstrates that when the highest `vq` value is exceeded linear extrapolation based on the two highest (`vq`,`q`) pairs is performed: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] >>> test(0., .75, 1., 4./3., 2., 7./3., 3., 10./3.) vq(0.0) qa(0.0) vq(0.75) qa(1.5) vq(1.0) qa(2.0) vq(1.333333) qa(3.0) vq(2.0) qa(5.0) vq(2.333333) qa(7.0) vq(3.0) qa(9.0) vq(3.333333) qa(10.0) The third example shows that the relationships do not need to be arranged monotonously increasing. Particualarly for the extrapolation range, this could result in negative values of `qa`, which is avoided by setting it to zero in such cases: >>> model.idx_sim = pub.timegrids.init['2000.01.03'] >>> test(.5, 1.5, 2.5, 3.5, 4.5, 10.) vq(0.5) qa(1.0) vq(1.5) qa(1.5) vq(2.5) qa(2.0) vq(3.5) qa(2.5) vq(4.5) qa(1.5) vq(10.0) qa(0.0) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess aid = self.sequences.aides.fastaccess idx = der.toy[self.idx_sim] for jdx in range(1, con.n): if der.vq[idx, jdx] >= aid.vq: break aid.qa = ((aid.vq-der.vq[idx, jdx-1]) * (con.q[idx, jdx]-con.q[idx, jdx-1]) / (der.vq[idx, jdx]-der.vq[idx, jdx-1]) + con.q[idx, jdx-1]) aid.qa = max(aid.qa, 0.)
python
def interp_qa_v1(self): """Calculate the lake outflow based on linear interpolation. Required control parameters: |N| |llake_control.Q| Required derived parameters: |llake_derived.TOY| |llake_derived.VQ| Required aide sequence: |llake_aides.VQ| Calculated aide sequence: |llake_aides.QA| Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01','2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep() Next, for the sake of brevity, define a test function: >>> def test(*vqs): ... for vq in vqs: ... aides.vq(vq) ... model.interp_qa_v1() ... print(repr(aides.vq), repr(aides.qa)) The following three relationships between the auxiliary term `vq` and the tabulated discharge `q` are taken as examples. Each one is valid for one of the first three days in January and is defined via five nodes: >>> n(5) >>> derived.toy.update() >>> derived.vq(_1_1_6=[0., 1., 2., 2., 3.], ... _1_2_6=[0., 1., 2., 2., 3.], ... _1_3_6=[0., 1., 2., 3., 4.]) >>> q(_1_1_6=[0., 0., 0., 0., 0.], ... _1_2_6=[0., 2., 5., 6., 9.], ... _1_3_6=[0., 2., 1., 3., 2.]) In the first example, discharge does not depend on the actual value of the auxiliary term and is always zero: >>> model.idx_sim = pub.timegrids.init['2000.01.01'] >>> test(0., .75, 1., 4./3., 2., 7./3., 3., 10./3.) vq(0.0) qa(0.0) vq(0.75) qa(0.0) vq(1.0) qa(0.0) vq(1.333333) qa(0.0) vq(2.0) qa(0.0) vq(2.333333) qa(0.0) vq(3.0) qa(0.0) vq(3.333333) qa(0.0) The seconds example demonstrates that relationships are allowed to contain jumps, which is the case for the (`vq`,`q`) pairs (2,6) and (2,7). Also it demonstrates that when the highest `vq` value is exceeded linear extrapolation based on the two highest (`vq`,`q`) pairs is performed: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] >>> test(0., .75, 1., 4./3., 2., 7./3., 3., 10./3.) vq(0.0) qa(0.0) vq(0.75) qa(1.5) vq(1.0) qa(2.0) vq(1.333333) qa(3.0) vq(2.0) qa(5.0) vq(2.333333) qa(7.0) vq(3.0) qa(9.0) vq(3.333333) qa(10.0) The third example shows that the relationships do not need to be arranged monotonously increasing. Particualarly for the extrapolation range, this could result in negative values of `qa`, which is avoided by setting it to zero in such cases: >>> model.idx_sim = pub.timegrids.init['2000.01.03'] >>> test(.5, 1.5, 2.5, 3.5, 4.5, 10.) vq(0.5) qa(1.0) vq(1.5) qa(1.5) vq(2.5) qa(2.0) vq(3.5) qa(2.5) vq(4.5) qa(1.5) vq(10.0) qa(0.0) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess aid = self.sequences.aides.fastaccess idx = der.toy[self.idx_sim] for jdx in range(1, con.n): if der.vq[idx, jdx] >= aid.vq: break aid.qa = ((aid.vq-der.vq[idx, jdx-1]) * (con.q[idx, jdx]-con.q[idx, jdx-1]) / (der.vq[idx, jdx]-der.vq[idx, jdx-1]) + con.q[idx, jdx-1]) aid.qa = max(aid.qa, 0.)
[ "def", "interp_qa_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "aid", "=", "self", ".", "sequences", ".", "aides", ".", "fastaccess", "idx", "=", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "for", "jdx", "in", "range", "(", "1", ",", "con", ".", "n", ")", ":", "if", "der", ".", "vq", "[", "idx", ",", "jdx", "]", ">=", "aid", ".", "vq", ":", "break", "aid", ".", "qa", "=", "(", "(", "aid", ".", "vq", "-", "der", ".", "vq", "[", "idx", ",", "jdx", "-", "1", "]", ")", "*", "(", "con", ".", "q", "[", "idx", ",", "jdx", "]", "-", "con", ".", "q", "[", "idx", ",", "jdx", "-", "1", "]", ")", "/", "(", "der", ".", "vq", "[", "idx", ",", "jdx", "]", "-", "der", ".", "vq", "[", "idx", ",", "jdx", "-", "1", "]", ")", "+", "con", ".", "q", "[", "idx", ",", "jdx", "-", "1", "]", ")", "aid", ".", "qa", "=", "max", "(", "aid", ".", "qa", ",", "0.", ")" ]
Calculate the lake outflow based on linear interpolation. Required control parameters: |N| |llake_control.Q| Required derived parameters: |llake_derived.TOY| |llake_derived.VQ| Required aide sequence: |llake_aides.VQ| Calculated aide sequence: |llake_aides.QA| Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01','2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep() Next, for the sake of brevity, define a test function: >>> def test(*vqs): ... for vq in vqs: ... aides.vq(vq) ... model.interp_qa_v1() ... print(repr(aides.vq), repr(aides.qa)) The following three relationships between the auxiliary term `vq` and the tabulated discharge `q` are taken as examples. Each one is valid for one of the first three days in January and is defined via five nodes: >>> n(5) >>> derived.toy.update() >>> derived.vq(_1_1_6=[0., 1., 2., 2., 3.], ... _1_2_6=[0., 1., 2., 2., 3.], ... _1_3_6=[0., 1., 2., 3., 4.]) >>> q(_1_1_6=[0., 0., 0., 0., 0.], ... _1_2_6=[0., 2., 5., 6., 9.], ... _1_3_6=[0., 2., 1., 3., 2.]) In the first example, discharge does not depend on the actual value of the auxiliary term and is always zero: >>> model.idx_sim = pub.timegrids.init['2000.01.01'] >>> test(0., .75, 1., 4./3., 2., 7./3., 3., 10./3.) vq(0.0) qa(0.0) vq(0.75) qa(0.0) vq(1.0) qa(0.0) vq(1.333333) qa(0.0) vq(2.0) qa(0.0) vq(2.333333) qa(0.0) vq(3.0) qa(0.0) vq(3.333333) qa(0.0) The seconds example demonstrates that relationships are allowed to contain jumps, which is the case for the (`vq`,`q`) pairs (2,6) and (2,7). Also it demonstrates that when the highest `vq` value is exceeded linear extrapolation based on the two highest (`vq`,`q`) pairs is performed: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] >>> test(0., .75, 1., 4./3., 2., 7./3., 3., 10./3.) vq(0.0) qa(0.0) vq(0.75) qa(1.5) vq(1.0) qa(2.0) vq(1.333333) qa(3.0) vq(2.0) qa(5.0) vq(2.333333) qa(7.0) vq(3.0) qa(9.0) vq(3.333333) qa(10.0) The third example shows that the relationships do not need to be arranged monotonously increasing. Particualarly for the extrapolation range, this could result in negative values of `qa`, which is avoided by setting it to zero in such cases: >>> model.idx_sim = pub.timegrids.init['2000.01.03'] >>> test(.5, 1.5, 2.5, 3.5, 4.5, 10.) vq(0.5) qa(1.0) vq(1.5) qa(1.5) vq(2.5) qa(2.0) vq(3.5) qa(2.5) vq(4.5) qa(1.5) vq(10.0) qa(0.0)
[ "Calculate", "the", "lake", "outflow", "based", "on", "linear", "interpolation", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L115-L222
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
calc_v_qa_v1
def calc_v_qa_v1(self): """Update the stored water volume based on the equation of continuity. Note that for too high outflow values, which would result in overdraining the lake, the outflow is trimmed. Required derived parameters: |Seconds| |NmbSubsteps| Required flux sequence: |QZ| Updated aide sequences: |llake_aides.QA| |llake_aides.V| Basic Equation: :math:`\\frac{dV}{dt}= QZ - QA` Examples: Prepare a lake model with an initial storage of 100.000 m³ and an inflow of 2 m³/s and a (potential) outflow of 6 m³/s: >>> from hydpy.models.llake import * >>> parameterstep() >>> simulationstep('12h') >>> maxdt('6h') >>> derived.seconds.update() >>> derived.nmbsubsteps.update() >>> aides.v = 1e5 >>> fluxes.qz = 2. >>> aides.qa = 6. Through calling method `calc_v_qa_v1` three times with the same inflow and outflow values, the storage is emptied after the second step and outflow is equal to inflow after the third step: >>> model.calc_v_qa_v1() >>> aides.v v(13600.0) >>> aides.qa qa(6.0) >>> model.new2old() >>> model.calc_v_qa_v1() >>> aides.v v(0.0) >>> aides.qa qa(2.62963) >>> model.new2old() >>> model.calc_v_qa_v1() >>> aides.v v(0.0) >>> aides.qa qa(2.0) Note that the results of method |calc_v_qa_v1| are not based depend on the (outer) simulation step size but on the (inner) calculation step size defined by parameter `maxdt`. """ der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess aid.qa = min(aid.qa, flu.qz+der.nmbsubsteps/der.seconds*aid.v) aid.v = max(aid.v+der.seconds/der.nmbsubsteps*(flu.qz-aid.qa), 0.)
python
def calc_v_qa_v1(self): """Update the stored water volume based on the equation of continuity. Note that for too high outflow values, which would result in overdraining the lake, the outflow is trimmed. Required derived parameters: |Seconds| |NmbSubsteps| Required flux sequence: |QZ| Updated aide sequences: |llake_aides.QA| |llake_aides.V| Basic Equation: :math:`\\frac{dV}{dt}= QZ - QA` Examples: Prepare a lake model with an initial storage of 100.000 m³ and an inflow of 2 m³/s and a (potential) outflow of 6 m³/s: >>> from hydpy.models.llake import * >>> parameterstep() >>> simulationstep('12h') >>> maxdt('6h') >>> derived.seconds.update() >>> derived.nmbsubsteps.update() >>> aides.v = 1e5 >>> fluxes.qz = 2. >>> aides.qa = 6. Through calling method `calc_v_qa_v1` three times with the same inflow and outflow values, the storage is emptied after the second step and outflow is equal to inflow after the third step: >>> model.calc_v_qa_v1() >>> aides.v v(13600.0) >>> aides.qa qa(6.0) >>> model.new2old() >>> model.calc_v_qa_v1() >>> aides.v v(0.0) >>> aides.qa qa(2.62963) >>> model.new2old() >>> model.calc_v_qa_v1() >>> aides.v v(0.0) >>> aides.qa qa(2.0) Note that the results of method |calc_v_qa_v1| are not based depend on the (outer) simulation step size but on the (inner) calculation step size defined by parameter `maxdt`. """ der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess aid.qa = min(aid.qa, flu.qz+der.nmbsubsteps/der.seconds*aid.v) aid.v = max(aid.v+der.seconds/der.nmbsubsteps*(flu.qz-aid.qa), 0.)
[ "def", "calc_v_qa_v1", "(", "self", ")", ":", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "aid", "=", "self", ".", "sequences", ".", "aides", ".", "fastaccess", "aid", ".", "qa", "=", "min", "(", "aid", ".", "qa", ",", "flu", ".", "qz", "+", "der", ".", "nmbsubsteps", "/", "der", ".", "seconds", "*", "aid", ".", "v", ")", "aid", ".", "v", "=", "max", "(", "aid", ".", "v", "+", "der", ".", "seconds", "/", "der", ".", "nmbsubsteps", "*", "(", "flu", ".", "qz", "-", "aid", ".", "qa", ")", ",", "0.", ")" ]
Update the stored water volume based on the equation of continuity. Note that for too high outflow values, which would result in overdraining the lake, the outflow is trimmed. Required derived parameters: |Seconds| |NmbSubsteps| Required flux sequence: |QZ| Updated aide sequences: |llake_aides.QA| |llake_aides.V| Basic Equation: :math:`\\frac{dV}{dt}= QZ - QA` Examples: Prepare a lake model with an initial storage of 100.000 m³ and an inflow of 2 m³/s and a (potential) outflow of 6 m³/s: >>> from hydpy.models.llake import * >>> parameterstep() >>> simulationstep('12h') >>> maxdt('6h') >>> derived.seconds.update() >>> derived.nmbsubsteps.update() >>> aides.v = 1e5 >>> fluxes.qz = 2. >>> aides.qa = 6. Through calling method `calc_v_qa_v1` three times with the same inflow and outflow values, the storage is emptied after the second step and outflow is equal to inflow after the third step: >>> model.calc_v_qa_v1() >>> aides.v v(13600.0) >>> aides.qa qa(6.0) >>> model.new2old() >>> model.calc_v_qa_v1() >>> aides.v v(0.0) >>> aides.qa qa(2.62963) >>> model.new2old() >>> model.calc_v_qa_v1() >>> aides.v v(0.0) >>> aides.qa qa(2.0) Note that the results of method |calc_v_qa_v1| are not based depend on the (outer) simulation step size but on the (inner) calculation step size defined by parameter `maxdt`.
[ "Update", "the", "stored", "water", "volume", "based", "on", "the", "equation", "of", "continuity", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L225-L290
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
interp_w_v1
def interp_w_v1(self): """Calculate the actual water stage based on linear interpolation. Required control parameters: |N| |llake_control.V| |llake_control.W| Required state sequence: |llake_states.V| Calculated state sequence: |llake_states.W| Examples: Prepare a model object: >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> simulationstep('12h') For the sake of brevity, define a test function: >>> def test(*vs): ... for v in vs: ... states.v.new = v ... model.interp_w_v1() ... print(repr(states.v), repr(states.w)) Define a simple `w`-`v` relationship consisting of three nodes and calculate the water stages for different volumes: >>> n(3) >>> v(0., 2., 4.) >>> w(-1., 1., 2.) Perform the interpolation for a few test points: >>> test(0., .5, 2., 3., 4., 5.) v(0.0) w(-1.0) v(0.5) w(-0.5) v(2.0) w(1.0) v(3.0) w(1.5) v(4.0) w(2.0) v(5.0) w(2.5) The reference water stage of the relationship can be selected arbitrarily. Even negative water stages are returned, as is demonstrated by the first two calculations. For volumes outside the range of the (`v`,`w`) pairs, the outer two highest pairs are used for linear extrapolation. """ con = self.parameters.control.fastaccess new = self.sequences.states.fastaccess_new for jdx in range(1, con.n): if con.v[jdx] >= new.v: break new.w = ((new.v-con.v[jdx-1]) * (con.w[jdx]-con.w[jdx-1]) / (con.v[jdx]-con.v[jdx-1]) + con.w[jdx-1])
python
def interp_w_v1(self): """Calculate the actual water stage based on linear interpolation. Required control parameters: |N| |llake_control.V| |llake_control.W| Required state sequence: |llake_states.V| Calculated state sequence: |llake_states.W| Examples: Prepare a model object: >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> simulationstep('12h') For the sake of brevity, define a test function: >>> def test(*vs): ... for v in vs: ... states.v.new = v ... model.interp_w_v1() ... print(repr(states.v), repr(states.w)) Define a simple `w`-`v` relationship consisting of three nodes and calculate the water stages for different volumes: >>> n(3) >>> v(0., 2., 4.) >>> w(-1., 1., 2.) Perform the interpolation for a few test points: >>> test(0., .5, 2., 3., 4., 5.) v(0.0) w(-1.0) v(0.5) w(-0.5) v(2.0) w(1.0) v(3.0) w(1.5) v(4.0) w(2.0) v(5.0) w(2.5) The reference water stage of the relationship can be selected arbitrarily. Even negative water stages are returned, as is demonstrated by the first two calculations. For volumes outside the range of the (`v`,`w`) pairs, the outer two highest pairs are used for linear extrapolation. """ con = self.parameters.control.fastaccess new = self.sequences.states.fastaccess_new for jdx in range(1, con.n): if con.v[jdx] >= new.v: break new.w = ((new.v-con.v[jdx-1]) * (con.w[jdx]-con.w[jdx-1]) / (con.v[jdx]-con.v[jdx-1]) + con.w[jdx-1])
[ "def", "interp_w_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "new", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_new", "for", "jdx", "in", "range", "(", "1", ",", "con", ".", "n", ")", ":", "if", "con", ".", "v", "[", "jdx", "]", ">=", "new", ".", "v", ":", "break", "new", ".", "w", "=", "(", "(", "new", ".", "v", "-", "con", ".", "v", "[", "jdx", "-", "1", "]", ")", "*", "(", "con", ".", "w", "[", "jdx", "]", "-", "con", ".", "w", "[", "jdx", "-", "1", "]", ")", "/", "(", "con", ".", "v", "[", "jdx", "]", "-", "con", ".", "v", "[", "jdx", "-", "1", "]", ")", "+", "con", ".", "w", "[", "jdx", "-", "1", "]", ")" ]
Calculate the actual water stage based on linear interpolation. Required control parameters: |N| |llake_control.V| |llake_control.W| Required state sequence: |llake_states.V| Calculated state sequence: |llake_states.W| Examples: Prepare a model object: >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> simulationstep('12h') For the sake of brevity, define a test function: >>> def test(*vs): ... for v in vs: ... states.v.new = v ... model.interp_w_v1() ... print(repr(states.v), repr(states.w)) Define a simple `w`-`v` relationship consisting of three nodes and calculate the water stages for different volumes: >>> n(3) >>> v(0., 2., 4.) >>> w(-1., 1., 2.) Perform the interpolation for a few test points: >>> test(0., .5, 2., 3., 4., 5.) v(0.0) w(-1.0) v(0.5) w(-0.5) v(2.0) w(1.0) v(3.0) w(1.5) v(4.0) w(2.0) v(5.0) w(2.5) The reference water stage of the relationship can be selected arbitrarily. Even negative water stages are returned, as is demonstrated by the first two calculations. For volumes outside the range of the (`v`,`w`) pairs, the outer two highest pairs are used for linear extrapolation.
[ "Calculate", "the", "actual", "water", "stage", "based", "on", "linear", "interpolation", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L293-L354
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
corr_dw_v1
def corr_dw_v1(self): """Adjust the water stage drop to the highest value allowed and correct the associated fluxes. Note that method |corr_dw_v1| calls the method `interp_v` of the respective application model. Hence the requirements of the actual `interp_v` need to be considered additionally. Required control parameter: |MaxDW| Required derived parameters: |llake_derived.TOY| |Seconds| Required flux sequence: |QZ| Updated flux sequence: |llake_fluxes.QA| Updated state sequences: |llake_states.W| |llake_states.V| Basic Restriction: :math:`W_{old} - W_{new} \\leq MaxDW` Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01', '2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> derived.toy.update() >>> derived.seconds.update() Select the first half of the second day of January as the simulation step relevant for the following examples: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] The following tests are based on method |interp_v_v1| for the interpolation of the stored water volume based on the corrected water stage: >>> model.interp_v = model.interp_v_v1 For the sake of simplicity, the underlying `w`-`v` relationship is assumed to be linear: >>> n(2.) >>> w(0., 1.) >>> v(0., 1e6) The maximum drop in water stage for the first half of the second day of January is set to 0.4 m/d. Note that, due to the difference between the parameter step size and the simulation step size, the actual value used for calculation is 0.2 m/12h: >>> maxdw(_1_1_18=.1, ... _1_2_6=.4, ... _1_2_18=.1) >>> maxdw maxdw(toy_1_1_18_0_0=0.1, toy_1_2_6_0_0=0.4, toy_1_2_18_0_0=0.1) >>> from hydpy import round_ >>> round_(maxdw.value[2]) 0.2 Define old and new water stages and volumes in agreement with the given linear relationship: >>> states.w.old = 1. >>> states.v.old = 1e6 >>> states.w.new = .9 >>> states.v.new = 9e5 Also define an inflow and an outflow value. Note the that the latter is set to zero, which is inconsistent with the actual water stage drop defined above, but done for didactic reasons: >>> fluxes.qz = 1. >>> fluxes.qa = 0. Calling the |corr_dw_v1| method does not change the values of either of following sequences, as the actual drop (0.1 m/12h) is smaller than the allowed drop (0.2 m/12h): >>> model.corr_dw_v1() >>> states.w w(0.9) >>> states.v v(900000.0) >>> fluxes.qa qa(0.0) Note that the values given above are not recalculated, which can clearly be seen for the lake outflow, which is still zero. Through setting the new value of the water stage to 0.6 m, the actual drop (0.4 m/12h) exceeds the allowed drop (0.2 m/12h). Hence the water stage is trimmed and the other values are recalculated: >>> states.w.new = .6 >>> model.corr_dw_v1() >>> states.w w(0.8) >>> states.v v(800000.0) >>> fluxes.qa qa(5.62963) Through setting the maximum water stage drop to zero, method |corr_dw_v1| is effectively disabled. Regardless of the actual change in water stage, no trimming or recalculating is performed: >>> maxdw.toy_01_02_06 = 0. >>> states.w.new = .6 >>> model.corr_dw_v1() >>> states.w w(0.6) >>> states.v v(800000.0) >>> fluxes.qa qa(5.62963) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new idx = der.toy[self.idx_sim] if (con.maxdw[idx] > 0.) and ((old.w-new.w) > con.maxdw[idx]): new.w = old.w-con.maxdw[idx] self.interp_v() flu.qa = flu.qz+(old.v-new.v)/der.seconds
python
def corr_dw_v1(self): """Adjust the water stage drop to the highest value allowed and correct the associated fluxes. Note that method |corr_dw_v1| calls the method `interp_v` of the respective application model. Hence the requirements of the actual `interp_v` need to be considered additionally. Required control parameter: |MaxDW| Required derived parameters: |llake_derived.TOY| |Seconds| Required flux sequence: |QZ| Updated flux sequence: |llake_fluxes.QA| Updated state sequences: |llake_states.W| |llake_states.V| Basic Restriction: :math:`W_{old} - W_{new} \\leq MaxDW` Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01', '2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> derived.toy.update() >>> derived.seconds.update() Select the first half of the second day of January as the simulation step relevant for the following examples: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] The following tests are based on method |interp_v_v1| for the interpolation of the stored water volume based on the corrected water stage: >>> model.interp_v = model.interp_v_v1 For the sake of simplicity, the underlying `w`-`v` relationship is assumed to be linear: >>> n(2.) >>> w(0., 1.) >>> v(0., 1e6) The maximum drop in water stage for the first half of the second day of January is set to 0.4 m/d. Note that, due to the difference between the parameter step size and the simulation step size, the actual value used for calculation is 0.2 m/12h: >>> maxdw(_1_1_18=.1, ... _1_2_6=.4, ... _1_2_18=.1) >>> maxdw maxdw(toy_1_1_18_0_0=0.1, toy_1_2_6_0_0=0.4, toy_1_2_18_0_0=0.1) >>> from hydpy import round_ >>> round_(maxdw.value[2]) 0.2 Define old and new water stages and volumes in agreement with the given linear relationship: >>> states.w.old = 1. >>> states.v.old = 1e6 >>> states.w.new = .9 >>> states.v.new = 9e5 Also define an inflow and an outflow value. Note the that the latter is set to zero, which is inconsistent with the actual water stage drop defined above, but done for didactic reasons: >>> fluxes.qz = 1. >>> fluxes.qa = 0. Calling the |corr_dw_v1| method does not change the values of either of following sequences, as the actual drop (0.1 m/12h) is smaller than the allowed drop (0.2 m/12h): >>> model.corr_dw_v1() >>> states.w w(0.9) >>> states.v v(900000.0) >>> fluxes.qa qa(0.0) Note that the values given above are not recalculated, which can clearly be seen for the lake outflow, which is still zero. Through setting the new value of the water stage to 0.6 m, the actual drop (0.4 m/12h) exceeds the allowed drop (0.2 m/12h). Hence the water stage is trimmed and the other values are recalculated: >>> states.w.new = .6 >>> model.corr_dw_v1() >>> states.w w(0.8) >>> states.v v(800000.0) >>> fluxes.qa qa(5.62963) Through setting the maximum water stage drop to zero, method |corr_dw_v1| is effectively disabled. Regardless of the actual change in water stage, no trimming or recalculating is performed: >>> maxdw.toy_01_02_06 = 0. >>> states.w.new = .6 >>> model.corr_dw_v1() >>> states.w w(0.6) >>> states.v v(800000.0) >>> fluxes.qa qa(5.62963) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess old = self.sequences.states.fastaccess_old new = self.sequences.states.fastaccess_new idx = der.toy[self.idx_sim] if (con.maxdw[idx] > 0.) and ((old.w-new.w) > con.maxdw[idx]): new.w = old.w-con.maxdw[idx] self.interp_v() flu.qa = flu.qz+(old.v-new.v)/der.seconds
[ "def", "corr_dw_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "old", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_old", "new", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_new", "idx", "=", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "if", "(", "con", ".", "maxdw", "[", "idx", "]", ">", "0.", ")", "and", "(", "(", "old", ".", "w", "-", "new", ".", "w", ")", ">", "con", ".", "maxdw", "[", "idx", "]", ")", ":", "new", ".", "w", "=", "old", ".", "w", "-", "con", ".", "maxdw", "[", "idx", "]", "self", ".", "interp_v", "(", ")", "flu", ".", "qa", "=", "flu", ".", "qz", "+", "(", "old", ".", "v", "-", "new", ".", "v", ")", "/", "der", ".", "seconds" ]
Adjust the water stage drop to the highest value allowed and correct the associated fluxes. Note that method |corr_dw_v1| calls the method `interp_v` of the respective application model. Hence the requirements of the actual `interp_v` need to be considered additionally. Required control parameter: |MaxDW| Required derived parameters: |llake_derived.TOY| |Seconds| Required flux sequence: |QZ| Updated flux sequence: |llake_fluxes.QA| Updated state sequences: |llake_states.W| |llake_states.V| Basic Restriction: :math:`W_{old} - W_{new} \\leq MaxDW` Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01', '2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> derived.toy.update() >>> derived.seconds.update() Select the first half of the second day of January as the simulation step relevant for the following examples: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] The following tests are based on method |interp_v_v1| for the interpolation of the stored water volume based on the corrected water stage: >>> model.interp_v = model.interp_v_v1 For the sake of simplicity, the underlying `w`-`v` relationship is assumed to be linear: >>> n(2.) >>> w(0., 1.) >>> v(0., 1e6) The maximum drop in water stage for the first half of the second day of January is set to 0.4 m/d. Note that, due to the difference between the parameter step size and the simulation step size, the actual value used for calculation is 0.2 m/12h: >>> maxdw(_1_1_18=.1, ... _1_2_6=.4, ... _1_2_18=.1) >>> maxdw maxdw(toy_1_1_18_0_0=0.1, toy_1_2_6_0_0=0.4, toy_1_2_18_0_0=0.1) >>> from hydpy import round_ >>> round_(maxdw.value[2]) 0.2 Define old and new water stages and volumes in agreement with the given linear relationship: >>> states.w.old = 1. >>> states.v.old = 1e6 >>> states.w.new = .9 >>> states.v.new = 9e5 Also define an inflow and an outflow value. Note the that the latter is set to zero, which is inconsistent with the actual water stage drop defined above, but done for didactic reasons: >>> fluxes.qz = 1. >>> fluxes.qa = 0. Calling the |corr_dw_v1| method does not change the values of either of following sequences, as the actual drop (0.1 m/12h) is smaller than the allowed drop (0.2 m/12h): >>> model.corr_dw_v1() >>> states.w w(0.9) >>> states.v v(900000.0) >>> fluxes.qa qa(0.0) Note that the values given above are not recalculated, which can clearly be seen for the lake outflow, which is still zero. Through setting the new value of the water stage to 0.6 m, the actual drop (0.4 m/12h) exceeds the allowed drop (0.2 m/12h). Hence the water stage is trimmed and the other values are recalculated: >>> states.w.new = .6 >>> model.corr_dw_v1() >>> states.w w(0.8) >>> states.v v(800000.0) >>> fluxes.qa qa(5.62963) Through setting the maximum water stage drop to zero, method |corr_dw_v1| is effectively disabled. Regardless of the actual change in water stage, no trimming or recalculating is performed: >>> maxdw.toy_01_02_06 = 0. >>> states.w.new = .6 >>> model.corr_dw_v1() >>> states.w w(0.6) >>> states.v v(800000.0) >>> fluxes.qa qa(5.62963)
[ "Adjust", "the", "water", "stage", "drop", "to", "the", "highest", "value", "allowed", "and", "correct", "the", "associated", "fluxes", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L420-L561
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
modify_qa_v1
def modify_qa_v1(self): """Add water to or remove water from the calculated lake outflow. Required control parameter: |Verzw| Required derived parameter: |llake_derived.TOY| Updated flux sequence: |llake_fluxes.QA| Basic Equation: :math:`QA = QA* - Verzw` Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01', '2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> derived.toy.update() Select the first half of the second day of January as the simulation step relevant for the following examples: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] Assume that, in accordance with previous calculations, the original outflow value is 3 m³/s: >>> fluxes.qa = 3. Prepare the shape of parameter `verzw` (usually, this is done automatically when calling parameter `n`): >>> verzw.shape = (None,) Set the value of the abstraction on the first half of the second day of January to 2 m³/s: >>> verzw(_1_1_18=0., ... _1_2_6=2., ... _1_2_18=0.) In the first example `verzw` is simply subtracted from `qa`: >>> model.modify_qa_v1() >>> fluxes.qa qa(1.0) In the second example `verzw` exceeds `qa`, resulting in a zero outflow value: >>> model.modify_qa_v1() >>> fluxes.qa qa(0.0) The last example demonstrates, that "negative abstractions" are allowed, resulting in an increase in simulated outflow: >>> verzw.toy_1_2_6 = -2. >>> model.modify_qa_v1() >>> fluxes.qa qa(2.0) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess idx = der.toy[self.idx_sim] flu.qa = max(flu.qa-con.verzw[idx], 0.)
python
def modify_qa_v1(self): """Add water to or remove water from the calculated lake outflow. Required control parameter: |Verzw| Required derived parameter: |llake_derived.TOY| Updated flux sequence: |llake_fluxes.QA| Basic Equation: :math:`QA = QA* - Verzw` Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01', '2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> derived.toy.update() Select the first half of the second day of January as the simulation step relevant for the following examples: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] Assume that, in accordance with previous calculations, the original outflow value is 3 m³/s: >>> fluxes.qa = 3. Prepare the shape of parameter `verzw` (usually, this is done automatically when calling parameter `n`): >>> verzw.shape = (None,) Set the value of the abstraction on the first half of the second day of January to 2 m³/s: >>> verzw(_1_1_18=0., ... _1_2_6=2., ... _1_2_18=0.) In the first example `verzw` is simply subtracted from `qa`: >>> model.modify_qa_v1() >>> fluxes.qa qa(1.0) In the second example `verzw` exceeds `qa`, resulting in a zero outflow value: >>> model.modify_qa_v1() >>> fluxes.qa qa(0.0) The last example demonstrates, that "negative abstractions" are allowed, resulting in an increase in simulated outflow: >>> verzw.toy_1_2_6 = -2. >>> model.modify_qa_v1() >>> fluxes.qa qa(2.0) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess idx = der.toy[self.idx_sim] flu.qa = max(flu.qa-con.verzw[idx], 0.)
[ "def", "modify_qa_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "idx", "=", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "flu", ".", "qa", "=", "max", "(", "flu", ".", "qa", "-", "con", ".", "verzw", "[", "idx", "]", ",", "0.", ")" ]
Add water to or remove water from the calculated lake outflow. Required control parameter: |Verzw| Required derived parameter: |llake_derived.TOY| Updated flux sequence: |llake_fluxes.QA| Basic Equation: :math:`QA = QA* - Verzw` Examples: In preparation for the following examples, define a short simulation time period with a simulation step size of 12 hours and initialize the required model object: >>> from hydpy import pub >>> pub.timegrids = '2000.01.01', '2000.01.04', '12h' >>> from hydpy.models.llake import * >>> parameterstep('1d') >>> derived.toy.update() Select the first half of the second day of January as the simulation step relevant for the following examples: >>> model.idx_sim = pub.timegrids.init['2000.01.02'] Assume that, in accordance with previous calculations, the original outflow value is 3 m³/s: >>> fluxes.qa = 3. Prepare the shape of parameter `verzw` (usually, this is done automatically when calling parameter `n`): >>> verzw.shape = (None,) Set the value of the abstraction on the first half of the second day of January to 2 m³/s: >>> verzw(_1_1_18=0., ... _1_2_6=2., ... _1_2_18=0.) In the first example `verzw` is simply subtracted from `qa`: >>> model.modify_qa_v1() >>> fluxes.qa qa(1.0) In the second example `verzw` exceeds `qa`, resulting in a zero outflow value: >>> model.modify_qa_v1() >>> fluxes.qa qa(0.0) The last example demonstrates, that "negative abstractions" are allowed, resulting in an increase in simulated outflow: >>> verzw.toy_1_2_6 = -2. >>> model.modify_qa_v1() >>> fluxes.qa qa(2.0)
[ "Add", "water", "to", "or", "remove", "water", "from", "the", "calculated", "lake", "outflow", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L564-L637
hydpy-dev/hydpy
hydpy/models/llake/llake_model.py
pass_q_v1
def pass_q_v1(self): """Update the outlet link sequence.""" flu = self.sequences.fluxes.fastaccess out = self.sequences.outlets.fastaccess out.q[0] += flu.qa
python
def pass_q_v1(self): """Update the outlet link sequence.""" flu = self.sequences.fluxes.fastaccess out = self.sequences.outlets.fastaccess out.q[0] += flu.qa
[ "def", "pass_q_v1", "(", "self", ")", ":", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "out", "=", "self", ".", "sequences", ".", "outlets", ".", "fastaccess", "out", ".", "q", "[", "0", "]", "+=", "flu", ".", "qa" ]
Update the outlet link sequence.
[ "Update", "the", "outlet", "link", "sequence", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/llake/llake_model.py#L649-L653
hydpy-dev/hydpy
hydpy/models/arma/arma_control.py
Responses.thresholds
def thresholds(self): """Threshold values of the response functions.""" return numpy.array( sorted(self._key2float(key) for key in self._coefs), dtype=float)
python
def thresholds(self): """Threshold values of the response functions.""" return numpy.array( sorted(self._key2float(key) for key in self._coefs), dtype=float)
[ "def", "thresholds", "(", "self", ")", ":", "return", "numpy", ".", "array", "(", "sorted", "(", "self", ".", "_key2float", "(", "key", ")", "for", "key", "in", "self", ".", "_coefs", ")", ",", "dtype", "=", "float", ")" ]
Threshold values of the response functions.
[ "Threshold", "values", "of", "the", "response", "functions", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/arma/arma_control.py#L308-L311
hydpy-dev/hydpy
hydpy/auxs/statstools.py
prepare_arrays
def prepare_arrays(sim=None, obs=None, node=None, skip_nan=False): """Prepare and return two |numpy| arrays based on the given arguments. Note that many functions provided by module |statstools| apply function |prepare_arrays| internally (e.g. |nse|). But you can also apply it manually, as shown in the following examples. Function |prepare_arrays| can extract time series data from |Node| objects. To set up an example for this, we define a initialization time period and prepare a |Node| object: >>> from hydpy import pub, Node, round_, nan >>> pub.timegrids = '01.01.2000', '07.01.2000', '1d' >>> node = Node('test') Next, we assign values the `simulation` and the `observation` sequences (to do so for the `observation` sequence requires a little trick, as its values are normally supposed to be read from a file): >>> node.prepare_simseries() >>> with pub.options.checkseries(False): ... node.sequences.sim.series = 1.0, nan, nan, nan, 2.0, 3.0 ... node.sequences.obs.ramflag = True ... node.sequences.obs.series = 4.0, 5.0, nan, nan, nan, 6.0 Now we can pass the node object to function |prepare_arrays| and get the (unmodified) time series data: >>> from hydpy import prepare_arrays >>> arrays = prepare_arrays(node=node) >>> round_(arrays[0]) 1.0, nan, nan, nan, 2.0, 3.0 >>> round_(arrays[1]) 4.0, 5.0, nan, nan, nan, 6.0 Alternatively, we can pass directly any iterables (e.g. |list| and |tuple| objects) containing the `simulated` and `observed` data: >>> arrays = prepare_arrays(sim=list(node.sequences.sim.series), ... obs=tuple(node.sequences.obs.series)) >>> round_(arrays[0]) 1.0, nan, nan, nan, 2.0, 3.0 >>> round_(arrays[1]) 4.0, 5.0, nan, nan, nan, 6.0 The optional `skip_nan` flag allows to skip all values, which are no numbers. Note that only those pairs of `simulated` and `observed` values are returned which do not contain any `nan`: >>> arrays = prepare_arrays(node=node, skip_nan=True) >>> round_(arrays[0]) 1.0, 3.0 >>> round_(arrays[1]) 4.0, 6.0 The final examples show the error messages returned in case of invalid combinations of input arguments: >>> prepare_arrays() Traceback (most recent call last): ... ValueError: Neither a `Node` object is passed to argument `node` nor \ are arrays passed to arguments `sim` and `obs`. >>> prepare_arrays(sim=node.sequences.sim.series, node=node) Traceback (most recent call last): ... ValueError: Values are passed to both arguments `sim` and `node`, \ which is not allowed. >>> prepare_arrays(obs=node.sequences.obs.series, node=node) Traceback (most recent call last): ... ValueError: Values are passed to both arguments `obs` and `node`, \ which is not allowed. >>> prepare_arrays(sim=node.sequences.sim.series) Traceback (most recent call last): ... ValueError: A value is passed to argument `sim` but \ no value is passed to argument `obs`. >>> prepare_arrays(obs=node.sequences.obs.series) Traceback (most recent call last): ... ValueError: A value is passed to argument `obs` but \ no value is passed to argument `sim`. """ if node: if sim is not None: raise ValueError( 'Values are passed to both arguments `sim` and `node`, ' 'which is not allowed.') if obs is not None: raise ValueError( 'Values are passed to both arguments `obs` and `node`, ' 'which is not allowed.') sim = node.sequences.sim.series obs = node.sequences.obs.series elif (sim is not None) and (obs is None): raise ValueError( 'A value is passed to argument `sim` ' 'but no value is passed to argument `obs`.') elif (obs is not None) and (sim is None): raise ValueError( 'A value is passed to argument `obs` ' 'but no value is passed to argument `sim`.') elif (sim is None) and (obs is None): raise ValueError( 'Neither a `Node` object is passed to argument `node` nor ' 'are arrays passed to arguments `sim` and `obs`.') sim = numpy.asarray(sim) obs = numpy.asarray(obs) if skip_nan: idxs = ~numpy.isnan(sim) * ~numpy.isnan(obs) sim = sim[idxs] obs = obs[idxs] return sim, obs
python
def prepare_arrays(sim=None, obs=None, node=None, skip_nan=False): """Prepare and return two |numpy| arrays based on the given arguments. Note that many functions provided by module |statstools| apply function |prepare_arrays| internally (e.g. |nse|). But you can also apply it manually, as shown in the following examples. Function |prepare_arrays| can extract time series data from |Node| objects. To set up an example for this, we define a initialization time period and prepare a |Node| object: >>> from hydpy import pub, Node, round_, nan >>> pub.timegrids = '01.01.2000', '07.01.2000', '1d' >>> node = Node('test') Next, we assign values the `simulation` and the `observation` sequences (to do so for the `observation` sequence requires a little trick, as its values are normally supposed to be read from a file): >>> node.prepare_simseries() >>> with pub.options.checkseries(False): ... node.sequences.sim.series = 1.0, nan, nan, nan, 2.0, 3.0 ... node.sequences.obs.ramflag = True ... node.sequences.obs.series = 4.0, 5.0, nan, nan, nan, 6.0 Now we can pass the node object to function |prepare_arrays| and get the (unmodified) time series data: >>> from hydpy import prepare_arrays >>> arrays = prepare_arrays(node=node) >>> round_(arrays[0]) 1.0, nan, nan, nan, 2.0, 3.0 >>> round_(arrays[1]) 4.0, 5.0, nan, nan, nan, 6.0 Alternatively, we can pass directly any iterables (e.g. |list| and |tuple| objects) containing the `simulated` and `observed` data: >>> arrays = prepare_arrays(sim=list(node.sequences.sim.series), ... obs=tuple(node.sequences.obs.series)) >>> round_(arrays[0]) 1.0, nan, nan, nan, 2.0, 3.0 >>> round_(arrays[1]) 4.0, 5.0, nan, nan, nan, 6.0 The optional `skip_nan` flag allows to skip all values, which are no numbers. Note that only those pairs of `simulated` and `observed` values are returned which do not contain any `nan`: >>> arrays = prepare_arrays(node=node, skip_nan=True) >>> round_(arrays[0]) 1.0, 3.0 >>> round_(arrays[1]) 4.0, 6.0 The final examples show the error messages returned in case of invalid combinations of input arguments: >>> prepare_arrays() Traceback (most recent call last): ... ValueError: Neither a `Node` object is passed to argument `node` nor \ are arrays passed to arguments `sim` and `obs`. >>> prepare_arrays(sim=node.sequences.sim.series, node=node) Traceback (most recent call last): ... ValueError: Values are passed to both arguments `sim` and `node`, \ which is not allowed. >>> prepare_arrays(obs=node.sequences.obs.series, node=node) Traceback (most recent call last): ... ValueError: Values are passed to both arguments `obs` and `node`, \ which is not allowed. >>> prepare_arrays(sim=node.sequences.sim.series) Traceback (most recent call last): ... ValueError: A value is passed to argument `sim` but \ no value is passed to argument `obs`. >>> prepare_arrays(obs=node.sequences.obs.series) Traceback (most recent call last): ... ValueError: A value is passed to argument `obs` but \ no value is passed to argument `sim`. """ if node: if sim is not None: raise ValueError( 'Values are passed to both arguments `sim` and `node`, ' 'which is not allowed.') if obs is not None: raise ValueError( 'Values are passed to both arguments `obs` and `node`, ' 'which is not allowed.') sim = node.sequences.sim.series obs = node.sequences.obs.series elif (sim is not None) and (obs is None): raise ValueError( 'A value is passed to argument `sim` ' 'but no value is passed to argument `obs`.') elif (obs is not None) and (sim is None): raise ValueError( 'A value is passed to argument `obs` ' 'but no value is passed to argument `sim`.') elif (sim is None) and (obs is None): raise ValueError( 'Neither a `Node` object is passed to argument `node` nor ' 'are arrays passed to arguments `sim` and `obs`.') sim = numpy.asarray(sim) obs = numpy.asarray(obs) if skip_nan: idxs = ~numpy.isnan(sim) * ~numpy.isnan(obs) sim = sim[idxs] obs = obs[idxs] return sim, obs
[ "def", "prepare_arrays", "(", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "if", "node", ":", "if", "sim", "is", "not", "None", ":", "raise", "ValueError", "(", "'Values are passed to both arguments `sim` and `node`, '", "'which is not allowed.'", ")", "if", "obs", "is", "not", "None", ":", "raise", "ValueError", "(", "'Values are passed to both arguments `obs` and `node`, '", "'which is not allowed.'", ")", "sim", "=", "node", ".", "sequences", ".", "sim", ".", "series", "obs", "=", "node", ".", "sequences", ".", "obs", ".", "series", "elif", "(", "sim", "is", "not", "None", ")", "and", "(", "obs", "is", "None", ")", ":", "raise", "ValueError", "(", "'A value is passed to argument `sim` '", "'but no value is passed to argument `obs`.'", ")", "elif", "(", "obs", "is", "not", "None", ")", "and", "(", "sim", "is", "None", ")", ":", "raise", "ValueError", "(", "'A value is passed to argument `obs` '", "'but no value is passed to argument `sim`.'", ")", "elif", "(", "sim", "is", "None", ")", "and", "(", "obs", "is", "None", ")", ":", "raise", "ValueError", "(", "'Neither a `Node` object is passed to argument `node` nor '", "'are arrays passed to arguments `sim` and `obs`.'", ")", "sim", "=", "numpy", ".", "asarray", "(", "sim", ")", "obs", "=", "numpy", ".", "asarray", "(", "obs", ")", "if", "skip_nan", ":", "idxs", "=", "~", "numpy", ".", "isnan", "(", "sim", ")", "*", "~", "numpy", ".", "isnan", "(", "obs", ")", "sim", "=", "sim", "[", "idxs", "]", "obs", "=", "obs", "[", "idxs", "]", "return", "sim", ",", "obs" ]
Prepare and return two |numpy| arrays based on the given arguments. Note that many functions provided by module |statstools| apply function |prepare_arrays| internally (e.g. |nse|). But you can also apply it manually, as shown in the following examples. Function |prepare_arrays| can extract time series data from |Node| objects. To set up an example for this, we define a initialization time period and prepare a |Node| object: >>> from hydpy import pub, Node, round_, nan >>> pub.timegrids = '01.01.2000', '07.01.2000', '1d' >>> node = Node('test') Next, we assign values the `simulation` and the `observation` sequences (to do so for the `observation` sequence requires a little trick, as its values are normally supposed to be read from a file): >>> node.prepare_simseries() >>> with pub.options.checkseries(False): ... node.sequences.sim.series = 1.0, nan, nan, nan, 2.0, 3.0 ... node.sequences.obs.ramflag = True ... node.sequences.obs.series = 4.0, 5.0, nan, nan, nan, 6.0 Now we can pass the node object to function |prepare_arrays| and get the (unmodified) time series data: >>> from hydpy import prepare_arrays >>> arrays = prepare_arrays(node=node) >>> round_(arrays[0]) 1.0, nan, nan, nan, 2.0, 3.0 >>> round_(arrays[1]) 4.0, 5.0, nan, nan, nan, 6.0 Alternatively, we can pass directly any iterables (e.g. |list| and |tuple| objects) containing the `simulated` and `observed` data: >>> arrays = prepare_arrays(sim=list(node.sequences.sim.series), ... obs=tuple(node.sequences.obs.series)) >>> round_(arrays[0]) 1.0, nan, nan, nan, 2.0, 3.0 >>> round_(arrays[1]) 4.0, 5.0, nan, nan, nan, 6.0 The optional `skip_nan` flag allows to skip all values, which are no numbers. Note that only those pairs of `simulated` and `observed` values are returned which do not contain any `nan`: >>> arrays = prepare_arrays(node=node, skip_nan=True) >>> round_(arrays[0]) 1.0, 3.0 >>> round_(arrays[1]) 4.0, 6.0 The final examples show the error messages returned in case of invalid combinations of input arguments: >>> prepare_arrays() Traceback (most recent call last): ... ValueError: Neither a `Node` object is passed to argument `node` nor \ are arrays passed to arguments `sim` and `obs`. >>> prepare_arrays(sim=node.sequences.sim.series, node=node) Traceback (most recent call last): ... ValueError: Values are passed to both arguments `sim` and `node`, \ which is not allowed. >>> prepare_arrays(obs=node.sequences.obs.series, node=node) Traceback (most recent call last): ... ValueError: Values are passed to both arguments `obs` and `node`, \ which is not allowed. >>> prepare_arrays(sim=node.sequences.sim.series) Traceback (most recent call last): ... ValueError: A value is passed to argument `sim` but \ no value is passed to argument `obs`. >>> prepare_arrays(obs=node.sequences.obs.series) Traceback (most recent call last): ... ValueError: A value is passed to argument `obs` but \ no value is passed to argument `sim`.
[ "Prepare", "and", "return", "two", "|numpy|", "arrays", "based", "on", "the", "given", "arguments", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L18-L135
hydpy-dev/hydpy
hydpy/auxs/statstools.py
nse
def nse(sim=None, obs=None, node=None, skip_nan=False): """Calculate the efficiency criteria after Nash & Sutcliffe. If the simulated values predict the observed values as well as the average observed value (regarding the the mean square error), the NSE value is zero: >>> from hydpy import nse >>> nse(sim=[2.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0]) 0.0 >>> nse(sim=[0.0, 2.0, 4.0], obs=[1.0, 2.0, 3.0]) 0.0 For worse and better simulated values the NSE is negative or positive, respectively: >>> nse(sim=[3.0, 2.0, 1.0], obs=[1.0, 2.0, 3.0]) -3.0 >>> nse(sim=[1.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0]) 0.5 The highest possible value is one: >>> nse(sim=[1.0, 2.0, 3.0], obs=[1.0, 2.0, 3.0]) 1.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |nse|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return 1.-numpy.sum((sim-obs)**2)/numpy.sum((obs-numpy.mean(obs))**2)
python
def nse(sim=None, obs=None, node=None, skip_nan=False): """Calculate the efficiency criteria after Nash & Sutcliffe. If the simulated values predict the observed values as well as the average observed value (regarding the the mean square error), the NSE value is zero: >>> from hydpy import nse >>> nse(sim=[2.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0]) 0.0 >>> nse(sim=[0.0, 2.0, 4.0], obs=[1.0, 2.0, 3.0]) 0.0 For worse and better simulated values the NSE is negative or positive, respectively: >>> nse(sim=[3.0, 2.0, 1.0], obs=[1.0, 2.0, 3.0]) -3.0 >>> nse(sim=[1.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0]) 0.5 The highest possible value is one: >>> nse(sim=[1.0, 2.0, 3.0], obs=[1.0, 2.0, 3.0]) 1.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |nse|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return 1.-numpy.sum((sim-obs)**2)/numpy.sum((obs-numpy.mean(obs))**2)
[ "def", "nse", "(", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "sim", ",", "obs", "=", "prepare_arrays", "(", "sim", ",", "obs", ",", "node", ",", "skip_nan", ")", "return", "1.", "-", "numpy", ".", "sum", "(", "(", "sim", "-", "obs", ")", "**", "2", ")", "/", "numpy", ".", "sum", "(", "(", "obs", "-", "numpy", ".", "mean", "(", "obs", ")", ")", "**", "2", ")" ]
Calculate the efficiency criteria after Nash & Sutcliffe. If the simulated values predict the observed values as well as the average observed value (regarding the the mean square error), the NSE value is zero: >>> from hydpy import nse >>> nse(sim=[2.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0]) 0.0 >>> nse(sim=[0.0, 2.0, 4.0], obs=[1.0, 2.0, 3.0]) 0.0 For worse and better simulated values the NSE is negative or positive, respectively: >>> nse(sim=[3.0, 2.0, 1.0], obs=[1.0, 2.0, 3.0]) -3.0 >>> nse(sim=[1.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0]) 0.5 The highest possible value is one: >>> nse(sim=[1.0, 2.0, 3.0], obs=[1.0, 2.0, 3.0]) 1.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |nse|.
[ "Calculate", "the", "efficiency", "criteria", "after", "Nash", "&", "Sutcliffe", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L140-L170
hydpy-dev/hydpy
hydpy/auxs/statstools.py
bias_abs
def bias_abs(sim=None, obs=None, node=None, skip_nan=False): """Calculate the absolute difference between the means of the simulated and the observed values. >>> from hydpy import round_ >>> from hydpy import bias_abs >>> round_(bias_abs(sim=[2.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0])) 0.0 >>> round_(bias_abs(sim=[5.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0])) 1.0 >>> round_(bias_abs(sim=[1.0, 1.0, 1.0], obs=[1.0, 2.0, 3.0])) -1.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |bias_abs|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.mean(sim-obs)
python
def bias_abs(sim=None, obs=None, node=None, skip_nan=False): """Calculate the absolute difference between the means of the simulated and the observed values. >>> from hydpy import round_ >>> from hydpy import bias_abs >>> round_(bias_abs(sim=[2.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0])) 0.0 >>> round_(bias_abs(sim=[5.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0])) 1.0 >>> round_(bias_abs(sim=[1.0, 1.0, 1.0], obs=[1.0, 2.0, 3.0])) -1.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |bias_abs|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.mean(sim-obs)
[ "def", "bias_abs", "(", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "sim", ",", "obs", "=", "prepare_arrays", "(", "sim", ",", "obs", ",", "node", ",", "skip_nan", ")", "return", "numpy", ".", "mean", "(", "sim", "-", "obs", ")" ]
Calculate the absolute difference between the means of the simulated and the observed values. >>> from hydpy import round_ >>> from hydpy import bias_abs >>> round_(bias_abs(sim=[2.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0])) 0.0 >>> round_(bias_abs(sim=[5.0, 2.0, 2.0], obs=[1.0, 2.0, 3.0])) 1.0 >>> round_(bias_abs(sim=[1.0, 1.0, 1.0], obs=[1.0, 2.0, 3.0])) -1.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |bias_abs|.
[ "Calculate", "the", "absolute", "difference", "between", "the", "means", "of", "the", "simulated", "and", "the", "observed", "values", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L175-L192
hydpy-dev/hydpy
hydpy/auxs/statstools.py
std_ratio
def std_ratio(sim=None, obs=None, node=None, skip_nan=False): """Calculate the ratio between the standard deviation of the simulated and the observed values. >>> from hydpy import round_ >>> from hydpy import std_ratio >>> round_(std_ratio(sim=[1.0, 2.0, 3.0], obs=[1.0, 2.0, 3.0])) 0.0 >>> round_(std_ratio(sim=[1.0, 1.0, 1.0], obs=[1.0, 2.0, 3.0])) -1.0 >>> round_(std_ratio(sim=[0.0, 3.0, 6.0], obs=[1.0, 2.0, 3.0])) 2.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |std_ratio|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.std(sim)/numpy.std(obs)-1.
python
def std_ratio(sim=None, obs=None, node=None, skip_nan=False): """Calculate the ratio between the standard deviation of the simulated and the observed values. >>> from hydpy import round_ >>> from hydpy import std_ratio >>> round_(std_ratio(sim=[1.0, 2.0, 3.0], obs=[1.0, 2.0, 3.0])) 0.0 >>> round_(std_ratio(sim=[1.0, 1.0, 1.0], obs=[1.0, 2.0, 3.0])) -1.0 >>> round_(std_ratio(sim=[0.0, 3.0, 6.0], obs=[1.0, 2.0, 3.0])) 2.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |std_ratio|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.std(sim)/numpy.std(obs)-1.
[ "def", "std_ratio", "(", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "sim", ",", "obs", "=", "prepare_arrays", "(", "sim", ",", "obs", ",", "node", ",", "skip_nan", ")", "return", "numpy", ".", "std", "(", "sim", ")", "/", "numpy", ".", "std", "(", "obs", ")", "-", "1." ]
Calculate the ratio between the standard deviation of the simulated and the observed values. >>> from hydpy import round_ >>> from hydpy import std_ratio >>> round_(std_ratio(sim=[1.0, 2.0, 3.0], obs=[1.0, 2.0, 3.0])) 0.0 >>> round_(std_ratio(sim=[1.0, 1.0, 1.0], obs=[1.0, 2.0, 3.0])) -1.0 >>> round_(std_ratio(sim=[0.0, 3.0, 6.0], obs=[1.0, 2.0, 3.0])) 2.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |std_ratio|.
[ "Calculate", "the", "ratio", "between", "the", "standard", "deviation", "of", "the", "simulated", "and", "the", "observed", "values", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L219-L236
hydpy-dev/hydpy
hydpy/auxs/statstools.py
corr
def corr(sim=None, obs=None, node=None, skip_nan=False): """Calculate the product-moment correlation coefficient after Pearson. >>> from hydpy import round_ >>> from hydpy import corr >>> round_(corr(sim=[0.5, 1.0, 1.5], obs=[1.0, 2.0, 3.0])) 1.0 >>> round_(corr(sim=[4.0, 2.0, 0.0], obs=[1.0, 2.0, 3.0])) -1.0 >>> round_(corr(sim=[1.0, 2.0, 1.0], obs=[1.0, 2.0, 3.0])) 0.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |corr|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.corrcoef(sim, obs)[0, 1]
python
def corr(sim=None, obs=None, node=None, skip_nan=False): """Calculate the product-moment correlation coefficient after Pearson. >>> from hydpy import round_ >>> from hydpy import corr >>> round_(corr(sim=[0.5, 1.0, 1.5], obs=[1.0, 2.0, 3.0])) 1.0 >>> round_(corr(sim=[4.0, 2.0, 0.0], obs=[1.0, 2.0, 3.0])) -1.0 >>> round_(corr(sim=[1.0, 2.0, 1.0], obs=[1.0, 2.0, 3.0])) 0.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |corr|. """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return numpy.corrcoef(sim, obs)[0, 1]
[ "def", "corr", "(", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "sim", ",", "obs", "=", "prepare_arrays", "(", "sim", ",", "obs", ",", "node", ",", "skip_nan", ")", "return", "numpy", ".", "corrcoef", "(", "sim", ",", "obs", ")", "[", "0", ",", "1", "]" ]
Calculate the product-moment correlation coefficient after Pearson. >>> from hydpy import round_ >>> from hydpy import corr >>> round_(corr(sim=[0.5, 1.0, 1.5], obs=[1.0, 2.0, 3.0])) 1.0 >>> round_(corr(sim=[4.0, 2.0, 0.0], obs=[1.0, 2.0, 3.0])) -1.0 >>> round_(corr(sim=[1.0, 2.0, 1.0], obs=[1.0, 2.0, 3.0])) 0.0 See the documentation on function |prepare_arrays| for some additional instructions for use of function |corr|.
[ "Calculate", "the", "product", "-", "moment", "correlation", "coefficient", "after", "Pearson", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L241-L257
hydpy-dev/hydpy
hydpy/auxs/statstools.py
hsepd_pdf
def hsepd_pdf(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False): """Calculate the probability densities based on the heteroskedastic skewed exponential power distribution. For convenience, the required parameters of the probability density function as well as the simulated and observed values are stored in a dictonary: >>> import numpy >>> from hydpy import round_ >>> from hydpy import hsepd_pdf >>> general = {'sigma1': 0.2, ... 'sigma2': 0.0, ... 'xi': 1.0, ... 'beta': 0.0, ... 'sim': numpy.arange(10.0, 41.0), ... 'obs': numpy.full(31, 25.0)} The following test function allows the variation of one parameter and prints some and plots all of probability density values corresponding to different simulated values: >>> def test(**kwargs): ... from matplotlib import pyplot ... special = general.copy() ... name, values = list(kwargs.items())[0] ... results = numpy.zeros((len(general['sim']), len(values)+1)) ... results[:, 0] = general['sim'] ... for jdx, value in enumerate(values): ... special[name] = value ... results[:, jdx+1] = hsepd_pdf(**special) ... pyplot.plot(results[:, 0], results[:, jdx+1], ... label='%s=%.1f' % (name, value)) ... pyplot.legend() ... for idx, result in enumerate(results): ... if not (idx % 5): ... round_(result) When varying parameter `beta`, the resulting probabilities correspond to the Laplace distribution (1.0), normal distribution (0.0), and the uniform distribution (-1.0), respectively. Note that we use -0.99 instead of -1.0 for approximating the uniform distribution to prevent from running into numerical problems, which are not solved yet: >>> test(beta=[1.0, 0.0, -0.99]) 10.0, 0.002032, 0.000886, 0.0 15.0, 0.008359, 0.010798, 0.0 20.0, 0.034382, 0.048394, 0.057739 25.0, 0.141421, 0.079788, 0.057739 30.0, 0.034382, 0.048394, 0.057739 35.0, 0.008359, 0.010798, 0.0 40.0, 0.002032, 0.000886, 0.0 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() When varying parameter `xi`, the resulting density is negatively skewed (0.2), symmetric (1.0), and positively skewed (5.0), respectively: >>> test(xi=[0.2, 1.0, 5.0]) 10.0, 0.0, 0.000886, 0.003175 15.0, 0.0, 0.010798, 0.012957 20.0, 0.092845, 0.048394, 0.036341 25.0, 0.070063, 0.079788, 0.070063 30.0, 0.036341, 0.048394, 0.092845 35.0, 0.012957, 0.010798, 0.0 40.0, 0.003175, 0.000886, 0.0 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() In the above examples, the actual `sigma` (5.0) is calculated by multiplying `sigma1` (0.2) with the mean simulated value (25.0), internally. This can be done for modelling homoscedastic errors. Instead, `sigma2` is multiplied with the individual simulated values to account for heteroscedastic errors. With increasing values of `sigma2`, the resulting densities are modified as follows: >>> test(sigma2=[0.0, 0.1, 0.2]) 10.0, 0.000886, 0.002921, 0.005737 15.0, 0.010798, 0.018795, 0.022831 20.0, 0.048394, 0.044159, 0.037988 25.0, 0.079788, 0.053192, 0.039894 30.0, 0.048394, 0.04102, 0.032708 35.0, 0.010798, 0.023493, 0.023493 40.0, 0.000886, 0.011053, 0.015771 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) sigmas = _pars_h(sigma1, sigma2, sim) mu_xi, sigma_xi, w_beta, c_beta = _pars_sepd(xi, beta) x, mu = obs, sim a = (x-mu)/sigmas a_xi = numpy.empty(a.shape) idxs = mu_xi+sigma_xi*a < 0. a_xi[idxs] = numpy.absolute(xi*(mu_xi+sigma_xi*a[idxs])) a_xi[~idxs] = numpy.absolute(1./xi*(mu_xi+sigma_xi*a[~idxs])) ps = (2.*sigma_xi/(xi+1./xi)*w_beta * numpy.exp(-c_beta*a_xi**(2./(1.+beta))))/sigmas return ps
python
def hsepd_pdf(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False): """Calculate the probability densities based on the heteroskedastic skewed exponential power distribution. For convenience, the required parameters of the probability density function as well as the simulated and observed values are stored in a dictonary: >>> import numpy >>> from hydpy import round_ >>> from hydpy import hsepd_pdf >>> general = {'sigma1': 0.2, ... 'sigma2': 0.0, ... 'xi': 1.0, ... 'beta': 0.0, ... 'sim': numpy.arange(10.0, 41.0), ... 'obs': numpy.full(31, 25.0)} The following test function allows the variation of one parameter and prints some and plots all of probability density values corresponding to different simulated values: >>> def test(**kwargs): ... from matplotlib import pyplot ... special = general.copy() ... name, values = list(kwargs.items())[0] ... results = numpy.zeros((len(general['sim']), len(values)+1)) ... results[:, 0] = general['sim'] ... for jdx, value in enumerate(values): ... special[name] = value ... results[:, jdx+1] = hsepd_pdf(**special) ... pyplot.plot(results[:, 0], results[:, jdx+1], ... label='%s=%.1f' % (name, value)) ... pyplot.legend() ... for idx, result in enumerate(results): ... if not (idx % 5): ... round_(result) When varying parameter `beta`, the resulting probabilities correspond to the Laplace distribution (1.0), normal distribution (0.0), and the uniform distribution (-1.0), respectively. Note that we use -0.99 instead of -1.0 for approximating the uniform distribution to prevent from running into numerical problems, which are not solved yet: >>> test(beta=[1.0, 0.0, -0.99]) 10.0, 0.002032, 0.000886, 0.0 15.0, 0.008359, 0.010798, 0.0 20.0, 0.034382, 0.048394, 0.057739 25.0, 0.141421, 0.079788, 0.057739 30.0, 0.034382, 0.048394, 0.057739 35.0, 0.008359, 0.010798, 0.0 40.0, 0.002032, 0.000886, 0.0 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() When varying parameter `xi`, the resulting density is negatively skewed (0.2), symmetric (1.0), and positively skewed (5.0), respectively: >>> test(xi=[0.2, 1.0, 5.0]) 10.0, 0.0, 0.000886, 0.003175 15.0, 0.0, 0.010798, 0.012957 20.0, 0.092845, 0.048394, 0.036341 25.0, 0.070063, 0.079788, 0.070063 30.0, 0.036341, 0.048394, 0.092845 35.0, 0.012957, 0.010798, 0.0 40.0, 0.003175, 0.000886, 0.0 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() In the above examples, the actual `sigma` (5.0) is calculated by multiplying `sigma1` (0.2) with the mean simulated value (25.0), internally. This can be done for modelling homoscedastic errors. Instead, `sigma2` is multiplied with the individual simulated values to account for heteroscedastic errors. With increasing values of `sigma2`, the resulting densities are modified as follows: >>> test(sigma2=[0.0, 0.1, 0.2]) 10.0, 0.000886, 0.002921, 0.005737 15.0, 0.010798, 0.018795, 0.022831 20.0, 0.048394, 0.044159, 0.037988 25.0, 0.079788, 0.053192, 0.039894 30.0, 0.048394, 0.04102, 0.032708 35.0, 0.010798, 0.023493, 0.023493 40.0, 0.000886, 0.011053, 0.015771 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) sigmas = _pars_h(sigma1, sigma2, sim) mu_xi, sigma_xi, w_beta, c_beta = _pars_sepd(xi, beta) x, mu = obs, sim a = (x-mu)/sigmas a_xi = numpy.empty(a.shape) idxs = mu_xi+sigma_xi*a < 0. a_xi[idxs] = numpy.absolute(xi*(mu_xi+sigma_xi*a[idxs])) a_xi[~idxs] = numpy.absolute(1./xi*(mu_xi+sigma_xi*a[~idxs])) ps = (2.*sigma_xi/(xi+1./xi)*w_beta * numpy.exp(-c_beta*a_xi**(2./(1.+beta))))/sigmas return ps
[ "def", "hsepd_pdf", "(", "sigma1", ",", "sigma2", ",", "xi", ",", "beta", ",", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "sim", ",", "obs", "=", "prepare_arrays", "(", "sim", ",", "obs", ",", "node", ",", "skip_nan", ")", "sigmas", "=", "_pars_h", "(", "sigma1", ",", "sigma2", ",", "sim", ")", "mu_xi", ",", "sigma_xi", ",", "w_beta", ",", "c_beta", "=", "_pars_sepd", "(", "xi", ",", "beta", ")", "x", ",", "mu", "=", "obs", ",", "sim", "a", "=", "(", "x", "-", "mu", ")", "/", "sigmas", "a_xi", "=", "numpy", ".", "empty", "(", "a", ".", "shape", ")", "idxs", "=", "mu_xi", "+", "sigma_xi", "*", "a", "<", "0.", "a_xi", "[", "idxs", "]", "=", "numpy", ".", "absolute", "(", "xi", "*", "(", "mu_xi", "+", "sigma_xi", "*", "a", "[", "idxs", "]", ")", ")", "a_xi", "[", "~", "idxs", "]", "=", "numpy", ".", "absolute", "(", "1.", "/", "xi", "*", "(", "mu_xi", "+", "sigma_xi", "*", "a", "[", "~", "idxs", "]", ")", ")", "ps", "=", "(", "2.", "*", "sigma_xi", "/", "(", "xi", "+", "1.", "/", "xi", ")", "*", "w_beta", "*", "numpy", ".", "exp", "(", "-", "c_beta", "*", "a_xi", "**", "(", "2.", "/", "(", "1.", "+", "beta", ")", ")", ")", ")", "/", "sigmas", "return", "ps" ]
Calculate the probability densities based on the heteroskedastic skewed exponential power distribution. For convenience, the required parameters of the probability density function as well as the simulated and observed values are stored in a dictonary: >>> import numpy >>> from hydpy import round_ >>> from hydpy import hsepd_pdf >>> general = {'sigma1': 0.2, ... 'sigma2': 0.0, ... 'xi': 1.0, ... 'beta': 0.0, ... 'sim': numpy.arange(10.0, 41.0), ... 'obs': numpy.full(31, 25.0)} The following test function allows the variation of one parameter and prints some and plots all of probability density values corresponding to different simulated values: >>> def test(**kwargs): ... from matplotlib import pyplot ... special = general.copy() ... name, values = list(kwargs.items())[0] ... results = numpy.zeros((len(general['sim']), len(values)+1)) ... results[:, 0] = general['sim'] ... for jdx, value in enumerate(values): ... special[name] = value ... results[:, jdx+1] = hsepd_pdf(**special) ... pyplot.plot(results[:, 0], results[:, jdx+1], ... label='%s=%.1f' % (name, value)) ... pyplot.legend() ... for idx, result in enumerate(results): ... if not (idx % 5): ... round_(result) When varying parameter `beta`, the resulting probabilities correspond to the Laplace distribution (1.0), normal distribution (0.0), and the uniform distribution (-1.0), respectively. Note that we use -0.99 instead of -1.0 for approximating the uniform distribution to prevent from running into numerical problems, which are not solved yet: >>> test(beta=[1.0, 0.0, -0.99]) 10.0, 0.002032, 0.000886, 0.0 15.0, 0.008359, 0.010798, 0.0 20.0, 0.034382, 0.048394, 0.057739 25.0, 0.141421, 0.079788, 0.057739 30.0, 0.034382, 0.048394, 0.057739 35.0, 0.008359, 0.010798, 0.0 40.0, 0.002032, 0.000886, 0.0 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() When varying parameter `xi`, the resulting density is negatively skewed (0.2), symmetric (1.0), and positively skewed (5.0), respectively: >>> test(xi=[0.2, 1.0, 5.0]) 10.0, 0.0, 0.000886, 0.003175 15.0, 0.0, 0.010798, 0.012957 20.0, 0.092845, 0.048394, 0.036341 25.0, 0.070063, 0.079788, 0.070063 30.0, 0.036341, 0.048394, 0.092845 35.0, 0.012957, 0.010798, 0.0 40.0, 0.003175, 0.000886, 0.0 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close() In the above examples, the actual `sigma` (5.0) is calculated by multiplying `sigma1` (0.2) with the mean simulated value (25.0), internally. This can be done for modelling homoscedastic errors. Instead, `sigma2` is multiplied with the individual simulated values to account for heteroscedastic errors. With increasing values of `sigma2`, the resulting densities are modified as follows: >>> test(sigma2=[0.0, 0.1, 0.2]) 10.0, 0.000886, 0.002921, 0.005737 15.0, 0.010798, 0.018795, 0.022831 20.0, 0.048394, 0.044159, 0.037988 25.0, 0.079788, 0.053192, 0.039894 30.0, 0.048394, 0.04102, 0.032708 35.0, 0.010798, 0.023493, 0.023493 40.0, 0.000886, 0.011053, 0.015771 .. testsetup:: >>> from matplotlib import pyplot >>> pyplot.close()
[ "Calculate", "the", "probability", "densities", "based", "on", "the", "heteroskedastic", "skewed", "exponential", "power", "distribution", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L279-L388
hydpy-dev/hydpy
hydpy/auxs/statstools.py
hsepd_manual
def hsepd_manual(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False): """Calculate the mean of the logarithmised probability densities of the 'heteroskedastic skewed exponential power distribution. The following examples are taken from the documentation of function |hsepd_pdf|, which is used by function |hsepd_manual|. The first one deals with a heteroscedastic normal distribution: >>> from hydpy import round_ >>> from hydpy import hsepd_manual >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.2, ... xi=1.0, beta=0.0, ... sim=numpy.arange(10.0, 41.0), ... obs=numpy.full(31, 25.0))) -3.682842 The second one is supposed to show to small zero probability density values are set to 1e-200 before calculating their logarithm (which means that the lowest possible value returned by function |hsepd_manual| is approximately -460): >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.0, ... xi=1.0, beta=-0.99, ... sim=numpy.arange(10.0, 41.0), ... obs=numpy.full(31, 25.0))) -209.539335 """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return _hsepd_manual(sigma1, sigma2, xi, beta, sim, obs)
python
def hsepd_manual(sigma1, sigma2, xi, beta, sim=None, obs=None, node=None, skip_nan=False): """Calculate the mean of the logarithmised probability densities of the 'heteroskedastic skewed exponential power distribution. The following examples are taken from the documentation of function |hsepd_pdf|, which is used by function |hsepd_manual|. The first one deals with a heteroscedastic normal distribution: >>> from hydpy import round_ >>> from hydpy import hsepd_manual >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.2, ... xi=1.0, beta=0.0, ... sim=numpy.arange(10.0, 41.0), ... obs=numpy.full(31, 25.0))) -3.682842 The second one is supposed to show to small zero probability density values are set to 1e-200 before calculating their logarithm (which means that the lowest possible value returned by function |hsepd_manual| is approximately -460): >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.0, ... xi=1.0, beta=-0.99, ... sim=numpy.arange(10.0, 41.0), ... obs=numpy.full(31, 25.0))) -209.539335 """ sim, obs = prepare_arrays(sim, obs, node, skip_nan) return _hsepd_manual(sigma1, sigma2, xi, beta, sim, obs)
[ "def", "hsepd_manual", "(", "sigma1", ",", "sigma2", ",", "xi", ",", "beta", ",", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "sim", ",", "obs", "=", "prepare_arrays", "(", "sim", ",", "obs", ",", "node", ",", "skip_nan", ")", "return", "_hsepd_manual", "(", "sigma1", ",", "sigma2", ",", "xi", ",", "beta", ",", "sim", ",", "obs", ")" ]
Calculate the mean of the logarithmised probability densities of the 'heteroskedastic skewed exponential power distribution. The following examples are taken from the documentation of function |hsepd_pdf|, which is used by function |hsepd_manual|. The first one deals with a heteroscedastic normal distribution: >>> from hydpy import round_ >>> from hydpy import hsepd_manual >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.2, ... xi=1.0, beta=0.0, ... sim=numpy.arange(10.0, 41.0), ... obs=numpy.full(31, 25.0))) -3.682842 The second one is supposed to show to small zero probability density values are set to 1e-200 before calculating their logarithm (which means that the lowest possible value returned by function |hsepd_manual| is approximately -460): >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.0, ... xi=1.0, beta=-0.99, ... sim=numpy.arange(10.0, 41.0), ... obs=numpy.full(31, 25.0))) -209.539335
[ "Calculate", "the", "mean", "of", "the", "logarithmised", "probability", "densities", "of", "the", "heteroskedastic", "skewed", "exponential", "power", "distribution", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L399-L428
hydpy-dev/hydpy
hydpy/auxs/statstools.py
hsepd
def hsepd(sim=None, obs=None, node=None, skip_nan=False, inits=None, return_pars=False, silent=True): """Calculate the mean of the logarithmised probability densities of the 'heteroskedastic skewed exponential power distribution. Function |hsepd| serves the same purpose as function |hsepd_manual|, but tries to estimate the parameters of the heteroscedastic skewed exponential distribution via an optimization algorithm. This is shown by generating a random sample. 1000 simulated values are scattered around the observed (true) value of 10.0 with a standard deviation of 2.0: >>> import numpy >>> numpy.random.seed(0) >>> sim = numpy.random.normal(10.0, 2.0, 1000) >>> obs = numpy.full(1000, 10.0) First, as a reference, we calculate the "true" value based on function |hsepd_manual| and the correct distribution parameters: >>> from hydpy import round_ >>> from hydpy import hsepd, hsepd_manual >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.0, ... xi=1.0, beta=0.0, ... sim=sim, obs=obs)) -2.100093 When using function |hsepd|, the returned value is even a little "better": >>> round_(hsepd(sim=sim, obs=obs)) -2.09983 This is due to the deviation from the random sample to its theoretical distribution. This is reflected by small differences between the estimated values and the theoretical values of `sigma1` (0.2), , `sigma2` (0.0), `xi` (1.0), and `beta` (0.0). The estimated values are returned in the mentioned order through enabling the `return_pars` option: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True) >>> round_(pars, decimals=5) 0.19966, 0.0, 0.96836, 0.0188 There is no guarantee that the optimization numerical optimization algorithm underlying function |hsepd| will always find the parameters resulting in the largest value returned by function |hsepd_manual|. You can increase its robustness (and decrease computation time) by supplying good initial parameter values: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True, ... inits=(0.2, 0.0, 1.0, 0.0)) >>> round_(pars, decimals=5) 0.19966, 0.0, 0.96836, 0.0188 However, the following example shows a case when this strategie results in worse results: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True, ... inits=(0.0, 0.2, 1.0, 0.0)) >>> round_(value) -2.174492 >>> round_(pars) 0.0, 0.213179, 1.705485, 0.505112 """ def transform(pars): """Transform the actual optimization problem into a function to be minimized and apply parameter constraints.""" sigma1, sigma2, xi, beta = constrain(*pars) return -_hsepd_manual(sigma1, sigma2, xi, beta, sim, obs) def constrain(sigma1, sigma2, xi, beta): """Apply constrains on the given parameter values.""" sigma1 = numpy.clip(sigma1, 0.0, None) sigma2 = numpy.clip(sigma2, 0.0, None) xi = numpy.clip(xi, 0.1, 10.0) beta = numpy.clip(beta, -0.99, 5.0) return sigma1, sigma2, xi, beta sim, obs = prepare_arrays(sim, obs, node, skip_nan) if not inits: inits = [0.1, 0.2, 3.0, 1.0] values = optimize.fmin(transform, inits, ftol=1e-12, xtol=1e-12, disp=not silent) values = constrain(*values) result = _hsepd_manual(*values, sim=sim, obs=obs) if return_pars: return result, values return result
python
def hsepd(sim=None, obs=None, node=None, skip_nan=False, inits=None, return_pars=False, silent=True): """Calculate the mean of the logarithmised probability densities of the 'heteroskedastic skewed exponential power distribution. Function |hsepd| serves the same purpose as function |hsepd_manual|, but tries to estimate the parameters of the heteroscedastic skewed exponential distribution via an optimization algorithm. This is shown by generating a random sample. 1000 simulated values are scattered around the observed (true) value of 10.0 with a standard deviation of 2.0: >>> import numpy >>> numpy.random.seed(0) >>> sim = numpy.random.normal(10.0, 2.0, 1000) >>> obs = numpy.full(1000, 10.0) First, as a reference, we calculate the "true" value based on function |hsepd_manual| and the correct distribution parameters: >>> from hydpy import round_ >>> from hydpy import hsepd, hsepd_manual >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.0, ... xi=1.0, beta=0.0, ... sim=sim, obs=obs)) -2.100093 When using function |hsepd|, the returned value is even a little "better": >>> round_(hsepd(sim=sim, obs=obs)) -2.09983 This is due to the deviation from the random sample to its theoretical distribution. This is reflected by small differences between the estimated values and the theoretical values of `sigma1` (0.2), , `sigma2` (0.0), `xi` (1.0), and `beta` (0.0). The estimated values are returned in the mentioned order through enabling the `return_pars` option: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True) >>> round_(pars, decimals=5) 0.19966, 0.0, 0.96836, 0.0188 There is no guarantee that the optimization numerical optimization algorithm underlying function |hsepd| will always find the parameters resulting in the largest value returned by function |hsepd_manual|. You can increase its robustness (and decrease computation time) by supplying good initial parameter values: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True, ... inits=(0.2, 0.0, 1.0, 0.0)) >>> round_(pars, decimals=5) 0.19966, 0.0, 0.96836, 0.0188 However, the following example shows a case when this strategie results in worse results: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True, ... inits=(0.0, 0.2, 1.0, 0.0)) >>> round_(value) -2.174492 >>> round_(pars) 0.0, 0.213179, 1.705485, 0.505112 """ def transform(pars): """Transform the actual optimization problem into a function to be minimized and apply parameter constraints.""" sigma1, sigma2, xi, beta = constrain(*pars) return -_hsepd_manual(sigma1, sigma2, xi, beta, sim, obs) def constrain(sigma1, sigma2, xi, beta): """Apply constrains on the given parameter values.""" sigma1 = numpy.clip(sigma1, 0.0, None) sigma2 = numpy.clip(sigma2, 0.0, None) xi = numpy.clip(xi, 0.1, 10.0) beta = numpy.clip(beta, -0.99, 5.0) return sigma1, sigma2, xi, beta sim, obs = prepare_arrays(sim, obs, node, skip_nan) if not inits: inits = [0.1, 0.2, 3.0, 1.0] values = optimize.fmin(transform, inits, ftol=1e-12, xtol=1e-12, disp=not silent) values = constrain(*values) result = _hsepd_manual(*values, sim=sim, obs=obs) if return_pars: return result, values return result
[ "def", "hsepd", "(", "sim", "=", "None", ",", "obs", "=", "None", ",", "node", "=", "None", ",", "skip_nan", "=", "False", ",", "inits", "=", "None", ",", "return_pars", "=", "False", ",", "silent", "=", "True", ")", ":", "def", "transform", "(", "pars", ")", ":", "\"\"\"Transform the actual optimization problem into a function to\n be minimized and apply parameter constraints.\"\"\"", "sigma1", ",", "sigma2", ",", "xi", ",", "beta", "=", "constrain", "(", "*", "pars", ")", "return", "-", "_hsepd_manual", "(", "sigma1", ",", "sigma2", ",", "xi", ",", "beta", ",", "sim", ",", "obs", ")", "def", "constrain", "(", "sigma1", ",", "sigma2", ",", "xi", ",", "beta", ")", ":", "\"\"\"Apply constrains on the given parameter values.\"\"\"", "sigma1", "=", "numpy", ".", "clip", "(", "sigma1", ",", "0.0", ",", "None", ")", "sigma2", "=", "numpy", ".", "clip", "(", "sigma2", ",", "0.0", ",", "None", ")", "xi", "=", "numpy", ".", "clip", "(", "xi", ",", "0.1", ",", "10.0", ")", "beta", "=", "numpy", ".", "clip", "(", "beta", ",", "-", "0.99", ",", "5.0", ")", "return", "sigma1", ",", "sigma2", ",", "xi", ",", "beta", "sim", ",", "obs", "=", "prepare_arrays", "(", "sim", ",", "obs", ",", "node", ",", "skip_nan", ")", "if", "not", "inits", ":", "inits", "=", "[", "0.1", ",", "0.2", ",", "3.0", ",", "1.0", "]", "values", "=", "optimize", ".", "fmin", "(", "transform", ",", "inits", ",", "ftol", "=", "1e-12", ",", "xtol", "=", "1e-12", ",", "disp", "=", "not", "silent", ")", "values", "=", "constrain", "(", "*", "values", ")", "result", "=", "_hsepd_manual", "(", "*", "values", ",", "sim", "=", "sim", ",", "obs", "=", "obs", ")", "if", "return_pars", ":", "return", "result", ",", "values", "return", "result" ]
Calculate the mean of the logarithmised probability densities of the 'heteroskedastic skewed exponential power distribution. Function |hsepd| serves the same purpose as function |hsepd_manual|, but tries to estimate the parameters of the heteroscedastic skewed exponential distribution via an optimization algorithm. This is shown by generating a random sample. 1000 simulated values are scattered around the observed (true) value of 10.0 with a standard deviation of 2.0: >>> import numpy >>> numpy.random.seed(0) >>> sim = numpy.random.normal(10.0, 2.0, 1000) >>> obs = numpy.full(1000, 10.0) First, as a reference, we calculate the "true" value based on function |hsepd_manual| and the correct distribution parameters: >>> from hydpy import round_ >>> from hydpy import hsepd, hsepd_manual >>> round_(hsepd_manual(sigma1=0.2, sigma2=0.0, ... xi=1.0, beta=0.0, ... sim=sim, obs=obs)) -2.100093 When using function |hsepd|, the returned value is even a little "better": >>> round_(hsepd(sim=sim, obs=obs)) -2.09983 This is due to the deviation from the random sample to its theoretical distribution. This is reflected by small differences between the estimated values and the theoretical values of `sigma1` (0.2), , `sigma2` (0.0), `xi` (1.0), and `beta` (0.0). The estimated values are returned in the mentioned order through enabling the `return_pars` option: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True) >>> round_(pars, decimals=5) 0.19966, 0.0, 0.96836, 0.0188 There is no guarantee that the optimization numerical optimization algorithm underlying function |hsepd| will always find the parameters resulting in the largest value returned by function |hsepd_manual|. You can increase its robustness (and decrease computation time) by supplying good initial parameter values: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True, ... inits=(0.2, 0.0, 1.0, 0.0)) >>> round_(pars, decimals=5) 0.19966, 0.0, 0.96836, 0.0188 However, the following example shows a case when this strategie results in worse results: >>> value, pars = hsepd(sim=sim, obs=obs, return_pars=True, ... inits=(0.0, 0.2, 1.0, 0.0)) >>> round_(value) -2.174492 >>> round_(pars) 0.0, 0.213179, 1.705485, 0.505112
[ "Calculate", "the", "mean", "of", "the", "logarithmised", "probability", "densities", "of", "the", "heteroskedastic", "skewed", "exponential", "power", "distribution", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L433-L523
hydpy-dev/hydpy
hydpy/auxs/statstools.py
calc_mean_time
def calc_mean_time(timepoints, weights): """Return the weighted mean of the given timepoints. With equal given weights, the result is simply the mean of the given time points: >>> from hydpy import calc_mean_time >>> calc_mean_time(timepoints=[3., 7.], ... weights=[2., 2.]) 5.0 With different weights, the resulting mean time is shifted to the larger ones: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[1., 3.]) 6.0 Or, in the most extreme case: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[0., 4.]) 7.0 There will be some checks for input plausibility perfomed, e.g.: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[-2., 2.]) Traceback (most recent call last): ... ValueError: While trying to calculate the weighted mean time, \ the following error occurred: For the following objects, at least \ one value is negative: weights. """ timepoints = numpy.array(timepoints) weights = numpy.array(weights) validtools.test_equal_shape(timepoints=timepoints, weights=weights) validtools.test_non_negative(weights=weights) return numpy.dot(timepoints, weights)/numpy.sum(weights)
python
def calc_mean_time(timepoints, weights): """Return the weighted mean of the given timepoints. With equal given weights, the result is simply the mean of the given time points: >>> from hydpy import calc_mean_time >>> calc_mean_time(timepoints=[3., 7.], ... weights=[2., 2.]) 5.0 With different weights, the resulting mean time is shifted to the larger ones: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[1., 3.]) 6.0 Or, in the most extreme case: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[0., 4.]) 7.0 There will be some checks for input plausibility perfomed, e.g.: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[-2., 2.]) Traceback (most recent call last): ... ValueError: While trying to calculate the weighted mean time, \ the following error occurred: For the following objects, at least \ one value is negative: weights. """ timepoints = numpy.array(timepoints) weights = numpy.array(weights) validtools.test_equal_shape(timepoints=timepoints, weights=weights) validtools.test_non_negative(weights=weights) return numpy.dot(timepoints, weights)/numpy.sum(weights)
[ "def", "calc_mean_time", "(", "timepoints", ",", "weights", ")", ":", "timepoints", "=", "numpy", ".", "array", "(", "timepoints", ")", "weights", "=", "numpy", ".", "array", "(", "weights", ")", "validtools", ".", "test_equal_shape", "(", "timepoints", "=", "timepoints", ",", "weights", "=", "weights", ")", "validtools", ".", "test_non_negative", "(", "weights", "=", "weights", ")", "return", "numpy", ".", "dot", "(", "timepoints", ",", "weights", ")", "/", "numpy", ".", "sum", "(", "weights", ")" ]
Return the weighted mean of the given timepoints. With equal given weights, the result is simply the mean of the given time points: >>> from hydpy import calc_mean_time >>> calc_mean_time(timepoints=[3., 7.], ... weights=[2., 2.]) 5.0 With different weights, the resulting mean time is shifted to the larger ones: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[1., 3.]) 6.0 Or, in the most extreme case: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[0., 4.]) 7.0 There will be some checks for input plausibility perfomed, e.g.: >>> calc_mean_time(timepoints=[3., 7.], ... weights=[-2., 2.]) Traceback (most recent call last): ... ValueError: While trying to calculate the weighted mean time, \ the following error occurred: For the following objects, at least \ one value is negative: weights.
[ "Return", "the", "weighted", "mean", "of", "the", "given", "timepoints", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L528-L566
hydpy-dev/hydpy
hydpy/auxs/statstools.py
calc_mean_time_deviation
def calc_mean_time_deviation(timepoints, weights, mean_time=None): """Return the weighted deviation of the given timepoints from their mean time. With equal given weights, the is simply the standard deviation of the given time points: >>> from hydpy import calc_mean_time_deviation >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[2., 2.]) 2.0 One can pass a precalculated or alternate mean time: >>> from hydpy import round_ >>> round_(calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[2., 2.], ... mean_time=4.)) 2.236068 >>> round_(calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[1., 3.])) 1.732051 Or, in the most extreme case: >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[0., 4.]) 0.0 There will be some checks for input plausibility perfomed, e.g.: >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[-2., 2.]) Traceback (most recent call last): ... ValueError: While trying to calculate the weighted time deviation \ from mean time, the following error occurred: For the following objects, \ at least one value is negative: weights. """ timepoints = numpy.array(timepoints) weights = numpy.array(weights) validtools.test_equal_shape(timepoints=timepoints, weights=weights) validtools.test_non_negative(weights=weights) if mean_time is None: mean_time = calc_mean_time(timepoints, weights) return (numpy.sqrt(numpy.dot(weights, (timepoints-mean_time)**2) / numpy.sum(weights)))
python
def calc_mean_time_deviation(timepoints, weights, mean_time=None): """Return the weighted deviation of the given timepoints from their mean time. With equal given weights, the is simply the standard deviation of the given time points: >>> from hydpy import calc_mean_time_deviation >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[2., 2.]) 2.0 One can pass a precalculated or alternate mean time: >>> from hydpy import round_ >>> round_(calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[2., 2.], ... mean_time=4.)) 2.236068 >>> round_(calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[1., 3.])) 1.732051 Or, in the most extreme case: >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[0., 4.]) 0.0 There will be some checks for input plausibility perfomed, e.g.: >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[-2., 2.]) Traceback (most recent call last): ... ValueError: While trying to calculate the weighted time deviation \ from mean time, the following error occurred: For the following objects, \ at least one value is negative: weights. """ timepoints = numpy.array(timepoints) weights = numpy.array(weights) validtools.test_equal_shape(timepoints=timepoints, weights=weights) validtools.test_non_negative(weights=weights) if mean_time is None: mean_time = calc_mean_time(timepoints, weights) return (numpy.sqrt(numpy.dot(weights, (timepoints-mean_time)**2) / numpy.sum(weights)))
[ "def", "calc_mean_time_deviation", "(", "timepoints", ",", "weights", ",", "mean_time", "=", "None", ")", ":", "timepoints", "=", "numpy", ".", "array", "(", "timepoints", ")", "weights", "=", "numpy", ".", "array", "(", "weights", ")", "validtools", ".", "test_equal_shape", "(", "timepoints", "=", "timepoints", ",", "weights", "=", "weights", ")", "validtools", ".", "test_non_negative", "(", "weights", "=", "weights", ")", "if", "mean_time", "is", "None", ":", "mean_time", "=", "calc_mean_time", "(", "timepoints", ",", "weights", ")", "return", "(", "numpy", ".", "sqrt", "(", "numpy", ".", "dot", "(", "weights", ",", "(", "timepoints", "-", "mean_time", ")", "**", "2", ")", "/", "numpy", ".", "sum", "(", "weights", ")", ")", ")" ]
Return the weighted deviation of the given timepoints from their mean time. With equal given weights, the is simply the standard deviation of the given time points: >>> from hydpy import calc_mean_time_deviation >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[2., 2.]) 2.0 One can pass a precalculated or alternate mean time: >>> from hydpy import round_ >>> round_(calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[2., 2.], ... mean_time=4.)) 2.236068 >>> round_(calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[1., 3.])) 1.732051 Or, in the most extreme case: >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[0., 4.]) 0.0 There will be some checks for input plausibility perfomed, e.g.: >>> calc_mean_time_deviation(timepoints=[3., 7.], ... weights=[-2., 2.]) Traceback (most recent call last): ... ValueError: While trying to calculate the weighted time deviation \ from mean time, the following error occurred: For the following objects, \ at least one value is negative: weights.
[ "Return", "the", "weighted", "deviation", "of", "the", "given", "timepoints", "from", "their", "mean", "time", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L571-L618
hydpy-dev/hydpy
hydpy/auxs/statstools.py
evaluationtable
def evaluationtable(nodes, criteria, nodenames=None, critnames=None, skip_nan=False): """Return a table containing the results of the given evaluation criteria for the given |Node| objects. First, we define two nodes with different simulation and observation data (see function |prepare_arrays| for some explanations): >>> from hydpy import pub, Node, nan >>> pub.timegrids = '01.01.2000', '04.01.2000', '1d' >>> nodes = Node('test1'), Node('test2') >>> for node in nodes: ... node.prepare_simseries() ... node.sequences.sim.series = 1.0, 2.0, 3.0 ... node.sequences.obs.ramflag = True ... node.sequences.obs.series = 4.0, 5.0, 6.0 >>> nodes[0].sequences.sim.series = 1.0, 2.0, 3.0 >>> nodes[0].sequences.obs.series = 4.0, 5.0, 6.0 >>> nodes[1].sequences.sim.series = 1.0, 2.0, 3.0 >>> with pub.options.checkseries(False): ... nodes[1].sequences.obs.series = 3.0, nan, 1.0 Selecting functions |corr| and |bias_abs| as evaluation criteria, function |evaluationtable| returns the following table (which is actually a pandas data frame): >>> from hydpy import evaluationtable, corr, bias_abs >>> evaluationtable(nodes, (corr, bias_abs)) corr bias_abs test1 1.0 -3.0 test2 NaN NaN One can pass alternative names for both the node objects and the criteria functions. Also, `nan` values can be skipped: >>> evaluationtable(nodes, (corr, bias_abs), ... nodenames=('first node', 'second node'), ... critnames=('corrcoef', 'bias'), ... skip_nan=True) corrcoef bias first node 1.0 -3.0 second node -1.0 0.0 The number of assigned node objects and criteria functions must match the number of givern alternative names: >>> evaluationtable(nodes, (corr, bias_abs), ... nodenames=('first node',)) Traceback (most recent call last): ... ValueError: While trying to evaluate the simulation results of some \ node objects, the following error occurred: 2 node objects are given \ which does not match with number of given alternative names beeing 1. >>> evaluationtable(nodes, (corr, bias_abs), ... critnames=('corrcoef',)) Traceback (most recent call last): ... ValueError: While trying to evaluate the simulation results of some \ node objects, the following error occurred: 2 criteria functions are given \ which does not match with number of given alternative names beeing 1. """ if nodenames: if len(nodes) != len(nodenames): raise ValueError( '%d node objects are given which does not match with ' 'number of given alternative names beeing %s.' % (len(nodes), len(nodenames))) else: nodenames = [node.name for node in nodes] if critnames: if len(criteria) != len(critnames): raise ValueError( '%d criteria functions are given which does not match ' 'with number of given alternative names beeing %s.' % (len(criteria), len(critnames))) else: critnames = [crit.__name__ for crit in criteria] data = numpy.empty((len(nodes), len(criteria)), dtype=float) for idx, node in enumerate(nodes): sim, obs = prepare_arrays(None, None, node, skip_nan) for jdx, criterion in enumerate(criteria): data[idx, jdx] = criterion(sim, obs) table = pandas.DataFrame( data=data, index=nodenames, columns=critnames) return table
python
def evaluationtable(nodes, criteria, nodenames=None, critnames=None, skip_nan=False): """Return a table containing the results of the given evaluation criteria for the given |Node| objects. First, we define two nodes with different simulation and observation data (see function |prepare_arrays| for some explanations): >>> from hydpy import pub, Node, nan >>> pub.timegrids = '01.01.2000', '04.01.2000', '1d' >>> nodes = Node('test1'), Node('test2') >>> for node in nodes: ... node.prepare_simseries() ... node.sequences.sim.series = 1.0, 2.0, 3.0 ... node.sequences.obs.ramflag = True ... node.sequences.obs.series = 4.0, 5.0, 6.0 >>> nodes[0].sequences.sim.series = 1.0, 2.0, 3.0 >>> nodes[0].sequences.obs.series = 4.0, 5.0, 6.0 >>> nodes[1].sequences.sim.series = 1.0, 2.0, 3.0 >>> with pub.options.checkseries(False): ... nodes[1].sequences.obs.series = 3.0, nan, 1.0 Selecting functions |corr| and |bias_abs| as evaluation criteria, function |evaluationtable| returns the following table (which is actually a pandas data frame): >>> from hydpy import evaluationtable, corr, bias_abs >>> evaluationtable(nodes, (corr, bias_abs)) corr bias_abs test1 1.0 -3.0 test2 NaN NaN One can pass alternative names for both the node objects and the criteria functions. Also, `nan` values can be skipped: >>> evaluationtable(nodes, (corr, bias_abs), ... nodenames=('first node', 'second node'), ... critnames=('corrcoef', 'bias'), ... skip_nan=True) corrcoef bias first node 1.0 -3.0 second node -1.0 0.0 The number of assigned node objects and criteria functions must match the number of givern alternative names: >>> evaluationtable(nodes, (corr, bias_abs), ... nodenames=('first node',)) Traceback (most recent call last): ... ValueError: While trying to evaluate the simulation results of some \ node objects, the following error occurred: 2 node objects are given \ which does not match with number of given alternative names beeing 1. >>> evaluationtable(nodes, (corr, bias_abs), ... critnames=('corrcoef',)) Traceback (most recent call last): ... ValueError: While trying to evaluate the simulation results of some \ node objects, the following error occurred: 2 criteria functions are given \ which does not match with number of given alternative names beeing 1. """ if nodenames: if len(nodes) != len(nodenames): raise ValueError( '%d node objects are given which does not match with ' 'number of given alternative names beeing %s.' % (len(nodes), len(nodenames))) else: nodenames = [node.name for node in nodes] if critnames: if len(criteria) != len(critnames): raise ValueError( '%d criteria functions are given which does not match ' 'with number of given alternative names beeing %s.' % (len(criteria), len(critnames))) else: critnames = [crit.__name__ for crit in criteria] data = numpy.empty((len(nodes), len(criteria)), dtype=float) for idx, node in enumerate(nodes): sim, obs = prepare_arrays(None, None, node, skip_nan) for jdx, criterion in enumerate(criteria): data[idx, jdx] = criterion(sim, obs) table = pandas.DataFrame( data=data, index=nodenames, columns=critnames) return table
[ "def", "evaluationtable", "(", "nodes", ",", "criteria", ",", "nodenames", "=", "None", ",", "critnames", "=", "None", ",", "skip_nan", "=", "False", ")", ":", "if", "nodenames", ":", "if", "len", "(", "nodes", ")", "!=", "len", "(", "nodenames", ")", ":", "raise", "ValueError", "(", "'%d node objects are given which does not match with '", "'number of given alternative names beeing %s.'", "%", "(", "len", "(", "nodes", ")", ",", "len", "(", "nodenames", ")", ")", ")", "else", ":", "nodenames", "=", "[", "node", ".", "name", "for", "node", "in", "nodes", "]", "if", "critnames", ":", "if", "len", "(", "criteria", ")", "!=", "len", "(", "critnames", ")", ":", "raise", "ValueError", "(", "'%d criteria functions are given which does not match '", "'with number of given alternative names beeing %s.'", "%", "(", "len", "(", "criteria", ")", ",", "len", "(", "critnames", ")", ")", ")", "else", ":", "critnames", "=", "[", "crit", ".", "__name__", "for", "crit", "in", "criteria", "]", "data", "=", "numpy", ".", "empty", "(", "(", "len", "(", "nodes", ")", ",", "len", "(", "criteria", ")", ")", ",", "dtype", "=", "float", ")", "for", "idx", ",", "node", "in", "enumerate", "(", "nodes", ")", ":", "sim", ",", "obs", "=", "prepare_arrays", "(", "None", ",", "None", ",", "node", ",", "skip_nan", ")", "for", "jdx", ",", "criterion", "in", "enumerate", "(", "criteria", ")", ":", "data", "[", "idx", ",", "jdx", "]", "=", "criterion", "(", "sim", ",", "obs", ")", "table", "=", "pandas", ".", "DataFrame", "(", "data", "=", "data", ",", "index", "=", "nodenames", ",", "columns", "=", "critnames", ")", "return", "table" ]
Return a table containing the results of the given evaluation criteria for the given |Node| objects. First, we define two nodes with different simulation and observation data (see function |prepare_arrays| for some explanations): >>> from hydpy import pub, Node, nan >>> pub.timegrids = '01.01.2000', '04.01.2000', '1d' >>> nodes = Node('test1'), Node('test2') >>> for node in nodes: ... node.prepare_simseries() ... node.sequences.sim.series = 1.0, 2.0, 3.0 ... node.sequences.obs.ramflag = True ... node.sequences.obs.series = 4.0, 5.0, 6.0 >>> nodes[0].sequences.sim.series = 1.0, 2.0, 3.0 >>> nodes[0].sequences.obs.series = 4.0, 5.0, 6.0 >>> nodes[1].sequences.sim.series = 1.0, 2.0, 3.0 >>> with pub.options.checkseries(False): ... nodes[1].sequences.obs.series = 3.0, nan, 1.0 Selecting functions |corr| and |bias_abs| as evaluation criteria, function |evaluationtable| returns the following table (which is actually a pandas data frame): >>> from hydpy import evaluationtable, corr, bias_abs >>> evaluationtable(nodes, (corr, bias_abs)) corr bias_abs test1 1.0 -3.0 test2 NaN NaN One can pass alternative names for both the node objects and the criteria functions. Also, `nan` values can be skipped: >>> evaluationtable(nodes, (corr, bias_abs), ... nodenames=('first node', 'second node'), ... critnames=('corrcoef', 'bias'), ... skip_nan=True) corrcoef bias first node 1.0 -3.0 second node -1.0 0.0 The number of assigned node objects and criteria functions must match the number of givern alternative names: >>> evaluationtable(nodes, (corr, bias_abs), ... nodenames=('first node',)) Traceback (most recent call last): ... ValueError: While trying to evaluate the simulation results of some \ node objects, the following error occurred: 2 node objects are given \ which does not match with number of given alternative names beeing 1. >>> evaluationtable(nodes, (corr, bias_abs), ... critnames=('corrcoef',)) Traceback (most recent call last): ... ValueError: While trying to evaluate the simulation results of some \ node objects, the following error occurred: 2 criteria functions are given \ which does not match with number of given alternative names beeing 1.
[ "Return", "a", "table", "containing", "the", "results", "of", "the", "given", "evaluation", "criteria", "for", "the", "given", "|Node|", "objects", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/statstools.py#L623-L708
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
IUH.set_primary_parameters
def set_primary_parameters(self, **kwargs): """Set all primary parameters at once.""" given = sorted(kwargs.keys()) required = sorted(self._PRIMARY_PARAMETERS) if given == required: for (key, value) in kwargs.items(): setattr(self, key, value) else: raise ValueError( 'When passing primary parameter values as initialization ' 'arguments of the instantaneous unit hydrograph class `%s`, ' 'or when using method `set_primary_parameters, one has to ' 'to define all values at once via keyword arguments. ' 'But instead of the primary parameter names `%s` the ' 'following keywords were given: %s.' % (objecttools.classname(self), ', '.join(required), ', '.join(given)))
python
def set_primary_parameters(self, **kwargs): """Set all primary parameters at once.""" given = sorted(kwargs.keys()) required = sorted(self._PRIMARY_PARAMETERS) if given == required: for (key, value) in kwargs.items(): setattr(self, key, value) else: raise ValueError( 'When passing primary parameter values as initialization ' 'arguments of the instantaneous unit hydrograph class `%s`, ' 'or when using method `set_primary_parameters, one has to ' 'to define all values at once via keyword arguments. ' 'But instead of the primary parameter names `%s` the ' 'following keywords were given: %s.' % (objecttools.classname(self), ', '.join(required), ', '.join(given)))
[ "def", "set_primary_parameters", "(", "self", ",", "*", "*", "kwargs", ")", ":", "given", "=", "sorted", "(", "kwargs", ".", "keys", "(", ")", ")", "required", "=", "sorted", "(", "self", ".", "_PRIMARY_PARAMETERS", ")", "if", "given", "==", "required", ":", "for", "(", "key", ",", "value", ")", "in", "kwargs", ".", "items", "(", ")", ":", "setattr", "(", "self", ",", "key", ",", "value", ")", "else", ":", "raise", "ValueError", "(", "'When passing primary parameter values as initialization '", "'arguments of the instantaneous unit hydrograph class `%s`, '", "'or when using method `set_primary_parameters, one has to '", "'to define all values at once via keyword arguments. '", "'But instead of the primary parameter names `%s` the '", "'following keywords were given: %s.'", "%", "(", "objecttools", ".", "classname", "(", "self", ")", ",", "', '", ".", "join", "(", "required", ")", ",", "', '", ".", "join", "(", "given", ")", ")", ")" ]
Set all primary parameters at once.
[ "Set", "all", "primary", "parameters", "at", "once", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L148-L164
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
IUH.primary_parameters_complete
def primary_parameters_complete(self): """True/False flag that indicates wheter the values of all primary parameters are defined or not.""" for primpar in self._PRIMARY_PARAMETERS.values(): if primpar.__get__(self) is None: return False return True
python
def primary_parameters_complete(self): """True/False flag that indicates wheter the values of all primary parameters are defined or not.""" for primpar in self._PRIMARY_PARAMETERS.values(): if primpar.__get__(self) is None: return False return True
[ "def", "primary_parameters_complete", "(", "self", ")", ":", "for", "primpar", "in", "self", ".", "_PRIMARY_PARAMETERS", ".", "values", "(", ")", ":", "if", "primpar", ".", "__get__", "(", "self", ")", "is", "None", ":", "return", "False", "return", "True" ]
True/False flag that indicates wheter the values of all primary parameters are defined or not.
[ "True", "/", "False", "flag", "that", "indicates", "wheter", "the", "values", "of", "all", "primary", "parameters", "are", "defined", "or", "not", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L167-L173
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
IUH.update
def update(self): """Delete the coefficients of the pure MA model and also all MA and AR coefficients of the ARMA model. Also calculate or delete the values of all secondary iuh parameters, depending on the completeness of the values of the primary parameters. """ del self.ma.coefs del self.arma.ma_coefs del self.arma.ar_coefs if self.primary_parameters_complete: self.calc_secondary_parameters() else: for secpar in self._SECONDARY_PARAMETERS.values(): secpar.__delete__(self)
python
def update(self): """Delete the coefficients of the pure MA model and also all MA and AR coefficients of the ARMA model. Also calculate or delete the values of all secondary iuh parameters, depending on the completeness of the values of the primary parameters. """ del self.ma.coefs del self.arma.ma_coefs del self.arma.ar_coefs if self.primary_parameters_complete: self.calc_secondary_parameters() else: for secpar in self._SECONDARY_PARAMETERS.values(): secpar.__delete__(self)
[ "def", "update", "(", "self", ")", ":", "del", "self", ".", "ma", ".", "coefs", "del", "self", ".", "arma", ".", "ma_coefs", "del", "self", ".", "arma", ".", "ar_coefs", "if", "self", ".", "primary_parameters_complete", ":", "self", ".", "calc_secondary_parameters", "(", ")", "else", ":", "for", "secpar", "in", "self", ".", "_SECONDARY_PARAMETERS", ".", "values", "(", ")", ":", "secpar", ".", "__delete__", "(", "self", ")" ]
Delete the coefficients of the pure MA model and also all MA and AR coefficients of the ARMA model. Also calculate or delete the values of all secondary iuh parameters, depending on the completeness of the values of the primary parameters.
[ "Delete", "the", "coefficients", "of", "the", "pure", "MA", "model", "and", "also", "all", "MA", "and", "AR", "coefficients", "of", "the", "ARMA", "model", ".", "Also", "calculate", "or", "delete", "the", "values", "of", "all", "secondary", "iuh", "parameters", "depending", "on", "the", "completeness", "of", "the", "values", "of", "the", "primary", "parameters", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L179-L192
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
IUH.delay_response_series
def delay_response_series(self): """A tuple of two numpy arrays, which hold the time delays and the associated iuh values respectively.""" delays = [] responses = [] sum_responses = 0. for t in itertools.count(self.dt_response/2., self.dt_response): delays.append(t) response = self(t) responses.append(response) sum_responses += self.dt_response*response if (sum_responses > .9) and (response < self.smallest_response): break return numpy.array(delays), numpy.array(responses)
python
def delay_response_series(self): """A tuple of two numpy arrays, which hold the time delays and the associated iuh values respectively.""" delays = [] responses = [] sum_responses = 0. for t in itertools.count(self.dt_response/2., self.dt_response): delays.append(t) response = self(t) responses.append(response) sum_responses += self.dt_response*response if (sum_responses > .9) and (response < self.smallest_response): break return numpy.array(delays), numpy.array(responses)
[ "def", "delay_response_series", "(", "self", ")", ":", "delays", "=", "[", "]", "responses", "=", "[", "]", "sum_responses", "=", "0.", "for", "t", "in", "itertools", ".", "count", "(", "self", ".", "dt_response", "/", "2.", ",", "self", ".", "dt_response", ")", ":", "delays", ".", "append", "(", "t", ")", "response", "=", "self", "(", "t", ")", "responses", ".", "append", "(", "response", ")", "sum_responses", "+=", "self", ".", "dt_response", "*", "response", "if", "(", "sum_responses", ">", ".9", ")", "and", "(", "response", "<", "self", ".", "smallest_response", ")", ":", "break", "return", "numpy", ".", "array", "(", "delays", ")", ",", "numpy", ".", "array", "(", "responses", ")" ]
A tuple of two numpy arrays, which hold the time delays and the associated iuh values respectively.
[ "A", "tuple", "of", "two", "numpy", "arrays", "which", "hold", "the", "time", "delays", "and", "the", "associated", "iuh", "values", "respectively", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L195-L208
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
IUH.plot
def plot(self, threshold=None, **kwargs): """Plot the instanteneous unit hydrograph. The optional argument allows for defining a threshold of the cumulative sum uf the hydrograph, used to adjust the largest value of the x-axis. It must be a value between zero and one. """ delays, responses = self.delay_response_series pyplot.plot(delays, responses, **kwargs) pyplot.xlabel('time') pyplot.ylabel('response') if threshold is not None: threshold = numpy.clip(threshold, 0., 1.) cumsum = numpy.cumsum(responses) idx = numpy.where(cumsum >= threshold*cumsum[-1])[0][0] pyplot.xlim(0., delays[idx])
python
def plot(self, threshold=None, **kwargs): """Plot the instanteneous unit hydrograph. The optional argument allows for defining a threshold of the cumulative sum uf the hydrograph, used to adjust the largest value of the x-axis. It must be a value between zero and one. """ delays, responses = self.delay_response_series pyplot.plot(delays, responses, **kwargs) pyplot.xlabel('time') pyplot.ylabel('response') if threshold is not None: threshold = numpy.clip(threshold, 0., 1.) cumsum = numpy.cumsum(responses) idx = numpy.where(cumsum >= threshold*cumsum[-1])[0][0] pyplot.xlim(0., delays[idx])
[ "def", "plot", "(", "self", ",", "threshold", "=", "None", ",", "*", "*", "kwargs", ")", ":", "delays", ",", "responses", "=", "self", ".", "delay_response_series", "pyplot", ".", "plot", "(", "delays", ",", "responses", ",", "*", "*", "kwargs", ")", "pyplot", ".", "xlabel", "(", "'time'", ")", "pyplot", ".", "ylabel", "(", "'response'", ")", "if", "threshold", "is", "not", "None", ":", "threshold", "=", "numpy", ".", "clip", "(", "threshold", ",", "0.", ",", "1.", ")", "cumsum", "=", "numpy", ".", "cumsum", "(", "responses", ")", "idx", "=", "numpy", ".", "where", "(", "cumsum", ">=", "threshold", "*", "cumsum", "[", "-", "1", "]", ")", "[", "0", "]", "[", "0", "]", "pyplot", ".", "xlim", "(", "0.", ",", "delays", "[", "idx", "]", ")" ]
Plot the instanteneous unit hydrograph. The optional argument allows for defining a threshold of the cumulative sum uf the hydrograph, used to adjust the largest value of the x-axis. It must be a value between zero and one.
[ "Plot", "the", "instanteneous", "unit", "hydrograph", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L210-L225
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
IUH.moment1
def moment1(self): """The first time delay weighted statistical moment of the instantaneous unit hydrograph.""" delays, response = self.delay_response_series return statstools.calc_mean_time(delays, response)
python
def moment1(self): """The first time delay weighted statistical moment of the instantaneous unit hydrograph.""" delays, response = self.delay_response_series return statstools.calc_mean_time(delays, response)
[ "def", "moment1", "(", "self", ")", ":", "delays", ",", "response", "=", "self", ".", "delay_response_series", "return", "statstools", ".", "calc_mean_time", "(", "delays", ",", "response", ")" ]
The first time delay weighted statistical moment of the instantaneous unit hydrograph.
[ "The", "first", "time", "delay", "weighted", "statistical", "moment", "of", "the", "instantaneous", "unit", "hydrograph", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L228-L232
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
IUH.moment2
def moment2(self): """The second time delay weighted statistical momens of the instantaneous unit hydrograph.""" moment1 = self.moment1 delays, response = self.delay_response_series return statstools.calc_mean_time_deviation( delays, response, moment1)
python
def moment2(self): """The second time delay weighted statistical momens of the instantaneous unit hydrograph.""" moment1 = self.moment1 delays, response = self.delay_response_series return statstools.calc_mean_time_deviation( delays, response, moment1)
[ "def", "moment2", "(", "self", ")", ":", "moment1", "=", "self", ".", "moment1", "delays", ",", "response", "=", "self", ".", "delay_response_series", "return", "statstools", ".", "calc_mean_time_deviation", "(", "delays", ",", "response", ",", "moment1", ")" ]
The second time delay weighted statistical momens of the instantaneous unit hydrograph.
[ "The", "second", "time", "delay", "weighted", "statistical", "momens", "of", "the", "instantaneous", "unit", "hydrograph", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L235-L241
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
TranslationDiffusionEquation.calc_secondary_parameters
def calc_secondary_parameters(self): """Determine the values of the secondary parameters `a` and `b`.""" self.a = self.x/(2.*self.d**.5) self.b = self.u/(2.*self.d**.5)
python
def calc_secondary_parameters(self): """Determine the values of the secondary parameters `a` and `b`.""" self.a = self.x/(2.*self.d**.5) self.b = self.u/(2.*self.d**.5)
[ "def", "calc_secondary_parameters", "(", "self", ")", ":", "self", ".", "a", "=", "self", ".", "x", "/", "(", "2.", "*", "self", ".", "d", "**", ".5", ")", "self", ".", "b", "=", "self", ".", "u", "/", "(", "2.", "*", "self", ".", "d", "**", ".5", ")" ]
Determine the values of the secondary parameters `a` and `b`.
[ "Determine", "the", "values", "of", "the", "secondary", "parameters", "a", "and", "b", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L402-L405
hydpy-dev/hydpy
hydpy/auxs/iuhtools.py
LinearStorageCascade.calc_secondary_parameters
def calc_secondary_parameters(self): """Determine the value of the secondary parameter `c`.""" self.c = 1./(self.k*special.gamma(self.n))
python
def calc_secondary_parameters(self): """Determine the value of the secondary parameter `c`.""" self.c = 1./(self.k*special.gamma(self.n))
[ "def", "calc_secondary_parameters", "(", "self", ")", ":", "self", ".", "c", "=", "1.", "/", "(", "self", ".", "k", "*", "special", ".", "gamma", "(", "self", ".", "n", ")", ")" ]
Determine the value of the secondary parameter `c`.
[ "Determine", "the", "value", "of", "the", "secondary", "parameter", "c", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/iuhtools.py#L449-L451
hydpy-dev/hydpy
hydpy/models/lland/lland_states.py
WATS.trim
def trim(self, lower=None, upper=None): """Trim values in accordance with :math:`WAeS \\leq PWMax \\cdot WATS`, or at least in accordance with if :math:`WATS \\geq 0`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(7) >>> pwmax(2.0) >>> states.waes = -1., 0., 1., -1., 5., 10., 20. >>> states.wats(-1., 0., 0., 5., 5., 5., 5.) >>> states.wats wats(0.0, 0.0, 0.5, 5.0, 5.0, 5.0, 10.0) """ pwmax = self.subseqs.seqs.model.parameters.control.pwmax waes = self.subseqs.waes if lower is None: lower = numpy.clip(waes/pwmax, 0., numpy.inf) lower[numpy.isnan(lower)] = 0.0 lland_sequences.State1DSequence.trim(self, lower, upper)
python
def trim(self, lower=None, upper=None): """Trim values in accordance with :math:`WAeS \\leq PWMax \\cdot WATS`, or at least in accordance with if :math:`WATS \\geq 0`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(7) >>> pwmax(2.0) >>> states.waes = -1., 0., 1., -1., 5., 10., 20. >>> states.wats(-1., 0., 0., 5., 5., 5., 5.) >>> states.wats wats(0.0, 0.0, 0.5, 5.0, 5.0, 5.0, 10.0) """ pwmax = self.subseqs.seqs.model.parameters.control.pwmax waes = self.subseqs.waes if lower is None: lower = numpy.clip(waes/pwmax, 0., numpy.inf) lower[numpy.isnan(lower)] = 0.0 lland_sequences.State1DSequence.trim(self, lower, upper)
[ "def", "trim", "(", "self", ",", "lower", "=", "None", ",", "upper", "=", "None", ")", ":", "pwmax", "=", "self", ".", "subseqs", ".", "seqs", ".", "model", ".", "parameters", ".", "control", ".", "pwmax", "waes", "=", "self", ".", "subseqs", ".", "waes", "if", "lower", "is", "None", ":", "lower", "=", "numpy", ".", "clip", "(", "waes", "/", "pwmax", ",", "0.", ",", "numpy", ".", "inf", ")", "lower", "[", "numpy", ".", "isnan", "(", "lower", ")", "]", "=", "0.0", "lland_sequences", ".", "State1DSequence", ".", "trim", "(", "self", ",", "lower", ",", "upper", ")" ]
Trim values in accordance with :math:`WAeS \\leq PWMax \\cdot WATS`, or at least in accordance with if :math:`WATS \\geq 0`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(7) >>> pwmax(2.0) >>> states.waes = -1., 0., 1., -1., 5., 10., 20. >>> states.wats(-1., 0., 0., 5., 5., 5., 5.) >>> states.wats wats(0.0, 0.0, 0.5, 5.0, 5.0, 5.0, 10.0)
[ "Trim", "values", "in", "accordance", "with", ":", "math", ":", "WAeS", "\\\\", "leq", "PWMax", "\\\\", "cdot", "WATS", "or", "at", "least", "in", "accordance", "with", "if", ":", "math", ":", "WATS", "\\\\", "geq", "0", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/lland/lland_states.py#L37-L55
hydpy-dev/hydpy
hydpy/models/lland/lland_states.py
WAeS.trim
def trim(self, lower=None, upper=None): """Trim values in accordance with :math:`WAeS \\leq PWMax \\cdot WATS`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(7) >>> pwmax(2.) >>> states.wats = 0., 0., 0., 5., 5., 5., 5. >>> states.waes(-1., 0., 1., -1., 5., 10., 20.) >>> states.waes waes(0.0, 0.0, 0.0, 0.0, 5.0, 10.0, 10.0) """ pwmax = self.subseqs.seqs.model.parameters.control.pwmax wats = self.subseqs.wats if upper is None: upper = pwmax*wats lland_sequences.State1DSequence.trim(self, lower, upper)
python
def trim(self, lower=None, upper=None): """Trim values in accordance with :math:`WAeS \\leq PWMax \\cdot WATS`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(7) >>> pwmax(2.) >>> states.wats = 0., 0., 0., 5., 5., 5., 5. >>> states.waes(-1., 0., 1., -1., 5., 10., 20.) >>> states.waes waes(0.0, 0.0, 0.0, 0.0, 5.0, 10.0, 10.0) """ pwmax = self.subseqs.seqs.model.parameters.control.pwmax wats = self.subseqs.wats if upper is None: upper = pwmax*wats lland_sequences.State1DSequence.trim(self, lower, upper)
[ "def", "trim", "(", "self", ",", "lower", "=", "None", ",", "upper", "=", "None", ")", ":", "pwmax", "=", "self", ".", "subseqs", ".", "seqs", ".", "model", ".", "parameters", ".", "control", ".", "pwmax", "wats", "=", "self", ".", "subseqs", ".", "wats", "if", "upper", "is", "None", ":", "upper", "=", "pwmax", "*", "wats", "lland_sequences", ".", "State1DSequence", ".", "trim", "(", "self", ",", "lower", ",", "upper", ")" ]
Trim values in accordance with :math:`WAeS \\leq PWMax \\cdot WATS`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(7) >>> pwmax(2.) >>> states.wats = 0., 0., 0., 5., 5., 5., 5. >>> states.waes(-1., 0., 1., -1., 5., 10., 20.) >>> states.waes waes(0.0, 0.0, 0.0, 0.0, 5.0, 10.0, 10.0)
[ "Trim", "values", "in", "accordance", "with", ":", "math", ":", "WAeS", "\\\\", "leq", "PWMax", "\\\\", "cdot", "WATS", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/lland/lland_states.py#L64-L80
hydpy-dev/hydpy
hydpy/models/lland/lland_states.py
BoWa.trim
def trim(self, lower=None, upper=None): """Trim values in accordance with :math:`BoWa \\leq NFk`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(5) >>> nfk(200.) >>> states.bowa(-100.,0., 100., 200., 300.) >>> states.bowa bowa(0.0, 0.0, 100.0, 200.0, 200.0) """ if upper is None: upper = self.subseqs.seqs.model.parameters.control.nfk lland_sequences.State1DSequence.trim(self, lower, upper)
python
def trim(self, lower=None, upper=None): """Trim values in accordance with :math:`BoWa \\leq NFk`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(5) >>> nfk(200.) >>> states.bowa(-100.,0., 100., 200., 300.) >>> states.bowa bowa(0.0, 0.0, 100.0, 200.0, 200.0) """ if upper is None: upper = self.subseqs.seqs.model.parameters.control.nfk lland_sequences.State1DSequence.trim(self, lower, upper)
[ "def", "trim", "(", "self", ",", "lower", "=", "None", ",", "upper", "=", "None", ")", ":", "if", "upper", "is", "None", ":", "upper", "=", "self", ".", "subseqs", ".", "seqs", ".", "model", ".", "parameters", ".", "control", ".", "nfk", "lland_sequences", ".", "State1DSequence", ".", "trim", "(", "self", ",", "lower", ",", "upper", ")" ]
Trim values in accordance with :math:`BoWa \\leq NFk`. >>> from hydpy.models.lland import * >>> parameterstep('1d') >>> nhru(5) >>> nfk(200.) >>> states.bowa(-100.,0., 100., 200., 300.) >>> states.bowa bowa(0.0, 0.0, 100.0, 200.0, 200.0)
[ "Trim", "values", "in", "accordance", "with", ":", "math", ":", "BoWa", "\\\\", "leq", "NFk", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/lland/lland_states.py#L88-L101
arteria/django-openinghours
openinghours/views_edit.py
OpeningHoursEditView.post
def post(self, request, pk): """ Clean the data and save opening hours in the database. Old opening hours are purged before new ones are saved. """ location = self.get_object() # open days, disabled widget data won't make it into request.POST present_prefixes = [x.split('-')[0] for x in request.POST.keys()] day_forms = OrderedDict() for day_no, day_name in WEEKDAYS: for slot_no in (1, 2): prefix = self.form_prefix(day_no, slot_no) # skip closed day as it would be invalid form due to no data if prefix not in present_prefixes: continue day_forms[prefix] = (day_no, Slot(request.POST, prefix=prefix)) if all([day_form[1].is_valid() for pre, day_form in day_forms.items()]): OpeningHours.objects.filter(company=location).delete() for prefix, day_form in day_forms.items(): day, form = day_form opens, shuts = [str_to_time(form.cleaned_data[x]) for x in ('opens', 'shuts')] if opens != shuts: OpeningHours(from_hour=opens, to_hour=shuts, company=location, weekday=day).save() return redirect(request.path_info)
python
def post(self, request, pk): """ Clean the data and save opening hours in the database. Old opening hours are purged before new ones are saved. """ location = self.get_object() # open days, disabled widget data won't make it into request.POST present_prefixes = [x.split('-')[0] for x in request.POST.keys()] day_forms = OrderedDict() for day_no, day_name in WEEKDAYS: for slot_no in (1, 2): prefix = self.form_prefix(day_no, slot_no) # skip closed day as it would be invalid form due to no data if prefix not in present_prefixes: continue day_forms[prefix] = (day_no, Slot(request.POST, prefix=prefix)) if all([day_form[1].is_valid() for pre, day_form in day_forms.items()]): OpeningHours.objects.filter(company=location).delete() for prefix, day_form in day_forms.items(): day, form = day_form opens, shuts = [str_to_time(form.cleaned_data[x]) for x in ('opens', 'shuts')] if opens != shuts: OpeningHours(from_hour=opens, to_hour=shuts, company=location, weekday=day).save() return redirect(request.path_info)
[ "def", "post", "(", "self", ",", "request", ",", "pk", ")", ":", "location", "=", "self", ".", "get_object", "(", ")", "# open days, disabled widget data won't make it into request.POST", "present_prefixes", "=", "[", "x", ".", "split", "(", "'-'", ")", "[", "0", "]", "for", "x", "in", "request", ".", "POST", ".", "keys", "(", ")", "]", "day_forms", "=", "OrderedDict", "(", ")", "for", "day_no", ",", "day_name", "in", "WEEKDAYS", ":", "for", "slot_no", "in", "(", "1", ",", "2", ")", ":", "prefix", "=", "self", ".", "form_prefix", "(", "day_no", ",", "slot_no", ")", "# skip closed day as it would be invalid form due to no data", "if", "prefix", "not", "in", "present_prefixes", ":", "continue", "day_forms", "[", "prefix", "]", "=", "(", "day_no", ",", "Slot", "(", "request", ".", "POST", ",", "prefix", "=", "prefix", ")", ")", "if", "all", "(", "[", "day_form", "[", "1", "]", ".", "is_valid", "(", ")", "for", "pre", ",", "day_form", "in", "day_forms", ".", "items", "(", ")", "]", ")", ":", "OpeningHours", ".", "objects", ".", "filter", "(", "company", "=", "location", ")", ".", "delete", "(", ")", "for", "prefix", ",", "day_form", "in", "day_forms", ".", "items", "(", ")", ":", "day", ",", "form", "=", "day_form", "opens", ",", "shuts", "=", "[", "str_to_time", "(", "form", ".", "cleaned_data", "[", "x", "]", ")", "for", "x", "in", "(", "'opens'", ",", "'shuts'", ")", "]", "if", "opens", "!=", "shuts", ":", "OpeningHours", "(", "from_hour", "=", "opens", ",", "to_hour", "=", "shuts", ",", "company", "=", "location", ",", "weekday", "=", "day", ")", ".", "save", "(", ")", "return", "redirect", "(", "request", ".", "path_info", ")" ]
Clean the data and save opening hours in the database. Old opening hours are purged before new ones are saved.
[ "Clean", "the", "data", "and", "save", "opening", "hours", "in", "the", "database", ".", "Old", "opening", "hours", "are", "purged", "before", "new", "ones", "are", "saved", "." ]
train
https://github.com/arteria/django-openinghours/blob/6bad47509a14d65a3a5a08777455f4cc8b4961fa/openinghours/views_edit.py#L28-L53
arteria/django-openinghours
openinghours/views_edit.py
OpeningHoursEditView.get
def get(self, request, pk): """ Initialize the editing form 1. Build opening_hours, a lookup dictionary to populate the form slots: keys are day numbers, values are lists of opening hours for that day. 2. Build days, a list of days with 2 slot forms each. 3. Build form initials for the 2 slots padding/trimming opening_hours to end up with exactly 2 slots even if it's just None values. """ location = self.get_object() two_sets = False closed = None opening_hours = {} for o in OpeningHours.objects.filter(company=location): opening_hours.setdefault(o.weekday, []).append(o) days = [] for day_no, day_name in WEEKDAYS: if day_no not in opening_hours.keys(): if opening_hours: closed = True ini1, ini2 = [None, None] else: closed = False ini = [{'opens': time_to_str(oh.from_hour), 'shuts': time_to_str(oh.to_hour)} for oh in opening_hours[day_no]] ini += [None] * (2 - len(ini[:2])) # pad ini1, ini2 = ini[:2] # trim if ini2: two_sets = True days.append({ 'name': day_name, 'number': day_no, 'slot1': Slot(prefix=self.form_prefix(day_no, 1), initial=ini1), 'slot2': Slot(prefix=self.form_prefix(day_no, 2), initial=ini2), 'closed': closed }) return render(request, self.template_name, { 'days': days, 'two_sets': two_sets, 'location': location, })
python
def get(self, request, pk): """ Initialize the editing form 1. Build opening_hours, a lookup dictionary to populate the form slots: keys are day numbers, values are lists of opening hours for that day. 2. Build days, a list of days with 2 slot forms each. 3. Build form initials for the 2 slots padding/trimming opening_hours to end up with exactly 2 slots even if it's just None values. """ location = self.get_object() two_sets = False closed = None opening_hours = {} for o in OpeningHours.objects.filter(company=location): opening_hours.setdefault(o.weekday, []).append(o) days = [] for day_no, day_name in WEEKDAYS: if day_no not in opening_hours.keys(): if opening_hours: closed = True ini1, ini2 = [None, None] else: closed = False ini = [{'opens': time_to_str(oh.from_hour), 'shuts': time_to_str(oh.to_hour)} for oh in opening_hours[day_no]] ini += [None] * (2 - len(ini[:2])) # pad ini1, ini2 = ini[:2] # trim if ini2: two_sets = True days.append({ 'name': day_name, 'number': day_no, 'slot1': Slot(prefix=self.form_prefix(day_no, 1), initial=ini1), 'slot2': Slot(prefix=self.form_prefix(day_no, 2), initial=ini2), 'closed': closed }) return render(request, self.template_name, { 'days': days, 'two_sets': two_sets, 'location': location, })
[ "def", "get", "(", "self", ",", "request", ",", "pk", ")", ":", "location", "=", "self", ".", "get_object", "(", ")", "two_sets", "=", "False", "closed", "=", "None", "opening_hours", "=", "{", "}", "for", "o", "in", "OpeningHours", ".", "objects", ".", "filter", "(", "company", "=", "location", ")", ":", "opening_hours", ".", "setdefault", "(", "o", ".", "weekday", ",", "[", "]", ")", ".", "append", "(", "o", ")", "days", "=", "[", "]", "for", "day_no", ",", "day_name", "in", "WEEKDAYS", ":", "if", "day_no", "not", "in", "opening_hours", ".", "keys", "(", ")", ":", "if", "opening_hours", ":", "closed", "=", "True", "ini1", ",", "ini2", "=", "[", "None", ",", "None", "]", "else", ":", "closed", "=", "False", "ini", "=", "[", "{", "'opens'", ":", "time_to_str", "(", "oh", ".", "from_hour", ")", ",", "'shuts'", ":", "time_to_str", "(", "oh", ".", "to_hour", ")", "}", "for", "oh", "in", "opening_hours", "[", "day_no", "]", "]", "ini", "+=", "[", "None", "]", "*", "(", "2", "-", "len", "(", "ini", "[", ":", "2", "]", ")", ")", "# pad", "ini1", ",", "ini2", "=", "ini", "[", ":", "2", "]", "# trim", "if", "ini2", ":", "two_sets", "=", "True", "days", ".", "append", "(", "{", "'name'", ":", "day_name", ",", "'number'", ":", "day_no", ",", "'slot1'", ":", "Slot", "(", "prefix", "=", "self", ".", "form_prefix", "(", "day_no", ",", "1", ")", ",", "initial", "=", "ini1", ")", ",", "'slot2'", ":", "Slot", "(", "prefix", "=", "self", ".", "form_prefix", "(", "day_no", ",", "2", ")", ",", "initial", "=", "ini2", ")", ",", "'closed'", ":", "closed", "}", ")", "return", "render", "(", "request", ",", "self", ".", "template_name", ",", "{", "'days'", ":", "days", ",", "'two_sets'", ":", "two_sets", ",", "'location'", ":", "location", ",", "}", ")" ]
Initialize the editing form 1. Build opening_hours, a lookup dictionary to populate the form slots: keys are day numbers, values are lists of opening hours for that day. 2. Build days, a list of days with 2 slot forms each. 3. Build form initials for the 2 slots padding/trimming opening_hours to end up with exactly 2 slots even if it's just None values.
[ "Initialize", "the", "editing", "form" ]
train
https://github.com/arteria/django-openinghours/blob/6bad47509a14d65a3a5a08777455f4cc8b4961fa/openinghours/views_edit.py#L55-L98
hydpy-dev/hydpy
hydpy/models/hstream/hstream_model.py
calc_qjoints_v1
def calc_qjoints_v1(self): """Apply the routing equation. Required derived parameters: |NmbSegments| |C1| |C2| |C3| Updated state sequence: |QJoints| Basic equation: :math:`Q_{space+1,time+1} = c1 \\cdot Q_{space,time+1} + c2 \\cdot Q_{space,time} + c3 \\cdot Q_{space+1,time}` Examples: Firstly, define a reach divided into four segments: >>> from hydpy.models.hstream import * >>> parameterstep('1d') >>> derived.nmbsegments(4) >>> states.qjoints.shape = 5 Zero damping is achieved through the following coefficients: >>> derived.c1(0.0) >>> derived.c2(1.0) >>> derived.c3(0.0) For initialization, assume a base flow of 2m³/s: >>> states.qjoints.old = 2.0 >>> states.qjoints.new = 2.0 Through successive assignements of different discharge values to the upper junction one can see that these discharge values are simply shifted from each junction to the respective lower junction at each time step: >>> states.qjoints[0] = 5.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(5.0, 2.0, 2.0, 2.0, 2.0) >>> states.qjoints[0] = 8.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(8.0, 5.0, 2.0, 2.0, 2.0) >>> states.qjoints[0] = 6.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(6.0, 8.0, 5.0, 2.0, 2.0) With the maximum damping allowed, the values of the derived parameters are: >>> derived.c1(0.5) >>> derived.c2(0.0) >>> derived.c3(0.5) Assuming again a base flow of 2m³/s and the same input values results in: >>> states.qjoints.old = 2.0 >>> states.qjoints.new = 2.0 >>> states.qjoints[0] = 5.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(5.0, 3.5, 2.75, 2.375, 2.1875) >>> states.qjoints[0] = 8.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(8.0, 5.75, 4.25, 3.3125, 2.75) >>> states.qjoints[0] = 6.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(6.0, 5.875, 5.0625, 4.1875, 3.46875) """ der = self.parameters.derived.fastaccess new = self.sequences.states.fastaccess_new old = self.sequences.states.fastaccess_old for j in range(der.nmbsegments): new.qjoints[j+1] = (der.c1*new.qjoints[j] + der.c2*old.qjoints[j] + der.c3*old.qjoints[j+1])
python
def calc_qjoints_v1(self): """Apply the routing equation. Required derived parameters: |NmbSegments| |C1| |C2| |C3| Updated state sequence: |QJoints| Basic equation: :math:`Q_{space+1,time+1} = c1 \\cdot Q_{space,time+1} + c2 \\cdot Q_{space,time} + c3 \\cdot Q_{space+1,time}` Examples: Firstly, define a reach divided into four segments: >>> from hydpy.models.hstream import * >>> parameterstep('1d') >>> derived.nmbsegments(4) >>> states.qjoints.shape = 5 Zero damping is achieved through the following coefficients: >>> derived.c1(0.0) >>> derived.c2(1.0) >>> derived.c3(0.0) For initialization, assume a base flow of 2m³/s: >>> states.qjoints.old = 2.0 >>> states.qjoints.new = 2.0 Through successive assignements of different discharge values to the upper junction one can see that these discharge values are simply shifted from each junction to the respective lower junction at each time step: >>> states.qjoints[0] = 5.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(5.0, 2.0, 2.0, 2.0, 2.0) >>> states.qjoints[0] = 8.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(8.0, 5.0, 2.0, 2.0, 2.0) >>> states.qjoints[0] = 6.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(6.0, 8.0, 5.0, 2.0, 2.0) With the maximum damping allowed, the values of the derived parameters are: >>> derived.c1(0.5) >>> derived.c2(0.0) >>> derived.c3(0.5) Assuming again a base flow of 2m³/s and the same input values results in: >>> states.qjoints.old = 2.0 >>> states.qjoints.new = 2.0 >>> states.qjoints[0] = 5.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(5.0, 3.5, 2.75, 2.375, 2.1875) >>> states.qjoints[0] = 8.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(8.0, 5.75, 4.25, 3.3125, 2.75) >>> states.qjoints[0] = 6.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(6.0, 5.875, 5.0625, 4.1875, 3.46875) """ der = self.parameters.derived.fastaccess new = self.sequences.states.fastaccess_new old = self.sequences.states.fastaccess_old for j in range(der.nmbsegments): new.qjoints[j+1] = (der.c1*new.qjoints[j] + der.c2*old.qjoints[j] + der.c3*old.qjoints[j+1])
[ "def", "calc_qjoints_v1", "(", "self", ")", ":", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "new", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_new", "old", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_old", "for", "j", "in", "range", "(", "der", ".", "nmbsegments", ")", ":", "new", ".", "qjoints", "[", "j", "+", "1", "]", "=", "(", "der", ".", "c1", "*", "new", ".", "qjoints", "[", "j", "]", "+", "der", ".", "c2", "*", "old", ".", "qjoints", "[", "j", "]", "+", "der", ".", "c3", "*", "old", ".", "qjoints", "[", "j", "+", "1", "]", ")" ]
Apply the routing equation. Required derived parameters: |NmbSegments| |C1| |C2| |C3| Updated state sequence: |QJoints| Basic equation: :math:`Q_{space+1,time+1} = c1 \\cdot Q_{space,time+1} + c2 \\cdot Q_{space,time} + c3 \\cdot Q_{space+1,time}` Examples: Firstly, define a reach divided into four segments: >>> from hydpy.models.hstream import * >>> parameterstep('1d') >>> derived.nmbsegments(4) >>> states.qjoints.shape = 5 Zero damping is achieved through the following coefficients: >>> derived.c1(0.0) >>> derived.c2(1.0) >>> derived.c3(0.0) For initialization, assume a base flow of 2m³/s: >>> states.qjoints.old = 2.0 >>> states.qjoints.new = 2.0 Through successive assignements of different discharge values to the upper junction one can see that these discharge values are simply shifted from each junction to the respective lower junction at each time step: >>> states.qjoints[0] = 5.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(5.0, 2.0, 2.0, 2.0, 2.0) >>> states.qjoints[0] = 8.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(8.0, 5.0, 2.0, 2.0, 2.0) >>> states.qjoints[0] = 6.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(6.0, 8.0, 5.0, 2.0, 2.0) With the maximum damping allowed, the values of the derived parameters are: >>> derived.c1(0.5) >>> derived.c2(0.0) >>> derived.c3(0.5) Assuming again a base flow of 2m³/s and the same input values results in: >>> states.qjoints.old = 2.0 >>> states.qjoints.new = 2.0 >>> states.qjoints[0] = 5.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(5.0, 3.5, 2.75, 2.375, 2.1875) >>> states.qjoints[0] = 8.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(8.0, 5.75, 4.25, 3.3125, 2.75) >>> states.qjoints[0] = 6.0 >>> model.calc_qjoints_v1() >>> model.new2old() >>> states.qjoints qjoints(6.0, 5.875, 5.0625, 4.1875, 3.46875)
[ "Apply", "the", "routing", "equation", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/hstream/hstream_model.py#L10-L104
hydpy-dev/hydpy
hydpy/models/hstream/hstream_model.py
pick_q_v1
def pick_q_v1(self): """Assign the actual value of the inlet sequence to the upper joint of the subreach upstream.""" inl = self.sequences.inlets.fastaccess new = self.sequences.states.fastaccess_new new.qjoints[0] = 0. for idx in range(inl.len_q): new.qjoints[0] += inl.q[idx][0]
python
def pick_q_v1(self): """Assign the actual value of the inlet sequence to the upper joint of the subreach upstream.""" inl = self.sequences.inlets.fastaccess new = self.sequences.states.fastaccess_new new.qjoints[0] = 0. for idx in range(inl.len_q): new.qjoints[0] += inl.q[idx][0]
[ "def", "pick_q_v1", "(", "self", ")", ":", "inl", "=", "self", ".", "sequences", ".", "inlets", ".", "fastaccess", "new", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_new", "new", ".", "qjoints", "[", "0", "]", "=", "0.", "for", "idx", "in", "range", "(", "inl", ".", "len_q", ")", ":", "new", ".", "qjoints", "[", "0", "]", "+=", "inl", ".", "q", "[", "idx", "]", "[", "0", "]" ]
Assign the actual value of the inlet sequence to the upper joint of the subreach upstream.
[ "Assign", "the", "actual", "value", "of", "the", "inlet", "sequence", "to", "the", "upper", "joint", "of", "the", "subreach", "upstream", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/hstream/hstream_model.py#L107-L114
hydpy-dev/hydpy
hydpy/models/hstream/hstream_model.py
pass_q_v1
def pass_q_v1(self): """Assing the actual value of the lower joint of of the subreach downstream to the outlet sequence.""" der = self.parameters.derived.fastaccess new = self.sequences.states.fastaccess_new out = self.sequences.outlets.fastaccess out.q[0] += new.qjoints[der.nmbsegments]
python
def pass_q_v1(self): """Assing the actual value of the lower joint of of the subreach downstream to the outlet sequence.""" der = self.parameters.derived.fastaccess new = self.sequences.states.fastaccess_new out = self.sequences.outlets.fastaccess out.q[0] += new.qjoints[der.nmbsegments]
[ "def", "pass_q_v1", "(", "self", ")", ":", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "new", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_new", "out", "=", "self", ".", "sequences", ".", "outlets", ".", "fastaccess", "out", ".", "q", "[", "0", "]", "+=", "new", ".", "qjoints", "[", "der", ".", "nmbsegments", "]" ]
Assing the actual value of the lower joint of of the subreach downstream to the outlet sequence.
[ "Assing", "the", "actual", "value", "of", "the", "lower", "joint", "of", "of", "the", "subreach", "downstream", "to", "the", "outlet", "sequence", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/hstream/hstream_model.py#L117-L123
TabViewer/gtabview
gtabview/dataio.py
_detect_encoding
def _detect_encoding(data=None): """Return the default system encoding. If data is passed, try to decode the data with the default system encoding or from a short list of encoding types to test. Args: data - list of lists Returns: enc - system encoding """ import locale enc_list = ['utf-8', 'latin-1', 'iso8859-1', 'iso8859-2', 'utf-16', 'cp720'] code = locale.getpreferredencoding(False) if data is None: return code if code.lower() not in enc_list: enc_list.insert(0, code.lower()) for c in enc_list: try: for line in data: line.decode(c) except (UnicodeDecodeError, UnicodeError, AttributeError): continue return c print("Encoding not detected. Please pass encoding value manually")
python
def _detect_encoding(data=None): """Return the default system encoding. If data is passed, try to decode the data with the default system encoding or from a short list of encoding types to test. Args: data - list of lists Returns: enc - system encoding """ import locale enc_list = ['utf-8', 'latin-1', 'iso8859-1', 'iso8859-2', 'utf-16', 'cp720'] code = locale.getpreferredencoding(False) if data is None: return code if code.lower() not in enc_list: enc_list.insert(0, code.lower()) for c in enc_list: try: for line in data: line.decode(c) except (UnicodeDecodeError, UnicodeError, AttributeError): continue return c print("Encoding not detected. Please pass encoding value manually")
[ "def", "_detect_encoding", "(", "data", "=", "None", ")", ":", "import", "locale", "enc_list", "=", "[", "'utf-8'", ",", "'latin-1'", ",", "'iso8859-1'", ",", "'iso8859-2'", ",", "'utf-16'", ",", "'cp720'", "]", "code", "=", "locale", ".", "getpreferredencoding", "(", "False", ")", "if", "data", "is", "None", ":", "return", "code", "if", "code", ".", "lower", "(", ")", "not", "in", "enc_list", ":", "enc_list", ".", "insert", "(", "0", ",", "code", ".", "lower", "(", ")", ")", "for", "c", "in", "enc_list", ":", "try", ":", "for", "line", "in", "data", ":", "line", ".", "decode", "(", "c", ")", "except", "(", "UnicodeDecodeError", ",", "UnicodeError", ",", "AttributeError", ")", ":", "continue", "return", "c", "print", "(", "\"Encoding not detected. Please pass encoding value manually\"", ")" ]
Return the default system encoding. If data is passed, try to decode the data with the default system encoding or from a short list of encoding types to test. Args: data - list of lists Returns: enc - system encoding
[ "Return", "the", "default", "system", "encoding", ".", "If", "data", "is", "passed", "try", "to", "decode", "the", "data", "with", "the", "default", "system", "encoding", "or", "from", "a", "short", "list", "of", "encoding", "types", "to", "test", "." ]
train
https://github.com/TabViewer/gtabview/blob/14ba391f0b225a1bf32d52b640a47b580f8b1b28/gtabview/dataio.py#L12-L37
hydpy-dev/hydpy
hydpy/core/importtools.py
parameterstep
def parameterstep(timestep=None): """Define a parameter time step size within a parameter control file. Argument: * timestep(|Period|): Time step size. Function parameterstep should usually be be applied in a line immediately behind the model import. Defining the step size of time dependent parameters is a prerequisite to access any model specific parameter. Note that parameterstep implements some namespace magic by means of the module |inspect|. This makes things a little complicated for framework developers, but it eases the definition of parameter control files for framework users. """ if timestep is not None: parametertools.Parameter.parameterstep(timestep) namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is None: model = namespace['Model']() namespace['model'] = model if hydpy.pub.options.usecython and 'cythonizer' in namespace: cythonizer = namespace['cythonizer'] namespace['cythonmodule'] = cythonizer.cymodule model.cymodel = cythonizer.cymodule.Model() namespace['cymodel'] = model.cymodel model.cymodel.parameters = cythonizer.cymodule.Parameters() model.cymodel.sequences = cythonizer.cymodule.Sequences() for numpars_name in ('NumConsts', 'NumVars'): if hasattr(cythonizer.cymodule, numpars_name): numpars_new = getattr(cythonizer.cymodule, numpars_name)() numpars_old = getattr(model, numpars_name.lower()) for (name_numpar, numpar) in vars(numpars_old).items(): setattr(numpars_new, name_numpar, numpar) setattr(model.cymodel, numpars_name.lower(), numpars_new) for name in dir(model.cymodel): if (not name.startswith('_')) and hasattr(model, name): setattr(model, name, getattr(model.cymodel, name)) if 'Parameters' not in namespace: namespace['Parameters'] = parametertools.Parameters model.parameters = namespace['Parameters'](namespace) if 'Sequences' not in namespace: namespace['Sequences'] = sequencetools.Sequences model.sequences = namespace['Sequences'](**namespace) namespace['parameters'] = model.parameters for pars in model.parameters: namespace[pars.name] = pars namespace['sequences'] = model.sequences for seqs in model.sequences: namespace[seqs.name] = seqs if 'Masks' in namespace: model.masks = namespace['Masks'](model) namespace['masks'] = model.masks try: namespace.update(namespace['CONSTANTS']) except KeyError: pass focus = namespace.get('focus') for par in model.parameters.control: try: if (focus is None) or (par is focus): namespace[par.name] = par else: namespace[par.name] = lambda *args, **kwargs: None except AttributeError: pass
python
def parameterstep(timestep=None): """Define a parameter time step size within a parameter control file. Argument: * timestep(|Period|): Time step size. Function parameterstep should usually be be applied in a line immediately behind the model import. Defining the step size of time dependent parameters is a prerequisite to access any model specific parameter. Note that parameterstep implements some namespace magic by means of the module |inspect|. This makes things a little complicated for framework developers, but it eases the definition of parameter control files for framework users. """ if timestep is not None: parametertools.Parameter.parameterstep(timestep) namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is None: model = namespace['Model']() namespace['model'] = model if hydpy.pub.options.usecython and 'cythonizer' in namespace: cythonizer = namespace['cythonizer'] namespace['cythonmodule'] = cythonizer.cymodule model.cymodel = cythonizer.cymodule.Model() namespace['cymodel'] = model.cymodel model.cymodel.parameters = cythonizer.cymodule.Parameters() model.cymodel.sequences = cythonizer.cymodule.Sequences() for numpars_name in ('NumConsts', 'NumVars'): if hasattr(cythonizer.cymodule, numpars_name): numpars_new = getattr(cythonizer.cymodule, numpars_name)() numpars_old = getattr(model, numpars_name.lower()) for (name_numpar, numpar) in vars(numpars_old).items(): setattr(numpars_new, name_numpar, numpar) setattr(model.cymodel, numpars_name.lower(), numpars_new) for name in dir(model.cymodel): if (not name.startswith('_')) and hasattr(model, name): setattr(model, name, getattr(model.cymodel, name)) if 'Parameters' not in namespace: namespace['Parameters'] = parametertools.Parameters model.parameters = namespace['Parameters'](namespace) if 'Sequences' not in namespace: namespace['Sequences'] = sequencetools.Sequences model.sequences = namespace['Sequences'](**namespace) namespace['parameters'] = model.parameters for pars in model.parameters: namespace[pars.name] = pars namespace['sequences'] = model.sequences for seqs in model.sequences: namespace[seqs.name] = seqs if 'Masks' in namespace: model.masks = namespace['Masks'](model) namespace['masks'] = model.masks try: namespace.update(namespace['CONSTANTS']) except KeyError: pass focus = namespace.get('focus') for par in model.parameters.control: try: if (focus is None) or (par is focus): namespace[par.name] = par else: namespace[par.name] = lambda *args, **kwargs: None except AttributeError: pass
[ "def", "parameterstep", "(", "timestep", "=", "None", ")", ":", "if", "timestep", "is", "not", "None", ":", "parametertools", ".", "Parameter", ".", "parameterstep", "(", "timestep", ")", "namespace", "=", "inspect", ".", "currentframe", "(", ")", ".", "f_back", ".", "f_locals", "model", "=", "namespace", ".", "get", "(", "'model'", ")", "if", "model", "is", "None", ":", "model", "=", "namespace", "[", "'Model'", "]", "(", ")", "namespace", "[", "'model'", "]", "=", "model", "if", "hydpy", ".", "pub", ".", "options", ".", "usecython", "and", "'cythonizer'", "in", "namespace", ":", "cythonizer", "=", "namespace", "[", "'cythonizer'", "]", "namespace", "[", "'cythonmodule'", "]", "=", "cythonizer", ".", "cymodule", "model", ".", "cymodel", "=", "cythonizer", ".", "cymodule", ".", "Model", "(", ")", "namespace", "[", "'cymodel'", "]", "=", "model", ".", "cymodel", "model", ".", "cymodel", ".", "parameters", "=", "cythonizer", ".", "cymodule", ".", "Parameters", "(", ")", "model", ".", "cymodel", ".", "sequences", "=", "cythonizer", ".", "cymodule", ".", "Sequences", "(", ")", "for", "numpars_name", "in", "(", "'NumConsts'", ",", "'NumVars'", ")", ":", "if", "hasattr", "(", "cythonizer", ".", "cymodule", ",", "numpars_name", ")", ":", "numpars_new", "=", "getattr", "(", "cythonizer", ".", "cymodule", ",", "numpars_name", ")", "(", ")", "numpars_old", "=", "getattr", "(", "model", ",", "numpars_name", ".", "lower", "(", ")", ")", "for", "(", "name_numpar", ",", "numpar", ")", "in", "vars", "(", "numpars_old", ")", ".", "items", "(", ")", ":", "setattr", "(", "numpars_new", ",", "name_numpar", ",", "numpar", ")", "setattr", "(", "model", ".", "cymodel", ",", "numpars_name", ".", "lower", "(", ")", ",", "numpars_new", ")", "for", "name", "in", "dir", "(", "model", ".", "cymodel", ")", ":", "if", "(", "not", "name", ".", "startswith", "(", "'_'", ")", ")", "and", "hasattr", "(", "model", ",", "name", ")", ":", "setattr", "(", "model", ",", "name", ",", "getattr", "(", "model", ".", "cymodel", ",", "name", ")", ")", "if", "'Parameters'", "not", "in", "namespace", ":", "namespace", "[", "'Parameters'", "]", "=", "parametertools", ".", "Parameters", "model", ".", "parameters", "=", "namespace", "[", "'Parameters'", "]", "(", "namespace", ")", "if", "'Sequences'", "not", "in", "namespace", ":", "namespace", "[", "'Sequences'", "]", "=", "sequencetools", ".", "Sequences", "model", ".", "sequences", "=", "namespace", "[", "'Sequences'", "]", "(", "*", "*", "namespace", ")", "namespace", "[", "'parameters'", "]", "=", "model", ".", "parameters", "for", "pars", "in", "model", ".", "parameters", ":", "namespace", "[", "pars", ".", "name", "]", "=", "pars", "namespace", "[", "'sequences'", "]", "=", "model", ".", "sequences", "for", "seqs", "in", "model", ".", "sequences", ":", "namespace", "[", "seqs", ".", "name", "]", "=", "seqs", "if", "'Masks'", "in", "namespace", ":", "model", ".", "masks", "=", "namespace", "[", "'Masks'", "]", "(", "model", ")", "namespace", "[", "'masks'", "]", "=", "model", ".", "masks", "try", ":", "namespace", ".", "update", "(", "namespace", "[", "'CONSTANTS'", "]", ")", "except", "KeyError", ":", "pass", "focus", "=", "namespace", ".", "get", "(", "'focus'", ")", "for", "par", "in", "model", ".", "parameters", ".", "control", ":", "try", ":", "if", "(", "focus", "is", "None", ")", "or", "(", "par", "is", "focus", ")", ":", "namespace", "[", "par", ".", "name", "]", "=", "par", "else", ":", "namespace", "[", "par", ".", "name", "]", "=", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "None", "except", "AttributeError", ":", "pass" ]
Define a parameter time step size within a parameter control file. Argument: * timestep(|Period|): Time step size. Function parameterstep should usually be be applied in a line immediately behind the model import. Defining the step size of time dependent parameters is a prerequisite to access any model specific parameter. Note that parameterstep implements some namespace magic by means of the module |inspect|. This makes things a little complicated for framework developers, but it eases the definition of parameter control files for framework users.
[ "Define", "a", "parameter", "time", "step", "size", "within", "a", "parameter", "control", "file", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/importtools.py#L25-L92
hydpy-dev/hydpy
hydpy/core/importtools.py
reverse_model_wildcard_import
def reverse_model_wildcard_import(): """Clear the local namespace from a model wildcard import. Calling this method should remove the critical imports into the local namespace due the last wildcard import of a certain application model. It is thought for securing the successive preperation of different types of models via wildcard imports. See the following example, on how it can be applied. >>> from hydpy import reverse_model_wildcard_import Assume you wildcard import the first version of HydPy-L-Land (|lland_v1|): >>> from hydpy.models.lland_v1 import * This for example adds the collection class for handling control parameters of `lland_v1` into the local namespace: >>> print(ControlParameters(None).name) control Calling function |parameterstep| for example prepares the control parameter object |lland_control.NHRU|: >>> parameterstep('1d') >>> nhru nhru(?) Calling function |reverse_model_wildcard_import| removes both objects (and many more, but not all) from the local namespace: >>> reverse_model_wildcard_import() >>> ControlParameters Traceback (most recent call last): ... NameError: name 'ControlParameters' is not defined >>> nhru Traceback (most recent call last): ... NameError: name 'nhru' is not defined """ namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is not None: for subpars in model.parameters: for par in subpars: namespace.pop(par.name, None) namespace.pop(objecttools.classname(par), None) namespace.pop(subpars.name, None) namespace.pop(objecttools.classname(subpars), None) for subseqs in model.sequences: for seq in subseqs: namespace.pop(seq.name, None) namespace.pop(objecttools.classname(seq), None) namespace.pop(subseqs.name, None) namespace.pop(objecttools.classname(subseqs), None) for name in ('parameters', 'sequences', 'masks', 'model', 'Parameters', 'Sequences', 'Masks', 'Model', 'cythonizer', 'cymodel', 'cythonmodule'): namespace.pop(name, None) for key in list(namespace.keys()): try: if namespace[key].__module__ == model.__module__: del namespace[key] except AttributeError: pass
python
def reverse_model_wildcard_import(): """Clear the local namespace from a model wildcard import. Calling this method should remove the critical imports into the local namespace due the last wildcard import of a certain application model. It is thought for securing the successive preperation of different types of models via wildcard imports. See the following example, on how it can be applied. >>> from hydpy import reverse_model_wildcard_import Assume you wildcard import the first version of HydPy-L-Land (|lland_v1|): >>> from hydpy.models.lland_v1 import * This for example adds the collection class for handling control parameters of `lland_v1` into the local namespace: >>> print(ControlParameters(None).name) control Calling function |parameterstep| for example prepares the control parameter object |lland_control.NHRU|: >>> parameterstep('1d') >>> nhru nhru(?) Calling function |reverse_model_wildcard_import| removes both objects (and many more, but not all) from the local namespace: >>> reverse_model_wildcard_import() >>> ControlParameters Traceback (most recent call last): ... NameError: name 'ControlParameters' is not defined >>> nhru Traceback (most recent call last): ... NameError: name 'nhru' is not defined """ namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is not None: for subpars in model.parameters: for par in subpars: namespace.pop(par.name, None) namespace.pop(objecttools.classname(par), None) namespace.pop(subpars.name, None) namespace.pop(objecttools.classname(subpars), None) for subseqs in model.sequences: for seq in subseqs: namespace.pop(seq.name, None) namespace.pop(objecttools.classname(seq), None) namespace.pop(subseqs.name, None) namespace.pop(objecttools.classname(subseqs), None) for name in ('parameters', 'sequences', 'masks', 'model', 'Parameters', 'Sequences', 'Masks', 'Model', 'cythonizer', 'cymodel', 'cythonmodule'): namespace.pop(name, None) for key in list(namespace.keys()): try: if namespace[key].__module__ == model.__module__: del namespace[key] except AttributeError: pass
[ "def", "reverse_model_wildcard_import", "(", ")", ":", "namespace", "=", "inspect", ".", "currentframe", "(", ")", ".", "f_back", ".", "f_locals", "model", "=", "namespace", ".", "get", "(", "'model'", ")", "if", "model", "is", "not", "None", ":", "for", "subpars", "in", "model", ".", "parameters", ":", "for", "par", "in", "subpars", ":", "namespace", ".", "pop", "(", "par", ".", "name", ",", "None", ")", "namespace", ".", "pop", "(", "objecttools", ".", "classname", "(", "par", ")", ",", "None", ")", "namespace", ".", "pop", "(", "subpars", ".", "name", ",", "None", ")", "namespace", ".", "pop", "(", "objecttools", ".", "classname", "(", "subpars", ")", ",", "None", ")", "for", "subseqs", "in", "model", ".", "sequences", ":", "for", "seq", "in", "subseqs", ":", "namespace", ".", "pop", "(", "seq", ".", "name", ",", "None", ")", "namespace", ".", "pop", "(", "objecttools", ".", "classname", "(", "seq", ")", ",", "None", ")", "namespace", ".", "pop", "(", "subseqs", ".", "name", ",", "None", ")", "namespace", ".", "pop", "(", "objecttools", ".", "classname", "(", "subseqs", ")", ",", "None", ")", "for", "name", "in", "(", "'parameters'", ",", "'sequences'", ",", "'masks'", ",", "'model'", ",", "'Parameters'", ",", "'Sequences'", ",", "'Masks'", ",", "'Model'", ",", "'cythonizer'", ",", "'cymodel'", ",", "'cythonmodule'", ")", ":", "namespace", ".", "pop", "(", "name", ",", "None", ")", "for", "key", "in", "list", "(", "namespace", ".", "keys", "(", ")", ")", ":", "try", ":", "if", "namespace", "[", "key", "]", ".", "__module__", "==", "model", ".", "__module__", ":", "del", "namespace", "[", "key", "]", "except", "AttributeError", ":", "pass" ]
Clear the local namespace from a model wildcard import. Calling this method should remove the critical imports into the local namespace due the last wildcard import of a certain application model. It is thought for securing the successive preperation of different types of models via wildcard imports. See the following example, on how it can be applied. >>> from hydpy import reverse_model_wildcard_import Assume you wildcard import the first version of HydPy-L-Land (|lland_v1|): >>> from hydpy.models.lland_v1 import * This for example adds the collection class for handling control parameters of `lland_v1` into the local namespace: >>> print(ControlParameters(None).name) control Calling function |parameterstep| for example prepares the control parameter object |lland_control.NHRU|: >>> parameterstep('1d') >>> nhru nhru(?) Calling function |reverse_model_wildcard_import| removes both objects (and many more, but not all) from the local namespace: >>> reverse_model_wildcard_import() >>> ControlParameters Traceback (most recent call last): ... NameError: name 'ControlParameters' is not defined >>> nhru Traceback (most recent call last): ... NameError: name 'nhru' is not defined
[ "Clear", "the", "local", "namespace", "from", "a", "model", "wildcard", "import", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/importtools.py#L95-L162
hydpy-dev/hydpy
hydpy/core/importtools.py
prepare_model
def prepare_model(module: Union[types.ModuleType, str], timestep: PeriodABC.ConstrArg = None): """Prepare and return the model of the given module. In usual HydPy projects, each hydrological model instance is prepared in an individual control file. This allows for "polluting" the namespace with different model attributes. There is no danger of name conflicts, as long as no other (wildcard) imports are performed. However, there are situations when different models are to be loaded into the same namespace. Then it is advisable to use function |prepare_model|, which just returns a reference to the model and nothing else. See the documentation of |dam_v001| on how to apply function |prepare_model| properly. """ if timestep is not None: parametertools.Parameter.parameterstep(timetools.Period(timestep)) try: model = module.Model() except AttributeError: module = importlib.import_module(f'hydpy.models.{module}') model = module.Model() if hydpy.pub.options.usecython and hasattr(module, 'cythonizer'): cymodule = module.cythonizer.cymodule cymodel = cymodule.Model() cymodel.parameters = cymodule.Parameters() cymodel.sequences = cymodule.Sequences() model.cymodel = cymodel for numpars_name in ('NumConsts', 'NumVars'): if hasattr(cymodule, numpars_name): numpars_new = getattr(cymodule, numpars_name)() numpars_old = getattr(model, numpars_name.lower()) for (name_numpar, numpar) in vars(numpars_old).items(): setattr(numpars_new, name_numpar, numpar) setattr(cymodel, numpars_name.lower(), numpars_new) for name in dir(cymodel): if (not name.startswith('_')) and hasattr(model, name): setattr(model, name, getattr(cymodel, name)) dict_ = {'cythonmodule': cymodule, 'cymodel': cymodel} else: dict_ = {} dict_.update(vars(module)) dict_['model'] = model if hasattr(module, 'Parameters'): model.parameters = module.Parameters(dict_) else: model.parameters = parametertools.Parameters(dict_) if hasattr(module, 'Sequences'): model.sequences = module.Sequences(**dict_) else: model.sequences = sequencetools.Sequences(**dict_) if hasattr(module, 'Masks'): model.masks = module.Masks(model) return model
python
def prepare_model(module: Union[types.ModuleType, str], timestep: PeriodABC.ConstrArg = None): """Prepare and return the model of the given module. In usual HydPy projects, each hydrological model instance is prepared in an individual control file. This allows for "polluting" the namespace with different model attributes. There is no danger of name conflicts, as long as no other (wildcard) imports are performed. However, there are situations when different models are to be loaded into the same namespace. Then it is advisable to use function |prepare_model|, which just returns a reference to the model and nothing else. See the documentation of |dam_v001| on how to apply function |prepare_model| properly. """ if timestep is not None: parametertools.Parameter.parameterstep(timetools.Period(timestep)) try: model = module.Model() except AttributeError: module = importlib.import_module(f'hydpy.models.{module}') model = module.Model() if hydpy.pub.options.usecython and hasattr(module, 'cythonizer'): cymodule = module.cythonizer.cymodule cymodel = cymodule.Model() cymodel.parameters = cymodule.Parameters() cymodel.sequences = cymodule.Sequences() model.cymodel = cymodel for numpars_name in ('NumConsts', 'NumVars'): if hasattr(cymodule, numpars_name): numpars_new = getattr(cymodule, numpars_name)() numpars_old = getattr(model, numpars_name.lower()) for (name_numpar, numpar) in vars(numpars_old).items(): setattr(numpars_new, name_numpar, numpar) setattr(cymodel, numpars_name.lower(), numpars_new) for name in dir(cymodel): if (not name.startswith('_')) and hasattr(model, name): setattr(model, name, getattr(cymodel, name)) dict_ = {'cythonmodule': cymodule, 'cymodel': cymodel} else: dict_ = {} dict_.update(vars(module)) dict_['model'] = model if hasattr(module, 'Parameters'): model.parameters = module.Parameters(dict_) else: model.parameters = parametertools.Parameters(dict_) if hasattr(module, 'Sequences'): model.sequences = module.Sequences(**dict_) else: model.sequences = sequencetools.Sequences(**dict_) if hasattr(module, 'Masks'): model.masks = module.Masks(model) return model
[ "def", "prepare_model", "(", "module", ":", "Union", "[", "types", ".", "ModuleType", ",", "str", "]", ",", "timestep", ":", "PeriodABC", ".", "ConstrArg", "=", "None", ")", ":", "if", "timestep", "is", "not", "None", ":", "parametertools", ".", "Parameter", ".", "parameterstep", "(", "timetools", ".", "Period", "(", "timestep", ")", ")", "try", ":", "model", "=", "module", ".", "Model", "(", ")", "except", "AttributeError", ":", "module", "=", "importlib", ".", "import_module", "(", "f'hydpy.models.{module}'", ")", "model", "=", "module", ".", "Model", "(", ")", "if", "hydpy", ".", "pub", ".", "options", ".", "usecython", "and", "hasattr", "(", "module", ",", "'cythonizer'", ")", ":", "cymodule", "=", "module", ".", "cythonizer", ".", "cymodule", "cymodel", "=", "cymodule", ".", "Model", "(", ")", "cymodel", ".", "parameters", "=", "cymodule", ".", "Parameters", "(", ")", "cymodel", ".", "sequences", "=", "cymodule", ".", "Sequences", "(", ")", "model", ".", "cymodel", "=", "cymodel", "for", "numpars_name", "in", "(", "'NumConsts'", ",", "'NumVars'", ")", ":", "if", "hasattr", "(", "cymodule", ",", "numpars_name", ")", ":", "numpars_new", "=", "getattr", "(", "cymodule", ",", "numpars_name", ")", "(", ")", "numpars_old", "=", "getattr", "(", "model", ",", "numpars_name", ".", "lower", "(", ")", ")", "for", "(", "name_numpar", ",", "numpar", ")", "in", "vars", "(", "numpars_old", ")", ".", "items", "(", ")", ":", "setattr", "(", "numpars_new", ",", "name_numpar", ",", "numpar", ")", "setattr", "(", "cymodel", ",", "numpars_name", ".", "lower", "(", ")", ",", "numpars_new", ")", "for", "name", "in", "dir", "(", "cymodel", ")", ":", "if", "(", "not", "name", ".", "startswith", "(", "'_'", ")", ")", "and", "hasattr", "(", "model", ",", "name", ")", ":", "setattr", "(", "model", ",", "name", ",", "getattr", "(", "cymodel", ",", "name", ")", ")", "dict_", "=", "{", "'cythonmodule'", ":", "cymodule", ",", "'cymodel'", ":", "cymodel", "}", "else", ":", "dict_", "=", "{", "}", "dict_", ".", "update", "(", "vars", "(", "module", ")", ")", "dict_", "[", "'model'", "]", "=", "model", "if", "hasattr", "(", "module", ",", "'Parameters'", ")", ":", "model", ".", "parameters", "=", "module", ".", "Parameters", "(", "dict_", ")", "else", ":", "model", ".", "parameters", "=", "parametertools", ".", "Parameters", "(", "dict_", ")", "if", "hasattr", "(", "module", ",", "'Sequences'", ")", ":", "model", ".", "sequences", "=", "module", ".", "Sequences", "(", "*", "*", "dict_", ")", "else", ":", "model", ".", "sequences", "=", "sequencetools", ".", "Sequences", "(", "*", "*", "dict_", ")", "if", "hasattr", "(", "module", ",", "'Masks'", ")", ":", "model", ".", "masks", "=", "module", ".", "Masks", "(", "model", ")", "return", "model" ]
Prepare and return the model of the given module. In usual HydPy projects, each hydrological model instance is prepared in an individual control file. This allows for "polluting" the namespace with different model attributes. There is no danger of name conflicts, as long as no other (wildcard) imports are performed. However, there are situations when different models are to be loaded into the same namespace. Then it is advisable to use function |prepare_model|, which just returns a reference to the model and nothing else. See the documentation of |dam_v001| on how to apply function |prepare_model| properly.
[ "Prepare", "and", "return", "the", "model", "of", "the", "given", "module", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/importtools.py#L165-L221
hydpy-dev/hydpy
hydpy/core/importtools.py
simulationstep
def simulationstep(timestep): """ Define a simulation time step size for testing purposes within a parameter control file. Using |simulationstep| only affects the values of time dependent parameters, when `pub.timegrids.stepsize` is not defined. It thus has no influence on usual hydpy simulations at all. Use it just to check your parameter control files. Write it in a line immediately behind the one calling |parameterstep|. To clarify its purpose, executing raises a warning, when executing it from within a control file: >>> from hydpy import pub >>> with pub.options.warnsimulationstep(True): ... from hydpy.models.hland_v1 import * ... parameterstep('1d') ... simulationstep('1h') Traceback (most recent call last): ... UserWarning: Note that the applied function `simulationstep` is intended \ for testing purposes only. When doing a HydPy simulation, parameter values \ are initialised based on the actual simulation time step as defined under \ `pub.timegrids.stepsize` and the value given to `simulationstep` is ignored. >>> k4.simulationstep Period('1h') """ if hydpy.pub.options.warnsimulationstep: warnings.warn( 'Note that the applied function `simulationstep` is intended for ' 'testing purposes only. When doing a HydPy simulation, parameter ' 'values are initialised based on the actual simulation time step ' 'as defined under `pub.timegrids.stepsize` and the value given ' 'to `simulationstep` is ignored.') parametertools.Parameter.simulationstep(timestep)
python
def simulationstep(timestep): """ Define a simulation time step size for testing purposes within a parameter control file. Using |simulationstep| only affects the values of time dependent parameters, when `pub.timegrids.stepsize` is not defined. It thus has no influence on usual hydpy simulations at all. Use it just to check your parameter control files. Write it in a line immediately behind the one calling |parameterstep|. To clarify its purpose, executing raises a warning, when executing it from within a control file: >>> from hydpy import pub >>> with pub.options.warnsimulationstep(True): ... from hydpy.models.hland_v1 import * ... parameterstep('1d') ... simulationstep('1h') Traceback (most recent call last): ... UserWarning: Note that the applied function `simulationstep` is intended \ for testing purposes only. When doing a HydPy simulation, parameter values \ are initialised based on the actual simulation time step as defined under \ `pub.timegrids.stepsize` and the value given to `simulationstep` is ignored. >>> k4.simulationstep Period('1h') """ if hydpy.pub.options.warnsimulationstep: warnings.warn( 'Note that the applied function `simulationstep` is intended for ' 'testing purposes only. When doing a HydPy simulation, parameter ' 'values are initialised based on the actual simulation time step ' 'as defined under `pub.timegrids.stepsize` and the value given ' 'to `simulationstep` is ignored.') parametertools.Parameter.simulationstep(timestep)
[ "def", "simulationstep", "(", "timestep", ")", ":", "if", "hydpy", ".", "pub", ".", "options", ".", "warnsimulationstep", ":", "warnings", ".", "warn", "(", "'Note that the applied function `simulationstep` is intended for '", "'testing purposes only. When doing a HydPy simulation, parameter '", "'values are initialised based on the actual simulation time step '", "'as defined under `pub.timegrids.stepsize` and the value given '", "'to `simulationstep` is ignored.'", ")", "parametertools", ".", "Parameter", ".", "simulationstep", "(", "timestep", ")" ]
Define a simulation time step size for testing purposes within a parameter control file. Using |simulationstep| only affects the values of time dependent parameters, when `pub.timegrids.stepsize` is not defined. It thus has no influence on usual hydpy simulations at all. Use it just to check your parameter control files. Write it in a line immediately behind the one calling |parameterstep|. To clarify its purpose, executing raises a warning, when executing it from within a control file: >>> from hydpy import pub >>> with pub.options.warnsimulationstep(True): ... from hydpy.models.hland_v1 import * ... parameterstep('1d') ... simulationstep('1h') Traceback (most recent call last): ... UserWarning: Note that the applied function `simulationstep` is intended \ for testing purposes only. When doing a HydPy simulation, parameter values \ are initialised based on the actual simulation time step as defined under \ `pub.timegrids.stepsize` and the value given to `simulationstep` is ignored. >>> k4.simulationstep Period('1h')
[ "Define", "a", "simulation", "time", "step", "size", "for", "testing", "purposes", "within", "a", "parameter", "control", "file", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/importtools.py#L224-L258
hydpy-dev/hydpy
hydpy/core/importtools.py
controlcheck
def controlcheck(controldir='default', projectdir=None, controlfile=None): """Define the corresponding control file within a condition file. Function |controlcheck| serves similar purposes as function |parameterstep|. It is the reason why one can interactively access the state and/or the log sequences within condition files as `land_dill.py` of the example project `LahnH`. It is called `controlcheck` due to its implicite feature to check upon the execution of the condition file if eventual specifications within both files disagree. The following test, where we write a number of soil moisture values (|hland_states.SM|) into condition file `land_dill.py` which does not agree with the number of hydrological response units (|hland_control.NmbZones|) defined in control file `land_dill.py`, verifies that this actually works within a new Python process: >>> from hydpy.core.examples import prepare_full_example_1 >>> prepare_full_example_1() >>> import os, subprocess >>> from hydpy import TestIO >>> cwd = os.path.join('LahnH', 'conditions', 'init_1996_01_01') >>> with TestIO(): ... os.chdir(cwd) ... with open('land_dill.py') as file_: ... lines = file_.readlines() ... lines[10:12] = 'sm(185.13164, 181.18755)', '' ... with open('land_dill.py', 'w') as file_: ... _ = file_.write('\\n'.join(lines)) ... result = subprocess.run( ... 'python land_dill.py', ... stdout=subprocess.PIPE, ... stderr=subprocess.PIPE, ... universal_newlines=True, ... shell=True) >>> print(result.stderr.split('ValueError:')[-1].strip()) While trying to set the value(s) of variable `sm`, the following error \ occurred: While trying to convert the value(s) `(185.13164, 181.18755)` to \ a numpy ndarray with shape `(12,)` and type `float`, the following error \ occurred: could not broadcast input array from shape (2) into shape (12) With a little trick, we can fake to be "inside" condition file `land_dill.py`. Calling |controlcheck| then e.g. prepares the shape of sequence |hland_states.Ic| as specified by the value of parameter |hland_control.NmbZones| given in the corresponding control file: >>> from hydpy.models.hland_v1 import * >>> __file__ = 'land_dill.py' # ToDo: undo? >>> with TestIO(): ... os.chdir(cwd) ... controlcheck() >>> ic.shape (12,) In the above example, the standard names for the project directory (the one containing the executed condition file) and the control directory (`default`) are used. The following example shows how to change them: >>> del model >>> with TestIO(): # doctest: +ELLIPSIS ... os.chdir(cwd) ... controlcheck(projectdir='somewhere', controldir='nowhere') Traceback (most recent call last): ... FileNotFoundError: While trying to load the control file \ `...hydpy...tests...iotesting...control...nowhere...land_dill.py`, the \ following error occurred: [Errno 2] No such file or directory: '...land_dill.py' Note that the functionalities of function |controlcheck| are disabled when there is already a `model` variable in the namespace, which is the case when a condition file is executed within the context of a complete HydPy project. """ namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is None: if not controlfile: controlfile = os.path.split(namespace['__file__'])[-1] if projectdir is None: projectdir = ( os.path.split( os.path.split( os.path.split(os.getcwd())[0])[0])[-1]) dirpath = os.path.abspath(os.path.join( '..', '..', '..', projectdir, 'control', controldir)) class CM(filetools.ControlManager): currentpath = dirpath model = CM().load_file(filename=controlfile)['model'] model.parameters.update() namespace['model'] = model for name in ('states', 'logs'): subseqs = getattr(model.sequences, name, None) if subseqs is not None: for seq in subseqs: namespace[seq.name] = seq
python
def controlcheck(controldir='default', projectdir=None, controlfile=None): """Define the corresponding control file within a condition file. Function |controlcheck| serves similar purposes as function |parameterstep|. It is the reason why one can interactively access the state and/or the log sequences within condition files as `land_dill.py` of the example project `LahnH`. It is called `controlcheck` due to its implicite feature to check upon the execution of the condition file if eventual specifications within both files disagree. The following test, where we write a number of soil moisture values (|hland_states.SM|) into condition file `land_dill.py` which does not agree with the number of hydrological response units (|hland_control.NmbZones|) defined in control file `land_dill.py`, verifies that this actually works within a new Python process: >>> from hydpy.core.examples import prepare_full_example_1 >>> prepare_full_example_1() >>> import os, subprocess >>> from hydpy import TestIO >>> cwd = os.path.join('LahnH', 'conditions', 'init_1996_01_01') >>> with TestIO(): ... os.chdir(cwd) ... with open('land_dill.py') as file_: ... lines = file_.readlines() ... lines[10:12] = 'sm(185.13164, 181.18755)', '' ... with open('land_dill.py', 'w') as file_: ... _ = file_.write('\\n'.join(lines)) ... result = subprocess.run( ... 'python land_dill.py', ... stdout=subprocess.PIPE, ... stderr=subprocess.PIPE, ... universal_newlines=True, ... shell=True) >>> print(result.stderr.split('ValueError:')[-1].strip()) While trying to set the value(s) of variable `sm`, the following error \ occurred: While trying to convert the value(s) `(185.13164, 181.18755)` to \ a numpy ndarray with shape `(12,)` and type `float`, the following error \ occurred: could not broadcast input array from shape (2) into shape (12) With a little trick, we can fake to be "inside" condition file `land_dill.py`. Calling |controlcheck| then e.g. prepares the shape of sequence |hland_states.Ic| as specified by the value of parameter |hland_control.NmbZones| given in the corresponding control file: >>> from hydpy.models.hland_v1 import * >>> __file__ = 'land_dill.py' # ToDo: undo? >>> with TestIO(): ... os.chdir(cwd) ... controlcheck() >>> ic.shape (12,) In the above example, the standard names for the project directory (the one containing the executed condition file) and the control directory (`default`) are used. The following example shows how to change them: >>> del model >>> with TestIO(): # doctest: +ELLIPSIS ... os.chdir(cwd) ... controlcheck(projectdir='somewhere', controldir='nowhere') Traceback (most recent call last): ... FileNotFoundError: While trying to load the control file \ `...hydpy...tests...iotesting...control...nowhere...land_dill.py`, the \ following error occurred: [Errno 2] No such file or directory: '...land_dill.py' Note that the functionalities of function |controlcheck| are disabled when there is already a `model` variable in the namespace, which is the case when a condition file is executed within the context of a complete HydPy project. """ namespace = inspect.currentframe().f_back.f_locals model = namespace.get('model') if model is None: if not controlfile: controlfile = os.path.split(namespace['__file__'])[-1] if projectdir is None: projectdir = ( os.path.split( os.path.split( os.path.split(os.getcwd())[0])[0])[-1]) dirpath = os.path.abspath(os.path.join( '..', '..', '..', projectdir, 'control', controldir)) class CM(filetools.ControlManager): currentpath = dirpath model = CM().load_file(filename=controlfile)['model'] model.parameters.update() namespace['model'] = model for name in ('states', 'logs'): subseqs = getattr(model.sequences, name, None) if subseqs is not None: for seq in subseqs: namespace[seq.name] = seq
[ "def", "controlcheck", "(", "controldir", "=", "'default'", ",", "projectdir", "=", "None", ",", "controlfile", "=", "None", ")", ":", "namespace", "=", "inspect", ".", "currentframe", "(", ")", ".", "f_back", ".", "f_locals", "model", "=", "namespace", ".", "get", "(", "'model'", ")", "if", "model", "is", "None", ":", "if", "not", "controlfile", ":", "controlfile", "=", "os", ".", "path", ".", "split", "(", "namespace", "[", "'__file__'", "]", ")", "[", "-", "1", "]", "if", "projectdir", "is", "None", ":", "projectdir", "=", "(", "os", ".", "path", ".", "split", "(", "os", ".", "path", ".", "split", "(", "os", ".", "path", ".", "split", "(", "os", ".", "getcwd", "(", ")", ")", "[", "0", "]", ")", "[", "0", "]", ")", "[", "-", "1", "]", ")", "dirpath", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "'..'", ",", "'..'", ",", "'..'", ",", "projectdir", ",", "'control'", ",", "controldir", ")", ")", "class", "CM", "(", "filetools", ".", "ControlManager", ")", ":", "currentpath", "=", "dirpath", "model", "=", "CM", "(", ")", ".", "load_file", "(", "filename", "=", "controlfile", ")", "[", "'model'", "]", "model", ".", "parameters", ".", "update", "(", ")", "namespace", "[", "'model'", "]", "=", "model", "for", "name", "in", "(", "'states'", ",", "'logs'", ")", ":", "subseqs", "=", "getattr", "(", "model", ".", "sequences", ",", "name", ",", "None", ")", "if", "subseqs", "is", "not", "None", ":", "for", "seq", "in", "subseqs", ":", "namespace", "[", "seq", ".", "name", "]", "=", "seq" ]
Define the corresponding control file within a condition file. Function |controlcheck| serves similar purposes as function |parameterstep|. It is the reason why one can interactively access the state and/or the log sequences within condition files as `land_dill.py` of the example project `LahnH`. It is called `controlcheck` due to its implicite feature to check upon the execution of the condition file if eventual specifications within both files disagree. The following test, where we write a number of soil moisture values (|hland_states.SM|) into condition file `land_dill.py` which does not agree with the number of hydrological response units (|hland_control.NmbZones|) defined in control file `land_dill.py`, verifies that this actually works within a new Python process: >>> from hydpy.core.examples import prepare_full_example_1 >>> prepare_full_example_1() >>> import os, subprocess >>> from hydpy import TestIO >>> cwd = os.path.join('LahnH', 'conditions', 'init_1996_01_01') >>> with TestIO(): ... os.chdir(cwd) ... with open('land_dill.py') as file_: ... lines = file_.readlines() ... lines[10:12] = 'sm(185.13164, 181.18755)', '' ... with open('land_dill.py', 'w') as file_: ... _ = file_.write('\\n'.join(lines)) ... result = subprocess.run( ... 'python land_dill.py', ... stdout=subprocess.PIPE, ... stderr=subprocess.PIPE, ... universal_newlines=True, ... shell=True) >>> print(result.stderr.split('ValueError:')[-1].strip()) While trying to set the value(s) of variable `sm`, the following error \ occurred: While trying to convert the value(s) `(185.13164, 181.18755)` to \ a numpy ndarray with shape `(12,)` and type `float`, the following error \ occurred: could not broadcast input array from shape (2) into shape (12) With a little trick, we can fake to be "inside" condition file `land_dill.py`. Calling |controlcheck| then e.g. prepares the shape of sequence |hland_states.Ic| as specified by the value of parameter |hland_control.NmbZones| given in the corresponding control file: >>> from hydpy.models.hland_v1 import * >>> __file__ = 'land_dill.py' # ToDo: undo? >>> with TestIO(): ... os.chdir(cwd) ... controlcheck() >>> ic.shape (12,) In the above example, the standard names for the project directory (the one containing the executed condition file) and the control directory (`default`) are used. The following example shows how to change them: >>> del model >>> with TestIO(): # doctest: +ELLIPSIS ... os.chdir(cwd) ... controlcheck(projectdir='somewhere', controldir='nowhere') Traceback (most recent call last): ... FileNotFoundError: While trying to load the control file \ `...hydpy...tests...iotesting...control...nowhere...land_dill.py`, the \ following error occurred: [Errno 2] No such file or directory: '...land_dill.py' Note that the functionalities of function |controlcheck| are disabled when there is already a `model` variable in the namespace, which is the case when a condition file is executed within the context of a complete HydPy project.
[ "Define", "the", "corresponding", "control", "file", "within", "a", "condition", "file", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/importtools.py#L261-L357
hydpy-dev/hydpy
hydpy/models/hland/hland_derived.py
RelSoilArea.update
def update(self): """Update |RelSoilArea| based on |Area|, |ZoneArea|, and |ZoneType|. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> nmbzones(4) >>> zonetype(FIELD, FOREST, GLACIER, ILAKE) >>> area(100.0) >>> zonearea(10.0, 20.0, 30.0, 40.0) >>> derived.relsoilarea.update() >>> derived.relsoilarea relsoilarea(0.3) """ con = self.subpars.pars.control temp = con.zonearea.values.copy() temp[con.zonetype.values == GLACIER] = 0. temp[con.zonetype.values == ILAKE] = 0. self(numpy.sum(temp)/con.area)
python
def update(self): """Update |RelSoilArea| based on |Area|, |ZoneArea|, and |ZoneType|. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> nmbzones(4) >>> zonetype(FIELD, FOREST, GLACIER, ILAKE) >>> area(100.0) >>> zonearea(10.0, 20.0, 30.0, 40.0) >>> derived.relsoilarea.update() >>> derived.relsoilarea relsoilarea(0.3) """ con = self.subpars.pars.control temp = con.zonearea.values.copy() temp[con.zonetype.values == GLACIER] = 0. temp[con.zonetype.values == ILAKE] = 0. self(numpy.sum(temp)/con.area)
[ "def", "update", "(", "self", ")", ":", "con", "=", "self", ".", "subpars", ".", "pars", ".", "control", "temp", "=", "con", ".", "zonearea", ".", "values", ".", "copy", "(", ")", "temp", "[", "con", ".", "zonetype", ".", "values", "==", "GLACIER", "]", "=", "0.", "temp", "[", "con", ".", "zonetype", ".", "values", "==", "ILAKE", "]", "=", "0.", "self", "(", "numpy", ".", "sum", "(", "temp", ")", "/", "con", ".", "area", ")" ]
Update |RelSoilArea| based on |Area|, |ZoneArea|, and |ZoneType|. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> nmbzones(4) >>> zonetype(FIELD, FOREST, GLACIER, ILAKE) >>> area(100.0) >>> zonearea(10.0, 20.0, 30.0, 40.0) >>> derived.relsoilarea.update() >>> derived.relsoilarea relsoilarea(0.3)
[ "Update", "|RelSoilArea|", "based", "on", "|Area|", "|ZoneArea|", "and", "|ZoneType|", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/hland/hland_derived.py#L19-L36
hydpy-dev/hydpy
hydpy/models/hland/hland_derived.py
TTM.update
def update(self): """Update |TTM| based on :math:`TTM = TT+DTTM`. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> nmbzones(1) >>> zonetype(FIELD) >>> tt(1.0) >>> dttm(-2.0) >>> derived.ttm.update() >>> derived.ttm ttm(-1.0) """ con = self.subpars.pars.control self(con.tt+con.dttm)
python
def update(self): """Update |TTM| based on :math:`TTM = TT+DTTM`. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> nmbzones(1) >>> zonetype(FIELD) >>> tt(1.0) >>> dttm(-2.0) >>> derived.ttm.update() >>> derived.ttm ttm(-1.0) """ con = self.subpars.pars.control self(con.tt+con.dttm)
[ "def", "update", "(", "self", ")", ":", "con", "=", "self", ".", "subpars", ".", "pars", ".", "control", "self", "(", "con", ".", "tt", "+", "con", ".", "dttm", ")" ]
Update |TTM| based on :math:`TTM = TT+DTTM`. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> nmbzones(1) >>> zonetype(FIELD) >>> tt(1.0) >>> dttm(-2.0) >>> derived.ttm.update() >>> derived.ttm ttm(-1.0)
[ "Update", "|TTM|", "based", "on", ":", "math", ":", "TTM", "=", "TT", "+", "DTTM", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/hland/hland_derived.py#L117-L131
hydpy-dev/hydpy
hydpy/models/hland/hland_derived.py
UH.update
def update(self): """Update |UH| based on |MaxBaz|. .. note:: This method also updates the shape of log sequence |QUH|. |MaxBaz| determines the end point of the triangle. A value of |MaxBaz| being not larger than the simulation step size is identical with applying no unit hydrograph at all: >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> simulationstep('12h') >>> maxbaz(0.0) >>> derived.uh.update() >>> logs.quh.shape (1,) >>> derived.uh uh(1.0) Note that, due to difference of the parameter and the simulation step size in the given example, the largest assignment resulting in a `inactive` unit hydrograph is 1/2: >>> maxbaz(0.5) >>> derived.uh.update() >>> logs.quh.shape (1,) >>> derived.uh uh(1.0) When |MaxBaz| is in accordance with two simulation steps, both unit hydrograph ordinats must be 1/2 due to symmetry of the triangle: >>> maxbaz(1.0) >>> derived.uh.update() >>> logs.quh.shape (2,) >>> derived.uh uh(0.5) >>> derived.uh.values array([ 0.5, 0.5]) A |MaxBaz| value in accordance with three simulation steps results in the ordinate values 2/9, 5/9, and 2/9: >>> maxbaz(1.5) >>> derived.uh.update() >>> logs.quh.shape (3,) >>> derived.uh uh(0.222222, 0.555556, 0.222222) And a final example, where the end of the triangle lies within a simulation step, resulting in the fractions 8/49, 23/49, 16/49, and 2/49: >>> maxbaz(1.75) >>> derived.uh.update() >>> logs.quh.shape (4,) >>> derived.uh uh(0.163265, 0.469388, 0.326531, 0.040816) """ maxbaz = self.subpars.pars.control.maxbaz.value quh = self.subpars.pars.model.sequences.logs.quh # Determine UH parameters... if maxbaz <= 1.: # ...when MaxBaz smaller than or equal to the simulation time step. self.shape = 1 self(1.) quh.shape = 1 else: # ...when MaxBaz is greater than the simulation time step. # Define some shortcuts for the following calculations. full = maxbaz # Now comes a terrible trick due to rounding problems coming from # the conversation of the SMHI parameter set to the HydPy # parameter set. Time to get rid of it... if (full % 1.) < 1e-4: full //= 1. full_f = int(numpy.floor(full)) full_c = int(numpy.ceil(full)) half = full/2. half_f = int(numpy.floor(half)) half_c = int(numpy.ceil(half)) full_2 = full**2. # Calculate the triangle ordinate(s)... self.shape = full_c uh = self.values quh.shape = full_c # ...of the rising limb. points = numpy.arange(1, half_f+1) uh[:half_f] = (2.*points-1.)/(2.*full_2) # ...around the peak (if it exists). if numpy.mod(half, 1.) != 0.: uh[half_f] = ( (half_c-half)/full + (2*half**2.-half_f**2.-half_c**2.)/(2.*full_2)) # ...of the falling limb (eventually except the last one). points = numpy.arange(half_c+1., full_f+1.) uh[half_c:full_f] = 1./full-(2.*points-1.)/(2.*full_2) # ...at the end (if not already done). if numpy.mod(full, 1.) != 0.: uh[full_f] = ( (full-full_f)/full-(full_2-full_f**2.)/(2.*full_2)) # Normalize the ordinates. self(uh/numpy.sum(uh))
python
def update(self): """Update |UH| based on |MaxBaz|. .. note:: This method also updates the shape of log sequence |QUH|. |MaxBaz| determines the end point of the triangle. A value of |MaxBaz| being not larger than the simulation step size is identical with applying no unit hydrograph at all: >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> simulationstep('12h') >>> maxbaz(0.0) >>> derived.uh.update() >>> logs.quh.shape (1,) >>> derived.uh uh(1.0) Note that, due to difference of the parameter and the simulation step size in the given example, the largest assignment resulting in a `inactive` unit hydrograph is 1/2: >>> maxbaz(0.5) >>> derived.uh.update() >>> logs.quh.shape (1,) >>> derived.uh uh(1.0) When |MaxBaz| is in accordance with two simulation steps, both unit hydrograph ordinats must be 1/2 due to symmetry of the triangle: >>> maxbaz(1.0) >>> derived.uh.update() >>> logs.quh.shape (2,) >>> derived.uh uh(0.5) >>> derived.uh.values array([ 0.5, 0.5]) A |MaxBaz| value in accordance with three simulation steps results in the ordinate values 2/9, 5/9, and 2/9: >>> maxbaz(1.5) >>> derived.uh.update() >>> logs.quh.shape (3,) >>> derived.uh uh(0.222222, 0.555556, 0.222222) And a final example, where the end of the triangle lies within a simulation step, resulting in the fractions 8/49, 23/49, 16/49, and 2/49: >>> maxbaz(1.75) >>> derived.uh.update() >>> logs.quh.shape (4,) >>> derived.uh uh(0.163265, 0.469388, 0.326531, 0.040816) """ maxbaz = self.subpars.pars.control.maxbaz.value quh = self.subpars.pars.model.sequences.logs.quh # Determine UH parameters... if maxbaz <= 1.: # ...when MaxBaz smaller than or equal to the simulation time step. self.shape = 1 self(1.) quh.shape = 1 else: # ...when MaxBaz is greater than the simulation time step. # Define some shortcuts for the following calculations. full = maxbaz # Now comes a terrible trick due to rounding problems coming from # the conversation of the SMHI parameter set to the HydPy # parameter set. Time to get rid of it... if (full % 1.) < 1e-4: full //= 1. full_f = int(numpy.floor(full)) full_c = int(numpy.ceil(full)) half = full/2. half_f = int(numpy.floor(half)) half_c = int(numpy.ceil(half)) full_2 = full**2. # Calculate the triangle ordinate(s)... self.shape = full_c uh = self.values quh.shape = full_c # ...of the rising limb. points = numpy.arange(1, half_f+1) uh[:half_f] = (2.*points-1.)/(2.*full_2) # ...around the peak (if it exists). if numpy.mod(half, 1.) != 0.: uh[half_f] = ( (half_c-half)/full + (2*half**2.-half_f**2.-half_c**2.)/(2.*full_2)) # ...of the falling limb (eventually except the last one). points = numpy.arange(half_c+1., full_f+1.) uh[half_c:full_f] = 1./full-(2.*points-1.)/(2.*full_2) # ...at the end (if not already done). if numpy.mod(full, 1.) != 0.: uh[full_f] = ( (full-full_f)/full-(full_2-full_f**2.)/(2.*full_2)) # Normalize the ordinates. self(uh/numpy.sum(uh))
[ "def", "update", "(", "self", ")", ":", "maxbaz", "=", "self", ".", "subpars", ".", "pars", ".", "control", ".", "maxbaz", ".", "value", "quh", "=", "self", ".", "subpars", ".", "pars", ".", "model", ".", "sequences", ".", "logs", ".", "quh", "# Determine UH parameters...", "if", "maxbaz", "<=", "1.", ":", "# ...when MaxBaz smaller than or equal to the simulation time step.", "self", ".", "shape", "=", "1", "self", "(", "1.", ")", "quh", ".", "shape", "=", "1", "else", ":", "# ...when MaxBaz is greater than the simulation time step.", "# Define some shortcuts for the following calculations.", "full", "=", "maxbaz", "# Now comes a terrible trick due to rounding problems coming from", "# the conversation of the SMHI parameter set to the HydPy", "# parameter set. Time to get rid of it...", "if", "(", "full", "%", "1.", ")", "<", "1e-4", ":", "full", "//=", "1.", "full_f", "=", "int", "(", "numpy", ".", "floor", "(", "full", ")", ")", "full_c", "=", "int", "(", "numpy", ".", "ceil", "(", "full", ")", ")", "half", "=", "full", "/", "2.", "half_f", "=", "int", "(", "numpy", ".", "floor", "(", "half", ")", ")", "half_c", "=", "int", "(", "numpy", ".", "ceil", "(", "half", ")", ")", "full_2", "=", "full", "**", "2.", "# Calculate the triangle ordinate(s)...", "self", ".", "shape", "=", "full_c", "uh", "=", "self", ".", "values", "quh", ".", "shape", "=", "full_c", "# ...of the rising limb.", "points", "=", "numpy", ".", "arange", "(", "1", ",", "half_f", "+", "1", ")", "uh", "[", ":", "half_f", "]", "=", "(", "2.", "*", "points", "-", "1.", ")", "/", "(", "2.", "*", "full_2", ")", "# ...around the peak (if it exists).", "if", "numpy", ".", "mod", "(", "half", ",", "1.", ")", "!=", "0.", ":", "uh", "[", "half_f", "]", "=", "(", "(", "half_c", "-", "half", ")", "/", "full", "+", "(", "2", "*", "half", "**", "2.", "-", "half_f", "**", "2.", "-", "half_c", "**", "2.", ")", "/", "(", "2.", "*", "full_2", ")", ")", "# ...of the falling limb (eventually except the last one).", "points", "=", "numpy", ".", "arange", "(", "half_c", "+", "1.", ",", "full_f", "+", "1.", ")", "uh", "[", "half_c", ":", "full_f", "]", "=", "1.", "/", "full", "-", "(", "2.", "*", "points", "-", "1.", ")", "/", "(", "2.", "*", "full_2", ")", "# ...at the end (if not already done).", "if", "numpy", ".", "mod", "(", "full", ",", "1.", ")", "!=", "0.", ":", "uh", "[", "full_f", "]", "=", "(", "(", "full", "-", "full_f", ")", "/", "full", "-", "(", "full_2", "-", "full_f", "**", "2.", ")", "/", "(", "2.", "*", "full_2", ")", ")", "# Normalize the ordinates.", "self", "(", "uh", "/", "numpy", ".", "sum", "(", "uh", ")", ")" ]
Update |UH| based on |MaxBaz|. .. note:: This method also updates the shape of log sequence |QUH|. |MaxBaz| determines the end point of the triangle. A value of |MaxBaz| being not larger than the simulation step size is identical with applying no unit hydrograph at all: >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> simulationstep('12h') >>> maxbaz(0.0) >>> derived.uh.update() >>> logs.quh.shape (1,) >>> derived.uh uh(1.0) Note that, due to difference of the parameter and the simulation step size in the given example, the largest assignment resulting in a `inactive` unit hydrograph is 1/2: >>> maxbaz(0.5) >>> derived.uh.update() >>> logs.quh.shape (1,) >>> derived.uh uh(1.0) When |MaxBaz| is in accordance with two simulation steps, both unit hydrograph ordinats must be 1/2 due to symmetry of the triangle: >>> maxbaz(1.0) >>> derived.uh.update() >>> logs.quh.shape (2,) >>> derived.uh uh(0.5) >>> derived.uh.values array([ 0.5, 0.5]) A |MaxBaz| value in accordance with three simulation steps results in the ordinate values 2/9, 5/9, and 2/9: >>> maxbaz(1.5) >>> derived.uh.update() >>> logs.quh.shape (3,) >>> derived.uh uh(0.222222, 0.555556, 0.222222) And a final example, where the end of the triangle lies within a simulation step, resulting in the fractions 8/49, 23/49, 16/49, and 2/49: >>> maxbaz(1.75) >>> derived.uh.update() >>> logs.quh.shape (4,) >>> derived.uh uh(0.163265, 0.469388, 0.326531, 0.040816)
[ "Update", "|UH|", "based", "on", "|MaxBaz|", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/hland/hland_derived.py#L168-L277
hydpy-dev/hydpy
hydpy/models/hland/hland_derived.py
QFactor.update
def update(self): """Update |QFactor| based on |Area| and the current simulation step size. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> simulationstep('12h') >>> area(50.0) >>> derived.qfactor.update() >>> derived.qfactor qfactor(1.157407) """ self(self.subpars.pars.control.area*1000. / self.subpars.qfactor.simulationstep.seconds)
python
def update(self): """Update |QFactor| based on |Area| and the current simulation step size. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> simulationstep('12h') >>> area(50.0) >>> derived.qfactor.update() >>> derived.qfactor qfactor(1.157407) """ self(self.subpars.pars.control.area*1000. / self.subpars.qfactor.simulationstep.seconds)
[ "def", "update", "(", "self", ")", ":", "self", "(", "self", ".", "subpars", ".", "pars", ".", "control", ".", "area", "*", "1000.", "/", "self", ".", "subpars", ".", "qfactor", ".", "simulationstep", ".", "seconds", ")" ]
Update |QFactor| based on |Area| and the current simulation step size. >>> from hydpy.models.hland import * >>> parameterstep('1d') >>> simulationstep('12h') >>> area(50.0) >>> derived.qfactor.update() >>> derived.qfactor qfactor(1.157407)
[ "Update", "|QFactor|", "based", "on", "|Area|", "and", "the", "current", "simulation", "step", "size", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/hland/hland_derived.py#L284-L297
hydpy-dev/hydpy
hydpy/auxs/anntools.py
ANN.nmb_neurons
def nmb_neurons(self) -> Tuple[int, ...]: """Number of neurons of the hidden layers. >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3) >>> ann.nmb_neurons (2, 1) >>> ann.nmb_neurons = (3,) >>> ann.nmb_neurons (3,) >>> del ann.nmb_neurons >>> ann.nmb_neurons Traceback (most recent call last): ... hydpy.core.exceptiontools.AttributeNotReady: Attribute `nmb_neurons` \ of object `ann` has not been prepared so far. """ return tuple(numpy.asarray(self._cann.nmb_neurons))
python
def nmb_neurons(self) -> Tuple[int, ...]: """Number of neurons of the hidden layers. >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3) >>> ann.nmb_neurons (2, 1) >>> ann.nmb_neurons = (3,) >>> ann.nmb_neurons (3,) >>> del ann.nmb_neurons >>> ann.nmb_neurons Traceback (most recent call last): ... hydpy.core.exceptiontools.AttributeNotReady: Attribute `nmb_neurons` \ of object `ann` has not been prepared so far. """ return tuple(numpy.asarray(self._cann.nmb_neurons))
[ "def", "nmb_neurons", "(", "self", ")", "->", "Tuple", "[", "int", ",", "...", "]", ":", "return", "tuple", "(", "numpy", ".", "asarray", "(", "self", ".", "_cann", ".", "nmb_neurons", ")", ")" ]
Number of neurons of the hidden layers. >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=2, nmb_neurons=(2, 1), nmb_outputs=3) >>> ann.nmb_neurons (2, 1) >>> ann.nmb_neurons = (3,) >>> ann.nmb_neurons (3,) >>> del ann.nmb_neurons >>> ann.nmb_neurons Traceback (most recent call last): ... hydpy.core.exceptiontools.AttributeNotReady: Attribute `nmb_neurons` \ of object `ann` has not been prepared so far.
[ "Number", "of", "neurons", "of", "the", "hidden", "layers", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L366-L384
hydpy-dev/hydpy
hydpy/auxs/anntools.py
ANN.shape_weights_hidden
def shape_weights_hidden(self) -> Tuple[int, int, int]: """Shape of the array containing the activation of the hidden neurons. The first integer value is the number of connection between the hidden layers, the second integer value is maximum number of neurons of all hidden layers feeding information into another hidden layer (all except the last one), and the third integer value is the maximum number of the neurons of all hidden layers receiving information from another hidden layer (all except the first one): >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=6, nmb_neurons=(4, 3, 2), nmb_outputs=6) >>> ann.shape_weights_hidden (2, 4, 3) >>> ann(nmb_inputs=6, nmb_neurons=(4,), nmb_outputs=6) >>> ann.shape_weights_hidden (0, 0, 0) """ if self.nmb_layers > 1: nmb_neurons = self.nmb_neurons return (self.nmb_layers-1, max(nmb_neurons[:-1]), max(nmb_neurons[1:])) return 0, 0, 0
python
def shape_weights_hidden(self) -> Tuple[int, int, int]: """Shape of the array containing the activation of the hidden neurons. The first integer value is the number of connection between the hidden layers, the second integer value is maximum number of neurons of all hidden layers feeding information into another hidden layer (all except the last one), and the third integer value is the maximum number of the neurons of all hidden layers receiving information from another hidden layer (all except the first one): >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=6, nmb_neurons=(4, 3, 2), nmb_outputs=6) >>> ann.shape_weights_hidden (2, 4, 3) >>> ann(nmb_inputs=6, nmb_neurons=(4,), nmb_outputs=6) >>> ann.shape_weights_hidden (0, 0, 0) """ if self.nmb_layers > 1: nmb_neurons = self.nmb_neurons return (self.nmb_layers-1, max(nmb_neurons[:-1]), max(nmb_neurons[1:])) return 0, 0, 0
[ "def", "shape_weights_hidden", "(", "self", ")", "->", "Tuple", "[", "int", ",", "int", ",", "int", "]", ":", "if", "self", ".", "nmb_layers", ">", "1", ":", "nmb_neurons", "=", "self", ".", "nmb_neurons", "return", "(", "self", ".", "nmb_layers", "-", "1", ",", "max", "(", "nmb_neurons", "[", ":", "-", "1", "]", ")", ",", "max", "(", "nmb_neurons", "[", "1", ":", "]", ")", ")", "return", "0", ",", "0", ",", "0" ]
Shape of the array containing the activation of the hidden neurons. The first integer value is the number of connection between the hidden layers, the second integer value is maximum number of neurons of all hidden layers feeding information into another hidden layer (all except the last one), and the third integer value is the maximum number of the neurons of all hidden layers receiving information from another hidden layer (all except the first one): >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=6, nmb_neurons=(4, 3, 2), nmb_outputs=6) >>> ann.shape_weights_hidden (2, 4, 3) >>> ann(nmb_inputs=6, nmb_neurons=(4,), nmb_outputs=6) >>> ann.shape_weights_hidden (0, 0, 0)
[ "Shape", "of", "the", "array", "containing", "the", "activation", "of", "the", "hidden", "neurons", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L537-L562
hydpy-dev/hydpy
hydpy/auxs/anntools.py
ANN.nmb_weights_hidden
def nmb_weights_hidden(self) -> int: """Number of hidden weights. >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=2, nmb_neurons=(4, 3, 2), nmb_outputs=3) >>> ann.nmb_weights_hidden 18 """ nmb = 0 for idx_layer in range(self.nmb_layers-1): nmb += self.nmb_neurons[idx_layer] * self.nmb_neurons[idx_layer+1] return nmb
python
def nmb_weights_hidden(self) -> int: """Number of hidden weights. >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=2, nmb_neurons=(4, 3, 2), nmb_outputs=3) >>> ann.nmb_weights_hidden 18 """ nmb = 0 for idx_layer in range(self.nmb_layers-1): nmb += self.nmb_neurons[idx_layer] * self.nmb_neurons[idx_layer+1] return nmb
[ "def", "nmb_weights_hidden", "(", "self", ")", "->", "int", ":", "nmb", "=", "0", "for", "idx_layer", "in", "range", "(", "self", ".", "nmb_layers", "-", "1", ")", ":", "nmb", "+=", "self", ".", "nmb_neurons", "[", "idx_layer", "]", "*", "self", ".", "nmb_neurons", "[", "idx_layer", "+", "1", "]", "return", "nmb" ]
Number of hidden weights. >>> from hydpy import ANN >>> ann = ANN(None) >>> ann(nmb_inputs=2, nmb_neurons=(4, 3, 2), nmb_outputs=3) >>> ann.nmb_weights_hidden 18
[ "Number", "of", "hidden", "weights", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L565-L577
hydpy-dev/hydpy
hydpy/auxs/anntools.py
ANN.verify
def verify(self) -> None: """Raise a |RuntimeError| if the network's shape is not defined completely. >>> from hydpy import ANN >>> ANN(None).verify() Traceback (most recent call last): ... RuntimeError: The shape of the the artificial neural network \ parameter `ann` of element `?` has not been defined so far. """ if not self.__protectedproperties.allready(self): raise RuntimeError( 'The shape of the the artificial neural network ' 'parameter %s has not been defined so far.' % objecttools.elementphrase(self))
python
def verify(self) -> None: """Raise a |RuntimeError| if the network's shape is not defined completely. >>> from hydpy import ANN >>> ANN(None).verify() Traceback (most recent call last): ... RuntimeError: The shape of the the artificial neural network \ parameter `ann` of element `?` has not been defined so far. """ if not self.__protectedproperties.allready(self): raise RuntimeError( 'The shape of the the artificial neural network ' 'parameter %s has not been defined so far.' % objecttools.elementphrase(self))
[ "def", "verify", "(", "self", ")", "->", "None", ":", "if", "not", "self", ".", "__protectedproperties", ".", "allready", "(", "self", ")", ":", "raise", "RuntimeError", "(", "'The shape of the the artificial neural network '", "'parameter %s has not been defined so far.'", "%", "objecttools", ".", "elementphrase", "(", "self", ")", ")" ]
Raise a |RuntimeError| if the network's shape is not defined completely. >>> from hydpy import ANN >>> ANN(None).verify() Traceback (most recent call last): ... RuntimeError: The shape of the the artificial neural network \ parameter `ann` of element `?` has not been defined so far.
[ "Raise", "a", "|RuntimeError|", "if", "the", "network", "s", "shape", "is", "not", "defined", "completely", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L788-L803
hydpy-dev/hydpy
hydpy/auxs/anntools.py
ANN.assignrepr
def assignrepr(self, prefix) -> str: """Return a string representation of the actual |anntools.ANN| object that is prefixed with the given string.""" prefix = '%s%s(' % (prefix, self.name) blanks = len(prefix)*' ' lines = [ objecttools.assignrepr_value( self.nmb_inputs, '%snmb_inputs=' % prefix)+',', objecttools.assignrepr_tuple( self.nmb_neurons, '%snmb_neurons=' % blanks)+',', objecttools.assignrepr_value( self.nmb_outputs, '%snmb_outputs=' % blanks)+',', objecttools.assignrepr_list2( self.weights_input, '%sweights_input=' % blanks)+','] if self.nmb_layers > 1: lines.append(objecttools.assignrepr_list3( self.weights_hidden, '%sweights_hidden=' % blanks)+',') lines.append(objecttools.assignrepr_list2( self.weights_output, '%sweights_output=' % blanks)+',') lines.append(objecttools.assignrepr_list2( self.intercepts_hidden, '%sintercepts_hidden=' % blanks)+',') lines.append(objecttools.assignrepr_list( self.intercepts_output, '%sintercepts_output=' % blanks)+')') return '\n'.join(lines)
python
def assignrepr(self, prefix) -> str: """Return a string representation of the actual |anntools.ANN| object that is prefixed with the given string.""" prefix = '%s%s(' % (prefix, self.name) blanks = len(prefix)*' ' lines = [ objecttools.assignrepr_value( self.nmb_inputs, '%snmb_inputs=' % prefix)+',', objecttools.assignrepr_tuple( self.nmb_neurons, '%snmb_neurons=' % blanks)+',', objecttools.assignrepr_value( self.nmb_outputs, '%snmb_outputs=' % blanks)+',', objecttools.assignrepr_list2( self.weights_input, '%sweights_input=' % blanks)+','] if self.nmb_layers > 1: lines.append(objecttools.assignrepr_list3( self.weights_hidden, '%sweights_hidden=' % blanks)+',') lines.append(objecttools.assignrepr_list2( self.weights_output, '%sweights_output=' % blanks)+',') lines.append(objecttools.assignrepr_list2( self.intercepts_hidden, '%sintercepts_hidden=' % blanks)+',') lines.append(objecttools.assignrepr_list( self.intercepts_output, '%sintercepts_output=' % blanks)+')') return '\n'.join(lines)
[ "def", "assignrepr", "(", "self", ",", "prefix", ")", "->", "str", ":", "prefix", "=", "'%s%s('", "%", "(", "prefix", ",", "self", ".", "name", ")", "blanks", "=", "len", "(", "prefix", ")", "*", "' '", "lines", "=", "[", "objecttools", ".", "assignrepr_value", "(", "self", ".", "nmb_inputs", ",", "'%snmb_inputs='", "%", "prefix", ")", "+", "','", ",", "objecttools", ".", "assignrepr_tuple", "(", "self", ".", "nmb_neurons", ",", "'%snmb_neurons='", "%", "blanks", ")", "+", "','", ",", "objecttools", ".", "assignrepr_value", "(", "self", ".", "nmb_outputs", ",", "'%snmb_outputs='", "%", "blanks", ")", "+", "','", ",", "objecttools", ".", "assignrepr_list2", "(", "self", ".", "weights_input", ",", "'%sweights_input='", "%", "blanks", ")", "+", "','", "]", "if", "self", ".", "nmb_layers", ">", "1", ":", "lines", ".", "append", "(", "objecttools", ".", "assignrepr_list3", "(", "self", ".", "weights_hidden", ",", "'%sweights_hidden='", "%", "blanks", ")", "+", "','", ")", "lines", ".", "append", "(", "objecttools", ".", "assignrepr_list2", "(", "self", ".", "weights_output", ",", "'%sweights_output='", "%", "blanks", ")", "+", "','", ")", "lines", ".", "append", "(", "objecttools", ".", "assignrepr_list2", "(", "self", ".", "intercepts_hidden", ",", "'%sintercepts_hidden='", "%", "blanks", ")", "+", "','", ")", "lines", ".", "append", "(", "objecttools", ".", "assignrepr_list", "(", "self", ".", "intercepts_output", ",", "'%sintercepts_output='", "%", "blanks", ")", "+", "')'", ")", "return", "'\\n'", ".", "join", "(", "lines", ")" ]
Return a string representation of the actual |anntools.ANN| object that is prefixed with the given string.
[ "Return", "a", "string", "representation", "of", "the", "actual", "|anntools", ".", "ANN|", "object", "that", "is", "prefixed", "with", "the", "given", "string", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L805-L828
hydpy-dev/hydpy
hydpy/auxs/anntools.py
ANN.plot
def plot(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs) -> None: """Plot the relationship between a certain input (`idx_input`) and a certain output (`idx_output`) variable described by the actual |anntools.ANN| object. Define the lower and the upper bound of the x axis via arguments `xmin` and `xmax`. The number of plotting points can be modified by argument `points`. Additional `matplotlib` plotting arguments can be passed as keyword arguments. """ xs_ = numpy.linspace(xmin, xmax, points) ys_ = numpy.zeros(xs_.shape) for idx, x__ in enumerate(xs_): self.inputs[idx_input] = x__ self.process_actual_input() ys_[idx] = self.outputs[idx_output] pyplot.plot(xs_, ys_, **kwargs)
python
def plot(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs) -> None: """Plot the relationship between a certain input (`idx_input`) and a certain output (`idx_output`) variable described by the actual |anntools.ANN| object. Define the lower and the upper bound of the x axis via arguments `xmin` and `xmax`. The number of plotting points can be modified by argument `points`. Additional `matplotlib` plotting arguments can be passed as keyword arguments. """ xs_ = numpy.linspace(xmin, xmax, points) ys_ = numpy.zeros(xs_.shape) for idx, x__ in enumerate(xs_): self.inputs[idx_input] = x__ self.process_actual_input() ys_[idx] = self.outputs[idx_output] pyplot.plot(xs_, ys_, **kwargs)
[ "def", "plot", "(", "self", ",", "xmin", ",", "xmax", ",", "idx_input", "=", "0", ",", "idx_output", "=", "0", ",", "points", "=", "100", ",", "*", "*", "kwargs", ")", "->", "None", ":", "xs_", "=", "numpy", ".", "linspace", "(", "xmin", ",", "xmax", ",", "points", ")", "ys_", "=", "numpy", ".", "zeros", "(", "xs_", ".", "shape", ")", "for", "idx", ",", "x__", "in", "enumerate", "(", "xs_", ")", ":", "self", ".", "inputs", "[", "idx_input", "]", "=", "x__", "self", ".", "process_actual_input", "(", ")", "ys_", "[", "idx", "]", "=", "self", ".", "outputs", "[", "idx_output", "]", "pyplot", ".", "plot", "(", "xs_", ",", "ys_", ",", "*", "*", "kwargs", ")" ]
Plot the relationship between a certain input (`idx_input`) and a certain output (`idx_output`) variable described by the actual |anntools.ANN| object. Define the lower and the upper bound of the x axis via arguments `xmin` and `xmax`. The number of plotting points can be modified by argument `points`. Additional `matplotlib` plotting arguments can be passed as keyword arguments.
[ "Plot", "the", "relationship", "between", "a", "certain", "input", "(", "idx_input", ")", "and", "a", "certain", "output", "(", "idx_output", ")", "variable", "described", "by", "the", "actual", "|anntools", ".", "ANN|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L833-L850
hydpy-dev/hydpy
hydpy/auxs/anntools.py
SeasonalANN.refresh
def refresh(self) -> None: """Prepare the actual |anntools.SeasonalANN| object for calculations. Dispite all automated refreshings explained in the general documentation on class |anntools.SeasonalANN|, it is still possible to destroy the inner consistency of a |anntools.SeasonalANN| instance, as it stores its |anntools.ANN| objects by reference. This is shown by the following example: >>> from hydpy import SeasonalANN, ann >>> seasonalann = SeasonalANN(None) >>> seasonalann.simulationstep = '1d' >>> jan = ann(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.0, weights_output=0.0, ... intercepts_hidden=0.0, intercepts_output=1.0) >>> seasonalann(_1_1_12=jan) >>> jan.nmb_inputs, jan.nmb_outputs = 2, 3 >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (1, 1) Due to the C level implementation of the mathematical core of both |anntools.ANN| and |anntools.SeasonalANN| in module |annutils|, such an inconsistency might result in a program crash without any informative error message. Whenever you are afraid some inconsistency might have crept in, and you want to repair it, call method |anntools.SeasonalANN.refresh| explicitly: >>> seasonalann.refresh() >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (2, 3) """ # pylint: disable=unsupported-assignment-operation if self._do_refresh: if self.anns: self.__sann = annutils.SeasonalANN(self.anns) setattr(self.fastaccess, self.name, self._sann) self._set_shape((None, self._sann.nmb_anns)) if self._sann.nmb_anns > 1: self._interp() else: self._sann.ratios[:, 0] = 1. self.verify() else: self.__sann = None
python
def refresh(self) -> None: """Prepare the actual |anntools.SeasonalANN| object for calculations. Dispite all automated refreshings explained in the general documentation on class |anntools.SeasonalANN|, it is still possible to destroy the inner consistency of a |anntools.SeasonalANN| instance, as it stores its |anntools.ANN| objects by reference. This is shown by the following example: >>> from hydpy import SeasonalANN, ann >>> seasonalann = SeasonalANN(None) >>> seasonalann.simulationstep = '1d' >>> jan = ann(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.0, weights_output=0.0, ... intercepts_hidden=0.0, intercepts_output=1.0) >>> seasonalann(_1_1_12=jan) >>> jan.nmb_inputs, jan.nmb_outputs = 2, 3 >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (1, 1) Due to the C level implementation of the mathematical core of both |anntools.ANN| and |anntools.SeasonalANN| in module |annutils|, such an inconsistency might result in a program crash without any informative error message. Whenever you are afraid some inconsistency might have crept in, and you want to repair it, call method |anntools.SeasonalANN.refresh| explicitly: >>> seasonalann.refresh() >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (2, 3) """ # pylint: disable=unsupported-assignment-operation if self._do_refresh: if self.anns: self.__sann = annutils.SeasonalANN(self.anns) setattr(self.fastaccess, self.name, self._sann) self._set_shape((None, self._sann.nmb_anns)) if self._sann.nmb_anns > 1: self._interp() else: self._sann.ratios[:, 0] = 1. self.verify() else: self.__sann = None
[ "def", "refresh", "(", "self", ")", "->", "None", ":", "# pylint: disable=unsupported-assignment-operation", "if", "self", ".", "_do_refresh", ":", "if", "self", ".", "anns", ":", "self", ".", "__sann", "=", "annutils", ".", "SeasonalANN", "(", "self", ".", "anns", ")", "setattr", "(", "self", ".", "fastaccess", ",", "self", ".", "name", ",", "self", ".", "_sann", ")", "self", ".", "_set_shape", "(", "(", "None", ",", "self", ".", "_sann", ".", "nmb_anns", ")", ")", "if", "self", ".", "_sann", ".", "nmb_anns", ">", "1", ":", "self", ".", "_interp", "(", ")", "else", ":", "self", ".", "_sann", ".", "ratios", "[", ":", ",", "0", "]", "=", "1.", "self", ".", "verify", "(", ")", "else", ":", "self", ".", "__sann", "=", "None" ]
Prepare the actual |anntools.SeasonalANN| object for calculations. Dispite all automated refreshings explained in the general documentation on class |anntools.SeasonalANN|, it is still possible to destroy the inner consistency of a |anntools.SeasonalANN| instance, as it stores its |anntools.ANN| objects by reference. This is shown by the following example: >>> from hydpy import SeasonalANN, ann >>> seasonalann = SeasonalANN(None) >>> seasonalann.simulationstep = '1d' >>> jan = ann(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.0, weights_output=0.0, ... intercepts_hidden=0.0, intercepts_output=1.0) >>> seasonalann(_1_1_12=jan) >>> jan.nmb_inputs, jan.nmb_outputs = 2, 3 >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (1, 1) Due to the C level implementation of the mathematical core of both |anntools.ANN| and |anntools.SeasonalANN| in module |annutils|, such an inconsistency might result in a program crash without any informative error message. Whenever you are afraid some inconsistency might have crept in, and you want to repair it, call method |anntools.SeasonalANN.refresh| explicitly: >>> seasonalann.refresh() >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (2, 3)
[ "Prepare", "the", "actual", "|anntools", ".", "SeasonalANN|", "object", "for", "calculations", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L1323-L1370
hydpy-dev/hydpy
hydpy/auxs/anntools.py
SeasonalANN.verify
def verify(self) -> None: """Raise a |RuntimeError| and removes all handled neural networks, if the they are defined inconsistently. Dispite all automated safety checks explained in the general documentation on class |anntools.SeasonalANN|, it is still possible to destroy the inner consistency of a |anntools.SeasonalANN| instance, as it stores its |anntools.ANN| objects by reference. This is shown by the following example: >>> from hydpy import SeasonalANN, ann >>> seasonalann = SeasonalANN(None) >>> seasonalann.simulationstep = '1d' >>> jan = ann(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.0, weights_output=0.0, ... intercepts_hidden=0.0, intercepts_output=1.0) >>> seasonalann(_1_1_12=jan) >>> jan.nmb_inputs, jan.nmb_outputs = 2, 3 >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (1, 1) Due to the C level implementation of the mathematical core of both |anntools.ANN| and |anntools.SeasonalANN| in module |annutils|, such an inconsistency might result in a program crash without any informative error message. Whenever you are afraid some inconsistency might have crept in, and you want to find out if this is actually the case, call method |anntools.SeasonalANN.verify| explicitly: >>> seasonalann.verify() Traceback (most recent call last): ... RuntimeError: The number of input and output values of all neural \ networks contained by a seasonal neural network collection must be \ identical and be known by the containing object. But the seasonal \ neural network collection `seasonalann` of element `?` assumes `1` input \ and `1` output values, while the network corresponding to the time of \ year `toy_1_1_12_0_0` requires `2` input and `3` output values. >>> seasonalann seasonalann() >>> seasonalann.verify() Traceback (most recent call last): ... RuntimeError: Seasonal artificial neural network collections need \ to handle at least one "normal" single neural network, but for the seasonal \ neural network `seasonalann` of element `?` none has been defined so far. """ if not self.anns: self._toy2ann.clear() raise RuntimeError( 'Seasonal artificial neural network collections need ' 'to handle at least one "normal" single neural network, ' 'but for the seasonal neural network `%s` of element ' '`%s` none has been defined so far.' % (self.name, objecttools.devicename(self))) for toy, ann_ in self: ann_.verify() if ((self.nmb_inputs != ann_.nmb_inputs) or (self.nmb_outputs != ann_.nmb_outputs)): self._toy2ann.clear() raise RuntimeError( 'The number of input and output values of all neural ' 'networks contained by a seasonal neural network ' 'collection must be identical and be known by the ' 'containing object. But the seasonal neural ' 'network collection `%s` of element `%s` assumes ' '`%d` input and `%d` output values, while the network ' 'corresponding to the time of year `%s` requires ' '`%d` input and `%d` output values.' % (self.name, objecttools.devicename(self), self.nmb_inputs, self.nmb_outputs, toy, ann_.nmb_inputs, ann_.nmb_outputs))
python
def verify(self) -> None: """Raise a |RuntimeError| and removes all handled neural networks, if the they are defined inconsistently. Dispite all automated safety checks explained in the general documentation on class |anntools.SeasonalANN|, it is still possible to destroy the inner consistency of a |anntools.SeasonalANN| instance, as it stores its |anntools.ANN| objects by reference. This is shown by the following example: >>> from hydpy import SeasonalANN, ann >>> seasonalann = SeasonalANN(None) >>> seasonalann.simulationstep = '1d' >>> jan = ann(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.0, weights_output=0.0, ... intercepts_hidden=0.0, intercepts_output=1.0) >>> seasonalann(_1_1_12=jan) >>> jan.nmb_inputs, jan.nmb_outputs = 2, 3 >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (1, 1) Due to the C level implementation of the mathematical core of both |anntools.ANN| and |anntools.SeasonalANN| in module |annutils|, such an inconsistency might result in a program crash without any informative error message. Whenever you are afraid some inconsistency might have crept in, and you want to find out if this is actually the case, call method |anntools.SeasonalANN.verify| explicitly: >>> seasonalann.verify() Traceback (most recent call last): ... RuntimeError: The number of input and output values of all neural \ networks contained by a seasonal neural network collection must be \ identical and be known by the containing object. But the seasonal \ neural network collection `seasonalann` of element `?` assumes `1` input \ and `1` output values, while the network corresponding to the time of \ year `toy_1_1_12_0_0` requires `2` input and `3` output values. >>> seasonalann seasonalann() >>> seasonalann.verify() Traceback (most recent call last): ... RuntimeError: Seasonal artificial neural network collections need \ to handle at least one "normal" single neural network, but for the seasonal \ neural network `seasonalann` of element `?` none has been defined so far. """ if not self.anns: self._toy2ann.clear() raise RuntimeError( 'Seasonal artificial neural network collections need ' 'to handle at least one "normal" single neural network, ' 'but for the seasonal neural network `%s` of element ' '`%s` none has been defined so far.' % (self.name, objecttools.devicename(self))) for toy, ann_ in self: ann_.verify() if ((self.nmb_inputs != ann_.nmb_inputs) or (self.nmb_outputs != ann_.nmb_outputs)): self._toy2ann.clear() raise RuntimeError( 'The number of input and output values of all neural ' 'networks contained by a seasonal neural network ' 'collection must be identical and be known by the ' 'containing object. But the seasonal neural ' 'network collection `%s` of element `%s` assumes ' '`%d` input and `%d` output values, while the network ' 'corresponding to the time of year `%s` requires ' '`%d` input and `%d` output values.' % (self.name, objecttools.devicename(self), self.nmb_inputs, self.nmb_outputs, toy, ann_.nmb_inputs, ann_.nmb_outputs))
[ "def", "verify", "(", "self", ")", "->", "None", ":", "if", "not", "self", ".", "anns", ":", "self", ".", "_toy2ann", ".", "clear", "(", ")", "raise", "RuntimeError", "(", "'Seasonal artificial neural network collections need '", "'to handle at least one \"normal\" single neural network, '", "'but for the seasonal neural network `%s` of element '", "'`%s` none has been defined so far.'", "%", "(", "self", ".", "name", ",", "objecttools", ".", "devicename", "(", "self", ")", ")", ")", "for", "toy", ",", "ann_", "in", "self", ":", "ann_", ".", "verify", "(", ")", "if", "(", "(", "self", ".", "nmb_inputs", "!=", "ann_", ".", "nmb_inputs", ")", "or", "(", "self", ".", "nmb_outputs", "!=", "ann_", ".", "nmb_outputs", ")", ")", ":", "self", ".", "_toy2ann", ".", "clear", "(", ")", "raise", "RuntimeError", "(", "'The number of input and output values of all neural '", "'networks contained by a seasonal neural network '", "'collection must be identical and be known by the '", "'containing object. But the seasonal neural '", "'network collection `%s` of element `%s` assumes '", "'`%d` input and `%d` output values, while the network '", "'corresponding to the time of year `%s` requires '", "'`%d` input and `%d` output values.'", "%", "(", "self", ".", "name", ",", "objecttools", ".", "devicename", "(", "self", ")", ",", "self", ".", "nmb_inputs", ",", "self", ".", "nmb_outputs", ",", "toy", ",", "ann_", ".", "nmb_inputs", ",", "ann_", ".", "nmb_outputs", ")", ")" ]
Raise a |RuntimeError| and removes all handled neural networks, if the they are defined inconsistently. Dispite all automated safety checks explained in the general documentation on class |anntools.SeasonalANN|, it is still possible to destroy the inner consistency of a |anntools.SeasonalANN| instance, as it stores its |anntools.ANN| objects by reference. This is shown by the following example: >>> from hydpy import SeasonalANN, ann >>> seasonalann = SeasonalANN(None) >>> seasonalann.simulationstep = '1d' >>> jan = ann(nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.0, weights_output=0.0, ... intercepts_hidden=0.0, intercepts_output=1.0) >>> seasonalann(_1_1_12=jan) >>> jan.nmb_inputs, jan.nmb_outputs = 2, 3 >>> jan.nmb_inputs, jan.nmb_outputs (2, 3) >>> seasonalann.nmb_inputs, seasonalann.nmb_outputs (1, 1) Due to the C level implementation of the mathematical core of both |anntools.ANN| and |anntools.SeasonalANN| in module |annutils|, such an inconsistency might result in a program crash without any informative error message. Whenever you are afraid some inconsistency might have crept in, and you want to find out if this is actually the case, call method |anntools.SeasonalANN.verify| explicitly: >>> seasonalann.verify() Traceback (most recent call last): ... RuntimeError: The number of input and output values of all neural \ networks contained by a seasonal neural network collection must be \ identical and be known by the containing object. But the seasonal \ neural network collection `seasonalann` of element `?` assumes `1` input \ and `1` output values, while the network corresponding to the time of \ year `toy_1_1_12_0_0` requires `2` input and `3` output values. >>> seasonalann seasonalann() >>> seasonalann.verify() Traceback (most recent call last): ... RuntimeError: Seasonal artificial neural network collections need \ to handle at least one "normal" single neural network, but for the seasonal \ neural network `seasonalann` of element `?` none has been defined so far.
[ "Raise", "a", "|RuntimeError|", "and", "removes", "all", "handled", "neural", "networks", "if", "the", "they", "are", "defined", "inconsistently", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L1372-L1448
hydpy-dev/hydpy
hydpy/auxs/anntools.py
SeasonalANN.shape
def shape(self) -> Tuple[int, ...]: """The shape of array |anntools.SeasonalANN.ratios|.""" return tuple(int(sub) for sub in self.ratios.shape)
python
def shape(self) -> Tuple[int, ...]: """The shape of array |anntools.SeasonalANN.ratios|.""" return tuple(int(sub) for sub in self.ratios.shape)
[ "def", "shape", "(", "self", ")", "->", "Tuple", "[", "int", ",", "...", "]", ":", "return", "tuple", "(", "int", "(", "sub", ")", "for", "sub", "in", "self", ".", "ratios", ".", "shape", ")" ]
The shape of array |anntools.SeasonalANN.ratios|.
[ "The", "shape", "of", "array", "|anntools", ".", "SeasonalANN", ".", "ratios|", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L1471-L1473
hydpy-dev/hydpy
hydpy/auxs/anntools.py
SeasonalANN._set_shape
def _set_shape(self, shape): """Private on purpose.""" try: shape = (int(shape),) except TypeError: pass shp = list(shape) shp[0] = timetools.Period('366d')/self.simulationstep shp[0] = int(numpy.ceil(round(shp[0], 10))) getattr(self.fastaccess, self.name).ratios = numpy.zeros( shp, dtype=float)
python
def _set_shape(self, shape): """Private on purpose.""" try: shape = (int(shape),) except TypeError: pass shp = list(shape) shp[0] = timetools.Period('366d')/self.simulationstep shp[0] = int(numpy.ceil(round(shp[0], 10))) getattr(self.fastaccess, self.name).ratios = numpy.zeros( shp, dtype=float)
[ "def", "_set_shape", "(", "self", ",", "shape", ")", ":", "try", ":", "shape", "=", "(", "int", "(", "shape", ")", ",", ")", "except", "TypeError", ":", "pass", "shp", "=", "list", "(", "shape", ")", "shp", "[", "0", "]", "=", "timetools", ".", "Period", "(", "'366d'", ")", "/", "self", ".", "simulationstep", "shp", "[", "0", "]", "=", "int", "(", "numpy", ".", "ceil", "(", "round", "(", "shp", "[", "0", "]", ",", "10", ")", ")", ")", "getattr", "(", "self", ".", "fastaccess", ",", "self", ".", "name", ")", ".", "ratios", "=", "numpy", ".", "zeros", "(", "shp", ",", "dtype", "=", "float", ")" ]
Private on purpose.
[ "Private", "on", "purpose", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L1475-L1485
hydpy-dev/hydpy
hydpy/auxs/anntools.py
SeasonalANN.toys
def toys(self) -> Tuple[timetools.TOY, ...]: """A sorted |tuple| of all contained |TOY| objects.""" return tuple(toy for (toy, _) in self)
python
def toys(self) -> Tuple[timetools.TOY, ...]: """A sorted |tuple| of all contained |TOY| objects.""" return tuple(toy for (toy, _) in self)
[ "def", "toys", "(", "self", ")", "->", "Tuple", "[", "timetools", ".", "TOY", ",", "...", "]", ":", "return", "tuple", "(", "toy", "for", "(", "toy", ",", "_", ")", "in", "self", ")" ]
A sorted |tuple| of all contained |TOY| objects.
[ "A", "sorted", "|tuple|", "of", "all", "contained", "|TOY|", "objects", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L1488-L1490
hydpy-dev/hydpy
hydpy/auxs/anntools.py
SeasonalANN.plot
def plot(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs) -> None: """Call method |anntools.ANN.plot| of all |anntools.ANN| objects handled by the actual |anntools.SeasonalANN| object. """ for toy, ann_ in self: ann_.plot(xmin, xmax, idx_input=idx_input, idx_output=idx_output, points=points, label=str(toy), **kwargs) pyplot.legend()
python
def plot(self, xmin, xmax, idx_input=0, idx_output=0, points=100, **kwargs) -> None: """Call method |anntools.ANN.plot| of all |anntools.ANN| objects handled by the actual |anntools.SeasonalANN| object. """ for toy, ann_ in self: ann_.plot(xmin, xmax, idx_input=idx_input, idx_output=idx_output, points=points, label=str(toy), **kwargs) pyplot.legend()
[ "def", "plot", "(", "self", ",", "xmin", ",", "xmax", ",", "idx_input", "=", "0", ",", "idx_output", "=", "0", ",", "points", "=", "100", ",", "*", "*", "kwargs", ")", "->", "None", ":", "for", "toy", ",", "ann_", "in", "self", ":", "ann_", ".", "plot", "(", "xmin", ",", "xmax", ",", "idx_input", "=", "idx_input", ",", "idx_output", "=", "idx_output", ",", "points", "=", "points", ",", "label", "=", "str", "(", "toy", ")", ",", "*", "*", "kwargs", ")", "pyplot", ".", "legend", "(", ")" ]
Call method |anntools.ANN.plot| of all |anntools.ANN| objects handled by the actual |anntools.SeasonalANN| object.
[ "Call", "method", "|anntools", ".", "ANN", ".", "plot|", "of", "all", "|anntools", ".", "ANN|", "objects", "handled", "by", "the", "actual", "|anntools", ".", "SeasonalANN|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/auxs/anntools.py#L1539-L1550
hydpy-dev/hydpy
hydpy/core/itemtools.py
ExchangeSpecification.specstring
def specstring(self): """The string corresponding to the current values of `subgroup`, `state`, and `variable`. >>> from hydpy.core.itemtools import ExchangeSpecification >>> spec = ExchangeSpecification('hland_v1', 'fluxes.qt') >>> spec.specstring 'fluxes.qt' >>> spec.series = True >>> spec.specstring 'fluxes.qt.series' >>> spec.subgroup = None >>> spec.specstring 'qt.series' """ if self.subgroup is None: variable = self.variable else: variable = f'{self.subgroup}.{self.variable}' if self.series: variable = f'{variable}.series' return variable
python
def specstring(self): """The string corresponding to the current values of `subgroup`, `state`, and `variable`. >>> from hydpy.core.itemtools import ExchangeSpecification >>> spec = ExchangeSpecification('hland_v1', 'fluxes.qt') >>> spec.specstring 'fluxes.qt' >>> spec.series = True >>> spec.specstring 'fluxes.qt.series' >>> spec.subgroup = None >>> spec.specstring 'qt.series' """ if self.subgroup is None: variable = self.variable else: variable = f'{self.subgroup}.{self.variable}' if self.series: variable = f'{variable}.series' return variable
[ "def", "specstring", "(", "self", ")", ":", "if", "self", ".", "subgroup", "is", "None", ":", "variable", "=", "self", ".", "variable", "else", ":", "variable", "=", "f'{self.subgroup}.{self.variable}'", "if", "self", ".", "series", ":", "variable", "=", "f'{variable}.series'", "return", "variable" ]
The string corresponding to the current values of `subgroup`, `state`, and `variable`. >>> from hydpy.core.itemtools import ExchangeSpecification >>> spec = ExchangeSpecification('hland_v1', 'fluxes.qt') >>> spec.specstring 'fluxes.qt' >>> spec.series = True >>> spec.specstring 'fluxes.qt.series' >>> spec.subgroup = None >>> spec.specstring 'qt.series'
[ "The", "string", "corresponding", "to", "the", "current", "values", "of", "subgroup", "state", "and", "variable", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L60-L81
hydpy-dev/hydpy
hydpy/core/itemtools.py
ExchangeItem.collect_variables
def collect_variables(self, selections) -> None: """Apply method |ExchangeItem.insert_variables| to collect the relevant target variables handled by the devices of the given |Selections| object. We prepare the `LahnH` example project to be able to use its |Selections| object: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() We change the type of a specific application model to the type of its base model for reasons explained later: >>> from hydpy.models.hland import Model >>> hp.elements.land_lahn_3.model.__class__ = Model We prepare a |SetItem| as an example, handling all |hland_states.Ic| sequences corresponding to any application models derived from |hland|: >>> from hydpy import SetItem >>> item = SetItem('ic', 'hland', 'states.ic', 0) >>> item.targetspecs ExchangeSpecification('hland', 'states.ic') Applying method |ExchangeItem.collect_variables| connects the |SetItem| object with all four relevant |hland_states.Ic| objects: >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> sequence = land_dill.model.sequences.states.ic >>> item.device2target[land_dill] is sequence True >>> for element in sorted(item.device2target, key=lambda x: x.name): ... print(element) land_dill land_lahn_1 land_lahn_2 land_lahn_3 Asking for |hland_states.Ic| objects corresponding to application model |hland_v1| only, results in skipping the |Element| `land_lahn_3` (handling the |hland| base model due to the hack above): >>> item = SetItem('ic', 'hland_v1', 'states.ic', 0) >>> item.collect_variables(pub.selections) >>> for element in sorted(item.device2target, key=lambda x: x.name): ... print(element) land_dill land_lahn_1 land_lahn_2 Selecting a series of a variable instead of the variable itself only affects the `targetspec` attribute: >>> item = SetItem('t', 'hland_v1', 'inputs.t.series', 0) >>> item.collect_variables(pub.selections) >>> item.targetspecs ExchangeSpecification('hland_v1', 'inputs.t.series') >>> sequence = land_dill.model.sequences.inputs.t >>> item.device2target[land_dill] is sequence True It is both possible to address sequences of |Node| objects, as well as their time series, by arguments "node" and "nodes": >>> item = SetItem('sim', 'node', 'sim', 0) >>> item.collect_variables(pub.selections) >>> dill = hp.nodes.dill >>> item.targetspecs ExchangeSpecification('node', 'sim') >>> item.device2target[dill] is dill.sequences.sim True >>> for node in sorted(item.device2target, key=lambda x: x.name): ... print(node) dill lahn_1 lahn_2 lahn_3 >>> item = SetItem('sim', 'nodes', 'sim.series', 0) >>> item.collect_variables(pub.selections) >>> item.targetspecs ExchangeSpecification('nodes', 'sim.series') >>> for node in sorted(item.device2target, key=lambda x: x.name): ... print(node) dill lahn_1 lahn_2 lahn_3 """ self.insert_variables(self.device2target, self.targetspecs, selections)
python
def collect_variables(self, selections) -> None: """Apply method |ExchangeItem.insert_variables| to collect the relevant target variables handled by the devices of the given |Selections| object. We prepare the `LahnH` example project to be able to use its |Selections| object: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() We change the type of a specific application model to the type of its base model for reasons explained later: >>> from hydpy.models.hland import Model >>> hp.elements.land_lahn_3.model.__class__ = Model We prepare a |SetItem| as an example, handling all |hland_states.Ic| sequences corresponding to any application models derived from |hland|: >>> from hydpy import SetItem >>> item = SetItem('ic', 'hland', 'states.ic', 0) >>> item.targetspecs ExchangeSpecification('hland', 'states.ic') Applying method |ExchangeItem.collect_variables| connects the |SetItem| object with all four relevant |hland_states.Ic| objects: >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> sequence = land_dill.model.sequences.states.ic >>> item.device2target[land_dill] is sequence True >>> for element in sorted(item.device2target, key=lambda x: x.name): ... print(element) land_dill land_lahn_1 land_lahn_2 land_lahn_3 Asking for |hland_states.Ic| objects corresponding to application model |hland_v1| only, results in skipping the |Element| `land_lahn_3` (handling the |hland| base model due to the hack above): >>> item = SetItem('ic', 'hland_v1', 'states.ic', 0) >>> item.collect_variables(pub.selections) >>> for element in sorted(item.device2target, key=lambda x: x.name): ... print(element) land_dill land_lahn_1 land_lahn_2 Selecting a series of a variable instead of the variable itself only affects the `targetspec` attribute: >>> item = SetItem('t', 'hland_v1', 'inputs.t.series', 0) >>> item.collect_variables(pub.selections) >>> item.targetspecs ExchangeSpecification('hland_v1', 'inputs.t.series') >>> sequence = land_dill.model.sequences.inputs.t >>> item.device2target[land_dill] is sequence True It is both possible to address sequences of |Node| objects, as well as their time series, by arguments "node" and "nodes": >>> item = SetItem('sim', 'node', 'sim', 0) >>> item.collect_variables(pub.selections) >>> dill = hp.nodes.dill >>> item.targetspecs ExchangeSpecification('node', 'sim') >>> item.device2target[dill] is dill.sequences.sim True >>> for node in sorted(item.device2target, key=lambda x: x.name): ... print(node) dill lahn_1 lahn_2 lahn_3 >>> item = SetItem('sim', 'nodes', 'sim.series', 0) >>> item.collect_variables(pub.selections) >>> item.targetspecs ExchangeSpecification('nodes', 'sim.series') >>> for node in sorted(item.device2target, key=lambda x: x.name): ... print(node) dill lahn_1 lahn_2 lahn_3 """ self.insert_variables(self.device2target, self.targetspecs, selections)
[ "def", "collect_variables", "(", "self", ",", "selections", ")", "->", "None", ":", "self", ".", "insert_variables", "(", "self", ".", "device2target", ",", "self", ".", "targetspecs", ",", "selections", ")" ]
Apply method |ExchangeItem.insert_variables| to collect the relevant target variables handled by the devices of the given |Selections| object. We prepare the `LahnH` example project to be able to use its |Selections| object: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() We change the type of a specific application model to the type of its base model for reasons explained later: >>> from hydpy.models.hland import Model >>> hp.elements.land_lahn_3.model.__class__ = Model We prepare a |SetItem| as an example, handling all |hland_states.Ic| sequences corresponding to any application models derived from |hland|: >>> from hydpy import SetItem >>> item = SetItem('ic', 'hland', 'states.ic', 0) >>> item.targetspecs ExchangeSpecification('hland', 'states.ic') Applying method |ExchangeItem.collect_variables| connects the |SetItem| object with all four relevant |hland_states.Ic| objects: >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> sequence = land_dill.model.sequences.states.ic >>> item.device2target[land_dill] is sequence True >>> for element in sorted(item.device2target, key=lambda x: x.name): ... print(element) land_dill land_lahn_1 land_lahn_2 land_lahn_3 Asking for |hland_states.Ic| objects corresponding to application model |hland_v1| only, results in skipping the |Element| `land_lahn_3` (handling the |hland| base model due to the hack above): >>> item = SetItem('ic', 'hland_v1', 'states.ic', 0) >>> item.collect_variables(pub.selections) >>> for element in sorted(item.device2target, key=lambda x: x.name): ... print(element) land_dill land_lahn_1 land_lahn_2 Selecting a series of a variable instead of the variable itself only affects the `targetspec` attribute: >>> item = SetItem('t', 'hland_v1', 'inputs.t.series', 0) >>> item.collect_variables(pub.selections) >>> item.targetspecs ExchangeSpecification('hland_v1', 'inputs.t.series') >>> sequence = land_dill.model.sequences.inputs.t >>> item.device2target[land_dill] is sequence True It is both possible to address sequences of |Node| objects, as well as their time series, by arguments "node" and "nodes": >>> item = SetItem('sim', 'node', 'sim', 0) >>> item.collect_variables(pub.selections) >>> dill = hp.nodes.dill >>> item.targetspecs ExchangeSpecification('node', 'sim') >>> item.device2target[dill] is dill.sequences.sim True >>> for node in sorted(item.device2target, key=lambda x: x.name): ... print(node) dill lahn_1 lahn_2 lahn_3 >>> item = SetItem('sim', 'nodes', 'sim.series', 0) >>> item.collect_variables(pub.selections) >>> item.targetspecs ExchangeSpecification('nodes', 'sim.series') >>> for node in sorted(item.device2target, key=lambda x: x.name): ... print(node) dill lahn_1 lahn_2 lahn_3
[ "Apply", "method", "|ExchangeItem", ".", "insert_variables|", "to", "collect", "the", "relevant", "target", "variables", "handled", "by", "the", "devices", "of", "the", "given", "|Selections|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L117-L207
hydpy-dev/hydpy
hydpy/core/itemtools.py
ExchangeItem.insert_variables
def insert_variables( self, device2variable, exchangespec, selections) -> None: """Determine the relevant target or base variables (as defined by the given |ExchangeSpecification| object ) handled by the given |Selections| object and insert them into the given `device2variable` dictionary.""" if self.targetspecs.master in ('node', 'nodes'): for node in selections.nodes: variable = self._query_nodevariable(node, exchangespec) device2variable[node] = variable else: for element in self._iter_relevantelements(selections): variable = self._query_elementvariable(element, exchangespec) device2variable[element] = variable
python
def insert_variables( self, device2variable, exchangespec, selections) -> None: """Determine the relevant target or base variables (as defined by the given |ExchangeSpecification| object ) handled by the given |Selections| object and insert them into the given `device2variable` dictionary.""" if self.targetspecs.master in ('node', 'nodes'): for node in selections.nodes: variable = self._query_nodevariable(node, exchangespec) device2variable[node] = variable else: for element in self._iter_relevantelements(selections): variable = self._query_elementvariable(element, exchangespec) device2variable[element] = variable
[ "def", "insert_variables", "(", "self", ",", "device2variable", ",", "exchangespec", ",", "selections", ")", "->", "None", ":", "if", "self", ".", "targetspecs", ".", "master", "in", "(", "'node'", ",", "'nodes'", ")", ":", "for", "node", "in", "selections", ".", "nodes", ":", "variable", "=", "self", ".", "_query_nodevariable", "(", "node", ",", "exchangespec", ")", "device2variable", "[", "node", "]", "=", "variable", "else", ":", "for", "element", "in", "self", ".", "_iter_relevantelements", "(", "selections", ")", ":", "variable", "=", "self", ".", "_query_elementvariable", "(", "element", ",", "exchangespec", ")", "device2variable", "[", "element", "]", "=", "variable" ]
Determine the relevant target or base variables (as defined by the given |ExchangeSpecification| object ) handled by the given |Selections| object and insert them into the given `device2variable` dictionary.
[ "Determine", "the", "relevant", "target", "or", "base", "variables", "(", "as", "defined", "by", "the", "given", "|ExchangeSpecification|", "object", ")", "handled", "by", "the", "given", "|Selections|", "object", "and", "insert", "them", "into", "the", "given", "device2variable", "dictionary", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L209-L222
hydpy-dev/hydpy
hydpy/core/itemtools.py
ChangeItem.update_variable
def update_variable(self, variable, value) -> None: """Assign the given value(s) to the given target or base variable. If the assignment fails, |ChangeItem.update_variable| raises an error like the following: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> item = SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item.collect_variables(pub.selections) >>> item.update_variables() # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: When trying to update a target variable of SetItem `alpha` \ with the value(s) `None`, the following error occurred: While trying to set \ the value(s) of variable `alpha` of element `...`, the following error \ occurred: The given value `None` cannot be converted to type `float`. """ try: variable(value) except BaseException: objecttools.augment_excmessage( f'When trying to update a target variable of ' f'{objecttools.classname(self)} `{self.name}` ' f'with the value(s) `{value}`')
python
def update_variable(self, variable, value) -> None: """Assign the given value(s) to the given target or base variable. If the assignment fails, |ChangeItem.update_variable| raises an error like the following: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> item = SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item.collect_variables(pub.selections) >>> item.update_variables() # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: When trying to update a target variable of SetItem `alpha` \ with the value(s) `None`, the following error occurred: While trying to set \ the value(s) of variable `alpha` of element `...`, the following error \ occurred: The given value `None` cannot be converted to type `float`. """ try: variable(value) except BaseException: objecttools.augment_excmessage( f'When trying to update a target variable of ' f'{objecttools.classname(self)} `{self.name}` ' f'with the value(s) `{value}`')
[ "def", "update_variable", "(", "self", ",", "variable", ",", "value", ")", "->", "None", ":", "try", ":", "variable", "(", "value", ")", "except", "BaseException", ":", "objecttools", ".", "augment_excmessage", "(", "f'When trying to update a target variable of '", "f'{objecttools.classname(self)} `{self.name}` '", "f'with the value(s) `{value}`'", ")" ]
Assign the given value(s) to the given target or base variable. If the assignment fails, |ChangeItem.update_variable| raises an error like the following: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> item = SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item.collect_variables(pub.selections) >>> item.update_variables() # doctest: +ELLIPSIS Traceback (most recent call last): ... TypeError: When trying to update a target variable of SetItem `alpha` \ with the value(s) `None`, the following error occurred: While trying to set \ the value(s) of variable `alpha` of element `...`, the following error \ occurred: The given value `None` cannot be converted to type `float`.
[ "Assign", "the", "given", "value", "(", "s", ")", "to", "the", "given", "target", "or", "base", "variable", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L329-L353
hydpy-dev/hydpy
hydpy/core/itemtools.py
SetItem.update_variables
def update_variables(self) -> None: """Assign the current objects |ChangeItem.value| to the values of the target variables. We use the `LahnH` project in the following: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() In the first example, a 0-dimensional |SetItem| changes the value of the 0-dimensional parameter |hland_control.Alpha|: >>> from hydpy.core.itemtools import SetItem >>> item = SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item.collect_variables(pub.selections) >>> item.value is None True >>> land_dill = hp.elements.land_dill >>> land_dill.model.parameters.control.alpha alpha(1.0) >>> item.value = 2.0 >>> item.value array(2.0) >>> land_dill.model.parameters.control.alpha alpha(1.0) >>> item.update_variables() >>> land_dill.model.parameters.control.alpha alpha(2.0) In the second example, a 0-dimensional |SetItem| changes the values of the 1-dimensional parameter |hland_control.FC|: >>> item = SetItem('fc', 'hland_v1', 'control.fc', 0) >>> item.collect_variables(pub.selections) >>> item.value = 200.0 >>> land_dill.model.parameters.control.fc fc(278.0) >>> item.update_variables() >>> land_dill.model.parameters.control.fc fc(200.0) In the third example, a 1-dimensional |SetItem| changes the values of the 1-dimensional sequence |hland_states.Ic|: >>> for element in hp.elements.catchment: ... element.model.parameters.control.nmbzones(5) ... element.model.parameters.control.icmax(4.0) >>> item = SetItem('ic', 'hland_v1', 'states.ic', 1) >>> item.collect_variables(pub.selections) >>> land_dill.model.sequences.states.ic ic(nan, nan, nan, nan, nan) >>> item.value = 2.0 >>> item.update_variables() >>> land_dill.model.sequences.states.ic ic(2.0, 2.0, 2.0, 2.0, 2.0) >>> item.value = 1.0, 2.0, 3.0, 4.0, 5.0 >>> item.update_variables() >>> land_dill.model.sequences.states.ic ic(1.0, 2.0, 3.0, 4.0, 4.0) """ value = self.value for variable in self.device2target.values(): self.update_variable(variable, value)
python
def update_variables(self) -> None: """Assign the current objects |ChangeItem.value| to the values of the target variables. We use the `LahnH` project in the following: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() In the first example, a 0-dimensional |SetItem| changes the value of the 0-dimensional parameter |hland_control.Alpha|: >>> from hydpy.core.itemtools import SetItem >>> item = SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item.collect_variables(pub.selections) >>> item.value is None True >>> land_dill = hp.elements.land_dill >>> land_dill.model.parameters.control.alpha alpha(1.0) >>> item.value = 2.0 >>> item.value array(2.0) >>> land_dill.model.parameters.control.alpha alpha(1.0) >>> item.update_variables() >>> land_dill.model.parameters.control.alpha alpha(2.0) In the second example, a 0-dimensional |SetItem| changes the values of the 1-dimensional parameter |hland_control.FC|: >>> item = SetItem('fc', 'hland_v1', 'control.fc', 0) >>> item.collect_variables(pub.selections) >>> item.value = 200.0 >>> land_dill.model.parameters.control.fc fc(278.0) >>> item.update_variables() >>> land_dill.model.parameters.control.fc fc(200.0) In the third example, a 1-dimensional |SetItem| changes the values of the 1-dimensional sequence |hland_states.Ic|: >>> for element in hp.elements.catchment: ... element.model.parameters.control.nmbzones(5) ... element.model.parameters.control.icmax(4.0) >>> item = SetItem('ic', 'hland_v1', 'states.ic', 1) >>> item.collect_variables(pub.selections) >>> land_dill.model.sequences.states.ic ic(nan, nan, nan, nan, nan) >>> item.value = 2.0 >>> item.update_variables() >>> land_dill.model.sequences.states.ic ic(2.0, 2.0, 2.0, 2.0, 2.0) >>> item.value = 1.0, 2.0, 3.0, 4.0, 5.0 >>> item.update_variables() >>> land_dill.model.sequences.states.ic ic(1.0, 2.0, 3.0, 4.0, 4.0) """ value = self.value for variable in self.device2target.values(): self.update_variable(variable, value)
[ "def", "update_variables", "(", "self", ")", "->", "None", ":", "value", "=", "self", ".", "value", "for", "variable", "in", "self", ".", "device2target", ".", "values", "(", ")", ":", "self", ".", "update_variable", "(", "variable", ",", "value", ")" ]
Assign the current objects |ChangeItem.value| to the values of the target variables. We use the `LahnH` project in the following: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() In the first example, a 0-dimensional |SetItem| changes the value of the 0-dimensional parameter |hland_control.Alpha|: >>> from hydpy.core.itemtools import SetItem >>> item = SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item SetItem('alpha', 'hland_v1', 'control.alpha', 0) >>> item.collect_variables(pub.selections) >>> item.value is None True >>> land_dill = hp.elements.land_dill >>> land_dill.model.parameters.control.alpha alpha(1.0) >>> item.value = 2.0 >>> item.value array(2.0) >>> land_dill.model.parameters.control.alpha alpha(1.0) >>> item.update_variables() >>> land_dill.model.parameters.control.alpha alpha(2.0) In the second example, a 0-dimensional |SetItem| changes the values of the 1-dimensional parameter |hland_control.FC|: >>> item = SetItem('fc', 'hland_v1', 'control.fc', 0) >>> item.collect_variables(pub.selections) >>> item.value = 200.0 >>> land_dill.model.parameters.control.fc fc(278.0) >>> item.update_variables() >>> land_dill.model.parameters.control.fc fc(200.0) In the third example, a 1-dimensional |SetItem| changes the values of the 1-dimensional sequence |hland_states.Ic|: >>> for element in hp.elements.catchment: ... element.model.parameters.control.nmbzones(5) ... element.model.parameters.control.icmax(4.0) >>> item = SetItem('ic', 'hland_v1', 'states.ic', 1) >>> item.collect_variables(pub.selections) >>> land_dill.model.sequences.states.ic ic(nan, nan, nan, nan, nan) >>> item.value = 2.0 >>> item.update_variables() >>> land_dill.model.sequences.states.ic ic(2.0, 2.0, 2.0, 2.0, 2.0) >>> item.value = 1.0, 2.0, 3.0, 4.0, 5.0 >>> item.update_variables() >>> land_dill.model.sequences.states.ic ic(1.0, 2.0, 3.0, 4.0, 4.0)
[ "Assign", "the", "current", "objects", "|ChangeItem", ".", "value|", "to", "the", "values", "of", "the", "target", "variables", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L369-L434
hydpy-dev/hydpy
hydpy/core/itemtools.py
MathItem.collect_variables
def collect_variables(self, selections) -> None: """Apply method |ChangeItem.collect_variables| of the base class |ChangeItem| and also apply method |ExchangeItem.insert_variables| of class |ExchangeItem| to collect the relevant base variables handled by the devices of the given |Selections| object. >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy import AddItem >>> item = AddItem( ... 'alpha', 'hland_v1', 'control.sfcf', 'control.rfcf', 0) >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> control = land_dill.model.parameters.control >>> item.device2target[land_dill] is control.sfcf True >>> item.device2base[land_dill] is control.rfcf True >>> for device in sorted(item.device2base, key=lambda x: x.name): ... print(device) land_dill land_lahn_1 land_lahn_2 land_lahn_3 """ super().collect_variables(selections) self.insert_variables(self.device2base, self.basespecs, selections)
python
def collect_variables(self, selections) -> None: """Apply method |ChangeItem.collect_variables| of the base class |ChangeItem| and also apply method |ExchangeItem.insert_variables| of class |ExchangeItem| to collect the relevant base variables handled by the devices of the given |Selections| object. >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy import AddItem >>> item = AddItem( ... 'alpha', 'hland_v1', 'control.sfcf', 'control.rfcf', 0) >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> control = land_dill.model.parameters.control >>> item.device2target[land_dill] is control.sfcf True >>> item.device2base[land_dill] is control.rfcf True >>> for device in sorted(item.device2base, key=lambda x: x.name): ... print(device) land_dill land_lahn_1 land_lahn_2 land_lahn_3 """ super().collect_variables(selections) self.insert_variables(self.device2base, self.basespecs, selections)
[ "def", "collect_variables", "(", "self", ",", "selections", ")", "->", "None", ":", "super", "(", ")", ".", "collect_variables", "(", "selections", ")", "self", ".", "insert_variables", "(", "self", ".", "device2base", ",", "self", ".", "basespecs", ",", "selections", ")" ]
Apply method |ChangeItem.collect_variables| of the base class |ChangeItem| and also apply method |ExchangeItem.insert_variables| of class |ExchangeItem| to collect the relevant base variables handled by the devices of the given |Selections| object. >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy import AddItem >>> item = AddItem( ... 'alpha', 'hland_v1', 'control.sfcf', 'control.rfcf', 0) >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> control = land_dill.model.parameters.control >>> item.device2target[land_dill] is control.sfcf True >>> item.device2base[land_dill] is control.rfcf True >>> for device in sorted(item.device2base, key=lambda x: x.name): ... print(device) land_dill land_lahn_1 land_lahn_2 land_lahn_3
[ "Apply", "method", "|ChangeItem", ".", "collect_variables|", "of", "the", "base", "class", "|ChangeItem|", "and", "also", "apply", "method", "|ExchangeItem", ".", "insert_variables|", "of", "class", "|ExchangeItem|", "to", "collect", "the", "relevant", "base", "variables", "handled", "by", "the", "devices", "of", "the", "given", "|Selections|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L478-L504
hydpy-dev/hydpy
hydpy/core/itemtools.py
AddItem.update_variables
def update_variables(self) -> None: """Add the general |ChangeItem.value| with the |Device| specific base variable and assign the result to the respective target variable. >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.models.hland_v1 import FIELD >>> for element in hp.elements.catchment: ... control = element.model.parameters.control ... control.nmbzones(3) ... control.zonetype(FIELD) ... control.rfcf(1.1) >>> from hydpy.core.itemtools import AddItem >>> item = AddItem( ... 'sfcf', 'hland_v1', 'control.sfcf', 'control.rfcf', 1) >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> land_dill.model.parameters.control.sfcf sfcf(?) >>> item.value = -0.1, 0.0, 0.1 >>> item.update_variables() >>> land_dill.model.parameters.control.sfcf sfcf(1.0, 1.1, 1.2) >>> land_dill.model.parameters.control.rfcf.shape = 2 >>> land_dill.model.parameters.control.rfcf = 1.1 >>> item.update_variables() # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: When trying to add the value(s) `[-0.1 0. 0.1]` of \ AddItem `sfcf` and the value(s) `[ 1.1 1.1]` of variable `rfcf` of element \ `land_dill`, the following error occurred: operands could not be broadcast \ together with shapes (2,) (3,)... """ value = self.value for device, target in self.device2target.items(): base = self.device2base[device] try: result = base.value + value except BaseException: raise objecttools.augment_excmessage( f'When trying to add the value(s) `{value}` of ' f'AddItem `{self.name}` and the value(s) `{base.value}` ' f'of variable {objecttools.devicephrase(base)}') self.update_variable(target, result)
python
def update_variables(self) -> None: """Add the general |ChangeItem.value| with the |Device| specific base variable and assign the result to the respective target variable. >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.models.hland_v1 import FIELD >>> for element in hp.elements.catchment: ... control = element.model.parameters.control ... control.nmbzones(3) ... control.zonetype(FIELD) ... control.rfcf(1.1) >>> from hydpy.core.itemtools import AddItem >>> item = AddItem( ... 'sfcf', 'hland_v1', 'control.sfcf', 'control.rfcf', 1) >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> land_dill.model.parameters.control.sfcf sfcf(?) >>> item.value = -0.1, 0.0, 0.1 >>> item.update_variables() >>> land_dill.model.parameters.control.sfcf sfcf(1.0, 1.1, 1.2) >>> land_dill.model.parameters.control.rfcf.shape = 2 >>> land_dill.model.parameters.control.rfcf = 1.1 >>> item.update_variables() # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: When trying to add the value(s) `[-0.1 0. 0.1]` of \ AddItem `sfcf` and the value(s) `[ 1.1 1.1]` of variable `rfcf` of element \ `land_dill`, the following error occurred: operands could not be broadcast \ together with shapes (2,) (3,)... """ value = self.value for device, target in self.device2target.items(): base = self.device2base[device] try: result = base.value + value except BaseException: raise objecttools.augment_excmessage( f'When trying to add the value(s) `{value}` of ' f'AddItem `{self.name}` and the value(s) `{base.value}` ' f'of variable {objecttools.devicephrase(base)}') self.update_variable(target, result)
[ "def", "update_variables", "(", "self", ")", "->", "None", ":", "value", "=", "self", ".", "value", "for", "device", ",", "target", "in", "self", ".", "device2target", ".", "items", "(", ")", ":", "base", "=", "self", ".", "device2base", "[", "device", "]", "try", ":", "result", "=", "base", ".", "value", "+", "value", "except", "BaseException", ":", "raise", "objecttools", ".", "augment_excmessage", "(", "f'When trying to add the value(s) `{value}` of '", "f'AddItem `{self.name}` and the value(s) `{base.value}` '", "f'of variable {objecttools.devicephrase(base)}'", ")", "self", ".", "update_variable", "(", "target", ",", "result", ")" ]
Add the general |ChangeItem.value| with the |Device| specific base variable and assign the result to the respective target variable. >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.models.hland_v1 import FIELD >>> for element in hp.elements.catchment: ... control = element.model.parameters.control ... control.nmbzones(3) ... control.zonetype(FIELD) ... control.rfcf(1.1) >>> from hydpy.core.itemtools import AddItem >>> item = AddItem( ... 'sfcf', 'hland_v1', 'control.sfcf', 'control.rfcf', 1) >>> item.collect_variables(pub.selections) >>> land_dill = hp.elements.land_dill >>> land_dill.model.parameters.control.sfcf sfcf(?) >>> item.value = -0.1, 0.0, 0.1 >>> item.update_variables() >>> land_dill.model.parameters.control.sfcf sfcf(1.0, 1.1, 1.2) >>> land_dill.model.parameters.control.rfcf.shape = 2 >>> land_dill.model.parameters.control.rfcf = 1.1 >>> item.update_variables() # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: When trying to add the value(s) `[-0.1 0. 0.1]` of \ AddItem `sfcf` and the value(s) `[ 1.1 1.1]` of variable `rfcf` of element \ `land_dill`, the following error occurred: operands could not be broadcast \ together with shapes (2,) (3,)...
[ "Add", "the", "general", "|ChangeItem", ".", "value|", "with", "the", "|Device|", "specific", "base", "variable", "and", "assign", "the", "result", "to", "the", "respective", "target", "variable", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L516-L560
hydpy-dev/hydpy
hydpy/core/itemtools.py
GetItem.collect_variables
def collect_variables(self, selections) -> None: """Apply method |ExchangeItem.collect_variables| of the base class |ExchangeItem| and determine the `ndim` attribute of the current |ChangeItem| object afterwards. The value of `ndim` depends on whether the values of the target variable or its time series is of interest: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.core.itemtools import SetItem >>> for target in ('states.lz', 'states.lz.series', ... 'states.sm', 'states.sm.series'): ... item = GetItem('hland_v1', target) ... item.collect_variables(pub.selections) ... print(item, item.ndim) GetItem('hland_v1', 'states.lz') 0 GetItem('hland_v1', 'states.lz.series') 1 GetItem('hland_v1', 'states.sm') 1 GetItem('hland_v1', 'states.sm.series') 2 """ super().collect_variables(selections) for device in sorted(self.device2target.keys(), key=lambda x: x.name): self._device2name[device] = f'{device.name}_{self.target}' for target in self.device2target.values(): self.ndim = target.NDIM if self.targetspecs.series: self.ndim += 1 break
python
def collect_variables(self, selections) -> None: """Apply method |ExchangeItem.collect_variables| of the base class |ExchangeItem| and determine the `ndim` attribute of the current |ChangeItem| object afterwards. The value of `ndim` depends on whether the values of the target variable or its time series is of interest: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.core.itemtools import SetItem >>> for target in ('states.lz', 'states.lz.series', ... 'states.sm', 'states.sm.series'): ... item = GetItem('hland_v1', target) ... item.collect_variables(pub.selections) ... print(item, item.ndim) GetItem('hland_v1', 'states.lz') 0 GetItem('hland_v1', 'states.lz.series') 1 GetItem('hland_v1', 'states.sm') 1 GetItem('hland_v1', 'states.sm.series') 2 """ super().collect_variables(selections) for device in sorted(self.device2target.keys(), key=lambda x: x.name): self._device2name[device] = f'{device.name}_{self.target}' for target in self.device2target.values(): self.ndim = target.NDIM if self.targetspecs.series: self.ndim += 1 break
[ "def", "collect_variables", "(", "self", ",", "selections", ")", "->", "None", ":", "super", "(", ")", ".", "collect_variables", "(", "selections", ")", "for", "device", "in", "sorted", "(", "self", ".", "device2target", ".", "keys", "(", ")", ",", "key", "=", "lambda", "x", ":", "x", ".", "name", ")", ":", "self", ".", "_device2name", "[", "device", "]", "=", "f'{device.name}_{self.target}'", "for", "target", "in", "self", ".", "device2target", ".", "values", "(", ")", ":", "self", ".", "ndim", "=", "target", ".", "NDIM", "if", "self", ".", "targetspecs", ".", "series", ":", "self", ".", "ndim", "+=", "1", "break" ]
Apply method |ExchangeItem.collect_variables| of the base class |ExchangeItem| and determine the `ndim` attribute of the current |ChangeItem| object afterwards. The value of `ndim` depends on whether the values of the target variable or its time series is of interest: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.core.itemtools import SetItem >>> for target in ('states.lz', 'states.lz.series', ... 'states.sm', 'states.sm.series'): ... item = GetItem('hland_v1', target) ... item.collect_variables(pub.selections) ... print(item, item.ndim) GetItem('hland_v1', 'states.lz') 0 GetItem('hland_v1', 'states.lz.series') 1 GetItem('hland_v1', 'states.sm') 1 GetItem('hland_v1', 'states.sm.series') 2
[ "Apply", "method", "|ExchangeItem", ".", "collect_variables|", "of", "the", "base", "class", "|ExchangeItem|", "and", "determine", "the", "ndim", "attribute", "of", "the", "current", "|ChangeItem|", "object", "afterwards", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L574-L602
hydpy-dev/hydpy
hydpy/core/itemtools.py
GetItem.yield_name2value
def yield_name2value(self, idx1=None, idx2=None) \ -> Iterator[Tuple[str, str]]: """Sequentially return name-value-pairs describing the current state of the target variables. The names are automatically generated and contain both the name of the |Device| of the respective |Variable| object and the target description: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.core.itemtools import SetItem >>> item = GetItem('hland_v1', 'states.lz') >>> item.collect_variables(pub.selections) >>> hp.elements.land_dill.model.sequences.states.lz = 100.0 >>> for name, value in item.yield_name2value(): ... print(name, value) land_dill_states_lz 100.0 land_lahn_1_states_lz 8.18711 land_lahn_2_states_lz 10.14007 land_lahn_3_states_lz 7.52648 >>> item = GetItem('hland_v1', 'states.sm') >>> item.collect_variables(pub.selections) >>> hp.elements.land_dill.model.sequences.states.sm = 2.0 >>> for name, value in item.yield_name2value(): ... print(name, value) # doctest: +ELLIPSIS land_dill_states_sm [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, \ 2.0, 2.0, 2.0, 2.0] land_lahn_1_states_sm [99.27505, ..., 142.84148] ... When querying time series, one can restrict the span of interest by passing index values: >>> item = GetItem('nodes', 'sim.series') >>> item.collect_variables(pub.selections) >>> hp.nodes.dill.sequences.sim.series = 1.0, 2.0, 3.0, 4.0 >>> for name, value in item.yield_name2value(): ... print(name, value) # doctest: +ELLIPSIS dill_sim_series [1.0, 2.0, 3.0, 4.0] lahn_1_sim_series [nan, ... ... >>> for name, value in item.yield_name2value(2, 3): ... print(name, value) # doctest: +ELLIPSIS dill_sim_series [3.0] lahn_1_sim_series [nan] ... """ for device, name in self._device2name.items(): target = self.device2target[device] if self.targetspecs.series: values = target.series[idx1:idx2] else: values = target.values if self.ndim == 0: values = objecttools.repr_(float(values)) else: values = objecttools.repr_list(values.tolist()) yield name, values
python
def yield_name2value(self, idx1=None, idx2=None) \ -> Iterator[Tuple[str, str]]: """Sequentially return name-value-pairs describing the current state of the target variables. The names are automatically generated and contain both the name of the |Device| of the respective |Variable| object and the target description: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.core.itemtools import SetItem >>> item = GetItem('hland_v1', 'states.lz') >>> item.collect_variables(pub.selections) >>> hp.elements.land_dill.model.sequences.states.lz = 100.0 >>> for name, value in item.yield_name2value(): ... print(name, value) land_dill_states_lz 100.0 land_lahn_1_states_lz 8.18711 land_lahn_2_states_lz 10.14007 land_lahn_3_states_lz 7.52648 >>> item = GetItem('hland_v1', 'states.sm') >>> item.collect_variables(pub.selections) >>> hp.elements.land_dill.model.sequences.states.sm = 2.0 >>> for name, value in item.yield_name2value(): ... print(name, value) # doctest: +ELLIPSIS land_dill_states_sm [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, \ 2.0, 2.0, 2.0, 2.0] land_lahn_1_states_sm [99.27505, ..., 142.84148] ... When querying time series, one can restrict the span of interest by passing index values: >>> item = GetItem('nodes', 'sim.series') >>> item.collect_variables(pub.selections) >>> hp.nodes.dill.sequences.sim.series = 1.0, 2.0, 3.0, 4.0 >>> for name, value in item.yield_name2value(): ... print(name, value) # doctest: +ELLIPSIS dill_sim_series [1.0, 2.0, 3.0, 4.0] lahn_1_sim_series [nan, ... ... >>> for name, value in item.yield_name2value(2, 3): ... print(name, value) # doctest: +ELLIPSIS dill_sim_series [3.0] lahn_1_sim_series [nan] ... """ for device, name in self._device2name.items(): target = self.device2target[device] if self.targetspecs.series: values = target.series[idx1:idx2] else: values = target.values if self.ndim == 0: values = objecttools.repr_(float(values)) else: values = objecttools.repr_list(values.tolist()) yield name, values
[ "def", "yield_name2value", "(", "self", ",", "idx1", "=", "None", ",", "idx2", "=", "None", ")", "->", "Iterator", "[", "Tuple", "[", "str", ",", "str", "]", "]", ":", "for", "device", ",", "name", "in", "self", ".", "_device2name", ".", "items", "(", ")", ":", "target", "=", "self", ".", "device2target", "[", "device", "]", "if", "self", ".", "targetspecs", ".", "series", ":", "values", "=", "target", ".", "series", "[", "idx1", ":", "idx2", "]", "else", ":", "values", "=", "target", ".", "values", "if", "self", ".", "ndim", "==", "0", ":", "values", "=", "objecttools", ".", "repr_", "(", "float", "(", "values", ")", ")", "else", ":", "values", "=", "objecttools", ".", "repr_list", "(", "values", ".", "tolist", "(", ")", ")", "yield", "name", ",", "values" ]
Sequentially return name-value-pairs describing the current state of the target variables. The names are automatically generated and contain both the name of the |Device| of the respective |Variable| object and the target description: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() >>> from hydpy.core.itemtools import SetItem >>> item = GetItem('hland_v1', 'states.lz') >>> item.collect_variables(pub.selections) >>> hp.elements.land_dill.model.sequences.states.lz = 100.0 >>> for name, value in item.yield_name2value(): ... print(name, value) land_dill_states_lz 100.0 land_lahn_1_states_lz 8.18711 land_lahn_2_states_lz 10.14007 land_lahn_3_states_lz 7.52648 >>> item = GetItem('hland_v1', 'states.sm') >>> item.collect_variables(pub.selections) >>> hp.elements.land_dill.model.sequences.states.sm = 2.0 >>> for name, value in item.yield_name2value(): ... print(name, value) # doctest: +ELLIPSIS land_dill_states_sm [2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, \ 2.0, 2.0, 2.0, 2.0] land_lahn_1_states_sm [99.27505, ..., 142.84148] ... When querying time series, one can restrict the span of interest by passing index values: >>> item = GetItem('nodes', 'sim.series') >>> item.collect_variables(pub.selections) >>> hp.nodes.dill.sequences.sim.series = 1.0, 2.0, 3.0, 4.0 >>> for name, value in item.yield_name2value(): ... print(name, value) # doctest: +ELLIPSIS dill_sim_series [1.0, 2.0, 3.0, 4.0] lahn_1_sim_series [nan, ... ... >>> for name, value in item.yield_name2value(2, 3): ... print(name, value) # doctest: +ELLIPSIS dill_sim_series [3.0] lahn_1_sim_series [nan] ...
[ "Sequentially", "return", "name", "-", "value", "-", "pairs", "describing", "the", "current", "state", "of", "the", "target", "variables", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/itemtools.py#L604-L662
arteria/django-openinghours
openinghours/templatetags/openinghours_tags.py
iso_day_to_weekday
def iso_day_to_weekday(d): """ Returns the weekday's name given a ISO weekday number; "today" if today is the same weekday. """ if int(d) == utils.get_now().isoweekday(): return _("today") for w in WEEKDAYS: if w[0] == int(d): return w[1]
python
def iso_day_to_weekday(d): """ Returns the weekday's name given a ISO weekday number; "today" if today is the same weekday. """ if int(d) == utils.get_now().isoweekday(): return _("today") for w in WEEKDAYS: if w[0] == int(d): return w[1]
[ "def", "iso_day_to_weekday", "(", "d", ")", ":", "if", "int", "(", "d", ")", "==", "utils", ".", "get_now", "(", ")", ".", "isoweekday", "(", ")", ":", "return", "_", "(", "\"today\"", ")", "for", "w", "in", "WEEKDAYS", ":", "if", "w", "[", "0", "]", "==", "int", "(", "d", ")", ":", "return", "w", "[", "1", "]" ]
Returns the weekday's name given a ISO weekday number; "today" if today is the same weekday.
[ "Returns", "the", "weekday", "s", "name", "given", "a", "ISO", "weekday", "number", ";", "today", "if", "today", "is", "the", "same", "weekday", "." ]
train
https://github.com/arteria/django-openinghours/blob/6bad47509a14d65a3a5a08777455f4cc8b4961fa/openinghours/templatetags/openinghours_tags.py#L14-L23
arteria/django-openinghours
openinghours/templatetags/openinghours_tags.py
is_open
def is_open(location=None, attr=None): """ Returns False if the location is closed, or the OpeningHours object to show the location is currently open. """ obj = utils.is_open(location) if obj is False: return False if attr is not None: return getattr(obj, attr) return obj
python
def is_open(location=None, attr=None): """ Returns False if the location is closed, or the OpeningHours object to show the location is currently open. """ obj = utils.is_open(location) if obj is False: return False if attr is not None: return getattr(obj, attr) return obj
[ "def", "is_open", "(", "location", "=", "None", ",", "attr", "=", "None", ")", ":", "obj", "=", "utils", ".", "is_open", "(", "location", ")", "if", "obj", "is", "False", ":", "return", "False", "if", "attr", "is", "not", "None", ":", "return", "getattr", "(", "obj", ",", "attr", ")", "return", "obj" ]
Returns False if the location is closed, or the OpeningHours object to show the location is currently open.
[ "Returns", "False", "if", "the", "location", "is", "closed", "or", "the", "OpeningHours", "object", "to", "show", "the", "location", "is", "currently", "open", "." ]
train
https://github.com/arteria/django-openinghours/blob/6bad47509a14d65a3a5a08777455f4cc8b4961fa/openinghours/templatetags/openinghours_tags.py#L39-L49
arteria/django-openinghours
openinghours/templatetags/openinghours_tags.py
is_open_now
def is_open_now(location=None, attr=None): """ Returns False if the location is closed, or the OpeningHours object to show the location is currently open. Same as `is_open` but passes `now` to `utils.is_open` to bypass `get_now()`. """ obj = utils.is_open(location, now=datetime.datetime.now()) if obj is False: return False if attr is not None: return getattr(obj, attr) return obj
python
def is_open_now(location=None, attr=None): """ Returns False if the location is closed, or the OpeningHours object to show the location is currently open. Same as `is_open` but passes `now` to `utils.is_open` to bypass `get_now()`. """ obj = utils.is_open(location, now=datetime.datetime.now()) if obj is False: return False if attr is not None: return getattr(obj, attr) return obj
[ "def", "is_open_now", "(", "location", "=", "None", ",", "attr", "=", "None", ")", ":", "obj", "=", "utils", ".", "is_open", "(", "location", ",", "now", "=", "datetime", ".", "datetime", ".", "now", "(", ")", ")", "if", "obj", "is", "False", ":", "return", "False", "if", "attr", "is", "not", "None", ":", "return", "getattr", "(", "obj", ",", "attr", ")", "return", "obj" ]
Returns False if the location is closed, or the OpeningHours object to show the location is currently open. Same as `is_open` but passes `now` to `utils.is_open` to bypass `get_now()`.
[ "Returns", "False", "if", "the", "location", "is", "closed", "or", "the", "OpeningHours", "object", "to", "show", "the", "location", "is", "currently", "open", ".", "Same", "as", "is_open", "but", "passes", "now", "to", "utils", ".", "is_open", "to", "bypass", "get_now", "()", "." ]
train
https://github.com/arteria/django-openinghours/blob/6bad47509a14d65a3a5a08777455f4cc8b4961fa/openinghours/templatetags/openinghours_tags.py#L53-L64
arteria/django-openinghours
openinghours/templatetags/openinghours_tags.py
opening_hours
def opening_hours(location=None, concise=False): """ Creates a rendered listing of hours. """ template_name = 'openinghours/opening_hours_list.html' days = [] # [{'hours': '9:00am to 5:00pm', 'name': u'Monday'}, {'hours... # Without `location`, choose the first company. if location: ohrs = OpeningHours.objects.filter(company=location) else: try: Location = utils.get_premises_model() ohrs = Location.objects.first().openinghours_set.all() except AttributeError: raise Exception("You must define some opening hours" " to use the opening hours tags.") ohrs.order_by('weekday', 'from_hour') for o in ohrs: days.append({ 'day_number': o.weekday, 'name': o.get_weekday_display(), 'from_hour': o.from_hour, 'to_hour': o.to_hour, 'hours': '%s%s to %s%s' % ( o.from_hour.strftime('%I:%M').lstrip('0'), o.from_hour.strftime('%p').lower(), o.to_hour.strftime('%I:%M').lstrip('0'), o.to_hour.strftime('%p').lower() ) }) open_days = [o.weekday for o in ohrs] for day_number, day_name in WEEKDAYS: if day_number not in open_days: days.append({ 'day_number': day_number, 'name': day_name, 'hours': 'Closed' }) days = sorted(days, key=lambda k: k['day_number']) if concise: # [{'hours': '9:00am to 5:00pm', 'day_names': u'Monday to Friday'}, # {'hours':... template_name = 'openinghours/opening_hours_list_concise.html' concise_days = [] current_set = {} for day in days: if 'hours' not in current_set.keys(): current_set = {'day_names': [day['name']], 'hours': day['hours']} elif day['hours'] != current_set['hours']: concise_days.append(current_set) current_set = {'day_names': [day['name']], 'hours': day['hours']} else: current_set['day_names'].append(day['name']) concise_days.append(current_set) for day_set in concise_days: if len(day_set['day_names']) > 2: day_set['day_names'] = '%s to %s' % (day_set['day_names'][0], day_set['day_names'][-1]) elif len(day_set['day_names']) > 1: day_set['day_names'] = '%s and %s' % (day_set['day_names'][0], day_set['day_names'][-1]) else: day_set['day_names'] = '%s' % day_set['day_names'][0] days = concise_days template = get_template(template_name) return template.render({'days': days})
python
def opening_hours(location=None, concise=False): """ Creates a rendered listing of hours. """ template_name = 'openinghours/opening_hours_list.html' days = [] # [{'hours': '9:00am to 5:00pm', 'name': u'Monday'}, {'hours... # Without `location`, choose the first company. if location: ohrs = OpeningHours.objects.filter(company=location) else: try: Location = utils.get_premises_model() ohrs = Location.objects.first().openinghours_set.all() except AttributeError: raise Exception("You must define some opening hours" " to use the opening hours tags.") ohrs.order_by('weekday', 'from_hour') for o in ohrs: days.append({ 'day_number': o.weekday, 'name': o.get_weekday_display(), 'from_hour': o.from_hour, 'to_hour': o.to_hour, 'hours': '%s%s to %s%s' % ( o.from_hour.strftime('%I:%M').lstrip('0'), o.from_hour.strftime('%p').lower(), o.to_hour.strftime('%I:%M').lstrip('0'), o.to_hour.strftime('%p').lower() ) }) open_days = [o.weekday for o in ohrs] for day_number, day_name in WEEKDAYS: if day_number not in open_days: days.append({ 'day_number': day_number, 'name': day_name, 'hours': 'Closed' }) days = sorted(days, key=lambda k: k['day_number']) if concise: # [{'hours': '9:00am to 5:00pm', 'day_names': u'Monday to Friday'}, # {'hours':... template_name = 'openinghours/opening_hours_list_concise.html' concise_days = [] current_set = {} for day in days: if 'hours' not in current_set.keys(): current_set = {'day_names': [day['name']], 'hours': day['hours']} elif day['hours'] != current_set['hours']: concise_days.append(current_set) current_set = {'day_names': [day['name']], 'hours': day['hours']} else: current_set['day_names'].append(day['name']) concise_days.append(current_set) for day_set in concise_days: if len(day_set['day_names']) > 2: day_set['day_names'] = '%s to %s' % (day_set['day_names'][0], day_set['day_names'][-1]) elif len(day_set['day_names']) > 1: day_set['day_names'] = '%s and %s' % (day_set['day_names'][0], day_set['day_names'][-1]) else: day_set['day_names'] = '%s' % day_set['day_names'][0] days = concise_days template = get_template(template_name) return template.render({'days': days})
[ "def", "opening_hours", "(", "location", "=", "None", ",", "concise", "=", "False", ")", ":", "template_name", "=", "'openinghours/opening_hours_list.html'", "days", "=", "[", "]", "# [{'hours': '9:00am to 5:00pm', 'name': u'Monday'}, {'hours...", "# Without `location`, choose the first company.", "if", "location", ":", "ohrs", "=", "OpeningHours", ".", "objects", ".", "filter", "(", "company", "=", "location", ")", "else", ":", "try", ":", "Location", "=", "utils", ".", "get_premises_model", "(", ")", "ohrs", "=", "Location", ".", "objects", ".", "first", "(", ")", ".", "openinghours_set", ".", "all", "(", ")", "except", "AttributeError", ":", "raise", "Exception", "(", "\"You must define some opening hours\"", "\" to use the opening hours tags.\"", ")", "ohrs", ".", "order_by", "(", "'weekday'", ",", "'from_hour'", ")", "for", "o", "in", "ohrs", ":", "days", ".", "append", "(", "{", "'day_number'", ":", "o", ".", "weekday", ",", "'name'", ":", "o", ".", "get_weekday_display", "(", ")", ",", "'from_hour'", ":", "o", ".", "from_hour", ",", "'to_hour'", ":", "o", ".", "to_hour", ",", "'hours'", ":", "'%s%s to %s%s'", "%", "(", "o", ".", "from_hour", ".", "strftime", "(", "'%I:%M'", ")", ".", "lstrip", "(", "'0'", ")", ",", "o", ".", "from_hour", ".", "strftime", "(", "'%p'", ")", ".", "lower", "(", ")", ",", "o", ".", "to_hour", ".", "strftime", "(", "'%I:%M'", ")", ".", "lstrip", "(", "'0'", ")", ",", "o", ".", "to_hour", ".", "strftime", "(", "'%p'", ")", ".", "lower", "(", ")", ")", "}", ")", "open_days", "=", "[", "o", ".", "weekday", "for", "o", "in", "ohrs", "]", "for", "day_number", ",", "day_name", "in", "WEEKDAYS", ":", "if", "day_number", "not", "in", "open_days", ":", "days", ".", "append", "(", "{", "'day_number'", ":", "day_number", ",", "'name'", ":", "day_name", ",", "'hours'", ":", "'Closed'", "}", ")", "days", "=", "sorted", "(", "days", ",", "key", "=", "lambda", "k", ":", "k", "[", "'day_number'", "]", ")", "if", "concise", ":", "# [{'hours': '9:00am to 5:00pm', 'day_names': u'Monday to Friday'},", "# {'hours':...", "template_name", "=", "'openinghours/opening_hours_list_concise.html'", "concise_days", "=", "[", "]", "current_set", "=", "{", "}", "for", "day", "in", "days", ":", "if", "'hours'", "not", "in", "current_set", ".", "keys", "(", ")", ":", "current_set", "=", "{", "'day_names'", ":", "[", "day", "[", "'name'", "]", "]", ",", "'hours'", ":", "day", "[", "'hours'", "]", "}", "elif", "day", "[", "'hours'", "]", "!=", "current_set", "[", "'hours'", "]", ":", "concise_days", ".", "append", "(", "current_set", ")", "current_set", "=", "{", "'day_names'", ":", "[", "day", "[", "'name'", "]", "]", ",", "'hours'", ":", "day", "[", "'hours'", "]", "}", "else", ":", "current_set", "[", "'day_names'", "]", ".", "append", "(", "day", "[", "'name'", "]", ")", "concise_days", ".", "append", "(", "current_set", ")", "for", "day_set", "in", "concise_days", ":", "if", "len", "(", "day_set", "[", "'day_names'", "]", ")", ">", "2", ":", "day_set", "[", "'day_names'", "]", "=", "'%s to %s'", "%", "(", "day_set", "[", "'day_names'", "]", "[", "0", "]", ",", "day_set", "[", "'day_names'", "]", "[", "-", "1", "]", ")", "elif", "len", "(", "day_set", "[", "'day_names'", "]", ")", ">", "1", ":", "day_set", "[", "'day_names'", "]", "=", "'%s and %s'", "%", "(", "day_set", "[", "'day_names'", "]", "[", "0", "]", ",", "day_set", "[", "'day_names'", "]", "[", "-", "1", "]", ")", "else", ":", "day_set", "[", "'day_names'", "]", "=", "'%s'", "%", "day_set", "[", "'day_names'", "]", "[", "0", "]", "days", "=", "concise_days", "template", "=", "get_template", "(", "template_name", ")", "return", "template", ".", "render", "(", "{", "'days'", ":", "days", "}", ")" ]
Creates a rendered listing of hours.
[ "Creates", "a", "rendered", "listing", "of", "hours", "." ]
train
https://github.com/arteria/django-openinghours/blob/6bad47509a14d65a3a5a08777455f4cc8b4961fa/openinghours/templatetags/openinghours_tags.py#L98-L173
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.prepare_everything
def prepare_everything(self): """Convenience method to make the actual |HydPy| instance runable.""" self.prepare_network() self.init_models() self.load_conditions() with hydpy.pub.options.warnmissingobsfile(False): self.prepare_nodeseries() self.prepare_modelseries() self.load_inputseries()
python
def prepare_everything(self): """Convenience method to make the actual |HydPy| instance runable.""" self.prepare_network() self.init_models() self.load_conditions() with hydpy.pub.options.warnmissingobsfile(False): self.prepare_nodeseries() self.prepare_modelseries() self.load_inputseries()
[ "def", "prepare_everything", "(", "self", ")", ":", "self", ".", "prepare_network", "(", ")", "self", ".", "init_models", "(", ")", "self", ".", "load_conditions", "(", ")", "with", "hydpy", ".", "pub", ".", "options", ".", "warnmissingobsfile", "(", "False", ")", ":", "self", ".", "prepare_nodeseries", "(", ")", "self", ".", "prepare_modelseries", "(", ")", "self", ".", "load_inputseries", "(", ")" ]
Convenience method to make the actual |HydPy| instance runable.
[ "Convenience", "method", "to", "make", "the", "actual", "|HydPy|", "instance", "runable", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L70-L78
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.prepare_network
def prepare_network(self): """Load all network files as |Selections| (stored in module |pub|) and assign the "complete" selection to the |HydPy| object.""" hydpy.pub.selections = selectiontools.Selections() hydpy.pub.selections += hydpy.pub.networkmanager.load_files() self.update_devices(hydpy.pub.selections.complete)
python
def prepare_network(self): """Load all network files as |Selections| (stored in module |pub|) and assign the "complete" selection to the |HydPy| object.""" hydpy.pub.selections = selectiontools.Selections() hydpy.pub.selections += hydpy.pub.networkmanager.load_files() self.update_devices(hydpy.pub.selections.complete)
[ "def", "prepare_network", "(", "self", ")", ":", "hydpy", ".", "pub", ".", "selections", "=", "selectiontools", ".", "Selections", "(", ")", "hydpy", ".", "pub", ".", "selections", "+=", "hydpy", ".", "pub", ".", "networkmanager", ".", "load_files", "(", ")", "self", ".", "update_devices", "(", "hydpy", ".", "pub", ".", "selections", ".", "complete", ")" ]
Load all network files as |Selections| (stored in module |pub|) and assign the "complete" selection to the |HydPy| object.
[ "Load", "all", "network", "files", "as", "|Selections|", "(", "stored", "in", "module", "|pub|", ")", "and", "assign", "the", "complete", "selection", "to", "the", "|HydPy|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L81-L86
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.save_controls
def save_controls(self, parameterstep=None, simulationstep=None, auxfiler=None): """Call method |Elements.save_controls| of the |Elements| object currently handled by the |HydPy| object. We use the `LahnH` example project to demonstrate how to write a complete set parameter control files. For convenience, we let function |prepare_full_example_2| prepare a fully functional |HydPy| object, handling seven |Element| objects controlling four |hland_v1| and three |hstream_v1| application models: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() At first, there is only one control subfolder named "default", containing the seven control files used in the step above: >>> import os >>> with TestIO(): ... os.listdir('LahnH/control') ['default'] Next, we use the |ControlManager| to create a new directory and dump all control file into it: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls() ... sorted(os.listdir('LahnH/control')) ['default', 'newdir'] We focus our examples on the (smaller) control files of application model |hstream_v1|. The values of parameter |hstream_control.Lag| and |hstream_control.Damp| for the river channel connecting the outlets of subcatchment `lahn_1` and `lahn_2` are 0.583 days and 0.0, respectively: >>> model = hp.elements.stream_lahn_1_lahn_2.model >>> model.parameters.control lag(0.583) damp(0.0) The corresponding written control file defines the same values: >>> dir_ = 'LahnH/control/newdir/' >>> with TestIO(): ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(0.583) damp(0.0) <BLANKLINE> Its name equals the element name and the time step information is taken for the |Timegrid| object available via |pub|: >>> pub.timegrids.stepsize Period('1d') Use the |Auxfiler| class To avoid redefining the same parameter values in multiple control files. Here, we prepare an |Auxfiler| object which handles the two parameters of the model discussed above: >>> from hydpy import Auxfiler >>> aux = Auxfiler() >>> aux += 'hstream_v1' >>> aux.hstream_v1.stream = model.parameters.control.damp >>> aux.hstream_v1.stream = model.parameters.control.lag When passing the |Auxfiler| object to |HydPy.save_controls|, both parameters the control file of element `stream_lahn_1_lahn_2` do not define their values on their own, but reference the auxiliary file `stream.py` instead: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls(auxfiler=aux) ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(auxfile='stream') damp(auxfile='stream') <BLANKLINE> `stream.py` contains the actual value definitions: >>> with TestIO(): ... with open(dir_ + 'stream.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> damp(0.0) lag(0.583) <BLANKLINE> The |hstream_v1| model of element `stream_lahn_2_lahn_3` defines the same value for parameter |hstream_control.Damp| but a different one for parameter |hstream_control.Lag|. Hence, only |hstream_control.Damp| can reference control file `stream.py` without distorting data: >>> with TestIO(): ... with open(dir_ + 'stream_lahn_2_lahn_3.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(0.417) damp(auxfile='stream') <BLANKLINE> Another option is to pass alternative step size information. The `simulationstep` information, which is not really required in control files but useful for testing them, has no impact on the written data. However, passing an alternative `parameterstep` information changes the written values of time dependent parameters both in the primary and the auxiliary control files, as to be expected: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls( ... auxfiler=aux, parameterstep='2d', simulationstep='1h') ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> lag(auxfile='stream') damp(auxfile='stream') <BLANKLINE> >>> with TestIO(): ... with open(dir_ + 'stream.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> damp(0.0) lag(0.2915) <BLANKLINE> >>> with TestIO(): ... with open(dir_ + 'stream_lahn_2_lahn_3.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> lag(0.2085) damp(auxfile='stream') <BLANKLINE> """ self.elements.save_controls(parameterstep=parameterstep, simulationstep=simulationstep, auxfiler=auxfiler)
python
def save_controls(self, parameterstep=None, simulationstep=None, auxfiler=None): """Call method |Elements.save_controls| of the |Elements| object currently handled by the |HydPy| object. We use the `LahnH` example project to demonstrate how to write a complete set parameter control files. For convenience, we let function |prepare_full_example_2| prepare a fully functional |HydPy| object, handling seven |Element| objects controlling four |hland_v1| and three |hstream_v1| application models: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() At first, there is only one control subfolder named "default", containing the seven control files used in the step above: >>> import os >>> with TestIO(): ... os.listdir('LahnH/control') ['default'] Next, we use the |ControlManager| to create a new directory and dump all control file into it: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls() ... sorted(os.listdir('LahnH/control')) ['default', 'newdir'] We focus our examples on the (smaller) control files of application model |hstream_v1|. The values of parameter |hstream_control.Lag| and |hstream_control.Damp| for the river channel connecting the outlets of subcatchment `lahn_1` and `lahn_2` are 0.583 days and 0.0, respectively: >>> model = hp.elements.stream_lahn_1_lahn_2.model >>> model.parameters.control lag(0.583) damp(0.0) The corresponding written control file defines the same values: >>> dir_ = 'LahnH/control/newdir/' >>> with TestIO(): ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(0.583) damp(0.0) <BLANKLINE> Its name equals the element name and the time step information is taken for the |Timegrid| object available via |pub|: >>> pub.timegrids.stepsize Period('1d') Use the |Auxfiler| class To avoid redefining the same parameter values in multiple control files. Here, we prepare an |Auxfiler| object which handles the two parameters of the model discussed above: >>> from hydpy import Auxfiler >>> aux = Auxfiler() >>> aux += 'hstream_v1' >>> aux.hstream_v1.stream = model.parameters.control.damp >>> aux.hstream_v1.stream = model.parameters.control.lag When passing the |Auxfiler| object to |HydPy.save_controls|, both parameters the control file of element `stream_lahn_1_lahn_2` do not define their values on their own, but reference the auxiliary file `stream.py` instead: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls(auxfiler=aux) ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(auxfile='stream') damp(auxfile='stream') <BLANKLINE> `stream.py` contains the actual value definitions: >>> with TestIO(): ... with open(dir_ + 'stream.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> damp(0.0) lag(0.583) <BLANKLINE> The |hstream_v1| model of element `stream_lahn_2_lahn_3` defines the same value for parameter |hstream_control.Damp| but a different one for parameter |hstream_control.Lag|. Hence, only |hstream_control.Damp| can reference control file `stream.py` without distorting data: >>> with TestIO(): ... with open(dir_ + 'stream_lahn_2_lahn_3.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(0.417) damp(auxfile='stream') <BLANKLINE> Another option is to pass alternative step size information. The `simulationstep` information, which is not really required in control files but useful for testing them, has no impact on the written data. However, passing an alternative `parameterstep` information changes the written values of time dependent parameters both in the primary and the auxiliary control files, as to be expected: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls( ... auxfiler=aux, parameterstep='2d', simulationstep='1h') ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> lag(auxfile='stream') damp(auxfile='stream') <BLANKLINE> >>> with TestIO(): ... with open(dir_ + 'stream.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> damp(0.0) lag(0.2915) <BLANKLINE> >>> with TestIO(): ... with open(dir_ + 'stream_lahn_2_lahn_3.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> lag(0.2085) damp(auxfile='stream') <BLANKLINE> """ self.elements.save_controls(parameterstep=parameterstep, simulationstep=simulationstep, auxfiler=auxfiler)
[ "def", "save_controls", "(", "self", ",", "parameterstep", "=", "None", ",", "simulationstep", "=", "None", ",", "auxfiler", "=", "None", ")", ":", "self", ".", "elements", ".", "save_controls", "(", "parameterstep", "=", "parameterstep", ",", "simulationstep", "=", "simulationstep", ",", "auxfiler", "=", "auxfiler", ")" ]
Call method |Elements.save_controls| of the |Elements| object currently handled by the |HydPy| object. We use the `LahnH` example project to demonstrate how to write a complete set parameter control files. For convenience, we let function |prepare_full_example_2| prepare a fully functional |HydPy| object, handling seven |Element| objects controlling four |hland_v1| and three |hstream_v1| application models: >>> from hydpy.core.examples import prepare_full_example_2 >>> hp, pub, TestIO = prepare_full_example_2() At first, there is only one control subfolder named "default", containing the seven control files used in the step above: >>> import os >>> with TestIO(): ... os.listdir('LahnH/control') ['default'] Next, we use the |ControlManager| to create a new directory and dump all control file into it: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls() ... sorted(os.listdir('LahnH/control')) ['default', 'newdir'] We focus our examples on the (smaller) control files of application model |hstream_v1|. The values of parameter |hstream_control.Lag| and |hstream_control.Damp| for the river channel connecting the outlets of subcatchment `lahn_1` and `lahn_2` are 0.583 days and 0.0, respectively: >>> model = hp.elements.stream_lahn_1_lahn_2.model >>> model.parameters.control lag(0.583) damp(0.0) The corresponding written control file defines the same values: >>> dir_ = 'LahnH/control/newdir/' >>> with TestIO(): ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(0.583) damp(0.0) <BLANKLINE> Its name equals the element name and the time step information is taken for the |Timegrid| object available via |pub|: >>> pub.timegrids.stepsize Period('1d') Use the |Auxfiler| class To avoid redefining the same parameter values in multiple control files. Here, we prepare an |Auxfiler| object which handles the two parameters of the model discussed above: >>> from hydpy import Auxfiler >>> aux = Auxfiler() >>> aux += 'hstream_v1' >>> aux.hstream_v1.stream = model.parameters.control.damp >>> aux.hstream_v1.stream = model.parameters.control.lag When passing the |Auxfiler| object to |HydPy.save_controls|, both parameters the control file of element `stream_lahn_1_lahn_2` do not define their values on their own, but reference the auxiliary file `stream.py` instead: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls(auxfiler=aux) ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(auxfile='stream') damp(auxfile='stream') <BLANKLINE> `stream.py` contains the actual value definitions: >>> with TestIO(): ... with open(dir_ + 'stream.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> damp(0.0) lag(0.583) <BLANKLINE> The |hstream_v1| model of element `stream_lahn_2_lahn_3` defines the same value for parameter |hstream_control.Damp| but a different one for parameter |hstream_control.Lag|. Hence, only |hstream_control.Damp| can reference control file `stream.py` without distorting data: >>> with TestIO(): ... with open(dir_ + 'stream_lahn_2_lahn_3.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1d') parameterstep('1d') <BLANKLINE> lag(0.417) damp(auxfile='stream') <BLANKLINE> Another option is to pass alternative step size information. The `simulationstep` information, which is not really required in control files but useful for testing them, has no impact on the written data. However, passing an alternative `parameterstep` information changes the written values of time dependent parameters both in the primary and the auxiliary control files, as to be expected: >>> with TestIO(): ... pub.controlmanager.currentdir = 'newdir' ... hp.save_controls( ... auxfiler=aux, parameterstep='2d', simulationstep='1h') ... with open(dir_ + 'stream_lahn_1_lahn_2.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> lag(auxfile='stream') damp(auxfile='stream') <BLANKLINE> >>> with TestIO(): ... with open(dir_ + 'stream.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> damp(0.0) lag(0.2915) <BLANKLINE> >>> with TestIO(): ... with open(dir_ + 'stream_lahn_2_lahn_3.py') as controlfile: ... print(controlfile.read()) # -*- coding: utf-8 -*- <BLANKLINE> from hydpy.models.hstream_v1 import * <BLANKLINE> simulationstep('1h') parameterstep('2d') <BLANKLINE> lag(0.2085) damp(auxfile='stream') <BLANKLINE>
[ "Call", "method", "|Elements", ".", "save_controls|", "of", "the", "|Elements|", "object", "currently", "handled", "by", "the", "|HydPy|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L93-L281
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.networkproperties
def networkproperties(self): """Print out some properties of the network defined by the |Node| and |Element| objects currently handled by the |HydPy| object.""" print('Number of nodes: %d' % len(self.nodes)) print('Number of elements: %d' % len(self.elements)) print('Number of end nodes: %d' % len(self.endnodes)) print('Number of distinct networks: %d' % len(self.numberofnetworks)) print('Applied node variables: %s' % ', '.join(self.variables))
python
def networkproperties(self): """Print out some properties of the network defined by the |Node| and |Element| objects currently handled by the |HydPy| object.""" print('Number of nodes: %d' % len(self.nodes)) print('Number of elements: %d' % len(self.elements)) print('Number of end nodes: %d' % len(self.endnodes)) print('Number of distinct networks: %d' % len(self.numberofnetworks)) print('Applied node variables: %s' % ', '.join(self.variables))
[ "def", "networkproperties", "(", "self", ")", ":", "print", "(", "'Number of nodes: %d'", "%", "len", "(", "self", ".", "nodes", ")", ")", "print", "(", "'Number of elements: %d'", "%", "len", "(", "self", ".", "elements", ")", ")", "print", "(", "'Number of end nodes: %d'", "%", "len", "(", "self", ".", "endnodes", ")", ")", "print", "(", "'Number of distinct networks: %d'", "%", "len", "(", "self", ".", "numberofnetworks", ")", ")", "print", "(", "'Applied node variables: %s'", "%", "', '", ".", "join", "(", "self", ".", "variables", ")", ")" ]
Print out some properties of the network defined by the |Node| and |Element| objects currently handled by the |HydPy| object.
[ "Print", "out", "some", "properties", "of", "the", "network", "defined", "by", "the", "|Node|", "and", "|Element|", "objects", "currently", "handled", "by", "the", "|HydPy|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L455-L462
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.numberofnetworks
def numberofnetworks(self): """The number of distinct networks defined by the|Node| and |Element| objects currently handled by the |HydPy| object.""" sels1 = selectiontools.Selections() sels2 = selectiontools.Selections() complete = selectiontools.Selection('complete', self.nodes, self.elements) for node in self.endnodes: sel = complete.copy(node.name).select_upstream(node) sels1 += sel sels2 += sel.copy(node.name) for sel1 in sels1: for sel2 in sels2: if sel1.name != sel2.name: sel1 -= sel2 for name in list(sels1.names): if not sels1[name].elements: del sels1[name] return sels1
python
def numberofnetworks(self): """The number of distinct networks defined by the|Node| and |Element| objects currently handled by the |HydPy| object.""" sels1 = selectiontools.Selections() sels2 = selectiontools.Selections() complete = selectiontools.Selection('complete', self.nodes, self.elements) for node in self.endnodes: sel = complete.copy(node.name).select_upstream(node) sels1 += sel sels2 += sel.copy(node.name) for sel1 in sels1: for sel2 in sels2: if sel1.name != sel2.name: sel1 -= sel2 for name in list(sels1.names): if not sels1[name].elements: del sels1[name] return sels1
[ "def", "numberofnetworks", "(", "self", ")", ":", "sels1", "=", "selectiontools", ".", "Selections", "(", ")", "sels2", "=", "selectiontools", ".", "Selections", "(", ")", "complete", "=", "selectiontools", ".", "Selection", "(", "'complete'", ",", "self", ".", "nodes", ",", "self", ".", "elements", ")", "for", "node", "in", "self", ".", "endnodes", ":", "sel", "=", "complete", ".", "copy", "(", "node", ".", "name", ")", ".", "select_upstream", "(", "node", ")", "sels1", "+=", "sel", "sels2", "+=", "sel", ".", "copy", "(", "node", ".", "name", ")", "for", "sel1", "in", "sels1", ":", "for", "sel2", "in", "sels2", ":", "if", "sel1", ".", "name", "!=", "sel2", ".", "name", ":", "sel1", "-=", "sel2", "for", "name", "in", "list", "(", "sels1", ".", "names", ")", ":", "if", "not", "sels1", "[", "name", "]", ".", "elements", ":", "del", "sels1", "[", "name", "]", "return", "sels1" ]
The number of distinct networks defined by the|Node| and |Element| objects currently handled by the |HydPy| object.
[ "The", "number", "of", "distinct", "networks", "defined", "by", "the|Node|", "and", "|Element|", "objects", "currently", "handled", "by", "the", "|HydPy|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L465-L483
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.endnodes
def endnodes(self): """|Nodes| object containing all |Node| objects currently handled by the |HydPy| object which define a downstream end point of a network.""" endnodes = devicetools.Nodes() for node in self.nodes: for element in node.exits: if ((element in self.elements) and (node not in element.receivers)): break else: endnodes += node return endnodes
python
def endnodes(self): """|Nodes| object containing all |Node| objects currently handled by the |HydPy| object which define a downstream end point of a network.""" endnodes = devicetools.Nodes() for node in self.nodes: for element in node.exits: if ((element in self.elements) and (node not in element.receivers)): break else: endnodes += node return endnodes
[ "def", "endnodes", "(", "self", ")", ":", "endnodes", "=", "devicetools", ".", "Nodes", "(", ")", "for", "node", "in", "self", ".", "nodes", ":", "for", "element", "in", "node", ".", "exits", ":", "if", "(", "(", "element", "in", "self", ".", "elements", ")", "and", "(", "node", "not", "in", "element", ".", "receivers", ")", ")", ":", "break", "else", ":", "endnodes", "+=", "node", "return", "endnodes" ]
|Nodes| object containing all |Node| objects currently handled by the |HydPy| object which define a downstream end point of a network.
[ "|Nodes|", "object", "containing", "all", "|Node|", "objects", "currently", "handled", "by", "the", "|HydPy|", "object", "which", "define", "a", "downstream", "end", "point", "of", "a", "network", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L517-L528
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.variables
def variables(self): """Sorted list of strings summarizing all variables handled by the |Node| objects""" variables = set([]) for node in self.nodes: variables.add(node.variable) return sorted(variables)
python
def variables(self): """Sorted list of strings summarizing all variables handled by the |Node| objects""" variables = set([]) for node in self.nodes: variables.add(node.variable) return sorted(variables)
[ "def", "variables", "(", "self", ")", ":", "variables", "=", "set", "(", "[", "]", ")", "for", "node", "in", "self", ".", "nodes", ":", "variables", ".", "add", "(", "node", ".", "variable", ")", "return", "sorted", "(", "variables", ")" ]
Sorted list of strings summarizing all variables handled by the |Node| objects
[ "Sorted", "list", "of", "strings", "summarizing", "all", "variables", "handled", "by", "the", "|Node|", "objects" ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L531-L537
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.simindices
def simindices(self): """Tuple containing the start and end index of the simulation period regarding the initialization period defined by the |Timegrids| object stored in module |pub|.""" return (hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.firstdate], hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.lastdate])
python
def simindices(self): """Tuple containing the start and end index of the simulation period regarding the initialization period defined by the |Timegrids| object stored in module |pub|.""" return (hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.firstdate], hydpy.pub.timegrids.init[hydpy.pub.timegrids.sim.lastdate])
[ "def", "simindices", "(", "self", ")", ":", "return", "(", "hydpy", ".", "pub", ".", "timegrids", ".", "init", "[", "hydpy", ".", "pub", ".", "timegrids", ".", "sim", ".", "firstdate", "]", ",", "hydpy", ".", "pub", ".", "timegrids", ".", "init", "[", "hydpy", ".", "pub", ".", "timegrids", ".", "sim", ".", "lastdate", "]", ")" ]
Tuple containing the start and end index of the simulation period regarding the initialization period defined by the |Timegrids| object stored in module |pub|.
[ "Tuple", "containing", "the", "start", "and", "end", "index", "of", "the", "simulation", "period", "regarding", "the", "initialization", "period", "defined", "by", "the", "|Timegrids|", "object", "stored", "in", "module", "|pub|", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L540-L545
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.open_files
def open_files(self, idx=0): """Call method |Devices.open_files| of the |Nodes| and |Elements| objects currently handled by the |HydPy| object.""" self.elements.open_files(idx=idx) self.nodes.open_files(idx=idx)
python
def open_files(self, idx=0): """Call method |Devices.open_files| of the |Nodes| and |Elements| objects currently handled by the |HydPy| object.""" self.elements.open_files(idx=idx) self.nodes.open_files(idx=idx)
[ "def", "open_files", "(", "self", ",", "idx", "=", "0", ")", ":", "self", ".", "elements", ".", "open_files", "(", "idx", "=", "idx", ")", "self", ".", "nodes", ".", "open_files", "(", "idx", "=", "idx", ")" ]
Call method |Devices.open_files| of the |Nodes| and |Elements| objects currently handled by the |HydPy| object.
[ "Call", "method", "|Devices", ".", "open_files|", "of", "the", "|Nodes|", "and", "|Elements|", "objects", "currently", "handled", "by", "the", "|HydPy|", "object", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L547-L551
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.update_devices
def update_devices(self, selection=None): """Determines the order, in which the |Node| and |Element| objects currently handled by the |HydPy| objects need to be processed during a simulation time step. Optionally, a |Selection| object for defining new |Node| and |Element| objects can be passed.""" if selection is not None: self.nodes = selection.nodes self.elements = selection.elements self._update_deviceorder()
python
def update_devices(self, selection=None): """Determines the order, in which the |Node| and |Element| objects currently handled by the |HydPy| objects need to be processed during a simulation time step. Optionally, a |Selection| object for defining new |Node| and |Element| objects can be passed.""" if selection is not None: self.nodes = selection.nodes self.elements = selection.elements self._update_deviceorder()
[ "def", "update_devices", "(", "self", ",", "selection", "=", "None", ")", ":", "if", "selection", "is", "not", "None", ":", "self", ".", "nodes", "=", "selection", ".", "nodes", "self", ".", "elements", "=", "selection", ".", "elements", "self", ".", "_update_deviceorder", "(", ")" ]
Determines the order, in which the |Node| and |Element| objects currently handled by the |HydPy| objects need to be processed during a simulation time step. Optionally, a |Selection| object for defining new |Node| and |Element| objects can be passed.
[ "Determines", "the", "order", "in", "which", "the", "|Node|", "and", "|Element|", "objects", "currently", "handled", "by", "the", "|HydPy|", "objects", "need", "to", "be", "processed", "during", "a", "simulation", "time", "step", ".", "Optionally", "a", "|Selection|", "object", "for", "defining", "new", "|Node|", "and", "|Element|", "objects", "can", "be", "passed", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L559-L567
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.methodorder
def methodorder(self): """A list containing all methods of all |Node| and |Element| objects that need to be processed during a simulation time step in the order they must be called.""" funcs = [] for node in self.nodes: if node.deploymode == 'oldsim': funcs.append(node.sequences.fastaccess.load_simdata) elif node.deploymode == 'obs': funcs.append(node.sequences.fastaccess.load_obsdata) for node in self.nodes: if node.deploymode != 'oldsim': funcs.append(node.reset) for device in self.deviceorder: if isinstance(device, devicetools.Element): funcs.append(device.model.doit) for element in self.elements: if element.senders: funcs.append(element.model.update_senders) for element in self.elements: if element.receivers: funcs.append(element.model.update_receivers) for element in self.elements: funcs.append(element.model.save_data) for node in self.nodes: if node.deploymode != 'oldsim': funcs.append(node.sequences.fastaccess.save_simdata) return funcs
python
def methodorder(self): """A list containing all methods of all |Node| and |Element| objects that need to be processed during a simulation time step in the order they must be called.""" funcs = [] for node in self.nodes: if node.deploymode == 'oldsim': funcs.append(node.sequences.fastaccess.load_simdata) elif node.deploymode == 'obs': funcs.append(node.sequences.fastaccess.load_obsdata) for node in self.nodes: if node.deploymode != 'oldsim': funcs.append(node.reset) for device in self.deviceorder: if isinstance(device, devicetools.Element): funcs.append(device.model.doit) for element in self.elements: if element.senders: funcs.append(element.model.update_senders) for element in self.elements: if element.receivers: funcs.append(element.model.update_receivers) for element in self.elements: funcs.append(element.model.save_data) for node in self.nodes: if node.deploymode != 'oldsim': funcs.append(node.sequences.fastaccess.save_simdata) return funcs
[ "def", "methodorder", "(", "self", ")", ":", "funcs", "=", "[", "]", "for", "node", "in", "self", ".", "nodes", ":", "if", "node", ".", "deploymode", "==", "'oldsim'", ":", "funcs", ".", "append", "(", "node", ".", "sequences", ".", "fastaccess", ".", "load_simdata", ")", "elif", "node", ".", "deploymode", "==", "'obs'", ":", "funcs", ".", "append", "(", "node", ".", "sequences", ".", "fastaccess", ".", "load_obsdata", ")", "for", "node", "in", "self", ".", "nodes", ":", "if", "node", ".", "deploymode", "!=", "'oldsim'", ":", "funcs", ".", "append", "(", "node", ".", "reset", ")", "for", "device", "in", "self", ".", "deviceorder", ":", "if", "isinstance", "(", "device", ",", "devicetools", ".", "Element", ")", ":", "funcs", ".", "append", "(", "device", ".", "model", ".", "doit", ")", "for", "element", "in", "self", ".", "elements", ":", "if", "element", ".", "senders", ":", "funcs", ".", "append", "(", "element", ".", "model", ".", "update_senders", ")", "for", "element", "in", "self", ".", "elements", ":", "if", "element", ".", "receivers", ":", "funcs", ".", "append", "(", "element", ".", "model", ".", "update_receivers", ")", "for", "element", "in", "self", ".", "elements", ":", "funcs", ".", "append", "(", "element", ".", "model", ".", "save_data", ")", "for", "node", "in", "self", ".", "nodes", ":", "if", "node", ".", "deploymode", "!=", "'oldsim'", ":", "funcs", ".", "append", "(", "node", ".", "sequences", ".", "fastaccess", ".", "save_simdata", ")", "return", "funcs" ]
A list containing all methods of all |Node| and |Element| objects that need to be processed during a simulation time step in the order they must be called.
[ "A", "list", "containing", "all", "methods", "of", "all", "|Node|", "and", "|Element|", "objects", "that", "need", "to", "be", "processed", "during", "a", "simulation", "time", "step", "in", "the", "order", "they", "must", "be", "called", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L570-L597
hydpy-dev/hydpy
hydpy/core/hydpytools.py
HydPy.doit
def doit(self): """Perform a simulation run over the actual simulation time period defined by the |Timegrids| object stored in module |pub|.""" idx_start, idx_end = self.simindices self.open_files(idx_start) methodorder = self.methodorder for idx in printtools.progressbar(range(idx_start, idx_end)): for func in methodorder: func(idx) self.close_files()
python
def doit(self): """Perform a simulation run over the actual simulation time period defined by the |Timegrids| object stored in module |pub|.""" idx_start, idx_end = self.simindices self.open_files(idx_start) methodorder = self.methodorder for idx in printtools.progressbar(range(idx_start, idx_end)): for func in methodorder: func(idx) self.close_files()
[ "def", "doit", "(", "self", ")", ":", "idx_start", ",", "idx_end", "=", "self", ".", "simindices", "self", ".", "open_files", "(", "idx_start", ")", "methodorder", "=", "self", ".", "methodorder", "for", "idx", "in", "printtools", ".", "progressbar", "(", "range", "(", "idx_start", ",", "idx_end", ")", ")", ":", "for", "func", "in", "methodorder", ":", "func", "(", "idx", ")", "self", ".", "close_files", "(", ")" ]
Perform a simulation run over the actual simulation time period defined by the |Timegrids| object stored in module |pub|.
[ "Perform", "a", "simulation", "run", "over", "the", "actual", "simulation", "time", "period", "defined", "by", "the", "|Timegrids|", "object", "stored", "in", "module", "|pub|", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/core/hydpytools.py#L600-L609
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
pic_inflow_v1
def pic_inflow_v1(self): """Update the inlet link sequence. Required inlet sequence: |dam_inlets.Q| Calculated flux sequence: |Inflow| Basic equation: :math:`Inflow = Q` """ flu = self.sequences.fluxes.fastaccess inl = self.sequences.inlets.fastaccess flu.inflow = inl.q[0]
python
def pic_inflow_v1(self): """Update the inlet link sequence. Required inlet sequence: |dam_inlets.Q| Calculated flux sequence: |Inflow| Basic equation: :math:`Inflow = Q` """ flu = self.sequences.fluxes.fastaccess inl = self.sequences.inlets.fastaccess flu.inflow = inl.q[0]
[ "def", "pic_inflow_v1", "(", "self", ")", ":", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "inl", "=", "self", ".", "sequences", ".", "inlets", ".", "fastaccess", "flu", ".", "inflow", "=", "inl", ".", "q", "[", "0", "]" ]
Update the inlet link sequence. Required inlet sequence: |dam_inlets.Q| Calculated flux sequence: |Inflow| Basic equation: :math:`Inflow = Q`
[ "Update", "the", "inlet", "link", "sequence", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L11-L25
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
pic_inflow_v2
def pic_inflow_v2(self): """Update the inlet link sequences. Required inlet sequences: |dam_inlets.Q| |dam_inlets.S| |dam_inlets.R| Calculated flux sequence: |Inflow| Basic equation: :math:`Inflow = Q + S + R` """ flu = self.sequences.fluxes.fastaccess inl = self.sequences.inlets.fastaccess flu.inflow = inl.q[0]+inl.s[0]+inl.r[0]
python
def pic_inflow_v2(self): """Update the inlet link sequences. Required inlet sequences: |dam_inlets.Q| |dam_inlets.S| |dam_inlets.R| Calculated flux sequence: |Inflow| Basic equation: :math:`Inflow = Q + S + R` """ flu = self.sequences.fluxes.fastaccess inl = self.sequences.inlets.fastaccess flu.inflow = inl.q[0]+inl.s[0]+inl.r[0]
[ "def", "pic_inflow_v2", "(", "self", ")", ":", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "inl", "=", "self", ".", "sequences", ".", "inlets", ".", "fastaccess", "flu", ".", "inflow", "=", "inl", ".", "q", "[", "0", "]", "+", "inl", ".", "s", "[", "0", "]", "+", "inl", ".", "r", "[", "0", "]" ]
Update the inlet link sequences. Required inlet sequences: |dam_inlets.Q| |dam_inlets.S| |dam_inlets.R| Calculated flux sequence: |Inflow| Basic equation: :math:`Inflow = Q + S + R`
[ "Update", "the", "inlet", "link", "sequences", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L28-L44
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
pic_totalremotedischarge_v1
def pic_totalremotedischarge_v1(self): """Update the receiver link sequence.""" flu = self.sequences.fluxes.fastaccess rec = self.sequences.receivers.fastaccess flu.totalremotedischarge = rec.q[0]
python
def pic_totalremotedischarge_v1(self): """Update the receiver link sequence.""" flu = self.sequences.fluxes.fastaccess rec = self.sequences.receivers.fastaccess flu.totalremotedischarge = rec.q[0]
[ "def", "pic_totalremotedischarge_v1", "(", "self", ")", ":", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "rec", "=", "self", ".", "sequences", ".", "receivers", ".", "fastaccess", "flu", ".", "totalremotedischarge", "=", "rec", ".", "q", "[", "0", "]" ]
Update the receiver link sequence.
[ "Update", "the", "receiver", "link", "sequence", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L47-L51
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
pic_loggedrequiredremoterelease_v1
def pic_loggedrequiredremoterelease_v1(self): """Update the receiver link sequence.""" log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedrequiredremoterelease[0] = rec.d[0]
python
def pic_loggedrequiredremoterelease_v1(self): """Update the receiver link sequence.""" log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedrequiredremoterelease[0] = rec.d[0]
[ "def", "pic_loggedrequiredremoterelease_v1", "(", "self", ")", ":", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "rec", "=", "self", ".", "sequences", ".", "receivers", ".", "fastaccess", "log", ".", "loggedrequiredremoterelease", "[", "0", "]", "=", "rec", ".", "d", "[", "0", "]" ]
Update the receiver link sequence.
[ "Update", "the", "receiver", "link", "sequence", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L54-L58
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
pic_loggedrequiredremoterelease_v2
def pic_loggedrequiredremoterelease_v2(self): """Update the receiver link sequence.""" log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedrequiredremoterelease[0] = rec.s[0]
python
def pic_loggedrequiredremoterelease_v2(self): """Update the receiver link sequence.""" log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedrequiredremoterelease[0] = rec.s[0]
[ "def", "pic_loggedrequiredremoterelease_v2", "(", "self", ")", ":", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "rec", "=", "self", ".", "sequences", ".", "receivers", ".", "fastaccess", "log", ".", "loggedrequiredremoterelease", "[", "0", "]", "=", "rec", ".", "s", "[", "0", "]" ]
Update the receiver link sequence.
[ "Update", "the", "receiver", "link", "sequence", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L61-L65
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
pic_loggedallowedremoterelieve_v1
def pic_loggedallowedremoterelieve_v1(self): """Update the receiver link sequence.""" log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedallowedremoterelieve[0] = rec.r[0]
python
def pic_loggedallowedremoterelieve_v1(self): """Update the receiver link sequence.""" log = self.sequences.logs.fastaccess rec = self.sequences.receivers.fastaccess log.loggedallowedremoterelieve[0] = rec.r[0]
[ "def", "pic_loggedallowedremoterelieve_v1", "(", "self", ")", ":", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "rec", "=", "self", ".", "sequences", ".", "receivers", ".", "fastaccess", "log", ".", "loggedallowedremoterelieve", "[", "0", "]", "=", "rec", ".", "r", "[", "0", "]" ]
Update the receiver link sequence.
[ "Update", "the", "receiver", "link", "sequence", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L68-L72
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
update_loggedtotalremotedischarge_v1
def update_loggedtotalremotedischarge_v1(self): """Log a new entry of discharge at a cross section far downstream. Required control parameter: |NmbLogEntries| Required flux sequence: |TotalRemoteDischarge| Calculated flux sequence: |LoggedTotalRemoteDischarge| Example: The following example shows that, with each new method call, the three memorized values are successively moved to the right and the respective new value is stored on the bare left position: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.update_loggedtotalremotedischarge_v1, ... last_example=4, ... parseqs=(fluxes.totalremotedischarge, ... logs.loggedtotalremotedischarge)) >>> test.nexts.totalremotedischarge = [1., 3., 2., 4] >>> del test.inits.loggedtotalremotedischarge >>> test() | ex. | totalremotedischarge | loggedtotalremotedischarge | --------------------------------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 | """ con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess for idx in range(con.nmblogentries-1, 0, -1): log.loggedtotalremotedischarge[idx] = \ log.loggedtotalremotedischarge[idx-1] log.loggedtotalremotedischarge[0] = flu.totalremotedischarge
python
def update_loggedtotalremotedischarge_v1(self): """Log a new entry of discharge at a cross section far downstream. Required control parameter: |NmbLogEntries| Required flux sequence: |TotalRemoteDischarge| Calculated flux sequence: |LoggedTotalRemoteDischarge| Example: The following example shows that, with each new method call, the three memorized values are successively moved to the right and the respective new value is stored on the bare left position: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.update_loggedtotalremotedischarge_v1, ... last_example=4, ... parseqs=(fluxes.totalremotedischarge, ... logs.loggedtotalremotedischarge)) >>> test.nexts.totalremotedischarge = [1., 3., 2., 4] >>> del test.inits.loggedtotalremotedischarge >>> test() | ex. | totalremotedischarge | loggedtotalremotedischarge | --------------------------------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 | """ con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess for idx in range(con.nmblogentries-1, 0, -1): log.loggedtotalremotedischarge[idx] = \ log.loggedtotalremotedischarge[idx-1] log.loggedtotalremotedischarge[0] = flu.totalremotedischarge
[ "def", "update_loggedtotalremotedischarge_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "for", "idx", "in", "range", "(", "con", ".", "nmblogentries", "-", "1", ",", "0", ",", "-", "1", ")", ":", "log", ".", "loggedtotalremotedischarge", "[", "idx", "]", "=", "log", ".", "loggedtotalremotedischarge", "[", "idx", "-", "1", "]", "log", ".", "loggedtotalremotedischarge", "[", "0", "]", "=", "flu", ".", "totalremotedischarge" ]
Log a new entry of discharge at a cross section far downstream. Required control parameter: |NmbLogEntries| Required flux sequence: |TotalRemoteDischarge| Calculated flux sequence: |LoggedTotalRemoteDischarge| Example: The following example shows that, with each new method call, the three memorized values are successively moved to the right and the respective new value is stored on the bare left position: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge = 0.0 >>> from hydpy import UnitTest >>> test = UnitTest(model, model.update_loggedtotalremotedischarge_v1, ... last_example=4, ... parseqs=(fluxes.totalremotedischarge, ... logs.loggedtotalremotedischarge)) >>> test.nexts.totalremotedischarge = [1., 3., 2., 4] >>> del test.inits.loggedtotalremotedischarge >>> test() | ex. | totalremotedischarge | loggedtotalremotedischarge | --------------------------------------------------------------------- | 1 | 1.0 | 1.0 0.0 0.0 | | 2 | 3.0 | 3.0 1.0 0.0 | | 3 | 2.0 | 2.0 3.0 1.0 | | 4 | 4.0 | 4.0 2.0 3.0 |
[ "Log", "a", "new", "entry", "of", "discharge", "at", "a", "cross", "section", "far", "downstream", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L75-L118
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_waterlevel_v1
def calc_waterlevel_v1(self): """Determine the water level based on an artificial neural network describing the relationship between water level and water stage. Required control parameter: |WaterVolume2WaterLevel| Required state sequence: |WaterVolume| Calculated aide sequence: |WaterLevel| Example: Prepare a dam model: >>> from hydpy.models.dam import * >>> parameterstep() Prepare a very simple relationship based on one single neuron: >>> watervolume2waterlevel( ... nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.5, weights_output=1.0, ... intercepts_hidden=0.0, intercepts_output=-0.5) At least in the water volume range used in the following examples, the shape of the relationship looks acceptable: >>> from hydpy import UnitTest >>> test = UnitTest( ... model, model.calc_waterlevel_v1, ... last_example=10, ... parseqs=(states.watervolume, aides.waterlevel)) >>> test.nexts.watervolume = range(10) >>> test() | ex. | watervolume | waterlevel | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.122459 | | 3 | 2.0 | 0.231059 | | 4 | 3.0 | 0.317574 | | 5 | 4.0 | 0.380797 | | 6 | 5.0 | 0.424142 | | 7 | 6.0 | 0.452574 | | 8 | 7.0 | 0.470688 | | 9 | 8.0 | 0.482014 | | 10 | 9.0 | 0.489013 | For more realistic approximations of measured relationships between water level and volume, larger neural networks are required. """ con = self.parameters.control.fastaccess new = self.sequences.states.fastaccess_new aid = self.sequences.aides.fastaccess con.watervolume2waterlevel.inputs[0] = new.watervolume con.watervolume2waterlevel.process_actual_input() aid.waterlevel = con.watervolume2waterlevel.outputs[0]
python
def calc_waterlevel_v1(self): """Determine the water level based on an artificial neural network describing the relationship between water level and water stage. Required control parameter: |WaterVolume2WaterLevel| Required state sequence: |WaterVolume| Calculated aide sequence: |WaterLevel| Example: Prepare a dam model: >>> from hydpy.models.dam import * >>> parameterstep() Prepare a very simple relationship based on one single neuron: >>> watervolume2waterlevel( ... nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.5, weights_output=1.0, ... intercepts_hidden=0.0, intercepts_output=-0.5) At least in the water volume range used in the following examples, the shape of the relationship looks acceptable: >>> from hydpy import UnitTest >>> test = UnitTest( ... model, model.calc_waterlevel_v1, ... last_example=10, ... parseqs=(states.watervolume, aides.waterlevel)) >>> test.nexts.watervolume = range(10) >>> test() | ex. | watervolume | waterlevel | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.122459 | | 3 | 2.0 | 0.231059 | | 4 | 3.0 | 0.317574 | | 5 | 4.0 | 0.380797 | | 6 | 5.0 | 0.424142 | | 7 | 6.0 | 0.452574 | | 8 | 7.0 | 0.470688 | | 9 | 8.0 | 0.482014 | | 10 | 9.0 | 0.489013 | For more realistic approximations of measured relationships between water level and volume, larger neural networks are required. """ con = self.parameters.control.fastaccess new = self.sequences.states.fastaccess_new aid = self.sequences.aides.fastaccess con.watervolume2waterlevel.inputs[0] = new.watervolume con.watervolume2waterlevel.process_actual_input() aid.waterlevel = con.watervolume2waterlevel.outputs[0]
[ "def", "calc_waterlevel_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "new", "=", "self", ".", "sequences", ".", "states", ".", "fastaccess_new", "aid", "=", "self", ".", "sequences", ".", "aides", ".", "fastaccess", "con", ".", "watervolume2waterlevel", ".", "inputs", "[", "0", "]", "=", "new", ".", "watervolume", "con", ".", "watervolume2waterlevel", ".", "process_actual_input", "(", ")", "aid", ".", "waterlevel", "=", "con", ".", "watervolume2waterlevel", ".", "outputs", "[", "0", "]" ]
Determine the water level based on an artificial neural network describing the relationship between water level and water stage. Required control parameter: |WaterVolume2WaterLevel| Required state sequence: |WaterVolume| Calculated aide sequence: |WaterLevel| Example: Prepare a dam model: >>> from hydpy.models.dam import * >>> parameterstep() Prepare a very simple relationship based on one single neuron: >>> watervolume2waterlevel( ... nmb_inputs=1, nmb_neurons=(1,), nmb_outputs=1, ... weights_input=0.5, weights_output=1.0, ... intercepts_hidden=0.0, intercepts_output=-0.5) At least in the water volume range used in the following examples, the shape of the relationship looks acceptable: >>> from hydpy import UnitTest >>> test = UnitTest( ... model, model.calc_waterlevel_v1, ... last_example=10, ... parseqs=(states.watervolume, aides.waterlevel)) >>> test.nexts.watervolume = range(10) >>> test() | ex. | watervolume | waterlevel | ---------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.122459 | | 3 | 2.0 | 0.231059 | | 4 | 3.0 | 0.317574 | | 5 | 4.0 | 0.380797 | | 6 | 5.0 | 0.424142 | | 7 | 6.0 | 0.452574 | | 8 | 7.0 | 0.470688 | | 9 | 8.0 | 0.482014 | | 10 | 9.0 | 0.489013 | For more realistic approximations of measured relationships between water level and volume, larger neural networks are required.
[ "Determine", "the", "water", "level", "based", "on", "an", "artificial", "neural", "network", "describing", "the", "relationship", "between", "water", "level", "and", "water", "stage", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L121-L179
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_allowedremoterelieve_v2
def calc_allowedremoterelieve_v2(self): """Calculate the allowed maximum relieve another location is allowed to discharge into the dam. Required control parameters: |HighestRemoteRelieve| |WaterLevelRelieveThreshold| Required derived parameter: |WaterLevelRelieveSmoothPar| Required aide sequence: |WaterLevel| Calculated flux sequence: |AllowedRemoteRelieve| Basic equation: :math:`ActualRemoteRelease = HighestRemoteRelease \\cdot smooth_{logistic1}(WaterLevelRelieveThreshold-WaterLevel, WaterLevelRelieveSmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: All control parameters that are involved in the calculation of |AllowedRemoteRelieve| are derived from |SeasonalParameter|. This allows to simulate seasonal dam control schemes. To show how this works, we first define a short simulation time period of only two days: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Now we prepare the dam model and define two different control schemes for the hydrological summer (April to October) and winter month (November to May) >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremoterelieve(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelrelievethreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelrelievetolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelrelievesmoothpar.update() >>> derived.toy.update() The following test function is supposed to calculate |AllowedRemoteRelieve| for values of |WaterLevel| ranging from 0 and 8 m: >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_allowedremoterelieve_v2, ... last_example=9, ... parseqs=(aides.waterlevel, ... fluxes.allowedremoterelieve)) >>> test.nexts.waterlevel = range(9) On March 30 (which is the last day of the winter month and the first day of the simulation period), the value of |WaterLevelRelieveSmoothPar| is zero. Hence, |AllowedRemoteRelieve| drops abruptly from 1 m³/s (the value of |HighestRemoteRelieve|) to 0 m³/s, as soon as |WaterLevel| reaches 3 m (the value of |WaterLevelRelieveThreshold|): >>> model.idx_sim = pub.timegrids.init['2001.03.30'] >>> test(first_example=2, last_example=6) | ex. | waterlevel | allowedremoterelieve | ------------------------------------------- | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | On April 1 (which is the first day of the sommer month and the last day of the simulation period), all parameter values are increased. The value of parameter |WaterLevelRelieveSmoothPar| is 1 m. Hence, loosely speaking, |AllowedRemoteRelieve| approaches the "discontinuous extremes (2 m³/s -- which is the value of |HighestRemoteRelieve| -- and 0 m³/s) to 99 % within a span of 2 m³/s around the original threshold value of 4 m³/s defined by |WaterLevelRelieveThreshold|: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | waterlevel | allowedremoterelieve | ------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess toy = der.toy[self.idx_sim] flu.allowedremoterelieve = ( con.highestremoterelieve[toy] * smoothutils.smooth_logistic1( con.waterlevelrelievethreshold[toy]-aid.waterlevel, der.waterlevelrelievesmoothpar[toy]))
python
def calc_allowedremoterelieve_v2(self): """Calculate the allowed maximum relieve another location is allowed to discharge into the dam. Required control parameters: |HighestRemoteRelieve| |WaterLevelRelieveThreshold| Required derived parameter: |WaterLevelRelieveSmoothPar| Required aide sequence: |WaterLevel| Calculated flux sequence: |AllowedRemoteRelieve| Basic equation: :math:`ActualRemoteRelease = HighestRemoteRelease \\cdot smooth_{logistic1}(WaterLevelRelieveThreshold-WaterLevel, WaterLevelRelieveSmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: All control parameters that are involved in the calculation of |AllowedRemoteRelieve| are derived from |SeasonalParameter|. This allows to simulate seasonal dam control schemes. To show how this works, we first define a short simulation time period of only two days: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Now we prepare the dam model and define two different control schemes for the hydrological summer (April to October) and winter month (November to May) >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremoterelieve(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelrelievethreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelrelievetolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelrelievesmoothpar.update() >>> derived.toy.update() The following test function is supposed to calculate |AllowedRemoteRelieve| for values of |WaterLevel| ranging from 0 and 8 m: >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_allowedremoterelieve_v2, ... last_example=9, ... parseqs=(aides.waterlevel, ... fluxes.allowedremoterelieve)) >>> test.nexts.waterlevel = range(9) On March 30 (which is the last day of the winter month and the first day of the simulation period), the value of |WaterLevelRelieveSmoothPar| is zero. Hence, |AllowedRemoteRelieve| drops abruptly from 1 m³/s (the value of |HighestRemoteRelieve|) to 0 m³/s, as soon as |WaterLevel| reaches 3 m (the value of |WaterLevelRelieveThreshold|): >>> model.idx_sim = pub.timegrids.init['2001.03.30'] >>> test(first_example=2, last_example=6) | ex. | waterlevel | allowedremoterelieve | ------------------------------------------- | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | On April 1 (which is the first day of the sommer month and the last day of the simulation period), all parameter values are increased. The value of parameter |WaterLevelRelieveSmoothPar| is 1 m. Hence, loosely speaking, |AllowedRemoteRelieve| approaches the "discontinuous extremes (2 m³/s -- which is the value of |HighestRemoteRelieve| -- and 0 m³/s) to 99 % within a span of 2 m³/s around the original threshold value of 4 m³/s defined by |WaterLevelRelieveThreshold|: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | waterlevel | allowedremoterelieve | ------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess toy = der.toy[self.idx_sim] flu.allowedremoterelieve = ( con.highestremoterelieve[toy] * smoothutils.smooth_logistic1( con.waterlevelrelievethreshold[toy]-aid.waterlevel, der.waterlevelrelievesmoothpar[toy]))
[ "def", "calc_allowedremoterelieve_v2", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "aid", "=", "self", ".", "sequences", ".", "aides", ".", "fastaccess", "toy", "=", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "flu", ".", "allowedremoterelieve", "=", "(", "con", ".", "highestremoterelieve", "[", "toy", "]", "*", "smoothutils", ".", "smooth_logistic1", "(", "con", ".", "waterlevelrelievethreshold", "[", "toy", "]", "-", "aid", ".", "waterlevel", ",", "der", ".", "waterlevelrelievesmoothpar", "[", "toy", "]", ")", ")" ]
Calculate the allowed maximum relieve another location is allowed to discharge into the dam. Required control parameters: |HighestRemoteRelieve| |WaterLevelRelieveThreshold| Required derived parameter: |WaterLevelRelieveSmoothPar| Required aide sequence: |WaterLevel| Calculated flux sequence: |AllowedRemoteRelieve| Basic equation: :math:`ActualRemoteRelease = HighestRemoteRelease \\cdot smooth_{logistic1}(WaterLevelRelieveThreshold-WaterLevel, WaterLevelRelieveSmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: All control parameters that are involved in the calculation of |AllowedRemoteRelieve| are derived from |SeasonalParameter|. This allows to simulate seasonal dam control schemes. To show how this works, we first define a short simulation time period of only two days: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Now we prepare the dam model and define two different control schemes for the hydrological summer (April to October) and winter month (November to May) >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremoterelieve(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelrelievethreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelrelievetolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelrelievesmoothpar.update() >>> derived.toy.update() The following test function is supposed to calculate |AllowedRemoteRelieve| for values of |WaterLevel| ranging from 0 and 8 m: >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_allowedremoterelieve_v2, ... last_example=9, ... parseqs=(aides.waterlevel, ... fluxes.allowedremoterelieve)) >>> test.nexts.waterlevel = range(9) On March 30 (which is the last day of the winter month and the first day of the simulation period), the value of |WaterLevelRelieveSmoothPar| is zero. Hence, |AllowedRemoteRelieve| drops abruptly from 1 m³/s (the value of |HighestRemoteRelieve|) to 0 m³/s, as soon as |WaterLevel| reaches 3 m (the value of |WaterLevelRelieveThreshold|): >>> model.idx_sim = pub.timegrids.init['2001.03.30'] >>> test(first_example=2, last_example=6) | ex. | waterlevel | allowedremoterelieve | ------------------------------------------- | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | On April 1 (which is the first day of the sommer month and the last day of the simulation period), all parameter values are increased. The value of parameter |WaterLevelRelieveSmoothPar| is 1 m. Hence, loosely speaking, |AllowedRemoteRelieve| approaches the "discontinuous extremes (2 m³/s -- which is the value of |HighestRemoteRelieve| -- and 0 m³/s) to 99 % within a span of 2 m³/s around the original threshold value of 4 m³/s defined by |WaterLevelRelieveThreshold|: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | waterlevel | allowedremoterelieve | ------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 |
[ "Calculate", "the", "allowed", "maximum", "relieve", "another", "location", "is", "allowed", "to", "discharge", "into", "the", "dam", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L182-L293
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_requiredremotesupply_v1
def calc_requiredremotesupply_v1(self): """Calculate the required maximum supply from another location that can be discharged into the dam. Required control parameters: |HighestRemoteSupply| |WaterLevelSupplyThreshold| Required derived parameter: |WaterLevelSupplySmoothPar| Required aide sequence: |WaterLevel| Calculated flux sequence: |RequiredRemoteSupply| Basic equation: :math:`RequiredRemoteSupply = HighestRemoteSupply \\cdot smooth_{logistic1}(WaterLevelSupplyThreshold-WaterLevel, WaterLevelSupplySmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: Method |calc_requiredremotesupply_v1| is functionally identical with method |calc_allowedremoterelieve_v2|. Hence the following examples serve for testing purposes only (see the documentation on function |calc_allowedremoterelieve_v2| for more detailed information): >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremotesupply(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelsupplythreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelsupplytolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelsupplysmoothpar.update() >>> derived.toy.update() >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_requiredremotesupply_v1, ... last_example=9, ... parseqs=(aides.waterlevel, ... fluxes.requiredremotesupply)) >>> test.nexts.waterlevel = range(9) >>> model.idx_sim = pub.timegrids.init['2001.03.30'] >>> test(first_example=2, last_example=6) | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess toy = der.toy[self.idx_sim] flu.requiredremotesupply = ( con.highestremotesupply[toy] * smoothutils.smooth_logistic1( con.waterlevelsupplythreshold[toy]-aid.waterlevel, der.waterlevelsupplysmoothpar[toy]))
python
def calc_requiredremotesupply_v1(self): """Calculate the required maximum supply from another location that can be discharged into the dam. Required control parameters: |HighestRemoteSupply| |WaterLevelSupplyThreshold| Required derived parameter: |WaterLevelSupplySmoothPar| Required aide sequence: |WaterLevel| Calculated flux sequence: |RequiredRemoteSupply| Basic equation: :math:`RequiredRemoteSupply = HighestRemoteSupply \\cdot smooth_{logistic1}(WaterLevelSupplyThreshold-WaterLevel, WaterLevelSupplySmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: Method |calc_requiredremotesupply_v1| is functionally identical with method |calc_allowedremoterelieve_v2|. Hence the following examples serve for testing purposes only (see the documentation on function |calc_allowedremoterelieve_v2| for more detailed information): >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremotesupply(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelsupplythreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelsupplytolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelsupplysmoothpar.update() >>> derived.toy.update() >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_requiredremotesupply_v1, ... last_example=9, ... parseqs=(aides.waterlevel, ... fluxes.requiredremotesupply)) >>> test.nexts.waterlevel = range(9) >>> model.idx_sim = pub.timegrids.init['2001.03.30'] >>> test(first_example=2, last_example=6) | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess aid = self.sequences.aides.fastaccess toy = der.toy[self.idx_sim] flu.requiredremotesupply = ( con.highestremotesupply[toy] * smoothutils.smooth_logistic1( con.waterlevelsupplythreshold[toy]-aid.waterlevel, der.waterlevelsupplysmoothpar[toy]))
[ "def", "calc_requiredremotesupply_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "aid", "=", "self", ".", "sequences", ".", "aides", ".", "fastaccess", "toy", "=", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "flu", ".", "requiredremotesupply", "=", "(", "con", ".", "highestremotesupply", "[", "toy", "]", "*", "smoothutils", ".", "smooth_logistic1", "(", "con", ".", "waterlevelsupplythreshold", "[", "toy", "]", "-", "aid", ".", "waterlevel", ",", "der", ".", "waterlevelsupplysmoothpar", "[", "toy", "]", ")", ")" ]
Calculate the required maximum supply from another location that can be discharged into the dam. Required control parameters: |HighestRemoteSupply| |WaterLevelSupplyThreshold| Required derived parameter: |WaterLevelSupplySmoothPar| Required aide sequence: |WaterLevel| Calculated flux sequence: |RequiredRemoteSupply| Basic equation: :math:`RequiredRemoteSupply = HighestRemoteSupply \\cdot smooth_{logistic1}(WaterLevelSupplyThreshold-WaterLevel, WaterLevelSupplySmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: Method |calc_requiredremotesupply_v1| is functionally identical with method |calc_allowedremoterelieve_v2|. Hence the following examples serve for testing purposes only (see the documentation on function |calc_allowedremoterelieve_v2| for more detailed information): >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' >>> from hydpy.models.dam import * >>> parameterstep() >>> highestremotesupply(_11_1_12=1.0, _03_31_12=1.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> waterlevelsupplythreshold(_11_1_12=3.0, _03_31_12=2.0, ... _04_1_12=4.0, _10_31_12=4.0) >>> waterlevelsupplytolerance(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.waterlevelsupplysmoothpar.update() >>> derived.toy.update() >>> from hydpy import UnitTest >>> test = UnitTest(model, ... model.calc_requiredremotesupply_v1, ... last_example=9, ... parseqs=(aides.waterlevel, ... fluxes.requiredremotesupply)) >>> test.nexts.waterlevel = range(9) >>> model.idx_sim = pub.timegrids.init['2001.03.30'] >>> test(first_example=2, last_example=6) | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 3 | 1.0 | 1.0 | | 4 | 2.0 | 1.0 | | 5 | 3.0 | 0.0 | | 6 | 4.0 | 0.0 | >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | waterlevel | requiredremotesupply | ------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.999998 | | 3 | 2.0 | 1.999796 | | 4 | 3.0 | 1.98 | | 5 | 4.0 | 1.0 | | 6 | 5.0 | 0.02 | | 7 | 6.0 | 0.000204 | | 8 | 7.0 | 0.000002 | | 9 | 8.0 | 0.0 |
[ "Calculate", "the", "required", "maximum", "supply", "from", "another", "location", "that", "can", "be", "discharged", "into", "the", "dam", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L296-L379
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_naturalremotedischarge_v1
def calc_naturalremotedischarge_v1(self): """Try to estimate the natural discharge of a cross section far downstream based on the last few simulation steps. Required control parameter: |NmbLogEntries| Required log sequences: |LoggedTotalRemoteDischarge| |LoggedOutflow| Calculated flux sequence: |NaturalRemoteDischarge| Basic equation: :math:`RemoteDemand = max(\\frac{\\Sigma(LoggedTotalRemoteDischarge - LoggedOutflow)} {NmbLogEntries}), 0)` Examples: Usually, the mean total remote flow should be larger than the mean dam outflows. Then the estimated natural remote discharge is simply the difference of both mean values: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge(2.5, 2.0, 1.5) >>> logs.loggedoutflow(2.0, 1.0, 0.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(1.0) Due to the wave travel times, the difference between remote discharge and dam outflow mights sometimes be negative. To avoid negative estimates of natural discharge, it its value is set to zero in such cases: >>> logs.loggedoutflow(4.0, 3.0, 5.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(0.0) """ con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.naturalremotedischarge = 0. for idx in range(con.nmblogentries): flu.naturalremotedischarge += ( log.loggedtotalremotedischarge[idx] - log.loggedoutflow[idx]) if flu.naturalremotedischarge > 0.: flu.naturalremotedischarge /= con.nmblogentries else: flu.naturalremotedischarge = 0.
python
def calc_naturalremotedischarge_v1(self): """Try to estimate the natural discharge of a cross section far downstream based on the last few simulation steps. Required control parameter: |NmbLogEntries| Required log sequences: |LoggedTotalRemoteDischarge| |LoggedOutflow| Calculated flux sequence: |NaturalRemoteDischarge| Basic equation: :math:`RemoteDemand = max(\\frac{\\Sigma(LoggedTotalRemoteDischarge - LoggedOutflow)} {NmbLogEntries}), 0)` Examples: Usually, the mean total remote flow should be larger than the mean dam outflows. Then the estimated natural remote discharge is simply the difference of both mean values: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge(2.5, 2.0, 1.5) >>> logs.loggedoutflow(2.0, 1.0, 0.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(1.0) Due to the wave travel times, the difference between remote discharge and dam outflow mights sometimes be negative. To avoid negative estimates of natural discharge, it its value is set to zero in such cases: >>> logs.loggedoutflow(4.0, 3.0, 5.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(0.0) """ con = self.parameters.control.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.naturalremotedischarge = 0. for idx in range(con.nmblogentries): flu.naturalremotedischarge += ( log.loggedtotalremotedischarge[idx] - log.loggedoutflow[idx]) if flu.naturalremotedischarge > 0.: flu.naturalremotedischarge /= con.nmblogentries else: flu.naturalremotedischarge = 0.
[ "def", "calc_naturalremotedischarge_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "flu", ".", "naturalremotedischarge", "=", "0.", "for", "idx", "in", "range", "(", "con", ".", "nmblogentries", ")", ":", "flu", ".", "naturalremotedischarge", "+=", "(", "log", ".", "loggedtotalremotedischarge", "[", "idx", "]", "-", "log", ".", "loggedoutflow", "[", "idx", "]", ")", "if", "flu", ".", "naturalremotedischarge", ">", "0.", ":", "flu", ".", "naturalremotedischarge", "/=", "con", ".", "nmblogentries", "else", ":", "flu", ".", "naturalremotedischarge", "=", "0." ]
Try to estimate the natural discharge of a cross section far downstream based on the last few simulation steps. Required control parameter: |NmbLogEntries| Required log sequences: |LoggedTotalRemoteDischarge| |LoggedOutflow| Calculated flux sequence: |NaturalRemoteDischarge| Basic equation: :math:`RemoteDemand = max(\\frac{\\Sigma(LoggedTotalRemoteDischarge - LoggedOutflow)} {NmbLogEntries}), 0)` Examples: Usually, the mean total remote flow should be larger than the mean dam outflows. Then the estimated natural remote discharge is simply the difference of both mean values: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) >>> logs.loggedtotalremotedischarge(2.5, 2.0, 1.5) >>> logs.loggedoutflow(2.0, 1.0, 0.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(1.0) Due to the wave travel times, the difference between remote discharge and dam outflow mights sometimes be negative. To avoid negative estimates of natural discharge, it its value is set to zero in such cases: >>> logs.loggedoutflow(4.0, 3.0, 5.0) >>> model.calc_naturalremotedischarge_v1() >>> fluxes.naturalremotedischarge naturalremotedischarge(0.0)
[ "Try", "to", "estimate", "the", "natural", "discharge", "of", "a", "cross", "section", "far", "downstream", "based", "on", "the", "last", "few", "simulation", "steps", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L382-L436
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_remotedemand_v1
def calc_remotedemand_v1(self): """Estimate the discharge demand of a cross section far downstream. Required control parameter: |RemoteDischargeMinimum| Required derived parameters: |dam_derived.TOY| Required flux sequence: |dam_derived.TOY| Calculated flux sequence: |RemoteDemand| Basic equation: :math:`RemoteDemand = max(RemoteDischargeMinimum - NaturalRemoteDischarge, 0` Examples: Low water elevation is often restricted to specific month of the year. Sometimes the pursued lowest discharge value varies over the year to allow for a low flow variability that is in some agreement with the natural flow regime. The HydPy-Dam model supports such variations. Hence we define a short simulation time period first. This enables us to show how the related parameters values can be defined and how the calculation of the `remote` water demand throughout the year actually works: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Prepare the dam model: >>> from hydpy.models.dam import * >>> parameterstep() Assume the required discharge at a gauge downstream being 2 m³/s in the hydrological summer half-year (April to October). In the winter month (November to May), there is no such requirement: >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() Prepare a test function, that calculates the remote discharge demand based on the parameter values defined above and for natural remote discharge values ranging between 0 and 3 m³/s: >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_remotedemand_v1, last_example=4, ... parseqs=(fluxes.naturalremotedischarge, ... fluxes.remotedemand)) >>> test.nexts.naturalremotedischarge = range(4) On April 1, the required discharge is 2 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | On May 31, the required discharge is 0 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.remotedemand = max(con.remotedischargeminimum[der.toy[self.idx_sim]] - flu.naturalremotedischarge, 0.)
python
def calc_remotedemand_v1(self): """Estimate the discharge demand of a cross section far downstream. Required control parameter: |RemoteDischargeMinimum| Required derived parameters: |dam_derived.TOY| Required flux sequence: |dam_derived.TOY| Calculated flux sequence: |RemoteDemand| Basic equation: :math:`RemoteDemand = max(RemoteDischargeMinimum - NaturalRemoteDischarge, 0` Examples: Low water elevation is often restricted to specific month of the year. Sometimes the pursued lowest discharge value varies over the year to allow for a low flow variability that is in some agreement with the natural flow regime. The HydPy-Dam model supports such variations. Hence we define a short simulation time period first. This enables us to show how the related parameters values can be defined and how the calculation of the `remote` water demand throughout the year actually works: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Prepare the dam model: >>> from hydpy.models.dam import * >>> parameterstep() Assume the required discharge at a gauge downstream being 2 m³/s in the hydrological summer half-year (April to October). In the winter month (November to May), there is no such requirement: >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() Prepare a test function, that calculates the remote discharge demand based on the parameter values defined above and for natural remote discharge values ranging between 0 and 3 m³/s: >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_remotedemand_v1, last_example=4, ... parseqs=(fluxes.naturalremotedischarge, ... fluxes.remotedemand)) >>> test.nexts.naturalremotedischarge = range(4) On April 1, the required discharge is 2 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | On May 31, the required discharge is 0 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.remotedemand = max(con.remotedischargeminimum[der.toy[self.idx_sim]] - flu.naturalremotedischarge, 0.)
[ "def", "calc_remotedemand_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "flu", ".", "remotedemand", "=", "max", "(", "con", ".", "remotedischargeminimum", "[", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "]", "-", "flu", ".", "naturalremotedischarge", ",", "0.", ")" ]
Estimate the discharge demand of a cross section far downstream. Required control parameter: |RemoteDischargeMinimum| Required derived parameters: |dam_derived.TOY| Required flux sequence: |dam_derived.TOY| Calculated flux sequence: |RemoteDemand| Basic equation: :math:`RemoteDemand = max(RemoteDischargeMinimum - NaturalRemoteDischarge, 0` Examples: Low water elevation is often restricted to specific month of the year. Sometimes the pursued lowest discharge value varies over the year to allow for a low flow variability that is in some agreement with the natural flow regime. The HydPy-Dam model supports such variations. Hence we define a short simulation time period first. This enables us to show how the related parameters values can be defined and how the calculation of the `remote` water demand throughout the year actually works: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Prepare the dam model: >>> from hydpy.models.dam import * >>> parameterstep() Assume the required discharge at a gauge downstream being 2 m³/s in the hydrological summer half-year (April to October). In the winter month (November to May), there is no such requirement: >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() Prepare a test function, that calculates the remote discharge demand based on the parameter values defined above and for natural remote discharge values ranging between 0 and 3 m³/s: >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_remotedemand_v1, last_example=4, ... parseqs=(fluxes.naturalremotedischarge, ... fluxes.remotedemand)) >>> test.nexts.naturalremotedischarge = range(4) On April 1, the required discharge is 2 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 2.0 | | 2 | 1.0 | 1.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 | On May 31, the required discharge is 0 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> test() | ex. | naturalremotedischarge | remotedemand | ----------------------------------------------- | 1 | 0.0 | 0.0 | | 2 | 1.0 | 0.0 | | 3 | 2.0 | 0.0 | | 4 | 3.0 | 0.0 |
[ "Estimate", "the", "discharge", "demand", "of", "a", "cross", "section", "far", "downstream", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L439-L521
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_remotefailure_v1
def calc_remotefailure_v1(self): """Estimate the shortfall of actual discharge under the required discharge of a cross section far downstream. Required control parameters: |NmbLogEntries| |RemoteDischargeMinimum| Required derived parameters: |dam_derived.TOY| Required log sequence: |LoggedTotalRemoteDischarge| Calculated flux sequence: |RemoteFailure| Basic equation: :math:`RemoteFailure = \\frac{\\Sigma(LoggedTotalRemoteDischarge)}{NmbLogEntries} - RemoteDischargeMinimum` Examples: As explained in the documentation on method |calc_remotedemand_v1|, we have to define a simulation period first: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Now we prepare a dam model with log sequences memorizing three values: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) Again, the required discharge is 2 m³/s in summer and 0 m³/s in winter: >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() Let it be supposed that the actual discharge at the remote cross section droped from 2 m³/s to 0 m³/s over the last three days: >>> logs.loggedtotalremotedischarge(0.0, 1.0, 2.0) This means that for the April 1 there would have been an averaged shortfall of 1 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(1.0) Instead for May 31 there would have been an excess of 1 m³/s, which is interpreted to be a "negative failure": >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(-1.0) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.remotefailure = 0 for idx in range(con.nmblogentries): flu.remotefailure -= log.loggedtotalremotedischarge[idx] flu.remotefailure /= con.nmblogentries flu.remotefailure += con.remotedischargeminimum[der.toy[self.idx_sim]]
python
def calc_remotefailure_v1(self): """Estimate the shortfall of actual discharge under the required discharge of a cross section far downstream. Required control parameters: |NmbLogEntries| |RemoteDischargeMinimum| Required derived parameters: |dam_derived.TOY| Required log sequence: |LoggedTotalRemoteDischarge| Calculated flux sequence: |RemoteFailure| Basic equation: :math:`RemoteFailure = \\frac{\\Sigma(LoggedTotalRemoteDischarge)}{NmbLogEntries} - RemoteDischargeMinimum` Examples: As explained in the documentation on method |calc_remotedemand_v1|, we have to define a simulation period first: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Now we prepare a dam model with log sequences memorizing three values: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) Again, the required discharge is 2 m³/s in summer and 0 m³/s in winter: >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() Let it be supposed that the actual discharge at the remote cross section droped from 2 m³/s to 0 m³/s over the last three days: >>> logs.loggedtotalremotedischarge(0.0, 1.0, 2.0) This means that for the April 1 there would have been an averaged shortfall of 1 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(1.0) Instead for May 31 there would have been an excess of 1 m³/s, which is interpreted to be a "negative failure": >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(-1.0) """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.remotefailure = 0 for idx in range(con.nmblogentries): flu.remotefailure -= log.loggedtotalremotedischarge[idx] flu.remotefailure /= con.nmblogentries flu.remotefailure += con.remotedischargeminimum[der.toy[self.idx_sim]]
[ "def", "calc_remotefailure_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "flu", ".", "remotefailure", "=", "0", "for", "idx", "in", "range", "(", "con", ".", "nmblogentries", ")", ":", "flu", ".", "remotefailure", "-=", "log", ".", "loggedtotalremotedischarge", "[", "idx", "]", "flu", ".", "remotefailure", "/=", "con", ".", "nmblogentries", "flu", ".", "remotefailure", "+=", "con", ".", "remotedischargeminimum", "[", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "]" ]
Estimate the shortfall of actual discharge under the required discharge of a cross section far downstream. Required control parameters: |NmbLogEntries| |RemoteDischargeMinimum| Required derived parameters: |dam_derived.TOY| Required log sequence: |LoggedTotalRemoteDischarge| Calculated flux sequence: |RemoteFailure| Basic equation: :math:`RemoteFailure = \\frac{\\Sigma(LoggedTotalRemoteDischarge)}{NmbLogEntries} - RemoteDischargeMinimum` Examples: As explained in the documentation on method |calc_remotedemand_v1|, we have to define a simulation period first: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Now we prepare a dam model with log sequences memorizing three values: >>> from hydpy.models.dam import * >>> parameterstep() >>> nmblogentries(3) Again, the required discharge is 2 m³/s in summer and 0 m³/s in winter: >>> remotedischargeminimum(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=2.0, _10_31_12=2.0) >>> derived.toy.update() Let it be supposed that the actual discharge at the remote cross section droped from 2 m³/s to 0 m³/s over the last three days: >>> logs.loggedtotalremotedischarge(0.0, 1.0, 2.0) This means that for the April 1 there would have been an averaged shortfall of 1 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(1.0) Instead for May 31 there would have been an excess of 1 m³/s, which is interpreted to be a "negative failure": >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> model.calc_remotefailure_v1() >>> fluxes.remotefailure remotefailure(-1.0)
[ "Estimate", "the", "shortfall", "of", "actual", "discharge", "under", "the", "required", "discharge", "of", "a", "cross", "section", "far", "downstream", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L524-L595
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_requiredremoterelease_v1
def calc_requiredremoterelease_v1(self): """Guess the required release necessary to not fall below the threshold value at a cross section far downstream with a certain level of certainty. Required control parameter: |RemoteDischargeSafety| Required derived parameters: |RemoteDischargeSmoothPar| |dam_derived.TOY| Required flux sequence: |RemoteDemand| |RemoteFailure| Calculated flux sequence: |RequiredRemoteRelease| Basic equation: :math:`RequiredRemoteRelease = RemoteDemand + RemoteDischargeSafety \\cdot smooth_{logistic1}(RemoteFailure, RemoteDischargeSmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: As in the examples above, define a short simulation time period first: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Prepare the dam model: >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.toy.update() Define a safety factor of 0.5 m³/s for the summer months and no safety factor at all for the winter months: >>> remotedischargesafety(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.remotedischargesmoothpar.update() Assume the actual demand at the cross section downsstream has actually been estimated to be 2 m³/s: >>> fluxes.remotedemand = 2.0 Prepare a test function, that calculates the required discharge based on the parameter values defined above and for a "remote failure" values ranging between -4 and 4 m³/s: >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_requiredremoterelease_v1, ... last_example=9, ... parseqs=(fluxes.remotefailure, ... fluxes.requiredremoterelease)) >>> test.nexts.remotefailure = range(-4, 5) On May 31, the safety factor is 0 m³/s. Hence no discharge is added to the estimated remote demand of 2 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.0 | | 3 | -2.0 | 2.0 | | 4 | -1.0 | 2.0 | | 5 | 0.0 | 2.0 | | 6 | 1.0 | 2.0 | | 7 | 2.0 | 2.0 | | 8 | 3.0 | 2.0 | | 9 | 4.0 | 2.0 | On April 1, the safety factor is 1 m³/s. If the remote failure was exactly zero in the past, meaning the control of the dam was perfect, only 0.5 m³/s are added to the estimated remote demand of 2 m³/s. If the actual recharge did actually fall below the threshold value, up to 1 m³/s is added. If the the actual discharge exceeded the threshold value by 2 or 3 m³/s, virtually nothing is added: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.000001 | | 3 | -2.0 | 2.000102 | | 4 | -1.0 | 2.01 | | 5 | 0.0 | 2.5 | | 6 | 1.0 | 2.99 | | 7 | 2.0 | 2.999898 | | 8 | 3.0 | 2.999999 | | 9 | 4.0 | 3.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.requiredremoterelease = ( flu.remotedemand+con.remotedischargesafety[der.toy[self.idx_sim]] * smoothutils.smooth_logistic1( flu.remotefailure, der.remotedischargesmoothpar[der.toy[self.idx_sim]]))
python
def calc_requiredremoterelease_v1(self): """Guess the required release necessary to not fall below the threshold value at a cross section far downstream with a certain level of certainty. Required control parameter: |RemoteDischargeSafety| Required derived parameters: |RemoteDischargeSmoothPar| |dam_derived.TOY| Required flux sequence: |RemoteDemand| |RemoteFailure| Calculated flux sequence: |RequiredRemoteRelease| Basic equation: :math:`RequiredRemoteRelease = RemoteDemand + RemoteDischargeSafety \\cdot smooth_{logistic1}(RemoteFailure, RemoteDischargeSmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: As in the examples above, define a short simulation time period first: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Prepare the dam model: >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.toy.update() Define a safety factor of 0.5 m³/s for the summer months and no safety factor at all for the winter months: >>> remotedischargesafety(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.remotedischargesmoothpar.update() Assume the actual demand at the cross section downsstream has actually been estimated to be 2 m³/s: >>> fluxes.remotedemand = 2.0 Prepare a test function, that calculates the required discharge based on the parameter values defined above and for a "remote failure" values ranging between -4 and 4 m³/s: >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_requiredremoterelease_v1, ... last_example=9, ... parseqs=(fluxes.remotefailure, ... fluxes.requiredremoterelease)) >>> test.nexts.remotefailure = range(-4, 5) On May 31, the safety factor is 0 m³/s. Hence no discharge is added to the estimated remote demand of 2 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.0 | | 3 | -2.0 | 2.0 | | 4 | -1.0 | 2.0 | | 5 | 0.0 | 2.0 | | 6 | 1.0 | 2.0 | | 7 | 2.0 | 2.0 | | 8 | 3.0 | 2.0 | | 9 | 4.0 | 2.0 | On April 1, the safety factor is 1 m³/s. If the remote failure was exactly zero in the past, meaning the control of the dam was perfect, only 0.5 m³/s are added to the estimated remote demand of 2 m³/s. If the actual recharge did actually fall below the threshold value, up to 1 m³/s is added. If the the actual discharge exceeded the threshold value by 2 or 3 m³/s, virtually nothing is added: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.000001 | | 3 | -2.0 | 2.000102 | | 4 | -1.0 | 2.01 | | 5 | 0.0 | 2.5 | | 6 | 1.0 | 2.99 | | 7 | 2.0 | 2.999898 | | 8 | 3.0 | 2.999999 | | 9 | 4.0 | 3.0 | """ con = self.parameters.control.fastaccess der = self.parameters.derived.fastaccess flu = self.sequences.fluxes.fastaccess flu.requiredremoterelease = ( flu.remotedemand+con.remotedischargesafety[der.toy[self.idx_sim]] * smoothutils.smooth_logistic1( flu.remotefailure, der.remotedischargesmoothpar[der.toy[self.idx_sim]]))
[ "def", "calc_requiredremoterelease_v1", "(", "self", ")", ":", "con", "=", "self", ".", "parameters", ".", "control", ".", "fastaccess", "der", "=", "self", ".", "parameters", ".", "derived", ".", "fastaccess", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "flu", ".", "requiredremoterelease", "=", "(", "flu", ".", "remotedemand", "+", "con", ".", "remotedischargesafety", "[", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "]", "*", "smoothutils", ".", "smooth_logistic1", "(", "flu", ".", "remotefailure", ",", "der", ".", "remotedischargesmoothpar", "[", "der", ".", "toy", "[", "self", ".", "idx_sim", "]", "]", ")", ")" ]
Guess the required release necessary to not fall below the threshold value at a cross section far downstream with a certain level of certainty. Required control parameter: |RemoteDischargeSafety| Required derived parameters: |RemoteDischargeSmoothPar| |dam_derived.TOY| Required flux sequence: |RemoteDemand| |RemoteFailure| Calculated flux sequence: |RequiredRemoteRelease| Basic equation: :math:`RequiredRemoteRelease = RemoteDemand + RemoteDischargeSafety \\cdot smooth_{logistic1}(RemoteFailure, RemoteDischargeSmoothPar)` Used auxiliary method: |smooth_logistic1| Examples: As in the examples above, define a short simulation time period first: >>> from hydpy import pub >>> pub.timegrids = '2001.03.30', '2001.04.03', '1d' Prepare the dam model: >>> from hydpy.models.dam import * >>> parameterstep() >>> derived.toy.update() Define a safety factor of 0.5 m³/s for the summer months and no safety factor at all for the winter months: >>> remotedischargesafety(_11_1_12=0.0, _03_31_12=0.0, ... _04_1_12=1.0, _10_31_12=1.0) >>> derived.remotedischargesmoothpar.update() Assume the actual demand at the cross section downsstream has actually been estimated to be 2 m³/s: >>> fluxes.remotedemand = 2.0 Prepare a test function, that calculates the required discharge based on the parameter values defined above and for a "remote failure" values ranging between -4 and 4 m³/s: >>> from hydpy import UnitTest >>> test = UnitTest(model, model.calc_requiredremoterelease_v1, ... last_example=9, ... parseqs=(fluxes.remotefailure, ... fluxes.requiredremoterelease)) >>> test.nexts.remotefailure = range(-4, 5) On May 31, the safety factor is 0 m³/s. Hence no discharge is added to the estimated remote demand of 2 m³/s: >>> model.idx_sim = pub.timegrids.init['2001.03.31'] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.0 | | 3 | -2.0 | 2.0 | | 4 | -1.0 | 2.0 | | 5 | 0.0 | 2.0 | | 6 | 1.0 | 2.0 | | 7 | 2.0 | 2.0 | | 8 | 3.0 | 2.0 | | 9 | 4.0 | 2.0 | On April 1, the safety factor is 1 m³/s. If the remote failure was exactly zero in the past, meaning the control of the dam was perfect, only 0.5 m³/s are added to the estimated remote demand of 2 m³/s. If the actual recharge did actually fall below the threshold value, up to 1 m³/s is added. If the the actual discharge exceeded the threshold value by 2 or 3 m³/s, virtually nothing is added: >>> model.idx_sim = pub.timegrids.init['2001.04.01'] >>> test() | ex. | remotefailure | requiredremoterelease | ----------------------------------------------- | 1 | -4.0 | 2.0 | | 2 | -3.0 | 2.000001 | | 3 | -2.0 | 2.000102 | | 4 | -1.0 | 2.01 | | 5 | 0.0 | 2.5 | | 6 | 1.0 | 2.99 | | 7 | 2.0 | 2.999898 | | 8 | 3.0 | 2.999999 | | 9 | 4.0 | 3.0 |
[ "Guess", "the", "required", "release", "necessary", "to", "not", "fall", "below", "the", "threshold", "value", "at", "a", "cross", "section", "far", "downstream", "with", "a", "certain", "level", "of", "certainty", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L598-L705
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_requiredremoterelease_v2
def calc_requiredremoterelease_v2(self): """Get the required remote release of the last simulation step. Required log sequence: |LoggedRequiredRemoteRelease| Calculated flux sequence: |RequiredRemoteRelease| Basic equation: :math:`RequiredRemoteRelease = LoggedRequiredRemoteRelease` Example: >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedrequiredremoterelease = 3.0 >>> model.calc_requiredremoterelease_v2() >>> fluxes.requiredremoterelease requiredremoterelease(3.0) """ flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.requiredremoterelease = log.loggedrequiredremoterelease[0]
python
def calc_requiredremoterelease_v2(self): """Get the required remote release of the last simulation step. Required log sequence: |LoggedRequiredRemoteRelease| Calculated flux sequence: |RequiredRemoteRelease| Basic equation: :math:`RequiredRemoteRelease = LoggedRequiredRemoteRelease` Example: >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedrequiredremoterelease = 3.0 >>> model.calc_requiredremoterelease_v2() >>> fluxes.requiredremoterelease requiredremoterelease(3.0) """ flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.requiredremoterelease = log.loggedrequiredremoterelease[0]
[ "def", "calc_requiredremoterelease_v2", "(", "self", ")", ":", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "flu", ".", "requiredremoterelease", "=", "log", ".", "loggedrequiredremoterelease", "[", "0", "]" ]
Get the required remote release of the last simulation step. Required log sequence: |LoggedRequiredRemoteRelease| Calculated flux sequence: |RequiredRemoteRelease| Basic equation: :math:`RequiredRemoteRelease = LoggedRequiredRemoteRelease` Example: >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedrequiredremoterelease = 3.0 >>> model.calc_requiredremoterelease_v2() >>> fluxes.requiredremoterelease requiredremoterelease(3.0)
[ "Get", "the", "required", "remote", "release", "of", "the", "last", "simulation", "step", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L708-L731
hydpy-dev/hydpy
hydpy/models/dam/dam_model.py
calc_allowedremoterelieve_v1
def calc_allowedremoterelieve_v1(self): """Get the allowed remote relieve of the last simulation step. Required log sequence: |LoggedAllowedRemoteRelieve| Calculated flux sequence: |AllowedRemoteRelieve| Basic equation: :math:`AllowedRemoteRelieve = LoggedAllowedRemoteRelieve` Example: >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedallowedremoterelieve = 2.0 >>> model.calc_allowedremoterelieve_v1() >>> fluxes.allowedremoterelieve allowedremoterelieve(2.0) """ flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.allowedremoterelieve = log.loggedallowedremoterelieve[0]
python
def calc_allowedremoterelieve_v1(self): """Get the allowed remote relieve of the last simulation step. Required log sequence: |LoggedAllowedRemoteRelieve| Calculated flux sequence: |AllowedRemoteRelieve| Basic equation: :math:`AllowedRemoteRelieve = LoggedAllowedRemoteRelieve` Example: >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedallowedremoterelieve = 2.0 >>> model.calc_allowedremoterelieve_v1() >>> fluxes.allowedremoterelieve allowedremoterelieve(2.0) """ flu = self.sequences.fluxes.fastaccess log = self.sequences.logs.fastaccess flu.allowedremoterelieve = log.loggedallowedremoterelieve[0]
[ "def", "calc_allowedremoterelieve_v1", "(", "self", ")", ":", "flu", "=", "self", ".", "sequences", ".", "fluxes", ".", "fastaccess", "log", "=", "self", ".", "sequences", ".", "logs", ".", "fastaccess", "flu", ".", "allowedremoterelieve", "=", "log", ".", "loggedallowedremoterelieve", "[", "0", "]" ]
Get the allowed remote relieve of the last simulation step. Required log sequence: |LoggedAllowedRemoteRelieve| Calculated flux sequence: |AllowedRemoteRelieve| Basic equation: :math:`AllowedRemoteRelieve = LoggedAllowedRemoteRelieve` Example: >>> from hydpy.models.dam import * >>> parameterstep() >>> logs.loggedallowedremoterelieve = 2.0 >>> model.calc_allowedremoterelieve_v1() >>> fluxes.allowedremoterelieve allowedremoterelieve(2.0)
[ "Get", "the", "allowed", "remote", "relieve", "of", "the", "last", "simulation", "step", "." ]
train
https://github.com/hydpy-dev/hydpy/blob/1bc6a82cf30786521d86b36e27900c6717d3348d/hydpy/models/dam/dam_model.py#L734-L757