max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
core/intents/welcome.py
p-panagiotis/venom-virtual-assistant
0
12785451
from datetime import datetime from core.modules.output_mod import output def greet(master): hour = datetime.now().hour if 5 <= hour < 12: output(f"Good morning {master}") elif 12 <= hour < 18: output(f"Good afternoon {master}") else: output(f"Good evening {master}")
3.484375
3
src/tf_components/bijector/Bijector.py
YorkUCVIL/Wavelet-Flow
59
12785452
<filename>src/tf_components/bijector/Bijector.py<gh_stars>10-100 import tensorflow as tf from tf_components.Layer import * class Bijector(Layer): def __init__(self,collection=None,name="Layer"): super().__init__(collection=collection,name=name) def __call__(self,*args,**kwargs): ''' default to call forward ''' return self.forward(*args,**kwargs) def forward(self): ''' implement forward pass ''' raise NotImplementedError def inverse(self): ''' implement inverse pass ''' raise NotImplementedError
2.375
2
mseg_semantic/utils/normalization_utils.py
weblucas/mseg-semantic
391
12785453
<reponame>weblucas/mseg-semantic<gh_stars>100-1000 #!/usr/bin/python3 import numpy as np import torch from typing import Optional, Tuple def get_imagenet_mean_std() -> Tuple[Tuple[float,float,float], Tuple[float,float,float]]: """ See use here in Pytorch ImageNet script: https://github.com/pytorch/examples/blob/master/imagenet/main.py#L197 Returns: - mean: Tuple[float,float,float], - std: Tuple[float,float,float] = None """ value_scale = 255 mean = [0.485, 0.456, 0.406] mean = [item * value_scale for item in mean] std = [0.229, 0.224, 0.225] std = [item * value_scale for item in std] return mean, std def normalize_img( input: torch.Tensor, mean: Tuple[float,float,float], std: Optional[Tuple[float,float,float]] = None): """ Pass in by reference Torch tensor, and normalize its values. Args: - input: Torch tensor of shape (3,M,N), must be in this order, and of type float (necessary). - mean: mean values for each RGB channel - std: standard deviation values for each RGB channel Returns: - None """ if std is None: for t, m in zip(input, mean): t.sub_(m) else: for t, m, s in zip(input, mean, std): t.sub_(m).div_(s)
2.65625
3
reroute.py
ItsCinnabar/Novoserve-Auto-Reroute
1
12785454
<reponame>ItsCinnabar/Novoserve-Auto-Reroute from selenium import webdriver from selenium.webdriver.chrome.options import Options import time import pyderman #Install chrome driver driver_path = pyderman.install(browser=pyderman.chrome,overwrite=True,verbose=False) options=Options() options.headless=True with webdriver.Chrome(executable_path=driver_path, options=options) as driver: url = "http://lg.novoserve.com/rerouteintel.php" driver.get(url) passed=False for _ in range(15): if b"The results are in!" in driver.page_source.encode("utf-8"): passed = True break else: time.sleep(60) if not passed: raise StopIteration("Failed to set routes")
2.609375
3
src/waldur_openstack/openstack/migrations/0005_ipmapping.py
opennode/waldur-openstack
1
12785455
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import waldur_core.core.fields class Migration(migrations.Migration): dependencies = [ ('structure', '0035_settings_tags_and_scope'), ('openstack', '0004_dr_and_volume_backups'), ] operations = [ migrations.CreateModel( name='IpMapping', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('uuid', waldur_core.core.fields.UUIDField()), ('public_ip', models.GenericIPAddressField(protocol='IPv4')), ('private_ip', models.GenericIPAddressField(protocol='IPv4')), ('project', models.ForeignKey(related_name='+', to='structure.Project')), ], options={ 'abstract': False, }, ), ]
1.804688
2
signal_filter/filter_mpi_version_no_mpi.py
pycroscopy/distUSID
1
12785456
import h5py from signal_filter.fft import LowPassFilter from signal_filter.mpi_signal_filter import SignalFilter h5_path = 'giv_raw.h5' h5_f = h5py.File(h5_path, mode='r+') h5_grp = h5_f['Measurement_000/Channel_000'] h5_main = h5_grp['Raw_Data'] samp_rate = h5_grp.attrs['IO_samp_rate_[Hz]'] num_spectral_pts = h5_main.shape[1] frequency_filters = [LowPassFilter(num_spectral_pts, samp_rate, 10E+3)] noise_tol = 1E-6 sig_filt = SignalFilter(h5_main, frequency_filters=frequency_filters, noise_threshold=noise_tol, write_filtered=True, write_condensed=False, num_pix=1, verbose=True) h5_filt_grp = sig_filt.compute() # VERIFICATION here: row_ind = 20 actual_line = h5_filt_grp['Filtered_Data'][row_ind] h5_ref_path = '/home/syz/giv/pzt_nanocap_6_just_translation_filt_resh_copy.h5' h5_ref_file = h5py.File(h5_ref_path, mode='r') h5_ref_grp = h5_ref_file[h5_filt_grp.name] ref_line = h5_ref_grp['Filtered_Data'][row_ind] import numpy as np print('Actual line close to reference:') print(np.max(np.abs(actual_line - ref_line))) print(np.allclose(actual_line, ref_line)) """ single_AO = h5_grp['Spectroscopic_Values'][0, :500] import numpy as np row_ind = 20 # read data for a specific scan line raw_line_resp = h5_main[row_ind] # break this up into pixels: raw_line_mat = np.reshape(raw_line_resp, (-1, single_AO.size)) filt_line_resp = h5_filt_grp['Filtered_Data'][row_ind] filt_line_mat = np.reshape(filt_line_resp, (-1, single_AO.size)) import pyUSID as usid fig, axes = usid.plot_utils.plot_curves(single_AO, [raw_line_mat, filt_line_mat], use_rainbow_plots=False, x_label='Bias (V)', y_label='Current (nA)', subtitle_prefix='Pixel', title=None, num_plots=9) fig.savefig('result.png', format='png', ) savefig(os.path.join(other_figures_folder, file_name + '.png'), format='png', dpi=300) """ h5_f.close()
2.375
2
work/spiders/year_2018/month_9/date_13/test2.py
yorunw/runscrapider
0
12785457
# -*- coding: utf-8 -*- import scrapy from scrapy.http import Request from scrapy_splash import SplashRequest from work.items import ShopItem import re class Test2Spider(scrapy.Spider): name = 'test2' allowed_domains = ['www.countryattire.com'] start_urls = ['https://www.countryattire.com/'] custom_settings = { 'MYSQL_TABLE': 'test', 'ITEM_PIPELINES': {} } def parse(self, response): nav = response.xpath('//ul[@id="pronav"]/li')[2:8] nav.pop(3) nav_level_1_list = nav for nav_level_1 in nav_level_1_list: cat1 = nav_level_1.xpath('./a/span/text()').get().strip() nav_level_2_list = nav_level_1.xpath('.//div[@id="menu"]/div')[1:] for nav_level_2 in nav_level_2_list: c2 = nav_level_2.xpath('./div/div/span/text()').get() if c2 is None: c2 = nav_level_2.xpath('./div/div/span/a/text()').get() if c2 is None: c2 = nav_level_2.xpath('./div/div/span/span/text()').get() cat2 = c2.strip() nav_level_3_list = nav_level_2.xpath('./div/span') if not nav_level_3_list: nav_level_2_url = nav_level_2.xpath('./a/@href').get() self.logger.info(f'{cat1}---{cat2}') meta = {'cat1': cat1, 'cat2': cat2} yield SplashRequest(response.urljoin(nav_level_2_url), self.parse_product_url, meta=meta) for nav_level_3 in nav_level_3_list: cat3 = nav_level_3.xpath('./a/text()').get().strip() nav_level_3_url = nav_level_3.xpath('./a/@href').get() self.logger.info(f'{cat1}---{cat2}---{cat3}') meta = {'cat1': cat1, 'cat2': cat2, 'cat3': cat3} yield SplashRequest(response.urljoin(nav_level_3_url), self.parse_product_url, meta=meta) def parse_product_url(self, response): product_list = response.xpath('//div[@class="products-grid"]/div') for product in product_list: product_url = product.xpath('./a/@href').get() self.logger.info('product url is %s' % product_url) # yield SplashRequest(response.urljoin(product_url), self.parse_product_info, meta=response.meta) next_page = response.xpath('//a[@class="next i-next"]/@href').get() # self.logger.info('next page is %s' % next_page) if next_page is not None: yield SplashRequest(response.urljoin(next_page), self.parse_product_url, meta=response.meta) def parse_product_info(self, response): item = ShopItem() item['PageUrl'] = response.url item['cat1'] = response.meta['cat1'] item['cat2'] = response.meta['cat2'] item['cat3'] = response.meta['cat3'] or '' item['brand'] = response.xpath('').get().strip() item['gender'] = item['cat1'] item['producttype'] = item['cat2'] item['title'] = response.xpath('').get() item['price'] = response.xpath('').get() item['short_content'] = '' item['content'] = response.xpath('').get() pictures = response.xpath('').getall() picture = response.xpath('').getall() item['pictures'] = pictures or picture item['color'] = '' item['size'] = response.xpath('').getall() yield item
2.59375
3
semester/migrations/0001_initial.py
aashutoshrathi/Student-Lifecycle-Management
9
12785458
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-10-08 18:57 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=30, null=True)), ('code', models.CharField(blank=True, max_length=6, null=True)), ('days_given', models.IntegerField(blank=True, null=True)), ('ref_books', models.TextField(blank=True, max_length=500, null=True)), ('is_elective', models.BooleanField(default=False)), ('credits', models.IntegerField(blank=True, default=0, null=True)), ('classification', models.CharField(choices=[(b'Theory', b'Theory'), (b'Lab', b'LAB')], default=b'th', max_length=6, null=True)), ], options={ 'verbose_name': 'Course', 'verbose_name_plural': 'Courses', }, ), migrations.CreateModel( name='Semester', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, choices=[(b'I', b'Semester I'), (b'II', b'Semester II'), (b'III', b'Semester III'), (b'IV', b'Semester IV'), (b'V', b'Semester V'), (b'VI', b'Semester VI'), (b'VII', b'Semester VII'), (b'VIII', b'Semester VIII')], default=b'Semester I', max_length=15, null=True)), ('spi', models.CharField(blank=True, max_length=10, null=True)), ], options={ 'ordering': ('name',), 'verbose_name': 'Semester', 'verbose_name_plural': 'Semesters', }, ), migrations.AddField( model_name='course', name='semester', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='semester.Semester'), ), ]
1.648438
2
end_to_end/glove_single.py
Bharathgc/Coreference-resolution
1
12785459
#import tf_glove import os import sys import pickle import subprocess import re import math #pickle_path=sys.argv[1] #path to corpus.pkl file pairs_path=sys.argv[1] #path to pairs folder output_path=sys.argv[2] #path where output folder ''' with open(pickle_path) as f: corpus = pickle.load(f) ''' #path=sys.argv[2] #data = sys.argv[3] ''' model = tf_glove.GloVeModel(embedding_size=30, context_size=1) model.fit_to_corpus(corpus) model.train(num_epochs=100) ''' def glove_vector(c1,c2): vector1=[0]*30 c1=re.sub(r'[^\w]', ' ', c1) c2=re.sub(r'[^\w]', ' ', c2) for si in c1: vector1+=model.embedding_for(si) vector2=[0]*30 for si in c2: vector2+=model.embedding_for(si) return vector1+vector2 def longestSubstringFinder(string1, string2): answer = "" len1, len2 = len(string1), len(string2) for i in range(len1): match = "" for j in range(len2): if (i + j < len1 and string1[i + j] == string2[j]): match += string2[j] else: if (len(match) > len(answer)): answer = match match = "" return answer def doeslastmatch(string1,string2): #Checks if last word matches s1=re.sub(r'[^\w]', ' ', string1) #Removing symbols from string s2=re.sub(r'[^\w]', ' ', string2) s1=string1.split(" ") s2=string1.split(" ") if s1[-1]==s2[-1]: return 1 else: return 0 def doesfirstmatch(string1,string2): #Checks if first word matches s1=re.sub(r'[^\w]', ' ', string1) #Removing symbols from string s2=re.sub(r'[^\w]', ' ', string2) s1=string1.split(" ") s2=string1.split(" ") if s1[-1]==s2[-1]: return 1 else: return 0 ctypedict={'coref pronoun': 0, 'coref person':1,'coref treatment':2,'coref problem':3,'coref test':4,'null':5} def num_words_concept(string1): s1=re.sub(r'[^\w]', ' ', string1) words=s1.split(" ") return len(words) for i in os.listdir(pairs_path): print i f=open(pairs_path+"/"+i,'r') if os.stat(pairs_path+"/"+i).st_size == 0: continue fp=open(output_path+'/feature'+i,'w+') for line in f: feature_vector=[] pipe=line.split("|") if pipe[-2]=="5": continue c1=pipe[0] c2=pipe[2] ctype=pipe[4] c1line=pipe[1].split(" ") c2line=pipe[3].split(" ") c1ls=c1line[0].split(":") c2ls=c2line[0].split(":") c1le=c1line[1].split(":") c2le=c2line[1].split(":") #feature_vector=feature_vector+glove_vector(c1,c2) common=longestSubstringFinder(c1,c2) len_common=len(common) #Length of longest common substring of each concept max_mention_length=max(len(c1),len(c2)) #Which of the concept mention is longer in length part_common=max_mention_length-len_common feature_vector.append(float(ctype)) feature_vector.append(len_common) feature_vector.append(part_common) feature_vector.append(doesfirstmatch(c1,c2)) feature_vector.append(doeslastmatch(c1,c2)) feature_vector.append(len(c1)) feature_vector.append(len(c2)) feature_vector.append(num_words_concept(c1)) feature_vector.append(num_words_concept(c2)) feature_vector.append(float(c1ls[0])) feature_vector.append(float(c1ls[1])) feature_vector.append(float(c1le[0])) feature_vector.append(float(c1le[1])) feature_vector.append(float(c2ls[0])) feature_vector.append(float(c2ls[1])) feature_vector.append(float(c2le[0])) feature_vector.append(float(c2le[1])) feature_vector.append(abs(float(c1ls[0])-float(c2ls[0]))) words_common=re.sub(r'[^\w]', ' ', common) feature_vector.append(len(words_common)) feature_vector.append(num_words_concept(words_common)) lf=(float((num_words_concept(words_common)+1))/float((num_words_concept(c1)+num_words_concept(c2)))) feature_vector.append(float(num_words_concept(c1))/(float(num_words_concept(c1)+num_words_concept(c2)))) #feature_vector.append(math.log(lf)) if(c1==c2): feature_vector.append(1) else: feature_vector.append(0) feature_vector.append(lf) feature_vector.append(c1) feature_vector.append(c1line[0]) feature_vector.append(c1line[1]) feature_vector.append(c2) feature_vector.append(c2line[0]) feature_vector.append(c2line[1]) #feature_vector.append(pipe[-1]) for feature in feature_vector: fp.write("%s|" % feature) fp.write('\n') fp.close() f.close() ''' embed=[] embedstr fp.write("%s," % feature)ing=[] file = open(path, 'r') vector=[0]*50 for line in file: line=line.strip("\n") s=line.split(" ") count=0 for si in s: if(si=='\n'): continue try: vector+=model.embedding_for(si) count+=1 except Exception as e: print e continue if(count==0): continue #vector=vector/count embed.append(vector) embedstring.append(line) #phrases.append(line) #for p in phrases: gfile=open(data+"path.glove","w") for j in range(0,len(embed)): for i in embed[j]: gfile.write("%s,"%i) gfile.write(embedstring[j]+"\n") #gfile.close() #print(embed[0]) '''
2.46875
2
Photoelectric.py
EroSkulled/PHY224-324
0
12785460
<reponame>EroSkulled/PHY224-324 import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt import pandas as pd def f(x, a, b): return a * x + b def error(ydata): v_error = np.empty(len(ydata)) for i in range(len(ydata)): v_error[i] = max(ydata[i] * 0.0010, 0.01) return v_error data = pd.read_csv(r"C:\Users\Walter\IdeaProjects\PHY224\Photoelectric\EXP1.csv", delimiter=',', skiprows=0) plt.title('LED Color stopping Voltage vs. wave length') plt.ylabel('Stop Voltage (V)') plt.xlabel('Wave Length (nm)') xdata1 = data["wavelength "] ydata1 = data["V stop"] plt.errorbar(xdata1, ydata1, label='Test 1', yerr=error(ydata1), linestyle='None', marker=".") data = pd.read_csv(r"C:\Users\Walter\IdeaProjects\PHY224\Photoelectric\EXP2.csv", delimiter=',', skiprows=0) xdata2 = data["wavelength"] ydata2 = data["Vstop"] plt.errorbar(xdata2, ydata2, label='Test 2', yerr=error(ydata2), linestyle='None', marker=".") data = pd.read_csv(r"C:\Users\Walter\IdeaProjects\PHY224\Photoelectric\EXP3.csv", delimiter=',', skiprows=0) xdata3 = data["wavelength"] ydata3 = data["Vstop"] plt.errorbar(xdata3, ydata3, label='Test 3', yerr=error(ydata3), linestyle='None', marker=".") xdata = (xdata1 + xdata2 + xdata3) / 3 ydata = (ydata1 + ydata2 + ydata3) / 3 plt.plot(xdata, ydata, label='Average') plt.legend() plt.show() # Computing frequency from wavelength frequency = (3 * 10 ** 8) / xdata # Estimated errors from equipment v_error = np.empty(len(ydata)) for i in range(len(ydata)): v_error[i] = max(ydata[i] * 0.0010, 0.01) # Linear regression p_opt, p_cov = curve_fit(f, frequency, ydata, (0, 0), v_error, True) lin_output = f(frequency, p_opt[0], p_opt[1]) # Outputting Planck's Constant h h = p_opt[0] * (1.6 * 10 ** (-19)) h_error = p_cov[0, 0] * (1.6 * 10 ** (-19)) print('Estimated Plancks Constant: ', h, '(J*s) +/-', h_error, '(J**s)') # Outputting the Work Function wf = -p_opt[1] * (1.6 * 10 ** (-19)) wf_error = p_cov[1, 1] * (1.6 * 10 ** (-19)) print('Estimated Work Function: ', wf, '(J) +/-', wf_error, '(J)') # Outputting the cut-off frequency f0 = -(1.6 * 10 ** (-19)) * p_opt[1] / h f0_error = p_cov[1, 1] * (1.6 * 10 ** (-19)) / h print('Estimated Cut-off Frequency: ', f0, '(Hz) +/-', f0_error, '(Hz)') # Calculating chi squared chi_sq = (1 / 2) * (np.sum(((ydata - lin_output) / v_error) ** 2)) print('Chi squared for linear regression: ', chi_sq) plt.title('Curve Fit vs. Original Data') plt.ylabel('Stop Voltage (V)') plt.xlabel('Wave Length (nm)') plt.errorbar(xdata, ydata, label='Average', yerr=v_error, linestyle='None', marker=".") plt.plot(xdata, lin_output, label='Curve fit ') plt.legend() plt.show()
2.5
2
jsonmsgpack.py
JuncoJet/python-performance-tuning
3
12785461
import timeit,json import msgpack def test1(): global dic,data1 data1=json.dumps(dic) return data1 def test2(): global dic,data2 data2=msgpack.packb(dic) return data2 def test3(): global data1 return json.loads(data1) def test4(): global data2 return msgpack.unpackb(data2) times=1000*1000 data1,data2=None,None dic={'id':1,'data':{'title':'h1','content':'abcdefg'*100,'list':[1,2,'3'*33,'4']}} t1=timeit.Timer("test1()","from __main__ import test1") print '1',t1.timeit(times) t2=timeit.Timer("test2()","from __main__ import test2") print '2',t2.timeit(times) t3=timeit.Timer("test3()","from __main__ import test3") print '3',t3.timeit(times) t4=timeit.Timer("test4()","from __main__ import test4") print '4',t4.timeit(times)
2.484375
2
ProgsByDataset/ArxivMAG/convert_mallet_to_lda.py
ashwath92/MastersThesis
5
12785462
<reponame>ashwath92/MastersThesis<filename>ProgsByDataset/ArxivMAG/convert_mallet_to_lda.py import gensim ldamallet = LdaMallet.load('/home/ashwath/Programs/ArxivCS/LDA/ldamallet_arxiv.model') lda = gensim.models.wrappers.ldamallet.malletmodel2ldamodel(ldamallet, gamma_threshold=0.001, iterations=50) lda.save('lda_arxiv.model')
1.453125
1
salda_engine/personal/models.py
landges/salda
0
12785463
from django.db import models import datetime from django.contrib.auth.models import User # Create your models here. class Review(models.Model): user = models.ForeignKey(User,blank=True,null=True,on_delete=models.CASCADE) mark = models.IntegerField() text = models.TextField() created = models.DateTimeField(auto_now_add=True) def __str__(self): return self.user.username + str(self.mark)
2.453125
2
algorithms/dynamic_programming/longest_consecutive_subsequence.py
ruler30cm/python-ds
1,723
12785464
<filename>algorithms/dynamic_programming/longest_consecutive_subsequence.py """ Given an array of integers, find the length of the longest sub-sequence such that elements in the subsequence are consecutive integers, the consecutive numbers can be in any order. The idea is to store all the elements in a set first. Then as we are iterating over the array, we check two things - 1. a number x can be a starting number in a sequence if x-1 is not present in the set. If this is the case, create a loop and check how many elements from x to x+j are in the set 2. if x -1 is there in the set, do nothing as this number is not a starting element and must have been considered in a different sequence """ def find_seq(arr, n): s = set() for num in arr: s.add(num) ans = 0 elements = [] for i in range(n): temp = [] if arr[i] - 1 not in s: j = arr[i] while j in s: temp.append(j) j += 1 if j - arr[i] > ans: ans = j - arr[i] elements = temp.copy() return ans, elements arr = [36, 41, 56, 35, 44, 33, 34, 92, 43, 32, 42] ans, elements = find_seq(arr, len(arr)) print('Length - ', ans) print('Elements - ', elements)
4.125
4
primrose/templates/run_primrose.py
astro313/primrose
38
12785465
""" Run a job: i.e. run a configuration file through the DAGRunner """ import argparse import logging import warnings ###################################### ###################################### # Important: # # If your configuration uses custom node classes, be sure to set environment variable # PRIMROSE_EXT_NODE_PACKAGE to the location of your package before running primrose. # Example: # ``` # export PRIMROSE_EXT_NODE_PACKAGE=src/mypackage # python run_primrose.py --config_loc my_config.json # ``` # ###################################### ###################################### from primrose.configuration.configuration import Configuration from primrose.dag_runner import DagRunner from primrose.dag.config_layer_traverser import ConfigLayerTraverser from primrose.dag.depth_first_traverser import DepthFirstTraverser warnings.filterwarnings("ignore") def parse_arguments(): """ Parse command line arguments Returns: argument objects with flags as attributes """ parser = argparse.ArgumentParser() parser.add_argument( "--config_loc", help="Location of the configuration file", required=True ) parser.add_argument( "--is_dry_run", help="do a dry run of the DAG which will validatre config and log which nodes would be run", default=False, type=lambda x: (str(x).lower() == "true"), ) known_args, pipeline_args = parser.parse_known_args() return known_args, pipeline_args def main(): """ Run a job: i.e. run a configuration file through the DAGRunner """ args, _ = parse_arguments() logging.basicConfig( format="%(asctime)s %(levelname)s %(filename)s %(funcName)s: %(message)s", level=logging.INFO, ) configuration = Configuration(config_location=args.config_loc) DagRunner(configuration).run(dry_run=args.is_dry_run) if __name__ == "__main__": main()
2.671875
3
fndiff/fndiffer.py
ofi/fndiff
0
12785466
""" fndiff.py -- Main class and function See LICENSE for copyright details. """ import re from .fnselection import FilenamesSelection, FilenamesSelectionError class FilenamesDiffError(Exception): def __init__(self, errString, args): self.__errstring = errString self.__args = str(args) def __str__(self): argstr = "" if self.__args: argstr = argstr.join(self.__args) return "{}, arguments: {}".format(self.__errstring, argstr) class FilenamesDiffer: """Main class of operation.""" def __init__(self, **kwargs): try: srcdir = kwargs['srcdir'] dstdir = kwargs['dstdir'] pattern = kwargs['pattern'] reflag = kwargs['reflag'] except KeyError as err: raise FilenamesDiffError( "Argument to constructor is missing (was: {}).".format(err), kwargs) try: self.__src_selection = FilenamesSelection(srcdir, pattern, reflag) self.__dst_selection = FilenamesSelection(dstdir, pattern, reflag) except FilenamesSelectionError as err: raise FilenamesDiffError( "Error creating file selection (was: {}).".format(err), kwargs) if str(self.__src_selection) == str(self.__dst_selection): raise FilenamesDiffError( "Sorry, this version can't operate in one single direcory" + " with only one pattern.", kwargs) def not_in_target(self): """Return a list of Path objects, representing all files from source directory, which are not represented in the destination directory according to their pattern matches.""" result = [] try: src_dict = self.__src_selection.eval() dst_dict = self.__dst_selection.eval() result = [ src_dict[x] for x in src_dict.keys() if not x in dst_dict ] except Exception as err: raise FilenamesDiffError( "Invalid comparison: {}.".format(err), [self.__src_selection, self.__dst_selection]) return result def filenames_diff(sdir, tdir, pat, rexflag): """ Top level function to produce list of resulting file pathes as strings. """ result = [] differ = FilenamesDiffer(srcdir=sdir, dstdir=tdir, pattern=pat, reflag=rexflag) result = differ.not_in_target() return result
2.8125
3
continuum/scenarios/base.py
lebrice/continuum
0
12785467
<filename>continuum/scenarios/base.py import abc from typing import Callable, List, Tuple, Union import numpy as np from torchvision import transforms from continuum.datasets import _ContinuumDataset from continuum.task_set import TaskSet class _BaseCLLoader(abc.ABC): """Abstract loader. DO NOT INSTANTIATE THIS CLASS. :param cl_dataset: A Continuum dataset. :param nb_tasks: The number of tasks to do. :param train_transformations: The PyTorch transformations exclusive to the train set. :param common_transformations: The PyTorch transformations common to the train set and the test set. :param train: Boolean flag whether to use the train or test subset. """ def __init__( self, cl_dataset: _ContinuumDataset, nb_tasks: int, train_transformations: List[Callable] = None, common_transformations: List[Callable] = None, train=True ) -> None: self.cl_dataset = cl_dataset self._nb_tasks = nb_tasks if train_transformations is None: train_transformations = [] if common_transformations is None: common_transformations = self.cl_dataset.transformations if len(common_transformations) == 0: self.train_trsf, self.test_trsf = None, None else: self.train_trsf = transforms.Compose(train_transformations + common_transformations) self.test_trsf = transforms.Compose(common_transformations) self.train = train @abc.abstractmethod def _setup(self, nb_tasks: int) -> int: raise NotImplementedError @property def nb_classes(self) -> int: """Total number of classes in the whole continual setting.""" return len(np.unique(self.dataset[1])) # type: ignore @property def nb_tasks(self) -> int: """Number of tasks in the whole continual setting.""" return len(self) def __len__(self) -> int: """Returns the number of tasks. :return: Number of tasks. """ return self._nb_tasks def __iter__(self): """Used for iterating through all tasks with the CLLoader in a for loop.""" self._counter = 0 return self def __next__(self) -> TaskSet: """An iteration/task in the for loop.""" if self._counter >= len(self): raise StopIteration task = self[self._counter] self._counter += 1 return task def __getitem__(self, task_index: Union[int, slice]): """Returns a task by its unique index. :param task_index: The unique index of a task. As for List, you can use indexing between [0, len], negative indexing, or even slices. :return: A train PyTorch's Datasets. """ data = self._select_data_by_task(task_index) return TaskSet( *data, self.train_trsf if self.train else self.test_trsf, data_type=self.cl_dataset.data_type ) def _select_data_by_task(self, task_index: Union[int, slice]): """Selects a subset of the whole data for a given task. :param task_index: The unique index of a task. As for List, you can use indexing between [0, len], negative indexing, or even slices. :return: A tuple of numpy array, the first item being the data and the second the associated targets. """ x, y, t = self.dataset # type: ignore if isinstance(task_index, slice): start = task_index.start or 0 stop = task_index.stop or len(self) + 1 step = task_index.step or 1 task_indexes = list(range(start, stop, step)) task_indexes = [ t if t >= 0 else _handle_negative_indexes(t, len(self)) for t in task_indexes ] indexes = np.where(np.isin(t, task_indexes))[0] else: if task_index < 0: task_index = _handle_negative_indexes(task_index, len(self)) indexes = np.where(t == task_index)[0] selected_x = x[indexes] selected_y = y[indexes] selected_t = t[indexes] if self.cl_dataset.need_class_remapping: # TODO: to remove with TransformIncremental # A remapping of the class ids is done to handle some special cases # like PermutedMNIST or RotatedMNIST. selected_y = self.cl_dataset.class_remapping(selected_y) return selected_x, selected_y, selected_t def _handle_negative_indexes(index: int, total_len: int) -> int: while index < 0: index += total_len return index
2.453125
2
test/mqtt_test.py
spbrogan/rvc2mqtt
6
12785468
""" Unit tests for the mqtt support class Copyright 2022 <NAME> SPDX-License-Identifier: Apache-2.0 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import unittest import context # add rvc2mqtt package to the python path using local reference from rvc2mqtt.mqtt import * ## can't figure out how to unit test this..probably need to mock...but given this class is tightly coupled with ## paho mqtt not sure how useful....anyway..below is hack to test it with real mqtt server class device1(object): def __init__(self, name: str, mqtt_support:MQTT_Support): self.device_topic = mqtt_support.make_device_topic_root(name) self.status_topic = mqtt_support.make_device_topic_string(name, None, True) self.set_topic = mqtt_support.make_device_topic_string(name, None, False) mqtt_support.client.publish(self.status_topic, "unknown", retain=True) mqtt_support.register(self, self.set_topic, self.got_message) self.mqtt = mqtt_support def got_message(self, topic, payload): print(f"hello from device1 {topic} --- {payload.decode('utf-8')}") self.mqtt.client.publish(self.status_topic, payload, retain=True) if __name__ == '__main__': #unittest.main() mqs = MqttInitalize(Test_MQTT_Support.MQTT_BRIDGE_SETTINGS) mqs.client.loop_start() d1 = device1("try1", mqs) mqs.client.publish(d1.set_topic, "here", retain=False) import time time.sleep(5) mqs.shutdown()
3.078125
3
cmstack/codegen/tabla/gendot.py
he-actlab/cdstack
1
12785469
<reponame>he-actlab/cdstack<filename>cmstack/codegen/tabla/gendot.py from collections import deque header = 'digraph G {' + '\n' footer = '}' + '\n' def gendot(dfg, cycle2id): #dfg = copy.copy(importedDFG) strList = [] strList.append(header) bfs(dfg, strList) # append rank here rank = genrank(cycle2id) strList.append(rank) strList.append(footer) dotCode = ''.join(strList) return dotCode def bfs(dfg, strList): initnodes = dfg.get_nodes_in_cycle(0) queue = deque(initnodes) visitedList = set([]) idDict = {} for node in initnodes: idDict[node] = genlabel(node) idDict['Sink'] = '"sink"' while len(queue) > 0: currNode = queue.popleft() # Connecting currNode with children left = idDict[currNode] for child in currNode.children: if child not in visitedList and child != 'Sink': queue.append(child) visitedList.add(child) # Child node doesn't have operation label if child not in idDict: idDict[child] = genlabel(child) right = idDict[child] # flow is a line flow = str.format('{} -> {};\n', left, right) strList.append(flow) visitedList.add(currNode) def genlabel(node): if node.pe is not None: label = '{"' + str(node.id) + '" [label="' + node.op + ' ' + str(node.pe.id) +'"]' + '}' else: label = '{"' + str(node.id) + '" [label="' + node.op +'"]' + '}' return label def genrank(cycle2id): rankCode = '' rankSink = '{rank = sink; "sink";};\n' # cycle2id is a dictionary of cycle to node id list for cycle in cycle2id: rankTempl = '{rank = same; ' idList = cycle2id[cycle] sameRankIds = '' for id in idList: sameRankIds += '"' + str(id) + '"' + '; ' rankTempl += sameRankIds + '};\n' rankCode += rankTempl rankCode += rankSink return rankCode
2.421875
2
draw canvas and various shapes.py
gptshubham595/MachineLearn
0
12785470
<reponame>gptshubham595/MachineLearn # -*- coding: utf-8 -*- """ Created on Fri Dec 14 23:45:25 2018 @author: gptshubham595 """ import cv2 import numpy as np def main(): #draing canvas size ,BGR,unsigned int img=np.zeros((512,512,3),np.uint8) #circle X,Y Radius BGR filled cv2.circle(img,(100,100),(100),(0,255,0),-1) #draw line X1,Y1 to X2,Y2 and in BGR Thickness cv2.line(img,(0,99),(99,0),(0,0,255),4) #x1,y1 and x4,y4 cv2.rectangle(img,(40,60),(200,200),(10,150,100),1) #0Rotation 360angle of ellipse portion cv2.ellipse(img,(250,250),(50,20),0,0,360,(127,127,127),-1) #making an array for coordinates points=np.array([[80,2],[125,30],[40,62],[53,12],[64,52]],np.int32) points=points.reshape((-1,1,2)) cv2.polylines(img,[points],True,(0,255,255)) text='Testing Values' #where to show ,text ,center,font,size,BGR cv2.putText(img,text,(200,200),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,0)) cv2.imshow('Pic',img) if cv2.waitKey(1) ==27: cv2.destroyWindow('Pic') if __name__=="__main__": main()
3.15625
3
pep.lib/proc/procSCISAT.py
alpha-zou/TAMP
1
12785471
#!/usr/bin/env python import os, sys, subprocess from os.path import basename,dirname import h5py from netCDF4 import Dataset import numpy as np import numpy.ma as ma import gdal from gdalconst import * from osgeo import ogr, osr from datetime import datetime, date def createImgSCISAT(fileAbsPath): # read info from netcdf ncfile = Dataset(fileAbsPath, 'r') latitude = ncfile.groups['ACE-FTS-v2.2'].latitude longitude = ncfile.groups['ACE-FTS-v2.2'].longitude datestart = datetime.strptime(ncfile.groups['ACE-FTS-v2.2'].start_time,'%Y-%m-%d %H:%M:%S+00') dateend = datetime.strptime(ncfile.groups['ACE-FTS-v2.2'].end_time,'%Y-%m-%d %H:%M:%S+00') ozone = ncfile.groups['ACE-FTS-v2.2'].groups['Data-L2_1km_grid'].variables['O3'][:] heightLevels = ncfile.groups['ACE-FTS-v2.2'].groups['Data-L2_1km_grid'].variables['z'][:] numBand = len(ozone) ncfile.close() #common vars no_value = -9999 minValue = ma.min(ozone) maxValue = ma.max(ozone) ma.set_fill_value(ozone, no_value) ozone = ozone.filled() #ma.set_fill_value(heightLevels, no_value) #heightLevels = heightLevels.filled() sizeX = 1 sizeY = 1 dataType = gdal.GDT_Float32 resolution = 1.0 # in degree driver = gdal.GetDriverByName('GTiff' ) outFile = 'ACE-FTS_L2_ozone_'+datestart.strftime('%Y%m%d.%H%M%S')+'.tif' #create tiff dst_ds = driver.Create(outFile, sizeX, sizeY, numBand, dataType) for i in range(numBand): dst_ds.GetRasterBand(i+1).WriteArray(np.expand_dims(np.expand_dims(ozone[i],axis=0),axis=0)) # The computed stat produces this warning # Warning 1: Lost metadata writing to GeoTIFF ... too large to fit in tag. # An additional *.aux.xml is added #if ozone[i] != no_value: # dst_ds.GetRasterBand(i+1).ComputeStatistics(False) dst_ds.GetRasterBand(i+1).SetNoDataValue(no_value) #set geotrasform matrix top_left_x = longitude - (resolution / 2) w_e_pixel_resolution = resolution top_left_y = latitude - (resolution / 2) n_s_pixel_resolution = - resolution coord = [top_left_x, w_e_pixel_resolution, 0, top_left_y,0, n_s_pixel_resolution] dst_ds.SetGeoTransform(coord) srs = osr.SpatialReference() srs.SetWellKnownGeogCS('WGS84') dst_ds.SetProjection(srs.ExportToWkt()) #set metadata dst_ds.SetMetadataItem('GLOBAL_MAX',str(maxValue)) dst_ds.SetMetadataItem('GLOBAL_MIN',str(minValue)) dst_ds.SetMetadataItem('TIME_END', dateend.strftime('%Y-%m-%dT%H:%M:%SZ')) dst_ds.SetMetadataItem('TIME_START', datestart.strftime('%Y-%m-%dT%H:%M:%SZ')) dst_ds.SetMetadataItem('VERTICAL_LEVELS_NUMBER', str(len(heightLevels))) dst_ds.SetMetadataItem('VERTICAL_LEVELS', ','.join(str(x) for x in heightLevels)) dst_ds =None return [outFile] if __name__ == '__main__': if len(sys.argv) != 2: sys.exit('\nUsage: %s L2_SCISAT_file \n' % sys.argv[0] ) else: if not os.path.exists(sys.argv[1]): sys.exit('\nERROR: File %s was not found!\n' % sys.argv[1]) fileAbsPath = sys.argv[1] outFileName = createImgSCISAT(fileAbsPath) exit(0) # else: # Module is imported from another module
2.15625
2
envs/classic_controls/CartPole/agent.py
Robotics-Engineering-Lab/bonsai-connectors
8
12785472
import logging from os import write import requests from typing import Any, Dict from cartpole import CartPole from tensorboardX import SummaryWriter class BonsaiAgent(object): """ The agent that gets the action from the trained brain exported as docker image and started locally """ def act(self, state) -> Dict[str, Any]: action = self.predict(state) #simulator expects action to be integer action["command"] = int(action["command"]) return action def predict(self, state): #local endpoint when running trained brain locally in docker container url = "http://localhost:5000/v1/prediction" response = requests.get(url, json=state) action = response.json() return action class RandomAgent(object): """The world's simplest agent!""" def __init__(self, cartpole: CartPole): self.cartpole = cartpole def act(self, state): return cartpole.gym_to_action(cartpole._env.action_space.sample()) if __name__ == '__main__': logging.basicConfig() log = logging.getLogger("cartpole") log.setLevel(level='INFO') writer = SummaryWriter() # we will use our environment (wrapper of OpenAI env) cartpole = CartPole() # specify which agent you want to use, # BonsaiAgent that uses trained Brain or # RandomAgent that randomly selects next action agent = BonsaiAgent() episode_count = 100 try: for i in range(episode_count): #start a new episode and get the new state cartpole.episode_start() state = cartpole.get_state() cum_reward = 0 while True: #get the action from the agent (based on the current state) action = agent.act(state) #do the next step of the simulation and get the new state cartpole.episode_step(action) state = cartpole.get_state() #get the last reward and add it the episode reward reward = cartpole.get_last_reward() cum_reward += reward if cartpole.halted(): writer.add_scalar("reward", cum_reward, i ) break writer.flush() cartpole.episode_finish("") writer.close() except KeyboardInterrupt: print("Stopped")
2.765625
3
tracardi/service/wf/domain/error_debug_info.py
bytepl/tracardi
153
12785473
<filename>tracardi/service/wf/domain/error_debug_info.py from pydantic import BaseModel class ErrorDebugInfo(BaseModel): msg: str line: int file: str
1.757813
2
pypy/module/struct/ieee.py
camillobruni/pygirl
12
12785474
""" Packing and unpacking of floats in the IEEE 32-bit and 64-bit formats. """ import math from pypy.rlib.rarithmetic import r_longlong, isinf, isnan, INFINITY, NAN def pack_float(result, number, size, bigendian): """Append to 'result' the 'size' characters of the 32-bit or 64-bit IEEE representation of the number. """ if size == 4: bias = 127 exp = 8 prec = 23 else: bias = 1023 exp = 11 prec = 52 if isnan(number): sign = 0x80 man, e = 1.5, bias + 1 else: if number < 0: sign = 0x80 number *= -1 elif number == 0.0: for i in range(size): result.append('\x00') return else: sign = 0x00 if isinf(number): man, e = 1.0, bias + 1 else: man, e = math.frexp(number) if 0.5 <= man and man < 1.0: man *= 2 e -= 1 man -= 1 e += bias power_of_two = r_longlong(1) << prec mantissa = r_longlong(power_of_two * man + 0.5) if mantissa >> prec : mantissa = 0 e += 1 for i in range(size-2): result.append(chr(mantissa & 0xff)) mantissa >>= 8 x = (mantissa & ((1<<(15-exp))-1)) | ((e & ((1<<(exp-7))-1))<<(15-exp)) result.append(chr(x)) x = sign | e >> (exp - 7) result.append(chr(x)) if bigendian: first = len(result) - size last = len(result) - 1 for i in range(size // 2): (result[first + i], result[last - i]) = ( result[last - i], result[first + i]) def unpack_float(input, bigendian): """Interpret the 'input' string into a 32-bit or 64-bit IEEE representation a the number. """ size = len(input) bytes = [] if bigendian: reverse_mask = size - 1 else: reverse_mask = 0 nonzero = False for i in range(size): x = ord(input[i ^ reverse_mask]) bytes.append(x) nonzero |= x if not nonzero: return 0.0 if size == 4: bias = 127 exp = 8 prec = 23 else: bias = 1023 exp = 11 prec = 52 mantissa_scale_factor = 0.5 ** prec # this is constant-folded if it's # right after the 'if' mantissa = r_longlong(bytes[size-2] & ((1<<(15-exp))-1)) for i in range(size-3, -1, -1): mantissa = mantissa << 8 | bytes[i] mantissa = 1 + mantissa * mantissa_scale_factor mantissa *= 0.5 e = (bytes[-1] & 0x7f) << (exp - 7) e += (bytes[size-2] >> (15 - exp)) & ((1<<(exp - 7)) -1) e -= bias e += 1 sign = bytes[-1] & 0x80 if e == bias + 2: if mantissa == 0.5: number = INFINITY else: return NAN else: number = math.ldexp(mantissa,e) if sign : number = -number return number
3.34375
3
cifar10/selfsup/transforms.py
phymhan/essl
0
12785475
import torchvision.transforms as T def aug_transform(crop, base_transform, cfg, extra_t=[]): """ augmentation transform generated from config """ return T.Compose( [ T.RandomApply( [T.ColorJitter(cfg.cj0, cfg.cj1, cfg.cj2, cfg.cj3)], p=cfg.cj_p ), T.RandomGrayscale(p=cfg.gs_p), T.RandomResizedCrop( crop, scale=(cfg.crop_s0, cfg.crop_s1), ratio=(cfg.crop_r0, cfg.crop_r1), interpolation=3, ), T.RandomHorizontalFlip(p=cfg.hf_p), *extra_t, base_transform(), ] ) class MultiSample: """ generates n samples with augmentation """ def __init__(self, transform, n=2): self.transform = transform self.num = n def __call__(self, x): return tuple(self.transform(x) for _ in range(self.num))
2.5625
3
config/__init__.py
MCC-WH/Token
30
12785476
import argparse from torch import cuda def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--directory', metavar='EXPORT_DIR', help='destination where trained network should be saved') parser.add_argument('--training-dataset', default='GLDv2', help='training dataset: (default: GLDv2)') parser.add_argument('--imsize', default=1024, type=int, metavar='N', help='maximum size of longer image side used for training (default: 1024)') parser.add_argument('--num-workers', default=8, type=int, metavar='N', help='number of data loading workers (default: 8)') parser.add_argument('--device', type=str, default='cuda' if cuda.is_available() else 'cpu') parser.add_argument('--num-epochs', default=100, type=int, metavar='N', help='number of total epochs to run (default: 100)') parser.add_argument('--batch-size', '-b', default=5, type=int, metavar='N', help='number of (q,p,n1,...,nN) tuples in a mini-batch (default: 5)') parser.add_argument('--update-every', '-u', default=1, type=int, metavar='N', help='update model weights every N batches, used to handle really large batches, ' + 'batch_size effectively becomes update_every x batch_size (default: 1)') parser.add_argument('--resume', default=None, type=str, metavar='FILENAME', help='name of the latest checkpoint (default: None)') parser.add_argument('--warmup-epochs', type=int, default=0, help='learning rate will be linearly scaled during warm up period') parser.add_argument('--val-epoch', type=int, default=1) parser.add_argument('--warmup-lr', type=float, default=0, help='Initial warmup learning rate') parser.add_argument('--base-lr', type=float, default=1e-6) parser.add_argument('--final-lr', type=float, default=0) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight-decay', type=float, default=1e-6) parser.add_argument('--rank', type=int, default=None) parser.add_argument('--world_size', type=int, default=None) parser.add_argument('--gpu', type=int, default=None) parser.add_argument('--dist_backend', type=str, default='nccl') parser.add_argument('--dist_url', type=str, default='tcp://127.0.0.1:29324') parser.add_argument('--distributed', action='store_true') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--clip_max_norm', type=float, default=0) args = parser.parse_args() return args
2.484375
2
app.py
frostblooded/led_music_alarm_server
0
12785477
import os from flask import Flask from flask import request from flask import render_template app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'GET': return render_template('index.html') elif request.method == 'POST': data = request.form text = '''[spotify] username = {} password = {} client_id = {} client_secret = {} private_session = true [mpd] enabled = true '''.format(data['username'], data['password'], data['client_id'], data['client_secret']) text_file = open("/etc/mopidy/mopidy.conf", "w") text_file.write(text) text_file.close() print("Service restart:", os.system('sudo systemctl restart mopidy.service')) return render_template('index.html', flash="Credentials set!") @app.route('/alarm', methods=['POST']) def alarm(): cron_text = '{} {} * * * mpc clear && mpc add {} && mpc play'.format( request.form['minutes'], request.form['hours'], request.form['spotify_uri'] ) remove_cron_command = 'sudo crontab -r' cron_set_command = '(sudo crontab -l ; echo "{}") | sort - | uniq - | sudo crontab -'.format(cron_text) print("Removing old crontabs:", os.system(remove_cron_command)) print("Setting crontab:", os.system(cron_set_command)) return render_template('index.html', flash="Alarm set!")
2.34375
2
SampleAIs/Sample_Daddies/__init__.py
YSabarad/monopyly
4
12785478
<filename>SampleAIs/Sample_Daddies/__init__.py from .generous_daddy import GenerousDaddyAI from .mean_daddy import MeanDaddyAI
1.125
1
homura/__init__.py
Xiangyu-Han/homura
1
12785479
<gh_stars>1-10 from .register import Registry from .utils import TensorDataClass, TensorTuple, distributed_print, enable_accimage, get_args, get_environ, \ get_git_hash, get_global_rank, get_local_rank, get_num_nodes, get_world_size, if_is_master, init_distributed, \ is_accimage_available, is_distributed, is_distributed_available, is_faiss_available, is_master, set_deterministic, \ set_seed Registry.import_modules('homura.vision') # to avoid circular import from . import reporters, trainers, optim, lr_scheduler
1.257813
1
1 Scripto/01.py
peterszerzo/rhino-pythonscript-tutorials
2
12785480
""" Rhino Python Script Tutorial Exercise 01 Draw point at origin. Important note: Python is very sensitive to indentation. Notice how the rs.AddPoint statement is indented inwards. This means that it is part of the Main method. All this will be clear in due time. """ import rhinoscriptsyntax as rs import math def Main(): rs.AddPoint([0,0,0]) Main()
3.03125
3
examples/simulation_utils.py
ZhaozhiQIAN/torchdiffeq
0
12785481
import time import random import numpy as np import pandas as pds from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from torchdiffeq import odeint_adjoint as odeint from config import D_TYPE def get_data(): Arg = namedtuple('Arg', ['method', 'data_size', 'batch_time', 'batch_size', 'niters', 'test_freq', 'viz', 'gpu', 'adjoint']) args = Arg('dopri5', 1000, 20, 1, 2000, 50, False, 1, True) true_y0 = torch.tensor([[0.0, 5.0]]) t = torch.linspace(0, 5, args.data_size + 1) class Lambda(nn.Module): def __init__(self, w0, f0, w1, dr): super(Lambda, self).__init__() self.w0 = torch.tensor(w0) self.f0 = torch.tensor(f0) self.w1 = torch.tensor(w1) self.dr = torch.tensor(dr) def force(self, t): return self.f0 * torch.sin(self.w1 * t) def forward(self, t, y): dy0_dt = y[:, 1] dy1_dt = -2. * self.w0 * y[:, 1] * self.dr - self.w0 ** 2 * y[:, 0] + self.force(t) return torch.cat((dy0_dt.reshape(-1, 1), dy1_dt.reshape(-1, 1)), axis=1) # This numerical solution given the true DE. with torch.no_grad(): lam = Lambda(5., 5., 3., 0.01) true_y = odeint(lam, true_y0, t, method='dopri5') dat_dict = dict() for s in range(args.data_size - args.batch_time): batch_t = t[s:s+args.batch_time] batch_y = torch.stack([true_y[s + i] for i in range(args.batch_time)], dim=0) dim = batch_y.shape[-1] x_reshaped = batch_y.reshape(args.batch_time, 1, 1, dim) dat_dict[str(s)] = dict(t=batch_t, x=x_reshaped) return dat_dict
2.5
2
Ex_40.py
soldierloko/Curso-em-Video
0
12785482
<reponame>soldierloko/Curso-em-Video<filename>Ex_40.py #Crie um programa que leia 2 notas de um aluno e calcule sua média, mostrando uma mensagem no final, de acordo com a média atingida: # <5: REPROVADO #>5 E <7: RECUPERAÇÃO #>6,59: APROVADO n1 = float(input('Digite a primeira nota do aluno: ')) n2 = float(input('Digite a segunda nota do aluno: ')) vMedia = (n1+n2)/2 if vMedia < 5: print('REPROVADO') elif vMedia >= 5 and vMedia<=6.59: print('RECUPERAÇÃO') else: print('APROVADO')
3.65625
4
gestao_rh/urls.py
jesielcarlos/gestao_rh
0
12785483
<reponame>jesielcarlos/gestao_rh from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('',include('apps.core.urls')), path('funcionarios/',include('apps.funcionarios.urls')), path('departamentos/',include('apps.departamentos.urls')), path('empresa/',include('apps.empresa.urls')), path('documento/',include('apps.documentos.urls')), path('horas-extras/',include('apps.registro_hora_extra.urls')), path('admin/', admin.site.urls), path('accounts/',include('django.contrib.auth.urls')), ] + static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
1.742188
2
src/deprecated/rnn.py
yulinliu101/DeepTP
46
12785484
<reponame>yulinliu101/DeepTP<filename>src/deprecated/rnn.py # Note: All calls to tf.name_scope or tf.summary.* support TensorBoard visualization. import os import tensorflow as tf from configparser import ConfigParser # from keras.layers import CuDNNLSTM # from models.RNN.utils import variable_on_gpu def variable_on_cpu(name, shape, initializer): """ Next we concern ourselves with graph creation. However, before we do so we must introduce a utility function ``variable_on_gpu()`` used to create a variable in CPU memory. """ # Use the /cpu:0 device for scoped operations with tf.device('/cpu:0'): # Create or get apropos variable var = tf.get_variable(name=name, shape=shape, initializer=initializer) return var def variable_on_gpu(name, shape, initializer): """ Next we concern ourselves with graph creation. However, before we do so we must introduce a utility function ``variable_on_gpu()`` used to create a variable in CPU memory. """ # Use the /cpu:0 device for scoped operations with tf.device('/device:GPU:0'): # Create or get apropos variable var = tf.get_variable(name=name, shape=shape, initializer=initializer) return var def LSTM(conf_path, batch_x, seq_length, n_input, initial_state = None, train = True): # batch_x has the shape of [batch, time, n_dim] parser = ConfigParser(os.environ) parser.read(conf_path) n_mixture = parser.getint('lstm', 'n_mixture') n_layers = parser.getint('lstm', 'n_lstm_layers') relu_clip = parser.getint('lstm', 'relu_clip') if train: dropout = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] else: dropout = [0., 0., 0., 0., 0., 0., 0.] b1_stddev = 0.01 h1_stddev = 0.01 b2_stddev = 0.01 h2_stddev = 0.01 b3_stddev = 0.01 h3_stddev = 0.01 b4_stddev = 0.01 h4_stddev = 0.01 b5_stddev = 0.01 h5_stddev = 0.01 b_out_stddev = 0.01 h_out_stddev = 0.01 n_hidden_1 = parser.getint('lstm', 'n_hidden_1') n_hidden_2 = parser.getint('lstm', 'n_hidden_2') n_cell_dim = parser.getint('lstm', 'n_cell_dim') n_hidden_3 = int(eval(parser.get('lstm', 'n_hidden_3'))) n_hidden_4 = parser.getint('lstm', 'n_hidden_4') n_prob_param = parser.getint('lstm', 'n_prob_param') n_out = n_prob_param * n_mixture + 1 # Input shape: [batch_size, n_steps, n_input] # # n_input is the # of (original) features per frame: default to be 26 batch_x_shape = tf.shape(batch_x) # # Reshaping `batch_x` to a tensor with shape `[n_steps*batch_size, n_input + 2*n_input*n_context]`. # # This is done to prepare the batch for input into the first layer which expects a tensor of rank `2`. # # Permute n_steps and batch_size # batch_x = tf.transpose(batch_x, [1, 0, 2]) # Reshape to prepare input for first layer # batch_x = tf.reshape(batch_x, [-1, n_input]) # (n_steps*batch_size, n_input) batch_x = tf.reshape(batch_x, [-1, n_input]) # (batch_size*time, n_input) # clipped RELU activation and dropout. # 1st layer with tf.name_scope('embedding'): b1 = variable_on_gpu('b1', [n_hidden_1], tf.random_normal_initializer(stddev=b1_stddev)) h1 = variable_on_gpu('h1', [n_input, n_hidden_1], tf.random_normal_initializer(stddev=h1_stddev)) layer_emb = tf.nn.elu(tf.nn.xw_plus_b(batch_x, h1, b1)) # layer_emb = tf.minimum(tf.nn.relu(tf.add(tf.matmul(batch_x, h1), b1)), relu_clip) layer_emb = tf.nn.dropout(layer_emb, (1.0 - dropout[0])) # with tf.device('/cpu:0'): tf.summary.histogram("weights", h1) tf.summary.histogram("biases", b1) tf.summary.histogram("activations", layer_emb) with tf.name_scope('fc2'): b2 = variable_on_gpu('b2', [n_hidden_2], tf.random_normal_initializer(stddev=b2_stddev)) h2 = variable_on_gpu('h2', [n_hidden_1, n_hidden_2], tf.random_normal_initializer(stddev=h2_stddev)) layer_fc2 = tf.nn.elu(tf.nn.xw_plus_b(layer_emb, h2, b2)) layer_fc2 = tf.nn.dropout(layer_fc2, (1.0 - dropout[1])) # with tf.device('/cpu:0'): tf.summary.histogram("weights", h2) tf.summary.histogram("biases", b2) tf.summary.histogram("activations", layer_fc2) # Create the forward and backward LSTM units. Inputs have length `n_cell_dim`. # LSTM forget gate bias initialized at `1.0` (default), meaning less forgetting # at the beginning of training (remembers more previous info) # Input shape: [batch_size, n_steps, n_input] # batch_x_shape = tf.shape(batch_x) # # # Only work on cudnn 7.0.4 # with tf.name_scope('multilayer_lstm_cudnn'): # layer_fc2 = tf.transpose(tf.reshape(layer_fc2, [batch_x_shape[0], -1, n_hidden_2]), (1,0,2)) # model = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers = n_layers, # num_units = n_cell_dim, # input_mode = 'linear_input', # direction = 'unidirectional', # dropout = dropout[2], # kernel_initializer = tf.random_normal_initializer(stddev=0.1), # bias_initializer = tf.random_normal_initializer(stddev=0.1)) # outputs, final_state = model(inputs=layer_fc2) # outputs = tf.reshape(tf.transpose(outputs, (1,0,2)), [-1, n_cell_dim]) # [batch*time, n_cell_dim] # tf.summary.histogram("activations", outputs) with tf.name_scope('multilayer_lstm'): # as the LSTM expects its input to be of shape `[batch_size, time, input_size]`. layer_fc2 = tf.reshape(layer_fc2, [batch_x_shape[0], -1, n_hidden_2]) # `layer_fc2` is now reshaped into `[n_steps, batch_size, n_hidden_2]`, cells = [] for _ in range(n_layers): cell = tf.nn.rnn_cell.BasicLSTMCell(n_cell_dim, state_is_tuple = True) cell = tf.nn.rnn_cell.DropoutWrapper(cell, output_keep_prob = 1 - dropout[2]) cells.append(cell) stack = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True) # Get layer activations (second output is the final state of the layer, do not need) outputs, final_state = tf.nn.dynamic_rnn(cell = stack, inputs = layer_fc2, initial_state=initial_state, sequence_length = seq_length, dtype = tf.float32, time_major=False ) # outputs has the shape of [batch_size, time, n_cell_dim] # states has the shape of [batch_size, cell.state_size] # Reshape to apply the same weights over the timesteps outputs = tf.reshape(outputs, [-1, n_cell_dim]) # [batch*time, n_cell_dim] # with tf.device('/cpu:0'): tf.summary.histogram("activations", outputs) with tf.name_scope('fc3'): # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout b3 = variable_on_gpu('b3', [n_hidden_3], tf.random_normal_initializer(stddev=b3_stddev)) h3 = variable_on_gpu('h3', [n_cell_dim, n_hidden_3], tf.random_normal_initializer(stddev=h3_stddev)) layer_fc3 = tf.nn.elu(tf.nn.xw_plus_b(outputs, h3, b3)) layer_fc3 = tf.nn.dropout(layer_fc3, (1.0 - dropout[4])) # with tf.device('/cpu:0'): tf.summary.histogram("weights", h3) tf.summary.histogram("biases", b3) tf.summary.histogram("activations", layer_fc3) with tf.name_scope('fc4'): # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout b4 = variable_on_gpu('b4', [n_hidden_4], tf.random_normal_initializer(stddev=b4_stddev)) h4 = variable_on_gpu('h4', [n_hidden_3, n_hidden_4], tf.random_normal_initializer(stddev=h4_stddev)) layer_fc4 = tf.nn.elu(tf.nn.xw_plus_b(layer_fc3, h4, b4)) layer_fc4 = tf.nn.dropout(layer_fc4, (1.0 - dropout[5])) # with tf.device('/cpu:0'): tf.summary.histogram("weights", h4) tf.summary.histogram("biases", b4) tf.summary.histogram("activations", layer_fc4) #################################### ########## LOGIT LAYER ########### #################################### with tf.name_scope('output_layer'): b_out = variable_on_gpu('b_out', [n_out], tf.random_normal_initializer(stddev=b_out_stddev)) h_out = variable_on_gpu('h_out', [n_hidden_4, n_out], tf.random_normal_initializer(stddev=h_out_stddev)) layer_out = tf.nn.xw_plus_b(layer_fc4, h_out, b_out) # shape of [batch*time, n_out] tf.summary.histogram("weights", h_out) tf.summary.histogram("biases", b_out) tf.summary.histogram("activations", layer_out) # # shape of [batch_size*time, 1 + n_mixture * n_prob_param] # n_prob_param = 1 (pi) + 4 (mu) + 10 (cov) with tf.name_scope('mixture_coef'): end_layer, \ pi_layer, \ mu_layer, \ L_layer = get_mixture_coef(layer_out, n_mixture) with tf.name_scope('mixture_distribution'): MVN_pdf = tf.contrib.distributions.MultivariateNormalTriL(loc = mu_layer, scale_tril = L_layer) summary_op = tf.summary.merge_all() return end_layer, pi_layer, mu_layer, L_layer, MVN_pdf, final_state, summary_op # return end_layer, pi_layer, mu_lat_layer, mu_lon_layer, mu_alt_layer, mu_st_layer, sigma_lat_layer, sigma_lon_layer, sigma_alt_layer, sigma_st_layer, rho_latlon_layer, rho_lonalt_layer, rho_altlat_layer, rho_stlat_layer, rho_stlon_layer, rho_stalt_layer, final_state, summary_op def get_mixture_coef(layer_out, n_mixture): split_shape = [1, n_mixture, n_mixture * 4, n_mixture * 10] end_layer, \ pi_layer, \ mu_layer, \ L_layer = tf.split(value = layer_out, num_or_size_splits = split_shape, axis = 1) end_layer = tf.nn.sigmoid(end_layer) pi_layer = tf.nn.softmax(pi_layer) mu_layer = tf.reshape(mu_layer, (-1, n_mixture, 4)) # [batch*time, 4, n_mixture] L_layer = tf.reshape(L_layer, (-1, n_mixture, 10)) L_layer = tf.contrib.distributions.fill_triangular(L_layer) L_layer = tf.contrib.distributions.matrix_diag_transform(L_layer, transform=tf.nn.softplus) return end_layer, pi_layer, mu_layer, L_layer # split_shape = [1] # split_shape.extend([n_mixture]*(n_prob_param//3)) # split_shape.append(n_mixture * n_prob_param*2//3) # end_layer, \ # pi_layer, \ # mu_lat_layer, \ # mu_lon_layer, \ # mu_alt_layer, \ # mu_st_layer, \ # L_layer = tf.split(value = layer_out, # num_or_size_splits = split_shape, # axis = 1) # mu_flat = tf.concat([mu_lat_layer, mu_lon_layer, mu_alt_layer, mu_st_layer], axis = 1) # [batch*time, n_mixture * 4] # mu_layer = tf.transpose(tf.reshape(mu_flat, (-1, 4, n_mixture)), perm = [0,2,1]) # [batch*time, 4, n_mixture] # sigma_alt_layer = tf.exp(sigma_alt_layer) # sigma_lat_layer = tf.exp(sigma_lat_layer) # sigma_lon_layer = tf.exp(sigma_lon_layer) # sigma_st_layer = tf.exp(sigma_st_layer) # rho_latlon_layer = tf.nn.tanh(rho_latlon_layer) # rho_lonalt_layer = tf.nn.tanh(rho_lonalt_layer) # rho_altlat_layer = tf.nn.tanh(rho_altlat_layer) # rho_stlat_layer = tf.nn.tanh(rho_stlat_layer) # rho_stlon_layer = tf.nn.tanh(rho_stlon_layer) # rho_stalt_layer = tf.nn.tanh(rho_stalt_layer) # b_end_stddev = 0.01 # h_end_stddev = 0.01 # b_pi_stddev = 0.01 # h_pi_stddev = 0.01 # b_mu_lat_stddev = 0.01 # h_mu_lat_stddev = 0.01 # b_mu_lon_stddev = 0.01 # h_mu_lon_stddev = 0.01 # b_mu_alt_stddev = 0.01 # h_mu_alt_stddev = 0.01 # b_sigma_lat_stddev = 0.01 # h_sigma_lat_stddev = 0.01 # b_sigma_lon_stddev = 0.01 # h_sigma_lon_stddev = 0.01 # b_sigma_alt_stddev = 0.01 # h_sigma_alt_stddev = 0.01 # b_rho_lat_stddev = 0.01 # h_rho_lat_stddev = 0.01 # b_rho_lon_stddev = 0.01 # h_rho_lon_stddev = 0.01 # b_rho_alt_stddev = 0.01 # h_rho_alt_stddev = 0.01 # with tf.name_scope('fc_end'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_end = variable_on_gpu('b_end', [1], tf.random_normal_initializer(stddev=b_end_stddev)) # h_end = variable_on_gpu('h_end', [n_hidden_4, 1], tf.random_normal_initializer(stddev=h_end_stddev)) # end_layer = tf.nn.sigmoid(tf.add(tf.matmul(layer_fc4, h_end), b_end)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_end) # tf.summary.histogram("biases", b_end) # tf.summary.histogram("activations", end_layer) # end_layer = tf.reshape(end_layer, [-1, batch_x_shape[0], n_mixture]) # end_layer = tf.transpose(end_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_pi'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_pi = variable_on_gpu('b_pi', [n_mixture], tf.random_normal_initializer(stddev=b_pi_stddev)) # h_pi = variable_on_gpu('h_pi', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_pi_stddev)) # pi_layer = tf.nn.softmax(tf.add(tf.matmul(layer_fc4, h_pi), b_pi)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_pi) # tf.summary.histogram("biases", b_pi) # tf.summary.histogram("activations", pi_layer) # pi_layer = tf.reshape(pi_layer, [-1, batch_x_shape[0], n_mixture]) # pi_layer = tf.transpose(pi_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # ############################################################### # with tf.name_scope('fc_mu_lat'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_mu_lat = variable_on_gpu('b_mu_lat', [n_mixture], tf.random_normal_initializer(stddev=b_mu_lat_stddev)) # h_mu_lat = variable_on_gpu('h_lat', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_mu_lat_stddev)) # mu_lat_layer = (tf.add(tf.matmul(layer_fc4, h_mu_lat), b_mu_lat)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_mu_lat) # tf.summary.histogram("biases", b_mu_lat) # tf.summary.histogram("activations", mu_lat_layer) # mu_lat_layer = tf.reshape(mu_lat_layer, [-1, batch_x_shape[0], n_mixture]) # mu_lat_layer = tf.transpose(mu_lat_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_mu_lon'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_mu_lon = variable_on_gpu('b_mu_lon', [n_mixture], tf.random_normal_initializer(stddev=b_mu_lon_stddev)) # h_mu_lon = variable_on_gpu('h_lon', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_mu_lon_stddev)) # mu_lon_layer = (tf.add(tf.matmul(layer_fc4, h_mu_lon), b_mu_lon)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_mu_lon) # tf.summary.histogram("biases", b_mu_lon) # tf.summary.histogram("activations", mu_lon_layer) # mu_lon_layer = tf.reshape(mu_lon_layer, [-1, batch_x_shape[0], n_mixture]) # mu_lon_layer = tf.transpose(mu_lon_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_mu_alt'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_mu_alt = variable_on_gpu('b_mu_alt', [n_mixture], tf.random_normal_initializer(stddev=b_mu_alt_stddev)) # h_mu_alt = variable_on_gpu('h_alt', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_mu_alt_stddev)) # mu_alt_layer = (tf.add(tf.matmul(layer_fc4, h_mu_alt), b_mu_alt)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_mu_alt) # tf.summary.histogram("biases", b_mu_alt) # tf.summary.histogram("activations", mu_alt_layer) # mu_alt_layer = tf.reshape(mu_alt_layer, [-1, batch_x_shape[0], n_mixture]) # mu_alt_layer = tf.transpose(mu_alt_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_mu_st'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_mu_st = variable_on_gpu('b_mu_st', [n_mixture], tf.random_normal_initializer(stddev=b_mu_st_stddev)) # h_mu_st = variable_on_gpu('h_st', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_mu_st_stddev)) # mu_st_layer = (tf.add(tf.matmul(layer_fc4, h_mu_st), b_mu_st)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_mu_st) # tf.summary.histogram("biases", b_mu_st) # tf.summary.histogram("activations", mu_st_layer) # mu_st_layer = tf.reshape(mu_st_layer, [-1, batch_x_shape[0], n_mixture]) # mu_st_layer = tf.transpose(mu_st_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # ############################################################### # with tf.name_scope('fc_sigma_lat'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_sigma_lat = variable_on_gpu('b_sigma_lat', [n_mixture], tf.random_normal_initializer(stddev=b_sigma_lat_stddev)) # h_sigma_lat = variable_on_gpu('h_lat', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_sigma_lat_stddev)) # sigma_lat_layer = tf.nn.softplus(tf.add(tf.matmul(layer_fc4, h_sigma_lat), b_sigma_lat)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_sigma_lat) # tf.summary.histogram("biases", b_sigma_lat) # tf.summary.histogram("activations", sigma_lat_layer) # sigma_lat_layer = tf.reshape(sigma_lat_layer, [-1, batch_x_shape[0], n_mixture]) # sigma_lat_layer = tf.transpose(sigma_lat_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_sigma_lon'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_sigma_lon = variable_on_gpu('b_sigma_lon', [n_mixture], tf.random_normal_initializer(stddev=b_sigma_lon_stddev)) # h_sigma_lon = variable_on_gpu('h_lon', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_sigma_lon_stddev)) # sigma_lon_layer = tf.nn.softplus(tf.add(tf.matmul(layer_fc4, h_sigma_lon), b_sigma_lon)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_sigma_lon) # tf.summary.histogram("biases", b_sigma_lon) # tf.summary.histogram("activations", sigma_lon_layer) # sigma_lon_layer = tf.reshape(sigma_lon_layer, [-1, batch_x_shape[0], n_mixture]) # sigma_lon_layer = tf.transpose(sigma_lon_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_sigma_alt'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_sigma_alt = variable_on_gpu('b_sigma_alt', [n_mixture], tf.random_normal_initializer(stddev=b_sigma_alt_stddev)) # h_sigma_alt = variable_on_gpu('h_alt', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_sigma_alt_stddev)) # sigma_alt_layer = tf.nn.softplus(tf.add(tf.matmul(layer_fc4, h_sigma_alt), b_sigma_alt)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_sigma_alt) # tf.summary.histogram("biases", b_sigma_alt) # tf.summary.histogram("activations", sigma_alt_layer) # sigma_alt_layer = tf.reshape(sigma_alt_layer, [-1, batch_x_shape[0], n_mixture]) # sigma_alt_layer = tf.transpose(sigma_alt_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_sigma_st'): # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_sigma_st = variable_on_gpu('b_sigma_st', [n_mixture], tf.random_normal_initializer(stddev=b_sigma_st_stddev)) # h_sigma_st = variable_on_gpu('h_st', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_sigma_st_stddev)) # sigma_st_layer = tf.nn.softplus(tf.add(tf.matmul(layer_fc4, h_sigma_st), b_sigma_st)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_sigma_st) # tf.summary.histogram("biases", b_sigma_st) # tf.summary.histogram("activations", sigma_st_layer) # sigma_st_layer = tf.reshape(sigma_st_layer, [-1, batch_x_shape[0], n_mixture]) # sigma_st_layer = tf.transpose(sigma_st_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # ############################################################### # with tf.name_scope('fc_rho_lat'): # # rho_latlon # # Now we feed `outputs` to the fifth hidden layer with clipped RELU activation and dropout # b_rho_lat = variable_on_gpu('b_rho_lat', [n_mixture], tf.random_normal_initializer(stddev=b_rho_lat_stddev)) # h_rho_lat = variable_on_gpu('h_lat', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_rho_lat_stddev)) # rho_lat_layer = tf.nn.tanh(tf.add(tf.matmul(layer_fc4, h_rho_lat), b_rho_lat)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_rho_lat) # tf.summary.histogram("biases", b_rho_lat) # tf.summary.histogram("activations", rho_lat_layer) # rho_lat_layer = tf.reshape(rho_lat_layer, [-1, batch_x_shape[0], n_mixture]) # rho_lat_layer = tf.transpose(rho_lat_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_rho_lon'): # # rho_lonalt # b_rho_lon = variable_on_gpu('b_rho_lon', [n_mixture], tf.random_normal_initializer(stddev=b_rho_lon_stddev)) # h_rho_lon = variable_on_gpu('h_lon', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_rho_lon_stddev)) # rho_lon_layer = tf.nn.tanh(tf.add(tf.matmul(layer_fc4, h_rho_lon), b_rho_lon)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_rho_lon) # tf.summary.histogram("biases", b_rho_lon) # tf.summary.histogram("activations", rho_lon_layer) # rho_lon_layer = tf.reshape(rho_lon_layer, [-1, batch_x_shape[0], n_mixture]) # rho_lon_layer = tf.transpose(rho_lon_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # with tf.name_scope('fc_rho_alt'): # # rho_latalt # b_rho_alt = variable_on_gpu('b_rho_alt', [n_mixture], tf.random_normal_initializer(stddev=b_rho_alt_stddev)) # h_rho_alt = variable_on_gpu('h_alt', [n_hidden_4, n_mixture], tf.random_normal_initializer(stddev=h_rho_alt_stddev)) # rho_alt_layer = tf.nn.tanh(tf.add(tf.matmul(layer_fc4, h_rho_alt), b_rho_alt)) # with tf.device('/cpu:0'): # tf.summary.histogram("weights", h_rho_alt) # tf.summary.histogram("biases", b_rho_alt) # tf.summary.histogram("activations", rho_alt_layer) # rho_alt_layer = tf.reshape(rho_alt_layer, [-1, batch_x_shape[0], n_mixture]) # rho_alt_layer = tf.transpose(rho_alt_layer, [1, 0, 2]) # # shape of [batch_size, time, n_dim] # # with tf.device('/cpu:0'): # summary_op = tf.summary.merge_all() # Output shape: [batch_size, n_steps, n_hidden_6] # return end_layer, pi_layer, mu_lat_layer, mu_lon_layer, mu_alt_layer, mu_st_layer, sigma_lat_layer, sigma_lon_layer, sigma_alt_layer, sigma_st_layer, rho_lat_layer, rho_lon_layer, rho_alt_layer, summary_op
3
3
lib/upy2/dependency.py
friedrichromstedt/upy
3
12785485
<reponame>friedrichromstedt/upy # Developed since: Feb 2010 import numpy __all__ = ['Dependency'] class Dependency(object): """ The class :class:`Dependency` represents the dependence of an uncertain quantity on uncertainty sources of unity variance by a derivative. When the :attr:`derivative` is real-valued, the induced variance of the quantity is equal to ``derivative ** 2``. For non-real derivatives, an induced variance of the quantity cannot be given. A single :class:`Dependency` can store *one* dependency per element. The uncertainty sources are identified by integers called *names*. The name ``0`` represents the *absent* dependency of the respective element. Dependencies can be combined be means of :meth:`add`, here the argument Dependency is incorporated into the Dependency whose :meth:`add` is called as far as possible by filling elements with zero name and by adding derivatives of elements with matching name; :meth:`add` returns the remnant Dependency, with all elements used cleared. Dependencies can be *multiplied* and *masked*, and a range of ``ndarray`` methods is supported. """ def __init__(self, names=None, derivatives=None, shape=None, dtype=None): """ A ``Dependency`` can be initialised in two ways: 1. Providing its *shape*; or 2. specifying *names* and *derivatives*. When both *names* as well as *derivatives* aren't ``None``, they will both be transformed into ndarrays, where *dtype* is used for the derivatives ndarray. When their shapes are different, a ``ValueError`` will be raised. If *dtype* is ``None``, the dtype of the derivatives ndarray won't be overridden. The dtype of the *names* array *never* will be overridden. When at least one of *names* and *derivatives* is ``None``, *shape* will be used to provide an empty Dependency of the given *dtype* (with all names set to zero and with zero derivatives). In this case, the *names* will have dtype ``numpy.int``. In all other cases, the Dependency cannot be initialised and ``ValueError`` will be raised. """ if names is not None and derivatives is not None: self.names = numpy.asarray(names) self.derivatives = numpy.asarray(derivatives, dtype=dtype) if self.names.shape != self.derivatives.shape: raise ValueError( 'Shape mismatch in initialising a ' 'Dependency: names.shape = {0}, derivatives.' 'shape = {1}'.format( self.names.shape, self.derivatives.shape)) elif shape is not None: self.names = numpy.zeros(shape, dtype=numpy.int) self.derivatives = numpy.zeros(shape, dtype=dtype) # leaving *dtype* ``None`` leads to a derivatives # ndarray with "standard" dtype (``numpy.float``). else: raise ValueError("Dependency: Unable to initialise from " "the arguments provided") self.shape = self.derivatives.shape self.dtype = self.derivatives.dtype self.ndim = self.derivatives.ndim def is_empty(self): """ Returns whether all elements of *self.names* are equal to zero. This means, that the Dependency does not induce any uncertainty. """ return not self.names.any() def is_nonempty(self): """ Returns whether any alements of *self.names* aren't equal to zero. In this case, the Dependency induces some uncertainty. """ return self.names.any() # # Obtaining the variances ... # @property def variance(self): """ When *self.derivatives* is real-valued, this method returns the variance ``self.derivatives ** 2`` induced by this Dependency for elements with nonzero *name*; the variance returned is masked out to zero for elements with zero name. For non-real derivatives, no such variance can be given. """ if not numpy.isrealobj(self.derivatives): # It might be complex. raise ValueError( 'Refusing to calculate the variance of a non-real ' 'Dependency') return (self.names != 0) * self.derivatives ** 2 # # Complex numbers ... # @property def real(self): """ Returns the real part of this Dependency. Both the names as well as the real part of *self.derivatives* will be copied. """ return Dependency( names=self.names.copy(), derivatives=self.derivatives.real.copy(), # ``array.real`` returns a *view*:: # # >>> z = numpy.asarray(1 + 1j) # >>> r = z.real # >>> z[()] = 2 + 1j # >>> r # array(2.0) ) @property def imag(self): """ Returns the imaginary part of this Dependency. """ return Dependency( names=self.names.copy(), derivatives=self.derivatives.imag.copy(), ) def conj(self): """ Returns the complex conjugate. """ return Dependency( names=self.names.copy(), derivatives=self.derivatives.conj(), # This copies the real component. ) conjugate = conj # :func:`numpy.conj` looks for :attr:`conjugate`, not # :attr:`conj`. # # Binary arithmetics ... # def add(self, other, key=None): """ This method incorporates another ``Dependency`` *other* into *self* in-place as far as possible by: 1. Filling elements of *self* with zero name by elements of *other* (replacing both the *name* as well as the *derivative*); 2. adding the derivatives of *other* to elements of *self* with matching name. Returned is a copy of *other* with used-up elements masked out. When *key* is given, *other* will be added to the sub arrays of *self.names* and *self.derivatives* indexed by *key*. The *other* needs to be broadcastable to the shape of *self* indexed by *key*. The ``Dependency`` returned will *always* have this shape. """ if key is None: # Index everything. key = () # We do not apply shape checking whether the part of *self* # indexed by *key* has the same shape as *other*. This # permits broadcasting of *other*. # First, add on same name ... matching_mask = (self.names[key] == other.names) # This might involve broadcasting of ``other.names``. self.derivatives[key] += matching_mask * other.derivatives # If the shape of ``matching_mask * other.derivatives`` is # too large, numpy will complain. In all other cases, the # result of ``matching_mask * other.derivatives`` will fit # ``self.derivatives[key]``. # Mark the cells as used. other = other & (1 - matching_mask) # From now on, *other* has the shape of ``(1 - # matching_mask)``, which is identical to the shape of # ``self[key]``. The ``&`` operation might involve # broadcasting inside of ``__and__``. # Second, try to fill empty space ... # # An element is *empty* when its *name* is *zero*. empty_mask = (self.names[key] == 0) other_filled_mask = (other.names != 0) fillin_mask = empty_mask * other_filled_mask self.names[key] += fillin_mask * other.names self.derivatives[key] += fillin_mask * other.derivatives # Do use augmented assignment ``+=`` because portions # where the augmenting arrays are zero are to be preserved # *without change*. # Mark the cells as used. other = other & (1 - fillin_mask) # Finished processing *other*. return other # The *other* is, now, of the same shape as ``self[key]``, # since the ``&`` operation above has been carried out. def __and__(self, mask): """ Returns a copy of *self* where names and derivatives are masked by *mask*: Parts of self's names and derivatives where *mask* is zero are returned zero. """ return Dependency( names=(self.names * mask), derivatives=(self.derivatives * mask), ) def __mul__(self, other): """ Returns a copy of *self* with the derivatives set to the product of ``self.derivatives`` and *other*. The shapes of *self* and *other* need not be equal as long as they can be broadcast. The :attr:`names` ndarray of *self* will be broadcast to the result shape as well. """ result_derivatives = self.derivatives * other (bc_names, bc_derivatives) = numpy.broadcast_arrays( self.names, result_derivatives) # The shape of *bc_derivatives* will always be equal to the # shape of *result_derivatives*, since *self.derivatives* and # *self.names* have equal shape. As a safety measure, we # assert this fact: assert(bc_derivatives.shape == result_derivatives.shape) # With this assertion, we can skip copying *bc_derivatives* by # means of ``numpy.array``, since all elements refer to a # unique memory location. This does not hold necessarily for # *bc_names*, so we copy *bc_names*. Copying *bc_names* is a # necessity anyhow to avoid crosstalk. *result_derivatives* # already satisfies this requirement. return Dependency( names=numpy.array(bc_names), derivatives=bc_derivatives, ) # Reverse multiplication is unsupported. It would not work with # ndarrays as first operand (see 228ad14). # Augmented arithmetics will be emulated by using standard # arithmetics. # # Keying methods ... # def __getitem__(self, key): """ Returns a new Dependency with *key* applied both to the :attr:`derivatives` as well as to the :attr:`names` of *self*. The results will be copied. """ return Dependency( names=self.names[key].copy(), derivatives=self.derivatives[key].copy(), ) def clear(self, key): """ Set *self.names* and *self.derivatives* to zero at the positions indexed by *key*. """ self.names[key] = 0 self.derivatives[key] = 0 def __len__(self): return self.shape[0] # # ndarray methods ... # def copy(self): """ Returns a Dependency constructed from copies of the names and derivatives of *self*. """ return Dependency( names=self.names.copy(), derivatives=self.derivatives.copy()) def compress(self, *compress_args, **compress_kwargs): """ Returns a Dependency constructed from the *compressed* names and derivatives of *self*. """ # :meth:`ndarray.compress` returns a copy by itself. return Dependency( names=self.names.compress( *compress_args, **compress_kwargs), derivatives=self.derivatives.compress( *compress_args, **compress_kwargs)) def flatten(self, *flatten_args, **flatten_kwargs): """ Returns a Dependency constructed from the *flattened* names and derivatives of *self*. """ # :meth:`ndarray.flatten` returns a copy by itself. return Dependency( names=self.names.flatten( *flatten_args, **flatten_kwargs), derivatives=self.derivatives.flatten( *flatten_args, **flatten_kwargs)) # Notice that :meth:`ndarray.ravel` returns a copy *only if # needed*, just as :func:`numpy.ravel` does, while # :meth:`ndarray.flatten` returns a copy *always*. Notice also, # that there is no :func:`numpy.flatten`. # # Notice further, that :func:`numpy.ravel` does not make use of a # :meth:`ravel` of the operand provided; instead, it returns a # ``dtype=object`` array always. def repeat(self, *repeat_args, **repeat_kwargs): """ Returns a Dependency constructed from the *repeated* names and derivatives of *self*. """ # It appears that :meth:`ndarray.repeat` returns a copy # *always*. return Dependency( names=self.names.repeat( *repeat_args, **repeat_kwargs), derivatives=self.derivatives.repeat( *repeat_args, **repeat_kwargs)) def reshape(self, *reshape_args, **reshape_kwargs): """ Returns a Dependency constructed from the *reshaped* names and derivatives of *self*. The results will be copied. """ return Dependency( names=self.names.reshape( *reshape_args, **reshape_kwargs).copy(), derivatives=self.derivatives.reshape( *reshape_args, **reshape_kwargs).copy()) def transpose(self, *transpose_args, **transpose_kwargs): """ Returns a Dependency constructed from the *transposed* names and derivatives of *self*. The results will be copied. """ return Dependency( names=self.names.transpose( *transpose_args, **transpose_kwargs).copy(), derivatives=self.derivatives.transpose( *transpose_args, **transpose_kwargs).copy()) # # String conversion ... # def __repr__(self): return "<{shape}-shaped {dtype}-typed Dependency>".format( shape=self.shape, dtype=self.dtype)
3.28125
3
osnovno.py
kopriveclucija/PROJEKTNA
0
12785486
import json class Model: def __init__(self, zacetni_seznam_nalog, tema=''): self.naloge = zacetni_seznam_nalog self.aktualna_naloga = None self.tema = tema def dodaj_novo_nalogo(self, naloga): self.naloge.append(naloga) def v_slovar(self): seznam_nalog = [ naloga.v_slovar() for naloga in self.naloge ] return { "naloge": seznam_nalog, "tema": self.tema, } def stevilo_vseh_nalog(self): return len(self.naloge) @staticmethod def iz_slovarja(slovar): sez = [ Naloga.iz_slovarja(sl_naloga) for sl_naloga in slovar["naloge"] ] return Model( sez, slovar["tema"], ) def shrani_v_datoteko(self, ime_datoteke='stanje.json'): with open(ime_datoteke, "w") as dat: slovar = self.v_slovar() json.dump(slovar, dat) @staticmethod def preberi_iz_datoteke(ime_datoteke='stanje.json'): with open(ime_datoteke) as dat: slovar = json.load(dat) return Model.iz_slovarja(slovar) def preveri_podatke_nove_naloge(self, ime): napake = {} if not ime: napake['ime'] = 'Ime ne sme bitit prazno!' elif len(ime) > 20: napake['ime'] = 'Ime lahko vsebuje najvec 20 znakov.' return napake @staticmethod def naredi_svezega(): n1 = Naloga("Napoleon", "Kdaj se je rodil?", "15.8.1769") n2 = Naloga('New York', "Kje lezi?", "Severna Amerika") n3 = Naloga('Olimpijske igre', "Kdo je osvoji zlato medaljo za Slovenijo?", "<NAME>") n4 = Naloga( 'You Tube', "Kako je ime prvemu videu objavlenemu na You Tubu?", "Me at the ZOO") n5 = Naloga('Kardashianovi', "Koliko otrok ima <NAME>?", "6") n6 = Naloga('Ameriski predsedniki', "Kako je bilo ima prvemu ameriskemu predsedniku?", "<NAME>") seznam = [n1, n2, n3, n4, n5, n6] m = Model(seznam, "test") return m class Naloga: def __init__(self, ime, besedilo, pravilna_resitev, moja_resitev=None): self.ime = ime self.besedilo = besedilo self.pravilna_resitev = pravilna_resitev self.moja_resitev = moja_resitev def naloga_je_resena(self): return self.moja_resitev and self.pravilna_resitev.lower().strip() == self.moja_resitev.lower().strip() def v_slovar(self): return { "ime": self.ime, "besedilo": self.besedilo, "pravilna resitev": self.pravilna_resitev, "moja resitev": self.moja_resitev, } @staticmethod def iz_slovarja(slovar): return Naloga( slovar["ime"], slovar["besedilo"], slovar["pravilna resitev"], slovar["moja resitev"], )
2.734375
3
Email_counter.py
farhan1503001/Database-with-Python-Coursera.
0
12785487
<gh_stars>0 import sqlite3 #Importing the database connector=sqlite3.connect('email_db.sqlite') #Initiating the cursor curr=connector.cursor() #Drop table if count exists curr.execute('DROP TABLE IF EXISTS Counts') #Now create table count curr.execute('create table Counts (org TEXT, count INTEGER)') #now open our file filename=open(file='mbox.txt') i=0 for line in filename: if not line.startswith('From: '): continue pieces=line.split() org=pieces[1].split(sep='@')[-1] #org=temp[-2]+temp[-1] curr.execute('select * from Counts where org =?',(org,)) row=curr.fetchone() if row is None: curr.execute('Insert into Counts(org,count) values (?,1)',(org,)) else: curr.execute('Update Counts set count=count+1 where org=?',(org,)) connector.commit() sqlstr = 'SELECT org, count FROM Counts ORDER BY count DESC LIMIT 10' for row in curr.execute(sqlstr): print(str(row[0]), row[1]) curr.close()
3.234375
3
src/outpost/django/campusonline/api.py
medunigraz/outpost.django.campusonline
0
12785488
from django.utils import timezone from django_filters.rest_framework import DjangoFilterBackend from drf_haystack.viewsets import HaystackViewSet from rest_flex_fields.views import FlexFieldsMixin from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.viewsets import ReadOnlyModelViewSet from rest_framework_extensions.cache.mixins import CacheResponseMixin from outpost.django.api.permissions import ExtendedDjangoModelPermissions from outpost.django.base.decorators import docstring_format from . import filters, key_constructors, models, serializers # from rest_framework_extensions.mixins import ( # CacheResponseAndETAGMixin, # ) # from rest_framework_extensions.cache.mixins import ( # CacheResponseMixin, # ) class RoomCategoryViewSet(CacheResponseMixin, ReadOnlyModelViewSet): queryset = models.RoomCategory.objects.all() serializer_class = serializers.RoomCategorySerializer object_cache_key_func = key_constructors.PersonKeyConstructor() list_cache_key_func = key_constructors.PersonKeyConstructor() permission_classes = (AllowAny,) class RoomViewSet(ReadOnlyModelViewSet): queryset = models.Room.objects.all() serializer_class = serializers.RoomSerializer permission_classes = (AllowAny,) filter_fields = ("category",) class FloorViewSet(ReadOnlyModelViewSet): queryset = models.Floor.objects.all() serializer_class = serializers.FloorSerializer permission_classes = (AllowAny,) class BuildingViewSet(ReadOnlyModelViewSet): queryset = models.Building.objects.all() serializer_class = serializers.BuildingSerializer permission_classes = (AllowAny,) @docstring_format( model=models.Function.__doc__, filter=filters.FunctionFilter.__doc__, serializer=serializers.FunctionSerializer.__doc__, ) class FunctionViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List organizational functions from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Function.objects.all() serializer_class = serializers.FunctionSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.FunctionFilter permission_classes = (IsAuthenticated,) permit_list_expands = ("persons",) @docstring_format( model=models.Organization.__doc__, filter=filters.OrganizationFilter.__doc__, serializer=serializers.OrganizationSerializer.__doc__, ) class OrganizationViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List organizations from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Organization.objects.all() serializer_class = serializers.OrganizationSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.OrganizationFilter permission_classes = (AllowAny,) permit_list_expands = ("persons", "persons_leave", "publication_authorship") def get_serializer_class(self): if self.request.user and self.request.user.is_authenticated(): return serializers.AuthenticatedOrganizationSerializer else: return self.serializer_class def get_serializer_context(self): return {"request": self.request} @docstring_format( model=models.Person.__doc__, filter=filters.PersonFilter.__doc__, serializer=serializers.PersonSerializer.__doc__, ) class PersonViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List staff accounts from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Person.objects.all() serializer_class = serializers.PersonSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.PersonFilter permission_classes = (AllowAny,) permit_list_expands = ( "functions", "organizations", "organizations_leave", "classifications", "expertise", "knowledge", "education", ) def get_serializer_class(self): if self.request.user and self.request.user.is_authenticated(): return serializers.AuthenticatedPersonSerializer else: return self.serializer_class def get_serializer_context(self): return {"request": self.request} def get_queryset(self): qs = super().get_queryset() if self.request.user and self.request.user.is_authenticated(): return qs else: return qs.filter(employed=True) @docstring_format( model=models.Student.__doc__, filter=filters.StudentFilter.__doc__, serializer=serializers.StudentSerializer.__doc__, ) class StudentViewSet(ReadOnlyModelViewSet): """ List student accounts from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Student.objects.all() serializer_class = serializers.StudentSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.StudentFilter permission_classes = (IsAuthenticated,) def get_serializer_class(self): if self.request.user and self.request.user.is_authenticated(): return serializers.AuthenticatedStudentSerializer else: return self.serializer_class @docstring_format(filter=filters.PersonOrganizationFunctionFilter.__doc__) class PersonOrganizationFunctionViewSet(ReadOnlyModelViewSet): """ Map person to organizational unit and function through CAMPUSonline. {filter} """ queryset = models.PersonOrganizationFunction.objects.all() serializer_class = serializers.PersonOrganizationFunctionSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.PersonOrganizationFunctionFilter permission_classes = (IsAuthenticated,) @docstring_format( model=models.DistributionList.__doc__, filter=filters.DistributionListFilter.__doc__, serializer=serializers.DistributionListSerializer.__doc__, ) class DistributionListViewSet( CacheResponseMixin, FlexFieldsMixin, ReadOnlyModelViewSet ): """ List distribution lists from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.DistributionList.objects.all() serializer_class = serializers.DistributionListSerializer object_cache_key_func = key_constructors.DistributionListKeyConstructor() list_cache_key_func = key_constructors.DistributionListKeyConstructor() filter_backends = (DjangoFilterBackend,) filter_class = filters.DistributionListFilter permission_classes = (IsAuthenticated,) permit_list_expands = ("persons", "students") @docstring_format(model=models.Event.__doc__, filter=filters.EventFilter.__doc__) class EventViewSet(ReadOnlyModelViewSet): """ List events from CAMPUSonline. {model} {filter} """ queryset = models.Event.objects.all() serializer_class = serializers.EventSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.EventFilter permission_classes = (AllowAny,) def get_queryset(self): return self.queryset.filter(show_end__gte=timezone.now()) class CourseGroupTermViewSet(ReadOnlyModelViewSet): queryset = models.CourseGroupTerm.objects.all() serializer_class = serializers.CourseGroupTermSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.CourseGroupTermFilter permission_classes = (IsAuthenticated,) @docstring_format(model=models.Bulletin.__doc__, filter=filters.BulletinFilter.__doc__) class BulletinViewSet(ReadOnlyModelViewSet): """ List official bulletins from CAMPUSonline. {model} {filter} """ queryset = models.Bulletin.objects.all() serializer_class = serializers.BulletinSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.BulletinFilter @docstring_format( model=models.BulletinPage.__doc__, filter=filters.BulletinPageFilter.__doc__ ) class BulletinPageViewSet(ReadOnlyModelViewSet): """ List official bulletin pages with extracted text from CAMPUSonline. {model} {filter} """ queryset = models.BulletinPage.objects.all() serializer_class = serializers.BulletinPageSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.BulletinPageFilter permission_classes = (AllowAny,) class BulletinPageSearchViewSet(HaystackViewSet): index_models = [models.BulletinPage] serializer_class = serializers.BulletinPageSearchSerializer permission_classes = (AllowAny,) @docstring_format( model=models.FinalThesis.__doc__, filter=filters.FinalThesisFilter.__doc__, serializer=serializers.FinalThesisSerializer.__doc__, ) class FinalThesisViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List final thesis from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.FinalThesis.objects.all() serializer_class = serializers.FinalThesisSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.FinalThesisFilter permission_classes = (IsAuthenticated,) permit_list_expands = ("author", "tutor", "organization")
1.851563
2
dev/models/ffn/conv_ffn.py
michaelwiest/microbiome_rnn
0
12785489
from __future__ import print_function import torch.autograd as autograd from torch.autograd import Variable import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import random import numpy as np import sys import os from ffn import FFN sys.path.insert(1, os.path.join(sys.path[0], '../..')) from helpers.model_helper import * import csv class ConvFFN(FFN): ''' This subclass inherits from the LSTM class and adds 1d convolution over the input time. ''' def __init__(self, hidden_dim, otu_handler, slice_len, use_gpu=False): super(ConvFFN, self).__init__(hidden_dim, otu_handler, slice_len, use_gpu=use_gpu) self.conv_element = nn.Sequential( nn.Conv1d(self.otu_handler.num_strains, hidden_dim, kernel_size=4, stride=2, padding=3), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=1, stride=1, padding=0), nn.ReLU(), ) self.time_transformer = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU() ) self.deconv_element = nn.Sequential( nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=1, stride=1, padding=0), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.otu_handler.num_strains, kernel_size=4, stride=2, padding=3), nn.ReLU() ) # self.lin_final = nn.Linear(self.otu_handler.num_strains, # self.otu_handler.num_strains) def forward(self, data): # data is shape: sequence_size x batch x num_strains data = data.transpose(0, 1).transpose(1, 2) # print(data.size()) data = self.conv_element(data) # print(data.size()) data = data.transpose(0, 2).transpose(1, 2) data = self.time_transformer(data) # print(data.size()) data = self.deconv_element(data.transpose(0,1).transpose(1,2)) # print(data.size()) return data
2.609375
3
fly_plot_lib/animate_matrix.py
ROB7-StayHumble/multi_tracker
0
12785490
import numpy as np import cv2 import matplotlib import matplotlib.pyplot as plt import time NAN = np.nan def get_indices(x, y, xmesh, ymesh, radius=1, colors=None): # pull out non NAN numbers only x = x[np.isfinite(x)] y = y[np.isfinite(y)] ix = [np.argmin( np.abs( xmesh-xval ) ) for xval in x] iy = [np.argmin( np.abs( ymesh-yval ) ) for yval in y] ''' ix_enlarged = [] iy_enlarged = [] if colors is not None: colors_enlarged = [] for n, i in enumerate(ix): min_i = np.max([0, i-radius]) max_i = np.min([len(xmesh), i+radius]) a = np.arange(min_i, max_i) ix_enlarged.extend(a) if colors is not None: colors_enlarged.extend([colors[n]]*len(a)) for i in iy: min_i = np.max([0, i-radius]) max_i = np.min([len(ymesh), i+radius]) a = np.arange(min_i, max_i) iy_enlarged.extend(a) #if len(ix) == 1: # return ix[0], iy[0] #else: if colors is None: return ix_enlarged, iy_enlarged else: return ix_enlarged, iy_enlarged, colors_enlarged ''' return ix, iy def synchronize_frames(x, y, sync_frames, padval=NAN, colors=None, n_frames_before_sync_to_show='all'): xsync = [] ysync = [] if colors is not None: colors_sync = [] largest_sync_frame = np.max(sync_frames) for i, xi in enumerate(x): padding = [padval]*(largest_sync_frame - sync_frames[i]) xsync.append( np.hstack((padding, x[i])) ) ysync.append( np.hstack((padding, y[i])) ) if colors is not None: colors_sync.append( np.hstack((padding, colors[i])) ) # pad back lengths = [len(x) for x in xsync] length_of_longest_sequence = np.max(lengths) for i, xi in enumerate(xsync): padding = [padval]*(length_of_longest_sequence - len(xi)) xsync[i] = np.hstack((xsync[i], padding)) ysync[i] = np.hstack((ysync[i], padding)) if colors is not None: colors_sync[i] = np.hstack((colors_sync[i], padding)) if n_frames_before_sync_to_show != 'all': first_frame = largest_sync_frame - n_frames_before_sync_to_show for i, xi in enumerate(xsync): xsync[i] = xsync[i][first_frame:] ysync[i] = ysync[i][first_frame:] if colors is not None: colors_sync[i] = colors_sync[i][first_frame:] if colors is None: return xsync, ysync else: return xsync, ysync, colors_sync def animate_matrix(x, y, colors=None, xlim=[0,1], ylim=[0,1], resolution=0.005, filename='', sync_frames=[], framerate=100, ghost_tail=20, radius=2, static_indices=[], static_color=[0,0,255], colormap='hot', colornorm=[0,1], n_frames_before_sync_to_show='all'): xmesh = np.arange(xlim[0], xlim[1], resolution) ymesh = np.arange(ylim[0], ylim[1], resolution) mat = np.ones([len(ymesh), len(xmesh), 3], dtype=np.uint8) mat *= 255 kernel = np.ones((5,5),np.uint8) norm = matplotlib.colors.Normalize(colornorm[0], colornorm[1]) color_mappable = matplotlib.cm.ScalarMappable(norm, plt.get_cmap(colormap)) print 'synchronizing trajectories' if colors is None: xsync, ysync = synchronize_frames(x, y, sync_frames, n_frames_before_sync_to_show=n_frames_before_sync_to_show) xsync = np.array(xsync) ysync = np.array(ysync) else: xsync, ysync, colors_sync = synchronize_frames(x, y, sync_frames, colors=colors, n_frames_before_sync_to_show=n_frames_before_sync_to_show) xsync = np.array(xsync) ysync = np.array(ysync) colors_sync = np.array(colors_sync) #this works: #writer = cv2.VideoWriter(filename,cv.CV_FOURCC('P','I','M','1'),sampleRate,(panelsFrames.shape[1],panelsFrames.shape[0]),True) # works for Linux # but this works better: print 'initializing writer' writer = cv2.VideoWriter(filename,cv.CV_FOURCC('m','p','4','v'),framerate,(mat.shape[1], mat.shape[0]),True) # works on Linux and Windows print filename nframes = len(xsync[0]) for frame in range(nframes): s = str(frame) + ' of ' + str(nframes) print s mat[:,:,:] = 255 if len(static_indices) > 0: c = [static_color for i in range(len(static_indices[0]))] mat[static_indices[1], static_indices[0], :] = np.array(c) first_frame = np.max([0, frame-ghost_tail]) last_frame = frame if 1: x = xsync[:, first_frame:last_frame] y = ysync[:, first_frame:last_frame] x = np.reshape(x, x.shape[0]*x.shape[1]) y = np.reshape(y, y.shape[0]*y.shape[1]) if colors is not None: c = colors_sync[:, first_frame:last_frame] c = np.reshape(c, c.shape[0]*c.shape[1]) rgba = color_mappable.to_rgba(c,bytes=True) if colors is None: indicesx, indicesy = get_indices(np.array(x), np.array(y), xmesh, ymesh, radius) else: indicesx, indicesy = get_indices(np.array(x), np.array(y), xmesh, ymesh, radius) if len(indicesx) < 1: continue if colors is None: mat[indicesy, indicesx, :] = 0 else: rgba = rgba[np.isfinite(x)][:,[2,1,0]] mat[indicesy, indicesx, :] = rgba mat = cv2.erode(mat, kernel, radius) # using uint8 for the values in the frame seems to work best. Also, I think rgb should be ordered bgr.... matflipped = np.array(np.flipud(mat)) writer.write(matflipped) del(x) del(y) writer.release() def animate_matrix_2views(x, y, z, colors=None, xlim=[0,1], ylim=[0,1], zlim=[0,1], resolution=0.005, filename='', sync_frames=[], framerate=100, ghost_tail=20, radius=2, artist_function_xy=None, artist_function_xz=None, colormap='hot', colornorm=[0,1], n_frames_before_sync_to_show='all'): def stack_mats(mat_xy, mat_xz): # add border to mats mat_xy[:,0,:] = 0 mat_xy[:,-1,:] = 0 mat_xy[0,:,:] = 0 mat_xy[-1,:,:] = 0 mat_xz[:,0,:] = 0 mat_xz[:,-1,:] = 0 mat_xz[0,:,:] = 0 mat_xz[-1,:,:] = 0 mat = np.vstack((mat_xy, mat_xz)) return mat xmesh = np.arange(xlim[0], xlim[1], resolution) ymesh = np.arange(ylim[0], ylim[1], resolution) zmesh = np.arange(zlim[0], zlim[1], resolution) mat_xy = np.ones([len(ymesh), len(xmesh), 3], dtype=np.uint8) mat_xy *= 255 mat_xz = np.ones([len(zmesh), len(xmesh), 3], dtype=np.uint8) mat_xz *= 255 kernel = np.ones((5,5),np.uint8) norm = matplotlib.colors.Normalize(colornorm[0], colornorm[1]) color_mappable = matplotlib.cm.ScalarMappable(norm, plt.get_cmap(colormap)) print 'synchronizing trajectories' if colors is None: xsync, ysync = synchronize_frames(x, y, sync_frames, n_frames_before_sync_to_show=n_frames_before_sync_to_show) xsync, zsync = synchronize_frames(x, z, sync_frames, n_frames_before_sync_to_show=n_frames_before_sync_to_show) xsync = np.array(xsync) ysync = np.array(ysync) zsync = np.array(zsync) else: xsync, ysync, colors_sync = synchronize_frames(x, y, sync_frames, colors=colors, n_frames_before_sync_to_show=n_frames_before_sync_to_show) xsync, zsync, colors_sync = synchronize_frames(x, z, sync_frames, colors=colors, n_frames_before_sync_to_show=n_frames_before_sync_to_show) xsync = np.array(xsync) ysync = np.array(ysync) zsync = np.array(zsync) colors_sync = np.array(colors_sync) #this works: #writer = cv2.VideoWriter(filename,cv.CV_FOURCC('P','I','M','1'),sampleRate,(panelsFrames.shape[1],panelsFrames.shape[0]),True) # works for Linux # but this works better: print 'initializing writer' mat = stack_mats(mat_xy, mat_xz) writer = cv2.VideoWriter(filename,cv.CV_FOURCC('m','p','4','v'),framerate,(mat.shape[1], mat.shape[0]),True) # works on Linux and Windows print filename nframes = len(xsync[0]) for frame in range(nframes): s = str(frame) + ' of ' + str(nframes) print s mat_xy[:,:,:] = 255 mat_xz[:,:,:] = 255 first_frame = np.max([0, frame-ghost_tail]) last_frame = frame if 1: x = xsync[:, first_frame:last_frame] y = ysync[:, first_frame:last_frame] z = zsync[:, first_frame:last_frame] x = np.reshape(x, x.shape[0]*x.shape[1]) y = np.reshape(y, y.shape[0]*y.shape[1]) z = np.reshape(z, z.shape[0]*z.shape[1]) if colors is not None: c = colors_sync[:, first_frame:last_frame] c = np.reshape(c, c.shape[0]*c.shape[1]) rgba = color_mappable.to_rgba(c,bytes=True) if colors is None: indicesx, indicesy = get_indices(np.array(x), np.array(y), xmesh, ymesh, radius) indicesx, indicesz = get_indices(np.array(x), np.array(z), xmesh, zmesh, radius) else: indicesx, indicesy = get_indices(np.array(x), np.array(y), xmesh, ymesh, radius) indicesx, indicesz = get_indices(np.array(x), np.array(z), xmesh, zmesh, radius) if len(indicesx) < 1: continue if colors is None: mat_xy[indicesy, indicesx, :] = 0 mat_xz[indicesz, indicesx, :] = 0 else: rgba = rgba[np.isfinite(x)][:,[2,1,0]] mat_xy[indicesy, indicesx, :] = rgba mat_xz[indicesz, indicesx, :] = rgba mat_xy = cv2.erode(mat_xy, kernel, radius) mat_xz = cv2.erode(mat_xz, kernel, radius) if artist_function_xy is not None: mat_xy = artist_function_xy(mat_xy) if artist_function_xz is not None: mat_xz = artist_function_xz(mat_xz) mat = stack_mats(mat_xy, mat_xz) matflipped = np.array(np.flipud(mat)) writer.write(matflipped) del(x) del(y) del(z) writer.release()
2.40625
2
polarimeter/plotter.py
malgorzatakim/polarimeter
0
12785491
<gh_stars>0 import matplotlib.pyplot as plt from math import sqrt, ceil class Plotter(object): def __init__(self): self.plots = [] def addPlot(self, data, axes, title): self.plots.append((data, axes, title)) def show(self): fig = plt.figure() count = len(self.plots) size = int(ceil(sqrt(count))) for i in range(count): ax = fig.add_subplot(size, size, i + 1) plot = self.plots[i] ax.plot(*plot[0]) plt.axis(plot[1]) plt.title(plot[2]) plt.show()
3.28125
3
deblur/test/test_support_files.py
TaskeHAMANO/deblur
77
12785492
# ----------------------------------------------------------------------------- # Copyright (c) 2015, The Deblur Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from unittest import TestCase, main from deblur.support_files import pos_db, neg_db import os.path class supportFilesTests(TestCase): """Test the supporting data files """ def test_reference_(self): """Test if the positive and negative filtering reference fasta files exist """ # the positive filtering fasta file self.assertTrue(os.path.isfile(pos_db)) # the negative filtering fasta file self.assertTrue(os.path.isfile(neg_db)) if __name__ == '__main__': main()
2.578125
3
pyconverter/converter.py
sibyjackgrove/py-power-electronic-converter
1
12785493
"""Class for converter.""" import numpy as np import math import cmath import scipy import logging from scipy import signal from scipy.integrate import odeint,ode #from converter_utilities import plot_signal, plot_FFT import converter_utilities import config from models import InverterModels class PowerElectronicConverter: """ Converter base class. Attributes: count (int): Number of converter objects. """ count = 0 #Object count def __init__(self,model_type): """Creates an instance of `Converter`. Args: fsw (float): Switching frequency in Hz. Raises: ValueError: If parameters corresponding to `Sinverter_rated` are not available. """ PowerElectronicConverter.count = PowerElectronicConverter.count+1 #Increment count to keep track of number of converter model instances self.name = 'converter_'+str(PowerElectronicConverter.count) #Generate a name for the instance self.model_type = model_type """ if self.model_type is 'switching': assert self.signal_type is 'square_wave' or self.signal_type is 'sinePWM', 'Switching model needs square or sine PWM as switching signal!' if self.model_type is 'average': assert self.signal_type is 'duty_cycle', 'Average model needs duty_cycle as switching signal!' """ def check_model_type(self,model_type): """Check if model type is valid.""" assert model_type in self.model_types, f'{model_type} is not a valid model type!' def show_spec(self): """Print the specs.""" print('Model type:{}'.format(self.model_type)) print('Switching signal type:{}'.format(self.signal_type)) def calc_primary(self,signal): """Calculate the primary switch.""" assert isinstance(signal,bool), 'Switching signal must be boolean.' Sprimary = int(signal) return Sprimary def calc_complimentary(self,signal): """Calculate the complimentary.""" assert isinstance(signal,bool), 'Switching signal must be boolean.' Scomplimentary = int(not signal) return Scomplimentary def calc_average(self,m): """Calculate average voltage.""" return Vdc #Current controller dynamics class PowerElectronicInverter(PowerElectronicConverter,InverterModels): """ Inverter class. Attributes: (): """ Rf = 0.01 Lf = 1.0e-3 Rload = 1.0 inverter_types = ['single_phase_half_bridge','single_phase_full_bridge', 'three_phase_full_bridge'] model_types = ['EMT_switching','EMT_average','dynamic_phasor'] def __init__(self,Vdc,model_type = 'EMT_average',inverter_type='single_phase_half_bridge'): """Creates an instance of `Converter`. Args: Vdc (float): DC link voltage. Raises: ValueError: To be added. """ self.check_model_type(model_type) super().__init__(model_type) #Initialize converter class (base class) self.update_Vdc(Vdc) self.inverter_type =inverter_type @property #Decorator used for auto updating def y(self): """List of initial states""" return [self.ia, 0.0] def update_Vdc(self,Vdc): """Update DC link voltage.""" self.Vdc = Vdc """ def control_signal_calc(self,signals,t): Calculate control signal. if self.model_type is 'EMT_switching': signals = self.switching_signal_calc(signals,t) control_signal = signals['switching'] elif self.model_type is 'EMT_average': signals = self.average_signal_calc(signals,t) control_signal = signals['modulating'] elif self.model_type is 'dynamicphasor': pass return control_signal """ def setup_model(self): """Initialize mode.""" self.initialize_model() self.vt_calc = self.select_vt_model() self.vpcc_calc = self.select_vpcc_model() self.ODE_model = self.select_ODE_model() #self.control_signal_calc = self.select_control_signal() def select_control_signal(self): """Select the control signal suitable for the problem.""" if self.model_type is 'EMT_switching': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.switching_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'EMT_average': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.modulating_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'dynamic_phasor': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.phasor_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') return control_signal def select_vt_model(self): """Get the terminal voltage model.""" if self.model_type == 'EMT_switching': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_switching elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_switching elif self.inverter_type == 'three_phase_full_bridge': vt_model = self.three_phase_full_bridge_switching else: print(f'{self.inverter_type} not found for model type {self.model_type}!') elif self.model_type == 'EMT_average': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_average elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_average elif self.inverter_type == 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') else: print(f'{self.inverter_type} not found for model type {self.model_type}!') elif self.model_type == 'dynamicphasor': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_phasor elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_phasor elif self.inverter_type == 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') else: print(f'{self.inverter_type} not found for model type {self.model_type}!') print(type(vt_model)) return vt_model def select_vpcc_model(self,grid=None): """Get the PCC voltage model.""" if not grid: vpcc_model = self.v_load_model() return vpcc_model def select_ODE_model(self): """Select ODE model.""" if self.model_type is 'EMT_switching' or self.model_type is 'EMT_average': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': ODE_model = self.ODE_model_single_phase_EMT elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'dynamic_phasor': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': ODE_model = self.ODE_model_single_phase_dynamicphasor elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') return ODE_model def initialize_model(self): """Initialize mode.""" if self.model_type is 'EMT_switching' or self.model_type is 'EMT_average': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': self.ia = 0.0 elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError elif self.model_type is 'dynamic_phasor': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': self.iaR = 0.0 self.iaI = 0.0 if self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError """ def vta_calc(self,Vdc,control_signal): Calculate inverter terminal voltage. if self.model_type is 'switching': vta = self.half_bridge_switching(Vdc,control_signal) elif self.model_type is 'average': vta = self.half_bridge_average(Vdc,control_signal) return vta """ def v_load_model(self): """Calculate voltage across load at PCC.""" return self.Rload*self.ia def ODE_model_switching(self,y,t): """ODE model of inverter branch.""" self.ia,dummy = y # unpack current values of y Vdc = 100.0 #Get DC link voltage switching_signal = self.control_signal_calc(t) self.vta = self.half_bridge_switching(Vdc,switching_signal) self.va = self.PCC_voltage_calc(self.ia,t) dia = (1/self.Lf)*(-self.Rf*self.ia -self.va + self.vta) result = [dia,dummy] return np.array(result) def ODE_model_average(self,y,t): """ODE model of inverter branch.""" self.ia,dummy = y # unpack current values of y Vdc = 100.0 #Get DC link voltage modulating_signal = self.control_signal_calc(t) self.vta = self.half_bridge_average(Vdc,modulating_signal) self.va = self.PCC_voltage_calc(self.ia,t) dia = (1/self.Lf)*(-self.Rf*self.ia -self.va + self.vta) result = [dia,dummy] return np.array(result) def power_calc(self,v,i): """Calcuate instantaneous power.""" return v*i def show_states(self): """Show states.""" print('Inverter states:{}'.format(self.y))
3.03125
3
IFSensor/utils.py
andrevdl/IFSensor
0
12785494
<reponame>andrevdl/IFSensor from enum import Flag, auto from werkzeug.exceptions import BadRequest from functools import wraps from flask import request, jsonify class CRUDMethods(Flag): READ = auto() CREATE = auto() UPDATE = auto() DELETE = auto() SEARCH_WITHOUT_ID = auto() SEARCH_BY_ID = auto() SEARCH = SEARCH_WITHOUT_ID | SEARCH_BY_ID READ_CREATE = READ | CREATE READ_CREATE_UPDATE = READ | CREATE | UPDATE ALL = READ | CREATE | UPDATE | DELETE POST_EXECUTE = CREATE # For now, may change later GET_EXECUTE = READ # For now, may change later def is_flag_set(set, flag): return (set & flag) == flag def register_api(app, crud, view, endpoint, url, pk='id', pk_type='int'): view_func = view.as_view(endpoint) if is_flag_set(crud, CRUDMethods.SEARCH_WITHOUT_ID): app.add_url_rule(url, view_func=view_func, methods=['GET',]) if is_flag_set(crud, CRUDMethods.READ) and not is_flag_set(crud, CRUDMethods.SEARCH_BY_ID): app.add_url_rule(url, defaults={pk: None}, view_func=view_func, methods=['GET',]) if is_flag_set(crud, CRUDMethods.CREATE): app.add_url_rule(url, view_func=view_func, methods=['POST',]) if is_flag_set(crud, CRUDMethods.READ) or is_flag_set(crud, CRUDMethods.SEARCH_BY_ID): if is_flag_set(crud, CRUDMethods.UPDATE) and is_flag_set(crud, CRUDMethods.DELETE): app.add_url_rule('%s<%s:%s>' % (url, pk_type, pk), view_func=view_func, methods=['GET', 'PUT', 'DELETE']) elif is_flag_set(crud, CRUDMethods.UPDATE): app.add_url_rule('%s<%s:%s>' % (url, pk_type, pk), view_func=view_func, methods=['GET', 'PUT']) elif is_flag_set(crud, CRUDMethods.DELETE): app.add_url_rule('%s<%s:%s>' % (url, pk_type, pk), view_func=view_func, methods=['GET', 'DELETE']) else: app.add_url_rule('%s<%s:%s>' % (url, pk_type, pk), view_func=view_func, methods=['GET']) def validate_json(f): @wraps(f) def wrapper(*args, **kw): try: request.json.get except Exception: msg = "payload must be a valid json" return jsonify({"error": msg}), 400 return f(*args, **kw) return wrapper
2.1875
2
todocli/tests/test_todo/test_commands.py
BalenD/TODO-cli
0
12785495
import pytest from todocli.todo import commands class TestCommandparser(object): successful_user_input = ['-f', 'file1', '-e', '.py', '-m', ] successfully_parsed_args = commands.command_interpreter(successful_user_input) no_args_parsed_args = commands.command_interpreter([]) # successful run def test_HasNamesAttribute(self): assert hasattr(self.successfully_parsed_args, 'names') def test_HasExtensionsAttribute(self): assert hasattr(self.successfully_parsed_args, 'extensions') def test_HasIsFolderAttribute(self): assert hasattr(self.successfully_parsed_args, 'is_folder') def test_HasNewConfigAttribute(self): assert hasattr(self.successfully_parsed_args, 'new_config') def test_FileNamePresent(self): assert 'file1' in self.successfully_parsed_args.names def test_ExtensionPresent(self): assert '.py' in self.successfully_parsed_args.extensions def test_IsFolderIsTrue(self): assert self.successfully_parsed_args.is_folder == True def test_NewConfigIsFalse(self): assert self.successfully_parsed_args.new_config == False # no filename arguement def test_NoFileNameArguement(self): assert self.no_args_parsed_args.names is None # no extension argument def test_NoExtensionsArgument(self): assert self.no_args_parsed_args.extensions is None # no is_folder argument def test_NoIsFolderArguement(self): assert self.no_args_parsed_args.is_folder is None # no new_config argument def test_NoNewConfigArgeuement(self): assert self.no_args_parsed_args.new_config is False # no debug argument def test_NoDebugArguement(self): assert self.no_args_parsed_args.debug_mode is False # no file name in input def test_NoFileName(self): no_file_name_user_input = ['-f', '-e', '.py', '-m', ] with pytest.raises(SystemExit): commands.command_interpreter(no_file_name_user_input) # No extensions in input def test_NoExtensions(self): no_extension_user_input = ['-f', 'File1', '-e', '-m', ] with pytest.raises(SystemExit): commands.command_interpreter(no_extension_user_input)
2.625
3
aclients/err_msg.py
tinybees/aclients
9
12785496
<filename>aclients/err_msg.py #!/usr/bin/env python3 # coding=utf-8 """ @author: guoyanfeng @software: PyCharm @time: 18-12-25 下午2:42 可配置消息模块 """ __all__ = ("mysql_msg", "mongo_msg", "http_msg", "schema_msg") # mysql 从1到100 mysql_msg = { 1: {"msg_code": 1, "msg_zh": "MySQL插入数据失败.", "msg_en": "MySQL insert data failed.", "description": "MySQL插入数据时最终失败的提示"}, 2: {"msg_code": 2, "msg_zh": "MySQL更新数据失败.", "msg_en": "MySQL update data failed.", "description": "MySQL更新数据时最终失败的提示"}, 3: {"msg_code": 3, "msg_zh": "MySQL删除数据失败.", "msg_en": "MySQL delete data failed.", "description": "MySQL删除数据时最终失败的提示"}, 4: {"msg_code": 4, "msg_zh": "MySQL查找单条数据失败.", "msg_en": "MySQL find one data failed.", "description": "MySQL查找单条数据时最终失败的提示"}, 5: {"msg_code": 5, "msg_zh": "MySQL查找多条数据失败.", "msg_en": "MySQL find many data failed.", "description": "MySQL查找多条数据时最终失败的提示"}, 6: {"msg_code": 6, "msg_zh": "MySQL执行SQL失败.", "msg_en": "MySQL execute sql failed.", "description": "MySQL执行SQL失败的提示"}, } # mongo 从100到200 mongo_msg = { 100: {"msg_code": 100, "msg_zh": "MongoDB插入数据失败.", "msg_en": "MongoDB insert data failed.", "description": "MongoDB插入数据时最终失败的提示"}, 101: {"msg_code": 101, "msg_zh": "MongoDB更新数据失败.", "msg_en": "MongoDB update data failed.", "description": "MongoDB更新数据时最终失败的提示"}, 102: {"msg_code": 102, "msg_zh": "MongoDB删除数据失败.", "msg_en": "MongoDB delete data failed.", "description": "MongoDB删除数据时最终失败的提示"}, 103: {"msg_code": 103, "msg_zh": "MongoDB查找单条数据失败.", "msg_en": "MongoDB find one data failed.", "description": "MongoDB查找单条数据时最终失败的提示"}, 104: {"msg_code": 104, "msg_zh": "MongoDB查找多条数据失败.", "msg_en": "MongoDB find many data failed.", "description": "MongoDB查找多条数据时最终失败的提示"}, 105: {"msg_code": 105, "msg_zh": "MongoDB聚合查询数据失败.", "msg_en": "MongoDB aggregate query data failed.", "description": "MongoDB聚合查询数据时最终失败的提示"}, } # request and schema 从200到300 http_msg = { 200: {"msg_code": 200, "msg_zh": "获取API响应结果失败.", "msg_en": "Failed to get API response result.", "description": "async request 获取API响应结果失败时的提示"}, } schema_msg = { # schema valication message 201: {"msg_code": 201, "msg_zh": "数据提交有误,请重新检查.", "msg_en": "Request body validation error, please check!", "description": "marmallow校验body错误时的提示"}, 202: {"msg_code": 202, "msg_zh": "数据提交未知错误,请重新检查.", "msg_en": "Request body validation unknow error, please check!", "description": "marmallow校验body未知错误时的提示"}, }
2.109375
2
nautilus/api/util/graph_entity.py
AlecAivazis/python
9
12785497
<reponame>AlecAivazis/python # external imports import json import asyncio # local imports from nautilus.api.util import parse_string from nautilus.conventions.actions import query_action_type class GraphEntity: """ This entity describes an entity path between a source node and another entity in the api graph and allows for "equality" checks that verify if there is a matching entity. Example: .. code-block:: python source = GraphEntity(model_type='CatPhoto', id=1) # check if there is a user with id 5 associated with the photo assert 5 in source.owner.foo(arg=2) """ def __init__(self, service, model_type=None, id=None, _api_path=None): # save the event broker reference self.service = service # if there is a source specification if model_type and id: # the internal api needs to start at the appropriate node self._api_path = [{"name": model_type, "args": {"id": id}}] # they could also specify the api path to start from elif _api_path: # set the path to the given value self._api_path = _api_path # otherwise we weren't given a valid starting point else: # yell loudly raise ValueError("GraphEntity need to start at a given path or model_type/id") def __getattr__(self, attr): """ Attribute retrieval is overwritten to build the path we care about """ # add a node with no arguments to the api path self._api_path.append({ "name": attr, "args": {}, }) # return the entity so we can continue building the path return GraphEntity(service=self.service, _api_path=self._api_path) @property def _query(self): """ This attribute provides the graphql query corresponding to the api path """ return "query { %s }" % self._summarize_node(self._api_path) def _summarize_node(self, node_list): # if there are not entries in the node list (the base case) if not node_list: # return the id field return 'id' # grab the top of the node list node = node_list.pop(0) # if there are arguments for the node if node['args']: # add the starting parenthesis arg_string = '(' # construct the argument string for key, value in node['args'].items(): # add the key to the arg string arg_string += "%s : %s" % (key, json.dumps(value)) # close the parenthesis arg_string += ')' # otherwise there are no arguments for the node else: # just use an empty string arg_string = '' return "%s %s { %s }" % (node['name'], arg_string, self._summarize_node(node_list)) def __call__(self, **kwds): """ Calling the entity adds the arguments to the head of its path. """ # set the args of the tail of the path to the given keywords self._api_path[-1]['args'] = kwds # return the entity so we can continue building the path return GraphEntity(service=self.service, _api_path=self._api_path) async def _has_id(self, *args, **kwds): """ Equality checks are overwitten to perform the actual check in a semantic way. """ # if there is only one positional argument if len(args) == 1: # parse the appropriate query result = await parse_string( self._query, self.service.object_resolver, self.service.connection_resolver, self.service.mutation_resolver, obey_auth=False ) # go to the bottom of the result for the list of matching ids return self._find_id(result['data'], args[0]) # otherwise else: # treat the attribute like a normal filter return self._has_id(**kwds) def _find_id(self, result, uid): """ This method performs a depth-first search for the given uid in the dictionary of results. """ # if the result is a list if isinstance(result, list): # if the list has a valid entry if any([self._find_id(value, uid) for value in result]): # then we're done return True # otherwise results could be dictionaries if isinstance(result, dict): # the children of the result that are lists list_children = [value for value in result.values() if isinstance(value, list)] # go to every value that is a list for value in list_children: # if the value is a match if self._find_id(value, uid): # we're done return True # the children of the result that are dicts dict_children = [value for value in result.values() if isinstance(value, dict)] # perform the check on every child that is a dict for value in dict_children: # if the child is a match if self._find_id(value, uid): # we're done return True # if there are no values that are lists and there is an id key if not list_children and not dict_children and 'id' in result: # the value of the remote id field result_id = result['id'] # we've found a match if the id field matches (cast to match type) return result_id == type(result_id)(uid) # we didn't find the result return False
2.65625
3
zonarPy/ac_basic.py
SvenGastauer/zonarPy
0
12785498
# -*- coding: utf-8 -*- """ Created on Mon May 4 12:48:05 2020 @author: sven """ import numpy as np def nearfield(f,c,theta): """ Compute the nearfield Parameters ---------- f : numeric Transducer Frequency in kHz [kHz]. c : numeric Ambient sound speed [m/s]. theta : numeric 3dB angle or beam width in degrees [degrees]. Returns ------- Rnf : numeric Range of the nearfield for the given conditions in meters [m]. """ lmbd = c/ ( f * 1000) k = 2* np.pi / lmbd a = 1.6 / (k * np.sin((theta * np.pi/180) / 2)) Rnf = (2*a)**2 / lmbd return Rnf def eba(f,c,theta): """ Compute the equivalent beam angle for a circular transducer. Parameters ---------- f : numeric Transducer Frequency in kHz [kHz]. c : numeric Ambient sound speed [m/s]. theta : numeric 3dB angle or beam width in degrees [degrees]. Returns ------- EBA : numeric equivalent beam angle in dB [dB]. """ lmbd = c/ ( f * 1000) k = 2* np.pi / lmbd a = 1.6 / (k * np.sin((theta * np.pi/180) / 2)) EBA = 10 * np.log10( 5.78 / ( ( k * a ) ** 2))#equivalent beam angle in steradians return EBA def vol_samp(f,c,theta,tau,R,start=0): f = f*1000 Rtot = R+start Vtot = 10**(eba(f,c,theta)/10) * Rtot**2 * c * tau / 2 V0 = 10**(eba(f,c,theta)/10) * start**2 * c * tau / 2 V = Vtot - V0 return V def footprint_radius(theta,R): return R * np.tan(theta * np.pi / 180 / 2) def footprint_area(theta, R): return np.pi * footprint_radius(theta,R)**2 ''' vol_samp(f=200,c=1450,theta=9.8,tau=6/1000,R=10) vol_samp(f=1000,c=1450,theta=4,tau=6/1000,R=10) #Zonar nearfield(200,1480,9.8) nearfield(1000,1480,4) c=1450;f=200000 0.045**2/(c/f) c=1450;f=1000000 0.022**2/(c/f) '''
2.8125
3
api/v1/viewsets/session/assets.py
blockomat2100/vulnman
0
12785499
<filename>api/v1/viewsets/session/assets.py from rest_framework import mixins from apps.assets import models from api.v1.generics import ProjectSessionViewSet from api.v1.serializers import assets as serializers class HostViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, ProjectSessionViewSet): serializer_class = serializers.HostSerializer queryset = models.Host.objects.all() object_permissions_required = ["projects.view_project"] class ServiceViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, ProjectSessionViewSet): serializer_class = serializers.ServiceSerializer queryset = models.Service.objects.all() object_permissions_required = ["projects.view_project"] class WebApplicationViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, ProjectSessionViewSet): serializer_class = serializers.WebApplicationSerializer queryset = models.WebApplication.objects.all() object_permissions_required = ["projects.view_project"] class WebRequestViewSet(mixins.ListModelMixin, mixins.RetrieveModelMixin, ProjectSessionViewSet): serializer_class = serializers.WebRequestSerializer queryset = models.WebRequest.objects.all() object_permissions_required = ["projects.view_project"]
2.03125
2
nucleus/iam/reset.py
1x-eng/PROTON
31
12785500
<gh_stars>10-100 # # Copyright (c) 2018, <NAME> All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with the distribution. # # Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import falcon import json from nucleus.db.connection_manager import ConnectionManager from nucleus.email.email import ProtonEmail from nucleus.generics.utilities import MyUtilities from nucleus.iam.password_manager import PasswordManager from sqlalchemy import MetaData from sqlalchemy import select from sqlalchemy import Table __author__ = "<NAME>, <EMAIL>" __copyright__ = "Copyright (C) 2018 <NAME> | http://www.apricity.co.in" __license__ = "BSD 3-Clause License" __version__ = "1.0" class ProtonUserReset(ConnectionManager, PasswordManager, ProtonEmail, MyUtilities): def __init__(self): super(ProtonUserReset, self).__init__() self.__alchemy_engine = self.alchemy_engine() self.iam_user_reset_logger = self.get_logger(log_file_name='iam_user_reset_logs.log', log_file_path='{}/trace/iam_user_reset_logs.log'.format( self.ROOT_DIR)) def proton_reset_user(self, db_flavour, schema_name, reset_payload): try: if isinstance(reset_payload, dict): reset_password_metadata = { 'user_name': str, 'email': str, 'password': str } validation_results = self.validate_proton_payload_type(reset_password_metadata, reset_payload) if validation_results['status'] and db_flavour == 'postgresql': schema_status = self.__alchemy_engine[db_flavour].dialect.has_schema( self.__alchemy_engine[db_flavour], schema_name) metadata = MetaData(self.__alchemy_engine[db_flavour], reflect=True, schema=schema_name) metadata.reflect(self.__alchemy_engine[db_flavour]) connection = self.__alchemy_engine[db_flavour].connect() with connection.begin() as transaction: if schema_status: user_registry_table = Table('PROTON_user_registry', metadata) query_user_id = select([user_registry_table.c.id]).where( user_registry_table.c.email == reset_payload['email']) user_id = (connection.execute(query_user_id)).fetchall() if len(user_id) == 0: return json.dumps({ 'message': 'Unable to reset password.', 'reason': { 'message': 'Invalid Email. There is no registered user with that email.' }, 'status': False }) else: login_registry_table = Table('PROTON_login_registry', metadata) query_user_existence = select([login_registry_table.c.user_registry_id]).where( login_registry_table.c.user_name == reset_payload['user_name']) user_existence = (connection.execute(query_user_existence)).fetchall() if len(user_existence) == 0: return json.dumps({ 'message': 'Unable to reset password.', 'reason': { 'message': 'Invalid Username. Please enter the username and ' 'email as provided during signup.' }, 'status': False }) else: if user_id[0][0] != user_existence[0][0]: return json.dumps({ 'message': 'Unable to reset password.', 'reason': { 'message': 'Given email and username do not match. Please enter the ' 'username and email as provided during signup.' }, 'status': False }) else: password_update_query = login_registry_table.update().where( login_registry_table.c.user_registry_id == user_existence[0][0]).values( password=self.<PASSWORD>(reset_payload['password'])) password_update_results = (connection.execute(password_update_query)) if self.iam_user_reset_logger.info(password_update_results.rowcount) != 0: return json.dumps({ 'message': 'Password reset successful.', 'status': True, }) else: return json.dumps({ 'message': 'Password reset unsuccessful due to server side error.', 'status': False, }) else: return json.dumps({ 'message': 'Unable to reset password.', 'reason': { 'message': 'Required payload for password reset is: {}'.format(str(reset_password_metadata)) }, 'status': False }) return json.dumps({ 'message': 'Unable to reset password.', 'reason': { 'message': """POST payload for /reset route must be: { "db_flavour": "postgresql", "reset_payload": { "user_name": "<username>", "email": "<<EMAIL>>", "password": "<<PASSWORD>>" } } """ }, 'status': False }) except Exception as e: self.iam_user_reset_logger.exception('[Proton IAM] - Exception while resetting PROTON user password. ' 'Details: {}'.format(str(e))) class IctrlProtonPasswordReset(ProtonUserReset): def __init__(self): super(IctrlProtonPasswordReset, self).__init__() def on_get(self, req, resp): resp.status = falcon.HTTP_SERVICE_UNAVAILABLE def on_post(self, req, resp): try: post_payload = json.loads(req.stream.read()) results = self.proton_reset_user(post_payload['db_flavour'], 'iam', post_payload['reset_payload']) resp.body = results resp.status = falcon.HTTP_201 except Exception as e: resp.body = json.dumps({ 'message': "POST request must contain 'db_flavour'[PROTON supports `sqlite` or `postgresql`] " "and 'reset_payload'" }) resp.status = falcon.HTTP_403
1.140625
1
pacote-download/ex(1-100)/ex076.py
gssouza2051/python-exercicios
0
12785501
'''Crie um programa que tenha uma tupla única com nomes de produtos e seus respectivos preços, na sequência. No final, mostre uma listagem de preços, organizando os dados em forma tabular.''' listagem= ('lápis',2.50, 'borracha',1.50, 'caderno',12.00, 'caneta',2.00, 'estojo',10.50) print('-'*30) print('LISTAGEM DE PREÇOS') print('-'*30) for pos in range(0, len (listagem)): if pos % 2==0 : print(f'{listagem[pos]:.<30}') else: print(f' R${listagem[pos]:>10}')
3.921875
4
weather-tracker/main.py
JAbrokwah/python-projects
0
12785502
from weather_tracker import weather_tracker, output_file_path from wt_exceptions import WeatherException, LocationException def check_selection_value(value): return value in [1, 2] if __name__ == '__main__': print("Welcome to the Automatic Weather Machine! We find your location (Based on IP Address) and tell you the " "weather for your area for the week") output = None try: print('1 - Print to Console') print('2 - Output to TXT File') while output is None or type(output) != int or output > 2 or output < 1: try: output = int(input("Output Selection: ")) if not check_selection_value(output): output = None print("Provide a valid selection for output!") except ValueError: print("{} is not a number, please enter a number only".format(output)) result = weather_tracker(output) if len(result) != 3: print('You can find your forecast in the file: {}'.format(output_file_path)) else: forecast = result[0] city = result[1] district = result[2] print("Here is the forecast for {}, {}:".format(city, district)) for day in forecast: print(day) except (LocationException, WeatherException) as error: print(error.args[0])
3.75
4
gensound/__init__.py
macrat/PyGenSound
0
12785503
<reponame>macrat/PyGenSound """ Generate sound like a chiptune Read an audio file or generate sound, compute it, and write to file. """ from gensound.sound import * from gensound.effect import * from gensound.exceptions import *
2.1875
2
econtools/metrics/tests/data/src_tsls.py
fqueiro/econtools
93
12785504
import pandas as pd import numpy as np class regout(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) stat_names=['coeff', 'se', 't', 'p>t', 'CI_low', 'CI_high'] var_names=['mpg', 'length', '_cons'] tsls_std = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 1906.786380881755, -.6921935160784805, .4910734473693195, -5121.889227450638, 2482.158888664433, ], [-217.1947537663291, 420.1260089670161, -.5169752624941175, .6067801835089433, -1054.902223005562, 620.5127154729038, ], [75092.75604853875, 119511.8053379244, .6283291917163411, .5318043826192644, -163207.0155842729, 313392.5276813505, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [3635834.30231614, 799471.1768877679, -227680006.992276, ], [799471.1768877679, 176505.8634105533, -50197751.5841309, ], [-227680006.992276, -50197751.5841309, 14283071615.12995, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.97987798611259, pF=.0230019984382644, ) tsls_robust = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 2357.647789772478, -.5598228773265894, .5773622437125422, -6020.881343525829, 3381.151004739624, ], [-217.1947537663291, 503.6720846601052, -.4312225362120266, .6676130605679584, -1221.488366543325, 787.0988590106673, ], [75092.75604853875, 144765.6412502902, .5187194654752942, .6055693972498957, -213561.7342143963, 363747.2463114738, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [5558503.100619048, 1185986.375722446, -341107563.0831394, ], [1185986.375722446, 253685.5688658562, -72904288.91181517, ], [-341107563.0831394, -72904288.91181517, 20957090886.60773, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.406896316082843, pF=.0386511725211229, ) tsls_cluster = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 2257.567862016117, -.5846403076514384, .5625396644960171, -5902.971584635199, 3263.241245848994, ], [-217.1947537663291, 486.3497477085017, -.4465814052329, .6579283787885248, -1204.537232491913, 770.1477249592547, ], [75092.75604853875, 139493.4175166438, .5383247280437371, .5937601902027558, -208093.9367907353, 358279.4488878128, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [5096612.65160802, 1096219.32167181, -314686204.683651, ], [1096219.32167181, 236536.0770961233, -67830404.58467865, ], [-314686204.683651, -67830404.58467865, 19458413530.47272, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.125695274137819, pF=.0563657644983311, )
2.203125
2
omaha_server/omaha/migrations/0023_auto_20150922_1014.py
makar21/omaha-server
8
12785505
# -*- coding: utf-8 -*- from django.db import models, migrations import django_extensions.db.fields class Migration(migrations.Migration): dependencies = [ ('omaha', '0022_auto_20150909_0755'), ] operations = [ migrations.AddField( model_name='request', name='ip', field=models.GenericIPAddressField(null=True, blank=True), ), ]
1.601563
2
test_it.py
greghaskins/gibberish
52
12785506
import gibberish def test_generate_word(): word = gibberish.generate_word() assert len(word) assert word.isalpha() def test_generate_words(): word_list = gibberish.generate_word() assert len(word_list) for word in word_list: assert len(word) assert word.isalpha()
3.234375
3
tests/derive/test_assign_work_person_facing_now.py
ONS-SST/cis_households
0
12785507
<filename>tests/derive/test_assign_work_person_facing_now.py from chispa import assert_df_equality from cishouseholds.derive import assign_work_person_facing_now def test_assign_work_person_facing_now(spark_session): expected_df = spark_session.createDataFrame( data=[ ("<=15y", 15, "Yes, care/residential home, resident-facing", "<=15y"), ("Yes", 27, "Yes, care/residential home, resident-facing", "Yes"), ("No", 49, "Yes, other social care, resident-facing", "Yes"), ("No", 33, "No", "No"), (">=75y", 80, "No", ">=75y"), (None, 80, "No", "No"), (">=75y", 99, "Yes, care/residential home, non-resident-facing", ">=75y"), ], schema="work_patient string, age integer, work_social string, facing string", ) output_df = assign_work_person_facing_now(expected_df.drop("facing"), "facing", "work_patient", "work_social") assert_df_equality(output_df, expected_df)
2.625
3
inference.py
cpuimage/SINet
13
12785508
<filename>inference.py # -*- coding: utf-8 -*- import time import os import numpy as np import tensorflow as tf import cv2 def export_tflite(output_resolution, num_classes, checkpoint_dir): from model import Model model = Model(output_resolution=output_resolution, num_classes=num_classes) ckpt = tf.train.Checkpoint(model=model, optimizer=tf.keras.optimizers.Adam()) ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_dir, max_to_keep=5) if ckpt_manager.latest_checkpoint: ckpt.restore(ckpt_manager.latest_checkpoint) tf.get_logger().info("Latest checkpoint restored:{}".format(ckpt_manager.latest_checkpoint)) converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_LATENCY] tflite_model = converter.convert() open("model.tflite", "wb").write(tflite_model) tf.get_logger().info('export tflite done.') else: tf.get_logger().info('Not restoring from saved checkpoint') class Segmentator(object): def __init__(self): self.height = 256 self.width = 256 def load_tflite(self, model_path="model.tflite"): # Load TFLite model and allocate tensors. self.interpreter = tf.lite.Interpreter(model_path=model_path) self.interpreter.allocate_tensors() # Get input and output tensors. self.input_details = self.interpreter.get_input_details() self.output_details = self.interpreter.get_output_details() # Get Input shape self.input_shape = self.input_details[0]['shape'] self.height, self.width = self.input_shape[1], self.input_shape[2] def tflite_forward(self, img_data): input_data = img_data.reshape(self.input_shape).astype('float32') self.interpreter.set_tensor(self.input_details[0]['index'], input_data) self.interpreter.invoke() mask = (self.interpreter.get_tensor(self.output_details[0]['index'])) return mask def cv_load_image_rgb(self, filename): image = cv2.cvtColor(cv2.imread(filename, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB) return np.asarray(image, np.float32) def build_debug_display(self, img_data, disp_image, disp_mask, h, w, maintain_resolution=True): if maintain_resolution: disp_mask = np.clip(np.expand_dims(cv2.resize(disp_mask, (w, h), interpolation=cv2.INTER_CUBIC), -1), 0, 1) disp_image = cv2.cvtColor(np.asarray(img_data, np.uint8), cv2.COLOR_RGBA2RGB) else: disp_image = cv2.cvtColor(np.asarray(disp_image * 255., np.uint8), cv2.COLOR_RGBA2RGB) overlay = disp_image.copy() disp_mask_rgb = (np.tile(disp_mask, 3) * 255.).astype(np.uint8) disp_image_mask = (disp_image * disp_mask).astype(np.uint8) overlay = (np.broadcast_to([1, 0, 1], overlay.shape) * disp_image_mask).astype(np.uint8) alpha = 0.7 cv2.addWeighted(disp_image, alpha, overlay, 1 - alpha, 0, overlay) extracted_pixels_color = np.broadcast_to([[207, 207, 207]], overlay.shape) * (1. - disp_mask) extracted_pixels = extracted_pixels_color + disp_image_mask outputs = np.uint8(disp_image), np.uint8(disp_mask_rgb), np.uint8( overlay), np.uint8(extracted_pixels) return outputs def run_inference(self, data, only_mask=True, debug_display=True): if isinstance(data, str): img_data = tf.cast(self.cv_load_image_rgb(data), tf.float32) else: img_data = data height, width = img_data.shape[:2] disp_image = np.asarray(tf.image.resize(img_data / 255., size=[int(self.height), int(self.width)]), np.float32) start = time.perf_counter() mask = self.tflite_forward(disp_image) print('Time: {:.3f} secs'.format(time.perf_counter() - start)) disp_mask = np.squeeze(np.clip(mask, 0., 1.), 0) if debug_display: alpha_disp_image, alpha_disp_mask_rgb, alpha_overlay, alpha_extracted_pixels = self.build_debug_display( img_data, disp_image, disp_mask, height, width) outputs = np.concatenate((alpha_disp_image, alpha_disp_mask_rgb, alpha_overlay, alpha_extracted_pixels), axis=1) return outputs.astype(np.uint8) mask = np.asarray(tf.image.resize(disp_mask, size=[height, width]) * 255., np.uint8) if only_mask: outputs = mask else: outputs = np.concatenate((img_data, mask), axis=-1) return outputs.astype(np.uint8) def main(): output_resolution = 512 num_classes = 1 os.environ['CUDA_VISIBLE_DEVICES'] = '' export_model = True if export_model: checkpoint_path = "training/cp-{step:04d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) export_tflite(output_resolution, num_classes, checkpoint_dir=checkpoint_dir) print('************ Segnet ************') segnet = Segmentator() segnet.load_tflite() root_path = "./data/test/coco_test" image_path = os.path.join(root_path, "image") save_path = os.path.join(root_path, "probs") import shutil shutil.rmtree(save_path, True) if not os.path.exists(save_path): os.makedirs(save_path) sub_file = os.listdir(image_path) for name in sub_file: print("Working on file", name) input_filename = os.path.join(image_path, name) png_filename = os.path.splitext(name)[0] + ".png" save_filename = os.path.join(save_path, png_filename) if os.path.exists(input_filename) and not os.path.exists(save_filename): probs = segnet.run_inference(input_filename, only_mask=True) png_image = tf.image.encode_png(probs) tf.io.write_file(save_filename, png_image) if __name__ == '__main__': main()
2.328125
2
test_data.py
dutch213/pt-voicebox
0
12785509
text_small = 'A penny saved is a penny earned.'
1.117188
1
backend/main.py
pauanawat/FookBace
0
12785510
<gh_stars>0 from aiohttp import web from app.config.application import app_config def main(): app = web.Application() app_config(app) web.run_app(app) if __name__ == '__main__': main()
1.679688
2
exercicios-Python/desaf021.py
marcelo-py/Exercicios-Python
0
12785511
#import pygame #pygame.mixer.init() #pygame.mixer.music.load('desaf021.mp3') #pygame.mixer.music.play() #while pygame.mixer.music.get_busy(): pass import playsound playsound.playsound('desaf021.mp3')
2.359375
2
tests/test_models.py
dimdamop/single-neuron
0
12785512
# Author: <NAME> # MIT license (see LICENCE.txt in the top-level folder) import unittest import numpy as np from numpy import random from numpy import linalg as LA from sklearn.linear_model import LinearRegression, LogisticRegression from single_neuron import models as models from single_neuron import math_utils as math_utils datasets_n = 50 max_ds_n = 10000 max_features_n = 100 max_abs_value = 1000 min_epochs = 100 max_epochs = 10000 min_lr = 1e-9 max_lr = 1e-5 def generate_synthetic_datasets(N_max, m_max, gaussian=False): N_train = random.randint(3, N_max + 1) N_valid = random.randint(3, N_max + 1) m = random.randint(2, m_max + 1) if gaussian: # we are generating a synthetic dataset based on a multivariate Gaussian # distribution. In order to generate the latter, we need a mean vector # (easy) and a positive definite matrix for the covariances. This matrix # is way more tricky to sample and I don' t know what is the best way. # My current brute-force approach is the following: (a) I sample m # vectors; (b) I take all the possible inner products (Gram matrix) as # the covariance matrix and (c) if the covariance matrix is singular, I # go back to step (b). mu = 2 * (random.rand(m) - 0.5) * max_abs_value Cov = np.zeros([m, m]) while LA.matrix_rank(Cov) != m: a = 2 * (random.rand(m) - 0.5) * max_abs_value X = a * random.rand(m, m) Cov = X.T.dot(X) train_ds = random.multivariate_normal(mu, Cov, N_train) valid_ds = random.multivariate_normal(mu, Cov, N_valid) else: # uniformly random datasets train_ds = 2 * (random.rand(N_train, m) - 0.5) * max_abs_value valid_ds = 2 * (random.rand(N_valid, m) - 0.5) * max_abs_value return train_ds, valid_ds class TestLinearNeuron(unittest.TestCase): def setUp(self): """ Prepare a few synthetic datasets for the tests. Two categories of datasets: One random without any implied structure and one that arises from a predefined distribution. """ self.train_X = [] self.valid_X = [] self.train_y = [] self.valid_y = [] for ds_i in range(0, datasets_n): # make sure that there are some datasets with extremely small values if ds_i < 10: N_max = 7 else: N_max = max_ds_n if ds_i < 10: m_max = 2 else: m_max = max_features_n #gaussian = random.rand() < 0.5 gaussian = True train_ds, valid_ds = generate_synthetic_datasets(N_max, m_max, gaussian) # we use the last column as the target variable self.train_X.append(train_ds[:, :-1]) self.valid_X.append(valid_ds[:, :-1]) self.train_y.append(train_ds[:, -1]) self.valid_y.append(valid_ds[:, -1]) self.lin_model = LinearRegression() def test_rmse_is_equal_with_sklearn(self): pass def test_params_are_equal_with_sklearn(self): pass def test_initialization_does_not_matter(self): pass class TestReluNeuron(unittest.TestCase): def test_rmse_is_equal_with_sklearn(self): pass def test_initialization_with_negatives_leads_to_zero_gradients(self): pass def test_initialization_does_not_matter(self): pass class TestLogisticNeuron(unittest.TestCase): def test_ce_is_equal_with_sklearn(self): pass def test_initialization_does_not_matter(self): pass
2.703125
3
test/test_modify_contact.py
IvanZyfra/py_training
0
12785513
<reponame>IvanZyfra/py_training<filename>test/test_modify_contact.py # -*- coding: utf-8 -*- from model.contact import Contact def test_modify_contact(app): app.contact.modify_first_group( Contact(first_name="Test_name", middle_name="Test_name", last_name="Test_name", nickname="", title="", company="", address="", tel_home="", tel_mobile="", tel_work="", tel_fax="", email="", email2="", email3="", homepage="", address2="", phone2="", notes=""))
1.84375
2
utils/logging.py
csalt-research/OpenASR-py
2
12785514
import logging logger = logging.getLogger() log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s") logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setFormatter(log_format) logger.handlers = [console_handler]
2.40625
2
exploits/sword/sessionregeneration.py
PinkRoccade-Local-Government-OSS/PinkWave
1
12785515
<filename>exploits/sword/sessionregeneration.py """ Logs into webapplication and verifies that session id is changed to prevent session fixation. * Valid login required """ __author__ = "sword" import sys from os.path import dirname,abspath # Importing PinkWave extensions sys.path.append(dirname(dirname(dirname(abspath(__file__))))) from extensions.Util import Util,report,payloads import extensions.Request as Request def labels(): return ['A2 - Broken Authentication and Session Management'] def options(): return ['target','requestNames','creds'] def start(pentest): r1 = Request.get(pentest.target) r2 = Request.post(pentest.target,pentest.requestNames, pentest.creds) if r1.cookies == r2.cookies: report("Cookies not altered")
2.625
3
abc/077/B.py
tonko2/AtCoder
2
12785516
N = int(input()) for i in range(1, 100000): if i * i > N: print((i - 1) ** 2) exit()
3.0625
3
web/accounts/templatetags/dashbar_tag.py
MattYu/django-docker-nginx-postgres-letsEncrypt-jobBoard
1
12785517
from django import template from joblistings.models import Job from companies.models import Company register = template.Library() @register.inclusion_tag('dashbar.html') def get_dashbar(*args, **kwargs): location = kwargs['location'] return { 'location': location }
1.742188
2
py/py_0405_a_rectangular_tiling.py
lcsm29/project-euler
0
12785518
# Solution of; # Project Euler Problem 405: A rectangular tiling # https://projecteuler.net/problem=405 # # We wish to tile a rectangle whose length is twice its width. Let T(0) be the # tiling consisting of a single rectangle. For n > 0, let T(n) be obtained # from T(n-1) by replacing all tiles in the following manner:The following # animation demonstrates the tilings T(n) for n from 0 to 5:Let f(n) be the # number of points where four tiles meet in T(n). For example, f(1) = 0, f(4) # = 82 and f(109) mod 177 = 126897180. Find f(10k) for k = 1018, give your # answer modulo 177. # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 405 timed.caller(dummy, n, i, prob_id)
3.234375
3
setup.py
remico/studio-installer
0
12785519
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # This file is part of "Linux Studio Installer" project # # Author: <NAME> <<EMAIL>> # License: MIT License # # SPDX-License-Identifier: MIT # License text is available in the LICENSE file and online: # http://www.opensource.org/licenses/MIT # # Copyright (c) 2020 remico import platform import setuptools from pathlib import Path if 'linux' not in platform.system().lower(): raise OSError('The package requires GNU Linux. Aborting installation...') def data_files(): return [ ('studioinstaller-data', [str(f) for f in Path("preseed").glob("*") if f.is_file()]), ('studioinstaller-data/calamares', [str(f) for f in Path("preseed/calamares").glob("*") if f.is_file()]) ] # make the distribution platform dependent try: from wheel.bdist_wheel import bdist_wheel as _bdist_wheel class bdist_wheel(_bdist_wheel): def finalize_options(self): _bdist_wheel.finalize_options(self) self.root_is_pure = False # self.plat_name_supplied = True # self.plat_name = "manylinux1_x86_64" except ImportError: bdist_wheel = None setuptools.setup( data_files=data_files(), cmdclass={ 'bdist_wheel': bdist_wheel } )
2
2
gnn_agglomeration/dataset/node_embeddings/hdf5_like_in_memory.py
bentaculum/gnn_agglomeration
2
12785520
import logging import numpy as np from time import time as now from gunpowder.batch import Batch from gunpowder.profiling import Timing from gunpowder.array import Array from gunpowder.nodes.hdf5like_source_base import Hdf5LikeSource from gunpowder.compat import ensure_str from gunpowder.coordinate import Coordinate from gunpowder.ext import ZarrFile logger = logging.getLogger(__name__) class Hdf5InMemory(Hdf5LikeSource): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.in_mem_datasets = {} def setup(self): super().setup() with self._open_file(self.filename) as data_file: for (array_key, ds_name) in self.datasets.items(): if ds_name not in data_file: raise RuntimeError("%s not in %s" % (ds_name, self.filename)) spec = self._Hdf5LikeSource__read_spec( array_key, data_file, ds_name) # logger.info(spec) # logger.info(spec.roi) # logger.info(spec.roi.get_offset()) # logger.info((spec.roi - spec.roi.get_offset()) / # spec.voxel_size) start = now() logger.info( f'start loading {ds_name} into memory') self.in_mem_datasets[array_key] = self._Hdf5LikeSource__read( data_file, self.datasets[array_key], (spec.roi - spec.roi.get_offset()) / spec.voxel_size, ) logger.info( f'loaded {ds_name} into memory in {now() - start} s') def provide(self, request): timing = Timing(self) timing.start() batch = Batch() for (array_key, request_spec) in request.array_specs.items(): voxel_size = self.spec[array_key].voxel_size # scale request roi to voxel units dataset_roi = request_spec.roi / voxel_size # shift request roi into dataset dataset_roi = ( dataset_roi - self.spec[array_key].roi.get_offset() / voxel_size ) # create array spec array_spec = self.spec[array_key].copy() array_spec.roi = request_spec.roi # add array to batch batch.arrays[array_key] = Array( self.__read(array_key, dataset_roi), array_spec ) logger.debug("done") timing.stop() batch.profiling_stats.add(timing) return batch def __read(self, array_key, roi): in_mem_array = self.in_mem_datasets[array_key] c = len(in_mem_array.shape) - self.ndims if self.channels_first: array = np.asarray( in_mem_array[(slice(None),) * c + roi.to_slices()]) else: array = np.asarray( in_mem_array[roi.to_slices() + (slice(None),) * c]) array = np.transpose( array, axes=[ i + self.ndims for i in range(c)] + list(range(self.ndims)) ) return array def __repr__(self): return self.filename class InMemZarrSource(Hdf5InMemory): '''A `zarr <https://github.com/zarr-developers/zarr>`_ data source. Provides arrays from zarr datasets. If the attribute ``resolution`` is set in a zarr dataset, it will be used as the array's ``voxel_size``. If the attribute ``offset`` is set in a dataset, it will be used as the offset of the :class:`Roi` for this array. It is assumed that the offset is given in world units. Args: filename (``string``): The zarr directory. datasets (``dict``, :class:`ArrayKey` -> ``string``): Dictionary of array keys to dataset names that this source offers. array_specs (``dict``, :class:`ArrayKey` -> :class:`ArraySpec`, optional): An optional dictionary of array keys to array specs to overwrite the array specs automatically determined from the data file. This is useful to set a missing ``voxel_size``, for example. Only fields that are not ``None`` in the given :class:`ArraySpec` will be used. channels_first (``bool``, optional): Specifies the ordering of the dimensions of the HDF5-like data source. If channels_first is set (default), then the input shape is expected to be (channels, spatial dimensions). This is recommended because of better performance. If channels_first is set to false, then the input data is read in channels_last manner and converted to channels_first. ''' def _get_voxel_size(self, dataset): if 'resolution' not in dataset.attrs: return None if self.filename.endswith('.n5'): return Coordinate(dataset.attrs['resolution'][::-1]) else: return Coordinate(dataset.attrs['resolution']) def _get_offset(self, dataset): if 'offset' not in dataset.attrs: return None if self.filename.endswith('.n5'): return Coordinate(dataset.attrs['offset'][::-1]) else: return Coordinate(dataset.attrs['offset']) def _open_file(self, filename): return ZarrFile(ensure_str(filename), mode='r')
1.96875
2
Ecomm/products/views.py
team-mbm/Ecomm
0
12785521
<gh_stars>0 from django.shortcuts import render, get_object_or_404 from django.http import Http404 from .models import Product # Create your views here. def index(request): items = Product.objects.all() print (request.__dict__) return render(request, 'products/index.html',{'items':items}) def all_products(request): items = Product.objects.all() return render(request, 'products/all_products.html',{'items':items}) def description(request, product_id): item = get_object_or_404(Product, pk=product_id) print (item) related_items =[ goods for goods in Product.objects.filter(category=item.category) if goods.id != item.id ] print (related_items) return render(request, 'products/single-product.html', {'item':item, 'related_items':related_items}) def category_items(request, category_name): items = Product.objects.filter(category=category_name) return render(request, 'products/category.html',{'items':items})
2.171875
2
ckanext/iati/logic/csv_action.py
derilinx/ckanext-ia
2
12785522
from flask import make_response from ckan.common import config, c import ckan.plugins as p import ckan.model as model import ckan.authz as authz import ckan.logic as logic import ckan.lib.jobs as jobs from ckanext.iati.helpers import extras_to_dict, parse_error_object_to_list from ckanext.iati import helpers as h from ckanext.iati.logic import action import sqlalchemy import csv import StringIO from collections import OrderedDict import json from xlwt import Workbook import io import datetime as dt import os, codecs import logging log = logging.getLogger(__name__) _and_ = sqlalchemy.and_ _not_empty = p.toolkit.get_validator('not_empty') _ignore_empty = p.toolkit.get_validator('ignore_empty') _ignore_missing = p.toolkit.get_validator('ignore_missing') _int_validator = p.toolkit.get_validator('int_validator') ValidationError = logic.ValidationError class FormatError(Exception): pass class PublishersListDownload: def __init__(self, download_format, request_recent_publisher=False): self.request_type_recent_publisher = request_recent_publisher self.download_format = self._get_format(download_format) self._site_url = config.get('ckan.site_url') self._datasets_link = self._site_url + "/publisher/{}" self._func_mapping = { 'extras_publisher_organization_type':h.get_organization_type_title, 'extras_publisher_country':h.get_country_title } self._set_mapping() def _set_mapping(self): """ Set csv column headers accoring to the request type. If the request is from recent publishers )only for sysadmins), we need first_published_date column :return: """ self._headers = ['Publisher', 'IATI Organisation Identifier', 'Organization Type', 'HQ Country or Region', 'Datasets Count', 'Datasets Link'] self._mapping = ['display_name', 'extras_publisher_iati_id', 'extras_publisher_organization_type', 'extras_publisher_country', 'package_count'] if self.request_type_recent_publisher: self._headers.insert(4, "First Published Date") self._mapping.insert(4, "extras_publisher_first_publish_date") self._headers = tuple(self._headers) self._mapping = tuple(self._mapping) def _get_xml_value(self, val): val = val.replace('&', "&amp;") return val def _get_xml_name(self, val): val = val.lower() return val.replace(" ", '-') def _get_format(self, download_format): try: download_format = download_format.lower() _formats = ('csv', 'json', 'xml', 'xls') if download_format not in _formats: raise FormatError return download_format except Exception as e: raise FormatError(e) @staticmethod def _get_publisher_data(): """ We cannot use API organization_list with all_fields=True, because it will be expensive process to by pass max limits :return: dict """ # TODO: Need optimization # First get package count and then join with Group with ownr_org package_count = model.Session.query(model.Group, model.Package.owner_org, sqlalchemy.func.count(model.Package.id).label('package_count')).join( model.Package, model.Group.id == model.Package.owner_org).filter( _and_( model.Group.is_organization == True, model.Group.state == 'active', model.Package.private == False, model.Package.state == 'active' ) ).group_by(model.Group.id, model.Package.owner_org).subquery() organization = model.Session.query(model.Group, package_count.c.package_count).join( package_count, model.Group.id == package_count.c.id).join(model.GroupExtra) log.info(organization.as_scalar()) return organization.all() def _prepare(self, data): """ Prepare the data for download :param data: :return: """ clean_data = [] extras = dict(data.Group._extras) for key in self._mapping[:-1]: val = '' if hasattr(data.Group, key): val = getattr(data.Group, key).encode('utf-8') if "extras_" in key: val = extras.get(key.replace("extras_", ''), '') if val: val = val.value.encode('utf-8') if key in self._func_mapping: val = self._func_mapping.get(key)(val) clean_data.append(val) clean_data.append(data.package_count) clean_data.append(self._datasets_link.format(data.Group.name)) return clean_data def csv(self): """ CSV download. Sysadmin recent publisher is allowed to download only csv :return: """ f = StringIO.StringIO() writer = csv.writer(f) writer.writerow(list(self._headers)) _org_data = PublishersListDownload._get_publisher_data() rows = [] for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: org_data = self._prepare(org) if self.request_type_recent_publisher: rows.append(org_data) else: writer.writerow(org_data) # This is expensive but we need sorting for first published # date since its hard to get sorted for GroupExtra table if self.request_type_recent_publisher: rows = sorted(rows, key=lambda entry: entry[4], reverse=True) for csv_row in rows: writer.writerow(csv_row) output = f.getvalue() f.close() response = make_response(output) response.headers['Content-type'] = 'text/csv' return response def json(self): """ Json download :return: """ f = StringIO.StringIO() json_data = [] _org_data = PublishersListDownload._get_publisher_data() for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: json_data.append(OrderedDict(zip(self._headers, self._prepare(org)))) json.dump(json_data, f) output = f.getvalue() f.close() response = make_response(output) response.headers['Content-type'] = 'application/json' return response def xml(self): """ xml format download :return: """ f = StringIO.StringIO() fields = list(self._headers) fields.pop(1) xml = ['<?xml version="1.0" encoding="UTF-8" ?>'] _observations = ' <{}>{}</{}>' xml.append('<iati-publishers-list>') _org_data = PublishersListDownload._get_publisher_data() for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: _dt = self._prepare(org) _dt[4] = str(int(_dt[4])) # Package count to string _iati_identifier = _dt.pop(1) xml.append('<iati-identifier id="{}">'.format(_iati_identifier)) for _index, _field in enumerate(fields): field = self._get_xml_name(_field) if field == "Datasets Link": xml.append('<iati-publisher-page xmlns:xlink="http://www.w3.org/1999/xlink">') xml.append(' <iati-publisher-page xlink:type="simple" ' 'xlink:href="{}">{}</iati-publisher-page>'.format(_dt[_index], self._get_xml_value(_dt[0]))) xml.append('</iati-publisher-page>') else: xml.append(_observations.format(field, self._get_xml_value(_dt[_index]), field)) xml.append('</iati-identifier>') xml.append('</iati-publishers-list>') f.write("\n".join(xml)) output = f.getvalue() f.close() response = make_response(output) response.headers['Content-type'] = 'text/xml' return response def xls(self): """ xls format download :return: """ f = StringIO.StringIO() wb = Workbook(encoding='utf-8') sheet1 = wb.add_sheet('IATI Publishers List') _org_data = PublishersListDownload._get_publisher_data() # Write Headers for _index, _field in enumerate(self._headers): sheet1.write(0, _index, _field) # Write Rows and Values _row = 1 for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: _dt = self._prepare(org) # Write Items for _col, _item in enumerate(_dt): sheet1.write(_row, _col, _item) _row += 1 wb.save(f) output = f.getvalue() f.close() response = make_response(output) return response def download(self): response = getattr(PublishersListDownload, self.download_format)(self) file_name = 'iati_publishers_list' response.headers['Content-disposition'] = 'attachment;filename={}.{}'.format(file_name, self.download_format) return response class PublisherRecordsDownload: CSV_MAPPING = [ ('registry-publisher-id', 'organization', 'name'), ('registry-file-id', 'package', 'name'), ('title', 'package', 'title'), ('description', 'package', 'notes'), ('contact-email', 'package', 'author_email'), ('state', 'package', 'state'), ('source-url', 'resources', 'url'), ('file-type', 'package', 'filetype'), ('recipient-country', 'package', 'country'), ('default-language', 'package', 'language'), ('secondary-publisher', 'package', 'secondary_publisher'), ] OPTIONAL_COLUMNS = ['state', 'description', 'default-language', 'secondary-publisher'] MAX_ROWS = int(config.get('ckanext.iati.max_rows_csv_upload', 101)) def __init__(self): pass def _get_packages_for_org(self, context, org_name): """ :param context: :param org_name: :return: """ rows = 100 start = 0 packages = [] data_dict = { 'q': '*:*', 'fq': 'organization:' + org_name, 'rows': rows, 'start': start, } def do_query(context, data_dict): return p.toolkit.get_action('package_search')(context, data_dict) pending = True while pending: query = do_query(context, data_dict) if len(query['results']): packages.extend(query['results']) data_dict['start'] += rows else: pending = False return packages def write_to_csv(self, publisher): """ :param publisher: :return: """ context = {'model': model, 'user': c.user or c.author} try: if publisher == 'all': package_ids = p.toolkit.get_action('package_list')(context, {}) packages = [] for pkg_id in package_ids: try: package = p.toolkit.get_action('package_show')(context, {'id': pkg_id}) package.pop('state', None) packages.append(package) except p.toolkit.NotAuthorized: log.warn('User %s not authorized to read package %s' % (c.user, pkg_id)) continue elif publisher == 'template': # Just return an empty CSV file with just the headers packages = [] else: packages = self._get_packages_for_org(context, publisher) f = io.BytesIO() fieldnames = [n[0] for n in self.CSV_MAPPING if n[0] != 'state'] writer = csv.DictWriter(f, fieldnames=fieldnames, quoting=csv.QUOTE_ALL) headers = dict((n[0], n[0]) for n in self.CSV_MAPPING if n[0] != 'state') writer.writerow(headers) for package in packages: if package: row = {} extras_dict = extras_to_dict(package) for fieldname, entity, key in self.CSV_MAPPING: if key == 'state': continue value = None if entity == 'organization': if len(package['organization']): value = package['organization']['name'] elif entity == 'resources': if len(package['resources']) and key in package['resources'][0]: value = package['resources'][0][key] else: if key in package: value = package[key] elif key in extras_dict: value = extras_dict[key] row[fieldname] = value for field_to_check in ('title', 'description'): if fieldname == field_to_check and row.get(field_to_check): row[field_to_check] = row[field_to_check].encode('utf-8') writer.writerow(row) output = f.getvalue() f.close() return output except p.toolkit.ObjectNotFound: p.toolkit.abort(404, 'Organization not found') class PublisherRecordsUpload(PublisherRecordsDownload): def __init__(self, *args, **kwargs): PublisherRecordsDownload.__init__(self) def _validate_users(self): """ Validate user access - :return: None """ log.info("Validating the logged in user") if not c.user: return p.toolkit.abort(401, 'You are not logged. Please login') self.is_sysadmin = authz.is_sysadmin(c.user) context = {'model': model, 'user': c.user or c.author} self.authz_orgs = p.toolkit.get_action('organization_list_for_user')(context, {}) if not self.is_sysadmin and not self.authz_orgs: return p.toolkit.abort(403, 'You are not authorized. You are not an admin of any publisher.') return None def _validate_csv_files(self, csv_file): """ Validate uploaded csv files. :return: """ log.info("Validating the uploaded csv files") if not hasattr(csv_file, 'filename'): raise ValidationError("No CSV file provided. Please upload a CSV file.") # Verify csv file extension if os.path.splitext(csv_file.filename)[-1].lower() != '.csv': raise ValidationError( "Uploaded file is not a csv file. Please upload a csv file" ) # Validate csv columns # Validate Mandatory fields. bom_length = len(codecs.BOM_UTF8) data = csv_file.read() if data.startswith(codecs.BOM_UTF8): data = data[bom_length:] if not data: raise ValidationError("CSV file is empty") buffer = io.BytesIO(data) log.info("Validating CSV file....") reader = csv.reader(buffer) columns = next(reader) # Validate columns if not columns: buffer.close() raise ValidationError("Mandatory fields are missing. " "Download csv upload template (verify mandatory columns) and " "upload the file accordingly.") for _col in self.CSV_MAPPING: is_optional = _col[0] in self.OPTIONAL_COLUMNS in_columns = _col[0] in columns if not is_optional and not in_columns: buffer.close() raise ValidationError("Mandatory/unrecognized CSV columns. Given csv fields: {}") # Validate no of rows row_count = sum(1 for _ in reader) log.info("Number of rows in csv: {}".format(str(row_count))) if row_count > self.MAX_ROWS: raise ValidationError( "Exceeded the limit. Maximum allowed rows is 50" ) return data
1.867188
2
bag_of_words.py
pieroit/python-base
0
12785523
<reponame>pieroit/python-base def bag_of_words(s, sw=[]): clean = s.lower() symbols = '!?()[]\',;.:\"-_' for symbol in symbols: clean = clean.replace(symbol, '') tokens = clean.split(' ') for stopword in sw: if stopword in tokens: tokens.remove(stopword) return tokens if __name__ == '__main__': sentence = 'Ciao mi piace il gelato (al cioccolato)!' bow = bag_of_words(sentence, sw=['il', 'la', 'mi', 'al']) print(bow)
3.296875
3
charts/backend.py
nosoyyo/nembee
0
12785524
import uvicorn from uvicorn.reloaders.statreload import StatReload from uvicorn.main import run, get_logger from starlette.applications import Starlette from starlette.responses import JSONResponse from utils.tiempo import eightDigits from utils.pipeline import MongoDBPipeline from settings import BACKEND_PORT app = Starlette(debug='true') @app.route('/toplist') async def toplist(request): try: day = request.query_params['day'] except KeyError: day = eightDigits() try: chart = request.query_params['chart'] except KeyError: chart = 'rise' m = MongoDBPipeline() query = f'{day}.{chart}' result = m.ls(query) for item in result: item.pop('_id') return JSONResponse(result) if __name__ == '__main__': reloader = StatReload(get_logger('debug')) reloader.run(run, { 'app': app, 'host': '127.0.0.1', 'port': BACKEND_PORT, 'log_level': 'debug', 'debug': 'true' }) uvicorn.run(app=app, host='127.0.0.1', port=BACKEND_PORT, debug='true')
2.078125
2
Dataset/Leetcode/train/100/536.py
kkcookies99/UAST
0
12785525
<gh_stars>0 class Solution(object): def XXX(self, p, q): """ :type p: TreeNode :type q: TreeNode :rtype: bool """ def ergodic(p, q): if p is None: return q is None if q is None: return p is None return p.val == q.val and ergodic(p.left, q.left) and ergodic(p.right, q.right) return ergodic(p, q)
3.03125
3
guppe/atividades/secao_7/ex019.py
WesleyLucas97/cursos_python
0
12785526
<reponame>WesleyLucas97/cursos_python<filename>guppe/atividades/secao_7/ex019.py """ Faça um vetor de tamanho 50 preenchido com o seguinte valor: (i + 5 *i)%(i + 1), sendo i a posição do elemento no vetor. Em seguida imprima o vetor na tela. """ lista = [] for i in range(50): n1 = (i + 5 * i) % (i + 1) lista.append(n1) print(lista)
3.640625
4
networks/load_ckpt_unstrict.py
bigvideoresearch/SCC
5
12785527
<filename>networks/load_ckpt_unstrict.py import torch from runner_master import runner def load_ckpt_unstrict(network, ckpt, network_name='main'): state_dict = torch.load(ckpt, map_location='cuda:{}'.format(torch.cuda.current_device())) if 'network' in state_dict: state_dict = state_dict['network'] if network_name in state_dict: state_dict = state_dict[network_name] network.load_state_dict(state_dict, strict=False) runner.patch_network_init('load_ckpt_unstrict', load_ckpt_unstrict)
2.1875
2
data/data_preprocess.py
adnansherif1/detectormer
9
12785528
<reponame>adnansherif1/detectormer input = "./reentrancy/SmartContract_fragment.txt" out = "out.txt" f = open(input, "r") f_w = open(out, "a") lines = f.readlines() count = 1 for i in range(len(lines)): if lines[i].strip() == "---------------------------------": count += 1 result = lines[i + 1].strip().split(" ") result1 = count result2 = result[1] f_w.write("---------------------------------" + "\n") f_w.write(str(result1) + " " + str(result2) + "\n") elif ".sol" not in lines[i]: f_w.write(lines[i])
2.78125
3
tasks/task0022.py
jtprogru/interview-task
3
12785529
""" A phrase is a palindrome if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers. Given a string s, return true if it is a palindrome, or false otherwise. Example 1: Input: s = "A man, a plan, a canal: Panama" Output: true Explanation: "amanaplanacanalpanama" is a palindrome. Example 2: Input: s = "race a car" Output: false Explanation: "raceacar" is not a palindrome. Example 3: Input: s = " " Output: true Explanation: s is an empty string "" after removing non-alphanumeric characters. Since an empty string reads the same forward and backward, it is a palindrome. Constraints: - 1 <= s.length <= 2 * 105 - s consists only of printable ASCII characters. """ def solution(s: str) -> bool: x = "" diff = ord("a") - ord("A") for i in s: if ord("a") <= ord(i) <= ord("z") or ord("0") <= ord(i) <= ord("9"): x += i elif ord("A") <= ord(i) <= ord("Z"): i = chr(diff + ord(i)) x += i return x == x[::-1]
4.25
4
access_integration/access_integration/doctype/access_integration/test_access_integration.py
mhbu50/access_integration
0
12785530
# -*- coding: utf-8 -*- # Copyright (c) 2015, Accurate Systems and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest # test_records = frappe.get_test_records('Access integration') class TestAccessintegration(unittest.TestCase): pass
1.476563
1
python/day06.py
devries/advent_of_code_2021
1
12785531
#!/usr/bin/env python def main(): with open('../inputs/day06.txt', 'r') as f: content = f.read() numbers = [int(v) for v in content.split(',')] population = [0]*9 for n in numbers: population[n]+=1 # Part A pop_a = population[:] evolve(pop_a, 80) print("Part A: ", sum(pop_a)) # Part B pop_b = population[:] evolve(pop_b, 256) print("Part B: ", sum(pop_b)) def evolve(population, ngen): for g in range(ngen): pop0 = population[0] for i, v in enumerate(population): if i==0: continue population[i-1]=v population[8]=pop0 population[6]+=pop0 if __name__=="__main__": main()
3.3125
3
sibyl/util/DownloadProgressBar.py
fahminlb33/sibyl_eeg
1
12785532
<gh_stars>1-10 from tqdm import tqdm class DownloadProgressBar(tqdm): def update_to(self, b=1, bsize=1, tsize=None): if tsize is not None: self.total = tsize self.update(b * bsize - self.n)
2.75
3
mylights.py
brettonw/mywizlight
0
12785533
<reponame>brettonw/mywizlight import sys; from pywizlight.bulb import PilotBuilder, PilotParser, wizlight lightIpsByName = { "office": "192.168.1.217", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230", "nook": "192.168.1.230" }; lightNamesByIp = {v: k for k, v in lightIpsByName.items()}; def makeLight (name): ip = lightIpsByName[name]; print ("Light: {} ({})".format (name, ip)); return wizlight (ip); def getLight (): # default to the office light (for testing) if (len (sys.argv) > 1): # read the second argument light = sys.argv[1]; if light in lightIpsByName: return makeLight (light); if light in lightNamesByIp: return makeLight (lightNamesByIp[light]); print ("Unknown light ({})".format (light)); else: print ("ERROR: No light specified"); return None;
2.859375
3
api/curve/config.py
newstartcheng/Curve
1
12785534
<filename>api/curve/config.py<gh_stars>1-10 # -*- coding: utf-8 -*- """ Curve ~~~~ configure file :copyright: (c) 2017 by Baidu, Inc. :license: Apache, see LICENSE for more details. """ import os SQLITE_PATH = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'curve.db') STATIC_FOLDER = 'web' STATIC_PATH = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'web') INDEX_PAGE = '/' + STATIC_FOLDER + '/index.html' DEFAULT_HOST = '0.0.0.0' DEFAULT_PORT = 8080
1.664063
2
pulumi/datadog_gcp_integration/module.py
saiko-tech/pulumi-datadog-gcp-integration
0
12785535
import json, base64 import pulumi from pulumi.output import Output from pulumi.resource import ComponentResource, ResourceOptions import pulumi_gcp as gcp import pulumi_datadog as datadog import pulumi_random class GCPLogSinkToDataDog(ComponentResource): def __init__( self, name: str, opts: ResourceOptions = None): super().__init__('datadog_gcp_integration:index:GCPLogSinkToDataDog', name, None, opts) topic = gcp.pubsub.Topic( f'{name}-topic', name='export-logs-to-datadog', opts=ResourceOptions(parent=self)) dd_api_key = pulumi.Config(name='datadog').require('apiKey') push_to_dd = gcp.pubsub.Subscription( f'{name}-subscription', name='export-logs-to-datadog.push-to-dd', topic=topic.id, push_config=gcp.pubsub.SubscriptionPushConfigArgs( push_endpoint=f'https://gcp-intake.logs.datadoghq.eu/api/v2/logs?dd-api-key={dd_api_key}&dd-protocol=gcp'), expiration_policy=gcp.pubsub.SubscriptionExpirationPolicyArgs( ttl=''), retry_policy=gcp.pubsub.SubscriptionRetryPolicyArgs( minimum_backoff='10s', maximum_backoff='600s'), opts=ResourceOptions(parent=self)) project = gcp.organizations.get_project() pubsub_sa = f'serviceAccount:service-{project.number}@gcp-sa-pubsub.iam.gserviceaccount.com' gcp.pubsub.SubscriptionIAMBinding( f'{name}-subscriber-ack', subscription=push_to_dd.id, members=[pubsub_sa], role='roles/pubsub.subscriber', opts=ResourceOptions(parent=self)) log_sink = gcp.logging.ProjectSink( f'{name}-log-sink', name='export-logs-to-datadog', destination=Output.concat('pubsub.googleapis.com/', topic.id), unique_writer_identity=True, opts=ResourceOptions(parent=self, depends_on=[push_to_dd])) gcp.pubsub.TopicIAMMember( f'{name}-log-sink-pubsub-publisher', topic=topic.id, role='roles/pubsub.publisher', member=log_sink.writer_identity, opts=ResourceOptions(parent=self)) class DataDogGCPIntegration(ComponentResource): def __init__( self, name: str, enable_log_sink: bool = False, opts: ResourceOptions = None): super().__init__('datadog_gcp_integration:index:DataDogGCPIntegration', name, None, opts) suffix = pulumi_random.RandomString( f'{name}-gcp-sa-suffix', length=3, min_lower=3, opts=ResourceOptions(parent=self)) gcp_sa = gcp.serviceaccount.Account( f'{name}-gcp-sa', account_id=Output.concat('datadog-integration-', suffix.result), description='DataDog GCP Integration SA', opts=ResourceOptions(parent=self)) roles = [ 'roles/cloudasset.viewer', 'roles/compute.viewer', 'roles/container.viewer', 'roles/monitoring.viewer', ] iam_members = [] for role in roles: member = gcp.projects.IAMMember( f'{name}-gcp-sa-role-{role}', role=role, member=gcp_sa.email.apply(lambda email: f'serviceAccount:{email}'), opts=ResourceOptions(parent=self)) iam_members.append(member) gcp_sa_key = gcp.serviceaccount.Key( f'{name}-gcp-sa-key', service_account_id=gcp_sa.name, opts=ResourceOptions(parent=self)) gcp_sa_pk = gcp_sa_key.private_key.apply(lambda k: json.loads(base64.b64decode(k))) gcp_integration = datadog.gcp.Integration( f'{name}-datadog-gcp-integration', client_email=gcp_sa_pk.apply(lambda k: k['client_email']), client_id=gcp_sa_pk.apply(lambda k: k['client_id']), private_key=gcp_sa_pk.apply(lambda k: k['private_key']), private_key_id=gcp_sa_pk.apply(lambda k: k['private_key_id']), project_id=gcp_sa_pk.apply(lambda k: k['project_id']), opts=ResourceOptions(parent=self, depends_on=iam_members)) if enable_log_sink: GCPLogSinkToDataDog( f'{name}-export-gcp-logs-to-datadog', opts=ResourceOptions(parent=self, depends_on=[gcp_integration]))
1.828125
2
team.py
maxwilliams94/ultimatePy
1
12785536
<filename>team.py """ Hold references to fixtures, win/loss record, name, group affiliation of a Team """ class Team(object): def __init__(self, team_id, name): self.id = team_id self.name = name
2.8125
3
tests/test_context.py
agronholm/asphalt
226
12785537
<reponame>agronholm/asphalt<filename>tests/test_context.py<gh_stars>100-1000 from __future__ import annotations import asyncio import sys from collections.abc import Callable from concurrent.futures import Executor, ThreadPoolExecutor from inspect import isawaitable from itertools import count from threading import Thread, current_thread from typing import AsyncGenerator, AsyncIterator, Dict, NoReturn, Optional, Tuple, Union from unittest.mock import patch import pytest import pytest_asyncio from async_generator import yield_ from asphalt.core import ( Context, Dependency, NoCurrentContext, ResourceConflict, ResourceNotFound, TeardownError, callable_name, context_teardown, current_context, executor, get_resource, inject, resource, ) from asphalt.core.context import ResourceContainer, require_resource @pytest.fixture def context() -> Context: return Context() @pytest_asyncio.fixture async def special_executor(context: Context) -> AsyncIterator[ThreadPoolExecutor]: executor = ThreadPoolExecutor(1) context.add_resource(executor, "special", types=[Executor]) yield executor executor.shutdown() class TestResourceContainer: @pytest.mark.parametrize("thread", [False, True], ids=["eventloop", "worker"]) @pytest.mark.parametrize( "context_attr", [None, "attrname"], ids=["no_attr", "has_attr"] ) @pytest.mark.asyncio async def test_generate_value(self, thread: bool, context_attr: str | None) -> None: container = ResourceContainer( lambda ctx: "foo", (str,), "default", context_attr, True ) context = Context() if thread: value = await context.call_in_executor(container.generate_value, context) else: value = container.generate_value(context) assert value == "foo" assert context.get_resource(str) == "foo" if context_attr: assert getattr(context, context_attr) == "foo" def test_repr(self) -> None: container = ResourceContainer("foo", (str,), "default", "attrname", False) assert repr(container) == ( "ResourceContainer(value='foo', types=[str], name='default', " "context_attr='attrname')" ) def test_repr_factory(self) -> None: container = ResourceContainer( lambda ctx: "foo", (str,), "default", "attrname", True ) assert repr(container) == ( "ResourceContainer(factory=test_context.TestResourceContainer" ".test_repr_factory.<locals>.<lambda>, types=[str], name='default', " "context_attr='attrname')" ) class TestContext: @pytest.mark.asyncio async def test_parent(self) -> None: """Test that the parent property points to the parent context instance, if any.""" async with Context() as parent: async with Context() as child: assert parent.parent is None assert child.parent is parent @pytest.mark.parametrize( "exception", [None, Exception("foo")], ids=["noexception", "exception"] ) @pytest.mark.asyncio async def test_close(self, context: Context, exception: Exception | None) -> None: """ Test that teardown callbacks are called in reverse order when a context is closed. """ def callback(exception=None): called_functions.append((callback, exception)) async def async_callback(exception=None): called_functions.append((async_callback, exception)) called_functions: list[tuple[Callable, BaseException | None]] = [] context.add_teardown_callback(callback, pass_exception=True) context.add_teardown_callback(async_callback, pass_exception=True) await context.close(exception) assert called_functions == [(async_callback, exception), (callback, exception)] @pytest.mark.asyncio async def test_close_while_running_teardown(self, context: Context) -> None: """ Test that trying to close the context from a teardown callback raises a RuntimeError. """ async def try_close_context() -> None: with pytest.raises(RuntimeError, match="this context is already closing"): await context.close() context.add_teardown_callback(try_close_context) await context.close() @pytest.mark.asyncio async def test_teardown_callback_exception(self, context: Context) -> None: """ Test that all callbacks are called even when some teardown callbacks raise exceptions, and that a TeardownError is raised in such a case, containing the exception objects. """ def callback1() -> None: items.append(1) def callback2() -> NoReturn: raise Exception("foo") context.add_teardown_callback(callback1) context.add_teardown_callback(callback2) context.add_teardown_callback(callback1) context.add_teardown_callback(callback2) items: list[int] = [] with pytest.raises(TeardownError) as exc: await context.close() assert "foo" in str(exc.value) assert items == [1, 1] assert len(exc.value.exceptions) == 2 @pytest.mark.asyncio async def test_close_closed(self, context: Context) -> None: """Test that closing an already closed context raises a RuntimeError.""" assert not context.closed await context.close() assert context.closed with pytest.raises(RuntimeError) as exc: await context.close() exc.match("this context has already been closed") def test_contextmanager_exception(self, context, event_loop): close_future = event_loop.create_future() close_future.set_result(None) exception = Exception("foo") with patch.object(context, "close", return_value=close_future): with pytest.raises(Exception) as exc, pytest.deprecated_call(): with context: raise exception # close.assert_called_once_with(exception) assert exc.value is exception @pytest.mark.asyncio async def test_async_contextmanager_exception(self, event_loop, context): """Test that "async with context:" calls close() with the exception raised in the block.""" close_future = event_loop.create_future() close_future.set_result(None) exception = Exception("foo") with patch.object(context, "close", return_value=close_future) as close: with pytest.raises(Exception) as exc: async with context: raise exception close.assert_called_once_with(exception) assert exc.value is exception @pytest.mark.parametrize("types", [int, (int,), ()], ids=["type", "tuple", "empty"]) @pytest.mark.asyncio async def test_add_resource(self, context, event_loop, types): """Test that a resource is properly added in the context and listeners are notified.""" event_loop.call_soon(context.add_resource, 6, "foo", None, types) event = await context.resource_added.wait_event() assert event.resource_types == (int,) assert event.resource_name == "foo" assert not event.is_factory assert context.get_resource(int, "foo") == 6 @pytest.mark.asyncio async def test_add_resource_name_conflict(self, context: Context) -> None: """Test that adding a resource won't replace any existing resources.""" context.add_resource(5, "foo") with pytest.raises(ResourceConflict) as exc: context.add_resource(4, "foo") exc.match( "this context already contains a resource of type int using the name 'foo'" ) @pytest.mark.asyncio async def test_add_resource_none_value(self, context: Context) -> None: """Test that None is not accepted as a resource value.""" exc = pytest.raises(ValueError, context.add_resource, None) exc.match('"value" must not be None') @pytest.mark.asyncio async def test_add_resource_context_attr(self, context: Context) -> None: """Test that when resources are added, they are also set as properties of the context.""" with pytest.deprecated_call(): context.add_resource(1, context_attr="foo") assert context.foo == 1 def test_add_resource_context_attr_conflict(self, context: Context) -> None: """ Test that the context won't allow adding a resource with an attribute name that conflicts with an existing attribute. """ context.a = 2 with pytest.raises(ResourceConflict) as exc, pytest.deprecated_call(): context.add_resource(2, context_attr="a") exc.match("this context already has an attribute 'a'") assert context.get_resource(int) is None @pytest.mark.asyncio async def test_add_resource_type_conflict(self, context: Context) -> None: context.add_resource(5) with pytest.raises(ResourceConflict) as exc: context.add_resource(6) exc.match( "this context already contains a resource of type int using the name 'default'" ) @pytest.mark.parametrize( "name", ["a.b", "a:b", "a b"], ids=["dot", "colon", "space"] ) @pytest.mark.asyncio async def test_add_resource_bad_name(self, context, name): with pytest.raises(ValueError) as exc: context.add_resource(1, name) exc.match( '"name" must be a nonempty string consisting only of alphanumeric characters ' "and underscores" ) @pytest.mark.asyncio async def test_add_resource_parametrized_generic_type( self, context: Context ) -> None: resource = {"a": 1} resource_type = Dict[str, int] context.add_resource(resource, types=[resource_type]) assert context.require_resource(resource_type) is resource assert context.get_resource(resource_type) is resource assert await context.request_resource(resource_type) is resource assert context.get_resource(Dict) is None assert context.get_resource(dict) is None @pytest.mark.asyncio async def test_add_resource_factory(self, context: Context) -> None: """Test that resources factory callbacks are only called once for each context.""" def factory(ctx): assert ctx is context return next(counter) counter = count(1) with pytest.deprecated_call(): context.add_resource_factory(factory, int, context_attr="foo") assert context.foo == 1 assert context.foo == 1 assert context.__dict__["foo"] == 1 @pytest.mark.asyncio async def test_add_resource_factory_parametrized_generic_type( self, context: Context ) -> None: resource = {"a": 1} resource_type = Dict[str, int] context.add_resource_factory(lambda ctx: resource, types=[resource_type]) assert context.require_resource(resource_type) is resource assert context.get_resource(resource_type) is resource assert await context.request_resource(resource_type) is resource assert context.get_resource(Dict) is None assert context.get_resource(dict) is None @pytest.mark.parametrize( "name", ["a.b", "a:b", "a b"], ids=["dot", "colon", "space"] ) @pytest.mark.asyncio async def test_add_resource_factory_bad_name(self, context, name): with pytest.raises(ValueError) as exc: context.add_resource_factory(lambda ctx: 1, int, name) exc.match( '"name" must be a nonempty string consisting only of alphanumeric characters ' "and underscores" ) @pytest.mark.asyncio async def test_add_resource_factory_coroutine_callback( self, context: Context ) -> None: async def factory(ctx): return 1 with pytest.raises(TypeError) as exc: context.add_resource_factory(factory, int) exc.match('"factory_callback" must not be a coroutine function') @pytest.mark.asyncio async def test_add_resource_factory_empty_types(self, context: Context) -> None: with pytest.raises(ValueError) as exc: context.add_resource_factory(lambda ctx: 1, ()) exc.match("no resource types were specified") @pytest.mark.asyncio async def test_add_resource_factory_context_attr_conflict( self, context: Context ) -> None: with pytest.deprecated_call(): context.add_resource_factory(lambda ctx: None, str, context_attr="foo") with pytest.raises(ResourceConflict) as exc, pytest.deprecated_call(): await context.add_resource_factory( lambda ctx: None, str, context_attr="foo" ) exc.match( "this context already contains a resource factory for the context attribute 'foo'" ) @pytest.mark.asyncio async def test_add_resource_factory_type_conflict(self, context: Context) -> None: context.add_resource_factory(lambda ctx: None, (str, int)) with pytest.raises(ResourceConflict) as exc: await context.add_resource_factory(lambda ctx: None, int) exc.match("this context already contains a resource factory for the type int") @pytest.mark.asyncio async def test_add_resource_factory_no_inherit(self, context: Context) -> None: """ Test that a subcontext gets its own version of a factory-generated resource even if a parent context has one already. """ with pytest.deprecated_call(): context.add_resource_factory(id, int, context_attr="foo") async with context, Context() as subcontext: assert context.foo == id(context) assert subcontext.foo == id(subcontext) @pytest.mark.asyncio async def test_add_resource_return_type_single(self, context: Context) -> None: def factory(ctx: Context) -> str: return "foo" async with context: context.add_resource_factory(factory) assert context.require_resource(str) == "foo" @pytest.mark.asyncio async def test_add_resource_return_type_union(self, context: Context) -> None: def factory(ctx: Context) -> Union[int, float]: return 5 async with context: context.add_resource_factory(factory) assert context.require_resource(int) == 5 assert context.require_resource(float) == 5 @pytest.mark.skipif(sys.version_info < (3, 10), reason="Requires Python 3.10+") @pytest.mark.asyncio async def test_add_resource_return_type_uniontype(self, context: Context) -> None: def factory(ctx: Context) -> int | float: return 5 async with context: context.add_resource_factory(factory) assert context.require_resource(int) == 5 assert context.require_resource(float) == 5 @pytest.mark.asyncio async def test_add_resource_return_type_optional(self, context: Context) -> None: def factory(ctx: Context) -> Optional[str]: return "foo" async with context: context.add_resource_factory(factory) assert context.require_resource(str) == "foo" @pytest.mark.asyncio async def test_getattr_attribute_error(self, context: Context) -> None: async with context, Context() as child_context: pytest.raises(AttributeError, getattr, child_context, "foo").match( "no such context variable: foo" ) @pytest.mark.asyncio async def test_getattr_parent(self, context: Context) -> None: """ Test that accessing a nonexistent attribute on a context retrieves the value from parent. """ async with context, Context() as child_context: context.a = 2 assert child_context.a == 2 @pytest.mark.asyncio async def test_get_resources(self, context: Context) -> None: context.add_resource(9, "foo") context.add_resource_factory(lambda ctx: len(ctx.context_chain), int, "bar") context.require_resource(int, "bar") async with context, Context() as subctx: subctx.add_resource(4, "foo") assert subctx.get_resources(int) == {1, 4} @pytest.mark.asyncio async def test_require_resource(self, context: Context) -> None: context.add_resource(1) assert context.require_resource(int) == 1 def test_require_resource_not_found(self, context: Context) -> None: """Test that ResourceNotFound is raised when a required resource is not found.""" exc = pytest.raises(ResourceNotFound, context.require_resource, int, "foo") exc.match("no matching resource was found for type=int name='foo'") assert exc.value.type == int assert exc.value.name == "foo" @pytest.mark.asyncio async def test_request_resource_parent_add(self, context, event_loop): """ Test that adding a resource to the parent context will satisfy a resource request in a child context. """ async with context, Context() as child_context: task = event_loop.create_task(child_context.request_resource(int)) event_loop.call_soon(context.add_resource, 6) resource = await task assert resource == 6 @pytest.mark.asyncio async def test_request_resource_factory_context_attr( self, context: Context ) -> None: """Test that requesting a factory-generated resource also sets the context variable.""" with pytest.deprecated_call(): context.add_resource_factory(lambda ctx: 6, int, context_attr="foo") await context.request_resource(int) assert context.__dict__["foo"] == 6 @pytest.mark.asyncio async def test_call_async_plain(self, context: Context) -> None: def runs_in_event_loop(worker_thread: Thread, x: int, y: int) -> int: assert current_thread() is not worker_thread return x + y def runs_in_worker_thread() -> int: worker_thread = current_thread() return context.call_async(runs_in_event_loop, worker_thread, 1, y=2) assert await context.call_in_executor(runs_in_worker_thread) == 3 @pytest.mark.asyncio async def test_call_async_coroutine(self, context: Context) -> None: async def runs_in_event_loop(worker_thread, x, y): assert current_thread() is not worker_thread await asyncio.sleep(0.1) return x + y def runs_in_worker_thread() -> int: worker_thread = current_thread() return context.call_async(runs_in_event_loop, worker_thread, 1, y=2) assert await context.call_in_executor(runs_in_worker_thread) == 3 @pytest.mark.asyncio async def test_call_async_exception(self, context: Context) -> None: def runs_in_event_loop() -> NoReturn: raise ValueError("foo") with pytest.raises(ValueError) as exc: await context.call_in_executor(context.call_async, runs_in_event_loop) assert exc.match("foo") @pytest.mark.asyncio async def test_call_in_executor(self, context: Context) -> None: """Test that call_in_executor actually runs the target in a worker thread.""" worker_thread = await context.call_in_executor(current_thread) assert worker_thread is not current_thread() @pytest.mark.parametrize( "use_resource_name", [True, False], ids=["direct", "resource"] ) @pytest.mark.asyncio async def test_call_in_executor_explicit(self, context, use_resource_name): executor = ThreadPoolExecutor(1) context.add_resource(executor, types=[Executor]) context.add_teardown_callback(executor.shutdown) executor_arg = "default" if use_resource_name else executor worker_thread = await context.call_in_executor( current_thread, executor=executor_arg ) assert worker_thread is not current_thread() @pytest.mark.asyncio async def test_call_in_executor_context_preserved(self, context: Context) -> None: """ Test that call_in_executor runs the callable in a copy of the current (PEP 567) context. """ async with Context() as ctx: assert await context.call_in_executor(current_context) is ctx @pytest.mark.asyncio async def test_threadpool(self, context: Context) -> None: event_loop_thread = current_thread() async with context.threadpool(): assert current_thread() is not event_loop_thread @pytest.mark.asyncio async def test_threadpool_named_executor( self, context: Context, special_executor: Executor ) -> None: special_executor_thread = special_executor.submit(current_thread).result() async with context.threadpool("special"): assert current_thread() is special_executor_thread class TestExecutor: @pytest.mark.asyncio async def test_no_arguments(self, context: Context) -> None: @executor def runs_in_default_worker() -> None: assert current_thread() is not event_loop_thread current_context() event_loop_thread = current_thread() async with context: await runs_in_default_worker() @pytest.mark.asyncio async def test_named_executor( self, context: Context, special_executor: Executor ) -> None: @executor("special") def runs_in_default_worker(ctx: Context) -> None: assert current_thread() is special_executor_thread assert current_context() is ctx special_executor_thread = special_executor.submit(current_thread).result() async with context: await runs_in_default_worker(context) @pytest.mark.asyncio async def test_executor_missing_context(self, context: Context): @executor("special") def runs_in_default_worker() -> None: current_context() with pytest.raises(RuntimeError) as exc: async with context: await runs_in_default_worker() exc.match( r"the first positional argument to %s\(\) has to be a Context instance" % callable_name(runs_in_default_worker) ) class TestContextTeardown: @pytest.mark.parametrize( "expected_exc", [None, Exception("foo")], ids=["no_exception", "exception"] ) @pytest.mark.asyncio async def test_function(self, expected_exc: Exception | None) -> None: phase = received_exception = None @context_teardown async def start(ctx: Context) -> AsyncIterator[None]: nonlocal phase, received_exception phase = "started" exc = yield phase = "finished" received_exception = exc context = Context() await start(context) assert phase == "started" await context.close(expected_exc) assert phase == "finished" assert received_exception == expected_exc @pytest.mark.parametrize( "expected_exc", [None, Exception("foo")], ids=["no_exception", "exception"] ) @pytest.mark.asyncio async def test_method(self, expected_exc: Exception | None) -> None: phase = received_exception = None class SomeComponent: @context_teardown async def start(self, ctx: Context) -> AsyncIterator[None]: nonlocal phase, received_exception phase = "started" exc = yield phase = "finished" received_exception = exc context = Context() await SomeComponent().start(context) assert phase == "started" await context.close(expected_exc) assert phase == "finished" assert received_exception == expected_exc def test_plain_function(self) -> None: def start(ctx) -> None: pass pytest.raises(TypeError, context_teardown, start).match( " must be an async generator function" ) @pytest.mark.asyncio async def test_bad_args(self) -> None: with pytest.deprecated_call(): @context_teardown async def start(ctx: Context) -> None: pass with pytest.raises(RuntimeError) as exc: await start(None) exc.match( r"the first positional argument to %s\(\) has to be a Context instance" % callable_name(start) ) @pytest.mark.asyncio async def test_exception(self) -> None: @context_teardown async def start(ctx: Context) -> AsyncIterator[None]: raise Exception("dummy error") yield context = Context() with pytest.raises(Exception) as exc_info: await start(context) exc_info.match("dummy error") @pytest.mark.asyncio async def test_missing_yield(self) -> None: with pytest.deprecated_call(): @context_teardown async def start(ctx: Context) -> None: pass await start(Context()) @pytest.mark.asyncio async def test_py35_generator(self) -> None: with pytest.deprecated_call(): @context_teardown async def start(ctx: Context) -> None: await yield_() await start(Context()) @pytest.mark.parametrize( "resource_func", [ pytest.param(Context.get_resource, id="get_resource"), pytest.param(Context.require_resource, id="require_resource"), pytest.param(Context.request_resource, id="request_resource"), ], ) @pytest.mark.asyncio async def test_get_resource_at_teardown(self, resource_func) -> None: resource: str async def teardown_callback() -> None: nonlocal resource resource = resource_func(ctx, str) if isawaitable(resource): resource = await resource async with Context() as ctx: ctx.add_resource("blah") ctx.add_teardown_callback(teardown_callback) assert resource == "blah" @pytest.mark.parametrize( "resource_func", [ pytest.param(Context.get_resource, id="get_resource"), pytest.param(Context.require_resource, id="require_resource"), pytest.param(Context.request_resource, id="request_resource"), ], ) @pytest.mark.asyncio async def test_generate_resource_at_teardown(self, resource_func) -> None: resource: str async def teardown_callback() -> None: nonlocal resource resource = resource_func(ctx, str) if isawaitable(resource): resource = await resource async with Context() as ctx: ctx.add_resource_factory(lambda context: "blah", [str]) ctx.add_teardown_callback(teardown_callback) assert resource == "blah" class TestContextFinisher: @pytest.mark.parametrize( "expected_exc", [None, Exception("foo")], ids=["no_exception", "exception"] ) @pytest.mark.asyncio async def test_context_teardown(self, expected_exc: Exception | None) -> None: phase = received_exception = None @context_teardown async def start(ctx: Context) -> AsyncIterator[None]: nonlocal phase, received_exception phase = "started" exc = yield phase = "finished" received_exception = exc context = Context() await start(context) assert phase == "started" await context.close(expected_exc) assert phase == "finished" assert received_exception == expected_exc @pytest.mark.asyncio async def test_current_context() -> None: pytest.raises(NoCurrentContext, current_context) async with Context() as parent_ctx: assert current_context() is parent_ctx async with Context() as child_ctx: assert current_context() is child_ctx assert current_context() is parent_ctx pytest.raises(NoCurrentContext, current_context) @pytest.mark.asyncio async def test_get_resource() -> None: async with Context() as ctx: ctx.add_resource("foo") assert get_resource(str) == "foo" assert get_resource(int) is None @pytest.mark.asyncio async def test_require_resource() -> None: async with Context() as ctx: ctx.add_resource("foo") assert require_resource(str) == "foo" pytest.raises(ResourceNotFound, require_resource, int) def test_explicit_parent_deprecation() -> None: parent_ctx = Context() pytest.warns(DeprecationWarning, Context, parent_ctx) @pytest.mark.asyncio async def test_context_stack_corruption(event_loop): async def generator() -> AsyncGenerator: async with Context(): yield gen = generator() await event_loop.create_task(gen.asend(None)) async with Context() as ctx: with pytest.warns( UserWarning, match="Potential context stack corruption detected" ): try: await event_loop.create_task(gen.asend(None)) except StopAsyncIteration: pass assert current_context() is ctx pytest.raises(NoCurrentContext, current_context) class TestDependencyInjection: @pytest.mark.asyncio async def test_static_resources(self) -> None: @inject async def injected( foo: int, bar: str = resource(), *, baz: str = resource("alt") ) -> Tuple[int, str, str]: return foo, bar, baz async with Context() as ctx: ctx.add_resource("bar_test") ctx.add_resource("baz_test", "alt") foo, bar, baz = await injected(2) assert foo == 2 assert bar == "bar_test" assert baz == "baz_test" @pytest.mark.asyncio async def test_sync_injection(self) -> None: @inject def injected( foo: int, bar: str = resource(), *, baz: str = resource("alt") ) -> Tuple[int, str, str]: return foo, bar, baz async with Context() as ctx: ctx.add_resource("bar_test") ctx.add_resource("baz_test", "alt") foo, bar, baz = injected(2) assert foo == 2 assert bar == "bar_test" assert baz == "baz_test" @pytest.mark.asyncio async def test_missing_annotation(self) -> None: async def injected( foo: int, bar: str = resource(), *, baz=resource("alt") ) -> None: pass pytest.raises(TypeError, inject, injected).match( f"Dependency for parameter 'baz' of function " f"'{__name__}.{self.__class__.__name__}.test_missing_annotation.<locals>" f".injected' is missing the type annotation" ) @pytest.mark.asyncio async def test_missing_resource(self) -> None: @inject async def injected(foo: int, bar: str = resource()) -> None: pass with pytest.raises(ResourceNotFound) as exc: async with Context(): await injected(2) exc.match("no matching resource was found for type=str name='default'") @pytest.mark.parametrize( "annotation", [ pytest.param(Optional[str], id="optional"), # pytest.param(Union[str, int, None], id="union"), pytest.param( "str | None", id="uniontype.10", marks=[ pytest.mark.skipif( sys.version_info < (3, 10), reason="Requires Python 3.10+" ) ], ), ], ) @pytest.mark.parametrize( "sync", [ pytest.param(True, id="sync"), pytest.param(False, id="async"), ], ) @pytest.mark.asyncio async def test_inject_optional_resource_async( self, annotation: type, sync: bool ) -> None: if sync: @inject def injected( res: annotation = resource(), # type: ignore[valid-type] ) -> annotation: # type: ignore[valid-type] return res else: @inject async def injected( res: annotation = resource(), # type: ignore[valid-type] ) -> annotation: # type: ignore[valid-type] return res async with Context() as ctx: retval = injected() if sync else (await injected()) assert retval is None ctx.add_resource("hello") retval = injected() if sync else (await injected()) assert retval == "hello" def test_resource_function_not_called(self) -> None: async def injected(foo: int, bar: str = resource) -> None: pass with pytest.raises(TypeError) as exc: inject(injected) exc.match( f"Default value for parameter 'bar' of function " f"{__name__}.{self.__class__.__name__}.test_resource_function_not_called" f".<locals>.injected was the 'resource' function – did you forget to add " f"the parentheses at the end\\?" ) def test_missing_inject(self) -> None: def injected(foo: int, bar: str = resource()) -> None: bar.lower() with pytest.raises(AttributeError) as exc: injected(1) exc.match( r"Attempted to access an attribute in a resource\(\) marker – did you " r"forget to add the @inject decorator\?" ) def test_no_resources_declared(self) -> None: def injected(foo: int) -> None: pass match = ( f"{__name__}.{self.__class__.__name__}.test_no_resources_declared.<locals>" f".injected does not have any injectable resources declared" ) with pytest.warns(UserWarning, match=match): func = inject(injected) assert func is injected def test_dependency_deprecated() -> None: with pytest.deprecated_call(): async def foo(res: str = Dependency()) -> None: pass
2.046875
2
python/scripts/dev/m3dev_tuning.py
ahoarau/m3meka
1
12785538
<filename>python/scripts/dev/m3dev_tuning.py #!/usr/bin/python import m3.toolbox as m3t import m3.actuator_ec as m3aec import m3.actuator as m3a import m3.ctrl_simple as m3cs import m3.pwr as m3power import argparse class M3Tuning: def __init__(self): self.comps = {'act': {'name': 'm3actuator_', 'type':m3a.M3Actuator, 'child_name':'act_ec_component' }, 'act_ec': {'name': 'm3actuator_ec_', 'type':m3aec.M3ActuatorEc, 'child_name':None}, 'ctrl': {'name': 'm3ctrl_simple_', 'type':m3cs.M3CtrlSimple, 'child_name':'act_component'}, 'pwr': {'name': 'm3pwr_', 'type': m3power.M3Pwr}} parser = argparse.ArgumentParser() parser.add_argument('-v','--verbose',action='store_true') self.args = parser.parse_args() # 'arm' : {'name': 'm3rw_arm_ra0', 'type': m3arm.M3RwArm, 'child_name':'chain_component'}, # 'chain': {'name': 'm3rw_joint_chain', 'type': m3jc.M3RwJointChain, 'child_name':'joint_components'}, # 'joint': {'name': 'm3rw_joint', 'type': m3j.M3RwJoint, 'child_name':'control_component'}, # 'pwr': {'name': 'm3rw_pwr_ra0', 'type': m3power.M3RwPwr}} def get_component(self,name): if name[-3:-1] == '_j': self.comp_name = name else: cnames = self.proxy.get_available_components(name) if len(cnames)==0: print 'No ' + name + ' components found. Exiting...' exit() self.comp_name = m3t.user_select_components_interactive(cnames,single=True)[0] comp_type = [k for k, v in self.comps.iteritems() if self.comp_name.startswith(v['name'])][0] self.get_children_components(self.comp_name, comp_type) def get_all_components(self,name): self.cnames = self.proxy.get_available_components(name) if len(self.cnames)==0: print 'No ' + name + ' components found. Exiting...' raise Exception('no available components') for cname in self.cnames: self.child_names[cname] = self.get_all_children_components(cname) # component list would be 'act','act_ec','ctrl','pwr' def start_all_components(self,component_list,operational_list): for cname in self.cnames: if self.args.verbose: print "starting component " + cname # accomplishes this: self.act=m3s.M3Actuator(self.comp_name) self.act_list[cname] = m3s.M3Actuator(cname) setattr(self, k, v['type'](v['name']) ) self.comps[k]['comp'] = getattr(self,k) self.proxy.subscribe_status(cname) self.proxy.publish_command(cname) self.proxy.publish_param(cname) if operational_list is None or k in operational_list: self.proxy.make_operational(v['name']) if 'pwr' in component_list: print 'making power operational' self.proxy.make_operational(self.pwr.get_actuator_ec_name()) self.pwr.set_motor_power_on() self.proxy.step() def start_components(self,component_list,operational_list): for k in component_list: if self.args.verbose: print "starting component " + self.comps[k]['name'] v = self.comps[k] # accomplishes this: self.act=m3s.M3Actuator(self.comp_name) setattr(self, k, v['type'](v['name']) ) self.comps[k]['comp'] = getattr(self,k) self.proxy.subscribe_status(getattr(self,k)) self.proxy.publish_command(getattr(self,k)) self.proxy.publish_param(getattr(self,k)) if operational_list is None or k in operational_list: self.proxy.make_operational(v['name']) if 'pwr' in component_list: print 'making power operational' #self.proxy.make_operational(self.pwr.get_actuator_ec_name()) self.pwr.set_motor_power_on() self.proxy.step() def get_children_components(self,comp_name,comp_type): if self.args.verbose: print "component name is " + str(comp_name) if self.args.verbose: print "component type is " + comp_type if self.args.verbose: print "component prefix is " + self.comps[comp_type]['name'] self.joint_suffix = comp_name.replace(self.comps[comp_type]['name'],"") # more generic than comp_name[-2:] if self.args.verbose: print "joint suffix is " + self.joint_suffix for k in ['act','act_ec','ctrl']: self.comps[k]['name'] = self.comps[k]['name'] + self.joint_suffix pwr_name = m3t.get_actuator_ec_pwr_component_name(self.comps['act_ec']['name']) self.comps['pwr']['name'] = pwr_name def get_all_children_components(): child_dict = {} self.param_dict=self.proxy.get_param_dict() if re.match(r"m3rw_actuator_ra0_j\d",comp_name): child_dict['act_ec'] = self.param_dict[comp_name]['act_ec_component']
2.3125
2
video_from_lv.py
pengzhou93/dancenet
499
12785539
import tensorflow as tf import numpy as np from model import decoder,vae import cv2 vae.load_weights("vae_cnn.h5") lv = np.load("lv.npy") fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter("output.avi", fourcc, 30.0, (208, 120)) for i in range(1000): data = lv[i].reshape(1,128) img = decoder.predict(data) img = np.array(img).reshape(120,208,1) img = img * 255 img = np.array(img).astype("uint8") img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) video.write(img) video.release()
2.546875
3
botUtils.py
fuji97/weedlebot
0
12785540
<filename>botUtils.py<gh_stars>0 import logging import models import os OWNER = int(os.environ.get("ID_OWNER", 0)) logger = logging.getLogger(__name__) def checkPermission(user, level, chat=None): if user.id == OWNER: return True if chat: role = next(member for member in chat.users if member.user == user).user_role if role.value <= level: return True else: return False else: if user.general_role.value <= level: return True else: return False class permissions(object): def __init__(self, session, user_id, permission, **kwargs): self.session = session self.user_id = user_id self.permission = permission self.chat_id = kwargs['chat_id'] if 'chat_id' in kwargs else None self.alternative = kwargs['alternative'] if 'alternative' in kwargs else None def __call__(self, f): def wrap(*args): have_permissions = False if 'chat_id' in kwargs: res = session.query(models.ChatMember).filter_by( user_id=self.user_id, chat_id=self.chat_id).first() if res is not None: if res.user_role.value <= self.permission.value: have_permissions = True else: res = session.query(models.User).filter_by(user_id=self.user_id).first() if res is not None: if res.general_role.value <= self.permission.value: have_permissions = True if have_permissions is True: f(*args) elif self.alternative is not None: self.alternative(*args)
2.375
2
tests/test_domains.py
Marak/hook.io-sdk-python
1
12785541
<gh_stars>1-10 #!/usr/bin/env python def test_domains(sdk): res = sdk.domains.all(anonymous=True) assert 'error' in res assert res['error'] is True assert res['type'] == 'unauthorized-role-access' assert res['role'] == 'domain::find' assert 'domain::find' in res['message'] res = sdk.domains.all() assert type(res) == list
2.203125
2
layers/bert_base.py
shuopwang/ABSA
1
12785542
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np USE_CUDA = torch.cuda.is_available() device = torch.device("cuda" if USE_CUDA else "cpu") class Bert_Base(nn.Module): def __init__(self, opt): super(Bert_Base, self).__init__() self.opt = opt #self.tokenizer = BertTokenizer.from_pretrained(model_path) def forward(self, inputs, use_hidden_state=False): text_raw_indices, text_raw_indices_mask, aspect_position_text = inputs[0], inputs[1], inputs[2] ctx = self.opt.bse.get_vector(text_raw_indices) ctx_len = torch.sum(text_raw_indices_mask != 0, dim=1) vectors = [] aspect_vectors = [] asp_len = [] for idx, vector in enumerate(ctx): # print(aspect_position_text[idx]) # print(vector.size()) #vector = torch.stack(vector) left, right = aspect_position_text[idx].split('_') vector = [np.asarray(each, dtype=float) for each in vector] aspect_vector = vector[int(left):int(right)] # if self.opt.device: # vector = vector.cpu() # aspect_vector = aspect_vector.cpu() pad_number = self.opt.max_seq_len - len(vector) + 2 #ctx_len.append(len(vector)) vector = np.asarray(vector, dtype=float) vector = vector[1:-1] vector = np.concatenate((vector, np.zeros((pad_number, self.opt.embed_dim)))) vector = vector.astype('float32') vector = torch.from_numpy(vector) #pad_tuple = (0, 0, left, 0) #vector = F.pad(vector, pad_tuple, 'constant', 0) pad_number = self.opt.max_seq_len - len(aspect_vector) asp_len.append(len(aspect_vector)) aspect_vector = np.asarray(aspect_vector) aspect_vector = np.concatenate((aspect_vector, np.zeros((pad_number, self.opt.embed_dim)))) aspect_vector = aspect_vector.astype('float32') aspect_vector = torch.from_numpy(aspect_vector) if self.opt.device: vector = vector.to(self.opt.device) aspect_vector = aspect_vector.to(self.opt.device) vectors.append(vector) aspect_vectors.append(aspect_vector) ctx = torch.stack(vectors) asp = torch.stack(aspect_vectors) asp_len = torch.from_numpy(np.asarray(asp_len)) #ctx_len = torch.from_numpy(np.asarray(ctx_len)) if self.opt.device: asp_len = asp_len.to(self.opt.device) ctx_len = ctx_len.to(self.opt.device) ctx.requires_grad = False asp.requires_grad = False # print(vectors.size()) # print(aspect_vectors.size()) return ctx, asp, ctx_len, asp_len
2.421875
2
src/aioros_tf2/action_client.py
mgrrx/aioros_tf2
0
12785543
from typing import Optional from aioros_action import ActionClient from aioros_action import create_client from aioros import NodeHandle from aioros_tf2.abc import BufferInterface from aioros_tf2.exceptions import ConnectivityException from aioros_tf2.exceptions import ExtrapolationException from aioros_tf2.exceptions import InvalidArgumentException from aioros_tf2.exceptions import LookupException from aioros_tf2.exceptions import TimeoutException from aioros_tf2.exceptions import TransformException from genpy import Duration from genpy import Time from geometry_msgs.msg import TransformStamped from tf2_msgs.msg import LookupTransformAction from tf2_msgs.msg import LookupTransformGoal from tf2_msgs.msg import TF2Error class BufferActionClient(BufferInterface): def __init__(self, ns: str) -> None: self._ns = ns self._action_client: Optional[ActionClient] = None async def init( self, node_handle: NodeHandle ) -> None: self._action_client = await create_client( node_handle, self._ns, LookupTransformAction) async def close(self) -> None: if self._action_client: await self._action_client.close() self._action_client = None async def wait_for_server(self) -> None: await self._action_client.wait_for_server() async def lookup_transform( self, target_frame: str, source_frame: str, time: Time, timeout: Optional[Duration] = None ) -> TransformStamped: return await self._call_action( LookupTransformGoal( target_frame=target_frame, source_frame=source_frame, source_time=time, timeout=timeout or Duration(), advanced=False)) async def lookup_transform_full( self, target_frame: str, target_time: Time, source_frame: str, source_time: Time, fixed_frame: str, timeout: Optional[Duration] = None ) -> TransformStamped: return await self._call_action( LookupTransformGoal( target_frame=target_frame, source_frame=source_frame, source_time=source_time, timeout=timeout or Duration(), target_time=target_time, fixed_frame=fixed_frame, advanced=True)) async def can_transform( self, target_frame: str, source_frame: str, time: Time, timeout: Optional[Duration] = None ) -> bool: try: self.lookup_transform( target_frame, source_frame, time, timeout) return True except TransformException: return False async def can_transform_full( self, target_frame: str, target_time: Time, source_frame: str, source_time: Time, fixed_frame: str, timeout: Optional[Duration] = None ) -> bool: try: self.lookup_transform_full( target_frame, target_time, source_frame, source_time, fixed_frame, timeout) return True except TransformException: return False async def _call_action( self, goal: LookupTransformGoal ) -> TransformStamped: goal_handle = self._action_client.send_goal(goal) result = await goal_handle.wait_for_result() if result.error.error != TF2Error.NO_ERROR: if result.error.error == TF2Error.LOOKUP_ERROR: raise LookupException(result.error.error_string) elif result.error.error == TF2Error.CONNECTIVITY_ERROR: raise ConnectivityException(result.error.error_string) elif result.error.error == TF2Error.EXTRAPOLATION_ERROR: raise ExtrapolationException(result.error.error_string) elif result.error.error == TF2Error.INVALID_ARGUMENT_ERROR: raise InvalidArgumentException(result.error.error_string) elif result.error.error == TF2Error.TIMEOUT_ERROR: raise TimeoutException(result.error.error_string) else: raise TransformException(result.error.error_string) return result.transform async def create_buffer_action_client( node_handle: NodeHandle, ns: str, ) -> BufferActionClient: buffer_action_client = BufferActionClient(ns) await buffer_action_client.init(node_handle) return buffer_action_client
2.125
2
api/src/opentrons/protocol_engine/commands/aspirate.py
Opentrons/protocol_framework
0
12785544
"""Aspirate command request, result, and implementation models.""" from __future__ import annotations from typing import TYPE_CHECKING, Optional, Type from typing_extensions import Literal from .pipetting_common import ( PipetteIdMixin, VolumeMixin, FlowRateMixin, WellLocationMixin, BaseLiquidHandlingResult, ) from .command import AbstractCommandImpl, BaseCommand, BaseCommandCreate if TYPE_CHECKING: from ..execution import PipettingHandler AspirateCommandType = Literal["aspirate"] class AspirateParams(PipetteIdMixin, VolumeMixin, FlowRateMixin, WellLocationMixin): """Parameters required to aspirate from a specific well.""" pass class AspirateResult(BaseLiquidHandlingResult): """Result data from execution of an Aspirate command.""" pass class AspirateImplementation(AbstractCommandImpl[AspirateParams, AspirateResult]): """Aspirate command implementation.""" def __init__(self, pipetting: PipettingHandler, **kwargs: object) -> None: self._pipetting = pipetting async def execute(self, params: AspirateParams) -> AspirateResult: """Move to and aspirate from the requested well.""" volume = await self._pipetting.aspirate( pipette_id=params.pipetteId, labware_id=params.labwareId, well_name=params.wellName, well_location=params.wellLocation, volume=params.volume, flow_rate=params.flowRate, ) return AspirateResult(volume=volume) class Aspirate(BaseCommand[AspirateParams, AspirateResult]): """Aspirate command model.""" commandType: AspirateCommandType = "aspirate" params: AspirateParams result: Optional[AspirateResult] _ImplementationCls: Type[AspirateImplementation] = AspirateImplementation class AspirateCreate(BaseCommandCreate[AspirateParams]): """Create aspirate command request model.""" commandType: AspirateCommandType = "aspirate" params: AspirateParams _CommandCls: Type[Aspirate] = Aspirate
2.703125
3
nonce_source.py
jake-billings/research-blockchain
5
12785545
import os import random sys_random = random.SystemRandom() from PIL import Image import images import cStringIO class NonceSource: def __init__(self, root): self.interesting_filenames = os.listdir(root) self.interesting_images = [] for name in self.interesting_filenames: self.interesting_images.append(Image.open(os.path.join(root,name))) def provide_image(self, limit=10, width=80, height=80): for i in range(0,limit): image = sys_random\ .choice(self.interesting_images)\ .resize((width,height))\ .convert('RGB') if images.is_interesting(image): return image def provide_nonce(self, limit=10, width=80, height=80): buffer = cStringIO.StringIO() img = self.provide_image(limit, width, height) img.save(buffer, format="JPEG") return buffer.getvalue() if __name__=="__main__": import encode print encode.encode(NonceSource("nonce_sources").provide_nonce())
2.75
3
CNN_DataPreparation/ConcatenateDataSet.py
amrkh97/Lipify-LipReading
0
12785546
import glob import os import time import cv2 import numpy as np from Pre_Processing import frameManipulator commands = ['bin', 'lay', 'place', 'set'] prepositions = ['at', 'by', 'in', 'with'] colors = ['blue', 'green', 'red', 'white'] adverbs = ['again', 'now', 'please', 'soon'] alphabet = [chr(x) for x in range(ord('a'), ord('z') + 1)] numbers = ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'] categories = ['Adverb', 'Alphabet', 'Commands', 'Colors', 'Numbers', 'Prepositions'] commonCNNDataPath = 'D:/CNN-Test-Images/' def getVideoFrames(videoPath): """Function to return a video's frames in a list""" vidcap = cv2.VideoCapture(videoPath) success, image = vidcap.read() allFrames = [] while success: allFrames.append(image) success, image = vidcap.read() return allFrames def stackFramesToImage(listOfFrames): """Function to concat frames into a single picture""" if len(listOfFrames) < frameManipulator.FPS: return None newList = [np.hstack(listOfFrames[:5]), np.hstack(listOfFrames[5:10]), np.hstack(listOfFrames[10:15]), np.hstack(listOfFrames[15:20]), np.hstack(listOfFrames[20:25]), np.hstack(listOfFrames[25:30])] return np.vstack(newList) def saveImage(image, imagePath): """Function to save an image in grayscale to a specific path""" if len(image.shape) == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) index = len(os.listdir(imagePath)) imagePath = imagePath + '/{}.jpg'.format(index) cv2.imwrite(imagePath, image) def createCNNDataDirectories(): """Function to create label directories for each category for training the CNN""" for command in commands: dirName = commonCNNDataPath + '/Commands/{}/'.format(command) if not os.path.exists(dirName): os.makedirs(dirName) for preposition in prepositions: dirName = commonCNNDataPath + '/Prepositions/{}/'.format(preposition) if not os.path.exists(dirName): os.makedirs(dirName) for color in colors: dirName = commonCNNDataPath + '/Colors/{}/'.format(color) if not os.path.exists(dirName): os.makedirs(dirName) for adverb in adverbs: dirName = commonCNNDataPath + '/Adverb/{}/'.format(adverb) if not os.path.exists(dirName): os.makedirs(dirName) for letter in alphabet: dirName = commonCNNDataPath + '/Alphabet/{}/'.format(letter) if not os.path.exists(dirName): os.makedirs(dirName) for number in numbers: dirName = commonCNNDataPath + '/Numbers/{}/'.format(number) if not os.path.exists(dirName): os.makedirs(dirName) def extractLipsHaarCascade(haarDetector, frame): """Function to extract lips from a frame""" gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) roi_gray = 0 faces = haarDetector.detectMultiScale(gray, 1.3, 5) if len(faces) == 0: roi_gray = cv2.resize(gray, (150, 100)) return roi_gray for (x, y, w, h) in faces: roi_gray = gray[y + (2 * h // 3):y + h, x:x + w] roi_gray = cv2.resize(roi_gray, (150, 100)) return roi_gray def prepareSingleVideoForCNN(path, haarDetector): """Function to prepare a single video to be redy for CNN training""" vidData = frameManipulator.getVideoDataFromPath(path) videoFrames = getVideoFrames(path) videoFrames = [extractLipsHaarCascade(haarDetector, x) for x in videoFrames] if len(videoFrames) != 0: stackedImage = stackFramesToImage(videoFrames) videoLabel = vidData.identifier.split('_')[0] imageSavePath = commonCNNDataPath + vidData.category + '/{}'.format(videoLabel) saveImage(stackedImage, imageSavePath) else: print("Error in finding video with path: {}".format(path)) def prepareDataSetForCNN(firstSpeaker, secondSpeaker): """Function that traverses the whole dataset and creates new directory for the CNN""" detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') for i in range(firstSpeaker, secondSpeaker): for category in categories: sTime = time.time() videoPath = "../New-DataSet-Videos/S{}/{}/".format(i, category) + "*.mp4" vidList = glob.glob(videoPath) def f(x): return x.replace("\\", '/') vidList = [f(x) for x in vidList] for j in vidList: prepareSingleVideoForCNN(j, detector) print("Finished category : {}, for speaker: {}".format(category, i)) print("In:{} Seconds".format(time.time() - sTime)) print("Finished Speaker {}".format(i)) def main(): startTime = time.time() firstSpeaker = 23 secondSpeaker = 24 createCNNDataDirectories() prepareDataSetForCNN(firstSpeaker, secondSpeaker) print("Finished preparing the videos in {} seconds".format(time.time() - startTime)) if __name__ == "__main__": main()
2.65625
3
pressiotools/io/array_read.py
Pressio/pressio-hyperreduction
0
12785547
import numpy as np import math from pressiotools import linalg as la def read_binary_array(fileName, nCols): # read a numpy array from a binary file "fileName" if nCols==1: return np.fromfile(fileName) else: array = np.fromfile(fileName) nRows = int(len(array) / float(nCols)) return array.reshape((nCols,nRows)).T def read_ascii_array(fileName, nCols): # read a numpy array from an ascii file "fileName" return np.asfortranarray(np.loadtxt(fileName)) def read_array(fileName, nCols, isBinary=True): if isBinary: return read_binary_array(fileName,nCols) else: return read_ascii_array(fileName,nCols) def read_array_distributed(comm, rootFileName, nCols, isBinary=True): # Read an array from binary or ascii files with the name specified # by the string rootFileName # Each local array segment will be read from a file rootFileName.XX.YY, # where XX is the number of ranks and YY is the local rank rank = comm.Get_rank() size = comm.Get_size() nDigit = int(math.log10(size)) + 1 myFileName = "{}.{}.{:0{width}d}".format(rootFileName,size,rank,width=nDigit) myArr = read_array(myFileName,nCols,isBinary) if nCols==1: return la.Vector(myArr) else: return la.MultiVector(myArr)
2.96875
3
tests/conftest.py
vmware/pyloginsight
16
12785548
<filename>tests/conftest.py # -*- coding: utf-8 -*- from mock_loginsight_server import MockedConnection from pyloginsight.connection import Connection, Credentials from pyloginsight.exceptions import ServerWarning, AlreadyBootstrapped import sys from collections import namedtuple import logging import pytest from requests.adapters import HTTPAdapter import socket import urllib3 import warnings ROOTLOGGER = True if ROOTLOGGER: logger = logging.getLogger() logger.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stderr) formatter = logging.Formatter(u'%(asctime)s %(name)s %(levelname)s: %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) logging.captureWarnings(True) socket.setdefaulttimeout(1) urllib3.disable_warnings() warnings.simplefilter("ignore", ServerWarning) ConnectionContainer = namedtuple("Connections", ["clazz", "hostname", "port", "auth", "verify"]) def pytest_addoption(parser): parser.addoption( "--server", action="append", metavar="SERVER:PORT", default=[], help="Also run tests against https://SERVER:PORT, can be listed multiple times. Mock server @ mockserverlocal:9543") parser.addoption( "--username", action="store", default="admin", help="Used with --server") parser.addoption( "--password", action="store", default="<PASSWORD>!", help="Used with --server") parser.addoption( "--provider", action="store", default="Local", help="Used with --server") parser.addoption( "--license", action="store", required=False, help="Apply license to --server if needed"), parser.addoption( "--packs", nargs='+', action="store", default=['sample_content.vlcp'], help="A list of content pack files to test." ) def identifiers_for_server_list(val): return "{}({}:{})".format(str(val.clazz.__name__), val.hostname, val.port) def pytest_generate_tests(metafunc): # Creates a "servers" fixture on the fly when another fixture uses it. if 'servers' in metafunc.fixturenames: configs = [] servers = metafunc.config.getoption('server') if servers == []: print("No servers specified.") servers = ["mockserverlocal:9543"] for s in servers: print("Running tests against server {}".format(s)) hostname, port = s.split(":") # magic hostname if hostname == "mockserverlocal": clazz = MockedConnection else: clazz = Connection configs.append( ConnectionContainer( clazz, hostname, int(port), Credentials( metafunc.config.getoption("username"), metafunc.config.getoption("password"), metafunc.config.getoption("provider"), ), False ) ) metafunc.parametrize("servers", argvalues=configs, ids=identifiers_for_server_list) class SetHostHeaderAdapter(HTTPAdapter): def __init__(self, host_header, *args, **kwargs): self.host_header = host_header super(SetHostHeaderAdapter, self).__init__(*args, **kwargs) def send(self, request, **kwargs): request.headers['Host'] = self.host_header return super(SetHostHeaderAdapter, self).send(request, **kwargs) @pytest.fixture def licensekey(pytestconfig): """License key which should be applied to the remote server(s).""" return pytestconfig.getoption('license') @pytest.fixture def connection(servers, licensekey): """A pyloginsight.connection to a remote server.""" c = servers connection_instance = c.clazz(c.hostname, auth=c.auth, port=c.port, verify=c.verify) # Lie about port number if c.clazz is Connection: adapter = SetHostHeaderAdapter("%s:9543" % c.hostname) connection_instance._requestsession.mount(connection_instance._apiroot, adapter) ensure_server_bootstrapped_and_licensed(connection_instance, licensekey) return connection_instance # Matrix of bad credentials multipled by server list @pytest.fixture(params=[Credentials("fake", "fake", "Local"), None]) def wrong_credential_connection(servers, request, licensekey): """A pyloginsight.connection to a remote server, with non-functional credentials.""" c = servers._replace(auth=request.param) connection_instance = c.clazz(c.hostname, auth=c.auth, port=c.port, verify=c.verify) # Lie about port number if c.clazz is Connection: adapter = SetHostHeaderAdapter("%s:9543" % c.hostname) connection_instance._requestsession.mount(connection_instance._apiroot, adapter) ensure_server_bootstrapped_and_licensed(connection_instance, licensekey) return connection_instance def ensure_server_bootstrapped_and_licensed(connection, licensekey): """ :param connection: a pyloginsight.Connection instance """ return True # Only need to check once if connection._apiroot in ensure_server_bootstrapped_and_licensed.cache: return True try: connection.bootstrap(email="<EMAIL>") except AlreadyBootstrapped: pass connection.wait_until_started() if 'ACTIVE' != connection.server.license.licenseState: connection.server.license.append(str(licensekey)) ensure_server_bootstrapped_and_licensed.cache.append(connection._apiroot) ensure_server_bootstrapped_and_licensed.cache = []
1.921875
2
题源分类/剑指offer/python/面试题26:复杂链表的复制.py
ZhengyangXu/Algorithm-Daily-Practice
0
12785549
# 面试题26:复杂链表的复制 # 题目:请实现函数ComplexListNode*Clone(ComplexListNode*pHead), # 复制一个复杂链表。在复杂链表中,每个结点除了有一个m_pNext指针指向下一个结点外, # 还有一个m_pSibling 指向链表中的任意结点或者NULL。结点的C++定义如下: class Node: def __init__(self,val,next=None,random=None): self.val = val self.next = next self.random = random def copyRandomList(head): if not head: return p = head while p: node = Node(p.val) node.next = p.next p.next = node p = node.next p = head while p: node = p.next node.random = p.random.next if p.random else None p = node.next p,p1 = head,Node(-1) cur = p1 while p: cur.next = p.next cur = cur.next p.next = cur.next p = p.next return p1.next def copyRandomList2(head): if not head: return visitedHash = {} if __name__ == "__main__": node1 = Node(1) node2 = Node(2) node3 = Node(3) node4 = Node(4) node1.next = node2 node2.next = node3 node3.next = node4 node1.random = node3 node2.random = node4 node = copyRandomList(node1) while node: print(node.val) node = node.next
3.375
3
api/api.py
PyGera/fantacalcio-bot
2
12785550
from flask import Flask, request, jsonify from flask_cors import CORS app = Flask(__name__) CORS(app) @app.route('/api/data', methods=['GET']) def data(): query = '' with open('stats.json', 'r') as db: query = db.read() print(query) return query @app.route('/api/sendData', methods=['POST']) def receiveData(): data = request.get_json() print(data) with open('stats.json', 'w') as db: db.write(f'''{{ "servers": {data['servers']}, "users": {data['users']} }} ''') return 'Thank you' app.run("0.0.0.0", 8080, False)
2.84375
3