repository_name
stringlengths
7
55
func_path_in_repository
stringlengths
4
223
func_name
stringlengths
1
134
whole_func_string
stringlengths
75
104k
language
stringclasses
1 value
func_code_string
stringlengths
75
104k
func_code_tokens
listlengths
19
28.4k
func_documentation_string
stringlengths
1
46.9k
func_documentation_tokens
listlengths
1
1.97k
split_name
stringclasses
1 value
func_code_url
stringlengths
87
315
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
_make_ctx_options
def _make_ctx_options(ctx_options, config_cls=ContextOptions): """Helper to construct a ContextOptions object from keyword arguments. Args: ctx_options: A dict of keyword arguments. config_cls: Optional Configuration class to use, default ContextOptions. Note that either 'options' or 'config' can be used to pass another Configuration object, but not both. If another Configuration object is given it provides default values. Returns: A Configuration object, or None if ctx_options is empty. """ if not ctx_options: return None for key in list(ctx_options): translation = _OPTION_TRANSLATIONS.get(key) if translation: if translation in ctx_options: raise ValueError('Cannot specify %s and %s at the same time' % (key, translation)) ctx_options[translation] = ctx_options.pop(key) return config_cls(**ctx_options)
python
def _make_ctx_options(ctx_options, config_cls=ContextOptions): """Helper to construct a ContextOptions object from keyword arguments. Args: ctx_options: A dict of keyword arguments. config_cls: Optional Configuration class to use, default ContextOptions. Note that either 'options' or 'config' can be used to pass another Configuration object, but not both. If another Configuration object is given it provides default values. Returns: A Configuration object, or None if ctx_options is empty. """ if not ctx_options: return None for key in list(ctx_options): translation = _OPTION_TRANSLATIONS.get(key) if translation: if translation in ctx_options: raise ValueError('Cannot specify %s and %s at the same time' % (key, translation)) ctx_options[translation] = ctx_options.pop(key) return config_cls(**ctx_options)
[ "def", "_make_ctx_options", "(", "ctx_options", ",", "config_cls", "=", "ContextOptions", ")", ":", "if", "not", "ctx_options", ":", "return", "None", "for", "key", "in", "list", "(", "ctx_options", ")", ":", "translation", "=", "_OPTION_TRANSLATIONS", ".", "get", "(", "key", ")", "if", "translation", ":", "if", "translation", "in", "ctx_options", ":", "raise", "ValueError", "(", "'Cannot specify %s and %s at the same time'", "%", "(", "key", ",", "translation", ")", ")", "ctx_options", "[", "translation", "]", "=", "ctx_options", ".", "pop", "(", "key", ")", "return", "config_cls", "(", "*", "*", "ctx_options", ")" ]
Helper to construct a ContextOptions object from keyword arguments. Args: ctx_options: A dict of keyword arguments. config_cls: Optional Configuration class to use, default ContextOptions. Note that either 'options' or 'config' can be used to pass another Configuration object, but not both. If another Configuration object is given it provides default values. Returns: A Configuration object, or None if ctx_options is empty.
[ "Helper", "to", "construct", "a", "ContextOptions", "object", "from", "keyword", "arguments", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L103-L126
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.set_cache_policy
def set_cache_policy(self, func): """Set the context cache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None. """ if func is None: func = self.default_cache_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._cache_policy = func
python
def set_cache_policy(self, func): """Set the context cache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None. """ if func is None: func = self.default_cache_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._cache_policy = func
[ "def", "set_cache_policy", "(", "self", ",", "func", ")", ":", "if", "func", "is", "None", ":", "func", "=", "self", ".", "default_cache_policy", "elif", "isinstance", "(", "func", ",", "bool", ")", ":", "func", "=", "lambda", "unused_key", ",", "flag", "=", "func", ":", "flag", "self", ".", "_cache_policy", "=", "func" ]
Set the context cache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None.
[ "Set", "the", "context", "cache", "policy", "function", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L281-L292
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context._use_cache
def _use_cache(self, key, options=None): """Return whether to use the context cache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached, False otherwise. """ flag = ContextOptions.use_cache(options) if flag is None: flag = self._cache_policy(key) if flag is None: flag = ContextOptions.use_cache(self._conn.config) if flag is None: flag = True return flag
python
def _use_cache(self, key, options=None): """Return whether to use the context cache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached, False otherwise. """ flag = ContextOptions.use_cache(options) if flag is None: flag = self._cache_policy(key) if flag is None: flag = ContextOptions.use_cache(self._conn.config) if flag is None: flag = True return flag
[ "def", "_use_cache", "(", "self", ",", "key", ",", "options", "=", "None", ")", ":", "flag", "=", "ContextOptions", ".", "use_cache", "(", "options", ")", "if", "flag", "is", "None", ":", "flag", "=", "self", ".", "_cache_policy", "(", "key", ")", "if", "flag", "is", "None", ":", "flag", "=", "ContextOptions", ".", "use_cache", "(", "self", ".", "_conn", ".", "config", ")", "if", "flag", "is", "None", ":", "flag", "=", "True", "return", "flag" ]
Return whether to use the context cache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached, False otherwise.
[ "Return", "whether", "to", "use", "the", "context", "cache", "for", "this", "key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L294-L311
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.set_memcache_policy
def set_memcache_policy(self, func): """Set the memcache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None. """ if func is None: func = self.default_memcache_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._memcache_policy = func
python
def set_memcache_policy(self, func): """Set the memcache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None. """ if func is None: func = self.default_memcache_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._memcache_policy = func
[ "def", "set_memcache_policy", "(", "self", ",", "func", ")", ":", "if", "func", "is", "None", ":", "func", "=", "self", ".", "default_memcache_policy", "elif", "isinstance", "(", "func", ",", "bool", ")", ":", "func", "=", "lambda", "unused_key", ",", "flag", "=", "func", ":", "flag", "self", ".", "_memcache_policy", "=", "func" ]
Set the memcache policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should be cached. May be None.
[ "Set", "the", "memcache", "policy", "function", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L348-L359
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context._use_memcache
def _use_memcache(self, key, options=None): """Return whether to use memcache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached in memcache, False otherwise. """ flag = ContextOptions.use_memcache(options) if flag is None: flag = self._memcache_policy(key) if flag is None: flag = ContextOptions.use_memcache(self._conn.config) if flag is None: flag = True return flag
python
def _use_memcache(self, key, options=None): """Return whether to use memcache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached in memcache, False otherwise. """ flag = ContextOptions.use_memcache(options) if flag is None: flag = self._memcache_policy(key) if flag is None: flag = ContextOptions.use_memcache(self._conn.config) if flag is None: flag = True return flag
[ "def", "_use_memcache", "(", "self", ",", "key", ",", "options", "=", "None", ")", ":", "flag", "=", "ContextOptions", ".", "use_memcache", "(", "options", ")", "if", "flag", "is", "None", ":", "flag", "=", "self", ".", "_memcache_policy", "(", "key", ")", "if", "flag", "is", "None", ":", "flag", "=", "ContextOptions", ".", "use_memcache", "(", "self", ".", "_conn", ".", "config", ")", "if", "flag", "is", "None", ":", "flag", "=", "True", "return", "flag" ]
Return whether to use memcache for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the key should be cached in memcache, False otherwise.
[ "Return", "whether", "to", "use", "memcache", "for", "this", "key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L361-L378
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.default_datastore_policy
def default_datastore_policy(key): """Default datastore policy. This defers to _use_datastore on the Model class. Args: key: Key instance. Returns: A bool or None. """ flag = None if key is not None: modelclass = model.Model._kind_map.get(key.kind()) if modelclass is not None: policy = getattr(modelclass, '_use_datastore', None) if policy is not None: if isinstance(policy, bool): flag = policy else: flag = policy(key) return flag
python
def default_datastore_policy(key): """Default datastore policy. This defers to _use_datastore on the Model class. Args: key: Key instance. Returns: A bool or None. """ flag = None if key is not None: modelclass = model.Model._kind_map.get(key.kind()) if modelclass is not None: policy = getattr(modelclass, '_use_datastore', None) if policy is not None: if isinstance(policy, bool): flag = policy else: flag = policy(key) return flag
[ "def", "default_datastore_policy", "(", "key", ")", ":", "flag", "=", "None", "if", "key", "is", "not", "None", ":", "modelclass", "=", "model", ".", "Model", ".", "_kind_map", ".", "get", "(", "key", ".", "kind", "(", ")", ")", "if", "modelclass", "is", "not", "None", ":", "policy", "=", "getattr", "(", "modelclass", ",", "'_use_datastore'", ",", "None", ")", "if", "policy", "is", "not", "None", ":", "if", "isinstance", "(", "policy", ",", "bool", ")", ":", "flag", "=", "policy", "else", ":", "flag", "=", "policy", "(", "key", ")", "return", "flag" ]
Default datastore policy. This defers to _use_datastore on the Model class. Args: key: Key instance. Returns: A bool or None.
[ "Default", "datastore", "policy", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L381-L402
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.set_datastore_policy
def set_datastore_policy(self, func): """Set the context datastore policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should use the datastore. May be None. """ if func is None: func = self.default_datastore_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._datastore_policy = func
python
def set_datastore_policy(self, func): """Set the context datastore policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should use the datastore. May be None. """ if func is None: func = self.default_datastore_policy elif isinstance(func, bool): func = lambda unused_key, flag=func: flag self._datastore_policy = func
[ "def", "set_datastore_policy", "(", "self", ",", "func", ")", ":", "if", "func", "is", "None", ":", "func", "=", "self", ".", "default_datastore_policy", "elif", "isinstance", "(", "func", ",", "bool", ")", ":", "func", "=", "lambda", "unused_key", ",", "flag", "=", "func", ":", "flag", "self", ".", "_datastore_policy", "=", "func" ]
Set the context datastore policy function. Args: func: A function that accepts a Key instance as argument and returns a bool indicating if it should use the datastore. May be None.
[ "Set", "the", "context", "datastore", "policy", "function", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L415-L426
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context._use_datastore
def _use_datastore(self, key, options=None): """Return whether to use the datastore for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the datastore should be used, False otherwise. """ flag = ContextOptions.use_datastore(options) if flag is None: flag = self._datastore_policy(key) if flag is None: flag = ContextOptions.use_datastore(self._conn.config) if flag is None: flag = True return flag
python
def _use_datastore(self, key, options=None): """Return whether to use the datastore for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the datastore should be used, False otherwise. """ flag = ContextOptions.use_datastore(options) if flag is None: flag = self._datastore_policy(key) if flag is None: flag = ContextOptions.use_datastore(self._conn.config) if flag is None: flag = True return flag
[ "def", "_use_datastore", "(", "self", ",", "key", ",", "options", "=", "None", ")", ":", "flag", "=", "ContextOptions", ".", "use_datastore", "(", "options", ")", "if", "flag", "is", "None", ":", "flag", "=", "self", ".", "_datastore_policy", "(", "key", ")", "if", "flag", "is", "None", ":", "flag", "=", "ContextOptions", ".", "use_datastore", "(", "self", ".", "_conn", ".", "config", ")", "if", "flag", "is", "None", ":", "flag", "=", "True", "return", "flag" ]
Return whether to use the datastore for this key. Args: key: Key instance. options: ContextOptions instance, or None. Returns: True if the datastore should be used, False otherwise.
[ "Return", "whether", "to", "use", "the", "datastore", "for", "this", "key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L428-L445
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.default_memcache_timeout_policy
def default_memcache_timeout_policy(key): """Default memcache timeout policy. This defers to _memcache_timeout on the Model class. Args: key: Key instance. Returns: Memcache timeout to use (integer), or None. """ timeout = None if key is not None and isinstance(key, model.Key): modelclass = model.Model._kind_map.get(key.kind()) if modelclass is not None: policy = getattr(modelclass, '_memcache_timeout', None) if policy is not None: if isinstance(policy, (int, long)): timeout = policy else: timeout = policy(key) return timeout
python
def default_memcache_timeout_policy(key): """Default memcache timeout policy. This defers to _memcache_timeout on the Model class. Args: key: Key instance. Returns: Memcache timeout to use (integer), or None. """ timeout = None if key is not None and isinstance(key, model.Key): modelclass = model.Model._kind_map.get(key.kind()) if modelclass is not None: policy = getattr(modelclass, '_memcache_timeout', None) if policy is not None: if isinstance(policy, (int, long)): timeout = policy else: timeout = policy(key) return timeout
[ "def", "default_memcache_timeout_policy", "(", "key", ")", ":", "timeout", "=", "None", "if", "key", "is", "not", "None", "and", "isinstance", "(", "key", ",", "model", ".", "Key", ")", ":", "modelclass", "=", "model", ".", "Model", ".", "_kind_map", ".", "get", "(", "key", ".", "kind", "(", ")", ")", "if", "modelclass", "is", "not", "None", ":", "policy", "=", "getattr", "(", "modelclass", ",", "'_memcache_timeout'", ",", "None", ")", "if", "policy", "is", "not", "None", ":", "if", "isinstance", "(", "policy", ",", "(", "int", ",", "long", ")", ")", ":", "timeout", "=", "policy", "else", ":", "timeout", "=", "policy", "(", "key", ")", "return", "timeout" ]
Default memcache timeout policy. This defers to _memcache_timeout on the Model class. Args: key: Key instance. Returns: Memcache timeout to use (integer), or None.
[ "Default", "memcache", "timeout", "policy", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L448-L469
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.set_memcache_timeout_policy
def set_memcache_timeout_policy(self, func): """Set the policy function for memcache timeout (expiration). Args: func: A function that accepts a key instance as argument and returns an integer indicating the desired memcache timeout. May be None. If the function returns 0 it implies the default timeout. """ if func is None: func = self.default_memcache_timeout_policy elif isinstance(func, (int, long)): func = lambda unused_key, flag=func: flag self._memcache_timeout_policy = func
python
def set_memcache_timeout_policy(self, func): """Set the policy function for memcache timeout (expiration). Args: func: A function that accepts a key instance as argument and returns an integer indicating the desired memcache timeout. May be None. If the function returns 0 it implies the default timeout. """ if func is None: func = self.default_memcache_timeout_policy elif isinstance(func, (int, long)): func = lambda unused_key, flag=func: flag self._memcache_timeout_policy = func
[ "def", "set_memcache_timeout_policy", "(", "self", ",", "func", ")", ":", "if", "func", "is", "None", ":", "func", "=", "self", ".", "default_memcache_timeout_policy", "elif", "isinstance", "(", "func", ",", "(", "int", ",", "long", ")", ")", ":", "func", "=", "lambda", "unused_key", ",", "flag", "=", "func", ":", "flag", "self", ".", "_memcache_timeout_policy", "=", "func" ]
Set the policy function for memcache timeout (expiration). Args: func: A function that accepts a key instance as argument and returns an integer indicating the desired memcache timeout. May be None. If the function returns 0 it implies the default timeout.
[ "Set", "the", "policy", "function", "for", "memcache", "timeout", "(", "expiration", ")", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L473-L486
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context._get_memcache_timeout
def _get_memcache_timeout(self, key, options=None): """Return the memcache timeout (expiration) for this key.""" timeout = ContextOptions.memcache_timeout(options) if timeout is None: timeout = self._memcache_timeout_policy(key) if timeout is None: timeout = ContextOptions.memcache_timeout(self._conn.config) if timeout is None: timeout = 0 return timeout
python
def _get_memcache_timeout(self, key, options=None): """Return the memcache timeout (expiration) for this key.""" timeout = ContextOptions.memcache_timeout(options) if timeout is None: timeout = self._memcache_timeout_policy(key) if timeout is None: timeout = ContextOptions.memcache_timeout(self._conn.config) if timeout is None: timeout = 0 return timeout
[ "def", "_get_memcache_timeout", "(", "self", ",", "key", ",", "options", "=", "None", ")", ":", "timeout", "=", "ContextOptions", ".", "memcache_timeout", "(", "options", ")", "if", "timeout", "is", "None", ":", "timeout", "=", "self", ".", "_memcache_timeout_policy", "(", "key", ")", "if", "timeout", "is", "None", ":", "timeout", "=", "ContextOptions", ".", "memcache_timeout", "(", "self", ".", "_conn", ".", "config", ")", "if", "timeout", "is", "None", ":", "timeout", "=", "0", "return", "timeout" ]
Return the memcache timeout (expiration) for this key.
[ "Return", "the", "memcache", "timeout", "(", "expiration", ")", "for", "this", "key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L492-L501
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context._load_from_cache_if_available
def _load_from_cache_if_available(self, key): """Returns a cached Model instance given the entity key if available. Args: key: Key instance. Returns: A Model instance if the key exists in the cache. """ if key in self._cache: entity = self._cache[key] # May be None, meaning "doesn't exist". if entity is None or entity._key == key: # If entity's key didn't change later, it is ok. # See issue 13. http://goo.gl/jxjOP raise tasklets.Return(entity)
python
def _load_from_cache_if_available(self, key): """Returns a cached Model instance given the entity key if available. Args: key: Key instance. Returns: A Model instance if the key exists in the cache. """ if key in self._cache: entity = self._cache[key] # May be None, meaning "doesn't exist". if entity is None or entity._key == key: # If entity's key didn't change later, it is ok. # See issue 13. http://goo.gl/jxjOP raise tasklets.Return(entity)
[ "def", "_load_from_cache_if_available", "(", "self", ",", "key", ")", ":", "if", "key", "in", "self", ".", "_cache", ":", "entity", "=", "self", ".", "_cache", "[", "key", "]", "# May be None, meaning \"doesn't exist\".", "if", "entity", "is", "None", "or", "entity", ".", "_key", "==", "key", ":", "# If entity's key didn't change later, it is ok.", "# See issue 13. http://goo.gl/jxjOP", "raise", "tasklets", ".", "Return", "(", "entity", ")" ]
Returns a cached Model instance given the entity key if available. Args: key: Key instance. Returns: A Model instance if the key exists in the cache.
[ "Returns", "a", "cached", "Model", "instance", "given", "the", "entity", "key", "if", "available", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L518-L532
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.get
def get(self, key, **ctx_options): """Return a Model instance given the entity key. It will use the context cache if the cache policy for the given key is enabled. Args: key: Key instance. **ctx_options: Context options. Returns: A Model instance if the key exists in the datastore; None otherwise. """ options = _make_ctx_options(ctx_options) use_cache = self._use_cache(key, options) if use_cache: self._load_from_cache_if_available(key) use_datastore = self._use_datastore(key, options) if (use_datastore and isinstance(self._conn, datastore_rpc.TransactionalConnection)): use_memcache = False else: use_memcache = self._use_memcache(key, options) ns = key.namespace() memcache_deadline = None # Avoid worries about uninitialized variable. if use_memcache: mkey = self._memcache_prefix + key.urlsafe() memcache_deadline = self._get_memcache_deadline(options) mvalue = yield self.memcache_get(mkey, for_cas=use_datastore, namespace=ns, use_cache=True, deadline=memcache_deadline) # A value may have appeared while yielding. if use_cache: self._load_from_cache_if_available(key) if mvalue not in (_LOCKED, None): cls = model.Model._lookup_model(key.kind(), self._conn.adapter.default_model) pb = entity_pb.EntityProto() try: pb.MergePartialFromString(mvalue) except ProtocolBuffer.ProtocolBufferDecodeError: logging.warning('Corrupt memcache entry found ' 'with key %s and namespace %s' % (mkey, ns)) mvalue = None else: entity = cls._from_pb(pb) # Store the key on the entity since it wasn't written to memcache. entity._key = key if use_cache: # Update in-memory cache. self._cache[key] = entity raise tasklets.Return(entity) if mvalue is None and use_datastore: yield self.memcache_set(mkey, _LOCKED, time=_LOCK_TIME, namespace=ns, use_cache=True, deadline=memcache_deadline) yield self.memcache_gets(mkey, namespace=ns, use_cache=True, deadline=memcache_deadline) if not use_datastore: # NOTE: Do not cache this miss. In some scenarios this would # prevent an app from working properly. raise tasklets.Return(None) if use_cache: entity = yield self._get_batcher.add_once(key, options) else: entity = yield self._get_batcher.add(key, options) if entity is not None: if use_memcache and mvalue != _LOCKED: # Don't serialize the key since it's already the memcache key. pbs = entity._to_pb(set_key=False).SerializePartialToString() # Don't attempt to write to memcache if too big. Note that we # use LBYL ("look before you leap") because a multi-value # memcache operation would fail for all entities rather than # for just the one that's too big. (Also, the AutoBatcher # class doesn't pass back exceptions very well.) if len(pbs) <= memcache.MAX_VALUE_SIZE: timeout = self._get_memcache_timeout(key, options) # Don't use fire-and-forget -- for users who forget # @ndb.toplevel, it's too painful to diagnose why their simple # code using a single synchronous call doesn't seem to use # memcache. See issue 105. http://goo.gl/JQZxp yield self.memcache_cas(mkey, pbs, time=timeout, namespace=ns, deadline=memcache_deadline) if use_cache: # Cache hit or miss. NOTE: In this case it is okay to cache a # miss; the datastore is the ultimate authority. self._cache[key] = entity raise tasklets.Return(entity)
python
def get(self, key, **ctx_options): """Return a Model instance given the entity key. It will use the context cache if the cache policy for the given key is enabled. Args: key: Key instance. **ctx_options: Context options. Returns: A Model instance if the key exists in the datastore; None otherwise. """ options = _make_ctx_options(ctx_options) use_cache = self._use_cache(key, options) if use_cache: self._load_from_cache_if_available(key) use_datastore = self._use_datastore(key, options) if (use_datastore and isinstance(self._conn, datastore_rpc.TransactionalConnection)): use_memcache = False else: use_memcache = self._use_memcache(key, options) ns = key.namespace() memcache_deadline = None # Avoid worries about uninitialized variable. if use_memcache: mkey = self._memcache_prefix + key.urlsafe() memcache_deadline = self._get_memcache_deadline(options) mvalue = yield self.memcache_get(mkey, for_cas=use_datastore, namespace=ns, use_cache=True, deadline=memcache_deadline) # A value may have appeared while yielding. if use_cache: self._load_from_cache_if_available(key) if mvalue not in (_LOCKED, None): cls = model.Model._lookup_model(key.kind(), self._conn.adapter.default_model) pb = entity_pb.EntityProto() try: pb.MergePartialFromString(mvalue) except ProtocolBuffer.ProtocolBufferDecodeError: logging.warning('Corrupt memcache entry found ' 'with key %s and namespace %s' % (mkey, ns)) mvalue = None else: entity = cls._from_pb(pb) # Store the key on the entity since it wasn't written to memcache. entity._key = key if use_cache: # Update in-memory cache. self._cache[key] = entity raise tasklets.Return(entity) if mvalue is None and use_datastore: yield self.memcache_set(mkey, _LOCKED, time=_LOCK_TIME, namespace=ns, use_cache=True, deadline=memcache_deadline) yield self.memcache_gets(mkey, namespace=ns, use_cache=True, deadline=memcache_deadline) if not use_datastore: # NOTE: Do not cache this miss. In some scenarios this would # prevent an app from working properly. raise tasklets.Return(None) if use_cache: entity = yield self._get_batcher.add_once(key, options) else: entity = yield self._get_batcher.add(key, options) if entity is not None: if use_memcache and mvalue != _LOCKED: # Don't serialize the key since it's already the memcache key. pbs = entity._to_pb(set_key=False).SerializePartialToString() # Don't attempt to write to memcache if too big. Note that we # use LBYL ("look before you leap") because a multi-value # memcache operation would fail for all entities rather than # for just the one that's too big. (Also, the AutoBatcher # class doesn't pass back exceptions very well.) if len(pbs) <= memcache.MAX_VALUE_SIZE: timeout = self._get_memcache_timeout(key, options) # Don't use fire-and-forget -- for users who forget # @ndb.toplevel, it's too painful to diagnose why their simple # code using a single synchronous call doesn't seem to use # memcache. See issue 105. http://goo.gl/JQZxp yield self.memcache_cas(mkey, pbs, time=timeout, namespace=ns, deadline=memcache_deadline) if use_cache: # Cache hit or miss. NOTE: In this case it is okay to cache a # miss; the datastore is the ultimate authority. self._cache[key] = entity raise tasklets.Return(entity)
[ "def", "get", "(", "self", ",", "key", ",", "*", "*", "ctx_options", ")", ":", "options", "=", "_make_ctx_options", "(", "ctx_options", ")", "use_cache", "=", "self", ".", "_use_cache", "(", "key", ",", "options", ")", "if", "use_cache", ":", "self", ".", "_load_from_cache_if_available", "(", "key", ")", "use_datastore", "=", "self", ".", "_use_datastore", "(", "key", ",", "options", ")", "if", "(", "use_datastore", "and", "isinstance", "(", "self", ".", "_conn", ",", "datastore_rpc", ".", "TransactionalConnection", ")", ")", ":", "use_memcache", "=", "False", "else", ":", "use_memcache", "=", "self", ".", "_use_memcache", "(", "key", ",", "options", ")", "ns", "=", "key", ".", "namespace", "(", ")", "memcache_deadline", "=", "None", "# Avoid worries about uninitialized variable.", "if", "use_memcache", ":", "mkey", "=", "self", ".", "_memcache_prefix", "+", "key", ".", "urlsafe", "(", ")", "memcache_deadline", "=", "self", ".", "_get_memcache_deadline", "(", "options", ")", "mvalue", "=", "yield", "self", ".", "memcache_get", "(", "mkey", ",", "for_cas", "=", "use_datastore", ",", "namespace", "=", "ns", ",", "use_cache", "=", "True", ",", "deadline", "=", "memcache_deadline", ")", "# A value may have appeared while yielding.", "if", "use_cache", ":", "self", ".", "_load_from_cache_if_available", "(", "key", ")", "if", "mvalue", "not", "in", "(", "_LOCKED", ",", "None", ")", ":", "cls", "=", "model", ".", "Model", ".", "_lookup_model", "(", "key", ".", "kind", "(", ")", ",", "self", ".", "_conn", ".", "adapter", ".", "default_model", ")", "pb", "=", "entity_pb", ".", "EntityProto", "(", ")", "try", ":", "pb", ".", "MergePartialFromString", "(", "mvalue", ")", "except", "ProtocolBuffer", ".", "ProtocolBufferDecodeError", ":", "logging", ".", "warning", "(", "'Corrupt memcache entry found '", "'with key %s and namespace %s'", "%", "(", "mkey", ",", "ns", ")", ")", "mvalue", "=", "None", "else", ":", "entity", "=", "cls", ".", "_from_pb", "(", "pb", ")", "# Store the key on the entity since it wasn't written to memcache.", "entity", ".", "_key", "=", "key", "if", "use_cache", ":", "# Update in-memory cache.", "self", ".", "_cache", "[", "key", "]", "=", "entity", "raise", "tasklets", ".", "Return", "(", "entity", ")", "if", "mvalue", "is", "None", "and", "use_datastore", ":", "yield", "self", ".", "memcache_set", "(", "mkey", ",", "_LOCKED", ",", "time", "=", "_LOCK_TIME", ",", "namespace", "=", "ns", ",", "use_cache", "=", "True", ",", "deadline", "=", "memcache_deadline", ")", "yield", "self", ".", "memcache_gets", "(", "mkey", ",", "namespace", "=", "ns", ",", "use_cache", "=", "True", ",", "deadline", "=", "memcache_deadline", ")", "if", "not", "use_datastore", ":", "# NOTE: Do not cache this miss. In some scenarios this would", "# prevent an app from working properly.", "raise", "tasklets", ".", "Return", "(", "None", ")", "if", "use_cache", ":", "entity", "=", "yield", "self", ".", "_get_batcher", ".", "add_once", "(", "key", ",", "options", ")", "else", ":", "entity", "=", "yield", "self", ".", "_get_batcher", ".", "add", "(", "key", ",", "options", ")", "if", "entity", "is", "not", "None", ":", "if", "use_memcache", "and", "mvalue", "!=", "_LOCKED", ":", "# Don't serialize the key since it's already the memcache key.", "pbs", "=", "entity", ".", "_to_pb", "(", "set_key", "=", "False", ")", ".", "SerializePartialToString", "(", ")", "# Don't attempt to write to memcache if too big. Note that we", "# use LBYL (\"look before you leap\") because a multi-value", "# memcache operation would fail for all entities rather than", "# for just the one that's too big. (Also, the AutoBatcher", "# class doesn't pass back exceptions very well.)", "if", "len", "(", "pbs", ")", "<=", "memcache", ".", "MAX_VALUE_SIZE", ":", "timeout", "=", "self", ".", "_get_memcache_timeout", "(", "key", ",", "options", ")", "# Don't use fire-and-forget -- for users who forget", "# @ndb.toplevel, it's too painful to diagnose why their simple", "# code using a single synchronous call doesn't seem to use", "# memcache. See issue 105. http://goo.gl/JQZxp", "yield", "self", ".", "memcache_cas", "(", "mkey", ",", "pbs", ",", "time", "=", "timeout", ",", "namespace", "=", "ns", ",", "deadline", "=", "memcache_deadline", ")", "if", "use_cache", ":", "# Cache hit or miss. NOTE: In this case it is okay to cache a", "# miss; the datastore is the ultimate authority.", "self", ".", "_cache", "[", "key", "]", "=", "entity", "raise", "tasklets", ".", "Return", "(", "entity", ")" ]
Return a Model instance given the entity key. It will use the context cache if the cache policy for the given key is enabled. Args: key: Key instance. **ctx_options: Context options. Returns: A Model instance if the key exists in the datastore; None otherwise.
[ "Return", "a", "Model", "instance", "given", "the", "entity", "key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L542-L637
GoogleCloudPlatform/datastore-ndb-python
ndb/context.py
Context.call_on_commit
def call_on_commit(self, callback): """Call a callback upon successful commit of a transaction. If not in a transaction, the callback is called immediately. In a transaction, multiple callbacks may be registered and will be called once the transaction commits, in the order in which they were registered. If the transaction fails, the callbacks will not be called. If the callback raises an exception, it bubbles up normally. This means: If the callback is called immediately, any exception it raises will bubble up immediately. If the call is postponed until commit, remaining callbacks will be skipped and the exception will bubble up through the transaction() call. (However, the transaction is already committed at that point.) """ if not self.in_transaction(): callback() else: self._on_commit_queue.append(callback)
python
def call_on_commit(self, callback): """Call a callback upon successful commit of a transaction. If not in a transaction, the callback is called immediately. In a transaction, multiple callbacks may be registered and will be called once the transaction commits, in the order in which they were registered. If the transaction fails, the callbacks will not be called. If the callback raises an exception, it bubbles up normally. This means: If the callback is called immediately, any exception it raises will bubble up immediately. If the call is postponed until commit, remaining callbacks will be skipped and the exception will bubble up through the transaction() call. (However, the transaction is already committed at that point.) """ if not self.in_transaction(): callback() else: self._on_commit_queue.append(callback)
[ "def", "call_on_commit", "(", "self", ",", "callback", ")", ":", "if", "not", "self", ".", "in_transaction", "(", ")", ":", "callback", "(", ")", "else", ":", "self", ".", "_on_commit_queue", ".", "append", "(", "callback", ")" ]
Call a callback upon successful commit of a transaction. If not in a transaction, the callback is called immediately. In a transaction, multiple callbacks may be registered and will be called once the transaction commits, in the order in which they were registered. If the transaction fails, the callbacks will not be called. If the callback raises an exception, it bubbles up normally. This means: If the callback is called immediately, any exception it raises will bubble up immediately. If the call is postponed until commit, remaining callbacks will be skipped and the exception will bubble up through the transaction() call. (However, the transaction is already committed at that point.)
[ "Call", "a", "callback", "upon", "successful", "commit", "of", "a", "transaction", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/context.py#L908-L928
GoogleCloudPlatform/datastore-ndb-python
demo/app/main.py
get_nickname
def get_nickname(userid): """Return a Future for a nickname from an account.""" account = yield get_account(userid) if not account: nickname = 'Unregistered' else: nickname = account.nickname or account.email raise ndb.Return(nickname)
python
def get_nickname(userid): """Return a Future for a nickname from an account.""" account = yield get_account(userid) if not account: nickname = 'Unregistered' else: nickname = account.nickname or account.email raise ndb.Return(nickname)
[ "def", "get_nickname", "(", "userid", ")", ":", "account", "=", "yield", "get_account", "(", "userid", ")", "if", "not", "account", ":", "nickname", "=", "'Unregistered'", "else", ":", "nickname", "=", "account", ".", "nickname", "or", "account", ".", "email", "raise", "ndb", ".", "Return", "(", "nickname", ")" ]
Return a Future for a nickname from an account.
[ "Return", "a", "Future", "for", "a", "nickname", "from", "an", "account", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/demo/app/main.py#L111-L118
GoogleCloudPlatform/datastore-ndb-python
demo/task_list.py
mark_done
def mark_done(task_id): """Marks a task as done. Args: task_id: The integer id of the task to update. Raises: ValueError: if the requested task doesn't exist. """ task = Task.get_by_id(task_id) if task is None: raise ValueError('Task with id %d does not exist' % task_id) task.done = True task.put()
python
def mark_done(task_id): """Marks a task as done. Args: task_id: The integer id of the task to update. Raises: ValueError: if the requested task doesn't exist. """ task = Task.get_by_id(task_id) if task is None: raise ValueError('Task with id %d does not exist' % task_id) task.done = True task.put()
[ "def", "mark_done", "(", "task_id", ")", ":", "task", "=", "Task", ".", "get_by_id", "(", "task_id", ")", "if", "task", "is", "None", ":", "raise", "ValueError", "(", "'Task with id %d does not exist'", "%", "task_id", ")", "task", ".", "done", "=", "True", "task", ".", "put", "(", ")" ]
Marks a task as done. Args: task_id: The integer id of the task to update. Raises: ValueError: if the requested task doesn't exist.
[ "Marks", "a", "task", "as", "done", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/demo/task_list.py#L61-L74
GoogleCloudPlatform/datastore-ndb-python
demo/task_list.py
format_tasks
def format_tasks(tasks): """Converts a list of tasks to a list of string representations. Args: tasks: A list of the tasks to convert. Returns: A list of string formatted tasks. """ return ['%d : %s (%s)' % (task.key.id(), task.description, ('done' if task.done else 'created %s' % task.created)) for task in tasks]
python
def format_tasks(tasks): """Converts a list of tasks to a list of string representations. Args: tasks: A list of the tasks to convert. Returns: A list of string formatted tasks. """ return ['%d : %s (%s)' % (task.key.id(), task.description, ('done' if task.done else 'created %s' % task.created)) for task in tasks]
[ "def", "format_tasks", "(", "tasks", ")", ":", "return", "[", "'%d : %s (%s)'", "%", "(", "task", ".", "key", ".", "id", "(", ")", ",", "task", ".", "description", ",", "(", "'done'", "if", "task", ".", "done", "else", "'created %s'", "%", "task", ".", "created", ")", ")", "for", "task", "in", "tasks", "]" ]
Converts a list of tasks to a list of string representations. Args: tasks: A list of the tasks to convert. Returns: A list of string formatted tasks.
[ "Converts", "a", "list", "of", "tasks", "to", "a", "list", "of", "string", "representations", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/demo/task_list.py#L102-L114
GoogleCloudPlatform/datastore-ndb-python
demo/task_list.py
handle_command
def handle_command(command): """Accepts a string command and performs an action. Args: command: the command to run as a string. """ try: cmds = command.split(None, 1) cmd = cmds[0] if cmd == 'new': add_task(get_arg(cmds)) elif cmd == 'done': mark_done(int(get_arg(cmds))) elif cmd == 'list': for task in format_tasks(list_tasks()): print task elif cmd == 'delete': delete_task(int(get_arg(cmds))) else: print_usage() except Exception, e: # pylint: disable=broad-except print e print_usage()
python
def handle_command(command): """Accepts a string command and performs an action. Args: command: the command to run as a string. """ try: cmds = command.split(None, 1) cmd = cmds[0] if cmd == 'new': add_task(get_arg(cmds)) elif cmd == 'done': mark_done(int(get_arg(cmds))) elif cmd == 'list': for task in format_tasks(list_tasks()): print task elif cmd == 'delete': delete_task(int(get_arg(cmds))) else: print_usage() except Exception, e: # pylint: disable=broad-except print e print_usage()
[ "def", "handle_command", "(", "command", ")", ":", "try", ":", "cmds", "=", "command", ".", "split", "(", "None", ",", "1", ")", "cmd", "=", "cmds", "[", "0", "]", "if", "cmd", "==", "'new'", ":", "add_task", "(", "get_arg", "(", "cmds", ")", ")", "elif", "cmd", "==", "'done'", ":", "mark_done", "(", "int", "(", "get_arg", "(", "cmds", ")", ")", ")", "elif", "cmd", "==", "'list'", ":", "for", "task", "in", "format_tasks", "(", "list_tasks", "(", ")", ")", ":", "print", "task", "elif", "cmd", "==", "'delete'", ":", "delete_task", "(", "int", "(", "get_arg", "(", "cmds", ")", ")", ")", "else", ":", "print_usage", "(", ")", "except", "Exception", ",", "e", ":", "# pylint: disable=broad-except", "print", "e", "print_usage", "(", ")" ]
Accepts a string command and performs an action. Args: command: the command to run as a string.
[ "Accepts", "a", "string", "command", "and", "performs", "an", "action", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/demo/task_list.py#L135-L157
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
delete_async
def delete_async(blob_key, **options): """Async version of delete().""" if not isinstance(blob_key, (basestring, BlobKey)): raise TypeError('Expected blob key, got %r' % (blob_key,)) rpc = blobstore.create_rpc(**options) yield blobstore.delete_async(blob_key, rpc=rpc)
python
def delete_async(blob_key, **options): """Async version of delete().""" if not isinstance(blob_key, (basestring, BlobKey)): raise TypeError('Expected blob key, got %r' % (blob_key,)) rpc = blobstore.create_rpc(**options) yield blobstore.delete_async(blob_key, rpc=rpc)
[ "def", "delete_async", "(", "blob_key", ",", "*", "*", "options", ")", ":", "if", "not", "isinstance", "(", "blob_key", ",", "(", "basestring", ",", "BlobKey", ")", ")", ":", "raise", "TypeError", "(", "'Expected blob key, got %r'", "%", "(", "blob_key", ",", ")", ")", "rpc", "=", "blobstore", ".", "create_rpc", "(", "*", "*", "options", ")", "yield", "blobstore", ".", "delete_async", "(", "blob_key", ",", "rpc", "=", "rpc", ")" ]
Async version of delete().
[ "Async", "version", "of", "delete", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L273-L278
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
delete_multi_async
def delete_multi_async(blob_keys, **options): """Async version of delete_multi().""" if isinstance(blob_keys, (basestring, BlobKey)): raise TypeError('Expected a list, got %r' % (blob_key,)) rpc = blobstore.create_rpc(**options) yield blobstore.delete_async(blob_keys, rpc=rpc)
python
def delete_multi_async(blob_keys, **options): """Async version of delete_multi().""" if isinstance(blob_keys, (basestring, BlobKey)): raise TypeError('Expected a list, got %r' % (blob_key,)) rpc = blobstore.create_rpc(**options) yield blobstore.delete_async(blob_keys, rpc=rpc)
[ "def", "delete_multi_async", "(", "blob_keys", ",", "*", "*", "options", ")", ":", "if", "isinstance", "(", "blob_keys", ",", "(", "basestring", ",", "BlobKey", ")", ")", ":", "raise", "TypeError", "(", "'Expected a list, got %r'", "%", "(", "blob_key", ",", ")", ")", "rpc", "=", "blobstore", ".", "create_rpc", "(", "*", "*", "options", ")", "yield", "blobstore", ".", "delete_async", "(", "blob_keys", ",", "rpc", "=", "rpc", ")" ]
Async version of delete_multi().
[ "Async", "version", "of", "delete_multi", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L293-L298
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
create_upload_url
def create_upload_url(success_path, max_bytes_per_blob=None, max_bytes_total=None, **options): """Create upload URL for POST form. Args: success_path: Path within application to call when POST is successful and upload is complete. max_bytes_per_blob: The maximum size in bytes that any one blob in the upload can be or None for no maximum size. max_bytes_total: The maximum size in bytes that the aggregate sizes of all of the blobs in the upload can be or None for no maximum size. **options: Options for create_rpc(). Returns: The upload URL. Raises: TypeError: If max_bytes_per_blob or max_bytes_total are not integral types. ValueError: If max_bytes_per_blob or max_bytes_total are not positive values. """ fut = create_upload_url_async(success_path, max_bytes_per_blob=max_bytes_per_blob, max_bytes_total=max_bytes_total, **options) return fut.get_result()
python
def create_upload_url(success_path, max_bytes_per_blob=None, max_bytes_total=None, **options): """Create upload URL for POST form. Args: success_path: Path within application to call when POST is successful and upload is complete. max_bytes_per_blob: The maximum size in bytes that any one blob in the upload can be or None for no maximum size. max_bytes_total: The maximum size in bytes that the aggregate sizes of all of the blobs in the upload can be or None for no maximum size. **options: Options for create_rpc(). Returns: The upload URL. Raises: TypeError: If max_bytes_per_blob or max_bytes_total are not integral types. ValueError: If max_bytes_per_blob or max_bytes_total are not positive values. """ fut = create_upload_url_async(success_path, max_bytes_per_blob=max_bytes_per_blob, max_bytes_total=max_bytes_total, **options) return fut.get_result()
[ "def", "create_upload_url", "(", "success_path", ",", "max_bytes_per_blob", "=", "None", ",", "max_bytes_total", "=", "None", ",", "*", "*", "options", ")", ":", "fut", "=", "create_upload_url_async", "(", "success_path", ",", "max_bytes_per_blob", "=", "max_bytes_per_blob", ",", "max_bytes_total", "=", "max_bytes_total", ",", "*", "*", "options", ")", "return", "fut", ".", "get_result", "(", ")" ]
Create upload URL for POST form. Args: success_path: Path within application to call when POST is successful and upload is complete. max_bytes_per_blob: The maximum size in bytes that any one blob in the upload can be or None for no maximum size. max_bytes_total: The maximum size in bytes that the aggregate sizes of all of the blobs in the upload can be or None for no maximum size. **options: Options for create_rpc(). Returns: The upload URL. Raises: TypeError: If max_bytes_per_blob or max_bytes_total are not integral types. ValueError: If max_bytes_per_blob or max_bytes_total are not positive values.
[ "Create", "upload", "URL", "for", "POST", "form", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L301-L328
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
create_upload_url_async
def create_upload_url_async(success_path, max_bytes_per_blob=None, max_bytes_total=None, **options): """Async version of create_upload_url().""" rpc = blobstore.create_rpc(**options) rpc = blobstore.create_upload_url_async(success_path, max_bytes_per_blob=max_bytes_per_blob, max_bytes_total=max_bytes_total, rpc=rpc) result = yield rpc raise tasklets.Return(result)
python
def create_upload_url_async(success_path, max_bytes_per_blob=None, max_bytes_total=None, **options): """Async version of create_upload_url().""" rpc = blobstore.create_rpc(**options) rpc = blobstore.create_upload_url_async(success_path, max_bytes_per_blob=max_bytes_per_blob, max_bytes_total=max_bytes_total, rpc=rpc) result = yield rpc raise tasklets.Return(result)
[ "def", "create_upload_url_async", "(", "success_path", ",", "max_bytes_per_blob", "=", "None", ",", "max_bytes_total", "=", "None", ",", "*", "*", "options", ")", ":", "rpc", "=", "blobstore", ".", "create_rpc", "(", "*", "*", "options", ")", "rpc", "=", "blobstore", ".", "create_upload_url_async", "(", "success_path", ",", "max_bytes_per_blob", "=", "max_bytes_per_blob", ",", "max_bytes_total", "=", "max_bytes_total", ",", "rpc", "=", "rpc", ")", "result", "=", "yield", "rpc", "raise", "tasklets", ".", "Return", "(", "result", ")" ]
Async version of create_upload_url().
[ "Async", "version", "of", "create_upload_url", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L332-L343
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
parse_blob_info
def parse_blob_info(field_storage): """Parse a BlobInfo record from file upload field_storage. Args: field_storage: cgi.FieldStorage that represents uploaded blob. Returns: BlobInfo record as parsed from the field-storage instance. None if there was no field_storage. Raises: BlobInfoParseError when provided field_storage does not contain enough information to construct a BlobInfo object. """ if field_storage is None: return None field_name = field_storage.name def get_value(dct, name): value = dct.get(name, None) if value is None: raise BlobInfoParseError( 'Field %s has no %s.' % (field_name, name)) return value filename = get_value(field_storage.disposition_options, 'filename') blob_key_str = get_value(field_storage.type_options, 'blob-key') blob_key = BlobKey(blob_key_str) upload_content = email.message_from_file(field_storage.file) content_type = get_value(upload_content, 'content-type') size = get_value(upload_content, 'content-length') creation_string = get_value(upload_content, UPLOAD_INFO_CREATION_HEADER) md5_hash_encoded = get_value(upload_content, 'content-md5') md5_hash = base64.urlsafe_b64decode(md5_hash_encoded) try: size = int(size) except (TypeError, ValueError): raise BlobInfoParseError( '%s is not a valid value for %s size.' % (size, field_name)) try: creation = blobstore._parse_creation(creation_string, field_name) except blobstore._CreationFormatError, err: raise BlobInfoParseError(str(err)) return BlobInfo(id=blob_key_str, content_type=content_type, creation=creation, filename=filename, size=size, md5_hash=md5_hash, )
python
def parse_blob_info(field_storage): """Parse a BlobInfo record from file upload field_storage. Args: field_storage: cgi.FieldStorage that represents uploaded blob. Returns: BlobInfo record as parsed from the field-storage instance. None if there was no field_storage. Raises: BlobInfoParseError when provided field_storage does not contain enough information to construct a BlobInfo object. """ if field_storage is None: return None field_name = field_storage.name def get_value(dct, name): value = dct.get(name, None) if value is None: raise BlobInfoParseError( 'Field %s has no %s.' % (field_name, name)) return value filename = get_value(field_storage.disposition_options, 'filename') blob_key_str = get_value(field_storage.type_options, 'blob-key') blob_key = BlobKey(blob_key_str) upload_content = email.message_from_file(field_storage.file) content_type = get_value(upload_content, 'content-type') size = get_value(upload_content, 'content-length') creation_string = get_value(upload_content, UPLOAD_INFO_CREATION_HEADER) md5_hash_encoded = get_value(upload_content, 'content-md5') md5_hash = base64.urlsafe_b64decode(md5_hash_encoded) try: size = int(size) except (TypeError, ValueError): raise BlobInfoParseError( '%s is not a valid value for %s size.' % (size, field_name)) try: creation = blobstore._parse_creation(creation_string, field_name) except blobstore._CreationFormatError, err: raise BlobInfoParseError(str(err)) return BlobInfo(id=blob_key_str, content_type=content_type, creation=creation, filename=filename, size=size, md5_hash=md5_hash, )
[ "def", "parse_blob_info", "(", "field_storage", ")", ":", "if", "field_storage", "is", "None", ":", "return", "None", "field_name", "=", "field_storage", ".", "name", "def", "get_value", "(", "dct", ",", "name", ")", ":", "value", "=", "dct", ".", "get", "(", "name", ",", "None", ")", "if", "value", "is", "None", ":", "raise", "BlobInfoParseError", "(", "'Field %s has no %s.'", "%", "(", "field_name", ",", "name", ")", ")", "return", "value", "filename", "=", "get_value", "(", "field_storage", ".", "disposition_options", ",", "'filename'", ")", "blob_key_str", "=", "get_value", "(", "field_storage", ".", "type_options", ",", "'blob-key'", ")", "blob_key", "=", "BlobKey", "(", "blob_key_str", ")", "upload_content", "=", "email", ".", "message_from_file", "(", "field_storage", ".", "file", ")", "content_type", "=", "get_value", "(", "upload_content", ",", "'content-type'", ")", "size", "=", "get_value", "(", "upload_content", ",", "'content-length'", ")", "creation_string", "=", "get_value", "(", "upload_content", ",", "UPLOAD_INFO_CREATION_HEADER", ")", "md5_hash_encoded", "=", "get_value", "(", "upload_content", ",", "'content-md5'", ")", "md5_hash", "=", "base64", ".", "urlsafe_b64decode", "(", "md5_hash_encoded", ")", "try", ":", "size", "=", "int", "(", "size", ")", "except", "(", "TypeError", ",", "ValueError", ")", ":", "raise", "BlobInfoParseError", "(", "'%s is not a valid value for %s size.'", "%", "(", "size", ",", "field_name", ")", ")", "try", ":", "creation", "=", "blobstore", ".", "_parse_creation", "(", "creation_string", ",", "field_name", ")", "except", "blobstore", ".", "_CreationFormatError", ",", "err", ":", "raise", "BlobInfoParseError", "(", "str", "(", "err", ")", ")", "return", "BlobInfo", "(", "id", "=", "blob_key_str", ",", "content_type", "=", "content_type", ",", "creation", "=", "creation", ",", "filename", "=", "filename", ",", "size", "=", "size", ",", "md5_hash", "=", "md5_hash", ",", ")" ]
Parse a BlobInfo record from file upload field_storage. Args: field_storage: cgi.FieldStorage that represents uploaded blob. Returns: BlobInfo record as parsed from the field-storage instance. None if there was no field_storage. Raises: BlobInfoParseError when provided field_storage does not contain enough information to construct a BlobInfo object.
[ "Parse", "a", "BlobInfo", "record", "from", "file", "upload", "field_storage", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L346-L400
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
fetch_data
def fetch_data(blob, start_index, end_index, **options): """Fetch data for blob. Fetches a fragment of a blob up to MAX_BLOB_FETCH_SIZE in length. Attempting to fetch a fragment that extends beyond the boundaries of the blob will return the amount of data from start_index until the end of the blob, which will be a smaller size than requested. Requesting a fragment which is entirely outside the boundaries of the blob will return empty string. Attempting to fetch a negative index will raise an exception. Args: blob: BlobInfo, BlobKey, str or unicode representation of BlobKey of blob to fetch data from. start_index: Start index of blob data to fetch. May not be negative. end_index: End index (inclusive) of blob data to fetch. Must be >= start_index. **options: Options for create_rpc(). Returns: str containing partial data of blob. If the indexes are legal but outside the boundaries of the blob, will return empty string. Raises: TypeError if start_index or end_index are not indexes. Also when blob is not a string, BlobKey or BlobInfo. DataIndexOutOfRangeError when start_index < 0 or end_index < start_index. BlobFetchSizeTooLargeError when request blob fragment is larger than MAX_BLOB_FETCH_SIZE. BlobNotFoundError when blob does not exist. """ fut = fetch_data_async(blob, start_index, end_index, **options) return fut.get_result()
python
def fetch_data(blob, start_index, end_index, **options): """Fetch data for blob. Fetches a fragment of a blob up to MAX_BLOB_FETCH_SIZE in length. Attempting to fetch a fragment that extends beyond the boundaries of the blob will return the amount of data from start_index until the end of the blob, which will be a smaller size than requested. Requesting a fragment which is entirely outside the boundaries of the blob will return empty string. Attempting to fetch a negative index will raise an exception. Args: blob: BlobInfo, BlobKey, str or unicode representation of BlobKey of blob to fetch data from. start_index: Start index of blob data to fetch. May not be negative. end_index: End index (inclusive) of blob data to fetch. Must be >= start_index. **options: Options for create_rpc(). Returns: str containing partial data of blob. If the indexes are legal but outside the boundaries of the blob, will return empty string. Raises: TypeError if start_index or end_index are not indexes. Also when blob is not a string, BlobKey or BlobInfo. DataIndexOutOfRangeError when start_index < 0 or end_index < start_index. BlobFetchSizeTooLargeError when request blob fragment is larger than MAX_BLOB_FETCH_SIZE. BlobNotFoundError when blob does not exist. """ fut = fetch_data_async(blob, start_index, end_index, **options) return fut.get_result()
[ "def", "fetch_data", "(", "blob", ",", "start_index", ",", "end_index", ",", "*", "*", "options", ")", ":", "fut", "=", "fetch_data_async", "(", "blob", ",", "start_index", ",", "end_index", ",", "*", "*", "options", ")", "return", "fut", ".", "get_result", "(", ")" ]
Fetch data for blob. Fetches a fragment of a blob up to MAX_BLOB_FETCH_SIZE in length. Attempting to fetch a fragment that extends beyond the boundaries of the blob will return the amount of data from start_index until the end of the blob, which will be a smaller size than requested. Requesting a fragment which is entirely outside the boundaries of the blob will return empty string. Attempting to fetch a negative index will raise an exception. Args: blob: BlobInfo, BlobKey, str or unicode representation of BlobKey of blob to fetch data from. start_index: Start index of blob data to fetch. May not be negative. end_index: End index (inclusive) of blob data to fetch. Must be >= start_index. **options: Options for create_rpc(). Returns: str containing partial data of blob. If the indexes are legal but outside the boundaries of the blob, will return empty string. Raises: TypeError if start_index or end_index are not indexes. Also when blob is not a string, BlobKey or BlobInfo. DataIndexOutOfRangeError when start_index < 0 or end_index < start_index. BlobFetchSizeTooLargeError when request blob fragment is larger than MAX_BLOB_FETCH_SIZE. BlobNotFoundError when blob does not exist.
[ "Fetch", "data", "for", "blob", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L403-L434
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
fetch_data_async
def fetch_data_async(blob, start_index, end_index, **options): """Async version of fetch_data().""" if isinstance(blob, BlobInfo): blob = blob.key() rpc = blobstore.create_rpc(**options) rpc = blobstore.fetch_data_async(blob, start_index, end_index, rpc=rpc) result = yield rpc raise tasklets.Return(result)
python
def fetch_data_async(blob, start_index, end_index, **options): """Async version of fetch_data().""" if isinstance(blob, BlobInfo): blob = blob.key() rpc = blobstore.create_rpc(**options) rpc = blobstore.fetch_data_async(blob, start_index, end_index, rpc=rpc) result = yield rpc raise tasklets.Return(result)
[ "def", "fetch_data_async", "(", "blob", ",", "start_index", ",", "end_index", ",", "*", "*", "options", ")", ":", "if", "isinstance", "(", "blob", ",", "BlobInfo", ")", ":", "blob", "=", "blob", ".", "key", "(", ")", "rpc", "=", "blobstore", ".", "create_rpc", "(", "*", "*", "options", ")", "rpc", "=", "blobstore", ".", "fetch_data_async", "(", "blob", ",", "start_index", ",", "end_index", ",", "rpc", "=", "rpc", ")", "result", "=", "yield", "rpc", "raise", "tasklets", ".", "Return", "(", "result", ")" ]
Async version of fetch_data().
[ "Async", "version", "of", "fetch_data", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L438-L445
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
BlobInfo.get
def get(cls, blob_key, **ctx_options): """Retrieve a BlobInfo by key. Args: blob_key: A blob key. This may be a str, unicode or BlobKey instance. **ctx_options: Context options for Model().get_by_id(). Returns: A BlobInfo entity associated with the provided key, If there was no such entity, returns None. """ fut = cls.get_async(blob_key, **ctx_options) return fut.get_result()
python
def get(cls, blob_key, **ctx_options): """Retrieve a BlobInfo by key. Args: blob_key: A blob key. This may be a str, unicode or BlobKey instance. **ctx_options: Context options for Model().get_by_id(). Returns: A BlobInfo entity associated with the provided key, If there was no such entity, returns None. """ fut = cls.get_async(blob_key, **ctx_options) return fut.get_result()
[ "def", "get", "(", "cls", ",", "blob_key", ",", "*", "*", "ctx_options", ")", ":", "fut", "=", "cls", ".", "get_async", "(", "blob_key", ",", "*", "*", "ctx_options", ")", "return", "fut", ".", "get_result", "(", ")" ]
Retrieve a BlobInfo by key. Args: blob_key: A blob key. This may be a str, unicode or BlobKey instance. **ctx_options: Context options for Model().get_by_id(). Returns: A BlobInfo entity associated with the provided key, If there was no such entity, returns None.
[ "Retrieve", "a", "BlobInfo", "by", "key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L167-L179
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
BlobInfo.get_async
def get_async(cls, blob_key, **ctx_options): """Async version of get().""" if not isinstance(blob_key, (BlobKey, basestring)): raise TypeError('Expected blob key, got %r' % (blob_key,)) if 'parent' in ctx_options: raise TypeError('Parent is not supported') return cls.get_by_id_async(str(blob_key), **ctx_options)
python
def get_async(cls, blob_key, **ctx_options): """Async version of get().""" if not isinstance(blob_key, (BlobKey, basestring)): raise TypeError('Expected blob key, got %r' % (blob_key,)) if 'parent' in ctx_options: raise TypeError('Parent is not supported') return cls.get_by_id_async(str(blob_key), **ctx_options)
[ "def", "get_async", "(", "cls", ",", "blob_key", ",", "*", "*", "ctx_options", ")", ":", "if", "not", "isinstance", "(", "blob_key", ",", "(", "BlobKey", ",", "basestring", ")", ")", ":", "raise", "TypeError", "(", "'Expected blob key, got %r'", "%", "(", "blob_key", ",", ")", ")", "if", "'parent'", "in", "ctx_options", ":", "raise", "TypeError", "(", "'Parent is not supported'", ")", "return", "cls", ".", "get_by_id_async", "(", "str", "(", "blob_key", ")", ",", "*", "*", "ctx_options", ")" ]
Async version of get().
[ "Async", "version", "of", "get", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L182-L188
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
BlobInfo.get_multi
def get_multi(cls, blob_keys, **ctx_options): """Multi-key version of get(). Args: blob_keys: A list of blob keys. **ctx_options: Context options for Model().get_by_id(). Returns: A list whose items are each either a BlobInfo entity or None. """ futs = cls.get_multi_async(blob_keys, **ctx_options) return [fut.get_result() for fut in futs]
python
def get_multi(cls, blob_keys, **ctx_options): """Multi-key version of get(). Args: blob_keys: A list of blob keys. **ctx_options: Context options for Model().get_by_id(). Returns: A list whose items are each either a BlobInfo entity or None. """ futs = cls.get_multi_async(blob_keys, **ctx_options) return [fut.get_result() for fut in futs]
[ "def", "get_multi", "(", "cls", ",", "blob_keys", ",", "*", "*", "ctx_options", ")", ":", "futs", "=", "cls", ".", "get_multi_async", "(", "blob_keys", ",", "*", "*", "ctx_options", ")", "return", "[", "fut", ".", "get_result", "(", ")", "for", "fut", "in", "futs", "]" ]
Multi-key version of get(). Args: blob_keys: A list of blob keys. **ctx_options: Context options for Model().get_by_id(). Returns: A list whose items are each either a BlobInfo entity or None.
[ "Multi", "-", "key", "version", "of", "get", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L191-L202
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
BlobInfo.get_multi_async
def get_multi_async(cls, blob_keys, **ctx_options): """Async version of get_multi().""" for blob_key in blob_keys: if not isinstance(blob_key, (BlobKey, basestring)): raise TypeError('Expected blob key, got %r' % (blob_key,)) if 'parent' in ctx_options: raise TypeError('Parent is not supported') blob_key_strs = map(str, blob_keys) keys = [model.Key(BLOB_INFO_KIND, id) for id in blob_key_strs] return model.get_multi_async(keys, **ctx_options)
python
def get_multi_async(cls, blob_keys, **ctx_options): """Async version of get_multi().""" for blob_key in blob_keys: if not isinstance(blob_key, (BlobKey, basestring)): raise TypeError('Expected blob key, got %r' % (blob_key,)) if 'parent' in ctx_options: raise TypeError('Parent is not supported') blob_key_strs = map(str, blob_keys) keys = [model.Key(BLOB_INFO_KIND, id) for id in blob_key_strs] return model.get_multi_async(keys, **ctx_options)
[ "def", "get_multi_async", "(", "cls", ",", "blob_keys", ",", "*", "*", "ctx_options", ")", ":", "for", "blob_key", "in", "blob_keys", ":", "if", "not", "isinstance", "(", "blob_key", ",", "(", "BlobKey", ",", "basestring", ")", ")", ":", "raise", "TypeError", "(", "'Expected blob key, got %r'", "%", "(", "blob_key", ",", ")", ")", "if", "'parent'", "in", "ctx_options", ":", "raise", "TypeError", "(", "'Parent is not supported'", ")", "blob_key_strs", "=", "map", "(", "str", ",", "blob_keys", ")", "keys", "=", "[", "model", ".", "Key", "(", "BLOB_INFO_KIND", ",", "id", ")", "for", "id", "in", "blob_key_strs", "]", "return", "model", ".", "get_multi_async", "(", "keys", ",", "*", "*", "ctx_options", ")" ]
Async version of get_multi().
[ "Async", "version", "of", "get_multi", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L205-L214
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
BlobInfo.delete
def delete(self, **options): """Permanently delete this blob from Blobstore. Args: **options: Options for create_rpc(). """ fut = delete_async(self.key(), **options) fut.get_result()
python
def delete(self, **options): """Permanently delete this blob from Blobstore. Args: **options: Options for create_rpc(). """ fut = delete_async(self.key(), **options) fut.get_result()
[ "def", "delete", "(", "self", ",", "*", "*", "options", ")", ":", "fut", "=", "delete_async", "(", "self", ".", "key", "(", ")", ",", "*", "*", "options", ")", "fut", ".", "get_result", "(", ")" ]
Permanently delete this blob from Blobstore. Args: **options: Options for create_rpc().
[ "Permanently", "delete", "this", "blob", "from", "Blobstore", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L230-L237
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
BlobReader.__fill_buffer
def __fill_buffer(self, size=0): """Fills the internal buffer. Args: size: Number of bytes to read. Will be clamped to [self.__buffer_size, MAX_BLOB_FETCH_SIZE]. """ read_size = min(max(size, self.__buffer_size), MAX_BLOB_FETCH_SIZE) self.__buffer = fetch_data(self.__blob_key, self.__position, self.__position + read_size - 1) self.__buffer_position = 0 self.__eof = len(self.__buffer) < read_size
python
def __fill_buffer(self, size=0): """Fills the internal buffer. Args: size: Number of bytes to read. Will be clamped to [self.__buffer_size, MAX_BLOB_FETCH_SIZE]. """ read_size = min(max(size, self.__buffer_size), MAX_BLOB_FETCH_SIZE) self.__buffer = fetch_data(self.__blob_key, self.__position, self.__position + read_size - 1) self.__buffer_position = 0 self.__eof = len(self.__buffer) < read_size
[ "def", "__fill_buffer", "(", "self", ",", "size", "=", "0", ")", ":", "read_size", "=", "min", "(", "max", "(", "size", ",", "self", ".", "__buffer_size", ")", ",", "MAX_BLOB_FETCH_SIZE", ")", "self", ".", "__buffer", "=", "fetch_data", "(", "self", ".", "__blob_key", ",", "self", ".", "__position", ",", "self", ".", "__position", "+", "read_size", "-", "1", ")", "self", ".", "__buffer_position", "=", "0", "self", ".", "__eof", "=", "len", "(", "self", ".", "__buffer", ")", "<", "read_size" ]
Fills the internal buffer. Args: size: Number of bytes to read. Will be clamped to [self.__buffer_size, MAX_BLOB_FETCH_SIZE].
[ "Fills", "the", "internal", "buffer", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L455-L467
GoogleCloudPlatform/datastore-ndb-python
ndb/blobstore.py
BlobReader.blob_info
def blob_info(self): """Returns the BlobInfo for this file.""" if not self.__blob_info: self.__blob_info = BlobInfo.get(self.__blob_key) return self.__blob_info
python
def blob_info(self): """Returns the BlobInfo for this file.""" if not self.__blob_info: self.__blob_info = BlobInfo.get(self.__blob_key) return self.__blob_info
[ "def", "blob_info", "(", "self", ")", ":", "if", "not", "self", ".", "__blob_info", ":", "self", ".", "__blob_info", "=", "BlobInfo", ".", "get", "(", "self", ".", "__blob_key", ")", "return", "self", ".", "__blob_info" ]
Returns the BlobInfo for this file.
[ "Returns", "the", "BlobInfo", "for", "this", "file", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/blobstore.py#L470-L474
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
make_connection
def make_connection(config=None, default_model=None, _api_version=datastore_rpc._DATASTORE_V3, _id_resolver=None): """Create a new Connection object with the right adapter. Optionally you can pass in a datastore_rpc.Configuration object. """ return datastore_rpc.Connection( adapter=ModelAdapter(default_model, id_resolver=_id_resolver), config=config, _api_version=_api_version)
python
def make_connection(config=None, default_model=None, _api_version=datastore_rpc._DATASTORE_V3, _id_resolver=None): """Create a new Connection object with the right adapter. Optionally you can pass in a datastore_rpc.Configuration object. """ return datastore_rpc.Connection( adapter=ModelAdapter(default_model, id_resolver=_id_resolver), config=config, _api_version=_api_version)
[ "def", "make_connection", "(", "config", "=", "None", ",", "default_model", "=", "None", ",", "_api_version", "=", "datastore_rpc", ".", "_DATASTORE_V3", ",", "_id_resolver", "=", "None", ")", ":", "return", "datastore_rpc", ".", "Connection", "(", "adapter", "=", "ModelAdapter", "(", "default_model", ",", "id_resolver", "=", "_id_resolver", ")", ",", "config", "=", "config", ",", "_api_version", "=", "_api_version", ")" ]
Create a new Connection object with the right adapter. Optionally you can pass in a datastore_rpc.Configuration object.
[ "Create", "a", "new", "Connection", "object", "with", "the", "right", "adapter", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L716-L726
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
_unpack_user
def _unpack_user(v): """Internal helper to unpack a User value from a protocol buffer.""" uv = v.uservalue() email = unicode(uv.email().decode('utf-8')) auth_domain = unicode(uv.auth_domain().decode('utf-8')) obfuscated_gaiaid = uv.obfuscated_gaiaid().decode('utf-8') obfuscated_gaiaid = unicode(obfuscated_gaiaid) federated_identity = None if uv.has_federated_identity(): federated_identity = unicode( uv.federated_identity().decode('utf-8')) value = users.User(email=email, _auth_domain=auth_domain, _user_id=obfuscated_gaiaid, federated_identity=federated_identity) return value
python
def _unpack_user(v): """Internal helper to unpack a User value from a protocol buffer.""" uv = v.uservalue() email = unicode(uv.email().decode('utf-8')) auth_domain = unicode(uv.auth_domain().decode('utf-8')) obfuscated_gaiaid = uv.obfuscated_gaiaid().decode('utf-8') obfuscated_gaiaid = unicode(obfuscated_gaiaid) federated_identity = None if uv.has_federated_identity(): federated_identity = unicode( uv.federated_identity().decode('utf-8')) value = users.User(email=email, _auth_domain=auth_domain, _user_id=obfuscated_gaiaid, federated_identity=federated_identity) return value
[ "def", "_unpack_user", "(", "v", ")", ":", "uv", "=", "v", ".", "uservalue", "(", ")", "email", "=", "unicode", "(", "uv", ".", "email", "(", ")", ".", "decode", "(", "'utf-8'", ")", ")", "auth_domain", "=", "unicode", "(", "uv", ".", "auth_domain", "(", ")", ".", "decode", "(", "'utf-8'", ")", ")", "obfuscated_gaiaid", "=", "uv", ".", "obfuscated_gaiaid", "(", ")", ".", "decode", "(", "'utf-8'", ")", "obfuscated_gaiaid", "=", "unicode", "(", "obfuscated_gaiaid", ")", "federated_identity", "=", "None", "if", "uv", ".", "has_federated_identity", "(", ")", ":", "federated_identity", "=", "unicode", "(", "uv", ".", "federated_identity", "(", ")", ".", "decode", "(", "'utf-8'", ")", ")", "value", "=", "users", ".", "User", "(", "email", "=", "email", ",", "_auth_domain", "=", "auth_domain", ",", "_user_id", "=", "obfuscated_gaiaid", ",", "federated_identity", "=", "federated_identity", ")", "return", "value" ]
Internal helper to unpack a User value from a protocol buffer.
[ "Internal", "helper", "to", "unpack", "a", "User", "value", "from", "a", "protocol", "buffer", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1838-L1855
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
_date_to_datetime
def _date_to_datetime(value): """Convert a date to a datetime for Cloud Datastore storage. Args: value: A datetime.date object. Returns: A datetime object with time set to 0:00. """ if not isinstance(value, datetime.date): raise TypeError('Cannot convert to datetime expected date value; ' 'received %s' % value) return datetime.datetime(value.year, value.month, value.day)
python
def _date_to_datetime(value): """Convert a date to a datetime for Cloud Datastore storage. Args: value: A datetime.date object. Returns: A datetime object with time set to 0:00. """ if not isinstance(value, datetime.date): raise TypeError('Cannot convert to datetime expected date value; ' 'received %s' % value) return datetime.datetime(value.year, value.month, value.day)
[ "def", "_date_to_datetime", "(", "value", ")", ":", "if", "not", "isinstance", "(", "value", ",", "datetime", ".", "date", ")", ":", "raise", "TypeError", "(", "'Cannot convert to datetime expected date value; '", "'received %s'", "%", "value", ")", "return", "datetime", ".", "datetime", "(", "value", ".", "year", ",", "value", ".", "month", ",", "value", ".", "day", ")" ]
Convert a date to a datetime for Cloud Datastore storage. Args: value: A datetime.date object. Returns: A datetime object with time set to 0:00.
[ "Convert", "a", "date", "to", "a", "datetime", "for", "Cloud", "Datastore", "storage", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L2142-L2154
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
_time_to_datetime
def _time_to_datetime(value): """Convert a time to a datetime for Cloud Datastore storage. Args: value: A datetime.time object. Returns: A datetime object with date set to 1970-01-01. """ if not isinstance(value, datetime.time): raise TypeError('Cannot convert to datetime expected time value; ' 'received %s' % value) return datetime.datetime(1970, 1, 1, value.hour, value.minute, value.second, value.microsecond)
python
def _time_to_datetime(value): """Convert a time to a datetime for Cloud Datastore storage. Args: value: A datetime.time object. Returns: A datetime object with date set to 1970-01-01. """ if not isinstance(value, datetime.time): raise TypeError('Cannot convert to datetime expected time value; ' 'received %s' % value) return datetime.datetime(1970, 1, 1, value.hour, value.minute, value.second, value.microsecond)
[ "def", "_time_to_datetime", "(", "value", ")", ":", "if", "not", "isinstance", "(", "value", ",", "datetime", ".", "time", ")", ":", "raise", "TypeError", "(", "'Cannot convert to datetime expected time value; '", "'received %s'", "%", "value", ")", "return", "datetime", ".", "datetime", "(", "1970", ",", "1", ",", "1", ",", "value", ".", "hour", ",", "value", ".", "minute", ",", "value", ".", "second", ",", "value", ".", "microsecond", ")" ]
Convert a time to a datetime for Cloud Datastore storage. Args: value: A datetime.time object. Returns: A datetime object with date set to 1970-01-01.
[ "Convert", "a", "time", "to", "a", "datetime", "for", "Cloud", "Datastore", "storage", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L2157-L2171
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
transactional
def transactional(func, args, kwds, **options): """Decorator to make a function automatically run in a transaction. Args: **ctx_options: Transaction options (see transaction(), but propagation default to TransactionOptions.ALLOWED). This supports two forms: (1) Vanilla: @transactional def callback(arg): ... (2) With options: @transactional(retries=1) def callback(arg): ... """ return transactional_async.wrapped_decorator( func, args, kwds, **options).get_result()
python
def transactional(func, args, kwds, **options): """Decorator to make a function automatically run in a transaction. Args: **ctx_options: Transaction options (see transaction(), but propagation default to TransactionOptions.ALLOWED). This supports two forms: (1) Vanilla: @transactional def callback(arg): ... (2) With options: @transactional(retries=1) def callback(arg): ... """ return transactional_async.wrapped_decorator( func, args, kwds, **options).get_result()
[ "def", "transactional", "(", "func", ",", "args", ",", "kwds", ",", "*", "*", "options", ")", ":", "return", "transactional_async", ".", "wrapped_decorator", "(", "func", ",", "args", ",", "kwds", ",", "*", "*", "options", ")", ".", "get_result", "(", ")" ]
Decorator to make a function automatically run in a transaction. Args: **ctx_options: Transaction options (see transaction(), but propagation default to TransactionOptions.ALLOWED). This supports two forms: (1) Vanilla: @transactional def callback(arg): ... (2) With options: @transactional(retries=1) def callback(arg): ...
[ "Decorator", "to", "make", "a", "function", "automatically", "run", "in", "a", "transaction", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3821-L3841
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
transactional_async
def transactional_async(func, args, kwds, **options): """The async version of @ndb.transaction.""" options.setdefault('propagation', datastore_rpc.TransactionOptions.ALLOWED) if args or kwds: return transaction_async(lambda: func(*args, **kwds), **options) return transaction_async(func, **options)
python
def transactional_async(func, args, kwds, **options): """The async version of @ndb.transaction.""" options.setdefault('propagation', datastore_rpc.TransactionOptions.ALLOWED) if args or kwds: return transaction_async(lambda: func(*args, **kwds), **options) return transaction_async(func, **options)
[ "def", "transactional_async", "(", "func", ",", "args", ",", "kwds", ",", "*", "*", "options", ")", ":", "options", ".", "setdefault", "(", "'propagation'", ",", "datastore_rpc", ".", "TransactionOptions", ".", "ALLOWED", ")", "if", "args", "or", "kwds", ":", "return", "transaction_async", "(", "lambda", ":", "func", "(", "*", "args", ",", "*", "*", "kwds", ")", ",", "*", "*", "options", ")", "return", "transaction_async", "(", "func", ",", "*", "*", "options", ")" ]
The async version of @ndb.transaction.
[ "The", "async", "version", "of" ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3845-L3850
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
transactional_tasklet
def transactional_tasklet(func, args, kwds, **options): """The async version of @ndb.transaction. Will return the result of the wrapped function as a Future. """ from . import tasklets func = tasklets.tasklet(func) return transactional_async.wrapped_decorator(func, args, kwds, **options)
python
def transactional_tasklet(func, args, kwds, **options): """The async version of @ndb.transaction. Will return the result of the wrapped function as a Future. """ from . import tasklets func = tasklets.tasklet(func) return transactional_async.wrapped_decorator(func, args, kwds, **options)
[ "def", "transactional_tasklet", "(", "func", ",", "args", ",", "kwds", ",", "*", "*", "options", ")", ":", "from", ".", "import", "tasklets", "func", "=", "tasklets", ".", "tasklet", "(", "func", ")", "return", "transactional_async", ".", "wrapped_decorator", "(", "func", ",", "args", ",", "kwds", ",", "*", "*", "options", ")" ]
The async version of @ndb.transaction. Will return the result of the wrapped function as a Future.
[ "The", "async", "version", "of", "@ndb", ".", "transaction", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3854-L3861
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
non_transactional
def non_transactional(func, args, kwds, allow_existing=True): """A decorator that ensures a function is run outside a transaction. If there is an existing transaction (and allow_existing=True), the existing transaction is paused while the function is executed. Args: allow_existing: If false, throw an exception if called from within a transaction. If true, temporarily re-establish the previous non-transactional context. Defaults to True. This supports two forms, similar to transactional(). Returns: A wrapper for the decorated function that ensures it runs outside a transaction. """ from . import tasklets ctx = tasklets.get_context() if not ctx.in_transaction(): return func(*args, **kwds) if not allow_existing: raise datastore_errors.BadRequestError( '%s cannot be called within a transaction.' % func.__name__) save_ctx = ctx while ctx.in_transaction(): ctx = ctx._parent_context if ctx is None: raise datastore_errors.BadRequestError( 'Context without non-transactional ancestor') save_ds_conn = datastore._GetConnection() try: if hasattr(save_ctx, '_old_ds_conn'): datastore._SetConnection(save_ctx._old_ds_conn) tasklets.set_context(ctx) return func(*args, **kwds) finally: tasklets.set_context(save_ctx) datastore._SetConnection(save_ds_conn)
python
def non_transactional(func, args, kwds, allow_existing=True): """A decorator that ensures a function is run outside a transaction. If there is an existing transaction (and allow_existing=True), the existing transaction is paused while the function is executed. Args: allow_existing: If false, throw an exception if called from within a transaction. If true, temporarily re-establish the previous non-transactional context. Defaults to True. This supports two forms, similar to transactional(). Returns: A wrapper for the decorated function that ensures it runs outside a transaction. """ from . import tasklets ctx = tasklets.get_context() if not ctx.in_transaction(): return func(*args, **kwds) if not allow_existing: raise datastore_errors.BadRequestError( '%s cannot be called within a transaction.' % func.__name__) save_ctx = ctx while ctx.in_transaction(): ctx = ctx._parent_context if ctx is None: raise datastore_errors.BadRequestError( 'Context without non-transactional ancestor') save_ds_conn = datastore._GetConnection() try: if hasattr(save_ctx, '_old_ds_conn'): datastore._SetConnection(save_ctx._old_ds_conn) tasklets.set_context(ctx) return func(*args, **kwds) finally: tasklets.set_context(save_ctx) datastore._SetConnection(save_ds_conn)
[ "def", "non_transactional", "(", "func", ",", "args", ",", "kwds", ",", "allow_existing", "=", "True", ")", ":", "from", ".", "import", "tasklets", "ctx", "=", "tasklets", ".", "get_context", "(", ")", "if", "not", "ctx", ".", "in_transaction", "(", ")", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwds", ")", "if", "not", "allow_existing", ":", "raise", "datastore_errors", ".", "BadRequestError", "(", "'%s cannot be called within a transaction.'", "%", "func", ".", "__name__", ")", "save_ctx", "=", "ctx", "while", "ctx", ".", "in_transaction", "(", ")", ":", "ctx", "=", "ctx", ".", "_parent_context", "if", "ctx", "is", "None", ":", "raise", "datastore_errors", ".", "BadRequestError", "(", "'Context without non-transactional ancestor'", ")", "save_ds_conn", "=", "datastore", ".", "_GetConnection", "(", ")", "try", ":", "if", "hasattr", "(", "save_ctx", ",", "'_old_ds_conn'", ")", ":", "datastore", ".", "_SetConnection", "(", "save_ctx", ".", "_old_ds_conn", ")", "tasklets", ".", "set_context", "(", "ctx", ")", "return", "func", "(", "*", "args", ",", "*", "*", "kwds", ")", "finally", ":", "tasklets", ".", "set_context", "(", "save_ctx", ")", "datastore", ".", "_SetConnection", "(", "save_ds_conn", ")" ]
A decorator that ensures a function is run outside a transaction. If there is an existing transaction (and allow_existing=True), the existing transaction is paused while the function is executed. Args: allow_existing: If false, throw an exception if called from within a transaction. If true, temporarily re-establish the previous non-transactional context. Defaults to True. This supports two forms, similar to transactional(). Returns: A wrapper for the decorated function that ensures it runs outside a transaction.
[ "A", "decorator", "that", "ensures", "a", "function", "is", "run", "outside", "a", "transaction", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3865-L3903
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
_NestedCounter._set
def _set(self, value): """Updates all descendants to a specified value.""" if self.__is_parent_node(): for child in self.__sub_counters.itervalues(): child._set(value) else: self.__counter = value
python
def _set(self, value): """Updates all descendants to a specified value.""" if self.__is_parent_node(): for child in self.__sub_counters.itervalues(): child._set(value) else: self.__counter = value
[ "def", "_set", "(", "self", ",", "value", ")", ":", "if", "self", ".", "__is_parent_node", "(", ")", ":", "for", "child", "in", "self", ".", "__sub_counters", ".", "itervalues", "(", ")", ":", "child", ".", "_set", "(", "value", ")", "else", ":", "self", ".", "__counter", "=", "value" ]
Updates all descendants to a specified value.
[ "Updates", "all", "descendants", "to", "a", "specified", "value", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L487-L493
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._comparison
def _comparison(self, op, value): """Internal helper for comparison operators. Args: op: The operator ('=', '<' etc.). Returns: A FilterNode instance representing the requested comparison. """ # NOTE: This is also used by query.gql(). if not self._indexed: raise datastore_errors.BadFilterError( 'Cannot query for unindexed property %s' % self._name) from .query import FilterNode # Import late to avoid circular imports. if value is not None: value = self._do_validate(value) value = self._call_to_base_type(value) value = self._datastore_type(value) return FilterNode(self._name, op, value)
python
def _comparison(self, op, value): """Internal helper for comparison operators. Args: op: The operator ('=', '<' etc.). Returns: A FilterNode instance representing the requested comparison. """ # NOTE: This is also used by query.gql(). if not self._indexed: raise datastore_errors.BadFilterError( 'Cannot query for unindexed property %s' % self._name) from .query import FilterNode # Import late to avoid circular imports. if value is not None: value = self._do_validate(value) value = self._call_to_base_type(value) value = self._datastore_type(value) return FilterNode(self._name, op, value)
[ "def", "_comparison", "(", "self", ",", "op", ",", "value", ")", ":", "# NOTE: This is also used by query.gql().", "if", "not", "self", ".", "_indexed", ":", "raise", "datastore_errors", ".", "BadFilterError", "(", "'Cannot query for unindexed property %s'", "%", "self", ".", "_name", ")", "from", ".", "query", "import", "FilterNode", "# Import late to avoid circular imports.", "if", "value", "is", "not", "None", ":", "value", "=", "self", ".", "_do_validate", "(", "value", ")", "value", "=", "self", ".", "_call_to_base_type", "(", "value", ")", "value", "=", "self", ".", "_datastore_type", "(", "value", ")", "return", "FilterNode", "(", "self", ".", "_name", ",", "op", ",", "value", ")" ]
Internal helper for comparison operators. Args: op: The operator ('=', '<' etc.). Returns: A FilterNode instance representing the requested comparison.
[ "Internal", "helper", "for", "comparison", "operators", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L972-L990
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._IN
def _IN(self, value): """Comparison operator for the 'in' comparison operator. The Python 'in' operator cannot be overloaded in the way we want to, so we define a method. For example:: Employee.query(Employee.rank.IN([4, 5, 6])) Note that the method is called ._IN() but may normally be invoked as .IN(); ._IN() is provided for the case you have a StructuredProperty with a model that has a Property named IN. """ if not self._indexed: raise datastore_errors.BadFilterError( 'Cannot query for unindexed property %s' % self._name) from .query import FilterNode # Import late to avoid circular imports. if not isinstance(value, (list, tuple, set, frozenset)): raise datastore_errors.BadArgumentError( 'Expected list, tuple or set, got %r' % (value,)) values = [] for val in value: if val is not None: val = self._do_validate(val) val = self._call_to_base_type(val) val = self._datastore_type(val) values.append(val) return FilterNode(self._name, 'in', values)
python
def _IN(self, value): """Comparison operator for the 'in' comparison operator. The Python 'in' operator cannot be overloaded in the way we want to, so we define a method. For example:: Employee.query(Employee.rank.IN([4, 5, 6])) Note that the method is called ._IN() but may normally be invoked as .IN(); ._IN() is provided for the case you have a StructuredProperty with a model that has a Property named IN. """ if not self._indexed: raise datastore_errors.BadFilterError( 'Cannot query for unindexed property %s' % self._name) from .query import FilterNode # Import late to avoid circular imports. if not isinstance(value, (list, tuple, set, frozenset)): raise datastore_errors.BadArgumentError( 'Expected list, tuple or set, got %r' % (value,)) values = [] for val in value: if val is not None: val = self._do_validate(val) val = self._call_to_base_type(val) val = self._datastore_type(val) values.append(val) return FilterNode(self._name, 'in', values)
[ "def", "_IN", "(", "self", ",", "value", ")", ":", "if", "not", "self", ".", "_indexed", ":", "raise", "datastore_errors", ".", "BadFilterError", "(", "'Cannot query for unindexed property %s'", "%", "self", ".", "_name", ")", "from", ".", "query", "import", "FilterNode", "# Import late to avoid circular imports.", "if", "not", "isinstance", "(", "value", ",", "(", "list", ",", "tuple", ",", "set", ",", "frozenset", ")", ")", ":", "raise", "datastore_errors", ".", "BadArgumentError", "(", "'Expected list, tuple or set, got %r'", "%", "(", "value", ",", ")", ")", "values", "=", "[", "]", "for", "val", "in", "value", ":", "if", "val", "is", "not", "None", ":", "val", "=", "self", ".", "_do_validate", "(", "val", ")", "val", "=", "self", ".", "_call_to_base_type", "(", "val", ")", "val", "=", "self", ".", "_datastore_type", "(", "val", ")", "values", ".", "append", "(", "val", ")", "return", "FilterNode", "(", "self", ".", "_name", ",", "'in'", ",", "values", ")" ]
Comparison operator for the 'in' comparison operator. The Python 'in' operator cannot be overloaded in the way we want to, so we define a method. For example:: Employee.query(Employee.rank.IN([4, 5, 6])) Note that the method is called ._IN() but may normally be invoked as .IN(); ._IN() is provided for the case you have a StructuredProperty with a model that has a Property named IN.
[ "Comparison", "operator", "for", "the", "in", "comparison", "operator", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1022-L1048
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._do_validate
def _do_validate(self, value): """Call all validations on the value. This calls the most derived _validate() method(s), then the custom validator function, and then checks the choices. It returns the value, possibly modified in an idempotent way, or raises an exception. Note that this does not call all composable _validate() methods. It only calls _validate() methods up to but not including the first _to_base_type() method, when the MRO is traversed looking for _validate() and _to_base_type() methods. (IOW if a class defines both _validate() and _to_base_type(), its _validate() is called and then the search is aborted.) Note that for a repeated Property this function should be called for each item in the list, not for the list as a whole. """ if isinstance(value, _BaseValue): return value value = self._call_shallow_validation(value) if self._validator is not None: newvalue = self._validator(self, value) if newvalue is not None: value = newvalue if self._choices is not None: if value not in self._choices: raise datastore_errors.BadValueError( 'Value %r for property %s is not an allowed choice' % (value, self._name)) return value
python
def _do_validate(self, value): """Call all validations on the value. This calls the most derived _validate() method(s), then the custom validator function, and then checks the choices. It returns the value, possibly modified in an idempotent way, or raises an exception. Note that this does not call all composable _validate() methods. It only calls _validate() methods up to but not including the first _to_base_type() method, when the MRO is traversed looking for _validate() and _to_base_type() methods. (IOW if a class defines both _validate() and _to_base_type(), its _validate() is called and then the search is aborted.) Note that for a repeated Property this function should be called for each item in the list, not for the list as a whole. """ if isinstance(value, _BaseValue): return value value = self._call_shallow_validation(value) if self._validator is not None: newvalue = self._validator(self, value) if newvalue is not None: value = newvalue if self._choices is not None: if value not in self._choices: raise datastore_errors.BadValueError( 'Value %r for property %s is not an allowed choice' % (value, self._name)) return value
[ "def", "_do_validate", "(", "self", ",", "value", ")", ":", "if", "isinstance", "(", "value", ",", "_BaseValue", ")", ":", "return", "value", "value", "=", "self", ".", "_call_shallow_validation", "(", "value", ")", "if", "self", ".", "_validator", "is", "not", "None", ":", "newvalue", "=", "self", ".", "_validator", "(", "self", ",", "value", ")", "if", "newvalue", "is", "not", "None", ":", "value", "=", "newvalue", "if", "self", ".", "_choices", "is", "not", "None", ":", "if", "value", "not", "in", "self", ".", "_choices", ":", "raise", "datastore_errors", ".", "BadValueError", "(", "'Value %r for property %s is not an allowed choice'", "%", "(", "value", ",", "self", ".", "_name", ")", ")", "return", "value" ]
Call all validations on the value. This calls the most derived _validate() method(s), then the custom validator function, and then checks the choices. It returns the value, possibly modified in an idempotent way, or raises an exception. Note that this does not call all composable _validate() methods. It only calls _validate() methods up to but not including the first _to_base_type() method, when the MRO is traversed looking for _validate() and _to_base_type() methods. (IOW if a class defines both _validate() and _to_base_type(), its _validate() is called and then the search is aborted.) Note that for a repeated Property this function should be called for each item in the list, not for the list as a whole.
[ "Call", "all", "validations", "on", "the", "value", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1072-L1102
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._fix_up
def _fix_up(self, cls, code_name): """Internal helper called to tell the property its name. This is called by _fix_up_properties() which is called by MetaModel when finishing the construction of a Model subclass. The name passed in is the name of the class attribute to which the Property is assigned (a.k.a. the code name). Note that this means that each Property instance must be assigned to (at most) one class attribute. E.g. to declare three strings, you must call StringProperty() three times, you cannot write foo = bar = baz = StringProperty() """ self._code_name = code_name if self._name is None: self._name = code_name
python
def _fix_up(self, cls, code_name): """Internal helper called to tell the property its name. This is called by _fix_up_properties() which is called by MetaModel when finishing the construction of a Model subclass. The name passed in is the name of the class attribute to which the Property is assigned (a.k.a. the code name). Note that this means that each Property instance must be assigned to (at most) one class attribute. E.g. to declare three strings, you must call StringProperty() three times, you cannot write foo = bar = baz = StringProperty() """ self._code_name = code_name if self._name is None: self._name = code_name
[ "def", "_fix_up", "(", "self", ",", "cls", ",", "code_name", ")", ":", "self", ".", "_code_name", "=", "code_name", "if", "self", ".", "_name", "is", "None", ":", "self", ".", "_name", "=", "code_name" ]
Internal helper called to tell the property its name. This is called by _fix_up_properties() which is called by MetaModel when finishing the construction of a Model subclass. The name passed in is the name of the class attribute to which the Property is assigned (a.k.a. the code name). Note that this means that each Property instance must be assigned to (at most) one class attribute. E.g. to declare three strings, you must call StringProperty() three times, you cannot write foo = bar = baz = StringProperty()
[ "Internal", "helper", "called", "to", "tell", "the", "property", "its", "name", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1104-L1119
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._set_value
def _set_value(self, entity, value): """Internal helper to set a value in an entity for a Property. This performs validation first. For a repeated Property the value should be a list. """ if entity._projection: raise ReadonlyPropertyError( 'You cannot set property values of a projection entity') if self._repeated: if not isinstance(value, (list, tuple, set, frozenset)): raise datastore_errors.BadValueError('Expected list or tuple, got %r' % (value,)) value = [self._do_validate(v) for v in value] else: if value is not None: value = self._do_validate(value) self._store_value(entity, value)
python
def _set_value(self, entity, value): """Internal helper to set a value in an entity for a Property. This performs validation first. For a repeated Property the value should be a list. """ if entity._projection: raise ReadonlyPropertyError( 'You cannot set property values of a projection entity') if self._repeated: if not isinstance(value, (list, tuple, set, frozenset)): raise datastore_errors.BadValueError('Expected list or tuple, got %r' % (value,)) value = [self._do_validate(v) for v in value] else: if value is not None: value = self._do_validate(value) self._store_value(entity, value)
[ "def", "_set_value", "(", "self", ",", "entity", ",", "value", ")", ":", "if", "entity", ".", "_projection", ":", "raise", "ReadonlyPropertyError", "(", "'You cannot set property values of a projection entity'", ")", "if", "self", ".", "_repeated", ":", "if", "not", "isinstance", "(", "value", ",", "(", "list", ",", "tuple", ",", "set", ",", "frozenset", ")", ")", ":", "raise", "datastore_errors", ".", "BadValueError", "(", "'Expected list or tuple, got %r'", "%", "(", "value", ",", ")", ")", "value", "=", "[", "self", ".", "_do_validate", "(", "v", ")", "for", "v", "in", "value", "]", "else", ":", "if", "value", "is", "not", "None", ":", "value", "=", "self", ".", "_do_validate", "(", "value", ")", "self", ".", "_store_value", "(", "entity", ",", "value", ")" ]
Internal helper to set a value in an entity for a Property. This performs validation first. For a repeated Property the value should be a list.
[ "Internal", "helper", "to", "set", "a", "value", "in", "an", "entity", "for", "a", "Property", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1129-L1146
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._retrieve_value
def _retrieve_value(self, entity, default=None): """Internal helper to retrieve the value for this Property from an entity. This returns None if no value is set, or the default argument if given. For a repeated Property this returns a list if a value is set, otherwise None. No additional transformations are applied. """ return entity._values.get(self._name, default)
python
def _retrieve_value(self, entity, default=None): """Internal helper to retrieve the value for this Property from an entity. This returns None if no value is set, or the default argument if given. For a repeated Property this returns a list if a value is set, otherwise None. No additional transformations are applied. """ return entity._values.get(self._name, default)
[ "def", "_retrieve_value", "(", "self", ",", "entity", ",", "default", "=", "None", ")", ":", "return", "entity", ".", "_values", ".", "get", "(", "self", ".", "_name", ",", "default", ")" ]
Internal helper to retrieve the value for this Property from an entity. This returns None if no value is set, or the default argument if given. For a repeated Property this returns a list if a value is set, otherwise None. No additional transformations are applied.
[ "Internal", "helper", "to", "retrieve", "the", "value", "for", "this", "Property", "from", "an", "entity", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1152-L1159
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._get_base_value_unwrapped_as_list
def _get_base_value_unwrapped_as_list(self, entity): """Like _get_base_value(), but always returns a list. Returns: A new list of unwrapped base values. For an unrepeated property, if the value is missing or None, returns [None]; for a repeated property, if the original value is missing or None or empty, returns []. """ wrapped = self._get_base_value(entity) if self._repeated: if wrapped is None: return [] assert isinstance(wrapped, list) return [w.b_val for w in wrapped] else: if wrapped is None: return [None] assert isinstance(wrapped, _BaseValue) return [wrapped.b_val]
python
def _get_base_value_unwrapped_as_list(self, entity): """Like _get_base_value(), but always returns a list. Returns: A new list of unwrapped base values. For an unrepeated property, if the value is missing or None, returns [None]; for a repeated property, if the original value is missing or None or empty, returns []. """ wrapped = self._get_base_value(entity) if self._repeated: if wrapped is None: return [] assert isinstance(wrapped, list) return [w.b_val for w in wrapped] else: if wrapped is None: return [None] assert isinstance(wrapped, _BaseValue) return [wrapped.b_val]
[ "def", "_get_base_value_unwrapped_as_list", "(", "self", ",", "entity", ")", ":", "wrapped", "=", "self", ".", "_get_base_value", "(", "entity", ")", "if", "self", ".", "_repeated", ":", "if", "wrapped", "is", "None", ":", "return", "[", "]", "assert", "isinstance", "(", "wrapped", ",", "list", ")", "return", "[", "w", ".", "b_val", "for", "w", "in", "wrapped", "]", "else", ":", "if", "wrapped", "is", "None", ":", "return", "[", "None", "]", "assert", "isinstance", "(", "wrapped", ",", "_BaseValue", ")", "return", "[", "wrapped", ".", "b_val", "]" ]
Like _get_base_value(), but always returns a list. Returns: A new list of unwrapped base values. For an unrepeated property, if the value is missing or None, returns [None]; for a repeated property, if the original value is missing or None or empty, returns [].
[ "Like", "_get_base_value", "()", "but", "always", "returns", "a", "list", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1183-L1202
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._opt_call_from_base_type
def _opt_call_from_base_type(self, value): """Call _from_base_type() if necessary. If the value is a _BaseValue instance, unwrap it and call all _from_base_type() methods. Otherwise, return the value unchanged. """ if isinstance(value, _BaseValue): value = self._call_from_base_type(value.b_val) return value
python
def _opt_call_from_base_type(self, value): """Call _from_base_type() if necessary. If the value is a _BaseValue instance, unwrap it and call all _from_base_type() methods. Otherwise, return the value unchanged. """ if isinstance(value, _BaseValue): value = self._call_from_base_type(value.b_val) return value
[ "def", "_opt_call_from_base_type", "(", "self", ",", "value", ")", ":", "if", "isinstance", "(", "value", ",", "_BaseValue", ")", ":", "value", "=", "self", ".", "_call_from_base_type", "(", "value", ".", "b_val", ")", "return", "value" ]
Call _from_base_type() if necessary. If the value is a _BaseValue instance, unwrap it and call all _from_base_type() methods. Otherwise, return the value unchanged.
[ "Call", "_from_base_type", "()", "if", "necessary", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1204-L1213
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._opt_call_to_base_type
def _opt_call_to_base_type(self, value): """Call _to_base_type() if necessary. If the value is a _BaseValue instance, return it unchanged. Otherwise, call all _validate() and _to_base_type() methods and wrap it in a _BaseValue instance. """ if not isinstance(value, _BaseValue): value = _BaseValue(self._call_to_base_type(value)) return value
python
def _opt_call_to_base_type(self, value): """Call _to_base_type() if necessary. If the value is a _BaseValue instance, return it unchanged. Otherwise, call all _validate() and _to_base_type() methods and wrap it in a _BaseValue instance. """ if not isinstance(value, _BaseValue): value = _BaseValue(self._call_to_base_type(value)) return value
[ "def", "_opt_call_to_base_type", "(", "self", ",", "value", ")", ":", "if", "not", "isinstance", "(", "value", ",", "_BaseValue", ")", ":", "value", "=", "_BaseValue", "(", "self", ".", "_call_to_base_type", "(", "value", ")", ")", "return", "value" ]
Call _to_base_type() if necessary. If the value is a _BaseValue instance, return it unchanged. Otherwise, call all _validate() and _to_base_type() methods and wrap it in a _BaseValue instance.
[ "Call", "_to_base_type", "()", "if", "necessary", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1226-L1235
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._call_from_base_type
def _call_from_base_type(self, value): """Call all _from_base_type() methods on the value. This calls the methods in the reverse method resolution order of the property's class. """ methods = self._find_methods('_from_base_type', reverse=True) call = self._apply_list(methods) return call(value)
python
def _call_from_base_type(self, value): """Call all _from_base_type() methods on the value. This calls the methods in the reverse method resolution order of the property's class. """ methods = self._find_methods('_from_base_type', reverse=True) call = self._apply_list(methods) return call(value)
[ "def", "_call_from_base_type", "(", "self", ",", "value", ")", ":", "methods", "=", "self", ".", "_find_methods", "(", "'_from_base_type'", ",", "reverse", "=", "True", ")", "call", "=", "self", ".", "_apply_list", "(", "methods", ")", "return", "call", "(", "value", ")" ]
Call all _from_base_type() methods on the value. This calls the methods in the reverse method resolution order of the property's class.
[ "Call", "all", "_from_base_type", "()", "methods", "on", "the", "value", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1237-L1245
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._call_to_base_type
def _call_to_base_type(self, value): """Call all _validate() and _to_base_type() methods on the value. This calls the methods in the method resolution order of the property's class. """ methods = self._find_methods('_validate', '_to_base_type') call = self._apply_list(methods) return call(value)
python
def _call_to_base_type(self, value): """Call all _validate() and _to_base_type() methods on the value. This calls the methods in the method resolution order of the property's class. """ methods = self._find_methods('_validate', '_to_base_type') call = self._apply_list(methods) return call(value)
[ "def", "_call_to_base_type", "(", "self", ",", "value", ")", ":", "methods", "=", "self", ".", "_find_methods", "(", "'_validate'", ",", "'_to_base_type'", ")", "call", "=", "self", ".", "_apply_list", "(", "methods", ")", "return", "call", "(", "value", ")" ]
Call all _validate() and _to_base_type() methods on the value. This calls the methods in the method resolution order of the property's class.
[ "Call", "all", "_validate", "()", "and", "_to_base_type", "()", "methods", "on", "the", "value", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1247-L1255
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._call_shallow_validation
def _call_shallow_validation(self, value): """Call the initial set of _validate() methods. This is similar to _call_to_base_type() except it only calls those _validate() methods that can be called without needing to call _to_base_type(). An example: suppose the class hierarchy is A -> B -> C -> Property, and suppose A defines _validate() only, but B and C define _validate() and _to_base_type(). The full list of methods called by _call_to_base_type() is:: A._validate() B._validate() B._to_base_type() C._validate() C._to_base_type() This method will call A._validate() and B._validate() but not the others. """ methods = [] for method in self._find_methods('_validate', '_to_base_type'): if method.__name__ != '_validate': break methods.append(method) call = self._apply_list(methods) return call(value)
python
def _call_shallow_validation(self, value): """Call the initial set of _validate() methods. This is similar to _call_to_base_type() except it only calls those _validate() methods that can be called without needing to call _to_base_type(). An example: suppose the class hierarchy is A -> B -> C -> Property, and suppose A defines _validate() only, but B and C define _validate() and _to_base_type(). The full list of methods called by _call_to_base_type() is:: A._validate() B._validate() B._to_base_type() C._validate() C._to_base_type() This method will call A._validate() and B._validate() but not the others. """ methods = [] for method in self._find_methods('_validate', '_to_base_type'): if method.__name__ != '_validate': break methods.append(method) call = self._apply_list(methods) return call(value)
[ "def", "_call_shallow_validation", "(", "self", ",", "value", ")", ":", "methods", "=", "[", "]", "for", "method", "in", "self", ".", "_find_methods", "(", "'_validate'", ",", "'_to_base_type'", ")", ":", "if", "method", ".", "__name__", "!=", "'_validate'", ":", "break", "methods", ".", "append", "(", "method", ")", "call", "=", "self", ".", "_apply_list", "(", "methods", ")", "return", "call", "(", "value", ")" ]
Call the initial set of _validate() methods. This is similar to _call_to_base_type() except it only calls those _validate() methods that can be called without needing to call _to_base_type(). An example: suppose the class hierarchy is A -> B -> C -> Property, and suppose A defines _validate() only, but B and C define _validate() and _to_base_type(). The full list of methods called by _call_to_base_type() is:: A._validate() B._validate() B._to_base_type() C._validate() C._to_base_type() This method will call A._validate() and B._validate() but not the others.
[ "Call", "the", "initial", "set", "of", "_validate", "()", "methods", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1257-L1284
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._find_methods
def _find_methods(cls, *names, **kwds): """Compute a list of composable methods. Because this is a common operation and the class hierarchy is static, the outcome is cached (assuming that for a particular list of names the reversed flag is either always on, or always off). Args: *names: One or more method names. reverse: Optional flag, default False; if True, the list is reversed. Returns: A list of callable class method objects. """ reverse = kwds.pop('reverse', False) assert not kwds, repr(kwds) cache = cls.__dict__.get('_find_methods_cache') if cache: hit = cache.get(names) if hit is not None: return hit else: cls._find_methods_cache = cache = {} methods = [] for c in cls.__mro__: for name in names: method = c.__dict__.get(name) if method is not None: methods.append(method) if reverse: methods.reverse() cache[names] = methods return methods
python
def _find_methods(cls, *names, **kwds): """Compute a list of composable methods. Because this is a common operation and the class hierarchy is static, the outcome is cached (assuming that for a particular list of names the reversed flag is either always on, or always off). Args: *names: One or more method names. reverse: Optional flag, default False; if True, the list is reversed. Returns: A list of callable class method objects. """ reverse = kwds.pop('reverse', False) assert not kwds, repr(kwds) cache = cls.__dict__.get('_find_methods_cache') if cache: hit = cache.get(names) if hit is not None: return hit else: cls._find_methods_cache = cache = {} methods = [] for c in cls.__mro__: for name in names: method = c.__dict__.get(name) if method is not None: methods.append(method) if reverse: methods.reverse() cache[names] = methods return methods
[ "def", "_find_methods", "(", "cls", ",", "*", "names", ",", "*", "*", "kwds", ")", ":", "reverse", "=", "kwds", ".", "pop", "(", "'reverse'", ",", "False", ")", "assert", "not", "kwds", ",", "repr", "(", "kwds", ")", "cache", "=", "cls", ".", "__dict__", ".", "get", "(", "'_find_methods_cache'", ")", "if", "cache", ":", "hit", "=", "cache", ".", "get", "(", "names", ")", "if", "hit", "is", "not", "None", ":", "return", "hit", "else", ":", "cls", ".", "_find_methods_cache", "=", "cache", "=", "{", "}", "methods", "=", "[", "]", "for", "c", "in", "cls", ".", "__mro__", ":", "for", "name", "in", "names", ":", "method", "=", "c", ".", "__dict__", ".", "get", "(", "name", ")", "if", "method", "is", "not", "None", ":", "methods", ".", "append", "(", "method", ")", "if", "reverse", ":", "methods", ".", "reverse", "(", ")", "cache", "[", "names", "]", "=", "methods", "return", "methods" ]
Compute a list of composable methods. Because this is a common operation and the class hierarchy is static, the outcome is cached (assuming that for a particular list of names the reversed flag is either always on, or always off). Args: *names: One or more method names. reverse: Optional flag, default False; if True, the list is reversed. Returns: A list of callable class method objects.
[ "Compute", "a", "list", "of", "composable", "methods", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1287-L1320
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._apply_list
def _apply_list(self, methods): """Return a single callable that applies a list of methods to a value. If a method returns None, the last value is kept; if it returns some other value, that replaces the last value. Exceptions are not caught. """ def call(value): for method in methods: newvalue = method(self, value) if newvalue is not None: value = newvalue return value return call
python
def _apply_list(self, methods): """Return a single callable that applies a list of methods to a value. If a method returns None, the last value is kept; if it returns some other value, that replaces the last value. Exceptions are not caught. """ def call(value): for method in methods: newvalue = method(self, value) if newvalue is not None: value = newvalue return value return call
[ "def", "_apply_list", "(", "self", ",", "methods", ")", ":", "def", "call", "(", "value", ")", ":", "for", "method", "in", "methods", ":", "newvalue", "=", "method", "(", "self", ",", "value", ")", "if", "newvalue", "is", "not", "None", ":", "value", "=", "newvalue", "return", "value", "return", "call" ]
Return a single callable that applies a list of methods to a value. If a method returns None, the last value is kept; if it returns some other value, that replaces the last value. Exceptions are not caught.
[ "Return", "a", "single", "callable", "that", "applies", "a", "list", "of", "methods", "to", "a", "value", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1322-L1335
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._apply_to_values
def _apply_to_values(self, entity, function): """Apply a function to the property value/values of a given entity. This retrieves the property value, applies the function, and then stores the value back. For a repeated property, the function is applied separately to each of the values in the list. The resulting value or list of values is both stored back in the entity and returned from this method. """ value = self._retrieve_value(entity, self._default) if self._repeated: if value is None: value = [] self._store_value(entity, value) else: value[:] = map(function, value) else: if value is not None: newvalue = function(value) if newvalue is not None and newvalue is not value: self._store_value(entity, newvalue) value = newvalue return value
python
def _apply_to_values(self, entity, function): """Apply a function to the property value/values of a given entity. This retrieves the property value, applies the function, and then stores the value back. For a repeated property, the function is applied separately to each of the values in the list. The resulting value or list of values is both stored back in the entity and returned from this method. """ value = self._retrieve_value(entity, self._default) if self._repeated: if value is None: value = [] self._store_value(entity, value) else: value[:] = map(function, value) else: if value is not None: newvalue = function(value) if newvalue is not None and newvalue is not value: self._store_value(entity, newvalue) value = newvalue return value
[ "def", "_apply_to_values", "(", "self", ",", "entity", ",", "function", ")", ":", "value", "=", "self", ".", "_retrieve_value", "(", "entity", ",", "self", ".", "_default", ")", "if", "self", ".", "_repeated", ":", "if", "value", "is", "None", ":", "value", "=", "[", "]", "self", ".", "_store_value", "(", "entity", ",", "value", ")", "else", ":", "value", "[", ":", "]", "=", "map", "(", "function", ",", "value", ")", "else", ":", "if", "value", "is", "not", "None", ":", "newvalue", "=", "function", "(", "value", ")", "if", "newvalue", "is", "not", "None", "and", "newvalue", "is", "not", "value", ":", "self", ".", "_store_value", "(", "entity", ",", "newvalue", ")", "value", "=", "newvalue", "return", "value" ]
Apply a function to the property value/values of a given entity. This retrieves the property value, applies the function, and then stores the value back. For a repeated property, the function is applied separately to each of the values in the list. The resulting value or list of values is both stored back in the entity and returned from this method.
[ "Apply", "a", "function", "to", "the", "property", "value", "/", "values", "of", "a", "given", "entity", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1337-L1359
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._get_value
def _get_value(self, entity): """Internal helper to get the value for this Property from an entity. For a repeated Property this initializes the value to an empty list if it is not set. """ if entity._projection: if self._name not in entity._projection: raise UnprojectedPropertyError( 'Property %s is not in the projection' % (self._name,)) return self._get_user_value(entity)
python
def _get_value(self, entity): """Internal helper to get the value for this Property from an entity. For a repeated Property this initializes the value to an empty list if it is not set. """ if entity._projection: if self._name not in entity._projection: raise UnprojectedPropertyError( 'Property %s is not in the projection' % (self._name,)) return self._get_user_value(entity)
[ "def", "_get_value", "(", "self", ",", "entity", ")", ":", "if", "entity", ".", "_projection", ":", "if", "self", ".", "_name", "not", "in", "entity", ".", "_projection", ":", "raise", "UnprojectedPropertyError", "(", "'Property %s is not in the projection'", "%", "(", "self", ".", "_name", ",", ")", ")", "return", "self", ".", "_get_user_value", "(", "entity", ")" ]
Internal helper to get the value for this Property from an entity. For a repeated Property this initializes the value to an empty list if it is not set.
[ "Internal", "helper", "to", "get", "the", "value", "for", "this", "Property", "from", "an", "entity", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1361-L1371
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._delete_value
def _delete_value(self, entity): """Internal helper to delete the value for this Property from an entity. Note that if no value exists this is a no-op; deleted values will not be serialized but requesting their value will return None (or an empty list in the case of a repeated Property). """ if self._name in entity._values: del entity._values[self._name]
python
def _delete_value(self, entity): """Internal helper to delete the value for this Property from an entity. Note that if no value exists this is a no-op; deleted values will not be serialized but requesting their value will return None (or an empty list in the case of a repeated Property). """ if self._name in entity._values: del entity._values[self._name]
[ "def", "_delete_value", "(", "self", ",", "entity", ")", ":", "if", "self", ".", "_name", "in", "entity", ".", "_values", ":", "del", "entity", ".", "_values", "[", "self", ".", "_name", "]" ]
Internal helper to delete the value for this Property from an entity. Note that if no value exists this is a no-op; deleted values will not be serialized but requesting their value will return None (or an empty list in the case of a repeated Property).
[ "Internal", "helper", "to", "delete", "the", "value", "for", "this", "Property", "from", "an", "entity", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1373-L1381
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._is_initialized
def _is_initialized(self, entity): """Internal helper to ask if the entity has a value for this Property. This returns False if a value is stored but it is None. """ return (not self._required or ((self._has_value(entity) or self._default is not None) and self._get_value(entity) is not None))
python
def _is_initialized(self, entity): """Internal helper to ask if the entity has a value for this Property. This returns False if a value is stored but it is None. """ return (not self._required or ((self._has_value(entity) or self._default is not None) and self._get_value(entity) is not None))
[ "def", "_is_initialized", "(", "self", ",", "entity", ")", ":", "return", "(", "not", "self", ".", "_required", "or", "(", "(", "self", ".", "_has_value", "(", "entity", ")", "or", "self", ".", "_default", "is", "not", "None", ")", "and", "self", ".", "_get_value", "(", "entity", ")", "is", "not", "None", ")", ")" ]
Internal helper to ask if the entity has a value for this Property. This returns False if a value is stored but it is None.
[ "Internal", "helper", "to", "ask", "if", "the", "entity", "has", "a", "value", "for", "this", "Property", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1383-L1390
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._serialize
def _serialize(self, entity, pb, prefix='', parent_repeated=False, projection=None): """Internal helper to serialize this property to a protocol buffer. Subclasses may override this method. Args: entity: The entity, a Model (subclass) instance. pb: The protocol buffer, an EntityProto instance. prefix: Optional name prefix used for StructuredProperty (if present, must end in '.'). parent_repeated: True if the parent (or an earlier ancestor) is a repeated Property. projection: A list or tuple of strings representing the projection for the model instance, or None if the instance is not a projection. """ values = self._get_base_value_unwrapped_as_list(entity) name = prefix + self._name if projection and name not in projection: return if self._indexed: create_prop = lambda: pb.add_property() else: create_prop = lambda: pb.add_raw_property() if self._repeated and not values and self._write_empty_list: # We want to write the empty list p = create_prop() p.set_name(name) p.set_multiple(False) p.set_meaning(entity_pb.Property.EMPTY_LIST) p.mutable_value() else: # We write a list, or a single property for val in values: p = create_prop() p.set_name(name) p.set_multiple(self._repeated or parent_repeated) v = p.mutable_value() if val is not None: self._db_set_value(v, p, val) if projection: # Projected properties have the INDEX_VALUE meaning and only contain # the original property's name and value. new_p = entity_pb.Property() new_p.set_name(p.name()) new_p.set_meaning(entity_pb.Property.INDEX_VALUE) new_p.set_multiple(False) new_p.mutable_value().CopyFrom(v) p.CopyFrom(new_p)
python
def _serialize(self, entity, pb, prefix='', parent_repeated=False, projection=None): """Internal helper to serialize this property to a protocol buffer. Subclasses may override this method. Args: entity: The entity, a Model (subclass) instance. pb: The protocol buffer, an EntityProto instance. prefix: Optional name prefix used for StructuredProperty (if present, must end in '.'). parent_repeated: True if the parent (or an earlier ancestor) is a repeated Property. projection: A list or tuple of strings representing the projection for the model instance, or None if the instance is not a projection. """ values = self._get_base_value_unwrapped_as_list(entity) name = prefix + self._name if projection and name not in projection: return if self._indexed: create_prop = lambda: pb.add_property() else: create_prop = lambda: pb.add_raw_property() if self._repeated and not values and self._write_empty_list: # We want to write the empty list p = create_prop() p.set_name(name) p.set_multiple(False) p.set_meaning(entity_pb.Property.EMPTY_LIST) p.mutable_value() else: # We write a list, or a single property for val in values: p = create_prop() p.set_name(name) p.set_multiple(self._repeated or parent_repeated) v = p.mutable_value() if val is not None: self._db_set_value(v, p, val) if projection: # Projected properties have the INDEX_VALUE meaning and only contain # the original property's name and value. new_p = entity_pb.Property() new_p.set_name(p.name()) new_p.set_meaning(entity_pb.Property.INDEX_VALUE) new_p.set_multiple(False) new_p.mutable_value().CopyFrom(v) p.CopyFrom(new_p)
[ "def", "_serialize", "(", "self", ",", "entity", ",", "pb", ",", "prefix", "=", "''", ",", "parent_repeated", "=", "False", ",", "projection", "=", "None", ")", ":", "values", "=", "self", ".", "_get_base_value_unwrapped_as_list", "(", "entity", ")", "name", "=", "prefix", "+", "self", ".", "_name", "if", "projection", "and", "name", "not", "in", "projection", ":", "return", "if", "self", ".", "_indexed", ":", "create_prop", "=", "lambda", ":", "pb", ".", "add_property", "(", ")", "else", ":", "create_prop", "=", "lambda", ":", "pb", ".", "add_raw_property", "(", ")", "if", "self", ".", "_repeated", "and", "not", "values", "and", "self", ".", "_write_empty_list", ":", "# We want to write the empty list", "p", "=", "create_prop", "(", ")", "p", ".", "set_name", "(", "name", ")", "p", ".", "set_multiple", "(", "False", ")", "p", ".", "set_meaning", "(", "entity_pb", ".", "Property", ".", "EMPTY_LIST", ")", "p", ".", "mutable_value", "(", ")", "else", ":", "# We write a list, or a single property", "for", "val", "in", "values", ":", "p", "=", "create_prop", "(", ")", "p", ".", "set_name", "(", "name", ")", "p", ".", "set_multiple", "(", "self", ".", "_repeated", "or", "parent_repeated", ")", "v", "=", "p", ".", "mutable_value", "(", ")", "if", "val", "is", "not", "None", ":", "self", ".", "_db_set_value", "(", "v", ",", "p", ",", "val", ")", "if", "projection", ":", "# Projected properties have the INDEX_VALUE meaning and only contain", "# the original property's name and value.", "new_p", "=", "entity_pb", ".", "Property", "(", ")", "new_p", ".", "set_name", "(", "p", ".", "name", "(", ")", ")", "new_p", ".", "set_meaning", "(", "entity_pb", ".", "Property", ".", "INDEX_VALUE", ")", "new_p", ".", "set_multiple", "(", "False", ")", "new_p", ".", "mutable_value", "(", ")", ".", "CopyFrom", "(", "v", ")", "p", ".", "CopyFrom", "(", "new_p", ")" ]
Internal helper to serialize this property to a protocol buffer. Subclasses may override this method. Args: entity: The entity, a Model (subclass) instance. pb: The protocol buffer, an EntityProto instance. prefix: Optional name prefix used for StructuredProperty (if present, must end in '.'). parent_repeated: True if the parent (or an earlier ancestor) is a repeated Property. projection: A list or tuple of strings representing the projection for the model instance, or None if the instance is not a projection.
[ "Internal", "helper", "to", "serialize", "this", "property", "to", "a", "protocol", "buffer", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1406-L1456
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._deserialize
def _deserialize(self, entity, p, unused_depth=1): """Internal helper to deserialize this property from a protocol buffer. Subclasses may override this method. Args: entity: The entity, a Model (subclass) instance. p: A Property Message object (a protocol buffer). depth: Optional nesting depth, default 1 (unused here, but used by some subclasses that override this method). """ if p.meaning() == entity_pb.Property.EMPTY_LIST: self._store_value(entity, []) return val = self._db_get_value(p.value(), p) if val is not None: val = _BaseValue(val) # TODO: replace the remainder of the function with the following commented # out code once its feasible to make breaking changes such as not calling # _store_value(). # if self._repeated: # entity._values.setdefault(self._name, []).append(val) # else: # entity._values[self._name] = val if self._repeated: if self._has_value(entity): value = self._retrieve_value(entity) assert isinstance(value, list), repr(value) value.append(val) else: # We promote single values to lists if we are a list property value = [val] else: value = val self._store_value(entity, value)
python
def _deserialize(self, entity, p, unused_depth=1): """Internal helper to deserialize this property from a protocol buffer. Subclasses may override this method. Args: entity: The entity, a Model (subclass) instance. p: A Property Message object (a protocol buffer). depth: Optional nesting depth, default 1 (unused here, but used by some subclasses that override this method). """ if p.meaning() == entity_pb.Property.EMPTY_LIST: self._store_value(entity, []) return val = self._db_get_value(p.value(), p) if val is not None: val = _BaseValue(val) # TODO: replace the remainder of the function with the following commented # out code once its feasible to make breaking changes such as not calling # _store_value(). # if self._repeated: # entity._values.setdefault(self._name, []).append(val) # else: # entity._values[self._name] = val if self._repeated: if self._has_value(entity): value = self._retrieve_value(entity) assert isinstance(value, list), repr(value) value.append(val) else: # We promote single values to lists if we are a list property value = [val] else: value = val self._store_value(entity, value)
[ "def", "_deserialize", "(", "self", ",", "entity", ",", "p", ",", "unused_depth", "=", "1", ")", ":", "if", "p", ".", "meaning", "(", ")", "==", "entity_pb", ".", "Property", ".", "EMPTY_LIST", ":", "self", ".", "_store_value", "(", "entity", ",", "[", "]", ")", "return", "val", "=", "self", ".", "_db_get_value", "(", "p", ".", "value", "(", ")", ",", "p", ")", "if", "val", "is", "not", "None", ":", "val", "=", "_BaseValue", "(", "val", ")", "# TODO: replace the remainder of the function with the following commented", "# out code once its feasible to make breaking changes such as not calling", "# _store_value().", "# if self._repeated:", "# entity._values.setdefault(self._name, []).append(val)", "# else:", "# entity._values[self._name] = val", "if", "self", ".", "_repeated", ":", "if", "self", ".", "_has_value", "(", "entity", ")", ":", "value", "=", "self", ".", "_retrieve_value", "(", "entity", ")", "assert", "isinstance", "(", "value", ",", "list", ")", ",", "repr", "(", "value", ")", "value", ".", "append", "(", "val", ")", "else", ":", "# We promote single values to lists if we are a list property", "value", "=", "[", "val", "]", "else", ":", "value", "=", "val", "self", ".", "_store_value", "(", "entity", ",", "value", ")" ]
Internal helper to deserialize this property from a protocol buffer. Subclasses may override this method. Args: entity: The entity, a Model (subclass) instance. p: A Property Message object (a protocol buffer). depth: Optional nesting depth, default 1 (unused here, but used by some subclasses that override this method).
[ "Internal", "helper", "to", "deserialize", "this", "property", "from", "a", "protocol", "buffer", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1458-L1496
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Property._check_property
def _check_property(self, rest=None, require_indexed=True): """Internal helper to check this property for specific requirements. Called by Model._check_properties(). Args: rest: Optional subproperty to check, of the form 'name1.name2...nameN'. Raises: InvalidPropertyError if this property does not meet the given requirements or if a subproperty is specified. (StructuredProperty overrides this method to handle subproperties.) """ if require_indexed and not self._indexed: raise InvalidPropertyError('Property is unindexed %s' % self._name) if rest: raise InvalidPropertyError('Referencing subproperty %s.%s ' 'but %s is not a structured property' % (self._name, rest, self._name))
python
def _check_property(self, rest=None, require_indexed=True): """Internal helper to check this property for specific requirements. Called by Model._check_properties(). Args: rest: Optional subproperty to check, of the form 'name1.name2...nameN'. Raises: InvalidPropertyError if this property does not meet the given requirements or if a subproperty is specified. (StructuredProperty overrides this method to handle subproperties.) """ if require_indexed and not self._indexed: raise InvalidPropertyError('Property is unindexed %s' % self._name) if rest: raise InvalidPropertyError('Referencing subproperty %s.%s ' 'but %s is not a structured property' % (self._name, rest, self._name))
[ "def", "_check_property", "(", "self", ",", "rest", "=", "None", ",", "require_indexed", "=", "True", ")", ":", "if", "require_indexed", "and", "not", "self", ".", "_indexed", ":", "raise", "InvalidPropertyError", "(", "'Property is unindexed %s'", "%", "self", ".", "_name", ")", "if", "rest", ":", "raise", "InvalidPropertyError", "(", "'Referencing subproperty %s.%s '", "'but %s is not a structured property'", "%", "(", "self", ".", "_name", ",", "rest", ",", "self", ".", "_name", ")", ")" ]
Internal helper to check this property for specific requirements. Called by Model._check_properties(). Args: rest: Optional subproperty to check, of the form 'name1.name2...nameN'. Raises: InvalidPropertyError if this property does not meet the given requirements or if a subproperty is specified. (StructuredProperty overrides this method to handle subproperties.)
[ "Internal", "helper", "to", "check", "this", "property", "for", "specific", "requirements", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1501-L1519
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
ModelKey._set_value
def _set_value(self, entity, value): """Setter for key attribute.""" if value is not None: value = _validate_key(value, entity=entity) value = entity._validate_key(value) entity._entity_key = value
python
def _set_value(self, entity, value): """Setter for key attribute.""" if value is not None: value = _validate_key(value, entity=entity) value = entity._validate_key(value) entity._entity_key = value
[ "def", "_set_value", "(", "self", ",", "entity", ",", "value", ")", ":", "if", "value", "is", "not", "None", ":", "value", "=", "_validate_key", "(", "value", ",", "entity", "=", "entity", ")", "value", "=", "entity", ".", "_validate_key", "(", "value", ")", "entity", ".", "_entity_key", "=", "value" ]
Setter for key attribute.
[ "Setter", "for", "key", "attribute", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L1573-L1578
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
StructuredProperty._get_value
def _get_value(self, entity): """Override _get_value() to *not* raise UnprojectedPropertyError.""" value = self._get_user_value(entity) if value is None and entity._projection: # Invoke super _get_value() to raise the proper exception. return super(StructuredProperty, self)._get_value(entity) return value
python
def _get_value(self, entity): """Override _get_value() to *not* raise UnprojectedPropertyError.""" value = self._get_user_value(entity) if value is None and entity._projection: # Invoke super _get_value() to raise the proper exception. return super(StructuredProperty, self)._get_value(entity) return value
[ "def", "_get_value", "(", "self", ",", "entity", ")", ":", "value", "=", "self", ".", "_get_user_value", "(", "entity", ")", "if", "value", "is", "None", "and", "entity", ".", "_projection", ":", "# Invoke super _get_value() to raise the proper exception.", "return", "super", "(", "StructuredProperty", ",", "self", ")", ".", "_get_value", "(", "entity", ")", "return", "value" ]
Override _get_value() to *not* raise UnprojectedPropertyError.
[ "Override", "_get_value", "()", "to", "*", "not", "*", "raise", "UnprojectedPropertyError", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L2262-L2268
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
StructuredProperty._check_property
def _check_property(self, rest=None, require_indexed=True): """Override for Property._check_property(). Raises: InvalidPropertyError if no subproperty is specified or if something is wrong with the subproperty. """ if not rest: raise InvalidPropertyError( 'Structured property %s requires a subproperty' % self._name) self._modelclass._check_properties([rest], require_indexed=require_indexed)
python
def _check_property(self, rest=None, require_indexed=True): """Override for Property._check_property(). Raises: InvalidPropertyError if no subproperty is specified or if something is wrong with the subproperty. """ if not rest: raise InvalidPropertyError( 'Structured property %s requires a subproperty' % self._name) self._modelclass._check_properties([rest], require_indexed=require_indexed)
[ "def", "_check_property", "(", "self", ",", "rest", "=", "None", ",", "require_indexed", "=", "True", ")", ":", "if", "not", "rest", ":", "raise", "InvalidPropertyError", "(", "'Structured property %s requires a subproperty'", "%", "self", ".", "_name", ")", "self", ".", "_modelclass", ".", "_check_properties", "(", "[", "rest", "]", ",", "require_indexed", "=", "require_indexed", ")" ]
Override for Property._check_property(). Raises: InvalidPropertyError if no subproperty is specified or if something is wrong with the subproperty.
[ "Override", "for", "Property", ".", "_check_property", "()", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L2508-L2518
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model.__get_arg
def __get_arg(cls, kwds, kwd): """Internal helper method to parse keywords that may be property names.""" alt_kwd = '_' + kwd if alt_kwd in kwds: return kwds.pop(alt_kwd) if kwd in kwds: obj = getattr(cls, kwd, None) if not isinstance(obj, Property) or isinstance(obj, ModelKey): return kwds.pop(kwd) return None
python
def __get_arg(cls, kwds, kwd): """Internal helper method to parse keywords that may be property names.""" alt_kwd = '_' + kwd if alt_kwd in kwds: return kwds.pop(alt_kwd) if kwd in kwds: obj = getattr(cls, kwd, None) if not isinstance(obj, Property) or isinstance(obj, ModelKey): return kwds.pop(kwd) return None
[ "def", "__get_arg", "(", "cls", ",", "kwds", ",", "kwd", ")", ":", "alt_kwd", "=", "'_'", "+", "kwd", "if", "alt_kwd", "in", "kwds", ":", "return", "kwds", ".", "pop", "(", "alt_kwd", ")", "if", "kwd", "in", "kwds", ":", "obj", "=", "getattr", "(", "cls", ",", "kwd", ",", "None", ")", "if", "not", "isinstance", "(", "obj", ",", "Property", ")", "or", "isinstance", "(", "obj", ",", "ModelKey", ")", ":", "return", "kwds", ".", "pop", "(", "kwd", ")", "return", "None" ]
Internal helper method to parse keywords that may be property names.
[ "Internal", "helper", "method", "to", "parse", "keywords", "that", "may", "be", "property", "names", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L2953-L2962
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._set_attributes
def _set_attributes(self, kwds): """Internal helper to set attributes from keyword arguments. Expando overrides this. """ cls = self.__class__ for name, value in kwds.iteritems(): prop = getattr(cls, name) # Raises AttributeError for unknown properties. if not isinstance(prop, Property): raise TypeError('Cannot set non-property %s' % name) prop._set_value(self, value)
python
def _set_attributes(self, kwds): """Internal helper to set attributes from keyword arguments. Expando overrides this. """ cls = self.__class__ for name, value in kwds.iteritems(): prop = getattr(cls, name) # Raises AttributeError for unknown properties. if not isinstance(prop, Property): raise TypeError('Cannot set non-property %s' % name) prop._set_value(self, value)
[ "def", "_set_attributes", "(", "self", ",", "kwds", ")", ":", "cls", "=", "self", ".", "__class__", "for", "name", ",", "value", "in", "kwds", ".", "iteritems", "(", ")", ":", "prop", "=", "getattr", "(", "cls", ",", "name", ")", "# Raises AttributeError for unknown properties.", "if", "not", "isinstance", "(", "prop", ",", "Property", ")", ":", "raise", "TypeError", "(", "'Cannot set non-property %s'", "%", "name", ")", "prop", ".", "_set_value", "(", "self", ",", "value", ")" ]
Internal helper to set attributes from keyword arguments. Expando overrides this.
[ "Internal", "helper", "to", "set", "attributes", "from", "keyword", "arguments", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L2983-L2993
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._find_uninitialized
def _find_uninitialized(self): """Internal helper to find uninitialized properties. Returns: A set of property names. """ return set(name for name, prop in self._properties.iteritems() if not prop._is_initialized(self))
python
def _find_uninitialized(self): """Internal helper to find uninitialized properties. Returns: A set of property names. """ return set(name for name, prop in self._properties.iteritems() if not prop._is_initialized(self))
[ "def", "_find_uninitialized", "(", "self", ")", ":", "return", "set", "(", "name", "for", "name", ",", "prop", "in", "self", ".", "_properties", ".", "iteritems", "(", ")", "if", "not", "prop", ".", "_is_initialized", "(", "self", ")", ")" ]
Internal helper to find uninitialized properties. Returns: A set of property names.
[ "Internal", "helper", "to", "find", "uninitialized", "properties", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L2995-L3003
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._check_initialized
def _check_initialized(self): """Internal helper to check for uninitialized properties. Raises: BadValueError if it finds any. """ baddies = self._find_uninitialized() if baddies: raise datastore_errors.BadValueError( 'Entity has uninitialized properties: %s' % ', '.join(baddies))
python
def _check_initialized(self): """Internal helper to check for uninitialized properties. Raises: BadValueError if it finds any. """ baddies = self._find_uninitialized() if baddies: raise datastore_errors.BadValueError( 'Entity has uninitialized properties: %s' % ', '.join(baddies))
[ "def", "_check_initialized", "(", "self", ")", ":", "baddies", "=", "self", ".", "_find_uninitialized", "(", ")", "if", "baddies", ":", "raise", "datastore_errors", ".", "BadValueError", "(", "'Entity has uninitialized properties: %s'", "%", "', '", ".", "join", "(", "baddies", ")", ")" ]
Internal helper to check for uninitialized properties. Raises: BadValueError if it finds any.
[ "Internal", "helper", "to", "check", "for", "uninitialized", "properties", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3005-L3014
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._reset_kind_map
def _reset_kind_map(cls): """Clear the kind map. Useful for testing.""" # Preserve "system" kinds, like __namespace__ keep = {} for name, value in cls._kind_map.iteritems(): if name.startswith('__') and name.endswith('__'): keep[name] = value cls._kind_map.clear() cls._kind_map.update(keep)
python
def _reset_kind_map(cls): """Clear the kind map. Useful for testing.""" # Preserve "system" kinds, like __namespace__ keep = {} for name, value in cls._kind_map.iteritems(): if name.startswith('__') and name.endswith('__'): keep[name] = value cls._kind_map.clear() cls._kind_map.update(keep)
[ "def", "_reset_kind_map", "(", "cls", ")", ":", "# Preserve \"system\" kinds, like __namespace__", "keep", "=", "{", "}", "for", "name", ",", "value", "in", "cls", ".", "_kind_map", ".", "iteritems", "(", ")", ":", "if", "name", ".", "startswith", "(", "'__'", ")", "and", "name", ".", "endswith", "(", "'__'", ")", ":", "keep", "[", "name", "]", "=", "value", "cls", ".", "_kind_map", ".", "clear", "(", ")", "cls", ".", "_kind_map", ".", "update", "(", "keep", ")" ]
Clear the kind map. Useful for testing.
[ "Clear", "the", "kind", "map", ".", "Useful", "for", "testing", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3074-L3082
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._lookup_model
def _lookup_model(cls, kind, default_model=None): """Get the model class for the kind. Args: kind: A string representing the name of the kind to lookup. default_model: The model class to use if the kind can't be found. Returns: The model class for the requested kind. Raises: KindError: The kind was not found and no default_model was provided. """ modelclass = cls._kind_map.get(kind, default_model) if modelclass is None: raise KindError( "No model class found for kind '%s'. Did you forget to import it?" % kind) return modelclass
python
def _lookup_model(cls, kind, default_model=None): """Get the model class for the kind. Args: kind: A string representing the name of the kind to lookup. default_model: The model class to use if the kind can't be found. Returns: The model class for the requested kind. Raises: KindError: The kind was not found and no default_model was provided. """ modelclass = cls._kind_map.get(kind, default_model) if modelclass is None: raise KindError( "No model class found for kind '%s'. Did you forget to import it?" % kind) return modelclass
[ "def", "_lookup_model", "(", "cls", ",", "kind", ",", "default_model", "=", "None", ")", ":", "modelclass", "=", "cls", ".", "_kind_map", ".", "get", "(", "kind", ",", "default_model", ")", "if", "modelclass", "is", "None", ":", "raise", "KindError", "(", "\"No model class found for kind '%s'. Did you forget to import it?\"", "%", "kind", ")", "return", "modelclass" ]
Get the model class for the kind. Args: kind: A string representing the name of the kind to lookup. default_model: The model class to use if the kind can't be found. Returns: The model class for the requested kind. Raises: KindError: The kind was not found and no default_model was provided.
[ "Get", "the", "model", "class", "for", "the", "kind", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3085-L3102
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._equivalent
def _equivalent(self, other): """Compare two entities of the same class, excluding keys.""" if other.__class__ is not self.__class__: # TODO: What about subclasses? raise NotImplementedError('Cannot compare different model classes. ' '%s is not %s' % (self.__class__.__name__, other.__class_.__name__)) if set(self._projection) != set(other._projection): return False # It's all about determining inequality early. if len(self._properties) != len(other._properties): return False # Can only happen for Expandos. my_prop_names = set(self._properties.iterkeys()) their_prop_names = set(other._properties.iterkeys()) if my_prop_names != their_prop_names: return False # Again, only possible for Expandos. if self._projection: my_prop_names = set(self._projection) for name in my_prop_names: if '.' in name: name, _ = name.split('.', 1) my_value = self._properties[name]._get_value(self) their_value = other._properties[name]._get_value(other) if my_value != their_value: return False return True
python
def _equivalent(self, other): """Compare two entities of the same class, excluding keys.""" if other.__class__ is not self.__class__: # TODO: What about subclasses? raise NotImplementedError('Cannot compare different model classes. ' '%s is not %s' % (self.__class__.__name__, other.__class_.__name__)) if set(self._projection) != set(other._projection): return False # It's all about determining inequality early. if len(self._properties) != len(other._properties): return False # Can only happen for Expandos. my_prop_names = set(self._properties.iterkeys()) their_prop_names = set(other._properties.iterkeys()) if my_prop_names != their_prop_names: return False # Again, only possible for Expandos. if self._projection: my_prop_names = set(self._projection) for name in my_prop_names: if '.' in name: name, _ = name.split('.', 1) my_value = self._properties[name]._get_value(self) their_value = other._properties[name]._get_value(other) if my_value != their_value: return False return True
[ "def", "_equivalent", "(", "self", ",", "other", ")", ":", "if", "other", ".", "__class__", "is", "not", "self", ".", "__class__", ":", "# TODO: What about subclasses?", "raise", "NotImplementedError", "(", "'Cannot compare different model classes. '", "'%s is not %s'", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "other", ".", "__class_", ".", "__name__", ")", ")", "if", "set", "(", "self", ".", "_projection", ")", "!=", "set", "(", "other", ".", "_projection", ")", ":", "return", "False", "# It's all about determining inequality early.", "if", "len", "(", "self", ".", "_properties", ")", "!=", "len", "(", "other", ".", "_properties", ")", ":", "return", "False", "# Can only happen for Expandos.", "my_prop_names", "=", "set", "(", "self", ".", "_properties", ".", "iterkeys", "(", ")", ")", "their_prop_names", "=", "set", "(", "other", ".", "_properties", ".", "iterkeys", "(", ")", ")", "if", "my_prop_names", "!=", "their_prop_names", ":", "return", "False", "# Again, only possible for Expandos.", "if", "self", ".", "_projection", ":", "my_prop_names", "=", "set", "(", "self", ".", "_projection", ")", "for", "name", "in", "my_prop_names", ":", "if", "'.'", "in", "name", ":", "name", ",", "_", "=", "name", ".", "split", "(", "'.'", ",", "1", ")", "my_value", "=", "self", ".", "_properties", "[", "name", "]", ".", "_get_value", "(", "self", ")", "their_value", "=", "other", ".", "_properties", "[", "name", "]", ".", "_get_value", "(", "other", ")", "if", "my_value", "!=", "their_value", ":", "return", "False", "return", "True" ]
Compare two entities of the same class, excluding keys.
[ "Compare", "two", "entities", "of", "the", "same", "class", "excluding", "keys", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3129-L3153
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._to_pb
def _to_pb(self, pb=None, allow_partial=False, set_key=True): """Internal helper to turn an entity into an EntityProto protobuf.""" if not allow_partial: self._check_initialized() if pb is None: pb = entity_pb.EntityProto() if set_key: # TODO: Move the key stuff into ModelAdapter.entity_to_pb()? self._key_to_pb(pb) for unused_name, prop in sorted(self._properties.iteritems()): prop._serialize(self, pb, projection=self._projection) return pb
python
def _to_pb(self, pb=None, allow_partial=False, set_key=True): """Internal helper to turn an entity into an EntityProto protobuf.""" if not allow_partial: self._check_initialized() if pb is None: pb = entity_pb.EntityProto() if set_key: # TODO: Move the key stuff into ModelAdapter.entity_to_pb()? self._key_to_pb(pb) for unused_name, prop in sorted(self._properties.iteritems()): prop._serialize(self, pb, projection=self._projection) return pb
[ "def", "_to_pb", "(", "self", ",", "pb", "=", "None", ",", "allow_partial", "=", "False", ",", "set_key", "=", "True", ")", ":", "if", "not", "allow_partial", ":", "self", ".", "_check_initialized", "(", ")", "if", "pb", "is", "None", ":", "pb", "=", "entity_pb", ".", "EntityProto", "(", ")", "if", "set_key", ":", "# TODO: Move the key stuff into ModelAdapter.entity_to_pb()?", "self", ".", "_key_to_pb", "(", "pb", ")", "for", "unused_name", ",", "prop", "in", "sorted", "(", "self", ".", "_properties", ".", "iteritems", "(", ")", ")", ":", "prop", ".", "_serialize", "(", "self", ",", "pb", ",", "projection", "=", "self", ".", "_projection", ")", "return", "pb" ]
Internal helper to turn an entity into an EntityProto protobuf.
[ "Internal", "helper", "to", "turn", "an", "entity", "into", "an", "EntityProto", "protobuf", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3155-L3169
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._key_to_pb
def _key_to_pb(self, pb): """Internal helper to copy the key into a protobuf.""" key = self._key if key is None: pairs = [(self._get_kind(), None)] ref = key_module._ReferenceFromPairs(pairs, reference=pb.mutable_key()) else: ref = key.reference() pb.mutable_key().CopyFrom(ref) group = pb.mutable_entity_group() # Must initialize this. # To work around an SDK issue, only set the entity group if the # full key is complete. TODO: Remove the top test once fixed. if key is not None and key.id(): elem = ref.path().element(0) if elem.id() or elem.name(): group.add_element().CopyFrom(elem)
python
def _key_to_pb(self, pb): """Internal helper to copy the key into a protobuf.""" key = self._key if key is None: pairs = [(self._get_kind(), None)] ref = key_module._ReferenceFromPairs(pairs, reference=pb.mutable_key()) else: ref = key.reference() pb.mutable_key().CopyFrom(ref) group = pb.mutable_entity_group() # Must initialize this. # To work around an SDK issue, only set the entity group if the # full key is complete. TODO: Remove the top test once fixed. if key is not None and key.id(): elem = ref.path().element(0) if elem.id() or elem.name(): group.add_element().CopyFrom(elem)
[ "def", "_key_to_pb", "(", "self", ",", "pb", ")", ":", "key", "=", "self", ".", "_key", "if", "key", "is", "None", ":", "pairs", "=", "[", "(", "self", ".", "_get_kind", "(", ")", ",", "None", ")", "]", "ref", "=", "key_module", ".", "_ReferenceFromPairs", "(", "pairs", ",", "reference", "=", "pb", ".", "mutable_key", "(", ")", ")", "else", ":", "ref", "=", "key", ".", "reference", "(", ")", "pb", ".", "mutable_key", "(", ")", ".", "CopyFrom", "(", "ref", ")", "group", "=", "pb", ".", "mutable_entity_group", "(", ")", "# Must initialize this.", "# To work around an SDK issue, only set the entity group if the", "# full key is complete. TODO: Remove the top test once fixed.", "if", "key", "is", "not", "None", "and", "key", ".", "id", "(", ")", ":", "elem", "=", "ref", ".", "path", "(", ")", ".", "element", "(", "0", ")", "if", "elem", ".", "id", "(", ")", "or", "elem", ".", "name", "(", ")", ":", "group", ".", "add_element", "(", ")", ".", "CopyFrom", "(", "elem", ")" ]
Internal helper to copy the key into a protobuf.
[ "Internal", "helper", "to", "copy", "the", "key", "into", "a", "protobuf", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3171-L3186
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._from_pb
def _from_pb(cls, pb, set_key=True, ent=None, key=None): """Internal helper to create an entity from an EntityProto protobuf.""" if not isinstance(pb, entity_pb.EntityProto): raise TypeError('pb must be a EntityProto; received %r' % pb) if ent is None: ent = cls() # A key passed in overrides a key in the pb. if key is None and pb.key().path().element_size(): key = Key(reference=pb.key()) # If set_key is not set, skip a trivial incomplete key. if key is not None and (set_key or key.id() or key.parent()): ent._key = key # NOTE(darke): Keep a map from (indexed, property name) to the property. # This allows us to skip the (relatively) expensive call to # _get_property_for for repeated fields. _property_map = {} projection = [] for indexed, plist in ((True, pb.property_list()), (False, pb.raw_property_list())): for p in plist: if p.meaning() == entity_pb.Property.INDEX_VALUE: projection.append(p.name()) property_map_key = (p.name(), indexed) if property_map_key not in _property_map: _property_map[property_map_key] = ent._get_property_for(p, indexed) _property_map[property_map_key]._deserialize(ent, p) ent._set_projection(projection) return ent
python
def _from_pb(cls, pb, set_key=True, ent=None, key=None): """Internal helper to create an entity from an EntityProto protobuf.""" if not isinstance(pb, entity_pb.EntityProto): raise TypeError('pb must be a EntityProto; received %r' % pb) if ent is None: ent = cls() # A key passed in overrides a key in the pb. if key is None and pb.key().path().element_size(): key = Key(reference=pb.key()) # If set_key is not set, skip a trivial incomplete key. if key is not None and (set_key or key.id() or key.parent()): ent._key = key # NOTE(darke): Keep a map from (indexed, property name) to the property. # This allows us to skip the (relatively) expensive call to # _get_property_for for repeated fields. _property_map = {} projection = [] for indexed, plist in ((True, pb.property_list()), (False, pb.raw_property_list())): for p in plist: if p.meaning() == entity_pb.Property.INDEX_VALUE: projection.append(p.name()) property_map_key = (p.name(), indexed) if property_map_key not in _property_map: _property_map[property_map_key] = ent._get_property_for(p, indexed) _property_map[property_map_key]._deserialize(ent, p) ent._set_projection(projection) return ent
[ "def", "_from_pb", "(", "cls", ",", "pb", ",", "set_key", "=", "True", ",", "ent", "=", "None", ",", "key", "=", "None", ")", ":", "if", "not", "isinstance", "(", "pb", ",", "entity_pb", ".", "EntityProto", ")", ":", "raise", "TypeError", "(", "'pb must be a EntityProto; received %r'", "%", "pb", ")", "if", "ent", "is", "None", ":", "ent", "=", "cls", "(", ")", "# A key passed in overrides a key in the pb.", "if", "key", "is", "None", "and", "pb", ".", "key", "(", ")", ".", "path", "(", ")", ".", "element_size", "(", ")", ":", "key", "=", "Key", "(", "reference", "=", "pb", ".", "key", "(", ")", ")", "# If set_key is not set, skip a trivial incomplete key.", "if", "key", "is", "not", "None", "and", "(", "set_key", "or", "key", ".", "id", "(", ")", "or", "key", ".", "parent", "(", ")", ")", ":", "ent", ".", "_key", "=", "key", "# NOTE(darke): Keep a map from (indexed, property name) to the property.", "# This allows us to skip the (relatively) expensive call to", "# _get_property_for for repeated fields.", "_property_map", "=", "{", "}", "projection", "=", "[", "]", "for", "indexed", ",", "plist", "in", "(", "(", "True", ",", "pb", ".", "property_list", "(", ")", ")", ",", "(", "False", ",", "pb", ".", "raw_property_list", "(", ")", ")", ")", ":", "for", "p", "in", "plist", ":", "if", "p", ".", "meaning", "(", ")", "==", "entity_pb", ".", "Property", ".", "INDEX_VALUE", ":", "projection", ".", "append", "(", "p", ".", "name", "(", ")", ")", "property_map_key", "=", "(", "p", ".", "name", "(", ")", ",", "indexed", ")", "if", "property_map_key", "not", "in", "_property_map", ":", "_property_map", "[", "property_map_key", "]", "=", "ent", ".", "_get_property_for", "(", "p", ",", "indexed", ")", "_property_map", "[", "property_map_key", "]", ".", "_deserialize", "(", "ent", ",", "p", ")", "ent", ".", "_set_projection", "(", "projection", ")", "return", "ent" ]
Internal helper to create an entity from an EntityProto protobuf.
[ "Internal", "helper", "to", "create", "an", "entity", "from", "an", "EntityProto", "protobuf", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3189-L3219
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._get_property_for
def _get_property_for(self, p, indexed=True, depth=0): """Internal helper to get the Property for a protobuf-level property.""" parts = p.name().split('.') if len(parts) <= depth: # Apparently there's an unstructured value here. # Assume it is a None written for a missing value. # (It could also be that a schema change turned an unstructured # value into a structured one. In that case, too, it seems # better to return None than to return an unstructured value, # since the latter doesn't match the current schema.) return None next = parts[depth] prop = self._properties.get(next) if prop is None: prop = self._fake_property(p, next, indexed) return prop
python
def _get_property_for(self, p, indexed=True, depth=0): """Internal helper to get the Property for a protobuf-level property.""" parts = p.name().split('.') if len(parts) <= depth: # Apparently there's an unstructured value here. # Assume it is a None written for a missing value. # (It could also be that a schema change turned an unstructured # value into a structured one. In that case, too, it seems # better to return None than to return an unstructured value, # since the latter doesn't match the current schema.) return None next = parts[depth] prop = self._properties.get(next) if prop is None: prop = self._fake_property(p, next, indexed) return prop
[ "def", "_get_property_for", "(", "self", ",", "p", ",", "indexed", "=", "True", ",", "depth", "=", "0", ")", ":", "parts", "=", "p", ".", "name", "(", ")", ".", "split", "(", "'.'", ")", "if", "len", "(", "parts", ")", "<=", "depth", ":", "# Apparently there's an unstructured value here.", "# Assume it is a None written for a missing value.", "# (It could also be that a schema change turned an unstructured", "# value into a structured one. In that case, too, it seems", "# better to return None than to return an unstructured value,", "# since the latter doesn't match the current schema.)", "return", "None", "next", "=", "parts", "[", "depth", "]", "prop", "=", "self", ".", "_properties", ".", "get", "(", "next", ")", "if", "prop", "is", "None", ":", "prop", "=", "self", ".", "_fake_property", "(", "p", ",", "next", ",", "indexed", ")", "return", "prop" ]
Internal helper to get the Property for a protobuf-level property.
[ "Internal", "helper", "to", "get", "the", "Property", "for", "a", "protobuf", "-", "level", "property", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3238-L3253
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._clone_properties
def _clone_properties(self): """Internal helper to clone self._properties if necessary.""" cls = self.__class__ if self._properties is cls._properties: self._properties = dict(cls._properties)
python
def _clone_properties(self): """Internal helper to clone self._properties if necessary.""" cls = self.__class__ if self._properties is cls._properties: self._properties = dict(cls._properties)
[ "def", "_clone_properties", "(", "self", ")", ":", "cls", "=", "self", ".", "__class__", "if", "self", ".", "_properties", "is", "cls", ".", "_properties", ":", "self", ".", "_properties", "=", "dict", "(", "cls", ".", "_properties", ")" ]
Internal helper to clone self._properties if necessary.
[ "Internal", "helper", "to", "clone", "self", ".", "_properties", "if", "necessary", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3255-L3259
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._fake_property
def _fake_property(self, p, next, indexed=True): """Internal helper to create a fake Property.""" self._clone_properties() if p.name() != next and not p.name().endswith('.' + next): prop = StructuredProperty(Expando, next) prop._store_value(self, _BaseValue(Expando())) else: compressed = p.meaning_uri() == _MEANING_URI_COMPRESSED prop = GenericProperty(next, repeated=p.multiple(), indexed=indexed, compressed=compressed) prop._code_name = next self._properties[prop._name] = prop return prop
python
def _fake_property(self, p, next, indexed=True): """Internal helper to create a fake Property.""" self._clone_properties() if p.name() != next and not p.name().endswith('.' + next): prop = StructuredProperty(Expando, next) prop._store_value(self, _BaseValue(Expando())) else: compressed = p.meaning_uri() == _MEANING_URI_COMPRESSED prop = GenericProperty(next, repeated=p.multiple(), indexed=indexed, compressed=compressed) prop._code_name = next self._properties[prop._name] = prop return prop
[ "def", "_fake_property", "(", "self", ",", "p", ",", "next", ",", "indexed", "=", "True", ")", ":", "self", ".", "_clone_properties", "(", ")", "if", "p", ".", "name", "(", ")", "!=", "next", "and", "not", "p", ".", "name", "(", ")", ".", "endswith", "(", "'.'", "+", "next", ")", ":", "prop", "=", "StructuredProperty", "(", "Expando", ",", "next", ")", "prop", ".", "_store_value", "(", "self", ",", "_BaseValue", "(", "Expando", "(", ")", ")", ")", "else", ":", "compressed", "=", "p", ".", "meaning_uri", "(", ")", "==", "_MEANING_URI_COMPRESSED", "prop", "=", "GenericProperty", "(", "next", ",", "repeated", "=", "p", ".", "multiple", "(", ")", ",", "indexed", "=", "indexed", ",", "compressed", "=", "compressed", ")", "prop", ".", "_code_name", "=", "next", "self", ".", "_properties", "[", "prop", ".", "_name", "]", "=", "prop", "return", "prop" ]
Internal helper to create a fake Property.
[ "Internal", "helper", "to", "create", "a", "fake", "Property", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3261-L3275
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._to_dict
def _to_dict(self, include=None, exclude=None): """Return a dict containing the entity's property values. Args: include: Optional set of property names to include, default all. exclude: Optional set of property names to skip, default none. A name contained in both include and exclude is excluded. """ if (include is not None and not isinstance(include, (list, tuple, set, frozenset))): raise TypeError('include should be a list, tuple or set') if (exclude is not None and not isinstance(exclude, (list, tuple, set, frozenset))): raise TypeError('exclude should be a list, tuple or set') values = {} for prop in self._properties.itervalues(): name = prop._code_name if include is not None and name not in include: continue if exclude is not None and name in exclude: continue try: values[name] = prop._get_for_dict(self) except UnprojectedPropertyError: pass # Ignore unprojected properties rather than failing. return values
python
def _to_dict(self, include=None, exclude=None): """Return a dict containing the entity's property values. Args: include: Optional set of property names to include, default all. exclude: Optional set of property names to skip, default none. A name contained in both include and exclude is excluded. """ if (include is not None and not isinstance(include, (list, tuple, set, frozenset))): raise TypeError('include should be a list, tuple or set') if (exclude is not None and not isinstance(exclude, (list, tuple, set, frozenset))): raise TypeError('exclude should be a list, tuple or set') values = {} for prop in self._properties.itervalues(): name = prop._code_name if include is not None and name not in include: continue if exclude is not None and name in exclude: continue try: values[name] = prop._get_for_dict(self) except UnprojectedPropertyError: pass # Ignore unprojected properties rather than failing. return values
[ "def", "_to_dict", "(", "self", ",", "include", "=", "None", ",", "exclude", "=", "None", ")", ":", "if", "(", "include", "is", "not", "None", "and", "not", "isinstance", "(", "include", ",", "(", "list", ",", "tuple", ",", "set", ",", "frozenset", ")", ")", ")", ":", "raise", "TypeError", "(", "'include should be a list, tuple or set'", ")", "if", "(", "exclude", "is", "not", "None", "and", "not", "isinstance", "(", "exclude", ",", "(", "list", ",", "tuple", ",", "set", ",", "frozenset", ")", ")", ")", ":", "raise", "TypeError", "(", "'exclude should be a list, tuple or set'", ")", "values", "=", "{", "}", "for", "prop", "in", "self", ".", "_properties", ".", "itervalues", "(", ")", ":", "name", "=", "prop", ".", "_code_name", "if", "include", "is", "not", "None", "and", "name", "not", "in", "include", ":", "continue", "if", "exclude", "is", "not", "None", "and", "name", "in", "exclude", ":", "continue", "try", ":", "values", "[", "name", "]", "=", "prop", ".", "_get_for_dict", "(", "self", ")", "except", "UnprojectedPropertyError", ":", "pass", "# Ignore unprojected properties rather than failing.", "return", "values" ]
Return a dict containing the entity's property values. Args: include: Optional set of property names to include, default all. exclude: Optional set of property names to skip, default none. A name contained in both include and exclude is excluded.
[ "Return", "a", "dict", "containing", "the", "entity", "s", "property", "values", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3278-L3303
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._fix_up_properties
def _fix_up_properties(cls): """Fix up the properties by calling their _fix_up() method. Note: This is called by MetaModel, but may also be called manually after dynamically updating a model class. """ # Verify that _get_kind() returns an 8-bit string. kind = cls._get_kind() if not isinstance(kind, basestring): raise KindError('Class %s defines a _get_kind() method that returns ' 'a non-string (%r)' % (cls.__name__, kind)) if not isinstance(kind, str): try: kind = kind.encode('ascii') # ASCII contents is okay. except UnicodeEncodeError: raise KindError('Class %s defines a _get_kind() method that returns ' 'a Unicode string (%r); please encode using utf-8' % (cls.__name__, kind)) cls._properties = {} # Map of {name: Property} if cls.__module__ == __name__: # Skip the classes in *this* file. return for name in set(dir(cls)): attr = getattr(cls, name, None) if isinstance(attr, ModelAttribute) and not isinstance(attr, ModelKey): if name.startswith('_'): raise TypeError('ModelAttribute %s cannot begin with an underscore ' 'character. _ prefixed attributes are reserved for ' 'temporary Model instance values.' % name) attr._fix_up(cls, name) if isinstance(attr, Property): if (attr._repeated or (isinstance(attr, StructuredProperty) and attr._modelclass._has_repeated)): cls._has_repeated = True cls._properties[attr._name] = attr cls._update_kind_map()
python
def _fix_up_properties(cls): """Fix up the properties by calling their _fix_up() method. Note: This is called by MetaModel, but may also be called manually after dynamically updating a model class. """ # Verify that _get_kind() returns an 8-bit string. kind = cls._get_kind() if not isinstance(kind, basestring): raise KindError('Class %s defines a _get_kind() method that returns ' 'a non-string (%r)' % (cls.__name__, kind)) if not isinstance(kind, str): try: kind = kind.encode('ascii') # ASCII contents is okay. except UnicodeEncodeError: raise KindError('Class %s defines a _get_kind() method that returns ' 'a Unicode string (%r); please encode using utf-8' % (cls.__name__, kind)) cls._properties = {} # Map of {name: Property} if cls.__module__ == __name__: # Skip the classes in *this* file. return for name in set(dir(cls)): attr = getattr(cls, name, None) if isinstance(attr, ModelAttribute) and not isinstance(attr, ModelKey): if name.startswith('_'): raise TypeError('ModelAttribute %s cannot begin with an underscore ' 'character. _ prefixed attributes are reserved for ' 'temporary Model instance values.' % name) attr._fix_up(cls, name) if isinstance(attr, Property): if (attr._repeated or (isinstance(attr, StructuredProperty) and attr._modelclass._has_repeated)): cls._has_repeated = True cls._properties[attr._name] = attr cls._update_kind_map()
[ "def", "_fix_up_properties", "(", "cls", ")", ":", "# Verify that _get_kind() returns an 8-bit string.", "kind", "=", "cls", ".", "_get_kind", "(", ")", "if", "not", "isinstance", "(", "kind", ",", "basestring", ")", ":", "raise", "KindError", "(", "'Class %s defines a _get_kind() method that returns '", "'a non-string (%r)'", "%", "(", "cls", ".", "__name__", ",", "kind", ")", ")", "if", "not", "isinstance", "(", "kind", ",", "str", ")", ":", "try", ":", "kind", "=", "kind", ".", "encode", "(", "'ascii'", ")", "# ASCII contents is okay.", "except", "UnicodeEncodeError", ":", "raise", "KindError", "(", "'Class %s defines a _get_kind() method that returns '", "'a Unicode string (%r); please encode using utf-8'", "%", "(", "cls", ".", "__name__", ",", "kind", ")", ")", "cls", ".", "_properties", "=", "{", "}", "# Map of {name: Property}", "if", "cls", ".", "__module__", "==", "__name__", ":", "# Skip the classes in *this* file.", "return", "for", "name", "in", "set", "(", "dir", "(", "cls", ")", ")", ":", "attr", "=", "getattr", "(", "cls", ",", "name", ",", "None", ")", "if", "isinstance", "(", "attr", ",", "ModelAttribute", ")", "and", "not", "isinstance", "(", "attr", ",", "ModelKey", ")", ":", "if", "name", ".", "startswith", "(", "'_'", ")", ":", "raise", "TypeError", "(", "'ModelAttribute %s cannot begin with an underscore '", "'character. _ prefixed attributes are reserved for '", "'temporary Model instance values.'", "%", "name", ")", "attr", ".", "_fix_up", "(", "cls", ",", "name", ")", "if", "isinstance", "(", "attr", ",", "Property", ")", ":", "if", "(", "attr", ".", "_repeated", "or", "(", "isinstance", "(", "attr", ",", "StructuredProperty", ")", "and", "attr", ".", "_modelclass", ".", "_has_repeated", ")", ")", ":", "cls", ".", "_has_repeated", "=", "True", "cls", ".", "_properties", "[", "attr", ".", "_name", "]", "=", "attr", "cls", ".", "_update_kind_map", "(", ")" ]
Fix up the properties by calling their _fix_up() method. Note: This is called by MetaModel, but may also be called manually after dynamically updating a model class.
[ "Fix", "up", "the", "properties", "by", "calling", "their", "_fix_up", "()", "method", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3307-L3342
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._check_properties
def _check_properties(cls, property_names, require_indexed=True): """Internal helper to check the given properties exist and meet specified requirements. Called from query.py. Args: property_names: List or tuple of property names -- each being a string, possibly containing dots (to address subproperties of structured properties). Raises: InvalidPropertyError if one of the properties is invalid. AssertionError if the argument is not a list or tuple of strings. """ assert isinstance(property_names, (list, tuple)), repr(property_names) for name in property_names: assert isinstance(name, basestring), repr(name) if '.' in name: name, rest = name.split('.', 1) else: rest = None prop = cls._properties.get(name) if prop is None: cls._unknown_property(name) else: prop._check_property(rest, require_indexed=require_indexed)
python
def _check_properties(cls, property_names, require_indexed=True): """Internal helper to check the given properties exist and meet specified requirements. Called from query.py. Args: property_names: List or tuple of property names -- each being a string, possibly containing dots (to address subproperties of structured properties). Raises: InvalidPropertyError if one of the properties is invalid. AssertionError if the argument is not a list or tuple of strings. """ assert isinstance(property_names, (list, tuple)), repr(property_names) for name in property_names: assert isinstance(name, basestring), repr(name) if '.' in name: name, rest = name.split('.', 1) else: rest = None prop = cls._properties.get(name) if prop is None: cls._unknown_property(name) else: prop._check_property(rest, require_indexed=require_indexed)
[ "def", "_check_properties", "(", "cls", ",", "property_names", ",", "require_indexed", "=", "True", ")", ":", "assert", "isinstance", "(", "property_names", ",", "(", "list", ",", "tuple", ")", ")", ",", "repr", "(", "property_names", ")", "for", "name", "in", "property_names", ":", "assert", "isinstance", "(", "name", ",", "basestring", ")", ",", "repr", "(", "name", ")", "if", "'.'", "in", "name", ":", "name", ",", "rest", "=", "name", ".", "split", "(", "'.'", ",", "1", ")", "else", ":", "rest", "=", "None", "prop", "=", "cls", ".", "_properties", ".", "get", "(", "name", ")", "if", "prop", "is", "None", ":", "cls", ".", "_unknown_property", "(", "name", ")", "else", ":", "prop", ".", "_check_property", "(", "rest", ",", "require_indexed", "=", "require_indexed", ")" ]
Internal helper to check the given properties exist and meet specified requirements. Called from query.py. Args: property_names: List or tuple of property names -- each being a string, possibly containing dots (to address subproperties of structured properties). Raises: InvalidPropertyError if one of the properties is invalid. AssertionError if the argument is not a list or tuple of strings.
[ "Internal", "helper", "to", "check", "the", "given", "properties", "exist", "and", "meet", "specified", "requirements", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3355-L3381
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._query
def _query(cls, *args, **kwds): """Create a Query object for this class. Args: distinct: Optional bool, short hand for group_by = projection. *args: Used to apply an initial filter **kwds: are passed to the Query() constructor. Returns: A Query object. """ # Validating distinct. if 'distinct' in kwds: if 'group_by' in kwds: raise TypeError( 'cannot use distinct= and group_by= at the same time') projection = kwds.get('projection') if not projection: raise TypeError( 'cannot use distinct= without projection=') if kwds.pop('distinct'): kwds['group_by'] = projection # TODO: Disallow non-empty args and filter=. from .query import Query # Import late to avoid circular imports. qry = Query(kind=cls._get_kind(), **kwds) qry = qry.filter(*cls._default_filters()) qry = qry.filter(*args) return qry
python
def _query(cls, *args, **kwds): """Create a Query object for this class. Args: distinct: Optional bool, short hand for group_by = projection. *args: Used to apply an initial filter **kwds: are passed to the Query() constructor. Returns: A Query object. """ # Validating distinct. if 'distinct' in kwds: if 'group_by' in kwds: raise TypeError( 'cannot use distinct= and group_by= at the same time') projection = kwds.get('projection') if not projection: raise TypeError( 'cannot use distinct= without projection=') if kwds.pop('distinct'): kwds['group_by'] = projection # TODO: Disallow non-empty args and filter=. from .query import Query # Import late to avoid circular imports. qry = Query(kind=cls._get_kind(), **kwds) qry = qry.filter(*cls._default_filters()) qry = qry.filter(*args) return qry
[ "def", "_query", "(", "cls", ",", "*", "args", ",", "*", "*", "kwds", ")", ":", "# Validating distinct.", "if", "'distinct'", "in", "kwds", ":", "if", "'group_by'", "in", "kwds", ":", "raise", "TypeError", "(", "'cannot use distinct= and group_by= at the same time'", ")", "projection", "=", "kwds", ".", "get", "(", "'projection'", ")", "if", "not", "projection", ":", "raise", "TypeError", "(", "'cannot use distinct= without projection='", ")", "if", "kwds", ".", "pop", "(", "'distinct'", ")", ":", "kwds", "[", "'group_by'", "]", "=", "projection", "# TODO: Disallow non-empty args and filter=.", "from", ".", "query", "import", "Query", "# Import late to avoid circular imports.", "qry", "=", "Query", "(", "kind", "=", "cls", ".", "_get_kind", "(", ")", ",", "*", "*", "kwds", ")", "qry", "=", "qry", ".", "filter", "(", "*", "cls", ".", "_default_filters", "(", ")", ")", "qry", "=", "qry", ".", "filter", "(", "*", "args", ")", "return", "qry" ]
Create a Query object for this class. Args: distinct: Optional bool, short hand for group_by = projection. *args: Used to apply an initial filter **kwds: are passed to the Query() constructor. Returns: A Query object.
[ "Create", "a", "Query", "object", "for", "this", "class", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3410-L3438
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._gql
def _gql(cls, query_string, *args, **kwds): """Run a GQL query.""" from .query import gql # Import late to avoid circular imports. return gql('SELECT * FROM %s %s' % (cls._class_name(), query_string), *args, **kwds)
python
def _gql(cls, query_string, *args, **kwds): """Run a GQL query.""" from .query import gql # Import late to avoid circular imports. return gql('SELECT * FROM %s %s' % (cls._class_name(), query_string), *args, **kwds)
[ "def", "_gql", "(", "cls", ",", "query_string", ",", "*", "args", ",", "*", "*", "kwds", ")", ":", "from", ".", "query", "import", "gql", "# Import late to avoid circular imports.", "return", "gql", "(", "'SELECT * FROM %s %s'", "%", "(", "cls", ".", "_class_name", "(", ")", ",", "query_string", ")", ",", "*", "args", ",", "*", "*", "kwds", ")" ]
Run a GQL query.
[ "Run", "a", "GQL", "query", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3442-L3446
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._put_async
def _put_async(self, **ctx_options): """Write this entity to Cloud Datastore. This is the asynchronous version of Model._put(). """ if self._projection: raise datastore_errors.BadRequestError('Cannot put a partial entity') from . import tasklets ctx = tasklets.get_context() self._prepare_for_put() if self._key is None: self._key = Key(self._get_kind(), None) self._pre_put_hook() fut = ctx.put(self, **ctx_options) post_hook = self._post_put_hook if not self._is_default_hook(Model._default_post_put_hook, post_hook): fut.add_immediate_callback(post_hook, fut) return fut
python
def _put_async(self, **ctx_options): """Write this entity to Cloud Datastore. This is the asynchronous version of Model._put(). """ if self._projection: raise datastore_errors.BadRequestError('Cannot put a partial entity') from . import tasklets ctx = tasklets.get_context() self._prepare_for_put() if self._key is None: self._key = Key(self._get_kind(), None) self._pre_put_hook() fut = ctx.put(self, **ctx_options) post_hook = self._post_put_hook if not self._is_default_hook(Model._default_post_put_hook, post_hook): fut.add_immediate_callback(post_hook, fut) return fut
[ "def", "_put_async", "(", "self", ",", "*", "*", "ctx_options", ")", ":", "if", "self", ".", "_projection", ":", "raise", "datastore_errors", ".", "BadRequestError", "(", "'Cannot put a partial entity'", ")", "from", ".", "import", "tasklets", "ctx", "=", "tasklets", ".", "get_context", "(", ")", "self", ".", "_prepare_for_put", "(", ")", "if", "self", ".", "_key", "is", "None", ":", "self", ".", "_key", "=", "Key", "(", "self", ".", "_get_kind", "(", ")", ",", "None", ")", "self", ".", "_pre_put_hook", "(", ")", "fut", "=", "ctx", ".", "put", "(", "self", ",", "*", "*", "ctx_options", ")", "post_hook", "=", "self", ".", "_post_put_hook", "if", "not", "self", ".", "_is_default_hook", "(", "Model", ".", "_default_post_put_hook", ",", "post_hook", ")", ":", "fut", ".", "add_immediate_callback", "(", "post_hook", ",", "fut", ")", "return", "fut" ]
Write this entity to Cloud Datastore. This is the asynchronous version of Model._put().
[ "Write", "this", "entity", "to", "Cloud", "Datastore", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3461-L3478
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._get_or_insert
def _get_or_insert(*args, **kwds): """Transactionally retrieves an existing entity or creates a new one. Positional Args: name: Key name to retrieve or create. Keyword Args: namespace: Optional namespace. app: Optional app ID. parent: Parent entity key, if any. context_options: ContextOptions object (not keyword args!) or None. **kwds: Keyword arguments to pass to the constructor of the model class if an instance for the specified key name does not already exist. If an instance with the supplied key_name and parent already exists, these arguments will be discarded. Returns: Existing instance of Model class with the specified key name and parent or a new one that has just been created. """ cls, args = args[0], args[1:] return cls._get_or_insert_async(*args, **kwds).get_result()
python
def _get_or_insert(*args, **kwds): """Transactionally retrieves an existing entity or creates a new one. Positional Args: name: Key name to retrieve or create. Keyword Args: namespace: Optional namespace. app: Optional app ID. parent: Parent entity key, if any. context_options: ContextOptions object (not keyword args!) or None. **kwds: Keyword arguments to pass to the constructor of the model class if an instance for the specified key name does not already exist. If an instance with the supplied key_name and parent already exists, these arguments will be discarded. Returns: Existing instance of Model class with the specified key name and parent or a new one that has just been created. """ cls, args = args[0], args[1:] return cls._get_or_insert_async(*args, **kwds).get_result()
[ "def", "_get_or_insert", "(", "*", "args", ",", "*", "*", "kwds", ")", ":", "cls", ",", "args", "=", "args", "[", "0", "]", ",", "args", "[", "1", ":", "]", "return", "cls", ".", "_get_or_insert_async", "(", "*", "args", ",", "*", "*", "kwds", ")", ".", "get_result", "(", ")" ]
Transactionally retrieves an existing entity or creates a new one. Positional Args: name: Key name to retrieve or create. Keyword Args: namespace: Optional namespace. app: Optional app ID. parent: Parent entity key, if any. context_options: ContextOptions object (not keyword args!) or None. **kwds: Keyword arguments to pass to the constructor of the model class if an instance for the specified key name does not already exist. If an instance with the supplied key_name and parent already exists, these arguments will be discarded. Returns: Existing instance of Model class with the specified key name and parent or a new one that has just been created.
[ "Transactionally", "retrieves", "an", "existing", "entity", "or", "creates", "a", "new", "one", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3482-L3503
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._get_or_insert_async
def _get_or_insert_async(*args, **kwds): """Transactionally retrieves an existing entity or creates a new one. This is the asynchronous version of Model._get_or_insert(). """ # NOTE: The signature is really weird here because we want to support # models with properties named e.g. 'cls' or 'name'. from . import tasklets cls, name = args # These must always be positional. get_arg = cls.__get_arg app = get_arg(kwds, 'app') namespace = get_arg(kwds, 'namespace') parent = get_arg(kwds, 'parent') context_options = get_arg(kwds, 'context_options') # (End of super-special argument parsing.) # TODO: Test the heck out of this, in all sorts of evil scenarios. if not isinstance(name, basestring): raise TypeError('name must be a string; received %r' % name) elif not name: raise ValueError('name cannot be an empty string.') key = Key(cls, name, app=app, namespace=namespace, parent=parent) @tasklets.tasklet def internal_tasklet(): @tasklets.tasklet def txn(): ent = yield key.get_async(options=context_options) if ent is None: ent = cls(**kwds) # TODO: Use _populate(). ent._key = key yield ent.put_async(options=context_options) raise tasklets.Return(ent) if in_transaction(): # Run txn() in existing transaction. ent = yield txn() else: # Maybe avoid a transaction altogether. ent = yield key.get_async(options=context_options) if ent is None: # Run txn() in new transaction. ent = yield transaction_async(txn) raise tasklets.Return(ent) return internal_tasklet()
python
def _get_or_insert_async(*args, **kwds): """Transactionally retrieves an existing entity or creates a new one. This is the asynchronous version of Model._get_or_insert(). """ # NOTE: The signature is really weird here because we want to support # models with properties named e.g. 'cls' or 'name'. from . import tasklets cls, name = args # These must always be positional. get_arg = cls.__get_arg app = get_arg(kwds, 'app') namespace = get_arg(kwds, 'namespace') parent = get_arg(kwds, 'parent') context_options = get_arg(kwds, 'context_options') # (End of super-special argument parsing.) # TODO: Test the heck out of this, in all sorts of evil scenarios. if not isinstance(name, basestring): raise TypeError('name must be a string; received %r' % name) elif not name: raise ValueError('name cannot be an empty string.') key = Key(cls, name, app=app, namespace=namespace, parent=parent) @tasklets.tasklet def internal_tasklet(): @tasklets.tasklet def txn(): ent = yield key.get_async(options=context_options) if ent is None: ent = cls(**kwds) # TODO: Use _populate(). ent._key = key yield ent.put_async(options=context_options) raise tasklets.Return(ent) if in_transaction(): # Run txn() in existing transaction. ent = yield txn() else: # Maybe avoid a transaction altogether. ent = yield key.get_async(options=context_options) if ent is None: # Run txn() in new transaction. ent = yield transaction_async(txn) raise tasklets.Return(ent) return internal_tasklet()
[ "def", "_get_or_insert_async", "(", "*", "args", ",", "*", "*", "kwds", ")", ":", "# NOTE: The signature is really weird here because we want to support", "# models with properties named e.g. 'cls' or 'name'.", "from", ".", "import", "tasklets", "cls", ",", "name", "=", "args", "# These must always be positional.", "get_arg", "=", "cls", ".", "__get_arg", "app", "=", "get_arg", "(", "kwds", ",", "'app'", ")", "namespace", "=", "get_arg", "(", "kwds", ",", "'namespace'", ")", "parent", "=", "get_arg", "(", "kwds", ",", "'parent'", ")", "context_options", "=", "get_arg", "(", "kwds", ",", "'context_options'", ")", "# (End of super-special argument parsing.)", "# TODO: Test the heck out of this, in all sorts of evil scenarios.", "if", "not", "isinstance", "(", "name", ",", "basestring", ")", ":", "raise", "TypeError", "(", "'name must be a string; received %r'", "%", "name", ")", "elif", "not", "name", ":", "raise", "ValueError", "(", "'name cannot be an empty string.'", ")", "key", "=", "Key", "(", "cls", ",", "name", ",", "app", "=", "app", ",", "namespace", "=", "namespace", ",", "parent", "=", "parent", ")", "@", "tasklets", ".", "tasklet", "def", "internal_tasklet", "(", ")", ":", "@", "tasklets", ".", "tasklet", "def", "txn", "(", ")", ":", "ent", "=", "yield", "key", ".", "get_async", "(", "options", "=", "context_options", ")", "if", "ent", "is", "None", ":", "ent", "=", "cls", "(", "*", "*", "kwds", ")", "# TODO: Use _populate().", "ent", ".", "_key", "=", "key", "yield", "ent", ".", "put_async", "(", "options", "=", "context_options", ")", "raise", "tasklets", ".", "Return", "(", "ent", ")", "if", "in_transaction", "(", ")", ":", "# Run txn() in existing transaction.", "ent", "=", "yield", "txn", "(", ")", "else", ":", "# Maybe avoid a transaction altogether.", "ent", "=", "yield", "key", ".", "get_async", "(", "options", "=", "context_options", ")", "if", "ent", "is", "None", ":", "# Run txn() in new transaction.", "ent", "=", "yield", "transaction_async", "(", "txn", ")", "raise", "tasklets", ".", "Return", "(", "ent", ")", "return", "internal_tasklet", "(", ")" ]
Transactionally retrieves an existing entity or creates a new one. This is the asynchronous version of Model._get_or_insert().
[ "Transactionally", "retrieves", "an", "existing", "entity", "or", "creates", "a", "new", "one", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3507-L3550
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._allocate_ids
def _allocate_ids(cls, size=None, max=None, parent=None, **ctx_options): """Allocates a range of key IDs for this model class. Args: size: Number of IDs to allocate. Either size or max can be specified, not both. max: Maximum ID to allocate. Either size or max can be specified, not both. parent: Parent key for which the IDs will be allocated. **ctx_options: Context options. Returns: A tuple with (start, end) for the allocated range, inclusive. """ return cls._allocate_ids_async(size=size, max=max, parent=parent, **ctx_options).get_result()
python
def _allocate_ids(cls, size=None, max=None, parent=None, **ctx_options): """Allocates a range of key IDs for this model class. Args: size: Number of IDs to allocate. Either size or max can be specified, not both. max: Maximum ID to allocate. Either size or max can be specified, not both. parent: Parent key for which the IDs will be allocated. **ctx_options: Context options. Returns: A tuple with (start, end) for the allocated range, inclusive. """ return cls._allocate_ids_async(size=size, max=max, parent=parent, **ctx_options).get_result()
[ "def", "_allocate_ids", "(", "cls", ",", "size", "=", "None", ",", "max", "=", "None", ",", "parent", "=", "None", ",", "*", "*", "ctx_options", ")", ":", "return", "cls", ".", "_allocate_ids_async", "(", "size", "=", "size", ",", "max", "=", "max", ",", "parent", "=", "parent", ",", "*", "*", "ctx_options", ")", ".", "get_result", "(", ")" ]
Allocates a range of key IDs for this model class. Args: size: Number of IDs to allocate. Either size or max can be specified, not both. max: Maximum ID to allocate. Either size or max can be specified, not both. parent: Parent key for which the IDs will be allocated. **ctx_options: Context options. Returns: A tuple with (start, end) for the allocated range, inclusive.
[ "Allocates", "a", "range", "of", "key", "IDs", "for", "this", "model", "class", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3555-L3570
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._allocate_ids_async
def _allocate_ids_async(cls, size=None, max=None, parent=None, **ctx_options): """Allocates a range of key IDs for this model class. This is the asynchronous version of Model._allocate_ids(). """ from . import tasklets ctx = tasklets.get_context() cls._pre_allocate_ids_hook(size, max, parent) key = Key(cls._get_kind(), None, parent=parent) fut = ctx.allocate_ids(key, size=size, max=max, **ctx_options) post_hook = cls._post_allocate_ids_hook if not cls._is_default_hook(Model._default_post_allocate_ids_hook, post_hook): fut.add_immediate_callback(post_hook, size, max, parent, fut) return fut
python
def _allocate_ids_async(cls, size=None, max=None, parent=None, **ctx_options): """Allocates a range of key IDs for this model class. This is the asynchronous version of Model._allocate_ids(). """ from . import tasklets ctx = tasklets.get_context() cls._pre_allocate_ids_hook(size, max, parent) key = Key(cls._get_kind(), None, parent=parent) fut = ctx.allocate_ids(key, size=size, max=max, **ctx_options) post_hook = cls._post_allocate_ids_hook if not cls._is_default_hook(Model._default_post_allocate_ids_hook, post_hook): fut.add_immediate_callback(post_hook, size, max, parent, fut) return fut
[ "def", "_allocate_ids_async", "(", "cls", ",", "size", "=", "None", ",", "max", "=", "None", ",", "parent", "=", "None", ",", "*", "*", "ctx_options", ")", ":", "from", ".", "import", "tasklets", "ctx", "=", "tasklets", ".", "get_context", "(", ")", "cls", ".", "_pre_allocate_ids_hook", "(", "size", ",", "max", ",", "parent", ")", "key", "=", "Key", "(", "cls", ".", "_get_kind", "(", ")", ",", "None", ",", "parent", "=", "parent", ")", "fut", "=", "ctx", ".", "allocate_ids", "(", "key", ",", "size", "=", "size", ",", "max", "=", "max", ",", "*", "*", "ctx_options", ")", "post_hook", "=", "cls", ".", "_post_allocate_ids_hook", "if", "not", "cls", ".", "_is_default_hook", "(", "Model", ".", "_default_post_allocate_ids_hook", ",", "post_hook", ")", ":", "fut", ".", "add_immediate_callback", "(", "post_hook", ",", "size", ",", "max", ",", "parent", ",", "fut", ")", "return", "fut" ]
Allocates a range of key IDs for this model class. This is the asynchronous version of Model._allocate_ids().
[ "Allocates", "a", "range", "of", "key", "IDs", "for", "this", "model", "class", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3574-L3589
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._get_by_id
def _get_by_id(cls, id, parent=None, **ctx_options): """Returns an instance of Model class by ID. This is really just a shorthand for Key(cls, id, ...).get(). Args: id: A string or integer key ID. parent: Optional parent key of the model to get. namespace: Optional namespace. app: Optional app ID. **ctx_options: Context options. Returns: A model instance or None if not found. """ return cls._get_by_id_async(id, parent=parent, **ctx_options).get_result()
python
def _get_by_id(cls, id, parent=None, **ctx_options): """Returns an instance of Model class by ID. This is really just a shorthand for Key(cls, id, ...).get(). Args: id: A string or integer key ID. parent: Optional parent key of the model to get. namespace: Optional namespace. app: Optional app ID. **ctx_options: Context options. Returns: A model instance or None if not found. """ return cls._get_by_id_async(id, parent=parent, **ctx_options).get_result()
[ "def", "_get_by_id", "(", "cls", ",", "id", ",", "parent", "=", "None", ",", "*", "*", "ctx_options", ")", ":", "return", "cls", ".", "_get_by_id_async", "(", "id", ",", "parent", "=", "parent", ",", "*", "*", "ctx_options", ")", ".", "get_result", "(", ")" ]
Returns an instance of Model class by ID. This is really just a shorthand for Key(cls, id, ...).get(). Args: id: A string or integer key ID. parent: Optional parent key of the model to get. namespace: Optional namespace. app: Optional app ID. **ctx_options: Context options. Returns: A model instance or None if not found.
[ "Returns", "an", "instance", "of", "Model", "class", "by", "ID", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3594-L3609
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._get_by_id_async
def _get_by_id_async(cls, id, parent=None, app=None, namespace=None, **ctx_options): """Returns an instance of Model class by ID (and app, namespace). This is the asynchronous version of Model._get_by_id(). """ key = Key(cls._get_kind(), id, parent=parent, app=app, namespace=namespace) return key.get_async(**ctx_options)
python
def _get_by_id_async(cls, id, parent=None, app=None, namespace=None, **ctx_options): """Returns an instance of Model class by ID (and app, namespace). This is the asynchronous version of Model._get_by_id(). """ key = Key(cls._get_kind(), id, parent=parent, app=app, namespace=namespace) return key.get_async(**ctx_options)
[ "def", "_get_by_id_async", "(", "cls", ",", "id", ",", "parent", "=", "None", ",", "app", "=", "None", ",", "namespace", "=", "None", ",", "*", "*", "ctx_options", ")", ":", "key", "=", "Key", "(", "cls", ".", "_get_kind", "(", ")", ",", "id", ",", "parent", "=", "parent", ",", "app", "=", "app", ",", "namespace", "=", "namespace", ")", "return", "key", ".", "get_async", "(", "*", "*", "ctx_options", ")" ]
Returns an instance of Model class by ID (and app, namespace). This is the asynchronous version of Model._get_by_id().
[ "Returns", "an", "instance", "of", "Model", "class", "by", "ID", "(", "and", "app", "namespace", ")", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3614-L3621
GoogleCloudPlatform/datastore-ndb-python
ndb/model.py
Model._is_default_hook
def _is_default_hook(default_hook, hook): """Checks whether a specific hook is in its default state. Args: cls: A ndb.model.Model class. default_hook: Callable specified by ndb internally (do not override). hook: The hook defined by a model class using _post_*_hook. Raises: TypeError if either the default hook or the tested hook are not callable. """ if not hasattr(default_hook, '__call__'): raise TypeError('Default hooks for ndb.model.Model must be callable') if not hasattr(hook, '__call__'): raise TypeError('Hooks must be callable') return default_hook.im_func is hook.im_func
python
def _is_default_hook(default_hook, hook): """Checks whether a specific hook is in its default state. Args: cls: A ndb.model.Model class. default_hook: Callable specified by ndb internally (do not override). hook: The hook defined by a model class using _post_*_hook. Raises: TypeError if either the default hook or the tested hook are not callable. """ if not hasattr(default_hook, '__call__'): raise TypeError('Default hooks for ndb.model.Model must be callable') if not hasattr(hook, '__call__'): raise TypeError('Hooks must be callable') return default_hook.im_func is hook.im_func
[ "def", "_is_default_hook", "(", "default_hook", ",", "hook", ")", ":", "if", "not", "hasattr", "(", "default_hook", ",", "'__call__'", ")", ":", "raise", "TypeError", "(", "'Default hooks for ndb.model.Model must be callable'", ")", "if", "not", "hasattr", "(", "hook", ",", "'__call__'", ")", ":", "raise", "TypeError", "(", "'Hooks must be callable'", ")", "return", "default_hook", ".", "im_func", "is", "hook", ".", "im_func" ]
Checks whether a specific hook is in its default state. Args: cls: A ndb.model.Model class. default_hook: Callable specified by ndb internally (do not override). hook: The hook defined by a model class using _post_*_hook. Raises: TypeError if either the default hook or the tested hook are not callable.
[ "Checks", "whether", "a", "specific", "hook", "is", "in", "its", "default", "state", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/model.py#L3676-L3691
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
_ConstructReference
def _ConstructReference(cls, pairs=None, flat=None, reference=None, serialized=None, urlsafe=None, app=None, namespace=None, parent=None): """Construct a Reference; the signature is the same as for Key.""" if cls is not Key: raise TypeError('Cannot construct Key reference on non-Key class; ' 'received %r' % cls) if (bool(pairs) + bool(flat) + bool(reference) + bool(serialized) + bool(urlsafe)) != 1: raise TypeError('Cannot construct Key reference from incompatible keyword ' 'arguments.') if flat or pairs: if flat: if len(flat) % 2: raise TypeError('_ConstructReference() must have an even number of ' 'positional arguments.') pairs = [(flat[i], flat[i + 1]) for i in xrange(0, len(flat), 2)] elif parent is not None: pairs = list(pairs) if not pairs: raise TypeError('Key references must consist of at least one pair.') if parent is not None: if not isinstance(parent, Key): raise datastore_errors.BadValueError( 'Expected Key instance, got %r' % parent) pairs[:0] = parent.pairs() if app: if app != parent.app(): raise ValueError('Cannot specify a different app %r ' 'than the parent app %r' % (app, parent.app())) else: app = parent.app() if namespace is not None: if namespace != parent.namespace(): raise ValueError('Cannot specify a different namespace %r ' 'than the parent namespace %r' % (namespace, parent.namespace())) else: namespace = parent.namespace() reference = _ReferenceFromPairs(pairs, app=app, namespace=namespace) else: if parent is not None: raise TypeError('Key reference cannot be constructed when the parent ' 'argument is combined with either reference, serialized ' 'or urlsafe arguments.') if urlsafe: serialized = _DecodeUrlSafe(urlsafe) if serialized: reference = _ReferenceFromSerialized(serialized) if not reference.path().element_size(): raise RuntimeError('Key reference has no path or elements (%r, %r, %r).' % (urlsafe, serialized, str(reference))) # TODO: ensure that each element has a type and either an id or a name if not serialized: reference = _ReferenceFromReference(reference) # You needn't specify app= or namespace= together with reference=, # serialized= or urlsafe=, but if you do, their values must match # what is already in the reference. if app is not None: ref_app = reference.app() if app != ref_app: raise RuntimeError('Key reference constructed uses a different app %r ' 'than the one specified %r' % (ref_app, app)) if namespace is not None: ref_namespace = reference.name_space() if namespace != ref_namespace: raise RuntimeError('Key reference constructed uses a different ' 'namespace %r than the one specified %r' % (ref_namespace, namespace)) return reference
python
def _ConstructReference(cls, pairs=None, flat=None, reference=None, serialized=None, urlsafe=None, app=None, namespace=None, parent=None): """Construct a Reference; the signature is the same as for Key.""" if cls is not Key: raise TypeError('Cannot construct Key reference on non-Key class; ' 'received %r' % cls) if (bool(pairs) + bool(flat) + bool(reference) + bool(serialized) + bool(urlsafe)) != 1: raise TypeError('Cannot construct Key reference from incompatible keyword ' 'arguments.') if flat or pairs: if flat: if len(flat) % 2: raise TypeError('_ConstructReference() must have an even number of ' 'positional arguments.') pairs = [(flat[i], flat[i + 1]) for i in xrange(0, len(flat), 2)] elif parent is not None: pairs = list(pairs) if not pairs: raise TypeError('Key references must consist of at least one pair.') if parent is not None: if not isinstance(parent, Key): raise datastore_errors.BadValueError( 'Expected Key instance, got %r' % parent) pairs[:0] = parent.pairs() if app: if app != parent.app(): raise ValueError('Cannot specify a different app %r ' 'than the parent app %r' % (app, parent.app())) else: app = parent.app() if namespace is not None: if namespace != parent.namespace(): raise ValueError('Cannot specify a different namespace %r ' 'than the parent namespace %r' % (namespace, parent.namespace())) else: namespace = parent.namespace() reference = _ReferenceFromPairs(pairs, app=app, namespace=namespace) else: if parent is not None: raise TypeError('Key reference cannot be constructed when the parent ' 'argument is combined with either reference, serialized ' 'or urlsafe arguments.') if urlsafe: serialized = _DecodeUrlSafe(urlsafe) if serialized: reference = _ReferenceFromSerialized(serialized) if not reference.path().element_size(): raise RuntimeError('Key reference has no path or elements (%r, %r, %r).' % (urlsafe, serialized, str(reference))) # TODO: ensure that each element has a type and either an id or a name if not serialized: reference = _ReferenceFromReference(reference) # You needn't specify app= or namespace= together with reference=, # serialized= or urlsafe=, but if you do, their values must match # what is already in the reference. if app is not None: ref_app = reference.app() if app != ref_app: raise RuntimeError('Key reference constructed uses a different app %r ' 'than the one specified %r' % (ref_app, app)) if namespace is not None: ref_namespace = reference.name_space() if namespace != ref_namespace: raise RuntimeError('Key reference constructed uses a different ' 'namespace %r than the one specified %r' % (ref_namespace, namespace)) return reference
[ "def", "_ConstructReference", "(", "cls", ",", "pairs", "=", "None", ",", "flat", "=", "None", ",", "reference", "=", "None", ",", "serialized", "=", "None", ",", "urlsafe", "=", "None", ",", "app", "=", "None", ",", "namespace", "=", "None", ",", "parent", "=", "None", ")", ":", "if", "cls", "is", "not", "Key", ":", "raise", "TypeError", "(", "'Cannot construct Key reference on non-Key class; '", "'received %r'", "%", "cls", ")", "if", "(", "bool", "(", "pairs", ")", "+", "bool", "(", "flat", ")", "+", "bool", "(", "reference", ")", "+", "bool", "(", "serialized", ")", "+", "bool", "(", "urlsafe", ")", ")", "!=", "1", ":", "raise", "TypeError", "(", "'Cannot construct Key reference from incompatible keyword '", "'arguments.'", ")", "if", "flat", "or", "pairs", ":", "if", "flat", ":", "if", "len", "(", "flat", ")", "%", "2", ":", "raise", "TypeError", "(", "'_ConstructReference() must have an even number of '", "'positional arguments.'", ")", "pairs", "=", "[", "(", "flat", "[", "i", "]", ",", "flat", "[", "i", "+", "1", "]", ")", "for", "i", "in", "xrange", "(", "0", ",", "len", "(", "flat", ")", ",", "2", ")", "]", "elif", "parent", "is", "not", "None", ":", "pairs", "=", "list", "(", "pairs", ")", "if", "not", "pairs", ":", "raise", "TypeError", "(", "'Key references must consist of at least one pair.'", ")", "if", "parent", "is", "not", "None", ":", "if", "not", "isinstance", "(", "parent", ",", "Key", ")", ":", "raise", "datastore_errors", ".", "BadValueError", "(", "'Expected Key instance, got %r'", "%", "parent", ")", "pairs", "[", ":", "0", "]", "=", "parent", ".", "pairs", "(", ")", "if", "app", ":", "if", "app", "!=", "parent", ".", "app", "(", ")", ":", "raise", "ValueError", "(", "'Cannot specify a different app %r '", "'than the parent app %r'", "%", "(", "app", ",", "parent", ".", "app", "(", ")", ")", ")", "else", ":", "app", "=", "parent", ".", "app", "(", ")", "if", "namespace", "is", "not", "None", ":", "if", "namespace", "!=", "parent", ".", "namespace", "(", ")", ":", "raise", "ValueError", "(", "'Cannot specify a different namespace %r '", "'than the parent namespace %r'", "%", "(", "namespace", ",", "parent", ".", "namespace", "(", ")", ")", ")", "else", ":", "namespace", "=", "parent", ".", "namespace", "(", ")", "reference", "=", "_ReferenceFromPairs", "(", "pairs", ",", "app", "=", "app", ",", "namespace", "=", "namespace", ")", "else", ":", "if", "parent", "is", "not", "None", ":", "raise", "TypeError", "(", "'Key reference cannot be constructed when the parent '", "'argument is combined with either reference, serialized '", "'or urlsafe arguments.'", ")", "if", "urlsafe", ":", "serialized", "=", "_DecodeUrlSafe", "(", "urlsafe", ")", "if", "serialized", ":", "reference", "=", "_ReferenceFromSerialized", "(", "serialized", ")", "if", "not", "reference", ".", "path", "(", ")", ".", "element_size", "(", ")", ":", "raise", "RuntimeError", "(", "'Key reference has no path or elements (%r, %r, %r).'", "%", "(", "urlsafe", ",", "serialized", ",", "str", "(", "reference", ")", ")", ")", "# TODO: ensure that each element has a type and either an id or a name", "if", "not", "serialized", ":", "reference", "=", "_ReferenceFromReference", "(", "reference", ")", "# You needn't specify app= or namespace= together with reference=,", "# serialized= or urlsafe=, but if you do, their values must match", "# what is already in the reference.", "if", "app", "is", "not", "None", ":", "ref_app", "=", "reference", ".", "app", "(", ")", "if", "app", "!=", "ref_app", ":", "raise", "RuntimeError", "(", "'Key reference constructed uses a different app %r '", "'than the one specified %r'", "%", "(", "ref_app", ",", "app", ")", ")", "if", "namespace", "is", "not", "None", ":", "ref_namespace", "=", "reference", ".", "name_space", "(", ")", "if", "namespace", "!=", "ref_namespace", ":", "raise", "RuntimeError", "(", "'Key reference constructed uses a different '", "'namespace %r than the one specified %r'", "%", "(", "ref_namespace", ",", "namespace", ")", ")", "return", "reference" ]
Construct a Reference; the signature is the same as for Key.
[ "Construct", "a", "Reference", ";", "the", "signature", "is", "the", "same", "as", "for", "Key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L633-L704
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
_ReferenceFromPairs
def _ReferenceFromPairs(pairs, reference=None, app=None, namespace=None): """Construct a Reference from a list of pairs. If a Reference is passed in as the second argument, it is modified in place. The app and namespace are set from the corresponding keyword arguments, with the customary defaults. """ if reference is None: reference = entity_pb.Reference() path = reference.mutable_path() last = False for kind, idorname in pairs: if last: raise datastore_errors.BadArgumentError( 'Incomplete Key entry must be last') t = type(kind) if t is str: pass elif t is unicode: kind = kind.encode('utf8') else: if issubclass(t, type): # Late import to avoid cycles. from .model import Model modelclass = kind if not issubclass(modelclass, Model): raise TypeError('Key kind must be either a string or subclass of ' 'Model; received %r' % modelclass) kind = modelclass._get_kind() t = type(kind) if t is str: pass elif t is unicode: kind = kind.encode('utf8') elif issubclass(t, str): pass elif issubclass(t, unicode): kind = kind.encode('utf8') else: raise TypeError('Key kind must be either a string or subclass of Model;' ' received %r' % kind) # pylint: disable=superfluous-parens if not (1 <= len(kind) <= _MAX_KEYPART_BYTES): raise ValueError('Key kind string must be a non-empty string up to %i' 'bytes; received %s' % (_MAX_KEYPART_BYTES, kind)) elem = path.add_element() elem.set_type(kind) t = type(idorname) if t is int or t is long: # pylint: disable=superfluous-parens if not (1 <= idorname < _MAX_LONG): raise ValueError('Key id number is too long; received %i' % idorname) elem.set_id(idorname) elif t is str: # pylint: disable=superfluous-parens if not (1 <= len(idorname) <= _MAX_KEYPART_BYTES): raise ValueError('Key name strings must be non-empty strings up to %i ' 'bytes; received %s' % (_MAX_KEYPART_BYTES, idorname)) elem.set_name(idorname) elif t is unicode: idorname = idorname.encode('utf8') # pylint: disable=superfluous-parens if not (1 <= len(idorname) <= _MAX_KEYPART_BYTES): raise ValueError('Key name unicode strings must be non-empty strings up' ' to %i bytes; received %s' % (_MAX_KEYPART_BYTES, idorname)) elem.set_name(idorname) elif idorname is None: last = True elif issubclass(t, (int, long)): # pylint: disable=superfluous-parens if not (1 <= idorname < _MAX_LONG): raise ValueError('Key id number is too long; received %i' % idorname) elem.set_id(idorname) elif issubclass(t, basestring): if issubclass(t, unicode): idorname = idorname.encode('utf8') # pylint: disable=superfluous-parens if not (1 <= len(idorname) <= _MAX_KEYPART_BYTES): raise ValueError('Key name strings must be non-empty strings up to %i ' 'bytes; received %s' % (_MAX_KEYPART_BYTES, idorname)) elem.set_name(idorname) else: raise TypeError('id must be either a numeric id or a string name; ' 'received %r' % idorname) # An empty app id means to use the default app id. if not app: app = _DefaultAppId() # Always set the app id, since it is mandatory. reference.set_app(app) # An empty namespace overrides the default namespace. if namespace is None: namespace = _DefaultNamespace() # Only set the namespace if it is not empty. if namespace: reference.set_name_space(namespace) return reference
python
def _ReferenceFromPairs(pairs, reference=None, app=None, namespace=None): """Construct a Reference from a list of pairs. If a Reference is passed in as the second argument, it is modified in place. The app and namespace are set from the corresponding keyword arguments, with the customary defaults. """ if reference is None: reference = entity_pb.Reference() path = reference.mutable_path() last = False for kind, idorname in pairs: if last: raise datastore_errors.BadArgumentError( 'Incomplete Key entry must be last') t = type(kind) if t is str: pass elif t is unicode: kind = kind.encode('utf8') else: if issubclass(t, type): # Late import to avoid cycles. from .model import Model modelclass = kind if not issubclass(modelclass, Model): raise TypeError('Key kind must be either a string or subclass of ' 'Model; received %r' % modelclass) kind = modelclass._get_kind() t = type(kind) if t is str: pass elif t is unicode: kind = kind.encode('utf8') elif issubclass(t, str): pass elif issubclass(t, unicode): kind = kind.encode('utf8') else: raise TypeError('Key kind must be either a string or subclass of Model;' ' received %r' % kind) # pylint: disable=superfluous-parens if not (1 <= len(kind) <= _MAX_KEYPART_BYTES): raise ValueError('Key kind string must be a non-empty string up to %i' 'bytes; received %s' % (_MAX_KEYPART_BYTES, kind)) elem = path.add_element() elem.set_type(kind) t = type(idorname) if t is int or t is long: # pylint: disable=superfluous-parens if not (1 <= idorname < _MAX_LONG): raise ValueError('Key id number is too long; received %i' % idorname) elem.set_id(idorname) elif t is str: # pylint: disable=superfluous-parens if not (1 <= len(idorname) <= _MAX_KEYPART_BYTES): raise ValueError('Key name strings must be non-empty strings up to %i ' 'bytes; received %s' % (_MAX_KEYPART_BYTES, idorname)) elem.set_name(idorname) elif t is unicode: idorname = idorname.encode('utf8') # pylint: disable=superfluous-parens if not (1 <= len(idorname) <= _MAX_KEYPART_BYTES): raise ValueError('Key name unicode strings must be non-empty strings up' ' to %i bytes; received %s' % (_MAX_KEYPART_BYTES, idorname)) elem.set_name(idorname) elif idorname is None: last = True elif issubclass(t, (int, long)): # pylint: disable=superfluous-parens if not (1 <= idorname < _MAX_LONG): raise ValueError('Key id number is too long; received %i' % idorname) elem.set_id(idorname) elif issubclass(t, basestring): if issubclass(t, unicode): idorname = idorname.encode('utf8') # pylint: disable=superfluous-parens if not (1 <= len(idorname) <= _MAX_KEYPART_BYTES): raise ValueError('Key name strings must be non-empty strings up to %i ' 'bytes; received %s' % (_MAX_KEYPART_BYTES, idorname)) elem.set_name(idorname) else: raise TypeError('id must be either a numeric id or a string name; ' 'received %r' % idorname) # An empty app id means to use the default app id. if not app: app = _DefaultAppId() # Always set the app id, since it is mandatory. reference.set_app(app) # An empty namespace overrides the default namespace. if namespace is None: namespace = _DefaultNamespace() # Only set the namespace if it is not empty. if namespace: reference.set_name_space(namespace) return reference
[ "def", "_ReferenceFromPairs", "(", "pairs", ",", "reference", "=", "None", ",", "app", "=", "None", ",", "namespace", "=", "None", ")", ":", "if", "reference", "is", "None", ":", "reference", "=", "entity_pb", ".", "Reference", "(", ")", "path", "=", "reference", ".", "mutable_path", "(", ")", "last", "=", "False", "for", "kind", ",", "idorname", "in", "pairs", ":", "if", "last", ":", "raise", "datastore_errors", ".", "BadArgumentError", "(", "'Incomplete Key entry must be last'", ")", "t", "=", "type", "(", "kind", ")", "if", "t", "is", "str", ":", "pass", "elif", "t", "is", "unicode", ":", "kind", "=", "kind", ".", "encode", "(", "'utf8'", ")", "else", ":", "if", "issubclass", "(", "t", ",", "type", ")", ":", "# Late import to avoid cycles.", "from", ".", "model", "import", "Model", "modelclass", "=", "kind", "if", "not", "issubclass", "(", "modelclass", ",", "Model", ")", ":", "raise", "TypeError", "(", "'Key kind must be either a string or subclass of '", "'Model; received %r'", "%", "modelclass", ")", "kind", "=", "modelclass", ".", "_get_kind", "(", ")", "t", "=", "type", "(", "kind", ")", "if", "t", "is", "str", ":", "pass", "elif", "t", "is", "unicode", ":", "kind", "=", "kind", ".", "encode", "(", "'utf8'", ")", "elif", "issubclass", "(", "t", ",", "str", ")", ":", "pass", "elif", "issubclass", "(", "t", ",", "unicode", ")", ":", "kind", "=", "kind", ".", "encode", "(", "'utf8'", ")", "else", ":", "raise", "TypeError", "(", "'Key kind must be either a string or subclass of Model;'", "' received %r'", "%", "kind", ")", "# pylint: disable=superfluous-parens", "if", "not", "(", "1", "<=", "len", "(", "kind", ")", "<=", "_MAX_KEYPART_BYTES", ")", ":", "raise", "ValueError", "(", "'Key kind string must be a non-empty string up to %i'", "'bytes; received %s'", "%", "(", "_MAX_KEYPART_BYTES", ",", "kind", ")", ")", "elem", "=", "path", ".", "add_element", "(", ")", "elem", ".", "set_type", "(", "kind", ")", "t", "=", "type", "(", "idorname", ")", "if", "t", "is", "int", "or", "t", "is", "long", ":", "# pylint: disable=superfluous-parens", "if", "not", "(", "1", "<=", "idorname", "<", "_MAX_LONG", ")", ":", "raise", "ValueError", "(", "'Key id number is too long; received %i'", "%", "idorname", ")", "elem", ".", "set_id", "(", "idorname", ")", "elif", "t", "is", "str", ":", "# pylint: disable=superfluous-parens", "if", "not", "(", "1", "<=", "len", "(", "idorname", ")", "<=", "_MAX_KEYPART_BYTES", ")", ":", "raise", "ValueError", "(", "'Key name strings must be non-empty strings up to %i '", "'bytes; received %s'", "%", "(", "_MAX_KEYPART_BYTES", ",", "idorname", ")", ")", "elem", ".", "set_name", "(", "idorname", ")", "elif", "t", "is", "unicode", ":", "idorname", "=", "idorname", ".", "encode", "(", "'utf8'", ")", "# pylint: disable=superfluous-parens", "if", "not", "(", "1", "<=", "len", "(", "idorname", ")", "<=", "_MAX_KEYPART_BYTES", ")", ":", "raise", "ValueError", "(", "'Key name unicode strings must be non-empty strings up'", "' to %i bytes; received %s'", "%", "(", "_MAX_KEYPART_BYTES", ",", "idorname", ")", ")", "elem", ".", "set_name", "(", "idorname", ")", "elif", "idorname", "is", "None", ":", "last", "=", "True", "elif", "issubclass", "(", "t", ",", "(", "int", ",", "long", ")", ")", ":", "# pylint: disable=superfluous-parens", "if", "not", "(", "1", "<=", "idorname", "<", "_MAX_LONG", ")", ":", "raise", "ValueError", "(", "'Key id number is too long; received %i'", "%", "idorname", ")", "elem", ".", "set_id", "(", "idorname", ")", "elif", "issubclass", "(", "t", ",", "basestring", ")", ":", "if", "issubclass", "(", "t", ",", "unicode", ")", ":", "idorname", "=", "idorname", ".", "encode", "(", "'utf8'", ")", "# pylint: disable=superfluous-parens", "if", "not", "(", "1", "<=", "len", "(", "idorname", ")", "<=", "_MAX_KEYPART_BYTES", ")", ":", "raise", "ValueError", "(", "'Key name strings must be non-empty strings up to %i '", "'bytes; received %s'", "%", "(", "_MAX_KEYPART_BYTES", ",", "idorname", ")", ")", "elem", ".", "set_name", "(", "idorname", ")", "else", ":", "raise", "TypeError", "(", "'id must be either a numeric id or a string name; '", "'received %r'", "%", "idorname", ")", "# An empty app id means to use the default app id.", "if", "not", "app", ":", "app", "=", "_DefaultAppId", "(", ")", "# Always set the app id, since it is mandatory.", "reference", ".", "set_app", "(", "app", ")", "# An empty namespace overrides the default namespace.", "if", "namespace", "is", "None", ":", "namespace", "=", "_DefaultNamespace", "(", ")", "# Only set the namespace if it is not empty.", "if", "namespace", ":", "reference", ".", "set_name_space", "(", "namespace", ")", "return", "reference" ]
Construct a Reference from a list of pairs. If a Reference is passed in as the second argument, it is modified in place. The app and namespace are set from the corresponding keyword arguments, with the customary defaults.
[ "Construct", "a", "Reference", "from", "a", "list", "of", "pairs", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L707-L805
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
_ReferenceFromSerialized
def _ReferenceFromSerialized(serialized): """Construct a Reference from a serialized Reference.""" if not isinstance(serialized, basestring): raise TypeError('serialized must be a string; received %r' % serialized) elif isinstance(serialized, unicode): serialized = serialized.encode('utf8') return entity_pb.Reference(serialized)
python
def _ReferenceFromSerialized(serialized): """Construct a Reference from a serialized Reference.""" if not isinstance(serialized, basestring): raise TypeError('serialized must be a string; received %r' % serialized) elif isinstance(serialized, unicode): serialized = serialized.encode('utf8') return entity_pb.Reference(serialized)
[ "def", "_ReferenceFromSerialized", "(", "serialized", ")", ":", "if", "not", "isinstance", "(", "serialized", ",", "basestring", ")", ":", "raise", "TypeError", "(", "'serialized must be a string; received %r'", "%", "serialized", ")", "elif", "isinstance", "(", "serialized", ",", "unicode", ")", ":", "serialized", "=", "serialized", ".", "encode", "(", "'utf8'", ")", "return", "entity_pb", ".", "Reference", "(", "serialized", ")" ]
Construct a Reference from a serialized Reference.
[ "Construct", "a", "Reference", "from", "a", "serialized", "Reference", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L815-L821
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
_DecodeUrlSafe
def _DecodeUrlSafe(urlsafe): """Decode a url-safe base64-encoded string. This returns the decoded string. """ if not isinstance(urlsafe, basestring): raise TypeError('urlsafe must be a string; received %r' % urlsafe) if isinstance(urlsafe, unicode): urlsafe = urlsafe.encode('utf8') mod = len(urlsafe) % 4 if mod: urlsafe += '=' * (4 - mod) # This is 3-4x faster than urlsafe_b64decode() return base64.b64decode(urlsafe.replace('-', '+').replace('_', '/'))
python
def _DecodeUrlSafe(urlsafe): """Decode a url-safe base64-encoded string. This returns the decoded string. """ if not isinstance(urlsafe, basestring): raise TypeError('urlsafe must be a string; received %r' % urlsafe) if isinstance(urlsafe, unicode): urlsafe = urlsafe.encode('utf8') mod = len(urlsafe) % 4 if mod: urlsafe += '=' * (4 - mod) # This is 3-4x faster than urlsafe_b64decode() return base64.b64decode(urlsafe.replace('-', '+').replace('_', '/'))
[ "def", "_DecodeUrlSafe", "(", "urlsafe", ")", ":", "if", "not", "isinstance", "(", "urlsafe", ",", "basestring", ")", ":", "raise", "TypeError", "(", "'urlsafe must be a string; received %r'", "%", "urlsafe", ")", "if", "isinstance", "(", "urlsafe", ",", "unicode", ")", ":", "urlsafe", "=", "urlsafe", ".", "encode", "(", "'utf8'", ")", "mod", "=", "len", "(", "urlsafe", ")", "%", "4", "if", "mod", ":", "urlsafe", "+=", "'='", "*", "(", "4", "-", "mod", ")", "# This is 3-4x faster than urlsafe_b64decode()", "return", "base64", ".", "b64decode", "(", "urlsafe", ".", "replace", "(", "'-'", ",", "'+'", ")", ".", "replace", "(", "'_'", ",", "'/'", ")", ")" ]
Decode a url-safe base64-encoded string. This returns the decoded string.
[ "Decode", "a", "url", "-", "safe", "base64", "-", "encoded", "string", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L824-L837
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
Key._parse_from_ref
def _parse_from_ref(cls, pairs=None, flat=None, reference=None, serialized=None, urlsafe=None, app=None, namespace=None, parent=None): """Construct a Reference; the signature is the same as for Key.""" if cls is not Key: raise TypeError('Cannot construct Key reference on non-Key class; ' 'received %r' % cls) if (bool(pairs) + bool(flat) + bool(reference) + bool(serialized) + bool(urlsafe) + bool(parent)) != 1: raise TypeError('Cannot construct Key reference from incompatible ' 'keyword arguments.') if urlsafe: serialized = _DecodeUrlSafe(urlsafe) if serialized: reference = _ReferenceFromSerialized(serialized) if reference: reference = _ReferenceFromReference(reference) pairs = [] elem = None path = reference.path() for elem in path.element_list(): kind = elem.type() if elem.has_id(): id_or_name = elem.id() else: id_or_name = elem.name() if not id_or_name: id_or_name = None tup = (kind, id_or_name) pairs.append(tup) if elem is None: raise RuntimeError('Key reference has no path or elements (%r, %r, %r).' % (urlsafe, serialized, str(reference))) # TODO: ensure that each element has a type and either an id or a name # You needn't specify app= or namespace= together with reference=, # serialized= or urlsafe=, but if you do, their values must match # what is already in the reference. ref_app = reference.app() if app is not None: if app != ref_app: raise RuntimeError('Key reference constructed uses a different app %r ' 'than the one specified %r' % (ref_app, app)) ref_namespace = reference.name_space() if namespace is not None: if namespace != ref_namespace: raise RuntimeError('Key reference constructed uses a different ' 'namespace %r than the one specified %r' % (ref_namespace, namespace)) return (reference, tuple(pairs), ref_app, ref_namespace)
python
def _parse_from_ref(cls, pairs=None, flat=None, reference=None, serialized=None, urlsafe=None, app=None, namespace=None, parent=None): """Construct a Reference; the signature is the same as for Key.""" if cls is not Key: raise TypeError('Cannot construct Key reference on non-Key class; ' 'received %r' % cls) if (bool(pairs) + bool(flat) + bool(reference) + bool(serialized) + bool(urlsafe) + bool(parent)) != 1: raise TypeError('Cannot construct Key reference from incompatible ' 'keyword arguments.') if urlsafe: serialized = _DecodeUrlSafe(urlsafe) if serialized: reference = _ReferenceFromSerialized(serialized) if reference: reference = _ReferenceFromReference(reference) pairs = [] elem = None path = reference.path() for elem in path.element_list(): kind = elem.type() if elem.has_id(): id_or_name = elem.id() else: id_or_name = elem.name() if not id_or_name: id_or_name = None tup = (kind, id_or_name) pairs.append(tup) if elem is None: raise RuntimeError('Key reference has no path or elements (%r, %r, %r).' % (urlsafe, serialized, str(reference))) # TODO: ensure that each element has a type and either an id or a name # You needn't specify app= or namespace= together with reference=, # serialized= or urlsafe=, but if you do, their values must match # what is already in the reference. ref_app = reference.app() if app is not None: if app != ref_app: raise RuntimeError('Key reference constructed uses a different app %r ' 'than the one specified %r' % (ref_app, app)) ref_namespace = reference.name_space() if namespace is not None: if namespace != ref_namespace: raise RuntimeError('Key reference constructed uses a different ' 'namespace %r than the one specified %r' % (ref_namespace, namespace)) return (reference, tuple(pairs), ref_app, ref_namespace)
[ "def", "_parse_from_ref", "(", "cls", ",", "pairs", "=", "None", ",", "flat", "=", "None", ",", "reference", "=", "None", ",", "serialized", "=", "None", ",", "urlsafe", "=", "None", ",", "app", "=", "None", ",", "namespace", "=", "None", ",", "parent", "=", "None", ")", ":", "if", "cls", "is", "not", "Key", ":", "raise", "TypeError", "(", "'Cannot construct Key reference on non-Key class; '", "'received %r'", "%", "cls", ")", "if", "(", "bool", "(", "pairs", ")", "+", "bool", "(", "flat", ")", "+", "bool", "(", "reference", ")", "+", "bool", "(", "serialized", ")", "+", "bool", "(", "urlsafe", ")", "+", "bool", "(", "parent", ")", ")", "!=", "1", ":", "raise", "TypeError", "(", "'Cannot construct Key reference from incompatible '", "'keyword arguments.'", ")", "if", "urlsafe", ":", "serialized", "=", "_DecodeUrlSafe", "(", "urlsafe", ")", "if", "serialized", ":", "reference", "=", "_ReferenceFromSerialized", "(", "serialized", ")", "if", "reference", ":", "reference", "=", "_ReferenceFromReference", "(", "reference", ")", "pairs", "=", "[", "]", "elem", "=", "None", "path", "=", "reference", ".", "path", "(", ")", "for", "elem", "in", "path", ".", "element_list", "(", ")", ":", "kind", "=", "elem", ".", "type", "(", ")", "if", "elem", ".", "has_id", "(", ")", ":", "id_or_name", "=", "elem", ".", "id", "(", ")", "else", ":", "id_or_name", "=", "elem", ".", "name", "(", ")", "if", "not", "id_or_name", ":", "id_or_name", "=", "None", "tup", "=", "(", "kind", ",", "id_or_name", ")", "pairs", ".", "append", "(", "tup", ")", "if", "elem", "is", "None", ":", "raise", "RuntimeError", "(", "'Key reference has no path or elements (%r, %r, %r).'", "%", "(", "urlsafe", ",", "serialized", ",", "str", "(", "reference", ")", ")", ")", "# TODO: ensure that each element has a type and either an id or a name", "# You needn't specify app= or namespace= together with reference=,", "# serialized= or urlsafe=, but if you do, their values must match", "# what is already in the reference.", "ref_app", "=", "reference", ".", "app", "(", ")", "if", "app", "is", "not", "None", ":", "if", "app", "!=", "ref_app", ":", "raise", "RuntimeError", "(", "'Key reference constructed uses a different app %r '", "'than the one specified %r'", "%", "(", "ref_app", ",", "app", ")", ")", "ref_namespace", "=", "reference", ".", "name_space", "(", ")", "if", "namespace", "is", "not", "None", ":", "if", "namespace", "!=", "ref_namespace", ":", "raise", "RuntimeError", "(", "'Key reference constructed uses a different '", "'namespace %r than the one specified %r'", "%", "(", "ref_namespace", ",", "namespace", ")", ")", "return", "(", "reference", ",", "tuple", "(", "pairs", ")", ",", "ref_app", ",", "ref_namespace", ")" ]
Construct a Reference; the signature is the same as for Key.
[ "Construct", "a", "Reference", ";", "the", "signature", "is", "the", "same", "as", "for", "Key", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L304-L353
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
Key.parent
def parent(self): """Return a Key constructed from all but the last (kind, id) pairs. If there is only one (kind, id) pair, return None. """ pairs = self.__pairs if len(pairs) <= 1: return None return Key(pairs=pairs[:-1], app=self.__app, namespace=self.__namespace)
python
def parent(self): """Return a Key constructed from all but the last (kind, id) pairs. If there is only one (kind, id) pair, return None. """ pairs = self.__pairs if len(pairs) <= 1: return None return Key(pairs=pairs[:-1], app=self.__app, namespace=self.__namespace)
[ "def", "parent", "(", "self", ")", ":", "pairs", "=", "self", ".", "__pairs", "if", "len", "(", "pairs", ")", "<=", "1", ":", "return", "None", "return", "Key", "(", "pairs", "=", "pairs", "[", ":", "-", "1", "]", ",", "app", "=", "self", ".", "__app", ",", "namespace", "=", "self", ".", "__namespace", ")" ]
Return a Key constructed from all but the last (kind, id) pairs. If there is only one (kind, id) pair, return None.
[ "Return", "a", "Key", "constructed", "from", "all", "but", "the", "last", "(", "kind", "id", ")", "pairs", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L460-L468
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
Key.string_id
def string_id(self): """Return the string id in the last (kind, id) pair, if any. Returns: A string id, or None if the key has an integer id or is incomplete. """ id = self.id() if not isinstance(id, basestring): id = None return id
python
def string_id(self): """Return the string id in the last (kind, id) pair, if any. Returns: A string id, or None if the key has an integer id or is incomplete. """ id = self.id() if not isinstance(id, basestring): id = None return id
[ "def", "string_id", "(", "self", ")", ":", "id", "=", "self", ".", "id", "(", ")", "if", "not", "isinstance", "(", "id", ",", "basestring", ")", ":", "id", "=", "None", "return", "id" ]
Return the string id in the last (kind, id) pair, if any. Returns: A string id, or None if the key has an integer id or is incomplete.
[ "Return", "the", "string", "id", "in", "the", "last", "(", "kind", "id", ")", "pair", "if", "any", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L493-L502
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
Key.integer_id
def integer_id(self): """Return the integer id in the last (kind, id) pair, if any. Returns: An integer id, or None if the key has a string id or is incomplete. """ id = self.id() if not isinstance(id, (int, long)): id = None return id
python
def integer_id(self): """Return the integer id in the last (kind, id) pair, if any. Returns: An integer id, or None if the key has a string id or is incomplete. """ id = self.id() if not isinstance(id, (int, long)): id = None return id
[ "def", "integer_id", "(", "self", ")", ":", "id", "=", "self", ".", "id", "(", ")", "if", "not", "isinstance", "(", "id", ",", "(", "int", ",", "long", ")", ")", ":", "id", "=", "None", "return", "id" ]
Return the integer id in the last (kind, id) pair, if any. Returns: An integer id, or None if the key has a string id or is incomplete.
[ "Return", "the", "integer", "id", "in", "the", "last", "(", "kind", "id", ")", "pair", "if", "any", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L504-L513
GoogleCloudPlatform/datastore-ndb-python
ndb/key.py
Key.flat
def flat(self): """Return a tuple of alternating kind and id values.""" flat = [] for kind, id in self.__pairs: flat.append(kind) flat.append(id) return tuple(flat)
python
def flat(self): """Return a tuple of alternating kind and id values.""" flat = [] for kind, id in self.__pairs: flat.append(kind) flat.append(id) return tuple(flat)
[ "def", "flat", "(", "self", ")", ":", "flat", "=", "[", "]", "for", "kind", ",", "id", "in", "self", ".", "__pairs", ":", "flat", ".", "append", "(", "kind", ")", "flat", ".", "append", "(", "id", ")", "return", "tuple", "(", "flat", ")" ]
Return a tuple of alternating kind and id values.
[ "Return", "a", "tuple", "of", "alternating", "kind", "and", "id", "values", "." ]
train
https://github.com/GoogleCloudPlatform/datastore-ndb-python/blob/cf4cab3f1f69cd04e1a9229871be466b53729f3f/ndb/key.py#L519-L525