repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDgemv
def cublasDgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real general matrix. """ status = _libcublas.cublasDgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
python
def cublasDgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real general matrix. """ status = _libcublas.cublasDgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasDgemv", "(", "handle", ",", "trans", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasDgemv_v2", "(", "handle", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real general matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2279-L2291
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCgemv
def cublasCgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex general matrix. """ status = _libcublas.cublasCgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
python
def cublasCgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex general matrix. """ status = _libcublas.cublasCgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasCgemv", "(", "handle", ",", "trans", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasCgemv_v2", "(", "handle", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for complex general matrix.
[ "Matrix", "-", "vector", "product", "for", "complex", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2306-L2320
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZgemv
def cublasZgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex general matrix. """ status = _libcublas.cublasZgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
python
def cublasZgemv(handle, trans, m, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex general matrix. """ status = _libcublas.cublasZgemv_v2(handle, _CUBLAS_OP[trans], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasZgemv", "(", "handle", ",", "trans", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasZgemv_v2", "(", "handle", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for complex general matrix.
[ "Matrix", "-", "vector", "product", "for", "complex", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2335-L2349
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSger
def cublasSger(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on real general matrix. """ status = _libcublas.cublasSger_v2(handle, m, n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
python
def cublasSger(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on real general matrix. """ status = _libcublas.cublasSger_v2(handle, m, n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasSger", "(", "handle", ",", "m", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasSger_v2", "(", "handle", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on real general matrix.
[ "Rank", "-", "1", "operation", "on", "real", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2363-L2374
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDger
def cublasDger(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on real general matrix. """ status = _libcublas.cublasDger_v2(handle, m, n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
python
def cublasDger(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on real general matrix. """ status = _libcublas.cublasDger_v2(handle, m, n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasDger", "(", "handle", ",", "m", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasDger_v2", "(", "handle", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on real general matrix.
[ "Rank", "-", "1", "operation", "on", "real", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2387-L2398
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCgeru
def cublasCgeru(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on complex general matrix. """ status = _libcublas.cublasCgeru_v2(handle, m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
python
def cublasCgeru(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on complex general matrix. """ status = _libcublas.cublasCgeru_v2(handle, m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasCgeru", "(", "handle", ",", "m", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasCgeru_v2", "(", "handle", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on complex general matrix.
[ "Rank", "-", "1", "operation", "on", "complex", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2434-L2444
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZgerc
def cublasZgerc(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on complex general matrix. """ status = _libcublas.cublasZgerc_v2(handle, m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
python
def cublasZgerc(handle, m, n, alpha, x, incx, y, incy, A, lda): """ Rank-1 operation on complex general matrix. """ status = _libcublas.cublasZgerc_v2(handle, m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasZgerc", "(", "handle", ",", "m", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasZgerc_v2", "(", "handle", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on complex general matrix.
[ "Rank", "-", "1", "operation", "on", "complex", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2457-L2467
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSsbmv
def cublasSsbmv(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-banded matrix. """ status = _libcublas.cublasSsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
python
def cublasSsbmv(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-banded matrix. """ status = _libcublas.cublasSsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasSsbmv", "(", "handle", ",", "uplo", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasSsbmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "beta", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real symmetric-banded matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "symmetric", "-", "banded", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2507-L2519
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDsbmv
def cublasDsbmv(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-banded matrix. """ status = _libcublas.cublasDsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
python
def cublasDsbmv(handle, uplo, n, k, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-banded matrix. """ status = _libcublas.cublasDsbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasDsbmv", "(", "handle", ",", "uplo", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasDsbmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real symmetric-banded matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "symmetric", "-", "banded", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2534-L2546
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSspmv
def cublasSspmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-packed matrix. """ status = _libcublas.cublasSspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), ctypes.byref(ctypes.c_float(AP)), int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
python
def cublasSspmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-packed matrix. """ status = _libcublas.cublasSspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), ctypes.byref(ctypes.c_float(AP)), int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasSspmv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "AP", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasSspmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "AP", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "beta", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real symmetric-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "symmetric", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2560-L2576
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDspmv
def cublasDspmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-packed matrix. """ status = _libcublas.cublasDspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), ctypes.byref(ctypes.c_double(AP)), int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
python
def cublasDspmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric-packed matrix. """ status = _libcublas.cublasDspmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), ctypes.byref(ctypes.c_double(AP)), int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasDspmv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "AP", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasDspmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "AP", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real symmetric-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "symmetric", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2589-L2605
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSspr
def cublasSspr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on real symmetric-packed matrix. """ status = _libcublas.cublasSspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
python
def cublasSspr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on real symmetric-packed matrix. """ status = _libcublas.cublasSspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
[ "def", "cublasSspr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasSspr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on real symmetric-packed matrix.
[ "Rank", "-", "1", "operation", "on", "real", "symmetric", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2616-L2626
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDspr
def cublasDspr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on real symmetric-packed matrix. """ status = _libcublas.cublasDspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
python
def cublasDspr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on real symmetric-packed matrix. """ status = _libcublas.cublasDspr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
[ "def", "cublasDspr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasDspr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on real symmetric-packed matrix.
[ "Rank", "-", "1", "operation", "on", "real", "symmetric", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2637-L2647
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSspr2
def cublasSspr2(handle, uplo, n, alpha, x, incx, y, incy, AP): """ Rank-2 operation on real symmetric-packed matrix. """ status = _libcublas.cublasSspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
python
def cublasSspr2(handle, uplo, n, alpha, x, incx, y, incy, AP): """ Rank-2 operation on real symmetric-packed matrix. """ status = _libcublas.cublasSspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
[ "def", "cublasSspr2", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasSspr2_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2 operation on real symmetric-packed matrix.
[ "Rank", "-", "2", "operation", "on", "real", "symmetric", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2660-L2671
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDspr2
def cublasDspr2(handle, uplo, n, alpha, x, incx, y, incy, AP): """ Rank-2 operation on real symmetric-packed matrix. """ status = _libcublas.cublasDspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
python
def cublasDspr2(handle, uplo, n, alpha, x, incx, y, incy, AP): """ Rank-2 operation on real symmetric-packed matrix. """ status = _libcublas.cublasDspr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
[ "def", "cublasDspr2", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasDspr2_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2 operation on real symmetric-packed matrix.
[ "Rank", "-", "2", "operation", "on", "real", "symmetric", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2683-L2693
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSsymv
def cublasSsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric matrix. """ status = _libcublas.cublasSsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
python
def cublasSsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric matrix. """ status = _libcublas.cublasSsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_float(beta)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasSsymv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasSsymv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "beta", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real symmetric matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2708-L2720
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDsymv
def cublasDsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric matrix. """ status = _libcublas.cublasDsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
python
def cublasDsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for real symmetric matrix. """ status = _libcublas.cublasDsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(x), incx, ctypes.byref(ctypes.c_double(beta)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasDsymv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasDsymv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real symmetric matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2734-L2746
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCsymv
def cublasCsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex symmetric matrix. """ status = _libcublas.cublasCsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
python
def cublasCsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex symmetric matrix. """ status = _libcublas.cublasCsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasCsymv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasCsymv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for complex symmetric matrix.
[ "Matrix", "-", "vector", "product", "for", "complex", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2760-L2774
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZsymv
def cublasZsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex symmetric matrix. """ status = _libcublas.cublasZsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
python
def cublasZsymv(handle, uplo, n, alpha, A, lda, x, incx, beta, y, incy): """ Matrix-vector product for complex symmetric matrix. """ status = _libcublas.cublasZsymv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasZsymv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasZsymv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for complex symmetric matrix.
[ "Matrix", "-", "vector", "product", "for", "complex", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2788-L2802
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSsyr
def cublasSsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on real symmetric matrix. """ status = _libcublas.cublasSsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(A), lda) cublasCheckStatus(status)
python
def cublasSsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on real symmetric matrix. """ status = _libcublas.cublasSsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasSsyr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasSsyr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on real symmetric matrix.
[ "Rank", "-", "1", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2814-L2824
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDsyr
def cublasDsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on real symmetric matrix. """ status = _libcublas.cublasDsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(A), lda) cublasCheckStatus(status)
python
def cublasDsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on real symmetric matrix. """ status = _libcublas.cublasDsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasDsyr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasDsyr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on real symmetric matrix.
[ "Rank", "-", "1", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2835-L2845
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCsyr
def cublasCsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on complex symmetric matrix. """ status = _libcublas.cublasCsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(A), lda) cublasCheckStatus(status)
python
def cublasCsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on complex symmetric matrix. """ status = _libcublas.cublasCsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasCsyr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasCsyr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on complex symmetric matrix.
[ "Rank", "-", "1", "operation", "on", "complex", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2856-L2867
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZsyr
def cublasZsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on complex symmetric matrix. """ status = _libcublas.cublasZsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(A), lda) cublasCheckStatus(status)
python
def cublasZsyr(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on complex symmetric matrix. """ status = _libcublas.cublasZsyr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasZsyr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasZsyr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on complex symmetric matrix.
[ "Rank", "-", "1", "operation", "on", "complex", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2878-L2889
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSsyr2
def cublasSsyr2(handle, uplo, n, alpha, x, incx, y, incy, A, lda): """ Rank-2 operation on real symmetric matrix. """ status = _libcublas.cublasSsyr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
python
def cublasSsyr2(handle, uplo, n, alpha, x, incx, y, incy, A, lda): """ Rank-2 operation on real symmetric matrix. """ status = _libcublas.cublasSsyr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasSsyr2", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasSsyr2_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2 operation on real symmetric matrix.
[ "Rank", "-", "2", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2903-L2914
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDsyr2
def cublasDsyr2(handle, uplo, n, alpha, x, incx, y, incy, A, lda): """ Rank-2 operation on real symmetric matrix. """ status = _libcublas.cublasDsyr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
python
def cublasDsyr2(handle, uplo, n, alpha, x, incx, y, incy, A, lda): """ Rank-2 operation on real symmetric matrix. """ status = _libcublas.cublasDsyr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(y), incy, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasDsyr2", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "y", ",", "incy", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasDsyr2_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2 operation on real symmetric matrix.
[ "Rank", "-", "2", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L2927-L2938
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasStbmv
def cublasStbmv(handle, uplo, trans, diag, n, k, A, lda, x, incx): """ Matrix-vector product for real triangular-banded matrix. """ status = _libcublas.cublasStbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, k, int(A), lda, int(x), incx) cublasCheckStatus(status)
python
def cublasStbmv(handle, uplo, trans, diag, n, k, A, lda, x, incx): """ Matrix-vector product for real triangular-banded matrix. """ status = _libcublas.cublasStbmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, k, int(A), lda, int(x), incx) cublasCheckStatus(status)
[ "def", "cublasStbmv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "k", ",", "A", ",", "lda", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasStbmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "k", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real triangular-banded matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "triangular", "-", "banded", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3002-L3013
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasStpmv
def cublasStpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for real triangular-packed matrix. """ status = _libcublas.cublasStpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasStpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for real triangular-packed matrix. """ status = _libcublas.cublasStpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasStpmv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasStpmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real triangular-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "triangular", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3194-L3205
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCtpmv
def cublasCtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for complex triangular-packed matrix. """ status = _libcublas.cublasCtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasCtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for complex triangular-packed matrix. """ status = _libcublas.cublasCtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasCtpmv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasCtpmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for complex triangular-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "complex", "triangular", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3216-L3227
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDtpmv
def cublasDtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for real triangular-packed matrix. """ status = _libcublas.cublasDtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasDtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for real triangular-packed matrix. """ status = _libcublas.cublasDtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasDtpmv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasDtpmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real triangular-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "triangular", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3238-L3249
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZtpmv
def cublasZtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for complex triangular-packed matrix. """ status = _libcublas.cublasZtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasZtpmv(handle, uplo, trans, diag, n, AP, x, incx): """ Matrix-vector product for complex triangular-packed matrix. """ status = _libcublas.cublasZtpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasZtpmv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasZtpmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for complex triangular-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "complex", "triangular", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3260-L3271
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasStpsv
def cublasStpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve real triangular-packed system with one right-hand side. """ status = _libcublas.cublasStpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasStpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve real triangular-packed system with one right-hand side. """ status = _libcublas.cublasStpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasStpsv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasStpsv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Solve real triangular-packed system with one right-hand side.
[ "Solve", "real", "triangular", "-", "packed", "system", "with", "one", "right", "-", "hand", "side", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3283-L3294
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDtpsv
def cublasDtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve real triangular-packed system with one right-hand side. """ status = _libcublas.cublasDtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasDtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve real triangular-packed system with one right-hand side. """ status = _libcublas.cublasDtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasDtpsv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasDtpsv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Solve real triangular-packed system with one right-hand side.
[ "Solve", "real", "triangular", "-", "packed", "system", "with", "one", "right", "-", "hand", "side", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3306-L3317
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCtpsv
def cublasCtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve complex triangular-packed system with one right-hand side. """ status = _libcublas.cublasCtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasCtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve complex triangular-packed system with one right-hand side. """ status = _libcublas.cublasCtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasCtpsv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasCtpsv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Solve complex triangular-packed system with one right-hand side.
[ "Solve", "complex", "triangular", "-", "packed", "system", "with", "one", "right", "-", "hand", "side", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3328-L3339
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZtpsv
def cublasZtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve complex triangular-packed system with one right-hand size. """ status = _libcublas.cublasZtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
python
def cublasZtpsv(handle, uplo, trans, diag, n, AP, x, incx): """ Solve complex triangular-packed system with one right-hand size. """ status = _libcublas.cublasZtpsv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(AP), int(x), incx) cublasCheckStatus(status)
[ "def", "cublasZtpsv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "AP", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasZtpsv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Solve complex triangular-packed system with one right-hand size.
[ "Solve", "complex", "triangular", "-", "packed", "system", "with", "one", "right", "-", "hand", "size", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3350-L3361
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCtrmv
def cublasCtrmv(handle, uplo, trans, diag, n, A, lda, x, incx): """ Matrix-vector product for complex triangular matrix. """ status = _libcublas.cublasCtrmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(A), lda, int(x), incx) cublasCheckStatus(status)
python
def cublasCtrmv(handle, uplo, trans, diag, n, A, lda, x, incx): """ Matrix-vector product for complex triangular matrix. """ status = _libcublas.cublasCtrmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(A), lda, int(x), incx) cublasCheckStatus(status)
[ "def", "cublasCtrmv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "A", ",", "lda", ",", "x", ",", "incx", ")", ":", "status", "=", "_libcublas", ".", "cublasCtrmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for complex triangular matrix.
[ "Matrix", "-", "vector", "product", "for", "complex", "triangular", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3397-L3408
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDtrmv
def cublasDtrmv(handle, uplo, trans, diag, n, A, lda, x, inx): """ Matrix-vector product for real triangular matrix. """ status = _libcublas.cublasDtrmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(A), lda, int(x), inx) cublasCheckStatus(status)
python
def cublasDtrmv(handle, uplo, trans, diag, n, A, lda, x, inx): """ Matrix-vector product for real triangular matrix. """ status = _libcublas.cublasDtrmv_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], n, int(A), lda, int(x), inx) cublasCheckStatus(status)
[ "def", "cublasDtrmv", "(", "handle", ",", "uplo", ",", "trans", ",", "diag", ",", "n", ",", "A", ",", "lda", ",", "x", ",", "inx", ")", ":", "status", "=", "_libcublas", ".", "cublasDtrmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "n", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "inx", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for real triangular matrix.
[ "Matrix", "-", "vector", "product", "for", "real", "triangular", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3420-L3431
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasChpmv
def cublasChpmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for Hermitian-packed matrix. """ status = _libcublas.cublasChpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(AP), int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
python
def cublasChpmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for Hermitian-packed matrix. """ status = _libcublas.cublasChpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(AP), int(x), incx, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasChpmv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "AP", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasChpmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for Hermitian-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "Hermitian", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3679-L3693
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZhpmv
def cublasZhpmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for Hermitian-packed matrix. """ status = _libcublas.cublasZhpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(AP), int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
python
def cublasZhpmv(handle, uplo, n, alpha, AP, x, incx, beta, y, incy): """ Matrix-vector product for Hermitian-packed matrix. """ status = _libcublas.cublasZhpmv_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(AP), int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
[ "def", "cublasZhpmv", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "AP", ",", "x", ",", "incx", ",", "beta", ",", "y", ",", "incy", ")", ":", "status", "=", "_libcublas", ".", "cublasZhpmv_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "AP", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "y", ")", ",", "incy", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-vector product for Hermitian-packed matrix.
[ "Matrix", "-", "vector", "product", "for", "Hermitian", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3706-L3720
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCher
def cublasCher(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on Hermitian matrix. """ status = _libcublas.cublasCher_v2(handle, _CUBLAS_FILL_MODE[uplo], n, alpha, int(x), incx, int(A), lda) cublasCheckStatus(status)
python
def cublasCher(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on Hermitian matrix. """ status = _libcublas.cublasCher_v2(handle, _CUBLAS_FILL_MODE[uplo], n, alpha, int(x), incx, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasCher", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasCher_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "alpha", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on Hermitian matrix.
[ "Rank", "-", "1", "operation", "on", "Hermitian", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3732-L3741
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZher
def cublasZher(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on Hermitian matrix. """ status = _libcublas.cublasZher_v2(handle, _CUBLAS_FILL_MODE[uplo], n, alpha, int(x), incx, int(A), lda) cublasCheckStatus(status)
python
def cublasZher(handle, uplo, n, alpha, x, incx, A, lda): """ Rank-1 operation on Hermitian matrix. """ status = _libcublas.cublasZher_v2(handle, _CUBLAS_FILL_MODE[uplo], n, alpha, int(x), incx, int(A), lda) cublasCheckStatus(status)
[ "def", "cublasZher", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "A", ",", "lda", ")", ":", "status", "=", "_libcublas", ".", "cublasZher_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "alpha", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "A", ")", ",", "lda", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on Hermitian matrix.
[ "Rank", "-", "1", "operation", "on", "Hermitian", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3752-L3761
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasChpr
def cublasChpr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on Hermitian-packed matrix. """ status = _libcublas.cublasChpr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
python
def cublasChpr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on Hermitian-packed matrix. """ status = _libcublas.cublasChpr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_float(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
[ "def", "cublasChpr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasChpr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on Hermitian-packed matrix.
[ "Rank", "-", "1", "operation", "on", "Hermitian", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3823-L3833
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZhpr
def cublasZhpr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on Hermitian-packed matrix. """ status = _libcublas.cublasZhpr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
python
def cublasZhpr(handle, uplo, n, alpha, x, incx, AP): """ Rank-1 operation on Hermitian-packed matrix. """ status = _libcublas.cublasZhpr_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(ctypes.c_double(alpha)), int(x), incx, int(AP)) cublasCheckStatus(status)
[ "def", "cublasZhpr", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "incx", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasZhpr_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-1 operation on Hermitian-packed matrix.
[ "Rank", "-", "1", "operation", "on", "Hermitian", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3843-L3853
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasChpr2
def cublasChpr2(handle, uplo, n, alpha, x, inx, y, incy, AP): """ Rank-2 operation on Hermitian-packed matrix. """ status = _libcublas.cublasChpr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
python
def cublasChpr2(handle, uplo, n, alpha, x, inx, y, incy, AP): """ Rank-2 operation on Hermitian-packed matrix. """ status = _libcublas.cublasChpr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
[ "def", "cublasChpr2", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "inx", ",", "y", ",", "incy", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasChpr2_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2 operation on Hermitian-packed matrix.
[ "Rank", "-", "2", "operation", "on", "Hermitian", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3866-L3877
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZhpr2
def cublasZhpr2(handle, uplo, n, alpha, x, inx, y, incy, AP): """ Rank-2 operation on Hermitian-packed matrix. """ status = _libcublas.cublasZhpr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
python
def cublasZhpr2(handle, uplo, n, alpha, x, inx, y, incy, AP): """ Rank-2 operation on Hermitian-packed matrix. """ status = _libcublas.cublasZhpr2_v2(handle, _CUBLAS_FILL_MODE[uplo], n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(x), incx, int(y), incy, int(AP)) cublasCheckStatus(status)
[ "def", "cublasZhpr2", "(", "handle", ",", "uplo", ",", "n", ",", "alpha", ",", "x", ",", "inx", ",", "y", ",", "incy", ",", "AP", ")", ":", "status", "=", "_libcublas", ".", "cublasZhpr2_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "y", ")", ",", "incy", ",", "int", "(", "AP", ")", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2 operation on Hermitian-packed matrix.
[ "Rank", "-", "2", "operation", "on", "Hermitian", "-", "packed", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3889-L3900
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSgemm
def cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real general matrix. """ status = _libcublas.cublasSgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real general matrix. """ status = _libcublas.cublasSgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasSgemm", "(", "handle", ",", "transa", ",", "transb", ",", "m", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasSgemm_v2", "(", "handle", ",", "_CUBLAS_OP", "[", "transa", "]", ",", "_CUBLAS_OP", "[", "transb", "]", ",", "m", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for real general matrix.
[ "Matrix", "-", "matrix", "product", "for", "real", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3918-L3931
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDgemm
def cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real general matrix. """ status = _libcublas.cublasDgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real general matrix. """ status = _libcublas.cublasDgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasDgemm", "(", "handle", ",", "transa", ",", "transb", ",", "m", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasDgemm_v2", "(", "handle", ",", "_CUBLAS_OP", "[", "transa", "]", ",", "_CUBLAS_OP", "[", "transb", "]", ",", "m", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for real general matrix.
[ "Matrix", "-", "matrix", "product", "for", "real", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L3980-L3993
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZgemm
def cublasZgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for complex general matrix. """ status = _libcublas.cublasZgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
python
def cublasZgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for complex general matrix. """ status = _libcublas.cublasZgemm_v2(handle, _CUBLAS_OP[transa], _CUBLAS_OP[transb], m, n, k, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasZgemm", "(", "handle", ",", "transa", ",", "transb", ",", "m", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasZgemm_v2", "(", "handle", ",", "_CUBLAS_OP", "[", "transa", "]", ",", "_CUBLAS_OP", "[", "transb", "]", ",", "m", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for complex general matrix.
[ "Matrix", "-", "matrix", "product", "for", "complex", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4010-L4025
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSsymm
def cublasSsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for symmetric matrix. """ status = _libcublas.cublasSsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasSsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for symmetric matrix. """ status = _libcublas.cublasSsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasSsymm", "(", "handle", ",", "side", ",", "uplo", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasSsymm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for symmetric matrix.
[ "Matrix", "-", "matrix", "product", "for", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4042-L4055
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDsymm
def cublasDsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real symmetric matrix. """ status = _libcublas.cublasDsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasDsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for real symmetric matrix. """ status = _libcublas.cublasDsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasDsymm", "(", "handle", ",", "side", ",", "uplo", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasDsymm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for real symmetric matrix.
[ "Matrix", "-", "matrix", "product", "for", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4072-L4085
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCsymm
def cublasCsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for complex symmetric matrix. """ status = _libcublas.cublasCsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
python
def cublasCsymm(handle, side, uplo, m, n, alpha, A, lda, B, ldb, beta, C, ldc): """ Matrix-matrix product for complex symmetric matrix. """ status = _libcublas.cublasCsymm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], m, n, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasCsymm", "(", "handle", ",", "side", ",", "uplo", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasCsymm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for complex symmetric matrix.
[ "Matrix", "-", "matrix", "product", "for", "complex", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4101-L4116
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSsyrk
def cublasSsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on real symmetric matrix. """ status = _libcublas.cublasSsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasSsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on real symmetric matrix. """ status = _libcublas.cublasSsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasSsyrk", "(", "handle", ",", "uplo", ",", "trans", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasSsyrk_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-k operation on real symmetric matrix.
[ "Rank", "-", "k", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4162-L4175
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDsyrk
def cublasDsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on real symmetric matrix. """ status = _libcublas.cublasDsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
python
def cublasDsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on real symmetric matrix. """ status = _libcublas.cublasDsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasDsyrk", "(", "handle", ",", "uplo", ",", "trans", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasDsyrk_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-k operation on real symmetric matrix.
[ "Rank", "-", "k", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4189-L4204
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZsyrk
def cublasZsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on complex symmetric matrix. """ status = _libcublas.cublasZsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
python
def cublasZsyrk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on complex symmetric matrix. """ status = _libcublas.cublasZsyrk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasZsyrk", "(", "handle", ",", "uplo", ",", "trans", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasZsyrk_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-k operation on complex symmetric matrix.
[ "Rank", "-", "k", "operation", "on", "complex", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4247-L4262
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSsyr2k
def cublasSsyr2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on real symmetric matrix. """ status = _libcublas.cublasSsyr2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasSsyr2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on real symmetric matrix. """ status = _libcublas.cublasSsyr2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_float(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasSsyr2k", "(", "handle", ",", "uplo", ",", "trans", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasSsyr2k_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2k operation on real symmetric matrix.
[ "Rank", "-", "2k", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4279-L4292
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDsyr2k
def cublasDsyr2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on real symmetric matrix. """ status = _libcublas.cublasDsyr2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasDsyr2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on real symmetric matrix. """ status = _libcublas.cublasDsyr2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasDsyr2k", "(", "handle", ",", "uplo", ",", "trans", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasDsyr2k_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2k operation on real symmetric matrix.
[ "Rank", "-", "2k", "operation", "on", "real", "symmetric", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4308-L4321
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasStrmm
def cublasStrmm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb, C, ldc): """ Matrix-matrix product for real triangular matrix. """ status = _libcublas.cublasStrmm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, int(C), ldc) cublasCheckStatus(status)
python
def cublasStrmm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb, C, ldc): """ Matrix-matrix product for real triangular matrix. """ status = _libcublas.cublasStrmm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb, int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasStrmm", "(", "handle", ",", "side", ",", "uplo", ",", "trans", ",", "diag", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasStrmm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for real triangular matrix.
[ "Matrix", "-", "matrix", "product", "for", "real", "triangular", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4401-L4414
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZtrmm
def cublasZtrmm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb, C, ldc): """ Matrix-matrix product for complex triangular matrix. """ status = _libcublas.cublasZtrmm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, int(C), ldc) cublasCheckStatus(status)
python
def cublasZtrmm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb, C, ldc): """ Matrix-matrix product for complex triangular matrix. """ status = _libcublas.cublasZtrmm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasZtrmm", "(", "handle", ",", "side", ",", "uplo", ",", "trans", ",", "diag", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasZtrmm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-matrix product for complex triangular matrix.
[ "Matrix", "-", "matrix", "product", "for", "complex", "triangular", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4492-L4506
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasStrsm
def cublasStrsm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb): """ Solve a real triangular system with multiple right-hand sides. """ status = _libcublas.cublasStrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
python
def cublasStrsm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb): """ Solve a real triangular system with multiple right-hand sides. """ status = _libcublas.cublasStrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_float(alpha)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
[ "def", "cublasStrsm", "(", "handle", ",", "side", ",", "uplo", ",", "trans", ",", "diag", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ")", ":", "status", "=", "_libcublas", ".", "cublasStrsm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_float", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ")", "cublasCheckStatus", "(", "status", ")" ]
Solve a real triangular system with multiple right-hand sides.
[ "Solve", "a", "real", "triangular", "system", "with", "multiple", "right", "-", "hand", "sides", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4522-L4535
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasDtrsm
def cublasDtrsm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb): """ Solve a real triangular system with multiple right-hand sides. """ status = _libcublas.cublasDtrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
python
def cublasDtrsm(handle, side, uplo, trans, diag, m, n, alpha, A, lda, B, ldb): """ Solve a real triangular system with multiple right-hand sides. """ status = _libcublas.cublasDtrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
[ "def", "cublasDtrsm", "(", "handle", ",", "side", ",", "uplo", ",", "trans", ",", "diag", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ")", ":", "status", "=", "_libcublas", ".", "cublasDtrsm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ")", "cublasCheckStatus", "(", "status", ")" ]
Solve a real triangular system with multiple right-hand sides.
[ "Solve", "a", "real", "triangular", "system", "with", "multiple", "right", "-", "hand", "sides", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4550-L4563
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZtrsm
def cublasZtrsm(handle, side, uplo, transa, diag, m, n, alpha, A, lda, B, ldb): """ Solve complex triangular system with multiple right-hand sides. """ status = _libcublas.cublasZtrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
python
def cublasZtrsm(handle, side, uplo, transa, diag, m, n, alpha, A, lda, B, ldb): """ Solve complex triangular system with multiple right-hand sides. """ status = _libcublas.cublasZtrsm_v2(handle, _CUBLAS_SIDE_MODE[side], _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], _CUBLAS_DIAG[diag], m, n, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb) cublasCheckStatus(status)
[ "def", "cublasZtrsm", "(", "handle", ",", "side", ",", "uplo", ",", "transa", ",", "diag", ",", "m", ",", "n", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ")", ":", "status", "=", "_libcublas", ".", "cublasZtrsm_v2", "(", "handle", ",", "_CUBLAS_SIDE_MODE", "[", "side", "]", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "_CUBLAS_DIAG", "[", "diag", "]", ",", "m", ",", "n", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuDoubleComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ")", "cublasCheckStatus", "(", "status", ")" ]
Solve complex triangular system with multiple right-hand sides.
[ "Solve", "complex", "triangular", "system", "with", "multiple", "right", "-", "hand", "sides", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4607-L4621
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasZherk
def cublasZherk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on Hermitian matrix. """ status = _libcublas.cublasZherk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
python
def cublasZherk(handle, uplo, trans, n, k, alpha, A, lda, beta, C, ldc): """ Rank-k operation on Hermitian matrix. """ status = _libcublas.cublasZherk_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(ctypes.c_double(alpha)), int(A), lda, ctypes.byref(ctypes.c_double(beta)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasZherk", "(", "handle", ",", "uplo", ",", "trans", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasZherk_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "alpha", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "ctypes", ".", "byref", "(", "ctypes", ".", "c_double", "(", "beta", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-k operation on Hermitian matrix.
[ "Rank", "-", "k", "operation", "on", "Hermitian", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4726-L4739
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasCher2k
def cublasCher2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on Hermitian matrix. """ status = _libcublas.cublasCher2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
python
def cublasCher2k(handle, uplo, trans, n, k, alpha, A, lda, B, ldb, beta, C, ldc): """ Rank-2k operation on Hermitian matrix. """ status = _libcublas.cublasCher2k_v2(handle, _CUBLAS_FILL_MODE[uplo], _CUBLAS_OP[trans], n, k, ctypes.byref(cuda.cuFloatComplex(alpha.real, alpha.imag)), int(A), lda, int(B), ldb, ctypes.byref(cuda.cuFloatComplex(beta.real, beta.imag)), int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasCher2k", "(", "handle", ",", "uplo", ",", "trans", ",", "n", ",", "k", ",", "alpha", ",", "A", ",", "lda", ",", "B", ",", "ldb", ",", "beta", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasCher2k_v2", "(", "handle", ",", "_CUBLAS_FILL_MODE", "[", "uplo", "]", ",", "_CUBLAS_OP", "[", "trans", "]", ",", "n", ",", "k", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "alpha", ".", "real", ",", "alpha", ".", "imag", ")", ")", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "B", ")", ",", "ldb", ",", "ctypes", ".", "byref", "(", "cuda", ".", "cuFloatComplex", "(", "beta", ".", "real", ",", "beta", ".", "imag", ")", ")", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Rank-2k operation on Hermitian matrix.
[ "Rank", "-", "2k", "operation", "on", "Hermitian", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4756-L4771
hannes-brt/hebel
hebel/pycuda_ops/cublas.py
cublasSdgmm
def cublasSdgmm(handle, mode, m, n, A, lda, x, incx, C, ldc): """ Matrix-diagonal matrix product for real general matrix. """ status = _libcublas.cublasSdgmm(handle, _CUBLAS_SIDE[mode], m, n, int(A), lda, int(x), incx, int(C), ldc) cublasCheckStatus(status)
python
def cublasSdgmm(handle, mode, m, n, A, lda, x, incx, C, ldc): """ Matrix-diagonal matrix product for real general matrix. """ status = _libcublas.cublasSdgmm(handle, _CUBLAS_SIDE[mode], m, n, int(A), lda, int(x), incx, int(C), ldc) cublasCheckStatus(status)
[ "def", "cublasSdgmm", "(", "handle", ",", "mode", ",", "m", ",", "n", ",", "A", ",", "lda", ",", "x", ",", "incx", ",", "C", ",", "ldc", ")", ":", "status", "=", "_libcublas", ".", "cublasSdgmm", "(", "handle", ",", "_CUBLAS_SIDE", "[", "mode", "]", ",", "m", ",", "n", ",", "int", "(", "A", ")", ",", "lda", ",", "int", "(", "x", ")", ",", "incx", ",", "int", "(", "C", ")", ",", "ldc", ")", "cublasCheckStatus", "(", "status", ")" ]
Matrix-diagonal matrix product for real general matrix.
[ "Matrix", "-", "diagonal", "matrix", "product", "for", "real", "general", "matrix", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/cublas.py#L4819-L4831
dwkim78/upsilon
upsilon/datasets/base.py
load_EROS_lc
def load_EROS_lc(filename='lm0010n22323.time'): """ Read an EROS light curve and return its data. Parameters ---------- filename : str, optional A light-curve filename. Returns ------- dates : numpy.ndarray An array of dates. magnitudes : numpy.ndarray An array of magnitudes. errors : numpy.ndarray An array of magnitudes errors. """ module_path = dirname(__file__) file_path = join(module_path, 'lightcurves', filename) data = np.loadtxt(file_path) date = data[:, 0] mag = data[:, 1] err = data[:, 2] return date, mag, err
python
def load_EROS_lc(filename='lm0010n22323.time'): """ Read an EROS light curve and return its data. Parameters ---------- filename : str, optional A light-curve filename. Returns ------- dates : numpy.ndarray An array of dates. magnitudes : numpy.ndarray An array of magnitudes. errors : numpy.ndarray An array of magnitudes errors. """ module_path = dirname(__file__) file_path = join(module_path, 'lightcurves', filename) data = np.loadtxt(file_path) date = data[:, 0] mag = data[:, 1] err = data[:, 2] return date, mag, err
[ "def", "load_EROS_lc", "(", "filename", "=", "'lm0010n22323.time'", ")", ":", "module_path", "=", "dirname", "(", "__file__", ")", "file_path", "=", "join", "(", "module_path", ",", "'lightcurves'", ",", "filename", ")", "data", "=", "np", ".", "loadtxt", "(", "file_path", ")", "date", "=", "data", "[", ":", ",", "0", "]", "mag", "=", "data", "[", ":", ",", "1", "]", "err", "=", "data", "[", ":", ",", "2", "]", "return", "date", ",", "mag", ",", "err" ]
Read an EROS light curve and return its data. Parameters ---------- filename : str, optional A light-curve filename. Returns ------- dates : numpy.ndarray An array of dates. magnitudes : numpy.ndarray An array of magnitudes. errors : numpy.ndarray An array of magnitudes errors.
[ "Read", "an", "EROS", "light", "curve", "and", "return", "its", "data", "." ]
train
https://github.com/dwkim78/upsilon/blob/5f381453f26582ef56e62fb8fed7317ce67861af/upsilon/datasets/base.py#L12-L39
dwkim78/upsilon
upsilon/datasets/base.py
load_rf_model
def load_rf_model(): """ Return the UPSILoN random forests classifier. The classifier is trained using OGLE and EROS periodic variables (Kim et al. 2015). Returns ------- clf : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests classifier. """ import gzip try: import cPickle as pickle except: import pickle module_path = dirname(__file__) file_path = join(module_path, 'models/rf.model.sub.github.gz') # For Python 3. if sys.version_info.major >= 3: clf = pickle.load(gzip.open(file_path, 'rb'), encoding='latin1') # For Python 2. else: clf = pickle.load(gzip.open(file_path, 'rb')) return clf
python
def load_rf_model(): """ Return the UPSILoN random forests classifier. The classifier is trained using OGLE and EROS periodic variables (Kim et al. 2015). Returns ------- clf : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests classifier. """ import gzip try: import cPickle as pickle except: import pickle module_path = dirname(__file__) file_path = join(module_path, 'models/rf.model.sub.github.gz') # For Python 3. if sys.version_info.major >= 3: clf = pickle.load(gzip.open(file_path, 'rb'), encoding='latin1') # For Python 2. else: clf = pickle.load(gzip.open(file_path, 'rb')) return clf
[ "def", "load_rf_model", "(", ")", ":", "import", "gzip", "try", ":", "import", "cPickle", "as", "pickle", "except", ":", "import", "pickle", "module_path", "=", "dirname", "(", "__file__", ")", "file_path", "=", "join", "(", "module_path", ",", "'models/rf.model.sub.github.gz'", ")", "# For Python 3.", "if", "sys", ".", "version_info", ".", "major", ">=", "3", ":", "clf", "=", "pickle", ".", "load", "(", "gzip", ".", "open", "(", "file_path", ",", "'rb'", ")", ",", "encoding", "=", "'latin1'", ")", "# For Python 2.", "else", ":", "clf", "=", "pickle", ".", "load", "(", "gzip", ".", "open", "(", "file_path", ",", "'rb'", ")", ")", "return", "clf" ]
Return the UPSILoN random forests classifier. The classifier is trained using OGLE and EROS periodic variables (Kim et al. 2015). Returns ------- clf : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests classifier.
[ "Return", "the", "UPSILoN", "random", "forests", "classifier", "." ]
train
https://github.com/dwkim78/upsilon/blob/5f381453f26582ef56e62fb8fed7317ce67861af/upsilon/datasets/base.py#L42-L71
hannes-brt/hebel
hebel/pycuda_ops/elementwise.py
sample_dropout_mask
def sample_dropout_mask(x, dropout_probability=.5, columns=None, stream=None, target=None, dropout_mask=None, dropout_prob_array=None): """ Samples a dropout mask and applies it in place""" assert x.flags.c_contiguous if columns is not None: assert len(columns) == 2 x_tmp = x x = extract_columns(x, columns[0], columns[1]) shape = x.shape if dropout_prob_array is None: dropout_prob_array = gpuarray.empty(shape, x.dtype, allocator=memory_pool.allocate) sampler.fill_uniform(dropout_prob_array, stream) if dropout_mask is None: dropout_mask = gpuarray.empty(shape, np.int8, allocator=memory_pool.allocate) if target is None: target = x all_kernels['sample_dropout_mask']( x, target, dropout_mask, dropout_prob_array, np.float32(dropout_probability)) if columns is not None: insert_columns(x, x_tmp, columns[0]) return dropout_mask
python
def sample_dropout_mask(x, dropout_probability=.5, columns=None, stream=None, target=None, dropout_mask=None, dropout_prob_array=None): """ Samples a dropout mask and applies it in place""" assert x.flags.c_contiguous if columns is not None: assert len(columns) == 2 x_tmp = x x = extract_columns(x, columns[0], columns[1]) shape = x.shape if dropout_prob_array is None: dropout_prob_array = gpuarray.empty(shape, x.dtype, allocator=memory_pool.allocate) sampler.fill_uniform(dropout_prob_array, stream) if dropout_mask is None: dropout_mask = gpuarray.empty(shape, np.int8, allocator=memory_pool.allocate) if target is None: target = x all_kernels['sample_dropout_mask']( x, target, dropout_mask, dropout_prob_array, np.float32(dropout_probability)) if columns is not None: insert_columns(x, x_tmp, columns[0]) return dropout_mask
[ "def", "sample_dropout_mask", "(", "x", ",", "dropout_probability", "=", ".5", ",", "columns", "=", "None", ",", "stream", "=", "None", ",", "target", "=", "None", ",", "dropout_mask", "=", "None", ",", "dropout_prob_array", "=", "None", ")", ":", "assert", "x", ".", "flags", ".", "c_contiguous", "if", "columns", "is", "not", "None", ":", "assert", "len", "(", "columns", ")", "==", "2", "x_tmp", "=", "x", "x", "=", "extract_columns", "(", "x", ",", "columns", "[", "0", "]", ",", "columns", "[", "1", "]", ")", "shape", "=", "x", ".", "shape", "if", "dropout_prob_array", "is", "None", ":", "dropout_prob_array", "=", "gpuarray", ".", "empty", "(", "shape", ",", "x", ".", "dtype", ",", "allocator", "=", "memory_pool", ".", "allocate", ")", "sampler", ".", "fill_uniform", "(", "dropout_prob_array", ",", "stream", ")", "if", "dropout_mask", "is", "None", ":", "dropout_mask", "=", "gpuarray", ".", "empty", "(", "shape", ",", "np", ".", "int8", ",", "allocator", "=", "memory_pool", ".", "allocate", ")", "if", "target", "is", "None", ":", "target", "=", "x", "all_kernels", "[", "'sample_dropout_mask'", "]", "(", "x", ",", "target", ",", "dropout_mask", ",", "dropout_prob_array", ",", "np", ".", "float32", "(", "dropout_probability", ")", ")", "if", "columns", "is", "not", "None", ":", "insert_columns", "(", "x", ",", "x_tmp", ",", "columns", "[", "0", "]", ")", "return", "dropout_mask" ]
Samples a dropout mask and applies it in place
[ "Samples", "a", "dropout", "mask", "and", "applies", "it", "in", "place" ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/pycuda_ops/elementwise.py#L222-L251
rix0rrr/gcl
gcl/__init__.py
reads
def reads(s, filename=None, loader=None, implicit_tuple=True, allow_errors=False): """Load but don't evaluate a GCL expression from a string.""" return ast.reads(s, filename=filename or '<input>', loader=loader or default_loader, implicit_tuple=implicit_tuple, allow_errors=allow_errors)
python
def reads(s, filename=None, loader=None, implicit_tuple=True, allow_errors=False): """Load but don't evaluate a GCL expression from a string.""" return ast.reads(s, filename=filename or '<input>', loader=loader or default_loader, implicit_tuple=implicit_tuple, allow_errors=allow_errors)
[ "def", "reads", "(", "s", ",", "filename", "=", "None", ",", "loader", "=", "None", ",", "implicit_tuple", "=", "True", ",", "allow_errors", "=", "False", ")", ":", "return", "ast", ".", "reads", "(", "s", ",", "filename", "=", "filename", "or", "'<input>'", ",", "loader", "=", "loader", "or", "default_loader", ",", "implicit_tuple", "=", "implicit_tuple", ",", "allow_errors", "=", "allow_errors", ")" ]
Load but don't evaluate a GCL expression from a string.
[ "Load", "but", "don", "t", "evaluate", "a", "GCL", "expression", "from", "a", "string", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/__init__.py#L77-L83
rix0rrr/gcl
gcl/__init__.py
read
def read(filename, loader=None, implicit_tuple=True, allow_errors=False): """Load but don't evaluate a GCL expression from a file.""" with open(filename, 'r') as f: return reads(f.read(), filename=filename, loader=loader, implicit_tuple=implicit_tuple, allow_errors=allow_errors)
python
def read(filename, loader=None, implicit_tuple=True, allow_errors=False): """Load but don't evaluate a GCL expression from a file.""" with open(filename, 'r') as f: return reads(f.read(), filename=filename, loader=loader, implicit_tuple=implicit_tuple, allow_errors=allow_errors)
[ "def", "read", "(", "filename", ",", "loader", "=", "None", ",", "implicit_tuple", "=", "True", ",", "allow_errors", "=", "False", ")", ":", "with", "open", "(", "filename", ",", "'r'", ")", "as", "f", ":", "return", "reads", "(", "f", ".", "read", "(", ")", ",", "filename", "=", "filename", ",", "loader", "=", "loader", ",", "implicit_tuple", "=", "implicit_tuple", ",", "allow_errors", "=", "allow_errors", ")" ]
Load but don't evaluate a GCL expression from a file.
[ "Load", "but", "don", "t", "evaluate", "a", "GCL", "expression", "from", "a", "file", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/__init__.py#L86-L93
rix0rrr/gcl
gcl/__init__.py
loads
def loads(s, filename=None, loader=None, implicit_tuple=True, env={}, schema=None): """Load and evaluate a GCL expression from a string.""" ast = reads(s, filename=filename, loader=loader, implicit_tuple=implicit_tuple) if not isinstance(env, framework.Environment): # For backwards compatibility we accept an Environment object. Otherwise assume it's a dict # whose bindings will add/overwrite the default bindings. env = framework.Environment(dict(_default_bindings, **env)) obj = framework.eval(ast, env) return mod_schema.validate(obj, schema)
python
def loads(s, filename=None, loader=None, implicit_tuple=True, env={}, schema=None): """Load and evaluate a GCL expression from a string.""" ast = reads(s, filename=filename, loader=loader, implicit_tuple=implicit_tuple) if not isinstance(env, framework.Environment): # For backwards compatibility we accept an Environment object. Otherwise assume it's a dict # whose bindings will add/overwrite the default bindings. env = framework.Environment(dict(_default_bindings, **env)) obj = framework.eval(ast, env) return mod_schema.validate(obj, schema)
[ "def", "loads", "(", "s", ",", "filename", "=", "None", ",", "loader", "=", "None", ",", "implicit_tuple", "=", "True", ",", "env", "=", "{", "}", ",", "schema", "=", "None", ")", ":", "ast", "=", "reads", "(", "s", ",", "filename", "=", "filename", ",", "loader", "=", "loader", ",", "implicit_tuple", "=", "implicit_tuple", ")", "if", "not", "isinstance", "(", "env", ",", "framework", ".", "Environment", ")", ":", "# For backwards compatibility we accept an Environment object. Otherwise assume it's a dict", "# whose bindings will add/overwrite the default bindings.", "env", "=", "framework", ".", "Environment", "(", "dict", "(", "_default_bindings", ",", "*", "*", "env", ")", ")", "obj", "=", "framework", ".", "eval", "(", "ast", ",", "env", ")", "return", "mod_schema", ".", "validate", "(", "obj", ",", "schema", ")" ]
Load and evaluate a GCL expression from a string.
[ "Load", "and", "evaluate", "a", "GCL", "expression", "from", "a", "string", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/__init__.py#L97-L105
rix0rrr/gcl
gcl/__init__.py
load
def load(filename, loader=None, implicit_tuple=True, env={}, schema=None): """Load and evaluate a GCL expression from a file.""" with open(filename, 'r') as f: return loads(f.read(), filename=filename, loader=loader, implicit_tuple=implicit_tuple, env=env, schema=schema)
python
def load(filename, loader=None, implicit_tuple=True, env={}, schema=None): """Load and evaluate a GCL expression from a file.""" with open(filename, 'r') as f: return loads(f.read(), filename=filename, loader=loader, implicit_tuple=implicit_tuple, env=env, schema=schema)
[ "def", "load", "(", "filename", ",", "loader", "=", "None", ",", "implicit_tuple", "=", "True", ",", "env", "=", "{", "}", ",", "schema", "=", "None", ")", ":", "with", "open", "(", "filename", ",", "'r'", ")", "as", "f", ":", "return", "loads", "(", "f", ".", "read", "(", ")", ",", "filename", "=", "filename", ",", "loader", "=", "loader", ",", "implicit_tuple", "=", "implicit_tuple", ",", "env", "=", "env", ",", "schema", "=", "schema", ")" ]
Load and evaluate a GCL expression from a file.
[ "Load", "and", "evaluate", "a", "GCL", "expression", "from", "a", "file", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/__init__.py#L108-L116
hannes-brt/hebel
hebel/schedulers.py
linear_scheduler_up
def linear_scheduler_up(init_value, target_value, duration): """ Increases linearly and then stays flat """ value = init_value t = 0 while True: yield value t += 1 if t < duration: value = init_value + t * (target_value - init_value) / duration else: value = target_value
python
def linear_scheduler_up(init_value, target_value, duration): """ Increases linearly and then stays flat """ value = init_value t = 0 while True: yield value t += 1 if t < duration: value = init_value + t * (target_value - init_value) / duration else: value = target_value
[ "def", "linear_scheduler_up", "(", "init_value", ",", "target_value", ",", "duration", ")", ":", "value", "=", "init_value", "t", "=", "0", "while", "True", ":", "yield", "value", "t", "+=", "1", "if", "t", "<", "duration", ":", "value", "=", "init_value", "+", "t", "*", "(", "target_value", "-", "init_value", ")", "/", "duration", "else", ":", "value", "=", "target_value" ]
Increases linearly and then stays flat
[ "Increases", "linearly", "and", "then", "stays", "flat" ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/schedulers.py#L38-L49
hannes-brt/hebel
hebel/schedulers.py
linear_scheduler_up_down
def linear_scheduler_up_down(init_value, target_value, final_value, duration_up, t_decrease, duration_down): """ Increases linearly to target_value, stays at target_value until t_decrease and then decreases linearly """ value = init_value t = 0 while True: yield value t += 1 if t < duration_up: value = init_value + t * (target_value - init_value) / \ float(duration_up) elif t > t_decrease: value = target_value - (t - t_decrease) * \ (target_value - final_value) / \ float(duration_down) else: value = target_value
python
def linear_scheduler_up_down(init_value, target_value, final_value, duration_up, t_decrease, duration_down): """ Increases linearly to target_value, stays at target_value until t_decrease and then decreases linearly """ value = init_value t = 0 while True: yield value t += 1 if t < duration_up: value = init_value + t * (target_value - init_value) / \ float(duration_up) elif t > t_decrease: value = target_value - (t - t_decrease) * \ (target_value - final_value) / \ float(duration_down) else: value = target_value
[ "def", "linear_scheduler_up_down", "(", "init_value", ",", "target_value", ",", "final_value", ",", "duration_up", ",", "t_decrease", ",", "duration_down", ")", ":", "value", "=", "init_value", "t", "=", "0", "while", "True", ":", "yield", "value", "t", "+=", "1", "if", "t", "<", "duration_up", ":", "value", "=", "init_value", "+", "t", "*", "(", "target_value", "-", "init_value", ")", "/", "float", "(", "duration_up", ")", "elif", "t", ">", "t_decrease", ":", "value", "=", "target_value", "-", "(", "t", "-", "t_decrease", ")", "*", "(", "target_value", "-", "final_value", ")", "/", "float", "(", "duration_down", ")", "else", ":", "value", "=", "target_value" ]
Increases linearly to target_value, stays at target_value until t_decrease and then decreases linearly
[ "Increases", "linearly", "to", "target_value", "stays", "at", "target_value", "until", "t_decrease", "and", "then", "decreases", "linearly" ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/schedulers.py#L52-L72
hannes-brt/hebel
hebel/config.py
load
def load(stream, overrides=None, **kwargs): """ Loads a YAML configuration from a string or file-like object. Parameters ---------- stream : str or object Either a string containing valid YAML or a file-like object supporting the .read() interface. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`. """ global is_initialized if not is_initialized: initialize() if isinstance(stream, basestring): string = stream else: string = '\n'.join(stream.readlines()) # processed_string = preprocess(string) proxy_graph = yaml.load(string, **kwargs) from . import init init_dict = proxy_graph.get('init', {}) init(**init_dict) if overrides is not None: handle_overrides(proxy_graph, overrides) return instantiate_all(proxy_graph)
python
def load(stream, overrides=None, **kwargs): """ Loads a YAML configuration from a string or file-like object. Parameters ---------- stream : str or object Either a string containing valid YAML or a file-like object supporting the .read() interface. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`. """ global is_initialized if not is_initialized: initialize() if isinstance(stream, basestring): string = stream else: string = '\n'.join(stream.readlines()) # processed_string = preprocess(string) proxy_graph = yaml.load(string, **kwargs) from . import init init_dict = proxy_graph.get('init', {}) init(**init_dict) if overrides is not None: handle_overrides(proxy_graph, overrides) return instantiate_all(proxy_graph)
[ "def", "load", "(", "stream", ",", "overrides", "=", "None", ",", "*", "*", "kwargs", ")", ":", "global", "is_initialized", "if", "not", "is_initialized", ":", "initialize", "(", ")", "if", "isinstance", "(", "stream", ",", "basestring", ")", ":", "string", "=", "stream", "else", ":", "string", "=", "'\\n'", ".", "join", "(", "stream", ".", "readlines", "(", ")", ")", "# processed_string = preprocess(string)", "proxy_graph", "=", "yaml", ".", "load", "(", "string", ",", "*", "*", "kwargs", ")", "from", ".", "import", "init", "init_dict", "=", "proxy_graph", ".", "get", "(", "'init'", ",", "{", "}", ")", "init", "(", "*", "*", "init_dict", ")", "if", "overrides", "is", "not", "None", ":", "handle_overrides", "(", "proxy_graph", ",", "overrides", ")", "return", "instantiate_all", "(", "proxy_graph", ")" ]
Loads a YAML configuration from a string or file-like object. Parameters ---------- stream : str or object Either a string containing valid YAML or a file-like object supporting the .read() interface. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`.
[ "Loads", "a", "YAML", "configuration", "from", "a", "string", "or", "file", "-", "like", "object", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L56-L100
hannes-brt/hebel
hebel/config.py
load_path
def load_path(path, overrides=None, **kwargs): """ Convenience function for loading a YAML configuration from a file. Parameters ---------- path : str The path to the file to load on disk. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`. """ f = open(path, 'r') content = ''.join(f.readlines()) f.close() if not isinstance(content, str): raise AssertionError("Expected content to be of type str but it is "+str(type(content))) return load(content, **kwargs)
python
def load_path(path, overrides=None, **kwargs): """ Convenience function for loading a YAML configuration from a file. Parameters ---------- path : str The path to the file to load on disk. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`. """ f = open(path, 'r') content = ''.join(f.readlines()) f.close() if not isinstance(content, str): raise AssertionError("Expected content to be of type str but it is "+str(type(content))) return load(content, **kwargs)
[ "def", "load_path", "(", "path", ",", "overrides", "=", "None", ",", "*", "*", "kwargs", ")", ":", "f", "=", "open", "(", "path", ",", "'r'", ")", "content", "=", "''", ".", "join", "(", "f", ".", "readlines", "(", ")", ")", "f", ".", "close", "(", ")", "if", "not", "isinstance", "(", "content", ",", "str", ")", ":", "raise", "AssertionError", "(", "\"Expected content to be of type str but it is \"", "+", "str", "(", "type", "(", "content", ")", ")", ")", "return", "load", "(", "content", ",", "*", "*", "kwargs", ")" ]
Convenience function for loading a YAML configuration from a file. Parameters ---------- path : str The path to the file to load on disk. overrides : dict, optional A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". Returns ------- graph : dict or object The dictionary or object (if the top-level element specified an Python object to instantiate). Notes ----- Other keyword arguments are passed on to `yaml.load`.
[ "Convenience", "function", "for", "loading", "a", "YAML", "configuration", "from", "a", "file", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L103-L133
hannes-brt/hebel
hebel/config.py
handle_overrides
def handle_overrides(graph, overrides): """ Handle any overrides for this model configuration. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. overrides : dict A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". """ for key in overrides: levels = key.split('.') part = graph for lvl in levels[:-1]: try: part = part[lvl] except KeyError: raise KeyError("'%s' override failed at '%s'", (key, lvl)) try: part[levels[-1]] = overrides[key] except KeyError: raise KeyError("'%s' override failed at '%s'", (key, levels[-1]))
python
def handle_overrides(graph, overrides): """ Handle any overrides for this model configuration. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. overrides : dict A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level". """ for key in overrides: levels = key.split('.') part = graph for lvl in levels[:-1]: try: part = part[lvl] except KeyError: raise KeyError("'%s' override failed at '%s'", (key, lvl)) try: part[levels[-1]] = overrides[key] except KeyError: raise KeyError("'%s' override failed at '%s'", (key, levels[-1]))
[ "def", "handle_overrides", "(", "graph", ",", "overrides", ")", ":", "for", "key", "in", "overrides", ":", "levels", "=", "key", ".", "split", "(", "'.'", ")", "part", "=", "graph", "for", "lvl", "in", "levels", "[", ":", "-", "1", "]", ":", "try", ":", "part", "=", "part", "[", "lvl", "]", "except", "KeyError", ":", "raise", "KeyError", "(", "\"'%s' override failed at '%s'\"", ",", "(", "key", ",", "lvl", ")", ")", "try", ":", "part", "[", "levels", "[", "-", "1", "]", "]", "=", "overrides", "[", "key", "]", "except", "KeyError", ":", "raise", "KeyError", "(", "\"'%s' override failed at '%s'\"", ",", "(", "key", ",", "levels", "[", "-", "1", "]", ")", ")" ]
Handle any overrides for this model configuration. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. overrides : dict A dictionary containing overrides to apply. The location of the override is specified in the key as a dot-delimited path to the desired parameter, e.g. "model.corruptor.corruption_level".
[ "Handle", "any", "overrides", "for", "this", "model", "configuration", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L136-L161
hannes-brt/hebel
hebel/config.py
instantiate_all
def instantiate_all(graph): """ Instantiate all ObjectProxy objects in a nested hierarchy. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. Returns ------- graph : dict or object The dictionary or object resulting after the recursive instantiation. """ def should_instantiate(obj): classes = [ObjectProxy, dict, list] return True in [isinstance(obj, cls) for cls in classes] if not isinstance(graph, list): for key in graph: if should_instantiate(graph[key]): graph[key] = instantiate_all(graph[key]) if hasattr(graph, 'keys'): for key in graph.keys(): if should_instantiate(key): new_key = instantiate_all(key) graph[new_key] = graph[key] del graph[key] if isinstance(graph, ObjectProxy): graph = graph.instantiate() if isinstance(graph, list): for i, elem in enumerate(graph): if should_instantiate(elem): graph[i] = instantiate_all(elem) return graph
python
def instantiate_all(graph): """ Instantiate all ObjectProxy objects in a nested hierarchy. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. Returns ------- graph : dict or object The dictionary or object resulting after the recursive instantiation. """ def should_instantiate(obj): classes = [ObjectProxy, dict, list] return True in [isinstance(obj, cls) for cls in classes] if not isinstance(graph, list): for key in graph: if should_instantiate(graph[key]): graph[key] = instantiate_all(graph[key]) if hasattr(graph, 'keys'): for key in graph.keys(): if should_instantiate(key): new_key = instantiate_all(key) graph[new_key] = graph[key] del graph[key] if isinstance(graph, ObjectProxy): graph = graph.instantiate() if isinstance(graph, list): for i, elem in enumerate(graph): if should_instantiate(elem): graph[i] = instantiate_all(elem) return graph
[ "def", "instantiate_all", "(", "graph", ")", ":", "def", "should_instantiate", "(", "obj", ")", ":", "classes", "=", "[", "ObjectProxy", ",", "dict", ",", "list", "]", "return", "True", "in", "[", "isinstance", "(", "obj", ",", "cls", ")", "for", "cls", "in", "classes", "]", "if", "not", "isinstance", "(", "graph", ",", "list", ")", ":", "for", "key", "in", "graph", ":", "if", "should_instantiate", "(", "graph", "[", "key", "]", ")", ":", "graph", "[", "key", "]", "=", "instantiate_all", "(", "graph", "[", "key", "]", ")", "if", "hasattr", "(", "graph", ",", "'keys'", ")", ":", "for", "key", "in", "graph", ".", "keys", "(", ")", ":", "if", "should_instantiate", "(", "key", ")", ":", "new_key", "=", "instantiate_all", "(", "key", ")", "graph", "[", "new_key", "]", "=", "graph", "[", "key", "]", "del", "graph", "[", "key", "]", "if", "isinstance", "(", "graph", ",", "ObjectProxy", ")", ":", "graph", "=", "graph", ".", "instantiate", "(", ")", "if", "isinstance", "(", "graph", ",", "list", ")", ":", "for", "i", ",", "elem", "in", "enumerate", "(", "graph", ")", ":", "if", "should_instantiate", "(", "elem", ")", ":", "graph", "[", "i", "]", "=", "instantiate_all", "(", "elem", ")", "return", "graph" ]
Instantiate all ObjectProxy objects in a nested hierarchy. Parameters ---------- graph : dict or object A dictionary (or an ObjectProxy) containing the object graph loaded from a YAML file. Returns ------- graph : dict or object The dictionary or object resulting after the recursive instantiation.
[ "Instantiate", "all", "ObjectProxy", "objects", "in", "a", "nested", "hierarchy", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L164-L203
hannes-brt/hebel
hebel/config.py
multi_constructor
def multi_constructor(loader, tag_suffix, node): """ Constructor function passed to PyYAML telling it how to construct objects from argument descriptions. See PyYAML documentation for details on the call signature. """ yaml_src = yaml.serialize(node) mapping = loader.construct_mapping(node) if '.' not in tag_suffix: classname = tag_suffix rval = ObjectProxy(classname, mapping, yaml_src) else: classname = try_to_import(tag_suffix) rval = ObjectProxy(classname, mapping, yaml_src) return rval
python
def multi_constructor(loader, tag_suffix, node): """ Constructor function passed to PyYAML telling it how to construct objects from argument descriptions. See PyYAML documentation for details on the call signature. """ yaml_src = yaml.serialize(node) mapping = loader.construct_mapping(node) if '.' not in tag_suffix: classname = tag_suffix rval = ObjectProxy(classname, mapping, yaml_src) else: classname = try_to_import(tag_suffix) rval = ObjectProxy(classname, mapping, yaml_src) return rval
[ "def", "multi_constructor", "(", "loader", ",", "tag_suffix", ",", "node", ")", ":", "yaml_src", "=", "yaml", ".", "serialize", "(", "node", ")", "mapping", "=", "loader", ".", "construct_mapping", "(", "node", ")", "if", "'.'", "not", "in", "tag_suffix", ":", "classname", "=", "tag_suffix", "rval", "=", "ObjectProxy", "(", "classname", ",", "mapping", ",", "yaml_src", ")", "else", ":", "classname", "=", "try_to_import", "(", "tag_suffix", ")", "rval", "=", "ObjectProxy", "(", "classname", ",", "mapping", ",", "yaml_src", ")", "return", "rval" ]
Constructor function passed to PyYAML telling it how to construct objects from argument descriptions. See PyYAML documentation for details on the call signature.
[ "Constructor", "function", "passed", "to", "PyYAML", "telling", "it", "how", "to", "construct", "objects", "from", "argument", "descriptions", ".", "See", "PyYAML", "documentation", "for", "details", "on", "the", "call", "signature", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L311-L326
hannes-brt/hebel
hebel/config.py
multi_constructor_pkl
def multi_constructor_pkl(loader, tag_suffix, node): """ Constructor function passed to PyYAML telling it how to load objects from paths to .pkl files. See PyYAML documentation for details on the call signature. """ mapping = loader.construct_yaml_str(node) if tag_suffix != "" and tag_suffix != u"": raise AssertionError('Expected tag_suffix to be "" but it is "'+tag_suffix+'"') rval = ObjectProxy(None, {}, yaml.serialize(node)) rval.instance = serial.load(mapping) return rval
python
def multi_constructor_pkl(loader, tag_suffix, node): """ Constructor function passed to PyYAML telling it how to load objects from paths to .pkl files. See PyYAML documentation for details on the call signature. """ mapping = loader.construct_yaml_str(node) if tag_suffix != "" and tag_suffix != u"": raise AssertionError('Expected tag_suffix to be "" but it is "'+tag_suffix+'"') rval = ObjectProxy(None, {}, yaml.serialize(node)) rval.instance = serial.load(mapping) return rval
[ "def", "multi_constructor_pkl", "(", "loader", ",", "tag_suffix", ",", "node", ")", ":", "mapping", "=", "loader", ".", "construct_yaml_str", "(", "node", ")", "if", "tag_suffix", "!=", "\"\"", "and", "tag_suffix", "!=", "u\"\"", ":", "raise", "AssertionError", "(", "'Expected tag_suffix to be \"\" but it is \"'", "+", "tag_suffix", "+", "'\"'", ")", "rval", "=", "ObjectProxy", "(", "None", ",", "{", "}", ",", "yaml", ".", "serialize", "(", "node", ")", ")", "rval", ".", "instance", "=", "serial", ".", "load", "(", "mapping", ")", "return", "rval" ]
Constructor function passed to PyYAML telling it how to load objects from paths to .pkl files. See PyYAML documentation for details on the call signature.
[ "Constructor", "function", "passed", "to", "PyYAML", "telling", "it", "how", "to", "load", "objects", "from", "paths", "to", ".", "pkl", "files", ".", "See", "PyYAML", "documentation", "for", "details", "on", "the", "call", "signature", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L329-L343
hannes-brt/hebel
hebel/config.py
initialize
def initialize(): """ Initialize the configuration system by installing YAML handlers. Automatically done on first call to load() specified in this file. """ global is_initialized # Add the custom multi-constructor yaml.add_multi_constructor('!obj:', multi_constructor) yaml.add_multi_constructor('!pkl:', multi_constructor_pkl) yaml.add_multi_constructor('!import:', multi_constructor_import) yaml.add_multi_constructor('!include:', multi_constructor_include) def import_constructor(loader, node): value = loader.construct_scalar(node) return try_to_import(value) yaml.add_constructor('!import', import_constructor) yaml.add_implicit_resolver( '!import', re.compile(r'(?:[a-zA-Z_][\w_]+\.)+[a-zA-Z_][\w_]+') ) is_initialized = True
python
def initialize(): """ Initialize the configuration system by installing YAML handlers. Automatically done on first call to load() specified in this file. """ global is_initialized # Add the custom multi-constructor yaml.add_multi_constructor('!obj:', multi_constructor) yaml.add_multi_constructor('!pkl:', multi_constructor_pkl) yaml.add_multi_constructor('!import:', multi_constructor_import) yaml.add_multi_constructor('!include:', multi_constructor_include) def import_constructor(loader, node): value = loader.construct_scalar(node) return try_to_import(value) yaml.add_constructor('!import', import_constructor) yaml.add_implicit_resolver( '!import', re.compile(r'(?:[a-zA-Z_][\w_]+\.)+[a-zA-Z_][\w_]+') ) is_initialized = True
[ "def", "initialize", "(", ")", ":", "global", "is_initialized", "# Add the custom multi-constructor", "yaml", ".", "add_multi_constructor", "(", "'!obj:'", ",", "multi_constructor", ")", "yaml", ".", "add_multi_constructor", "(", "'!pkl:'", ",", "multi_constructor_pkl", ")", "yaml", ".", "add_multi_constructor", "(", "'!import:'", ",", "multi_constructor_import", ")", "yaml", ".", "add_multi_constructor", "(", "'!include:'", ",", "multi_constructor_include", ")", "def", "import_constructor", "(", "loader", ",", "node", ")", ":", "value", "=", "loader", ".", "construct_scalar", "(", "node", ")", "return", "try_to_import", "(", "value", ")", "yaml", ".", "add_constructor", "(", "'!import'", ",", "import_constructor", ")", "yaml", ".", "add_implicit_resolver", "(", "'!import'", ",", "re", ".", "compile", "(", "r'(?:[a-zA-Z_][\\w_]+\\.)+[a-zA-Z_][\\w_]+'", ")", ")", "is_initialized", "=", "True" ]
Initialize the configuration system by installing YAML handlers. Automatically done on first call to load() specified in this file.
[ "Initialize", "the", "configuration", "system", "by", "installing", "YAML", "handlers", ".", "Automatically", "done", "on", "first", "call", "to", "load", "()", "specified", "in", "this", "file", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L367-L388
hannes-brt/hebel
hebel/config.py
ObjectProxy.instantiate
def instantiate(self): """ Instantiate this object with the supplied parameters in `self.kwds`, or if already instantiated, return the cached instance. """ if self.instance is None: self.instance = checked_call(self.cls, self.kwds) #endif try: self.instance.yaml_src = self.yaml_src except AttributeError: pass return self.instance
python
def instantiate(self): """ Instantiate this object with the supplied parameters in `self.kwds`, or if already instantiated, return the cached instance. """ if self.instance is None: self.instance = checked_call(self.cls, self.kwds) #endif try: self.instance.yaml_src = self.yaml_src except AttributeError: pass return self.instance
[ "def", "instantiate", "(", "self", ")", ":", "if", "self", ".", "instance", "is", "None", ":", "self", ".", "instance", "=", "checked_call", "(", "self", ".", "cls", ",", "self", ".", "kwds", ")", "#endif", "try", ":", "self", ".", "instance", ".", "yaml_src", "=", "self", ".", "yaml_src", "except", "AttributeError", ":", "pass", "return", "self", ".", "instance" ]
Instantiate this object with the supplied parameters in `self.kwds`, or if already instantiated, return the cached instance.
[ "Instantiate", "this", "object", "with", "the", "supplied", "parameters", "in", "self", ".", "kwds", "or", "if", "already", "instantiated", "return", "the", "cached", "instance", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/config.py#L232-L244
hannes-brt/hebel
hebel/layers/linear_regression_layer.py
LinearRegressionLayer.feed_forward
def feed_forward(self, input_data, prediction=False): """Propagate forward through the layer. **Parameters:** input_data : ``GPUArray`` Inpute data to compute activations for. prediction : bool, optional Whether to use prediction model. Only relevant when using dropout. If true, then weights are multiplied by 1 - dropout if the layer uses dropout. **Returns:** activations : ``GPUArray`` The activations of the output units. """ if input_data.shape[1] != self.W.shape[0]: raise ValueError('Number of outputs from previous layer (%d) ' 'does not match number of inputs to this layer (%d)' % (input_data.shape[1], self.W.shape[0])) activations = linalg.dot(input_data, self.W) activations = add_vec_to_mat(activations, self.b, inplace=True) return activations
python
def feed_forward(self, input_data, prediction=False): """Propagate forward through the layer. **Parameters:** input_data : ``GPUArray`` Inpute data to compute activations for. prediction : bool, optional Whether to use prediction model. Only relevant when using dropout. If true, then weights are multiplied by 1 - dropout if the layer uses dropout. **Returns:** activations : ``GPUArray`` The activations of the output units. """ if input_data.shape[1] != self.W.shape[0]: raise ValueError('Number of outputs from previous layer (%d) ' 'does not match number of inputs to this layer (%d)' % (input_data.shape[1], self.W.shape[0])) activations = linalg.dot(input_data, self.W) activations = add_vec_to_mat(activations, self.b, inplace=True) return activations
[ "def", "feed_forward", "(", "self", ",", "input_data", ",", "prediction", "=", "False", ")", ":", "if", "input_data", ".", "shape", "[", "1", "]", "!=", "self", ".", "W", ".", "shape", "[", "0", "]", ":", "raise", "ValueError", "(", "'Number of outputs from previous layer (%d) '", "'does not match number of inputs to this layer (%d)'", "%", "(", "input_data", ".", "shape", "[", "1", "]", ",", "self", ".", "W", ".", "shape", "[", "0", "]", ")", ")", "activations", "=", "linalg", ".", "dot", "(", "input_data", ",", "self", ".", "W", ")", "activations", "=", "add_vec_to_mat", "(", "activations", ",", "self", ".", "b", ",", "inplace", "=", "True", ")", "return", "activations" ]
Propagate forward through the layer. **Parameters:** input_data : ``GPUArray`` Inpute data to compute activations for. prediction : bool, optional Whether to use prediction model. Only relevant when using dropout. If true, then weights are multiplied by 1 - dropout if the layer uses dropout. **Returns:** activations : ``GPUArray`` The activations of the output units.
[ "Propagate", "forward", "through", "the", "layer", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/layers/linear_regression_layer.py#L113-L140
dwkim78/upsilon
upsilon/extract_features/period_LS_pyfftw.py
fasper
def fasper(x, y, ofac, hifac, n_threads, MACC=4): """ Given abscissas x (which need not be equally spaced) and ordinates y, and given a desired oversampling factor ofac (a typical value being 4 or larger). this routine creates an array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up to hifac times the "average" Nyquist frequency, and creates an array wk2 with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered. This routine also returns jmax such that wk2(jmax) is the maximum element in wk2, and prob, an estimate of the significance of that maximum against the hypothesis of random noise. A small value of prob indicates that a significant periodic signal is present. Reference: Press, W. H. & Rybicki, G. B. 1989 ApJ vol. 338, p. 277-280. Fast algorithm for spectral analysis of unevenly sampled data (1989ApJ...338..277P) Arguments: X : Abscissas array, (e.g. an array of times). Y : Ordinates array, (e.g. corresponding counts). Ofac : Oversampling factor. Hifac : Hifac * "average" Nyquist frequency = highest frequency for which values of the Lomb normalized periodogram will be calculated. n_threads : number of threads to use. Returns: Wk1 : An array of Lomb periodogram frequencies. Wk2 : An array of corresponding values of the Lomb periodogram. Nout : Wk1 & Wk2 dimensions (number of calculated frequencies) Jmax : The array index corresponding to the MAX( Wk2 ). Prob : False Alarm Probability of the largest Periodogram value MACC : Number of interpolation points per 1/4 cycle of highest frequency History: 02/23/2009, v1.0, MF Translation of IDL code (orig. Numerical recipies) """ #Check dimensions of input arrays n = long(len(x)) if n != len(y): print('Incompatible arrays.') return #print x, y, hifac, ofac nout = int(0.5*ofac*hifac*n) nfreqt = long(ofac*hifac*n*MACC) #Size the FFT as next power nfreq = 64 # of 2 above nfreqt. while nfreq < nfreqt: nfreq = 2*nfreq ndim = long(2*nfreq) #Compute the mean, variance ave = y.mean() ##sample variance because the divisor is N-1 var = ((y - y.mean())**2).sum()/(len(y) - 1) # and range of the data. xmin = x.min() xmax = x.max() xdif = xmax - xmin #extrapolate the data into the workspaces if is_pyfftw: wk1 = pyfftw.n_byte_align_empty(int(ndim), 16, 'complex') * 0. wk2 = pyfftw.n_byte_align_empty(int(ndim), 16, 'complex') * 0. else: wk1 = zeros(ndim, dtype='complex') wk2 = zeros(ndim, dtype='complex') fac = ndim/(xdif*ofac) fndim = ndim ck = ((x - xmin)*fac) % fndim ckk = (2.0*ck) % fndim for j in range(0, n): __spread__(y[j] - ave, wk1, ndim, ck[j], MACC) __spread__(1.0, wk2, ndim, ckk[j], MACC) #Take the Fast Fourier Transforms. if is_pyfftw: fft_wk1 = pyfftw.builders.ifft(wk1, planner_effort='FFTW_ESTIMATE', threads=n_threads) wk1 = fft_wk1() * len(wk1) fft_wk2 = pyfftw.builders.ifft(wk2, planner_effort='FFTW_ESTIMATE', threads=n_threads) wk2 = fft_wk2() * len(wk2) else: wk1 = ifft(wk1)*len(wk1) wk2 = ifft(wk2)*len(wk1) wk1 = wk1[1:nout + 1] wk2 = wk2[1:nout + 1] rwk1 = wk1.real iwk1 = wk1.imag rwk2 = wk2.real iwk2 = wk2.imag df = 1.0/(xdif*ofac) #Compute the Lomb value for each frequency hypo2 = 2.0*abs(wk2) hc2wt = rwk2/hypo2 hs2wt = iwk2/hypo2 cwt = sqrt(0.5 + hc2wt) swt = sign(hs2wt)*(sqrt(0.5 - hc2wt)) den = 0.5*n + hc2wt*rwk2 + hs2wt*iwk2 cterm = (cwt*rwk1 + swt*iwk1)**2./den sterm = (cwt*iwk1 - swt*rwk1)**2./(n - den) wk1 = df*(arange(nout, dtype='float') + 1.) wk2 = (cterm + sterm)/(2.0*var) pmax = wk2.max() jmax = wk2.argmax() #Significance estimation #expy = exp(-wk2) #effm = 2.0*(nout)/ofac #sig = effm*expy #ind = (sig > 0.01).nonzero() #sig[ind] = 1.0-(1.0-expy[ind])**effm #Estimate significance of largest peak value expy = exp(-pmax) effm = 2.0*(nout)/ofac prob = effm*expy if prob > 0.01: prob = 1.0 - (1.0 - expy)**effm return wk1, wk2, nout, jmax, prob
python
def fasper(x, y, ofac, hifac, n_threads, MACC=4): """ Given abscissas x (which need not be equally spaced) and ordinates y, and given a desired oversampling factor ofac (a typical value being 4 or larger). this routine creates an array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up to hifac times the "average" Nyquist frequency, and creates an array wk2 with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered. This routine also returns jmax such that wk2(jmax) is the maximum element in wk2, and prob, an estimate of the significance of that maximum against the hypothesis of random noise. A small value of prob indicates that a significant periodic signal is present. Reference: Press, W. H. & Rybicki, G. B. 1989 ApJ vol. 338, p. 277-280. Fast algorithm for spectral analysis of unevenly sampled data (1989ApJ...338..277P) Arguments: X : Abscissas array, (e.g. an array of times). Y : Ordinates array, (e.g. corresponding counts). Ofac : Oversampling factor. Hifac : Hifac * "average" Nyquist frequency = highest frequency for which values of the Lomb normalized periodogram will be calculated. n_threads : number of threads to use. Returns: Wk1 : An array of Lomb periodogram frequencies. Wk2 : An array of corresponding values of the Lomb periodogram. Nout : Wk1 & Wk2 dimensions (number of calculated frequencies) Jmax : The array index corresponding to the MAX( Wk2 ). Prob : False Alarm Probability of the largest Periodogram value MACC : Number of interpolation points per 1/4 cycle of highest frequency History: 02/23/2009, v1.0, MF Translation of IDL code (orig. Numerical recipies) """ #Check dimensions of input arrays n = long(len(x)) if n != len(y): print('Incompatible arrays.') return #print x, y, hifac, ofac nout = int(0.5*ofac*hifac*n) nfreqt = long(ofac*hifac*n*MACC) #Size the FFT as next power nfreq = 64 # of 2 above nfreqt. while nfreq < nfreqt: nfreq = 2*nfreq ndim = long(2*nfreq) #Compute the mean, variance ave = y.mean() ##sample variance because the divisor is N-1 var = ((y - y.mean())**2).sum()/(len(y) - 1) # and range of the data. xmin = x.min() xmax = x.max() xdif = xmax - xmin #extrapolate the data into the workspaces if is_pyfftw: wk1 = pyfftw.n_byte_align_empty(int(ndim), 16, 'complex') * 0. wk2 = pyfftw.n_byte_align_empty(int(ndim), 16, 'complex') * 0. else: wk1 = zeros(ndim, dtype='complex') wk2 = zeros(ndim, dtype='complex') fac = ndim/(xdif*ofac) fndim = ndim ck = ((x - xmin)*fac) % fndim ckk = (2.0*ck) % fndim for j in range(0, n): __spread__(y[j] - ave, wk1, ndim, ck[j], MACC) __spread__(1.0, wk2, ndim, ckk[j], MACC) #Take the Fast Fourier Transforms. if is_pyfftw: fft_wk1 = pyfftw.builders.ifft(wk1, planner_effort='FFTW_ESTIMATE', threads=n_threads) wk1 = fft_wk1() * len(wk1) fft_wk2 = pyfftw.builders.ifft(wk2, planner_effort='FFTW_ESTIMATE', threads=n_threads) wk2 = fft_wk2() * len(wk2) else: wk1 = ifft(wk1)*len(wk1) wk2 = ifft(wk2)*len(wk1) wk1 = wk1[1:nout + 1] wk2 = wk2[1:nout + 1] rwk1 = wk1.real iwk1 = wk1.imag rwk2 = wk2.real iwk2 = wk2.imag df = 1.0/(xdif*ofac) #Compute the Lomb value for each frequency hypo2 = 2.0*abs(wk2) hc2wt = rwk2/hypo2 hs2wt = iwk2/hypo2 cwt = sqrt(0.5 + hc2wt) swt = sign(hs2wt)*(sqrt(0.5 - hc2wt)) den = 0.5*n + hc2wt*rwk2 + hs2wt*iwk2 cterm = (cwt*rwk1 + swt*iwk1)**2./den sterm = (cwt*iwk1 - swt*rwk1)**2./(n - den) wk1 = df*(arange(nout, dtype='float') + 1.) wk2 = (cterm + sterm)/(2.0*var) pmax = wk2.max() jmax = wk2.argmax() #Significance estimation #expy = exp(-wk2) #effm = 2.0*(nout)/ofac #sig = effm*expy #ind = (sig > 0.01).nonzero() #sig[ind] = 1.0-(1.0-expy[ind])**effm #Estimate significance of largest peak value expy = exp(-pmax) effm = 2.0*(nout)/ofac prob = effm*expy if prob > 0.01: prob = 1.0 - (1.0 - expy)**effm return wk1, wk2, nout, jmax, prob
[ "def", "fasper", "(", "x", ",", "y", ",", "ofac", ",", "hifac", ",", "n_threads", ",", "MACC", "=", "4", ")", ":", "#Check dimensions of input arrays", "n", "=", "long", "(", "len", "(", "x", ")", ")", "if", "n", "!=", "len", "(", "y", ")", ":", "print", "(", "'Incompatible arrays.'", ")", "return", "#print x, y, hifac, ofac", "nout", "=", "int", "(", "0.5", "*", "ofac", "*", "hifac", "*", "n", ")", "nfreqt", "=", "long", "(", "ofac", "*", "hifac", "*", "n", "*", "MACC", ")", "#Size the FFT as next power", "nfreq", "=", "64", "# of 2 above nfreqt.", "while", "nfreq", "<", "nfreqt", ":", "nfreq", "=", "2", "*", "nfreq", "ndim", "=", "long", "(", "2", "*", "nfreq", ")", "#Compute the mean, variance", "ave", "=", "y", ".", "mean", "(", ")", "##sample variance because the divisor is N-1", "var", "=", "(", "(", "y", "-", "y", ".", "mean", "(", ")", ")", "**", "2", ")", ".", "sum", "(", ")", "/", "(", "len", "(", "y", ")", "-", "1", ")", "# and range of the data.", "xmin", "=", "x", ".", "min", "(", ")", "xmax", "=", "x", ".", "max", "(", ")", "xdif", "=", "xmax", "-", "xmin", "#extrapolate the data into the workspaces", "if", "is_pyfftw", ":", "wk1", "=", "pyfftw", ".", "n_byte_align_empty", "(", "int", "(", "ndim", ")", ",", "16", ",", "'complex'", ")", "*", "0.", "wk2", "=", "pyfftw", ".", "n_byte_align_empty", "(", "int", "(", "ndim", ")", ",", "16", ",", "'complex'", ")", "*", "0.", "else", ":", "wk1", "=", "zeros", "(", "ndim", ",", "dtype", "=", "'complex'", ")", "wk2", "=", "zeros", "(", "ndim", ",", "dtype", "=", "'complex'", ")", "fac", "=", "ndim", "/", "(", "xdif", "*", "ofac", ")", "fndim", "=", "ndim", "ck", "=", "(", "(", "x", "-", "xmin", ")", "*", "fac", ")", "%", "fndim", "ckk", "=", "(", "2.0", "*", "ck", ")", "%", "fndim", "for", "j", "in", "range", "(", "0", ",", "n", ")", ":", "__spread__", "(", "y", "[", "j", "]", "-", "ave", ",", "wk1", ",", "ndim", ",", "ck", "[", "j", "]", ",", "MACC", ")", "__spread__", "(", "1.0", ",", "wk2", ",", "ndim", ",", "ckk", "[", "j", "]", ",", "MACC", ")", "#Take the Fast Fourier Transforms.", "if", "is_pyfftw", ":", "fft_wk1", "=", "pyfftw", ".", "builders", ".", "ifft", "(", "wk1", ",", "planner_effort", "=", "'FFTW_ESTIMATE'", ",", "threads", "=", "n_threads", ")", "wk1", "=", "fft_wk1", "(", ")", "*", "len", "(", "wk1", ")", "fft_wk2", "=", "pyfftw", ".", "builders", ".", "ifft", "(", "wk2", ",", "planner_effort", "=", "'FFTW_ESTIMATE'", ",", "threads", "=", "n_threads", ")", "wk2", "=", "fft_wk2", "(", ")", "*", "len", "(", "wk2", ")", "else", ":", "wk1", "=", "ifft", "(", "wk1", ")", "*", "len", "(", "wk1", ")", "wk2", "=", "ifft", "(", "wk2", ")", "*", "len", "(", "wk1", ")", "wk1", "=", "wk1", "[", "1", ":", "nout", "+", "1", "]", "wk2", "=", "wk2", "[", "1", ":", "nout", "+", "1", "]", "rwk1", "=", "wk1", ".", "real", "iwk1", "=", "wk1", ".", "imag", "rwk2", "=", "wk2", ".", "real", "iwk2", "=", "wk2", ".", "imag", "df", "=", "1.0", "/", "(", "xdif", "*", "ofac", ")", "#Compute the Lomb value for each frequency", "hypo2", "=", "2.0", "*", "abs", "(", "wk2", ")", "hc2wt", "=", "rwk2", "/", "hypo2", "hs2wt", "=", "iwk2", "/", "hypo2", "cwt", "=", "sqrt", "(", "0.5", "+", "hc2wt", ")", "swt", "=", "sign", "(", "hs2wt", ")", "*", "(", "sqrt", "(", "0.5", "-", "hc2wt", ")", ")", "den", "=", "0.5", "*", "n", "+", "hc2wt", "*", "rwk2", "+", "hs2wt", "*", "iwk2", "cterm", "=", "(", "cwt", "*", "rwk1", "+", "swt", "*", "iwk1", ")", "**", "2.", "/", "den", "sterm", "=", "(", "cwt", "*", "iwk1", "-", "swt", "*", "rwk1", ")", "**", "2.", "/", "(", "n", "-", "den", ")", "wk1", "=", "df", "*", "(", "arange", "(", "nout", ",", "dtype", "=", "'float'", ")", "+", "1.", ")", "wk2", "=", "(", "cterm", "+", "sterm", ")", "/", "(", "2.0", "*", "var", ")", "pmax", "=", "wk2", ".", "max", "(", ")", "jmax", "=", "wk2", ".", "argmax", "(", ")", "#Significance estimation", "#expy = exp(-wk2) ", "#effm = 2.0*(nout)/ofac ", "#sig = effm*expy", "#ind = (sig > 0.01).nonzero()", "#sig[ind] = 1.0-(1.0-expy[ind])**effm", "#Estimate significance of largest peak value", "expy", "=", "exp", "(", "-", "pmax", ")", "effm", "=", "2.0", "*", "(", "nout", ")", "/", "ofac", "prob", "=", "effm", "*", "expy", "if", "prob", ">", "0.01", ":", "prob", "=", "1.0", "-", "(", "1.0", "-", "expy", ")", "**", "effm", "return", "wk1", ",", "wk2", ",", "nout", ",", "jmax", ",", "prob" ]
Given abscissas x (which need not be equally spaced) and ordinates y, and given a desired oversampling factor ofac (a typical value being 4 or larger). this routine creates an array wk1 with a sequence of nout increasing frequencies (not angular frequencies) up to hifac times the "average" Nyquist frequency, and creates an array wk2 with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y are not altered. This routine also returns jmax such that wk2(jmax) is the maximum element in wk2, and prob, an estimate of the significance of that maximum against the hypothesis of random noise. A small value of prob indicates that a significant periodic signal is present. Reference: Press, W. H. & Rybicki, G. B. 1989 ApJ vol. 338, p. 277-280. Fast algorithm for spectral analysis of unevenly sampled data (1989ApJ...338..277P) Arguments: X : Abscissas array, (e.g. an array of times). Y : Ordinates array, (e.g. corresponding counts). Ofac : Oversampling factor. Hifac : Hifac * "average" Nyquist frequency = highest frequency for which values of the Lomb normalized periodogram will be calculated. n_threads : number of threads to use. Returns: Wk1 : An array of Lomb periodogram frequencies. Wk2 : An array of corresponding values of the Lomb periodogram. Nout : Wk1 & Wk2 dimensions (number of calculated frequencies) Jmax : The array index corresponding to the MAX( Wk2 ). Prob : False Alarm Probability of the largest Periodogram value MACC : Number of interpolation points per 1/4 cycle of highest frequency History: 02/23/2009, v1.0, MF Translation of IDL code (orig. Numerical recipies)
[ "Given", "abscissas", "x", "(", "which", "need", "not", "be", "equally", "spaced", ")", "and", "ordinates", "y", "and", "given", "a", "desired", "oversampling", "factor", "ofac", "(", "a", "typical", "value", "being", "4", "or", "larger", ")", ".", "this", "routine", "creates", "an", "array", "wk1", "with", "a", "sequence", "of", "nout", "increasing", "frequencies", "(", "not", "angular", "frequencies", ")", "up", "to", "hifac", "times", "the", "average", "Nyquist", "frequency", "and", "creates", "an", "array", "wk2", "with", "the", "values", "of", "the", "Lomb", "normalized", "periodogram", "at", "those", "frequencies", ".", "The", "arrays", "x", "and", "y", "are", "not", "altered", ".", "This", "routine", "also", "returns", "jmax", "such", "that", "wk2", "(", "jmax", ")", "is", "the", "maximum", "element", "in", "wk2", "and", "prob", "an", "estimate", "of", "the", "significance", "of", "that", "maximum", "against", "the", "hypothesis", "of", "random", "noise", ".", "A", "small", "value", "of", "prob", "indicates", "that", "a", "significant", "periodic", "signal", "is", "present", ".", "Reference", ":", "Press", "W", ".", "H", ".", "&", "Rybicki", "G", ".", "B", ".", "1989", "ApJ", "vol", ".", "338", "p", ".", "277", "-", "280", ".", "Fast", "algorithm", "for", "spectral", "analysis", "of", "unevenly", "sampled", "data", "(", "1989ApJ", "...", "338", "..", "277P", ")" ]
train
https://github.com/dwkim78/upsilon/blob/5f381453f26582ef56e62fb8fed7317ce67861af/upsilon/extract_features/period_LS_pyfftw.py#L95-L232
rix0rrr/gcl
gcl/runtime.py
Tuple.get_no_validate
def get_no_validate(self, key): """Return an item without validating the schema.""" x, env = self.get_thunk_env(key) # Check if this is a Thunk that needs to be lazily evaluated before we # return it. if isinstance(x, framework.Thunk): x = framework.eval(x, env) return x
python
def get_no_validate(self, key): """Return an item without validating the schema.""" x, env = self.get_thunk_env(key) # Check if this is a Thunk that needs to be lazily evaluated before we # return it. if isinstance(x, framework.Thunk): x = framework.eval(x, env) return x
[ "def", "get_no_validate", "(", "self", ",", "key", ")", ":", "x", ",", "env", "=", "self", ".", "get_thunk_env", "(", "key", ")", "# Check if this is a Thunk that needs to be lazily evaluated before we", "# return it.", "if", "isinstance", "(", "x", ",", "framework", ".", "Thunk", ")", ":", "x", "=", "framework", ".", "eval", "(", "x", ",", "env", ")", "return", "x" ]
Return an item without validating the schema.
[ "Return", "an", "item", "without", "validating", "the", "schema", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L63-L72
rix0rrr/gcl
gcl/runtime.py
Tuple.env
def env(self, current_scope): """Return an environment that will look up in current_scope for keys in this tuple, and the parent env otherwise. """ return self.__env_cache.get( current_scope.ident, framework.Environment, current_scope, names=self.keys(), parent=framework.Environment({'self': current_scope}, parent=self.__parent_env))
python
def env(self, current_scope): """Return an environment that will look up in current_scope for keys in this tuple, and the parent env otherwise. """ return self.__env_cache.get( current_scope.ident, framework.Environment, current_scope, names=self.keys(), parent=framework.Environment({'self': current_scope}, parent=self.__parent_env))
[ "def", "env", "(", "self", ",", "current_scope", ")", ":", "return", "self", ".", "__env_cache", ".", "get", "(", "current_scope", ".", "ident", ",", "framework", ".", "Environment", ",", "current_scope", ",", "names", "=", "self", ".", "keys", "(", ")", ",", "parent", "=", "framework", ".", "Environment", "(", "{", "'self'", ":", "current_scope", "}", ",", "parent", "=", "self", ".", "__parent_env", ")", ")" ]
Return an environment that will look up in current_scope for keys in this tuple, and the parent env otherwise.
[ "Return", "an", "environment", "that", "will", "look", "up", "in", "current_scope", "for", "keys", "in", "this", "tuple", "and", "the", "parent", "env", "otherwise", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L77-L85
rix0rrr/gcl
gcl/runtime.py
Tuple.get_thunk_env
def get_thunk_env(self, k): """Return the thunk AND environment for validating it in for the given key. There might be different envs in case the thunk comes from a different (composed) tuple. If the thunk needs its environment bound on retrieval, that will be done here. """ if k not in self.__items: raise exceptions.EvaluationError('Unknown key: %r in tuple %r' % (k, self)) x = self.__items[k] env = self.env(self) # Bind this to the tuple's parent environment if isinstance(x, framework.BindableThunk): return x.bind(self.__parent_env), env return x, env
python
def get_thunk_env(self, k): """Return the thunk AND environment for validating it in for the given key. There might be different envs in case the thunk comes from a different (composed) tuple. If the thunk needs its environment bound on retrieval, that will be done here. """ if k not in self.__items: raise exceptions.EvaluationError('Unknown key: %r in tuple %r' % (k, self)) x = self.__items[k] env = self.env(self) # Bind this to the tuple's parent environment if isinstance(x, framework.BindableThunk): return x.bind(self.__parent_env), env return x, env
[ "def", "get_thunk_env", "(", "self", ",", "k", ")", ":", "if", "k", "not", "in", "self", ".", "__items", ":", "raise", "exceptions", ".", "EvaluationError", "(", "'Unknown key: %r in tuple %r'", "%", "(", "k", ",", "self", ")", ")", "x", "=", "self", ".", "__items", "[", "k", "]", "env", "=", "self", ".", "env", "(", "self", ")", "# Bind this to the tuple's parent environment", "if", "isinstance", "(", "x", ",", "framework", ".", "BindableThunk", ")", ":", "return", "x", ".", "bind", "(", "self", ".", "__parent_env", ")", ",", "env", "return", "x", ",", "env" ]
Return the thunk AND environment for validating it in for the given key. There might be different envs in case the thunk comes from a different (composed) tuple. If the thunk needs its environment bound on retrieval, that will be done here.
[ "Return", "the", "thunk", "AND", "environment", "for", "validating", "it", "in", "for", "the", "given", "key", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L107-L122
rix0rrr/gcl
gcl/runtime.py
Tuple.attach_schema
def attach_schema(self, schem): """Add a tuple schema to this object (externally imposed)""" self.tuple_schema = schema.AndSchema.make(self.tuple_schema, schem)
python
def attach_schema(self, schem): """Add a tuple schema to this object (externally imposed)""" self.tuple_schema = schema.AndSchema.make(self.tuple_schema, schem)
[ "def", "attach_schema", "(", "self", ",", "schem", ")", ":", "self", ".", "tuple_schema", "=", "schema", ".", "AndSchema", ".", "make", "(", "self", ".", "tuple_schema", ",", "schem", ")" ]
Add a tuple schema to this object (externally imposed)
[ "Add", "a", "tuple", "schema", "to", "this", "object", "(", "externally", "imposed", ")" ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L146-L148
rix0rrr/gcl
gcl/runtime.py
Tuple.get_schema_spec
def get_schema_spec(self, key): """Return the evaluated schema expression from a subkey.""" member_node = self._ast_node.member.get(key, None) if not member_node: return schema.AnySchema() s = framework.eval(member_node.member_schema, self.env(self)) if not isinstance(s, schema.Schema): raise ValueError('Node %r with schema node %r should evaluate to Schema, got %r' % (member_node, member_node.member_schema, s)) return s
python
def get_schema_spec(self, key): """Return the evaluated schema expression from a subkey.""" member_node = self._ast_node.member.get(key, None) if not member_node: return schema.AnySchema() s = framework.eval(member_node.member_schema, self.env(self)) if not isinstance(s, schema.Schema): raise ValueError('Node %r with schema node %r should evaluate to Schema, got %r' % (member_node, member_node.member_schema, s)) return s
[ "def", "get_schema_spec", "(", "self", ",", "key", ")", ":", "member_node", "=", "self", ".", "_ast_node", ".", "member", ".", "get", "(", "key", ",", "None", ")", "if", "not", "member_node", ":", "return", "schema", ".", "AnySchema", "(", ")", "s", "=", "framework", ".", "eval", "(", "member_node", ".", "member_schema", ",", "self", ".", "env", "(", "self", ")", ")", "if", "not", "isinstance", "(", "s", ",", "schema", ".", "Schema", ")", ":", "raise", "ValueError", "(", "'Node %r with schema node %r should evaluate to Schema, got %r'", "%", "(", "member_node", ",", "member_node", ".", "member_schema", ",", "s", ")", ")", "return", "s" ]
Return the evaluated schema expression from a subkey.
[ "Return", "the", "evaluated", "schema", "expression", "from", "a", "subkey", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L150-L159
rix0rrr/gcl
gcl/runtime.py
Tuple.get_required_fields
def get_required_fields(self): """Return the names of fields that are required according to the schema.""" return [m.name for m in self._ast_node.members if m.member_schema.required]
python
def get_required_fields(self): """Return the names of fields that are required according to the schema.""" return [m.name for m in self._ast_node.members if m.member_schema.required]
[ "def", "get_required_fields", "(", "self", ")", ":", "return", "[", "m", ".", "name", "for", "m", "in", "self", ".", "_ast_node", ".", "members", "if", "m", ".", "member_schema", ".", "required", "]" ]
Return the names of fields that are required according to the schema.
[ "Return", "the", "names", "of", "fields", "that", "are", "required", "according", "to", "the", "schema", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L161-L163
rix0rrr/gcl
gcl/runtime.py
CompositeTuple.get_member_node
def get_member_node(self, key): """Return the AST node for the given member, from the first tuple that serves it.""" for tup, _ in self.lookups: if key in tup: return tup.get_member_node(key) raise RuntimeError('Key not found in composite tuple: %r' % key)
python
def get_member_node(self, key): """Return the AST node for the given member, from the first tuple that serves it.""" for tup, _ in self.lookups: if key in tup: return tup.get_member_node(key) raise RuntimeError('Key not found in composite tuple: %r' % key)
[ "def", "get_member_node", "(", "self", ",", "key", ")", ":", "for", "tup", ",", "_", "in", "self", ".", "lookups", ":", "if", "key", "in", "tup", ":", "return", "tup", ".", "get_member_node", "(", "key", ")", "raise", "RuntimeError", "(", "'Key not found in composite tuple: %r'", "%", "key", ")" ]
Return the AST node for the given member, from the first tuple that serves it.
[ "Return", "the", "AST", "node", "for", "the", "given", "member", "from", "the", "first", "tuple", "that", "serves", "it", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L283-L288
rix0rrr/gcl
gcl/runtime.py
CompositeTuple.exportable_keys
def exportable_keys(self): """Return a list of keys that are exportable from this tuple. Returns all keys that are not private in any of the tuples. """ keys = collections.defaultdict(list) for tup in self._tuples: for key, private in tup._keys_and_privacy().items(): keys[key].append(private) return [k for k, ps in keys.items() if not any(ps)]
python
def exportable_keys(self): """Return a list of keys that are exportable from this tuple. Returns all keys that are not private in any of the tuples. """ keys = collections.defaultdict(list) for tup in self._tuples: for key, private in tup._keys_and_privacy().items(): keys[key].append(private) return [k for k, ps in keys.items() if not any(ps)]
[ "def", "exportable_keys", "(", "self", ")", ":", "keys", "=", "collections", ".", "defaultdict", "(", "list", ")", "for", "tup", "in", "self", ".", "_tuples", ":", "for", "key", ",", "private", "in", "tup", ".", "_keys_and_privacy", "(", ")", ".", "items", "(", ")", ":", "keys", "[", "key", "]", ".", "append", "(", "private", ")", "return", "[", "k", "for", "k", ",", "ps", "in", "keys", ".", "items", "(", ")", "if", "not", "any", "(", "ps", ")", "]" ]
Return a list of keys that are exportable from this tuple. Returns all keys that are not private in any of the tuples.
[ "Return", "a", "list", "of", "keys", "that", "are", "exportable", "from", "this", "tuple", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L290-L299
rix0rrr/gcl
gcl/runtime.py
OnDiskFiles.resolve
def resolve(self, current_file, rel_path): """Search the filesystem.""" search_path = [path.dirname(current_file)] + self.search_path target_path = None for search in search_path: if self.exists(path.join(search, rel_path)): target_path = path.normpath(path.join(search, rel_path)) break if not target_path: raise exceptions.EvaluationError('No such file: %r, searched %s' % (rel_path, ':'.join(search_path))) return target_path, path.abspath(target_path)
python
def resolve(self, current_file, rel_path): """Search the filesystem.""" search_path = [path.dirname(current_file)] + self.search_path target_path = None for search in search_path: if self.exists(path.join(search, rel_path)): target_path = path.normpath(path.join(search, rel_path)) break if not target_path: raise exceptions.EvaluationError('No such file: %r, searched %s' % (rel_path, ':'.join(search_path))) return target_path, path.abspath(target_path)
[ "def", "resolve", "(", "self", ",", "current_file", ",", "rel_path", ")", ":", "search_path", "=", "[", "path", ".", "dirname", "(", "current_file", ")", "]", "+", "self", ".", "search_path", "target_path", "=", "None", "for", "search", "in", "search_path", ":", "if", "self", ".", "exists", "(", "path", ".", "join", "(", "search", ",", "rel_path", ")", ")", ":", "target_path", "=", "path", ".", "normpath", "(", "path", ".", "join", "(", "search", ",", "rel_path", ")", ")", "break", "if", "not", "target_path", ":", "raise", "exceptions", ".", "EvaluationError", "(", "'No such file: %r, searched %s'", "%", "(", "rel_path", ",", "':'", ".", "join", "(", "search_path", ")", ")", ")", "return", "target_path", ",", "path", ".", "abspath", "(", "target_path", ")" ]
Search the filesystem.
[ "Search", "the", "filesystem", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L312-L326
rix0rrr/gcl
gcl/runtime.py
InMemoryFiles.resolve
def resolve(self, current_file, rel_path): """Search the filesystem.""" p = path.join(path.dirname(current_file), rel_path) if p not in self.file_dict: raise RuntimeError('No such fake file: %r' % p) return p, p
python
def resolve(self, current_file, rel_path): """Search the filesystem.""" p = path.join(path.dirname(current_file), rel_path) if p not in self.file_dict: raise RuntimeError('No such fake file: %r' % p) return p, p
[ "def", "resolve", "(", "self", ",", "current_file", ",", "rel_path", ")", ":", "p", "=", "path", ".", "join", "(", "path", ".", "dirname", "(", "current_file", ")", ",", "rel_path", ")", "if", "p", "not", "in", "self", ".", "file_dict", ":", "raise", "RuntimeError", "(", "'No such fake file: %r'", "%", "p", ")", "return", "p", ",", "p" ]
Search the filesystem.
[ "Search", "the", "filesystem", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/runtime.py#L344-L349
hannes-brt/hebel
hebel/utils/call_check.py
check_call_arguments
def check_call_arguments(to_call, kwargs): """ Check the call signature against a dictionary of proposed arguments, raising an informative exception in the case of mismatch. Parameters ---------- to_call : class or callable Function or class to examine (in the case of classes, the constructor call signature is analyzed) kwargs : dict Dictionary mapping parameter names (including positional arguments) to proposed values. """ if 'self' in kwargs.keys(): raise TypeError("Your dictionary includes an entry for 'self', " "which is just asking for trouble") orig_to_call = getattr(to_call, '__name__', str(to_call)) if not isinstance(to_call, types.FunctionType): if hasattr(to_call, '__init__'): to_call = to_call.__init__ elif hasattr(to_call, '__call__'): to_call = to_call.__call__ args, varargs, keywords, defaults = inspect.getargspec(to_call) if any(not isinstance(arg, str) for arg in args): raise TypeError('%s uses argument unpacking, which is deprecated and ' 'unsupported by this pylearn2' % orig_to_call) if varargs is not None: raise TypeError('%s has a variable length argument list, but ' 'this is not supported by config resolution' % orig_to_call) if keywords is None: bad_keywords = [arg_name for arg_name in kwargs.keys() if arg_name not in args] if len(bad_keywords) > 0: bad = ', '.join(bad_keywords) args = [ arg for arg in args if arg != 'self' ] if len(args) == 0: matched_str = '(It does not support any keywords, actually)' else: matched = [ match(keyword, args) for keyword in bad_keywords ] matched_str = 'Did you mean %s?' % (', '.join(matched)) raise TypeError('%s does not support the following ' 'keywords: %s. %s' % (orig_to_call, bad, matched_str)) if defaults is None: num_defaults = 0 else: num_defaults = len(defaults) required = args[:len(args) - num_defaults] missing = [arg for arg in required if arg not in kwargs] if len(missing) > 0: #iff the im_self (or __self__) field is present, this is a # bound method, which has 'self' listed as an argument, but # which should not be supplied by kwargs is_bound = hasattr(to_call, 'im_self') or hasattr(to_call, '__self__') if len(missing) > 1 or missing[0] != 'self' or not is_bound: if 'self' in missing: missing.remove('self') missing = ', '.join([str(m) for m in missing]) raise TypeError('%s did not get these expected ' 'arguments: %s' % (orig_to_call, missing))
python
def check_call_arguments(to_call, kwargs): """ Check the call signature against a dictionary of proposed arguments, raising an informative exception in the case of mismatch. Parameters ---------- to_call : class or callable Function or class to examine (in the case of classes, the constructor call signature is analyzed) kwargs : dict Dictionary mapping parameter names (including positional arguments) to proposed values. """ if 'self' in kwargs.keys(): raise TypeError("Your dictionary includes an entry for 'self', " "which is just asking for trouble") orig_to_call = getattr(to_call, '__name__', str(to_call)) if not isinstance(to_call, types.FunctionType): if hasattr(to_call, '__init__'): to_call = to_call.__init__ elif hasattr(to_call, '__call__'): to_call = to_call.__call__ args, varargs, keywords, defaults = inspect.getargspec(to_call) if any(not isinstance(arg, str) for arg in args): raise TypeError('%s uses argument unpacking, which is deprecated and ' 'unsupported by this pylearn2' % orig_to_call) if varargs is not None: raise TypeError('%s has a variable length argument list, but ' 'this is not supported by config resolution' % orig_to_call) if keywords is None: bad_keywords = [arg_name for arg_name in kwargs.keys() if arg_name not in args] if len(bad_keywords) > 0: bad = ', '.join(bad_keywords) args = [ arg for arg in args if arg != 'self' ] if len(args) == 0: matched_str = '(It does not support any keywords, actually)' else: matched = [ match(keyword, args) for keyword in bad_keywords ] matched_str = 'Did you mean %s?' % (', '.join(matched)) raise TypeError('%s does not support the following ' 'keywords: %s. %s' % (orig_to_call, bad, matched_str)) if defaults is None: num_defaults = 0 else: num_defaults = len(defaults) required = args[:len(args) - num_defaults] missing = [arg for arg in required if arg not in kwargs] if len(missing) > 0: #iff the im_self (or __self__) field is present, this is a # bound method, which has 'self' listed as an argument, but # which should not be supplied by kwargs is_bound = hasattr(to_call, 'im_self') or hasattr(to_call, '__self__') if len(missing) > 1 or missing[0] != 'self' or not is_bound: if 'self' in missing: missing.remove('self') missing = ', '.join([str(m) for m in missing]) raise TypeError('%s did not get these expected ' 'arguments: %s' % (orig_to_call, missing))
[ "def", "check_call_arguments", "(", "to_call", ",", "kwargs", ")", ":", "if", "'self'", "in", "kwargs", ".", "keys", "(", ")", ":", "raise", "TypeError", "(", "\"Your dictionary includes an entry for 'self', \"", "\"which is just asking for trouble\"", ")", "orig_to_call", "=", "getattr", "(", "to_call", ",", "'__name__'", ",", "str", "(", "to_call", ")", ")", "if", "not", "isinstance", "(", "to_call", ",", "types", ".", "FunctionType", ")", ":", "if", "hasattr", "(", "to_call", ",", "'__init__'", ")", ":", "to_call", "=", "to_call", ".", "__init__", "elif", "hasattr", "(", "to_call", ",", "'__call__'", ")", ":", "to_call", "=", "to_call", ".", "__call__", "args", ",", "varargs", ",", "keywords", ",", "defaults", "=", "inspect", ".", "getargspec", "(", "to_call", ")", "if", "any", "(", "not", "isinstance", "(", "arg", ",", "str", ")", "for", "arg", "in", "args", ")", ":", "raise", "TypeError", "(", "'%s uses argument unpacking, which is deprecated and '", "'unsupported by this pylearn2'", "%", "orig_to_call", ")", "if", "varargs", "is", "not", "None", ":", "raise", "TypeError", "(", "'%s has a variable length argument list, but '", "'this is not supported by config resolution'", "%", "orig_to_call", ")", "if", "keywords", "is", "None", ":", "bad_keywords", "=", "[", "arg_name", "for", "arg_name", "in", "kwargs", ".", "keys", "(", ")", "if", "arg_name", "not", "in", "args", "]", "if", "len", "(", "bad_keywords", ")", ">", "0", ":", "bad", "=", "', '", ".", "join", "(", "bad_keywords", ")", "args", "=", "[", "arg", "for", "arg", "in", "args", "if", "arg", "!=", "'self'", "]", "if", "len", "(", "args", ")", "==", "0", ":", "matched_str", "=", "'(It does not support any keywords, actually)'", "else", ":", "matched", "=", "[", "match", "(", "keyword", ",", "args", ")", "for", "keyword", "in", "bad_keywords", "]", "matched_str", "=", "'Did you mean %s?'", "%", "(", "', '", ".", "join", "(", "matched", ")", ")", "raise", "TypeError", "(", "'%s does not support the following '", "'keywords: %s. %s'", "%", "(", "orig_to_call", ",", "bad", ",", "matched_str", ")", ")", "if", "defaults", "is", "None", ":", "num_defaults", "=", "0", "else", ":", "num_defaults", "=", "len", "(", "defaults", ")", "required", "=", "args", "[", ":", "len", "(", "args", ")", "-", "num_defaults", "]", "missing", "=", "[", "arg", "for", "arg", "in", "required", "if", "arg", "not", "in", "kwargs", "]", "if", "len", "(", "missing", ")", ">", "0", ":", "#iff the im_self (or __self__) field is present, this is a", "# bound method, which has 'self' listed as an argument, but", "# which should not be supplied by kwargs", "is_bound", "=", "hasattr", "(", "to_call", ",", "'im_self'", ")", "or", "hasattr", "(", "to_call", ",", "'__self__'", ")", "if", "len", "(", "missing", ")", ">", "1", "or", "missing", "[", "0", "]", "!=", "'self'", "or", "not", "is_bound", ":", "if", "'self'", "in", "missing", ":", "missing", ".", "remove", "(", "'self'", ")", "missing", "=", "', '", ".", "join", "(", "[", "str", "(", "m", ")", "for", "m", "in", "missing", "]", ")", "raise", "TypeError", "(", "'%s did not get these expected '", "'arguments: %s'", "%", "(", "orig_to_call", ",", "missing", ")", ")" ]
Check the call signature against a dictionary of proposed arguments, raising an informative exception in the case of mismatch. Parameters ---------- to_call : class or callable Function or class to examine (in the case of classes, the constructor call signature is analyzed) kwargs : dict Dictionary mapping parameter names (including positional arguments) to proposed values.
[ "Check", "the", "call", "signature", "against", "a", "dictionary", "of", "proposed", "arguments", "raising", "an", "informative", "exception", "in", "the", "case", "of", "mismatch", "." ]
train
https://github.com/hannes-brt/hebel/blob/1e2c3a9309c2646103901b26a55be4e312dd5005/hebel/utils/call_check.py#L26-L96
dwkim78/upsilon
upsilon/predict/predict.py
predict
def predict(rf_model, features): """ Return label and probability estimated. Parameters ---------- rf_model : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests model. features : array_like A list of features estimated by UPSILoN. Returns ------- label : str A predicted label (i.e. class). probability : float Class probability. flag : int Classification flag. """ import numpy as np from upsilon.extract_features.feature_set import get_feature_set feature_set = get_feature_set() # Grab only necessary features. cols = [feature for feature in features if feature in feature_set] cols = sorted(cols) filtered_features = [] for i in range(len(cols)): filtered_features.append(features[cols[i]]) filtered_features = np.array(filtered_features).reshape(1, -1) # Classify. classes = rf_model.classes_ # Note that we're classifying a single source, so [0] need tobe added. probabilities = rf_model.predict_proba(filtered_features)[0] # Classification flag. flag = 0 if features['period_SNR'] < 20. or is_period_alias(features['period']): flag = 1 # Return class, probability, and flag. max_index = np.where(probabilities == np.max(probabilities)) return classes[max_index][0], probabilities[max_index][0], flag
python
def predict(rf_model, features): """ Return label and probability estimated. Parameters ---------- rf_model : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests model. features : array_like A list of features estimated by UPSILoN. Returns ------- label : str A predicted label (i.e. class). probability : float Class probability. flag : int Classification flag. """ import numpy as np from upsilon.extract_features.feature_set import get_feature_set feature_set = get_feature_set() # Grab only necessary features. cols = [feature for feature in features if feature in feature_set] cols = sorted(cols) filtered_features = [] for i in range(len(cols)): filtered_features.append(features[cols[i]]) filtered_features = np.array(filtered_features).reshape(1, -1) # Classify. classes = rf_model.classes_ # Note that we're classifying a single source, so [0] need tobe added. probabilities = rf_model.predict_proba(filtered_features)[0] # Classification flag. flag = 0 if features['period_SNR'] < 20. or is_period_alias(features['period']): flag = 1 # Return class, probability, and flag. max_index = np.where(probabilities == np.max(probabilities)) return classes[max_index][0], probabilities[max_index][0], flag
[ "def", "predict", "(", "rf_model", ",", "features", ")", ":", "import", "numpy", "as", "np", "from", "upsilon", ".", "extract_features", ".", "feature_set", "import", "get_feature_set", "feature_set", "=", "get_feature_set", "(", ")", "# Grab only necessary features.", "cols", "=", "[", "feature", "for", "feature", "in", "features", "if", "feature", "in", "feature_set", "]", "cols", "=", "sorted", "(", "cols", ")", "filtered_features", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "cols", ")", ")", ":", "filtered_features", ".", "append", "(", "features", "[", "cols", "[", "i", "]", "]", ")", "filtered_features", "=", "np", ".", "array", "(", "filtered_features", ")", ".", "reshape", "(", "1", ",", "-", "1", ")", "# Classify.", "classes", "=", "rf_model", ".", "classes_", "# Note that we're classifying a single source, so [0] need tobe added.", "probabilities", "=", "rf_model", ".", "predict_proba", "(", "filtered_features", ")", "[", "0", "]", "# Classification flag.", "flag", "=", "0", "if", "features", "[", "'period_SNR'", "]", "<", "20.", "or", "is_period_alias", "(", "features", "[", "'period'", "]", ")", ":", "flag", "=", "1", "# Return class, probability, and flag.", "max_index", "=", "np", ".", "where", "(", "probabilities", "==", "np", ".", "max", "(", "probabilities", ")", ")", "return", "classes", "[", "max_index", "]", "[", "0", "]", ",", "probabilities", "[", "max_index", "]", "[", "0", "]", ",", "flag" ]
Return label and probability estimated. Parameters ---------- rf_model : sklearn.ensemble.RandomForestClassifier The UPSILoN random forests model. features : array_like A list of features estimated by UPSILoN. Returns ------- label : str A predicted label (i.e. class). probability : float Class probability. flag : int Classification flag.
[ "Return", "label", "and", "probability", "estimated", "." ]
train
https://github.com/dwkim78/upsilon/blob/5f381453f26582ef56e62fb8fed7317ce67861af/upsilon/predict/predict.py#L4-L50
rix0rrr/gcl
gcl/functions.py
fmt
def fmt(str, args=None, env=None): """fmt(string, [tuple]) -> string Interpolate a string, replacing {patterns} with the variables with the same name. If given a tuple, use the keys from the tuple to substitute. If not given a tuple, uses the current environment as the variable source. """ # Normally, we'd just call str.format(**args), but we only want to evaluate # values from the tuple which are actually used in the string interpolation, # so we use proxy objects. # If no args are given, we're able to take the current environment. args = args or env proxies = {k: StringInterpolationProxy(args, k) for k in args.keys()} return str.format(**proxies)
python
def fmt(str, args=None, env=None): """fmt(string, [tuple]) -> string Interpolate a string, replacing {patterns} with the variables with the same name. If given a tuple, use the keys from the tuple to substitute. If not given a tuple, uses the current environment as the variable source. """ # Normally, we'd just call str.format(**args), but we only want to evaluate # values from the tuple which are actually used in the string interpolation, # so we use proxy objects. # If no args are given, we're able to take the current environment. args = args or env proxies = {k: StringInterpolationProxy(args, k) for k in args.keys()} return str.format(**proxies)
[ "def", "fmt", "(", "str", ",", "args", "=", "None", ",", "env", "=", "None", ")", ":", "# Normally, we'd just call str.format(**args), but we only want to evaluate", "# values from the tuple which are actually used in the string interpolation,", "# so we use proxy objects.", "# If no args are given, we're able to take the current environment.", "args", "=", "args", "or", "env", "proxies", "=", "{", "k", ":", "StringInterpolationProxy", "(", "args", ",", "k", ")", "for", "k", "in", "args", ".", "keys", "(", ")", "}", "return", "str", ".", "format", "(", "*", "*", "proxies", ")" ]
fmt(string, [tuple]) -> string Interpolate a string, replacing {patterns} with the variables with the same name. If given a tuple, use the keys from the tuple to substitute. If not given a tuple, uses the current environment as the variable source.
[ "fmt", "(", "string", "[", "tuple", "]", ")", "-", ">", "string" ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/functions.py#L47-L61
rix0rrr/gcl
gcl/functions.py
compose_all
def compose_all(tups): """Compose all given tuples together.""" from . import ast # I weep for humanity return functools.reduce(lambda x, y: x.compose(y), map(ast.make_tuple, tups), ast.make_tuple({}))
python
def compose_all(tups): """Compose all given tuples together.""" from . import ast # I weep for humanity return functools.reduce(lambda x, y: x.compose(y), map(ast.make_tuple, tups), ast.make_tuple({}))
[ "def", "compose_all", "(", "tups", ")", ":", "from", ".", "import", "ast", "# I weep for humanity", "return", "functools", ".", "reduce", "(", "lambda", "x", ",", "y", ":", "x", ".", "compose", "(", "y", ")", ",", "map", "(", "ast", ".", "make_tuple", ",", "tups", ")", ",", "ast", ".", "make_tuple", "(", "{", "}", ")", ")" ]
Compose all given tuples together.
[ "Compose", "all", "given", "tuples", "together", "." ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/functions.py#L71-L74
rix0rrr/gcl
gcl/functions.py
has_key
def has_key(tup, key): """has(tuple, string) -> bool Return whether a given tuple has a key and the key is bound. """ if isinstance(tup, framework.TupleLike): return tup.is_bound(key) if isinstance(tup, dict): return key in tup if isinstance(tup, list): if not isinstance(key, int): raise ValueError('Key must be integer when checking list index') return key < len(tup) raise ValueError('Not a tuple-like object: %r' % tup)
python
def has_key(tup, key): """has(tuple, string) -> bool Return whether a given tuple has a key and the key is bound. """ if isinstance(tup, framework.TupleLike): return tup.is_bound(key) if isinstance(tup, dict): return key in tup if isinstance(tup, list): if not isinstance(key, int): raise ValueError('Key must be integer when checking list index') return key < len(tup) raise ValueError('Not a tuple-like object: %r' % tup)
[ "def", "has_key", "(", "tup", ",", "key", ")", ":", "if", "isinstance", "(", "tup", ",", "framework", ".", "TupleLike", ")", ":", "return", "tup", ".", "is_bound", "(", "key", ")", "if", "isinstance", "(", "tup", ",", "dict", ")", ":", "return", "key", "in", "tup", "if", "isinstance", "(", "tup", ",", "list", ")", ":", "if", "not", "isinstance", "(", "key", ",", "int", ")", ":", "raise", "ValueError", "(", "'Key must be integer when checking list index'", ")", "return", "key", "<", "len", "(", "tup", ")", "raise", "ValueError", "(", "'Not a tuple-like object: %r'", "%", "tup", ")" ]
has(tuple, string) -> bool Return whether a given tuple has a key and the key is bound.
[ "has", "(", "tuple", "string", ")", "-", ">", "bool" ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/functions.py#L85-L98
rix0rrr/gcl
gcl/functions.py
flatten
def flatten(list_of_lists): """flatten([[A]]) -> [A] Flatten a list of lists. """ ret = [] for lst in list_of_lists: if not isinstance(lst, list): raise ValueError('%r is not a list' % lst) ret.extend(lst) return ret
python
def flatten(list_of_lists): """flatten([[A]]) -> [A] Flatten a list of lists. """ ret = [] for lst in list_of_lists: if not isinstance(lst, list): raise ValueError('%r is not a list' % lst) ret.extend(lst) return ret
[ "def", "flatten", "(", "list_of_lists", ")", ":", "ret", "=", "[", "]", "for", "lst", "in", "list_of_lists", ":", "if", "not", "isinstance", "(", "lst", ",", "list", ")", ":", "raise", "ValueError", "(", "'%r is not a list'", "%", "lst", ")", "ret", ".", "extend", "(", "lst", ")", "return", "ret" ]
flatten([[A]]) -> [A] Flatten a list of lists.
[ "flatten", "(", "[[", "A", "]]", ")", "-", ">", "[", "A", "]" ]
train
https://github.com/rix0rrr/gcl/blob/4e3bccc978a9c60aaaffd20f6f291c4d23775cdf/gcl/functions.py#L101-L111
spacetelescope/acstools
acstools/utils_calib.py
extract_dark
def extract_dark(prihdr, scihdu): """Extract superdark data from ``DARKFILE`` or ``DRKCFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- dark : ndarray or `None` Superdark, if any. Subtract this to apply ``DARKCORR``. """ if prihdr.get('PCTECORR', 'OMIT') == 'COMPLETE': darkfile = prihdr.get('DRKCFILE', 'N/A') else: darkfile = prihdr.get('DARKFILE', 'N/A') if darkfile == 'N/A': return None darkfile = from_irafpath(darkfile) ampstring = prihdr['CCDAMP'] # Calculate DARKTIME exptime = prihdr.get('EXPTIME', 0.0) flashdur = prihdr.get('FLASHDUR', 0.0) darktime = exptime + flashdur if exptime > 0: # Not BIAS darktime += 3.0 with fits.open(darkfile) as hdudark: if ampstring == 'ABCD': dark = np.concatenate( (hdudark['sci', 1].data, hdudark['sci', 2].data[::-1, :]), axis=1) elif ampstring in ('A', 'B', 'AB'): dark = extract_ref(scihdu, hdudark['sci', 2]) else: dark = extract_ref(scihdu, hdudark['sci', 1]) dark = dark * darktime return dark
python
def extract_dark(prihdr, scihdu): """Extract superdark data from ``DARKFILE`` or ``DRKCFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- dark : ndarray or `None` Superdark, if any. Subtract this to apply ``DARKCORR``. """ if prihdr.get('PCTECORR', 'OMIT') == 'COMPLETE': darkfile = prihdr.get('DRKCFILE', 'N/A') else: darkfile = prihdr.get('DARKFILE', 'N/A') if darkfile == 'N/A': return None darkfile = from_irafpath(darkfile) ampstring = prihdr['CCDAMP'] # Calculate DARKTIME exptime = prihdr.get('EXPTIME', 0.0) flashdur = prihdr.get('FLASHDUR', 0.0) darktime = exptime + flashdur if exptime > 0: # Not BIAS darktime += 3.0 with fits.open(darkfile) as hdudark: if ampstring == 'ABCD': dark = np.concatenate( (hdudark['sci', 1].data, hdudark['sci', 2].data[::-1, :]), axis=1) elif ampstring in ('A', 'B', 'AB'): dark = extract_ref(scihdu, hdudark['sci', 2]) else: dark = extract_ref(scihdu, hdudark['sci', 1]) dark = dark * darktime return dark
[ "def", "extract_dark", "(", "prihdr", ",", "scihdu", ")", ":", "if", "prihdr", ".", "get", "(", "'PCTECORR'", ",", "'OMIT'", ")", "==", "'COMPLETE'", ":", "darkfile", "=", "prihdr", ".", "get", "(", "'DRKCFILE'", ",", "'N/A'", ")", "else", ":", "darkfile", "=", "prihdr", ".", "get", "(", "'DARKFILE'", ",", "'N/A'", ")", "if", "darkfile", "==", "'N/A'", ":", "return", "None", "darkfile", "=", "from_irafpath", "(", "darkfile", ")", "ampstring", "=", "prihdr", "[", "'CCDAMP'", "]", "# Calculate DARKTIME", "exptime", "=", "prihdr", ".", "get", "(", "'EXPTIME'", ",", "0.0", ")", "flashdur", "=", "prihdr", ".", "get", "(", "'FLASHDUR'", ",", "0.0", ")", "darktime", "=", "exptime", "+", "flashdur", "if", "exptime", ">", "0", ":", "# Not BIAS", "darktime", "+=", "3.0", "with", "fits", ".", "open", "(", "darkfile", ")", "as", "hdudark", ":", "if", "ampstring", "==", "'ABCD'", ":", "dark", "=", "np", ".", "concatenate", "(", "(", "hdudark", "[", "'sci'", ",", "1", "]", ".", "data", ",", "hdudark", "[", "'sci'", ",", "2", "]", ".", "data", "[", ":", ":", "-", "1", ",", ":", "]", ")", ",", "axis", "=", "1", ")", "elif", "ampstring", "in", "(", "'A'", ",", "'B'", ",", "'AB'", ")", ":", "dark", "=", "extract_ref", "(", "scihdu", ",", "hdudark", "[", "'sci'", ",", "2", "]", ")", "else", ":", "dark", "=", "extract_ref", "(", "scihdu", ",", "hdudark", "[", "'sci'", ",", "1", "]", ")", "dark", "=", "dark", "*", "darktime", "return", "dark" ]
Extract superdark data from ``DARKFILE`` or ``DRKCFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- dark : ndarray or `None` Superdark, if any. Subtract this to apply ``DARKCORR``.
[ "Extract", "superdark", "data", "from", "DARKFILE", "or", "DRKCFILE", "." ]
train
https://github.com/spacetelescope/acstools/blob/bbf8dd080cefcbf88529ec87c420f9e1b8002554/acstools/utils_calib.py#L25-L73
spacetelescope/acstools
acstools/utils_calib.py
extract_flash
def extract_flash(prihdr, scihdu): """Extract postflash data from ``FLSHFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- flash : ndarray or `None` Postflash, if any. Subtract this to apply ``FLSHCORR``. """ flshfile = prihdr.get('FLSHFILE', 'N/A') flashsta = prihdr.get('FLASHSTA', 'N/A') flashdur = prihdr.get('FLASHDUR', 0.0) if flshfile == 'N/A' or flashdur <= 0: return None if flashsta != 'SUCCESSFUL': warnings.warn('Flash status is {0}'.format(flashsta), AstropyUserWarning) flshfile = from_irafpath(flshfile) ampstring = prihdr['CCDAMP'] with fits.open(flshfile) as hduflash: if ampstring == 'ABCD': flash = np.concatenate( (hduflash['sci', 1].data, hduflash['sci', 2].data[::-1, :]), axis=1) elif ampstring in ('A', 'B', 'AB'): flash = extract_ref(scihdu, hduflash['sci', 2]) else: flash = extract_ref(scihdu, hduflash['sci', 1]) flash = flash * flashdur return flash
python
def extract_flash(prihdr, scihdu): """Extract postflash data from ``FLSHFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- flash : ndarray or `None` Postflash, if any. Subtract this to apply ``FLSHCORR``. """ flshfile = prihdr.get('FLSHFILE', 'N/A') flashsta = prihdr.get('FLASHSTA', 'N/A') flashdur = prihdr.get('FLASHDUR', 0.0) if flshfile == 'N/A' or flashdur <= 0: return None if flashsta != 'SUCCESSFUL': warnings.warn('Flash status is {0}'.format(flashsta), AstropyUserWarning) flshfile = from_irafpath(flshfile) ampstring = prihdr['CCDAMP'] with fits.open(flshfile) as hduflash: if ampstring == 'ABCD': flash = np.concatenate( (hduflash['sci', 1].data, hduflash['sci', 2].data[::-1, :]), axis=1) elif ampstring in ('A', 'B', 'AB'): flash = extract_ref(scihdu, hduflash['sci', 2]) else: flash = extract_ref(scihdu, hduflash['sci', 1]) flash = flash * flashdur return flash
[ "def", "extract_flash", "(", "prihdr", ",", "scihdu", ")", ":", "flshfile", "=", "prihdr", ".", "get", "(", "'FLSHFILE'", ",", "'N/A'", ")", "flashsta", "=", "prihdr", ".", "get", "(", "'FLASHSTA'", ",", "'N/A'", ")", "flashdur", "=", "prihdr", ".", "get", "(", "'FLASHDUR'", ",", "0.0", ")", "if", "flshfile", "==", "'N/A'", "or", "flashdur", "<=", "0", ":", "return", "None", "if", "flashsta", "!=", "'SUCCESSFUL'", ":", "warnings", ".", "warn", "(", "'Flash status is {0}'", ".", "format", "(", "flashsta", ")", ",", "AstropyUserWarning", ")", "flshfile", "=", "from_irafpath", "(", "flshfile", ")", "ampstring", "=", "prihdr", "[", "'CCDAMP'", "]", "with", "fits", ".", "open", "(", "flshfile", ")", "as", "hduflash", ":", "if", "ampstring", "==", "'ABCD'", ":", "flash", "=", "np", ".", "concatenate", "(", "(", "hduflash", "[", "'sci'", ",", "1", "]", ".", "data", ",", "hduflash", "[", "'sci'", ",", "2", "]", ".", "data", "[", ":", ":", "-", "1", ",", ":", "]", ")", ",", "axis", "=", "1", ")", "elif", "ampstring", "in", "(", "'A'", ",", "'B'", ",", "'AB'", ")", ":", "flash", "=", "extract_ref", "(", "scihdu", ",", "hduflash", "[", "'sci'", ",", "2", "]", ")", "else", ":", "flash", "=", "extract_ref", "(", "scihdu", ",", "hduflash", "[", "'sci'", ",", "1", "]", ")", "flash", "=", "flash", "*", "flashdur", "return", "flash" ]
Extract postflash data from ``FLSHFILE``. Parameters ---------- prihdr : obj FITS primary header HDU. scihdu : obj Extension HDU of the science image. This is only used to extract subarray data. Returns ------- flash : ndarray or `None` Postflash, if any. Subtract this to apply ``FLSHCORR``.
[ "Extract", "postflash", "data", "from", "FLSHFILE", "." ]
train
https://github.com/spacetelescope/acstools/blob/bbf8dd080cefcbf88529ec87c420f9e1b8002554/acstools/utils_calib.py#L76-L120