max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
hal_fuzz/hal_fuzz/handlers/stm32f4_hal/stm32f4_i2c.py
diagprov/hal-fuzz
117
12783451
<filename>hal_fuzz/hal_fuzz/handlers/stm32f4_hal/stm32f4_i2c.py import sys from unicorn.arm_const import * from ...util import * import sys from ..fuzz import fuzz_remaining, get_fuzz from ...models.i2c import I2CModel def HAL_I2C_Init(uc): pass def HAL_I2C_Mem_Read(uc): # HAL_StatusTypeDef __fastcall HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress, uint16_t MemAddress, uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) device_id = uc.reg_read(UC_ARM_REG_R0) dev_addr = uc.reg_read(UC_ARM_REG_R1) mem_addr = uc.reg_read(UC_ARM_REG_R2) mem_addr_size = uc.reg_read(UC_ARM_REG_R3) dst_buf = struct.unpack("<I", uc.mem_read(uc.reg_read(UC_ARM_REG_SP), 4))[0] dst_buf_size = struct.unpack("<I", uc.mem_read(uc.reg_read(UC_ARM_REG_SP) + 0x4, 4))[0] timeout = struct.unpack("<I", uc.mem_read(uc.reg_read(UC_ARM_REG_SP) + 0x8, 4))[0] assert(dst_buf != 0) assert(dst_buf_size < 1000) assert(mem_addr < 65535) assert(dst_buf_size >= mem_addr_size) #stuff = I2CModel.rx(device_id, dev_addr, mem_addr_size) stuff = get_fuzz(mem_addr_size) uc.mem_write(dst_buf, stuff) uc.reg_write(UC_ARM_REG_R0, 0) print(b"<<< " + stuff) def HAL_I2C_Mem_Write(uc): uc.reg_write(UC_ARM_REG_R0, 0)
2.046875
2
models/QSDM.py
rmit-ir/AnswerPassageQuality
8
12783452
""" Quality-biased ranking (Bendersky et al., 2011) """ import argparse import bs4 import collections import json import math # import re import string from smart_open import smart_open # Module side # class Pipeline(): """Feature extraction pipeline""" def __init__(self): self.jobs = [] def add(self, features, adaptor=None): if not isinstance(features, (tuple, list)): features = [features] self.jobs.append({'adaptor': adaptor, 'extractors': features}) def extract(self, item): vector = [] for job in self.jobs: input_ = item if job['adaptor'] is None else job['adaptor'](item) for extractor in job['extractors']: vector.append(extractor(input_)) return vector PUNCTUATION_REMOVER = string.maketrans(string.punctuation, ' ' * len(string.punctuation)) def to_terms(text): return text.encode('utf8', errors='replace').translate(PUNCTUATION_REMOVER).split() def UrlDepth(url): """The depth of the URL path""" pos = url.find('://') if pos >= 0: return url[pos+3:].count('/') else: return url.count('/') def NumVisTerms(doc): """Number of visible terms on the page""" _, terms = doc return len(terms) def NumTitleTerms(doc): """Number of terms in the page <title> field""" soup, _ = doc if soup.title is None: return 0 else: return len(to_terms(soup.title.get_text())) def AvgTermLen(doc): """Average length of visible term on the page""" _, terms = doc return float(sum(len(t) for t in terms)) / len(terms) if terms else 0 def FracAnchorText(doc): """Fraction of anchor text on the page""" soup, terms = doc terms_in_anchor_texts = sum(len(to_terms(tag.get_text())) for tag in soup.find_all('a')) return float(terms_in_anchor_texts) / len(terms) if terms else 0 def FracVisText(doc): """Fraction of visible text on the page""" soup, _ = doc try: pagesize = len(soup.decode_contents()) except Exception: pagesize = 0 return float(len(soup.get_text())) / pagesize if pagesize > 0 else 0 def Entropy(doc): """Entropy of the page content""" _, terms = doc N = len(terms) tf = collections.Counter(terms) return math.log(N) - float(sum(n * math.log(n) for n in tf.values())) / N if N > 0 else 0 class FracStops(): """Stopword/non-stopword ratio""" def __init__(self, stoplist): self.stoplist = stoplist def __call__(self, doc): _, terms = doc return float(sum(term in self.stoplist for term in terms)) / len(terms) if terms else 0 class StopCover(): """Fraction of terms in the stopword list that appear on the page""" def __init__(self, stoplist): self.stoplist = stoplist def __call__(self, doc): _, terms = doc if self.stoplist: return float(sum(sw in terms for sw in self.stoplist)) / len(self.stoplist) else: return 0 def FracTableText(doc): """Fraction of table text on the page""" soup, terms = doc terms_in_tables = 0 for tag in soup.find_all('table'): if any(p.name == 'table' for p in tag.parents): continue terms_in_tables += len(to_terms(tag.get_text())) frac = float(terms_in_tables) / len(terms) if terms else 0 assert frac <= 1 return frac # Data side BLOCK_TAGS = ('h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'div', 'ul', 'ol', 'tr', 'td', 'th', 'table', 'dl', 'dd', 'li', 'blockquote', 'pre', 'address', 'title', 'head') def SOUP_TERMS(doc): chunk = doc['text'] soup = bs4.BeautifulSoup(chunk, 'lxml') for elem in soup(['br']): elem.insert_after('\n') for elem in soup(BLOCK_TAGS): elem.insert_after('\n') terms = to_terms(soup.get_text().lower()) return soup, terms def URL(doc): return doc['url'] if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('corpus_json') parser.add_argument('stoplist') args = parser.parse_args() stoplist = set(l.strip() for l in smart_open(args.stoplist)) pipeline = Pipeline() pipeline.add(UrlDepth, adaptor=URL) pipeline.add([NumVisTerms, NumTitleTerms, AvgTermLen, FracAnchorText, FracVisText, Entropy, FracStops(stoplist), StopCover(stoplist), FracTableText], adaptor=SOUP_TERMS) ranked_lists = json.load(smart_open(args.corpus_json)) for rl in ranked_lists: qid = rl['topic']['qid'] for doc in rl['docs']: docno = doc['docno'] rel = max(doc['rel'], 0) score = doc['score'] vector = ' '.join(['{}:{}'.format(i, val) for i, val in enumerate(pipeline.extract(doc), 2)]) print('{rel} qid:{qid} 1:{score} {vector} # {docno}'.format(**locals()))
2.71875
3
tjiggle.py
beesperester/cinema4d-jiggle
1
12783453
import os import c4d import math # Be sure to use a unique ID obtained from www.plugincafe.com PLUGIN_ID = 123456790 #----begin_resource_section---- from bootstrap4c4d import Description, Assignment, Group, Container crumb_percent_slider = [ Assignment("STEP", 1.0), Assignment("UNIT", "PERCENT"), Assignment("CUSTOMGUI", "REALSLIDER"), Assignment("MINSLIDER", 0.0), Assignment("MAXSLIDER", 100.0) ] crumb_percent_slider_limit_min = [ Assignment("MIN", 0.0) ] crumb_percent_slider_limit_max = [ Assignment("MAX", 100.0) ] crumb_flag_group_open = Assignment("DEFAULT", 1) settings_effect_strength = Description({ "id": "SETTINGS_EFFECT_STRENGTH", "key": "REAL", "value": [ *crumb_percent_slider, *crumb_percent_slider_limit_min, *crumb_percent_slider_limit_max ], "locales": { "strings_us": "Strength" } }) settings_base_origin_object = Description({ "id": "SETTINGS_BASE_ORIGIN_OBJECT", "key": "LINK", "value": [ Assignment("ANIM", "OFF"), Description({ "key": "ACCEPT", "value": [ Assignment("Obase", None) ] }) ], "locales": { "strings_us": "Origin" } }) settings_base_start_time = Description({ "id": "SETTINGS_BASE_START_TIME", "key": "REAL", "value": [ Assignment("UNIT", "TIME") ], "locales": { "strings_us": "Start Time" } }) settings_base_target_offset = Description({ "id": "SETTINGS_BASE_TARGET_OFFSET", "key": "VECTOR", "value": [ Assignment("UNIT", "METER") ], "locales": { "strings_us": "Target Offset" } }) settings_base_draw_debug_lines = Description({ "id": "SETTINGS_BASE_DRAW_DEBUG_LINES", "key": "BOOL", "value": [ Assignment("ANIM", "OFF") ], "locales": { "strings_us": "Draw Debug Lines" } }) vector_xplus = Assignment(None, None, { "id": "VECTOR_XPLUS", "locales": { "strings_us": "X+" } }) vector_xminus = Assignment(None, None, { "id": "VECTOR_XMINUS", "locales": { "strings_us": "X-" } }) vector_yplus = Assignment(None, None, { "id": "VECTOR_YPLUS", "locales": { "strings_us": "Y+" } }) vector_yminus = Assignment(None, None, { "id": "VECTOR_YMINUS", "locales": { "strings_us": "Y-" } }) vector_zplus = Assignment(None, None, { "id": "VECTOR_ZPLUS", "locales": { "strings_us": "Z+" } }) vector_zminus = Assignment(None, None, { "id": "VECTOR_ZMINUS", "locales": { "strings_us": "Z-" } }) settings_base_up_vector = Description({ "id": "SETTINGS_BASE_UP_VECTOR", "key": "LONG", "value": [ Assignment("ANIM", "OFF"), Assignment("CYCLE", [ vector_xplus, vector_xminus, vector_yplus, vector_yminus, vector_zplus, vector_zminus ]) ], "locales": { "strings_us": "Up Vector" } }) settings_base_aim_vector = Description({ "id": "SETTINGS_BASE_AIM_VECTOR", "key": "LONG", "value": [ Assignment("ANIM", "OFF"), Assignment("CYCLE", [ vector_xplus, vector_xminus, vector_yplus, vector_yminus, vector_zplus, vector_zminus ]) ], "locales": { "strings_us": "Aim Vector" } }) group_effect = Group("GROUP_EFFECT", { "value": [ crumb_flag_group_open, settings_effect_strength ], "locales": { "strings_us": "Effect" } }) group_base = Group("GROUP_BASE", { "value": [ crumb_flag_group_open, settings_base_origin_object, settings_base_target_offset, settings_base_draw_debug_lines, settings_base_start_time, settings_base_up_vector, settings_base_aim_vector ], "locales": { "strings_us": "Base" }, }) # squash and stretch settings_squash_stretch_enable = Description({ "id": "SETTINGS_SQUASH_STRETCH_ENABLE", "key": "BOOL", "value": [ Assignment("ANIM", "OFF") ], "locales": { "strings_us": "Enable" } }) settings_squash_stretch_stretch_strength = Description({ "id": "SETTINGS_SQUASH_STRETCH_STRETCH_STRENGTH", "key": "REAL", "value": [ *crumb_percent_slider, *crumb_percent_slider_limit_min ], "locales": { "strings_us": "Stretch Strength" } }) settings_squash_stretch_squash_strength = Description({ "id": "SETTINGS_SQUASH_STRETCH_SQUASH_STRENGTH", "key": "REAL", "value": [ *crumb_percent_slider, *crumb_percent_slider_limit_min ], "locales": { "strings_us": "Squash Strength" } }) group_squash_stretch = Group("GROUP_SQUASH_STRETCH", { "value": [ crumb_flag_group_open, settings_squash_stretch_enable, settings_squash_stretch_stretch_strength, settings_squash_stretch_squash_strength ], "locales": { "strings_us": "Squash and Stretch" } }) # physics descriptions settings_physics_stiffness = Description({ "id": "SETTINGS_PHYSICS_STIFFNESS", "key": "REAL", "value": crumb_percent_slider, "locales": { "strings_us": "Stiffness" } }) settings_physics_mass = Description({ "id": "SETTINGS_PHYSICS_MASS", "key": "REAL", "value": crumb_percent_slider, "locales": { "strings_us": "Mass" } }) settings_physics_damping = Description({ "id": "SETTINGS_PHYSICS_DAMPING", "key": "REAL", "value": crumb_percent_slider, "locales": { "strings_us": "Damping" } }) settings_physics_gravity = Description({ "id": "SETTINGS_PHYSICS_GRAVITY", "key": "VECTOR", "value": [ Assignment("UNIT", "METER") ], "locales": { "strings_us": "Gravity" } }) group_physics = Group("GROUP_PHYSICS", { "value": [ crumb_flag_group_open, settings_physics_stiffness, settings_physics_mass, settings_physics_damping, settings_physics_gravity ], "locales": { "strings_us": "Base" }, }) root = Container("Tjiggle", { "value": [ Assignment("NAME", "Tjiggle"), Assignment("INCLUDE", "Tbase"), Assignment("INCLUDE", "Texpression"), Group("GROUP_SETTINGS", { "value": [ crumb_flag_group_open, group_effect, group_base, group_squash_stretch, group_physics ], "locales": { "strings_us": "Settings" } }) ], "locales": { "strings_us": "Jiggle" } }) #----end_resource_section---- #----begin_id_section---- VECTOR_XPLUS = vector_xplus.GetId() VECTOR_XMINUS = vector_xminus.GetId() VECTOR_YPLUS = vector_yplus.GetId() VECTOR_YMINUS = vector_yminus.GetId() VECTOR_ZPLUS = vector_zplus.GetId() VECTOR_ZMINUS = vector_zminus.GetId() # effect ids SETTINGS_EFFECT_STRENGTH = settings_effect_strength.GetId() # base ids SETTINGS_BASE_ORIGIN_OBJECT = settings_base_origin_object.GetId() SETTINGS_BASE_START_TIME = settings_base_start_time.GetId() SETTINGS_BASE_TARGET_OFFSET = settings_base_target_offset.GetId() SETTINGS_BASE_UP_VECTOR = settings_base_up_vector.GetId() SETTINGS_BASE_AIM_VECTOR = settings_base_aim_vector.GetId() SETTINGS_BASE_DRAW_DEBUG_LINES = settings_base_draw_debug_lines.GetId() # squash stretch ids SETTINGS_SQUASH_STRETCH_ENABLE = settings_squash_stretch_enable.GetId() SETTINGS_SQUASH_STRETCH_STRETCH_STRENGTH = settings_squash_stretch_stretch_strength.GetId() SETTINGS_SQUASH_STRETCH_SQUASH_STRENGTH = settings_squash_stretch_squash_strength.GetId() # physics ids SETTINGS_PHYSICS_STIFFNESS = settings_physics_stiffness.GetId() SETTINGS_PHYSICS_MASS = settings_physics_mass.GetId() SETTINGS_PHYSICS_DAMPING = settings_physics_damping.GetId() SETTINGS_PHYSICS_GRAVITY = settings_physics_gravity.GetId() #----end_id_section---- class DataContainer(object): def __init__(self, data): self.data = data @property def strength(self): return self.data[SETTINGS_EFFECT_STRENGTH] @strength.setter def strength(self, value): self.data[SETTINGS_EFFECT_STRENGTH] = value @property def originObject(self): return self.data[SETTINGS_BASE_ORIGIN_OBJECT] @property def targetOffset(self): return self.data[SETTINGS_BASE_TARGET_OFFSET] @targetOffset.setter def targetOffset(self, value): self.data[SETTINGS_BASE_TARGET_OFFSET] = value @property def drawDebugLines(self): return self.data[SETTINGS_BASE_DRAW_DEBUG_LINES] # time @property def startTime(self): return self.data[SETTINGS_BASE_START_TIME] @startTime.setter def startTime(self, value): self.data[SETTINGS_BASE_START_TIME] = value # up vector @property def upVector(self): return self.data[SETTINGS_BASE_UP_VECTOR] @upVector.setter def upVector(self, value): self.data[SETTINGS_BASE_UP_VECTOR] = value # aim vector @property def aimVector(self): return self.data[SETTINGS_BASE_AIM_VECTOR] @aimVector.setter def aimVector(self, value): self.data[SETTINGS_BASE_AIM_VECTOR] = value # squash stretch @property def squashStretchEnable(self): return self.data[SETTINGS_SQUASH_STRETCH_ENABLE] @property def squashStretchStretchStrength(self): return self.data[SETTINGS_SQUASH_STRETCH_STRETCH_STRENGTH] @squashStretchStretchStrength.setter def squashStretchStretchStrength(self, value): self.data[SETTINGS_SQUASH_STRETCH_STRETCH_STRENGTH] = value @property def squashStretchSquashStrength(self): return self.data[SETTINGS_SQUASH_STRETCH_SQUASH_STRENGTH] @squashStretchSquashStrength.setter def squashStretchSquashStrength(self, value): self.data[SETTINGS_SQUASH_STRETCH_SQUASH_STRENGTH] = value # physics @property def stiffness(self): return self.data[SETTINGS_PHYSICS_STIFFNESS] @stiffness.setter def stiffness(self, value): self.data[SETTINGS_PHYSICS_STIFFNESS] = value @property def mass(self): return self.data[SETTINGS_PHYSICS_MASS] @mass.setter def mass(self, value): self.data[SETTINGS_PHYSICS_MASS] = value @property def damping(self): return self.data[SETTINGS_PHYSICS_DAMPING] @damping.setter def damping(self, value): self.data[SETTINGS_PHYSICS_DAMPING] = value @property def gravity(self): return self.data[SETTINGS_PHYSICS_GRAVITY] @gravity.setter def gravity(self, value): self.data[SETTINGS_PHYSICS_GRAVITY] = value class Jiggle(c4d.plugins.TagData): """Jiggle""" def Init(self, node): """ Called when Cinema 4D Initialize the TagData (used to define, default values) :param node: The instance of the TagData. :type node: c4d.GeListNode :return: True on success, otherwise False. """ # data = node.GetDataInstance() data = DataContainer(node.GetDataInstance()) data.strength = 1.0 data.resultRotation = c4d.Vector(0, 0, 0) # time related self.previousFrame = 0 data.targetOffset = c4d.Vector(0, 0, 100) data.startTime = 0.0 # up vector data.upVector = VECTOR_YPLUS # aim vector data.aimVector = VECTOR_ZPLUS # squash stretch data.squashStretchStretchStrength = 0.0 data.squashStretchSquashStrength = 0.0 # physics related data.stiffness = 0.1 data.mass = 0.9 data.damping = 0.75 data.gravity = c4d.Vector(0, -981.0, 0) self.Reset(node) c4d.EventAdd() return True @classmethod def GetFrame(cls, time, fps): return time.GetFrame(fps) @classmethod def CalculateTargetPosition(cls, origin, offset): if origin: return offset * origin.GetMg() return offset def GetHandleCount(self, op): """ :param op: The host object of the tag. :type op: c4d.BaseObject :return: """ return 1 def GetHandle(self, op, i, info): """ :param op: The host object of the tag. :type op: c4d.BaseObject :param i: Index of handle :type i: int :param info: Info of handle :type info: c4d.HandleInfo :return: """ data = DataContainer(op.GetDataInstance()) info.position = Jiggle.CalculateTargetPosition(data.originObject, data.targetOffset) info.type = c4d.HANDLECONSTRAINTTYPE_FREE def SetHandle(self, op, i, p, info): """ :param op: The host object of the tag. :type op: c4d.BaseObject :param i: Index of handle :type i: int :param p: Handle Position :type p: c4d.Vector :param info: Info of handle :type info: c4d.HandleInfo :return: """ data = DataContainer(op.GetDataInstance()) data.targetOffset = p * ~data.originObject.GetMg() def Execute(self, tag, doc, op, bt, priority, flags): """ Called by Cinema 4D at each Scene Execution, this is the place where calculation should take place. :param tag: The instance of the TagData. :type tag: c4d.BaseTag :param doc: The host document of the tag's object. :type doc: c4d.documents.BaseDocument :param op: The host object of the tag. :type op: c4d.BaseObject :param bt: The Thread that execute the this TagData. :type bt: c4d.threading.BaseThread :param priority: Information about the execution priority of this TagData. :type priority: EXECUTIONPRIORITY :param flags: Information about when this TagData is executed. :type flags: EXECUTIONFLAGS :return: """ data = DataContainer(tag.GetDataInstance()) fps = doc.GetFps() currentFrame = float(Jiggle.GetFrame(doc.GetTime(), fps)) originMatrix = data.originObject.GetMg() originPosition = originMatrix.off projectedPosition = Jiggle.CalculateTargetPosition(data.originObject, data.targetOffset) if currentFrame > data.startTime: # only update if current frame is an increment by 1 of previous frame if currentFrame == self.previousFrame + 1.0: self.Update(tag, doc, op) else: self.Reset(tag) # blend position by strength targetPosition = c4d.utils.MixVec(projectedPosition, self.position, data.strength) # calculate matrix # calculate aim vector aim = c4d.Vector(targetPosition - originPosition).GetNormalized() # change up vector position if data.upVector == VECTOR_XPLUS: up = originMatrix.MulV(c4d.Vector(1.0, 0, 0)) elif data.upVector == VECTOR_XMINUS: up = originMatrix.MulV(c4d.Vector(-1.0, 0, 0)) elif data.upVector == VECTOR_YPLUS: up = originMatrix.MulV(c4d.Vector(0, 1.0, 0)) elif data.upVector == VECTOR_YMINUS: up = originMatrix.MulV(c4d.Vector(0, -1.0, 0)) elif data.upVector == VECTOR_ZPLUS: up = originMatrix.MulV(c4d.Vector(0, 0, 1.0)) elif data.upVector == VECTOR_ZMINUS: up = originMatrix.MulV(c4d.Vector(0, 0, -1.0)) side = up.Cross(aim) # calculate squash strech if data.squashStretchEnable: distance = c4d.Vector(targetPosition - originPosition).GetLength() maxDistance = data.targetOffset.GetLength() relativeDistance = distance - maxDistance try: squashStretchBias = abs(relativeDistance) / maxDistance except ZeroDivisionError: squashStretchBias = 0.0 if relativeDistance > 0.0: squashStretchBias = squashStretchBias * data.squashStretchStretchStrength # stretch aim = aim * (1.0 + squashStretchBias) up = up * (1.0 - squashStretchBias) side = side * (1.0 - squashStretchBias) else: squashStretchBias = squashStretchBias * data.squashStretchSquashStrength # squash aim = aim * (1.0 - squashStretchBias) up = up * (1.0 + squashStretchBias) side = side * (1.0 + squashStretchBias) # change input order based on aim axis if data.aimVector == VECTOR_XPLUS: jiggleMatrix = c4d.Matrix( originPosition, aim, up, side ) elif data.aimVector == VECTOR_XMINUS: jiggleMatrix = c4d.Matrix( originPosition, -aim, up, side ) elif data.aimVector == VECTOR_YPLUS: jiggleMatrix = c4d.Matrix( originPosition, side, aim, up ) elif data.aimVector == VECTOR_YMINUS: jiggleMatrix = c4d.Matrix( originPosition, side, -aim, up ) elif data.aimVector == VECTOR_ZPLUS: jiggleMatrix = c4d.Matrix( originPosition, side, up, aim ) elif data.aimVector == VECTOR_ZMINUS: jiggleMatrix = c4d.Matrix( originPosition, side, up, -aim ) op.SetMg(jiggleMatrix) # finish execute self.previousFrame = currentFrame return c4d.EXECUTIONRESULT_OK def Draw(self, tag, op, bd, bh): data = DataContainer(tag.GetDataInstance()) drawpass = bd.GetDrawPass() if not data.drawDebugLines: return True # draw target line targetPosition = Jiggle.CalculateTargetPosition(data.originObject, data.targetOffset) bd.SetPen(c4d.GetViewColor(c4d.VIEWCOLOR_XAXIS)) bd.DrawLine( data.originObject.GetMg().off, targetPosition, 0 ) # draw connection bd.SetPen(c4d.GetViewColor(c4d.VIEWCOLOR_YAXIS)) bd.DrawLine( targetPosition, self.position, 0 ) # draw current target bd.SetPen(c4d.GetViewColor(c4d.VIEWCOLOR_ZAXIS)) bd.DrawLine(data.originObject.GetMg().off, self.position, 0) # bd.SetMatrix_Screen() # circlePosition = bd.WS(targetPosition) # bd.DrawCircle2D(circlePosition.x, circlePosition.y, 5.0) if drawpass == c4d.DRAWPASS_HANDLES: bd.SetMatrix_Screen() handleScreenSpace = bd.WS(Jiggle.CalculateTargetPosition(data.originObject, data.targetOffset)) bd.SetPen(c4d.GetViewColor(c4d.VIEWCOLOR_OBJECTHIGHLIGHT)) bd.DrawCircle2D(handleScreenSpace.x, handleScreenSpace.y, 8) plugins.TagData.Draw(self, tag, op, bd, bh) return True def Reset(self, tag): """ Update loop. :param tag: The instance of the TagData. :type tag: c4d.BaseTag :return: """ # print("Reset") data = DataContainer(tag.GetDataInstance()) self.force = c4d.Vector(0, 0, 0) self.acceleration = c4d.Vector(0, 0, 0) self.velocity = c4d.Vector(0, 0, 0) self.position = Jiggle.CalculateTargetPosition(data.originObject, data.targetOffset) def Update(self, tag, doc, op): """ Update loop. :param tag: The instance of the TagData. :type tag: c4d.BaseTag :param doc: The host document of the tag's object. :type doc: c4d.documents.BaseDocument :param op: The host object of the tag. :type op: c4d.BaseObject :return: """ # print("Update") data = DataContainer(tag.GetDataInstance()) targetPosition = Jiggle.CalculateTargetPosition(data.originObject, data.targetOffset) direction = targetPosition - self.position #direction = c4d.Vector(0, 0, 0) # calculate spring self.force = (direction * data.stiffness) + (data.gravity / 10.0 / float(doc.GetFps())) self.acceleration = self.force / data.mass self.velocity = self.velocity + (self.acceleration * (1.0 - data.damping)) self.position = self.position + self.velocity + self.force if __name__ == "__main__": # Retrieves the icon path directory, _ = os.path.split(__file__) fn = os.path.join(directory, "res", "tjiggle.png") # Creates a BaseBitmap bmp = c4d.bitmaps.BaseBitmap() if bmp is None: raise MemoryError("Failed to create a BaseBitmap.") # Init the BaseBitmap with the icon if bmp.InitWith(fn)[0] != c4d.IMAGERESULT_OK: raise MemoryError("Failed to initialize the BaseBitmap.") c4d.plugins.RegisterTagPlugin(id=PLUGIN_ID, str="Jiggle", info=c4d.TAG_EXPRESSION | c4d.TAG_VISIBLE | c4d.TAG_IMPLEMENTS_DRAW_FUNCTION, g=Jiggle, description="Tjiggle", icon=bmp )
1.953125
2
accounts/migrations/0007_auto_20200708_2235.py
Ascensiony/Software-Dev-Project
2
12783454
<filename>accounts/migrations/0007_auto_20200708_2235.py # Generated by Django 2.2.10 on 2020-07-08 17:05 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0006_user_summary'), ] operations = [ migrations.AddField( model_name='user', name='passout_year', field=models.CharField(blank=True, max_length=4), ), migrations.AddField( model_name='user', name='phone_number', field=models.CharField(blank=True, max_length=17, validators=[django.core.validators.RegexValidator(message="Phone number must be entered in the format: '+999999999'. Up to 15 digits allowed.", regex='^\\+?1?\\d{9,15}$')]), ), ]
1.851563
2
Mortgage_Package/financial/ex_debtServiceRatio.py
ubco-mds-2020-labs/data-533-lab-4-lukavuko
0
12783455
<reponame>ubco-mds-2020-labs/data-533-lab-4-lukavuko # To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% class debtServiceRatio: """ A class used to calculate debt service ratios and determine maximum annual and monthly mortgage payments ... Attributes ---------- income : numeric home buyer's annual income property_tax : numeric home buyer's annual property tax heat_cost : numeric home buyer's annual heat cost car_payment : numeric home buyer's annual car payment credit_card_payment : numeric home buyer's annual credt card payment downpayment : int home buyer's proposed downpayment home_price : int home buyer's desired home price months : int months in one year gds_ratio : float current ratio for Gross Debt Service gds_max_annual_spend : numeric calculates home buyer's maximum annual spending available gds_max_mortgage_annual : numeric calculates home buyer's maximum annual mortgage payments gds_max_mortgage_monthly : numeric calculates home buyer's maximum monthly mortgage payments tds_ratio : numeric current ratio for Total Debt Service tds_max_annual_spend : numeric calculates home buyer's maximum annual spending available tds_max_mortgage_annual : numeric calculates home buyer's maximum annual mortgage payments tds_max_mortgage_monthly : numeric calculates home buyer's maximum monthly mortgage payments Methods ------- gds() Calculates buyer's max annual spending, max annual mortgage payment, and max monthly mortgage payments based on Gross Debt Service Ratio of 32% tds() Calculates buyer's max annual spending, max annual mortgage payment, and max monthly mortgage payments based on Total Debt Service Ratio of 40% """ downpayment = 0 def __init__(self, income, property_tax, heat_cost, car_payment, credit_card_payment, downpayment, home_price): """ Attributes ---------- income : numeric property_tax : numeric heat_cost : numeric car_payment : numeric credit_card_payment : numeric downpayment : int home_price : int """ self.income = income self.property_tax = property_tax self.heat_cost = heat_cost self.car_payment = car_payment self.credit_card_payment = credit_card_payment self.downpayment = downpayment self.home_price = home_price def gds(self, prin = False): #max affordability based on GDS score """ Calculates buyer's max annual spending, max annual mortgage payment, and max monthly mortgage payments based on Gross Debt Service Ratio of 32% ... Attributes ---------- gds_ratio : float months : int gds_max_annual_spend = float gds_max_mortgage_annual = float gds_max_mortgage_monthly = float Returns ------- gds_max_mortgage_annual : float self.downpayment : float """ gds_ratio = 0.32 #change to 0.35 months = 12 gds_max_annual_spend = self.income * gds_ratio gds_max_mortgage_annual = gds_max_annual_spend - self.property_tax - self.heat_cost gds_max_mortgage_monthly = gds_max_mortgage_annual / months if prin == True: print("Max Annual Spending: ${}".format(gds_max_annual_spend)) print("Max Annual Mortgage Payment: ${}".format(gds_max_mortgage_annual)) print("Max Monthly Mortgage Payment: ${}".format(gds_max_mortgage_monthly)) #return (max_annual_spend, max_mortgage_annual, max_mortgage_monthly) if self.downpayment > gds_max_mortgage_annual: downpayment = gds_max_mortgage_annual if prin == True: print("Your downpayment: ${}".format(gds_max_mortgage_annual)) return gds_max_mortgage_annual else: downpayment = self.downpayment if prin == True: print("Your downpayment: ${}".format(self.downpayment)) return self.downpayment ####### def tds(self, prin = False): #max affordability based on TDS score """ Calculates buyer's max annual spending, max annual mortgage payment, and max monthly mortgage payments based on Total Debt Service Ratio of 40% ... Attributes ---------- tds_ratio : float months : 12 tds_max_annual_spend = float tds_max_mortgage_annual = float tds_max_mortgage_monthly = float Returns ------- tds_max_mortgage_annual : float self.downpayment : float """ tds_ratio = 0.40 # change to 0.42 months = 12 tds_max_annual_spend = self.income * tds_ratio tds_max_mortgage_annual = tds_max_annual_spend - self.property_tax - self.heat_cost - self.car_payment - self.credit_card_payment tds_max_mortgage_monthly = tds_max_mortgage_annual / months if prin == True: print("Max Annual Spending: ${}".format(tds_max_annual_spend)) print("Max Annual Mortgage Payment: ${}".format(tds_max_mortgage_annual)) print("Max Monthly Mortgage Payment: ${}".format(tds_max_mortgage_monthly)) if self.downpayment > tds_max_mortgage_annual: # downpayment = tds_max_mortgage_annual if prin == True: print("Your downpayment: ${}".format(tds_max_mortgage_annual)) return tds_max_mortgage_annual ####### else: downpayment = self.downpayment if prin == True: print("Your downpayment: ${}".format(self.downpayment)) return self.downpayment ####### # %% def mortgage_max(buyer_dsr): """ Calculates maximum loan available to offer based on buyer's proposed downpayment and downpayment percent ... Returns ------- loan : float Returns maximum available loan to be offered """ downpayment_percent = 0 min_downpayment = 0 try: if buyer_dsr.home_price <= 500000: downpayment_percent = 0.05 elif buyer_dsr.home_price > 500000 and buyer_dsr.home_price <= 1000000: downpayment_percent = 0.1 else: downpayment_percent = 0.2 except Exception: return None #loan = self.max_dp() / downpayment_percent loan = buyer_dsr.downpayment / downpayment_percent return loan def min_dp(buyer_dsr, pri = False): """ Compares Gross Debt Service Ratio and Total Debt Service Ratio and returns expected annual and monthly maximum mortgage payments and minimum downpayment Return ------ float minimum downpayment """ return min(buyer_dsr.gds(prin = pri), buyer_dsr.tds(prin = pri)) # %% #buyer_dsr = debtServiceRatio(75000, 3600, 2400, 3600, 3000, 30000, 200000) # %% #mortgage_max(buyer_dsr) # %% #min_dp(buyer_dsr, pri = True) # %%
2.140625
2
44.py
lycantropos/Project-Euler
0
12783456
from itertools import count from utils import pentagonal def pentagonal_number(index: int) -> int: return index * (3 * index - 1) // 2 # TODO: improve this "bruteforcefully" working function def pentagonal_numbers(offset: int) -> int: for j in count(1): p_j = pentagonal_number(j) for s in range(j + 1, j + offset): p_s = pentagonal_number(s) p_k = p_s - p_j p_d = p_k - p_j if pentagonal(p_k) and pentagonal(p_d): break else: continue return p_k - p_j assert pentagonal_numbers(offset=10_000) == 5_482_660
3.40625
3
retropie/get_files.py
dmsun/Arch-Linux-Config
0
12783457
<reponame>dmsun/Arch-Linux-Config #! /usr/bin python import os # change the directory to the rom hub cwd = os.chdir("/home/pi/RetroPie/roms") extensions = ['.srm', '.eep', '.state', '.hi', '.hs', '.fs' '.dat', '.cfg', '.nv'] def get_files(directory=os.getcwd()): with open("/home/pi/backup_files.txt", 'w') as test: for root, dir, files in os.walk(directory): for name in files: if name.endswith(tuple(extensions)): test.write(os.path.join(root, name)) test.write("\n")
2.671875
3
Problem Set 3 - Student Version/reinforcement_learning.py
MuhammeedAlaa/MI-Assignemnets
0
12783458
<filename>Problem Set 3 - Student Version/reinforcement_learning.py from typing import Callable, DefaultDict, Dict, Generic, List, Optional, Union from agents import Agent from environment import Environment, S, A from helpers.mt19937 import RandomGenerator from helpers.utils import NotImplemented import json from collections import defaultdict # The base class for all Reinforcement Learning Agents required for this problem set class RLAgent(Agent[S, A]): rng: RandomGenerator # A random number generator used for exploration actions: List[A] # A list of all actions that the environment accepts discount_factor: float # The discount factor "gamma" epsilon: float # The exploration probability for epsilon-greedy learning_rate: float # The learning rate "alpha" def __init__(self, actions: List[A], discount_factor: float = 0.99, epsilon: float = 0.5, learning_rate: float = 0.01, seed: Optional[int] = None) -> None: super().__init__() self.rng = RandomGenerator(seed) # initialize the random generator with a seed for reproducability self.actions = actions self.discount_factor = discount_factor self.epsilon = epsilon self.learning_rate = learning_rate # A virtual function that returns the Q-value for a specific state and action # This should be overriden by the derived RL agents def compute_q(self, env: Environment[S, A], state: S, action: A) -> float: return 0 # Returns true if we should explore (rather than exploit) def should_explore(self) -> bool: return self.rng.float() < self.epsilon def act(self, env: Environment[S, A], observation: S, training: bool = False) -> A: actions = env.actions() if training and self.should_explore(): #return the action with index self.rng.int(0, len(actions) - 1) return actions[self.rng.int(0, len(actions) - 1)] else: # if more than one action has the maximum q-value, return the one that appears first in the "actions" list #get the max action max_action = actions[0] max_q = self.compute_q(env, observation, actions[0]) for action in actions: q = self.compute_q(env, observation, action) # for all actions check if it has a q value bigger than the max and update max if q > max_q: max_q = q max_action = action #return max action return max_action ############################# ####### SARSA ###### ############################# # This is a class for a generic SARSA agent class SARSALearningAgent(RLAgent[S, A]): Q: DefaultDict[str, DefaultDict[str, float]] # The table of the Q values # The first key is the string representation of the state # The second key is the string representation of the action # The value is the Q-value of the given state and action def __init__(self, actions: List[A], discount_factor: float = 0.99, epsilon: float = 0.5, learning_rate: float = 0.01, seed: Optional[int] = None) -> None: super().__init__(actions, discount_factor, epsilon, learning_rate, seed) self.Q = defaultdict(lambda:defaultdict(lambda:0)) # The default Q value is 0 def compute_q(self, env: Environment[S, A], state: S, action: A) -> float: return self.Q[str(state)][str(action)] # Return the Q-value of the given state and action # NOTE: we cast the state and the action to a string before querying the dictionaries # Update the value of Q(state, action) using this transition via the SARSA update rule def update(self, env: Environment[S, A], state: S, action: A, reward: float, next_state: S, next_action: Optional[A]): # update the Q(state, action) with the equation in instructions self.Q[state.__str__()][action.__str__()] += self.learning_rate * (reward + self.discount_factor * self.Q[next_state.__str__()][next_action.__str__()] - self.Q[state.__str__()][action.__str__()]) # Save the Q-table to a json file def save(self, file_path: str): with open(file_path, 'w') as f: json.dump(self.Q, f, indent=2, sort_keys=True) # load the Q-table from a json file def load(self, file_path: str): with open(file_path, 'r') as f: self.Q = json.load(f) ############################# ##### Q-Learning ###### ############################# # This is a class for a generic Q-learning agent class QLearningAgent(RLAgent[S, A]): Q: DefaultDict[str, DefaultDict[str, float]] # The table of the Q values # The first key is the string representation of the state # The second key is the string representation of the action # The value is the Q-value of the given state and action def __init__(self, actions: List[A], discount_factor: float = 0.99, epsilon: float = 0.5, learning_rate: float = 0.01, seed: Optional[int] = None) -> None: super().__init__(actions, discount_factor, epsilon, learning_rate, seed) self.Q = defaultdict(lambda:defaultdict(lambda:0)) # The default Q value is 0 def compute_q(self, env: Environment[S, A], state: S, action: A) -> float: return self.Q[str(state)][str(action)] # Return the Q-value of the given state and action # NOTE: we cast the state and the action to a string before querying the dictionaries # Given a state, compute and return the utility of the state using the function "compute_q" def compute_utility(self, env: Environment[S, A], state: S) -> float: # get all actions actions = env.actions() #get max q max_q = self.compute_q(env, state, actions[0]) for action in actions: q = self.compute_q(env, state, action) # for all actions check if it has a q value bigger than the max and update max if q > max_q: max_q = q #return q max return max_q # Update the value of Q(state, action) using this transition via the Q-Learning update rule def update(self, env: Environment[S, A], state: S, action: A, reward: float, next_state: S, done: bool): # If done is True, then next_state is a terminal state in which case, we consider the Q-value of next_state to be 0 if done: q_next = 0 else: q_next = self.compute_utility(env, next_state) #update Q(state, action) with the equation in instructions self.Q[state.__str__()][action.__str__()] += self.learning_rate * (reward + self.discount_factor * q_next - self.Q[state.__str__()][action.__str__()]) # Save the Q-table to a json file def save(self, file_path: str): with open(file_path, 'w') as f: json.dump(self.Q, f, indent=2, sort_keys=True) # load the Q-table from a json file def load(self, file_path: str): with open(file_path, 'r') as f: self.Q = json.load(f) ######################################### ##### Approximate Q-Learning ###### ######################################### # The type definition for a set of features representing a state # The key is the feature name and the value is the feature value Features = Dict[str, float] # This class takes a state and returns the a set of features class FeatureExtractor(Generic[S, A]): # Returns a list of feature names. # This will be used by the Approximate Q-Learning agent to initialize its weights dictionary. @property def feature_names(self) -> List[str]: return [] # Given an enviroment and an observation (a state), return a set of features that represent the given state def extract_features(self, env: Environment[S, A], state: S) -> Features: return {} # This is a class for a generic Q-learning agent class ApproximateQLearningAgent(RLAgent[S, A]): weights: Dict[str, Features] # The weights dictionary for this agent. # The first key is action and the second key is the feature name # The value is the weight feature_extractor: FeatureExtractor[S, A] # The feature extractor used to extract the features corresponding to a state def __init__(self, feature_extractor: FeatureExtractor[S, A], actions: List[A], discount_factor: float = 0.99, epsilon: float = 0.5, learning_rate: float = 0.01, seed: Optional[int] = None) -> None: super().__init__(actions, discount_factor, epsilon, learning_rate, seed) feature_names = feature_extractor.feature_names self.weights = {str(action):{feature: 0 for feature in feature_names} for action in actions} # we initialize the weights to 0 self.feature_extractor = feature_extractor # Given the features of state and an action, compute and return the Q value def __compute_q_from_features(self, features: Dict[str, float], action: A) -> float: q = 0 # for all features apply the equation form instructions to get the q value for k in features.keys(): q += self.weights[action.__str__()][k] * features[k] return q def compute_q(self, env: Environment[S, A], state: S, action: A) -> float: features = self.feature_extractor.extract_features(env, state) return self.__compute_q_from_features(features, action) def update(self, env: Environment[S, A], state: S, action: A, reward: float, next_state: S, done: bool): # If done is True, then next_state is a terminal state in which case, we consider the Q-value of next_state to be 0 if done: q_next = 0 else: # compute the q_max for the next state actions = env.actions() q_next = self.compute_q(env, next_state, actions[0]) for next_action in actions: q = self.compute_q( env, next_state, next_action) # for all actions check if it has a q value bigger than the max and update max if q_next < q: q_next = q # copy the weights so we don't affext it while updating weights = self.weights.copy() # get state features features = self.feature_extractor.extract_features(env, state) q = self.compute_q(env, state, action) # update the weights in temp dictionary for k in features.keys(): weights[action.__str__()][k] += self.learning_rate * (reward + self.discount_factor * q_next - q) * features[k] # set the weights to the temp dictionary self.weights = weights.copy() # Save the weights to a json file def save(self, file_path: str): with open(file_path, 'w') as f: json.dump(self.weights, f, indent=2, sort_keys=True) # load the weights from a json file def load(self, file_path: str): with open(file_path, 'r') as f: self.weights = json.load(f)
2.90625
3
utils.py
DandelionLau/NetworkCollections
8
12783459
<reponame>DandelionLau/NetworkCollections """ @FileName: utils.py @Description: Implement utils @Author : Ryuk @CreateDate: 2019/12/26 9:28 @LastEditTime: 2019/12/26 9:28 @LastEditors: Ryuk @Version: v0.1 """ def getLayers(model): """ get each layer's name and its module :param model: :return: each layer's name and its module """ layers = [] def unfoldLayer(model): """ unfold each layer :param model: the given model or a single layer :param root: root name :return: """ # get all layers of the model layer_list = list(model.named_children()) for item in layer_list: module = item[1] sublayer = list(module.named_children()) sublayer_num = len(sublayer) # if current layer contains sublayers, add current layer name on its sublayers if sublayer_num == 0: layers.append(module) # if current layer contains sublayers, unfold them elif isinstance(module, torch.nn.Module): unfoldLayer(module) unfoldLayer(model) return layers
2.578125
3
back-end/api/migrations/0009_auto_20161114_0228.py
tuftsjumbocode/bostonathleticsassociation
2
12783460
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-11-14 02:28 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0008_merge_20161114_0228'), ] operations = [ migrations.AlterField( model_name='volunteer', name='email', field=models.CharField(max_length=50), ), migrations.AlterField( model_name='volunteer', name='jacket', field=models.CharField(max_length=30), ), migrations.AlterField( model_name='volunteer', name='years_of_service', field=models.CharField(max_length=3), ), ]
1.59375
2
tests/test_functions.py
enceladus-rex/chainer-transformer
0
12783461
from chainer_transformer.functions import generate_positional_encodings import pytest def test_generate_positional_encoding(): start = 0 end = 100 dim = 256 l = end - start output = generate_positional_encodings(start, end, dim) assert output.shape == (l, dim)
2.234375
2
python/gpu-enabled-multiprocessing.py
GangababuManam/tensorflow-101
832
12783462
<reponame>GangababuManam/tensorflow-101<gh_stars>100-1000 import pandas as pd import multiprocessing from multiprocessing import Pool def train(index, df): import tensorflow as tf import keras from keras.models import Sequential #------------------------------ #this block enables GPU enabled multiprocessing core_config = tf.ConfigProto() core_config.gpu_options.allow_growth = True session = tf.Session(config=core_config) keras.backend.set_session(session) #------------------------------ #prepare input and output values df = df.drop(columns=['index']) data = df.drop(columns=['target']).values target = df['target'] #------------------------------ model = Sequential() model.add(Dense(5 #num of hidden units , input_shape=(data.shape[1],))) #num of features in input layer model.add(Activation('sigmoid')) model.add(Dense(1))#number of nodes in output layer model.add(Activation('sigmoid')) model.compile(loss='mse', optimizer=keras.optimizers.Adam()) #------------------------------ model.fit(data, target, epochs = 5000, verbose = 1) model.save("model_for_%s.hdf5" % index) #------------------------------ #finally, close sessions session.close() keras.backend.clear_session() #----------------------------- #main program multiprocessing.set_start_method('spawn', force=True) df = pd.read_csv("dataset.csv") my_tuple = [(i, df[df['index'] == i]) for i in range(0, 20)] with Pool(10) as pool: pool.starmap(train, my_tuple)
2.875
3
scuole/campuses/views.py
texastribune/scuole
1
12783463
<filename>scuole/campuses/views.py # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django.shortcuts import get_object_or_404 from django.views.generic import DetailView from scuole.counties.models import County, CountyCohorts from scuole.districts.models import District, DistrictStats from scuole.regions.models import RegionCohorts from scuole.states.models import StateStats from scuole.stats.models import SchoolYear from .models import Campus, CampusStats class CampusDetailView(DetailView): county_cohorts_model = CountyCohorts region_cohorts_model = RegionCohorts def get_object(self): return get_object_or_404( Campus.objects.prefetch_related("principals"), slug=self.kwargs["slug"], district__slug=self.kwargs["district_slug"], ) def get_context_data(self, **kwargs): context = super(CampusDetailView, self).get_context_data(**kwargs) county_cohorts = self.county_cohorts_model.objects.filter( county=self.object.county ) region_cohorts = self.region_cohorts_model.objects.filter( region=self.object.district.region ) # year = self.kwargs["campus_year"] # if year: # context["stat"] = get_object_or_404( # CampusStats, year__name=year, campus=self.object # ) # context["district"] = get_object_or_404( # DistrictStats, year__name=year, district=self.object.district # ) # context["state"] = get_object_or_404( # StateStats, year__name=year, state__name="TX" # ) # else: latest_year = SchoolYear.objects.first() context["stat"] = get_object_or_404( CampusStats, year=latest_year, campus=self.object ) context["district"] = get_object_or_404( DistrictStats, year=latest_year, district=self.object.district ) context["state"] = get_object_or_404( StateStats, year=latest_year, state__name="TX" ) context["latest_county_cohort"] = county_cohorts.latest_cohort( county=self.object.county ) context["latest_region_cohort"] = region_cohorts.latest_cohort( region=self.object.district.region ) return context
2.046875
2
LEM_scripts_1.py
DavidLitwin/SpectralDiffusion
2
12783464
<reponame>DavidLitwin/SpectralDiffusion # -*- coding: utf-8 -*- """ Created on Wed May 1 09:38:14 2019 @author: dgbli Run spectral diffuser in a landscape evolution model. This code does not account for a difference in boundary conditions between the diffusion model (periodic) and the FastscapeEroder (fixed gradient). This is the reason why the tiled approach that appears in Flat_torus_LEM was used. """ import numpy as np import matplotlib.pyplot as plt import pickle import LEMFunctions as lf from landlab.components import LinearDiffuser, FlowAccumulator, FastscapeEroder from landlab.plot import imshow_grid from landlab import RasterModelGrid, CLOSED_BOUNDARY, FIXED_VALUE_BOUNDARY from matplotlib.pyplot import figure, show, plot, xlabel, ylabel, title TicToc = lf.TicTocGenerator() #%% Run with landlab diffusion np.random.seed(3) Nx = 100 Ny = 100 dx = 10 mg = RasterModelGrid((Nx,Ny), dx) z = mg.add_zeros('topographic__elevation', at='node' ) #mg.core_nodes['topographic__elevation'] = np.random.rand(mg.number_of_core_nodes) mg.set_status_at_node_on_edges(right=FIXED_VALUE_BOUNDARY, top=FIXED_VALUE_BOUNDARY,left=FIXED_VALUE_BOUNDARY,bottom=FIXED_VALUE_BOUNDARY) z_array = z.reshape((mg.shape)) z_init = np.zeros(mg.shape) z_init[1:-1,1:-1] = np.random.rand(np.shape(z_array[1:-1,1:-1])[0],np.shape(z_array[1:-1,1:-1])[1]) z_init = z_init.reshape((np.size(z_init))) z[:] = z_init imshow_grid(mg,'topographic__elevation') dt = 50 T_max = 1E5 nt = int(T_max//dt) D = 1E-4 uplift_rate = 1E-3 #m/yr uplift_per_step = uplift_rate*dt m = 0.5 #Exponent on A [] n = 1.0 #Exponent on S [] K = 1E-11*(365*24*3600) #erosivity coefficient [yr−1] ld = LinearDiffuser(mg,linear_diffusivity=D) fr = FlowAccumulator(mg,'topographic__elevation',flow_director='D8') sp = FastscapeEroder(mg,K_sp = K,m_sp = m, n_sp=n) lf.tic() for i in range(nt): fr.run_one_step() sp.run_one_step(dt) ld.run_one_step(dt) mg.at_node['topographic__elevation'][mg.core_nodes] += uplift_per_step if i % 20 == 0: print ('Completed loop %d' % i) lf.toc() imshow_grid(mg,'topographic__elevation') z_array_landlab = z.reshape((mg.shape)) pickle.dump(z_array_landlab, open("Landlab_test2.p","wb")) #%% Run with my explicit finite difference diffuser mg1 = RasterModelGrid((Nx,Ny), dx) z1 = mg1.add_zeros('topographic__elevation', at='node' ) mg1.set_status_at_node_on_edges(right=FIXED_VALUE_BOUNDARY, top=FIXED_VALUE_BOUNDARY,left=FIXED_VALUE_BOUNDARY,bottom=FIXED_VALUE_BOUNDARY) dt = 50 T_max = 1E5 nt = int(T_max//dt) D = 1E-4 uplift_rate = 1E-3 #m/yr uplift_per_step = uplift_rate*dt m = 0.5 #Exponent on A [] n = 1.0 #Exponent on S [] K = 1E-11*(365*24*3600) #erosivity coefficient [yr−1] np.random.seed(3) z_array = z1.reshape((mg1.shape)) z_init = np.zeros(mg1.shape) z_init[1:-1,1:-1] = np.random.rand(np.shape(z_array[1:-1,1:-1])[0],np.shape(z_array[1:-1,1:-1])[1]) z_init = z_init.reshape((np.size(z_init))) z1[:] = z_init #z is tied to the RasterModelGrid mg1 fr1 = FlowAccumulator(mg1,'topographic__elevation',flow_director='D8') sp1 = FastscapeEroder(mg1,K_sp = K,m_sp = m, n_sp=n) lf.tic() for i in range(nt): fr1.run_one_step() sp1.run_one_step(dt) z_array = z1.reshape((mg1.shape)) z_new = lf.Explicit_Diffuser_one_step(z_array,D,dt,dx,dx) z_new = z_new.reshape((np.size(z_new))) z1[:] = z_new mg1.at_node['topographic__elevation'][mg1.core_nodes] += uplift_per_step if i % 20 == 0: print ('Completed loop %d' % i) lf.toc() imshow_grid(mg1,'topographic__elevation') z_array_explicit = z1.reshape((mg.shape)) pickle.dump(z_array_explicit, open("Landlab_explicit_test1.p","wb")) #%% Run with full spectral diffuser mg2 = RasterModelGrid((Nx,Ny), dx) z2 = mg2.add_zeros('topographic__elevation', at='node' ) mg2.set_status_at_node_on_edges(right=FIXED_VALUE_BOUNDARY, top=FIXED_VALUE_BOUNDARY,left=FIXED_VALUE_BOUNDARY,bottom=FIXED_VALUE_BOUNDARY) dt = 50 T_max = 1E5 nt = int(T_max//dt) D = 1E-4 uplift_rate = 1E-3 #m/yr uplift_per_step = uplift_rate*dt m = 0.5 #Exponent on A [] n = 1.0 #Exponent on S [] K = 1E-11*(365*24*3600) #erosivity coefficient [yr−1] np.random.seed(3) z_array = z2.reshape((mg2.shape)) z_init = np.zeros(mg2.shape) z_init[1:-1,1:-1] = np.random.rand(np.shape(z_array[1:-1,1:-1])[0],np.shape(z_array[1:-1,1:-1])[1]) z_init = z_init.reshape((np.size(z_init))) z2[:] = z_init #z is tied to the RasterModelGrid mg2 fr1 = FlowAccumulator(mg2,'topographic__elevation',flow_director='D8') sp1 = FastscapeEroder(mg2,K_sp = K,m_sp = m, n_sp=n) A = lf.Spectral_Diffuser(z_array,D,dt,dx,dx,'explicit') lf.tic() for i in range(nt): fr1.run_one_step() sp1.run_one_step(dt) z_array = z2.reshape((mg2.shape)) z_new = lf.Full_Spectral_Diffuser_one_step(z_array,A) z_new = z_new.reshape((np.size(z_new))) z2[:] = z_new mg2.at_node['topographic__elevation'][mg2.core_nodes] += uplift_per_step if i % 20 == 0: print ('Completed loop %d' % i) lf.toc() imshow_grid(mg2,'topographic__elevation') z_array = z2.reshape((mg.shape)) pickle.dump(z_array, open("Landlab_full_spectral_test1.p","wb")) #%% z_array_spectral = pickle.load(open("Landlab_full_spectral_test1.p","rb")) z_diff = z_array_landlab - z_array_spectral plt.imshow(z_diff)
2.109375
2
Peach/Agent/linux.py
aleasims/Peach
0
12783465
<reponame>aleasims/Peach # # Copyright (c) <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Authors: # <NAME> (<EMAIL>) # $Id: peach.py 1986 2010-03-05 07:19:57Z meddingt $ import struct, sys, time from Peach.agent import Monitor import os, re, pickle class LinuxApport(Monitor): ''' Monitor crash reporter for log files. TODO - Monitor syslog for crash event, then wait for report ''' def __init__(self, args): ''' Constructor. Arguments are supplied via the Peach XML file. @type args: Dictionary @param args: Dictionary of parameters ''' if args.has_key('Executable'): self.Executable = str(args['Executable']).replace("'''", "") else: self.Executable = None if args.has_key('LogFolder'): self.logFolder = str(args['LogFolder']).replace("'''", "") else: self.logFolder = "/var/crash/" if not args.has_key('PeachApport'): raise PeachException("Error, LinuxApport monitor requires the PeachApport parameter providing full path to \"peach-apport\" program.") self.PeachApport = str(args['PeachApport']).replace("'''", "") # Our name for this monitor self._name = "LinuxApport" self.data = None self.startingFiles = None os.system('echo "|' + self.PeachApport +' %p %s %c" > /proc/sys/kernel/core_pattern') os.system('rm -rf ' + self.logFolder + '/*') def OnTestStarting(self): ''' Called right before start of test case or variation ''' # Monitor folder self.startingFiles = os.listdir(self.logFolder) def OnTestFinished(self): ''' Called right after a test case or varation ''' pass def GetMonitorData(self): ''' Get any monitored data from a test case. ''' if self.data == None: return None return {"LinuxApport-Crash.txt":self.data} def DetectedFault(self): ''' Check if a fault was detected. ''' try: # Give crash reporter time to find the crash time.sleep(0.25) time.sleep(0.25) self.data = None for f in os.listdir(self.logFolder): if not f in self.startingFiles and (self.Executable == None or f.find(self.Executable) > -1): fd = open(os.path.join(self.logFolder, f), "rb") self.data = fd.read() fd.close() os.unlink(os.path.join(self.logFolder, f)) return True return False except: print sys.exc_info() return False def OnFault(self): ''' Called when a fault was detected. ''' pass def OnShutdown(self): ''' Called when Agent is shutting down, typically at end of a test run or when a Stop-Run occurs ''' # Stop calling our script os.system('echo "" > /proc/sys/kernel/core_pattern') def StopRun(self): ''' Return True to force test run to fail. This should return True if an unrecoverable error occurs. ''' return False def PublisherCall(self, method): ''' Called when a call action is being performed. Call actions are used to launch programs, this gives the monitor a chance to determin if it should be running the program under a debugger instead. Note: This is a bit of a hack to get this working ''' pass # end
1.914063
2
tests/unit/utils/test_context_processors.py
etienne86/oc_p13_team_spirit
0
12783466
<reponame>etienne86/oc_p13_team_spirit """ This module contains the unit tests related to the context processors in app ``utils``. """ # from django.test import TestCase
1.304688
1
reviewboard/reviews/tests/test_template_tags.py
davidt/reviewboard
1
12783467
<reponame>davidt/reviewboard from __future__ import unicode_literals from django.contrib.auth.models import User from django.template import Context, Template from django.test.client import RequestFactory from django.utils import six from reviewboard.accounts.models import Profile from reviewboard.testing import TestCase class IfNeatNumberTagTests(TestCase): """Unit tests for {% ifneatnumber %} template tag.""" def test_milestones(self): """Testing the ifneatnumber tag with milestone numbers""" self.assertNeatNumberResult(100, '') self.assertNeatNumberResult(1000, 'milestone') self.assertNeatNumberResult(10000, 'milestone') self.assertNeatNumberResult(20000, 'milestone') self.assertNeatNumberResult(20001, '') def test_palindrome(self): """Testing the ifneatnumber tag with palindrome numbers""" self.assertNeatNumberResult(101, '') self.assertNeatNumberResult(1001, 'palindrome') self.assertNeatNumberResult(12321, 'palindrome') self.assertNeatNumberResult(20902, 'palindrome') self.assertNeatNumberResult(912219, 'palindrome') self.assertNeatNumberResult(912218, '') def assertNeatNumberResult(self, rid, expected): t = Template( '{% load reviewtags %}' '{% ifneatnumber ' + six.text_type(rid) + ' %}' '{% if milestone %}milestone{% else %}' '{% if palindrome %}palindrome{% endif %}{% endif %}' '{% endifneatnumber %}') self.assertEqual(t.render(Context({})), expected) class MarkdownTemplateTagsTests(TestCase): """Unit tests for Markdown-related template tags.""" def setUp(self): super(MarkdownTemplateTagsTests, self).setUp() self.user = User.objects.create_user('test', '<EMAIL>') Profile.objects.create(user=self.user, default_use_rich_text=False) request_factory = RequestFactory() request = request_factory.get('/') request.user = self.user self.context = Context({ 'request': request, }) def test_normalize_text_for_edit_escape_html(self): """Testing {% normalize_text_for_edit %} escaping for HTML""" t = Template( "{% load reviewtags %}" "{% normalize_text_for_edit '&lt;foo **bar**' True %}") self.assertEqual(t.render(self.context), '&amp;lt;foo **bar**') def test_normalize_text_for_edit_escaping_js(self): """Testing {% normalize_text_for_edit %} escaping for JavaScript""" t = Template( "{% load reviewtags %}" "{% normalize_text_for_edit '&lt;foo **bar**' True True %}") self.assertEqual(t.render(self.context), '\\u0026lt\\u003Bfoo **bar**')
2.28125
2
flan/flanintegration.py
bretlowery/flan
3
12783468
from abc import ABCMeta, abstractmethod try: from flan import istruthy, error, info except: from flan.flan import istruthy, error, info pass import settings import os import threading import _thread as thread def _timeout(exportname): error('Flan->%s import timed out' % exportname) thread.interrupt_main() # raises KeyboardInterrupt def timeout_after(s): """ Use as decorator to exit process if function takes longer than s seconds """ def outer(fn): def inner(*args, **kwargs): x = fn timer = threading.Timer(s, _timeout, args=[fn.__module__]) timer.start() try: result = fn(*args, **kwargs) finally: timer.cancel() return result return inner return outer class FlanIntegration: __metaclass__ = ABCMeta def __init__(self, name, meta, config): self.name = name self.meta = meta self.config = None self.loglevel = None self.haltonerror = None self.version = settings.__VERSION__ def logerr(self, err): if self.loglevel == "errors" or self.haltonerror: error('Flan->%s exports failed: %s' % (self.name, err)) if self.haltonerror: os._exit(1) return def loginfo(self, msg): if self.loglevel == "info": info(msg) return @staticmethod def istruthy(val): return istruthy(val) def _getsetting(self, name, erroronnone=True, checkenv=False, defaultvalue=None): val = defaultvalue try: if checkenv: val = os.environ[name.upper()] except KeyError: pass if not val: ln = name.lower() if ln in self.config: val = self.config[ln] if not val and erroronnone: self.logerr('Flan->%s config failed: no %s defined in the environment or passed to Flan.' % (self.name, name)) return val
2.53125
3
logs/plot.py
xinyandai/distributed-compressed-sgd
3
12783469
<reponame>xinyandai/distributed-compressed-sgd import matplotlib.pyplot as plt import numpy as np fontsize=44 ticksize=40 legendsize=30 plt.style.use('seaborn-white') plt.figure(figsize=(12.8, 9.25)) def read_csv(file_name): return np.genfromtxt(fname=file_name, delimiter=',', skip_header=1) def _plot_setting(): plt.xlabel('# Epoch', fontsize=ticksize) plt.ylabel('Top1 - Accuracy', fontsize=ticksize) plt.yticks(fontsize=ticksize) plt.xticks(fontsize=ticksize) plt.legend(loc='lower right', fontsize=legendsize) plt.show() # sgd = read_csv("csv/results.csv") # plt.plot(sgd[:, 0] * 1.5, 100.0 - sgd[:, 4], 'black', label='SGD', linestyle='--', marker='s') # hsq = read_csv("csv/val_accuracy.csv") # plt.plot( 1.28 * (hsq[:, 0] + 1), hsq[:, 1] * 100.0, 'red', label='HSQ', linestyle='-', marker='x') linewidth = 1 sgd = read_csv("sgd_32bit/csv/val_accuracy.csv") plt.plot( (sgd[:, 0] + 1), sgd[:, 1] * 100.0, 'black', label='SGD', linestyle='--', marker='x', linewidth=linewidth) hsq = read_csv("nnq_d8_k256/csv/val_accuracy.csv") plt.plot( (hsq[:, 0] + 1), hsq[:, 1] * 100.0, 'red', label='HSQ', linestyle='-', marker='s', linewidth=linewidth) _plot_setting()
2.703125
3
test_lung_seg_scan_luna.py
Aryan98/lcprediction
0
12783470
import sys import lasagne as nn import numpy as np import theano import pathfinder import utils from configuration import config, set_configuration from utils_plots import plot_slice_3d_4 import theano.tensor as T import blobs_detection import logger import time import multiprocessing as mp import buffering theano.config.warn_float64 = 'raise' if len(sys.argv) < 2: sys.exit("Usage: test_luna_scan.py <configuration_name>") config_name = sys.argv[1] set_configuration('configs_seg_scan', config_name) # predictions path predictions_dir = utils.get_dir_path('model-predictions', pathfinder.METADATA_PATH) outputs_path = predictions_dir + '/%s' % config_name utils.auto_make_dir(outputs_path) # logs logs_dir = utils.get_dir_path('logs', pathfinder.METADATA_PATH) sys.stdout = logger.Logger(logs_dir + '/%s.log' % config_name) sys.stderr = sys.stdout data_iterator = config().train_data_iterator print print 'Data' print 'n samples: %d' % data_iterator.nsamples start_time = time.time() n_pos = 0 tp = 0 for n, (ct, lung_mask, annotations, tf_matrix, pid) in enumerate(data_iterator.generate()): print '-------------------------------------' print n, pid n_pos += annotations.shape[0] n_pid_tp = 0 annotations = np.int32(annotations) for i in xrange(annotations.shape[0]): if lung_mask[0, 0, annotations[i, 0], annotations[i, 1], annotations[i, 2]] == 1: n_pid_tp += 1 tp += n_pid_tp print annotations.shape[0], n_pid_tp if annotations.shape[0] > n_pid_tp: print '----HERE-----!!!!!' print 'total', n_pos print 'detected', tp
1.796875
2
src/networks/lenet.py
francesco-p/FACIL
243
12783471
from torch import nn import torch.nn.functional as F class LeNet(nn.Module): """LeNet-like network for tests with MNIST (28x28).""" def __init__(self, in_channels=1, num_classes=10, **kwargs): super().__init__() # main part of the network self.conv1 = nn.Conv2d(in_channels, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 16, 120) self.fc2 = nn.Linear(120, 84) # last classifier layer (head) with as many outputs as classes self.fc = nn.Linear(84, num_classes) # and `head_var` with the name of the head, so it can be removed when doing incremental learning experiments self.head_var = 'fc' def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc(out) return out
3.421875
3
shop/contexts.py
lbacon17/lb-fitness
0
12783472
from django.conf import settings from django.shortcuts import get_object_or_404 from .models import Product def favourites(): """This view iterates through the favourites""" favourite_items = [] shop_items = Product.objects.all() for item in shop_items: shop_item = get_object_or_404(Product, pk=item_id) favourite_items.append(shop_item) context = { 'favourite_items': favourite_items, } return context
1.976563
2
mymario/level1_map.py
sriteja777/My_Mario
1
12783473
<filename>mymario/level1_map.py<gh_stars>1-10 """ A module containing class for level 1 map """ from random import randrange from irregular import print_cloud, IrregularObjects from map import Map from motion import MovingBridges, Enemies from objects import Obj, Extras import config from music import Music msc = Music() def get_extra(): """ Returns any random extra point when PLAYER_OBJ touches extra bridges :return: Returns the string of extra point """ num = randrange(0, 3) if num == 0: return config.TIME if num == 1: return config.LOVE # x = 2 return config.STONE class Level1Map(Map): """ A class for level 1 """ def __init__(self, map_id, rows, columns): """ Initialises various attributes of level 1 :param columns: :param rows: """ Map.__init__(self, map_id, columns, rows, 5*columns) self.fishes = [] self.moving_bridges = [] self.sub_holes = [] self.thrones = [] self.clouds = [] self.lake = None self.stones = [] self.extras = [] self.pole = None self.lives = [] self.up_wall = None self.down_wall = None print(self.length, self.columns, self.rows) print(config.MAP_LENGTH, config.COLUMNS, config.ROWS) self.create_walls() self.create_clouds() self.create_pole() self.create_lake_fishes() self.create_bridges() self.create_moving_bridges() self.create_holes() self.create_coins() self.create_enemies() self.create_extras() self.initial_player_position = {'max_x': 4, 'max_y': self.up_wall.min_y - 1, 'min_x': 3, 'min_y': self.up_wall.min_y - 2} self.create_checkpoints() self.player_crossed_start = False self.player_crossed_lake = False self.player_crossed_thrones = False # self.music_conf = [{}] def control_music(self, player_loc): if not self.player_crossed_start and \ player_loc > self.holes[2].max_x: self.player_crossed_start = True msc.play_music_for_action('Player at lake', change=True) if not self.player_crossed_lake and player_loc > self.lake.max_x: self.player_crossed_lake = True msc.play_music_for_action('Player at thrones', change=True) if not self.player_crossed_thrones and \ player_loc > self.thrones[0].max_x: self.player_crossed_thrones = True msc.play_music_for_action('Player at end', change=True) def create_checkpoints(self): """ Dependencies: initial player position, walls, holes, lakes :return: """ self.checkpoints.append((self.initial_player_position['min_x'], self.initial_player_position['max_y'])) self.checkpoints.append((self.columns, self.up_wall.min_y - 1)) self.checkpoints.append((self.holes[1].max_x + 4, self.up_wall.min_y - 1)) self.checkpoints.append((self.holes[2].max_x + 4, self.up_wall.min_y - 1)) self.checkpoints.append((self.lake.max_x + 1, self.up_wall.min_y - 1)) def create_enemies(self): """ Dependencies: Holes, bridges, lakes, walls """ self.enemies.append(Enemies(self.sub_holes[0].max_x - 2, self.sub_holes[0].max_y, self.sub_holes[0].max_x - 3, self.sub_holes[0].max_y - 1, config.ENEMY, self.sub_holes[0].min_x, self.sub_holes[0].max_x - 2, self)) self.enemies.append( Enemies(self.holes[1].min_x - 1, self.up_wall.min_y - 1, self.holes[1].min_x - 2, self.up_wall.min_y - 2, config.ENEMY, self.bridges[2].max_x + 1, self.holes[1].min_x - 1, self)) self.enemies.append( Enemies(self.bridges[3].max_x, self.bridges[3].min_y - 1, self.bridges[3].max_x - 1, self.bridges[3].min_y - 2, config.ENEMY, self.bridges[3].min_x, self.bridges[3].max_x, self)) # Create enemies and bridges on lake mid = int((self.lake.min_x + self.lake.max_x) / 2) print(self.lake.min_y, self.lake.max_y) # print('x_pos -> ', c.LAKES[0].min_x + 5, mid, 10) # print('y_pos-> ', c.LAKES[0].min_y - 5, c.TOP - 3, int(c.ROWS / 10)) # sleep(3) min_y = int(config.TOP + self.rows / 10) for x_pos, y_pos in zip(range(self.lake.min_x + 5, mid, 10), range(self.lake.min_y - 5, min_y, -int(self.rows / 10))): self.bridges.append(Obj(x_pos + 3, y_pos, x_pos - 3, y_pos - 1, config.BRIDGE, self.map_array, self.object_array)) rand_x = randrange(x_pos - 3, x_pos + 3) self.enemies.append( Enemies(rand_x + 1, y_pos - 2, rand_x, y_pos - 3, config.ENEMY, x_pos - 3, x_pos + 3, self)) store = self.bridges[-1] self.enemies[-1].kill() self.enemies.append(Enemies(store.max_x, store.min_y - 1, store.max_x - 1, store.min_y - 2, config.ENEMY, store.max_x - 1, store.max_x, self)) for x_pos, y_pos in zip(range(self.lake.max_x - 5, mid, -10), range(self.lake.min_y - 5, min_y, -int(self.rows / 10))): self.bridges.append(Obj(x_pos + 3, y_pos, x_pos - 3, y_pos - 1, config.BRIDGE, self.map_array, self.object_array)) rand_x = randrange(x_pos - 3, x_pos + 3) self.enemies.append( Enemies(rand_x + 1, y_pos - 2, rand_x, y_pos - 3, config.ENEMY, x_pos - 3, x_pos + 3, self)) store_2 = self.bridges[-1] self.bridges.append(Obj(store_2.min_x, store.max_y, store.max_x, store.min_y, config.BRIDGE, self.map_array, self.object_array)) self.enemies[-1].kill() self.enemies.append(Enemies(store_2.min_x + 1, store_2.min_y - 1, store_2.min_x, store_2.min_y - 2, config.ENEMY, store_2.min_x, store_2.min_x + 1, self)) mid = int((store.max_x + store_2.min_x) / 2) self.lives.append(Obj(mid, config.TOP, mid, config.TOP, config.LOVE, self.map_array, self.object_array)) def create_coins(self): # Dependencies: Bridges, walls, holes mid = int((self.bridges[0].min_x + self.bridges[0].max_x) / 2) self.coins.append( Obj(mid, self.bridges[0].min_y - 1, mid, self.bridges[0].min_y - 1, config.COIN, self.map_array, self.object_array)) mid = int((self.bridges[1].min_x + self.bridges[1].max_x) / 2) for x_pos, y_pos in zip(range(mid - 4, mid + 2, 2), range(self.bridges[1].min_y - 1, self.bridges[1].min_y - 4, -1)): self.coins.append(Obj(x_pos, y_pos, x_pos, y_pos, config.COIN, self.map_array, self.object_array)) for x_pos, y_pos in zip(range(mid + 2, mid + 8, 2), range(self.bridges[1].min_y - 2, self.bridges[1].min_y, 1)): self.coins.append(Obj(x_pos, y_pos, x_pos, y_pos, config.COIN, self.map_array, self.object_array)) self.coins.append(Obj(self.sub_holes[0].max_x, self.sub_holes[0].max_y, self.sub_holes[0].max_x, self.sub_holes[0].max_y, config.TIME, self.map_array, self.object_array)) for x_pos in range(self.holes[0].max_x + 5, self.bridges[2].min_x - 5, 3): self.coins.append(Obj(x_pos, self.up_wall.min_y - 1, x_pos, self.up_wall.min_y - 1, config.COIN, self.map_array, self.object_array)) def create_holes(self): # Dependencies: walls, bridges rand_x = randrange(int(self.columns / 3), int((2 * self.columns) / 3)) self.holes.append(Obj(rand_x + 5, self.down_wall.max_y - 2, rand_x, self.up_wall.min_y, ' ', self.map_array, self.object_array)) self.sub_holes.append(Obj(self.holes[0].max_x + 10, self.holes[0].max_y, self.holes[0].min_x, self.up_wall.min_y + 2, ' ', self.map_array, self.object_array)) rand_x = randrange(int((4 * self.columns) / 3) + 4, int(5 * self.columns / 3) - 4) self.holes.append(Obj(rand_x + 4, self.rows, rand_x - 4, self.up_wall.min_y, ' ', self.map_array, self.object_array)) self.holes.append(Obj(self.bridges[5].max_x + 24, self.rows, self.bridges[5].max_x + 1, self.up_wall.min_y, ' ', self.map_array, self.object_array)) def create_extras(self): # Dependencies: bridges mid = int((self.bridges[1].min_x + self.bridges[1].max_x) / 2) self.extras.append( Extras(mid + 1, self.bridges[1].max_y, mid - 1, self.bridges[1].min_y, config.EXTRAS_BRIDGE, get_extra(), self.map_array, self.object_array)) mid = int((self.bridges[3].min_x + self.bridges[3].max_x) / 2) self.extras.append( Extras(mid + 1, self.bridges[3].max_y, mid - 1, self.bridges[3].min_y, config.EXTRAS_BRIDGE, get_extra(), self.map_array, self.object_array)) def create_bridges(self): # Dependencies: walls self.bridges.append(Obj(20, self.up_wall.min_y - 5, 14, self.up_wall.min_y - 7, config.BRIDGE, self.map_array, self.object_array)) self.bridges.append(Obj(40, self.up_wall.min_y - 5, 25, self.up_wall.min_y - 7, config.BRIDGE, self.map_array, self.object_array)) self.bridges.append(Obj(self.columns - 4, self.up_wall.min_y - 1, self.columns - 10, self.up_wall.min_y - 7, config.BRIDGE, self.map_array, self.object_array)) rand_x = randrange(self.columns + 5, int(4 * self.columns / 3) - 5) self.bridges.append(Obj(5 + rand_x, self.up_wall.min_y - 5, rand_x - 5, self.up_wall.min_y - 8, config.BRIDGE, self.map_array, self.object_array)) rand_x = randrange(int(5 * self.columns / 3) + 1, 2 * self.columns - 2) self.bridges.append(Obj(rand_x + 1, self.up_wall.min_y - 6, rand_x - 1, self.up_wall.min_y - 8, config.BRIDGE, self.map_array, self.object_array)) rand_x = randrange(2 * self.columns + 6, int((7 * self.columns) / 3) - 6) cross_bridge_list = [[' ' for _ in range(0, 15)] for _ in range(0, 15)] for x_pos in range(0, 15): for y_pos in range(15 - x_pos, 15): cross_bridge_list[x_pos][y_pos] = config.BRIDGE self.bridges.append(IrregularObjects({'max_x': rand_x + 6, 'max_y': self.up_wall.min_y - 1, 'min_x': rand_x - 6,'min_y': self.up_wall.min_y - 14}, cross_bridge_list, self.map_array, self.object_array)) def create_lake_fishes(self): # Dependencies: walls min_x = int(8 * self.columns / 3) max_x = int(11 * self.columns / 3) self.lake = Obj(max_x, self.down_wall.max_y - 1, min_x, self.up_wall.max_y, config.WATER, self.map_array, self.object_array) rand_x = randrange(self.lake.min_x + 2, self.lake.max_x - 2) rand_y = self.lake.min_y + randrange(1, 4) self.fishes.append(Obj(rand_x, rand_y, rand_x, rand_y, config.FISH, self.map_array, self.object_array)) rand_x = randrange(self.lake.min_x + 2, self.lake.max_x - 2) rand_y = self.lake.min_y + randrange(1, 4) self.fishes.append(Obj(rand_x, rand_y, rand_x, rand_y, config.FISH, self.map_array, self.object_array)) def create_moving_bridges(self): # Dependencies: walls, lake min_x = int((11 * self.columns) / 3) + 7 length = 15 max_x = int((9 * self.columns) / 2) # Create Knifes self.thrones.append(Obj(max_x, self.up_wall.max_y + 1, min_x, self.up_wall.max_y, config.THRONES, self.map_array, self.object_array)) min_y = config.TOP + 5 max_y = self.lake.min_y - 5 for x_pos in range(min_x, max_x, 25): rand_y = randrange(min_y, max_y + 1) self.moving_bridges.append( MovingBridges(x_pos + length, rand_y, x_pos, rand_y, config.MOVING_BRIDGES, config.TOP + 5, self.lake.min_y - 5, self)) def create_walls(self): # Dependencies: None self.down_wall = Obj(self.length, self.rows, 1, int((9 * self.rows) / 10), config.DOWN_WALL, self.map_array, self.object_array) self.up_wall = Obj(self.length, self.down_wall.min_y - 1, 1, self.down_wall.min_y - 1, config.UP_WALL, self.map_array, self.object_array) def create_clouds(self): # Dependencies: None cloud = print_cloud() rand_x = randrange(1, self.columns) rand_x_2 = randrange(self.columns, 2 * self.columns) rand_x_3 = randrange(2 * self.columns, 3 * self.columns) self.clouds.append(IrregularObjects( {'max_x': len(cloud[0]) + rand_x, 'max_y': 5 + len(cloud), 'min_x': rand_x, 'min_y': 1}, cloud, self.map_array, self.object_array)) self.clouds.append(IrregularObjects( {'max_x': len(cloud[0]) + rand_x_2, 'max_y': 4 + len(cloud), 'min_x': rand_x_2, 'min_y': 2}, cloud, self.map_array, self.object_array)) self.clouds.append(IrregularObjects( {'max_x': len(cloud[0]) + rand_x_3, 'max_y': 6 + len(cloud), 'min_x': rand_x_3, 'min_y': 1}, cloud, self.map_array, self.object_array)) def create_pole(self): # Dependencies: Walls self.pole = Obj(self.length - 5, self.up_wall.min_y - 1, self.length - 5, self.up_wall.min_y - 15, '|', self.map_array, self.object_array) def get_features(self): """ Get Features of map :return: """ # Override to print a readable string presentation of your object # below is a dynamic way of doing this without explicity constructing the string manually return ', '.join( ['{key}={value}'.format(key=key, value=self.__dict__.get(key)) for key in self.__dict__] ) if __name__ == '__main__': TED = Level1Map(1, 2, 10) print(TED.get_features())
3.40625
3
serve.py
racterub/ctfdeployer
3
12783474
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Date : 2019-05-31 00:14:27 # @Author : Racter (<EMAIL>) # @Profile : https://racterub.me import yaml from argparse import ArgumentParser import os import sys import shutil from subprocess import check_output def parseParam(): parser = ArgumentParser() parser.add_argument("-d", "--dir", help="Path to challenges", default="chal/", dest="path") parser.add_argument("-p", "--port", help="Pwn challenges' starting port (Default => 6000)", type=int, default=6000, dest="port") parser.add_argument("-i", "--img", help="Docker base image for your pwn challenges (Default => ubuntu:18.04) or do just do <img>:<tag>", default="ubuntu:18.04", dest="image") parser.add_argument("-t", "--timeout", help="Set timeout limit", default=0, dest="time") parser.add_argument("-g", "--gen-conf", help="Generate docker-compose.yml", action="store_true", dest="gen_conf") parser.add_argument("-e", "--ex-libc", help="Export libc from container", action="store_true", dest="ex_libc") args = parser.parse_args() return args def genConf(path, port, image, timeout): config = {"services": {}} base = os.path.dirname(os.path.abspath(__file__)) + "/%s" % path chal = [f for f in os.listdir(base)] for i in range(len(chal)): baseDir = base + chal[i] data = {"build": "chal/%s" % chal[i], "ulimits": {"nproc": 1024}, "ports": ["%d:9999" % port]} config['services'][chal[i]] = data port += 1 with open('docker-compose.yml', 'w') as f: f.write(yaml.dump({"version": '3'}) + yaml.dump(config)) def exportLibc(path, port, image, timeout): base = os.path.dirname(os.path.abspath(__file__)) + "/%s" % path chal = [f for f in os.listdir(base)] os.mkdir('libc/') for i in range(len(chal)): os.mkdir("libc/%s" % chal[i]) containerID = check_output('docker ps -aqf "name=pwndeployer_%s"' % chal[i], shell=True).strip().decode() os.system("docker cp --follow-link %s:lib32/libc.so.6 libc/%s/lib32" % (containerID, chal[i])) os.system("docker cp --follow-link %s:lib/x86_64-linux-gnu/libc.so.6 libc/%s/lib64" % (containerID, chal[i])) def setup(path, port, image, timeout): config = {"services": {}} base = os.path.dirname(os.path.abspath(__file__)) + "/%s" % path chal = [f for f in os.listdir(base)] for i in range(len(chal)): baseDir = base + chal[i] os.mkdir(baseDir+"/bin/") dockerfile = """FROM %s RUN apt-get update && apt-get -y dist-upgrade RUN apt-get install -y lib32z1 xinetd RUN useradd -m ctf COPY ./bin/ /home/ctf/ COPY ./ctf.xinetd /etc/xinetd.d/ctf COPY ./start.sh /start.sh RUN echo "Blocked by ctf_xinetd" > /etc/banner_fail RUN chmod +x /start.sh RUN chown -R root:ctf /home/ctf RUN chmod -R 750 /home/ctf RUN chmod 740 /home/ctf/flag RUN cp -R /lib* /home/ctf RUN cp -R /usr/lib* /home/ctf RUN mkdir /home/ctf/dev RUN mknod /home/ctf/dev/null c 1 3 RUN mknod /home/ctf/dev/zero c 1 5 RUN mknod /home/ctf/dev/random c 1 8 RUN mknod /home/ctf/dev/urandom c 1 9 RUN chmod 666 /home/ctf/dev/* RUN mkdir /home/ctf/bin RUN cp /bin/sh /home/ctf/bin RUN cp /bin/ls /home/ctf/bin RUN cp /bin/cat /home/ctf/bin RUN cp /usr/bin/timeout /home/ctf/bin WORKDIR /home/ctf CMD ["/start.sh"] EXPOSE 9999 """ % image with open('xinetd_setting', 'r') as setting: ctfXinetd = setting.read() if timeout: runsh = '''#!/bin/sh exec 2>/dev/null timeout %d ./%s''' % (timeout, chal[i]) else: runsh = ''' #!/bin/sh exec 2>/dev/null ./%s''' % chal[i] shutil.move(baseDir+"/%s" % chal[i], baseDir+'/bin/') shutil.move(baseDir+"/flag", baseDir+'/bin/') os.chmod(baseDir+'/bin/%s' % chal[i], 0o755) with open('start.sh') as f: startsh = f.read() with open(baseDir+'/start.sh', 'w') as f: f.write(startsh) with open(baseDir+'/Dockerfile', 'w') as f: f.write(dockerfile) with open(baseDir+'/bin/run.sh', 'w') as f: f.write(runsh) with open(baseDir+'/ctf.xinetd', 'w') as f: f.write(ctfXinetd) data = {"build": "chal/%s" % chal[i], "ulimits": {"nproc": 1024}, "ports": ["%d:9999" % port]} config['services'][chal[i]] = data port += 1 with open('docker-compose.yml', 'w') as f: f.write(yaml.dump({"version": '3'}) + yaml.dump(config)) if __name__ == "__main__": arg = parseParam() if os.path.isdir(arg.path): if arg.gen_conf: genConf(arg.path, arg.port, arg.image, arg.time) elif arg.ex_libc: exportLibc(arg.path, arg.port, arg.image, arg.time) else: setup(arg.path, arg.port, arg.image, arg.time) else: print("Invalid input") sys.exit(-1)
2.21875
2
sort-algorithm/heap_sort.py
free-free/Algorithm
7
12783475
<filename>sort-algorithm/heap_sort.py # -*- coding:utf-8 -*- import numpy as np class MaxHeap(object): def __init__(self, sz, data): self.sz = sz self.cnt = len(data) self.heap = [0] * (self.sz + 1) self.heap[1 : self.cnt] = data self.build_heap() def build_heap(self): last_no_leaf = self.cnt // 2 for i in range(last_no_leaf, 0, -1): self.heaplify(self.heap, self.cnt, i) def heaplify(self, heap, cnt, ind): while True: max_pos = ind if 2 * ind <= cnt and heap[2 * ind] > heap[max_pos]: max_pos = 2 * ind if (2 * ind + 1) <= cnt and heap[2 * ind + 1] > heap[max_pos]: max_pos = 2 * ind + 1 if max_pos == ind: break heap[max_pos], heap[ind] = heap[ind], heap[max_pos] ind = max_pos def remove_max(self): if self.cnt == 0: return -1 max_val = self.heap[1] self.heap[1] = self.heap[self.cnt] self.heap[self.cnt] = 0 self.cnt -= 1 self.heaplify(self.heap, self.cnt, 1) return max_val def insert(self, item): if self.cnt >= self.sz: return -1 self.cnt += 1 self.heap[self.cnt] = item i = self.cnt while (i // 2) > 0 and self.heap[i // 2] < self.heap[i]: self.heap[i // 2], self.heap[i] = self.heap[i], self.heap[i // 2] i = i // 2 def heap_sort(data): heap = MaxHeap(len(data), data) k = heap.cnt while k >= 1: heap.heap[1], heap.heap[k] = heap.heap[k], heap.heap[1] k -= 1 heap.heaplify(heap.heap, k, 1) return heap.heap[1 : heap.cnt] if __name__ == '__main__': data = np.random.randint(0, 100, 10) print(data) print(heap_sort(data)) # heap = MaxHeap(20, data) # print(heap.heap) # print(heap.remove_max()) # print(heap.heap) # heap.insert(1000) # print(heap.heap)
3.84375
4
ransac.py
vishwa91/pyimreg
63
12783476
<gh_stars>10-100 #!/usr/bin/env python from scipy import * from scipy.linalg import * from scipy.special import * from random import choice from PIL import Image import sys from sift import * from homography import * import pdb # New version coming soon. def get_points(locs1, locs2, matchscores): ''' Return the corresponding points in both the images ''' plist = [] t = min(len(locs1), len(locs2)) for i in range(len(matchscores)): if (matchscores[i] > 0): y1 = int(locs1[i, 1]) x1 = int(locs1[i, 0]) y2 = int(locs2[int(matchscores[i]), 1]) x2 = int(locs2[int(matchscores[i]), 0]) plist.append([[x1,y1],[x2,y2]]) return plist def get_homography(points_list): ''' Function to quickly compute a homography matrix from all point correspondences. Inputs: points_list: tuple of tuple of tuple of correspondence indices. Each entry is [[x1, y1], [x2, y2]] where [x1, y1] from image 1 corresponds to [x2, y2] from image 2. Outputs: H: Homography matrix. ''' fp = ones((len(plist), 3)) tp = ones((len(plist), 3)) for idx in range(len(plist)): fp[idx, 0] = plist[idx][0][0] fp[idx, 1] = plist[idx][0][1] tp[idx, 0] = plist[idx][1][0] tp[idx, 1] = plist[idx][1][1] H = Haffine_from_points(fp.T, tp.T) return H def ransac(im1, im2, points_list, iters = 10 , error = 10, good_model_num = 5): ''' This function uses RANSAC algorithm to estimate the shift and rotation between the two given images ''' if ndim(im1) == 2: rows,cols = im1.shape else: rows, cols, _ = im1.shape model_error = 255 model_H = None for i in range(iters): consensus_set = [] points_list_temp = copy(points_list).tolist() # Randomly select 3 points for j in range(3): temp = choice(points_list_temp) consensus_set.append(temp) points_list_temp.remove(temp) # Calculate the homography matrix from the 3 points fp0 = [] fp1 = [] fp2 = [] tp0 = [] tp1 = [] tp2 = [] for line in consensus_set: fp0.append(line[0][0]) fp1.append(line[0][1]) fp2.append(1) tp0.append(line[1][0]) tp1.append(line[1][1]) tp2.append(1) fp = array([fp0, fp1, fp2]) tp = array([tp0, tp1, tp2]) H = Haffine_from_points(fp, tp) # Transform the second image # imtemp = transform_im(im2, [-xshift, -yshift], -theta) # Check if the other points fit this model for p in points_list_temp: x1, y1 = p[0] x2, y2 = p[1] A = array([x1, y1, 1]).reshape(3,1) B = array([x2, y2, 1]).reshape(3,1) out = B - dot(H, A) dist_err = hypot(out[0][0], out[1][0]) if dist_err < error: consensus_set.append(p) # Check how well is our speculated model if len(consensus_set) >= good_model_num: dists = [] for p in consensus_set: x0, y0 = p[0] x1, y1 = p[1] A = array([x0, y0, 1]).reshape(3,1) B = array([x1, y1, 1]).reshape(3,1) out = B - dot(H, A) dist_err = hypot(out[0][0], out[1][0]) dists.append(dist_err) if (max(dists) < error) and (max(dists) < model_error): model_error = max(dists) model_H = H return model_H if __name__ == "__main__": try: os.mkdir("temp") except OSError: pass try: # Load images from command prompt im1 = Image.open(sys.argv[1]) im2 = Image.open(sys.argv[2]) except IndexError: print('Usage: python ransac.py image1 image2') sys.exit() im1.convert('L').save('temp/1.pgm') im2.convert('L').save('temp/2.pgm') im1 = asarray(im1) im2 = asarray(im2) process_image('temp/1.pgm', 'temp/1.key') process_image('temp/2.pgm', 'temp/2.key') key1 = read_features_from_file('temp/1.key') key2 = read_features_from_file('temp/2.key') score = match(key1[1], key2[1]) plist = get_points(key1[0], key2[0], score) plot_matches(im1,im2,key1[0],key2[0],score) # Compare ransac and simple homography matrix out_ransac = ransac(im1, im2, plist) out_simple = get_homography(plist) H_ransac = inv(out_ransac) H_simple = inv(out_simple) im_ransac = affine_transform2(im1, H_ransac[:2, :2], [H_ransac[0][2], H_ransac[1][2]]) im_simple = affine_transform2(im1, H_simple[:2, :2], [H_simple[0][2], H_simple[1][2]]) Image.fromarray(im2).show() Image.fromarray(im_ransac).show() Image.fromarray(im_simple).show()
2.6875
3
modules/blockchain/blockchain.py
zeddo123/OpenBook
12
12783477
import copy as cp from pprint import pprint as pp from termcolor import colored from modules.blockchain.block import * from modules.blockchain.book import * from modules.blockchain.transaction import * class BlockChain: """BlockChain Object to be added to the chain :Attributes: :attr block_chain: All the blocks in the chain :type block_chain: list :attr open_transaction: All the transactions to be added :type open_transaction: list :Methods: :meth __init__: Constructor of the class :meth to_json: Create a json file of the block-chain :meth valid_proof: Verify the hash guess :meth proof_of_work: Calculate the hash of the block and return nonce :meth create_append_transaction: Create and append a transaction to the open transaction list :meth mine_block: mine the new block + add the reward transaction :meth number_blocks: gives number of block in the chain :meth __str__: magic method, prints the chain and its blocks """ def __init__(self, override=False, debug=True): """Constructor of the class""" # Create the genesis block (the first block in the chain) if not override: genesis_block = Block(None, [Transaction(sender=None, recipient='BlockChain', book=None, transaction_type=2)]) self.block_chain = [genesis_block] else: genesis_block = None self.block_chain = [] # a list containing all the forks of a chain at the same level self.chains_same_level = [self.block_chain] self.open_transactions = [] self.debug = debug def valid_proof(self, last_hash, nonce): """Verify the hash guess :param last_hash: the hash of the previous block in the chain :type last_hash: str :param nonce: nonce guess of the hash :type nonce: int :returns: True or False guess_hash :rtype: bool """ guess = (str(list(map(str, self.open_transactions))) + str(last_hash) + str(nonce)).encode() guess_hash = hashlib.sha256(guess).hexdigest() # print(guess_hash) return guess_hash[0:2] == '42' # 42 is the difficulty to find the hash def proof_of_work(self): """Search for the right hash by adjusting the `nonce` value :var nonce: field whose value is adjusted by miners so that the hash of the block will be the current target (for now it's 42 as the first two chars) of the network :type nonce: int :returns: nonce of the hash :rtype: int """ last_block = self.block_chain[-1] last_hash = last_block.hash nonce = 0 while not self.valid_proof(last_hash, nonce): nonce += 1 return nonce # TODO: change the name of this method def create_append_transaction(self, new_transaction): """This method create a transaction and append it to the Open transaction attr :param new_transaction: new transaction :type new_transaction: Transaction object -> *`modules.blockchain.transaction`* :returns: None """ if self.verify_transaction(new_transaction): self.open_transactions.append(new_transaction) def verify_transaction(self, new_transaction): # TODO: complete this method pass @staticmethod def verify_blockchain(blockchain, flag_list=False): """Verify if a block-chain hasn't been tampered with loop through the block and verify the difference between the hashes :param blockchain: the block-chain to be verified :type blockchain: BlockChain *-blockchain.py* :returns: the chain is valid or not :rtype: {bool} """ if not flag_list: block_chain = blockchain.block_chain else: block_chain = blockchain flags = [] for i in range(1, len(block_chain)): block = block_chain[i] block1 = block_chain[i - 1] if block.hash != block.hash_block(): flags.append("[!] Found difference between the hash and the calculated one") elif block1.hash != block.previous_hash: flags.append("[!] Found difference between the hash of a block and the one previous") elif block1.timestamp >= block.timestamp: flags.append("[!] Found irregularity between the time-stamps") if not flag_list: blockchain._debug(flags) return True if len(flags) == 0 else False def mine_block(self, recipient): """This method mine the new block with the opentransaction list :param recipient: Miner's ID - who is being rewarded for mining the block :type recipient: str :returns: None """ last_block = self.block_chain[-1] # Get the Last block last_hash = last_block.hash # Get the hash of the last block nonce = self.proof_of_work() # Determine the nonce value # Create the reward and append it to the open transactions reward_transaction = Transaction(sender=None, recipient=recipient, book=None, transaction_type=2) self.open_transactions.append(reward_transaction) # Create the new Block new_block = Block(last_hash, self.open_transactions, index=len(self.block_chain), nonce=nonce) self.block_chain.append(new_block) self.open_transactions = [] def fork_chain(self, index=None): """Create a fork *-copy* of the block-chain with index*- beginning* preferred The copy is made by a deep-copy :param index: the start of the *forking*, defaults to None :type index: int, optional """ copy = cp.deepcopy(self) copy.block_chain = copy.block_chain[index:] return copy def to_json(self): """ to_json converts the object into a json object :var dict_json: contains information about the blocks :type dict_json: dict :returns: a dict (json) containing the chain :rtype: dict """ dict_json = {} # Loop through and convert the block to json objects for i, block in enumerate(self.block_chain): dict_json[i] = block.to_json() return dict_json # Returs number of block in the chain number_blocks = lambda self: len(self.block_chain) def __eq__(self, other): return self.to_json() == other.to_json() def __repr__(self): return str(self.to_json()) def __str__(self): print(f'::{self.number_blocks()} blocks in the blockchain') for block, number in zip(self.block_chain, range(len(self.block_chain))): print('number\n', number) print('block\n', block) return '' @staticmethod def json_to_blockchain(bc_json): bc = BlockChain(override=True) for block in bc_json.values(): bc.block_chain.append(Block.json_to_block(block)) return bc def _debug(self, msg, pprint=False): """Prints helpful information in debug mode _debug print with different color depending on the node_type :param msg: the message to display :type msg: string :param pprint: prints a msg with a pprint *with indentation*, defaults to False :type pprint: bool, optional """ if self.debug: if not pprint: print(colored(msg, 'magenta')) else: pp(msg, indent=4, width=4) if __name__ == '__main__': # Exemple on how to use the blockchain object blockchain = BlockChain() print(blockchain) blockchain.create_append_transaction(Transaction('mouha', 'recipient', Book(title='The Selfish Gene', author='<NAME>', date='19--', genre='Science'))) blockchain.mine_block('zeddo') print(blockchain)
3.3125
3
Fabric_socket.py
sgino209/Traffic_Simulation
0
12783478
<reponame>sgino209/Traffic_Simulation __author__ = 'shahargino' import simpy class Fabric_socket: """This class implements the socket core of the Fabric""" # ---------------------------------------------------------------------------------------- def __init__(self, name, params, parent, tb): self.name = self.__class__.__name__ + "_" + name self.env = tb['ENV'] self.params = params self.parent = parent self.clk_ns = parent.clk_ns self.granted = True if self.params['INIT_TGT'] == 'initiator': self.granted = False self.debug = tb['AUX'].debug self.error = tb['AUX'].error self.action = self.env.process(self.run()) for key, value in self.params.iteritems(): self.debug(self.name, 'Created with %s = %s' % (key, value)) # ---------------------------------------------------------------------------------------- def is_initiator(self): return self.params['INIT_TGT'] == 'initiator' # ---------------------------------------------------------------------------------------- def set_grant(self, val): if not self.granted and val: self.debug(self.name, '"%s" has been granted by Fabric Arbiter' % self.name) self.granted = val # ---------------------------------------------------------------------------------------- def run(self): while True: try: yield self.env.timeout(self.clk_ns) if self.params['INIT_TGT'] == 'initiator' and self.granted: self.parent.action.interrupt( ["SOCKET_GRANTED", self.name[len(self.__class__.__name__ + "_"):]] ) except simpy.Interrupt as interrupt: int_cause = interrupt.cause if int_cause[0] == 'MESSAGE_FOR_TARGET': if self.is_initiator(): self.error(self.name, 'An Initiator socket cannot receive Target messages') else: self.parent.action.interrupt(int_cause)
2.359375
2
scanpdf/sort.py
mjirik/scanpdf
0
12783479
<filename>scanpdf/sort.py # /usr/bin/env python # -*- coding: utf-8 -*- import logging logger = logging.getLogger(__name__) # conda create -c conda-forge -n -c mcs07 scanpdf python=3.6 numpy scikit-image jupyter tesseract import sys import glob import os.path as op import os import shutil import numpy as np from matplotlib import pyplot as plt import scipy.misc import skimage.transform import skimage.io import scanpdf.deskew def make_output_dir(path): head, teil = op.split(path) output_path = op.join(head, teil + " - sorted") if not op.exists(output_path): import os os.makedirs(output_path) return output_path def sort_prepare_parameters(path, reverse_odd_pages=False, reverse_even_pages=True, turn_odd_pages=False, turn_even_pages=True): fns = glob.glob(op.join(path, "*")) fns.sort(key=os.path.getmtime) length = len(fns) if length % 2 == 1: raise ValueError("Even number of files expected") len2 = int(length / 2) processing_params = [None] * length # fns sorted by datetime for i, fn in enumerate(fns): turn = False if i < len2: # odd if reverse_odd_pages: inew = ((len2 - i) * 2) + 1 else: inew = (i * 2) + 1 turn = turn_odd_pages else: # even if reverse_even_pages: inew = (length - i) * 2 else: inew = (i - len2) * 2 turn = turn_even_pages processing_params[inew - 1] = {"inew": inew, "turn": turn, "fn": fn} # print(inew, turn, fn) return processing_params def sort_write_output(processing_params, output_path): for ppars in processing_params: inew = ppars["inew"] turn = ppars["turn"] fn = ppars["fn"] _, ext = op.splitext(fn) # = processing_params[i] new_short_fn = '{:04d}'.format(inew) + ext # print(new_short_fn, inew, ppars["empty"], fn[-10:]) if ppars["empty"]: new_short_fn = "_empty_" + new_short_fn # continue new_fn = op.join(output_path, new_short_fn) im = skimage.io.imread(fn) if turn: im = skimage.transform.rotate(im, 180) if "angle" in ppars: im = skimage.transform.rotate(im, ppars["angle"], cval=1) skimage.io.imsave(new_fn, im)
2.75
3
teachers_notes/api_example.py
kchiv/data_science_basics
26
12783480
<filename>teachers_notes/api_example.py # show how product information is collected from an API # first import packages import urllib2 import json import pandas as pd # this is your api information my_api_key = "<KEY>" # build the api url, passing in your api key url = "http://api.shopstyle.com/api/v2/" ties = "{}products?pid={}&cat=mens-ties&limit=100".format(url, my_api_key) # open the connection to the api endpoint jsonResponse = urllib2.urlopen(ties) data = json.load(jsonResponse) # parse the response to find out how many pages of results there are total = data['metadata']['total'] limit = data['metadata']['limit'] offset = data['metadata']['offset'] pages = (total / limit) print "{} total, {} per page. {} pages to process".format(total, limit, pages) # tmp = pd.DataFrame(data['products']) # set up an empty dictionary dfs = {} # connect with api again, page by page and save the results to the dictionary for page in range(pages+1): allTies = "{}products?pid={}&cat=mens-ties&limit=100&offset={}&sort=popular".format(url, mykeys.apiKey, (page*50)) jsonResponse = urllib2.urlopen(allTies) data = json.load(jsonResponse) dfs[page] = pd.DataFrame(data['products']) # convert the dictionary to a pandas data frame object df = pd.concat(dfs, ignore_index=True) # Cleaning records, removing duplicates df = df.drop_duplicates('id') df['priceLabel'] = df['priceLabel'].str.replace('$', '') df['priceLabel'] = df['priceLabel'].astype(float) # continue cleaning up the data, split data into columns as necesary def breakId(x, y = 0): try: y = x["id"] except: pass return y def breakName(x, y=""): try: y = x["name"] except: pass return y df['brandId'] = df['brand'].map(breakId); df['brandName'] = df['brand'].map(breakName); def breakCanC(x,y=""): try: y = x[0]["canonicalColors"][0]["name"] except: pass return y def breakColorName(x, y=""): try: y = x[0]["name"] except: pass return y def breakColorId(x, y=""): try: y = x[0]["canonicalColors"][0]["id"] except: pass return y df['colorId'] = df['colors'].map(breakColorId); df['colorFamily'] = df['colors'].map(breakCanC); df['colorNamed'] = df['colors'].map(breakColorName); # export to data.csv df.to_csv("data.csv", sep='\t', encoding='utf-8', columns=['id', 'priceLabel', 'name','brandId', 'brandName', 'colorId', 'colorFamily', 'colorNamed'])
3.703125
4
tests/test_generate.py
anthem-ai/fhir-types
2
12783481
from pathlib import Path from tempfile import TemporaryDirectory from typing import Any, Dict, List, Tuple import pytest from scripts.generate import ( CIRCULAR_PROPERTY_REFERENCES, CIRCULAR_REFERENCES, INT_PROPERTIES, ObjectDefinition, OneOfDefinition, PrimitiveDefinition, Property, Schema, generate_files, get_definition_class, get_import_line_from_reference, get_init_py, get_resource_file_name, get_resource_from_path, get_resource_var_name, get_schema, ) def test_utils() -> None: assert get_resource_from_path("#/definitions/Account") == "Account" assert get_resource_var_name("Account") == "FHIR_Account" assert get_resource_file_name("Account") == "FHIR_Account" import_line = "from .FHIR_Account import FHIR_Account\n" assert get_import_line_from_reference("Account") == import_line assert Property.get_enum_literal(["a", "b"]) == 'Literal["a", "b"]' def test_get_definition() -> None: assert type(OneOfDefinition) == type( get_definition_class("Property", {"oneOf": []}) ) assert type(PrimitiveDefinition) == type( get_definition_class("boolean", {"properties": {}}) ) assert type(ObjectDefinition) == type( get_definition_class("Property", {"properties": {}}) ) with pytest.raises(Exception, match="Not expecting this schema definition"): get_definition_class("Property", {"oneOfQQQ": []}) def test_primitive_def() -> None: def build(line: str) -> str: return f"# aaa\n{line}" assert PrimitiveDefinition( "a", {"description": "aaa", "type": "string"} ).generate() == build("FHIR_a = str") assert PrimitiveDefinition( "a", {"description": "aaa", "type": "boolean"} ).generate() == build("FHIR_a = bool") assert PrimitiveDefinition( "a", {"description": "aaa", "type": "number"} ).generate() == build("FHIR_a = float") # No Type Provided (XHTML works this way) assert PrimitiveDefinition("a", {"description": "aaa"}).generate() == build( "FHIR_a = str" ) # Check override INT prop_name = INT_PROPERTIES[0] assert PrimitiveDefinition( prop_name, {"description": "aaa", "type": "number"} ).generate() == build(f"FHIR_{prop_name} = int") # Check bad type given with pytest.raises(Exception, match="Not able to handle schema"): PrimitiveDefinition("a", {"description": "aaa", "type": "number123"}).generate() def test_oneof_def() -> None: schema = { "oneOf": [{"$ref": "#/definitions/Account"}, {"$ref": "#/definitions/Patient"}] } lines = [ "from typing import Union", "from .FHIR_Account import FHIR_Account", "from .FHIR_Patient import FHIR_Patient", "FHIR_Result = Union[", " FHIR_Account,", " FHIR_Patient,", "]", ] definition = OneOfDefinition("Result", schema) result = definition.generate().split("\n") for i in range(len(result)): assert result[i] == lines[i] def test_object_def() -> None: schema = { "description": "aaa", "properties": { "a": {"description": "bbb", "type": "string"}, "b": {"description": "bbb", "$ref": "#/definitions/Account"}, }, } lines = [ "from typing import Any, List, TypedDict, Literal", "from .FHIR_Account import FHIR_Account", "# aaa", 'FHIR_Result = TypedDict("FHIR_Result", {', " # bbb", ' "a": str,', " # bbb", ' "b": FHIR_Account,', "}, total=False)", ] definition = ObjectDefinition("Result", schema) result = definition.generate().split("\n") for i in range(len(result)): assert result[i] == lines[i] def test_object_def_circular() -> None: circular_reference = list(CIRCULAR_REFERENCES)[0] circular_parent = list(CIRCULAR_PROPERTY_REFERENCES.keys())[0] circular_property = CIRCULAR_PROPERTY_REFERENCES[circular_parent][0] schema = { "description": "aaa", "properties": { # property can't point to self "a": {"description": "bbb", "$ref": f"#/definitions/{circular_parent}"}, # circular references are blacklisted "b": {"description": "bbb", "$ref": f"#/definitions/{circular_reference}"}, # reference.properties are blacklisted circular_property: {"description": "bbb", "$ref": "#/definitions/123"}, }, } # There should be no import references in any of these cases lines = [ "from typing import Any, List, TypedDict, Literal", "# aaa", f"FHIR_{circular_parent} = TypedDict(\"FHIR_{circular_parent}\", {'{'}", " # bbb", ' "a": Any,', " # bbb", ' "b": Any,', " # bbb", f' "{circular_property}": Any,', "}, total=False)", ] definition = ObjectDefinition(circular_parent, schema) result = definition.generate().split("\n") for i in range(len(result)): assert result[i] == lines[i] def test_property_gen() -> None: parent = "Parent" circular_reference = list(CIRCULAR_REFERENCES)[0] mappings: List[Tuple[str, Dict[str, Any]]] = [ ("bool", {"description": "aaa", "type": "boolean"}), ("str", {"description": "aaa", "type": "string"}), ("float", {"description": "aaa", "type": "number"}), ('Literal["Account"]', {"description": "aaa", "const": "Account"}), ('Literal["a", "b"]', {"description": "aaa", "enum": ["a", "b"]}), ("FHIR_Account", {"description": "aaa", "$ref": "#/definitions/Account"}), ( 'List[Literal["a", "b"]]', { "description": "aaa", "type": "array", "items": {"enum": ["a", "b"]}, }, ), ( "List[FHIR_Account]", { "description": "aaa", "type": "array", "items": {"$ref": "#/definitions/Account"}, }, ), # Circular Reference ("Any", {"description": "aaa", "$ref": f"#/definitions/{circular_reference}"}), # Self reference ("Any", {"description": "aaa", "$ref": f"#/definitions/{parent}"}), ] for result, schema in mappings: p = Property("prop_a", schema, parent) assert p.generate_property() == result # Check Circular Property as well circular_parent = list(CIRCULAR_PROPERTY_REFERENCES.keys())[0] circular_property = CIRCULAR_PROPERTY_REFERENCES[circular_parent][0] p2 = Property( circular_property, {"description": "aaa", "$ref": "#/definitions/123"}, circular_parent, ) assert p2.generate_property() == "Any" def test_property_gen_fail() -> None: with pytest.raises(Exception, match="Property schema can not be handled"): schema: Schema = {"description": "aaa", "type": "123"} p = Property("prop_a", schema, "parent") p.generate() with pytest.raises(Exception, match=r"items should have \$ref or enum"): schema = {"description": "aaa", "type": "array", "items": {"type": "string"}} p = Property("prop_a", schema, "parent") p.generate() def test_get_init_py() -> None: expected = """from .FHIR_foo import FHIR_foo from .FHIR_bar import FHIR_bar __all__ = ['FHIR_foo', 'FHIR_bar'] """ assert get_init_py(["foo", "bar"]) == expected def test_generate_files_and_get_schema() -> None: with TemporaryDirectory() as _tempdir: tempdir = Path(_tempdir) generate_files(get_schema(), tempdir) assert tempdir.joinpath("__init__.py").exists() assert tempdir.joinpath("FHIR_Account.py").exists() assert tempdir.joinpath("FHIR_Patient.py").exists()
2.375
2
app/main.py
dogacuboh/doga-cuboh-snake
0
12783482
import json import os import bottle import time from app.api import ping_response, start_response, move_response, end_response from app.board import update_board from app.random_snake import random_move from app.food_snake import food_move from app.wall_snake import wall_move from app.smart_snake import smart_move from app.doga_snake import doga_move snake_num = 0 @bottle.route('/') def index(): return bottle.static_file('index.html', root='./static/') @bottle.route('/static/<path:path>') def static(path): return bottle.static_file(path, root='./static/') @bottle.post('/ping') def ping(): return ping_response() @bottle.post('/start') def start(): game_state = bottle.request.json snake_colour = "#ff0000" return start_response(snake_colour) @bottle.post('/move') def move(): game_state = bottle.request.json new_board = update_board(game_state) direction = "" direction = doga_move(game_state, new_board) return move_response(direction) @bottle.post('/end') def end(): game_state = bottle.request.json return end_response() # Expose WSGI app (so gunicorn can find it) application = bottle.default_app() def is_input(temp): if not temp.isnumeric(): return False if not len(temp)==1: return False if int(temp)<1 or int(temp)>5: return False return True if __name__ == '__main__': snake_num = 5 bottle.run( application, host=os.getenv('IP', '0.0.0.0'), port=os.getenv('PORT', '8080'), debug=os.getenv('DEBUG', True) )
2.203125
2
helpers/utils.py
mirceamironenco/GANs
8
12783483
<filename>helpers/utils.py def print_flags(flags): for key, value in vars(flags).items(): print("{}: {}".format(key, str(value))) def load_mnist(): from tensorflow.examples.tutorials.mnist import input_data return input_data.read_data_sets("./MNIST_data", one_hot=True)
2.53125
3
src/features/feature_selection.py
gaybro8777/data_science_for_health_unicamp
1
12783484
import os import pandas as pd import pdb import seaborn as sns import matplotlib.pyplot as plt #import pymrmr from scipy.stats import kendalltau, pearsonr, spearmanr from sklearn.feature_selection import SelectKBest, mutual_info_classif, chi2, f_classif, RFE import numpy as np # Feature Importance Sklearn # https://machinelearningmastery.com/calculate-feature-importance-with-python/ class Feature_Selection(object): """ Class with preprocessments to apply in dataframe """ def __init__(self): super().__init__() self.correlation_matrix = Correlation_Matrix() def select_features(self,df,columns): raise NotImplementedError() def get_missing_values_df(self,df): percent_missing = df.isnull().sum() * 100 / len(df) missing_value_df = pd.DataFrame({'column_name': df.columns,'percent_missing': percent_missing}) return missing_value_df def get_correlation_matrix(self,df,method): return self.correlation_matrix.get_correlation_matrix(df,method) def plot_correlation_matrix(self,df_corr,plot=True): return self.correlation_matrix.plot_correlation_matrix(df_corr,plot) def get_correlation_with_target(self,df,target_column,method,num_feats=10): return self.correlation_matrix.get_correlation_with_target(df,target_column,method,num_feats) def get_IG_feature_scores(self,df,n_features_to_select): """ IG calculates the importance of each feature by measuring the increase in entropy when the feature is given vs. absent. """ bestfeatures = SelectKBest(score_func=mutual_info_classif, k=n_features_to_select) # n is number of features you want to select fit = bestfeatures.fit(xs,y) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(xs.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Feature','Score'] return featureScores # def get_mRMR_feature_scores(self,df,n_features_to_select): # # https://medium.com/subex-ai-labs/feature-selection-techniques-for-machine-learning-in-python-455dadcd3869 # """ # (Minimal Redundancy and Maximal Relevance) # Intuition: It selects the features, based on their relevancy with the target variable, as well as their redundancy with the other features. # """ # selected_features = pymrmr.mRMR(df, 'MIQ',n_features_to_select) # return selected_features def get_chisquare_feature_scores(self,df,target_column,n_features_to_select): """ It calculates the correlation between the feature and target and selects the best k features according to their chi square score calculated using following chi square test. """ X,y = self._split_df_in_xy(df,target_column) import pdb;pdb.set_trace() bestfeatures = SelectKBest(score_func=chi2, k=n_features_to_select) # n is number of features you want to select fit = bestfeatures.fit(X,y) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(xs.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Feature','Score'] return featureScores def get_anova_feature_scores(self,df,n_features_to_select): """ We perform Anova between features and target to check if they belong to same population. """ bestfeatures = SelectKBest(score_func=f_classif, k=n_features_to_select) # n is number of features you want to select fit = bestfeatures.fit(xs,y) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(xs.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Feature','Score'] return featureScores def get_features_by_RFE(self,df,model): """ It is a greedy optimization algorithm which aims to find the best performing feature subset. It repeatedly creates models and keeps aside the best or the worst performing feature at each iteration. It constructs the next model with the left features until all the features are exhausted. It then ranks the features based on the order of their elimination. """ #model = LogisticRegression(max_iter=1000) rfe_model = RFE(model, 20) rfe_fit = rfe_model.fit(x, y) selected = df[df.columns[rfe_fit.get_support(indices=True)]] return selected def get_feature_selection_summary(self,df): # https://towardsdatascience.com/the-5-feature-selection-algorithms-every-data-scientist-need-to-know-3a6b566efd2 # put all selection together feature_selection_df = pd.DataFrame({'Feature':feature_name, 'Pearson':cor_support, 'Chi-2':chi_support, 'RFE':rfe_support, 'Logistics':embeded_lr_support, 'Random Forest':embeded_rf_support, 'LightGBM':embeded_lgb_support}) # count the selected times for each feature feature_selection_df['Total'] = np.sum(feature_selection_df, axis=1) # display the top 100 feature_selection_df = feature_selection_df.sort_values(['Total','Feature'] , ascending=False) feature_selection_df.index = range(1, len(feature_selection_df)+1) feature_selection_df.head(num_feats) class Correlation_Matrix(object): def __init__(self): super().__init__() def get_correlation_with_target(self,df,target_column,method,num_feats): corr_dict = self.get_correlation_matrix(df,method) df_k,df_p = corr_dict['df_k'],corr_dict['df_p'] correlations_with_target = df_k[target_column] correlations_with_target = correlations_with_target.fillna(0) correlations_with_target = correlations_with_target[correlations_with_target.index.difference([target_column])] correlations_with_target = correlations_with_target.map(lambda x : x).abs().sort_values(ascending = False) correlations_with_target = correlations_with_target[:num_feats] return correlations_with_target def plot_correlation_matrix(self,df_corr,plot=True): plt.figure(figsize=(16, 6)) heatmap = sns.heatmap(df_corr, vmin=-1, vmax=1, annot=True, cmap='coolwarm') heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':18}, pad=12) if plot: plt.show() else: return heatmap def get_correlation_matrix(self,df,method): accpedted_correlations = ['pearson','spearman','kendall'] if method not in accpedted_correlations: raise ValueError(f"O método deve ser um entre {accpedted_correlations}") if method == 'pearson': method_k = self._pearsonr_rval method_p = self._pearsonr_pval elif method == 'spearman': method_k = self._spearmanr_rval method_p = self._spearmanr_pval elif method == 'kendall': method_k = self._kendall_rval method_p = self._kendall_pval df_k = df.corr(method=method_k) df_p = df.corr(method=method_p) return {'df_k':df_k,'df_p':df_p} def _kendall_rval(self,x,y): return np.round(kendalltau(x,y)[0],6) def _pearsonr_rval(self,x,y): return np.round(pearsonr(x,y)[0],6) def _spearmanr_rval(self,x,y): return np.round(spearmanr(x,y)[0],6) def _kendall_pval(self,x,y): return np.round(kendalltau(x,y)[1],6) def _pearsonr_pval(self,x,y): return np.round(pearsonr(x,y)[1],6) def _spearmanr_pval(self,x,y): return np.round(spearmanr(x,y)[1],6)
3.390625
3
setup.py
rom1mouret/orthogonal_learning
5
12783485
<filename>setup.py #!/usr/bin/env python from distutils.core import setup setup(name='orthocl', version='0.1', description='Orthogonal Continual Learning', author='<NAME>', url='https://github.com/rom1mouret/orthogonal_learning', packages=['orthocl'], )
1.171875
1
Code/EDA.py
mdevineni89/Final-Project-Group3
0
12783486
######### 11/15/2021 #Generating a dataset for only categorical df_categorical = df.select_dtypes(exclude=['number']) df_categorical=df_categorical.drop(['Date.of.Birth','DisbursalDate'],axis=1) df_categorical.head() #Building a Dataset for numerical (continous) df_continuous = df.select_dtypes(include=['number']) df_continuous=df_continuous.drop(['UniqueID'],axis=1) df_continuous.head() #Univariate Analysis import matplotlib.pyplot as plt # Charge matplotlib import seaborn as sns # Charge seaborn #To obtain the basic statistics df_continuous.describe() #Get the List of all Column Names continuous_list = list(df_continuous) # Plot for all continous #1 sns.displot(df['disbursed_amount'][df['disbursed_amount'] < df['disbursed_amount'].quantile(.99)],kind='hist',kde=True) plt.show() #2 sns.displot(df['asset_cost'][df['asset_cost'] < df['asset_cost'].quantile(.99)],kind='hist',kde=True) plt.show() #3 sns.displot(df['ltv'][df['ltv'] < df['ltv'].quantile(.99)],kind='hist',kde=True) plt.show() #4 sns.displot(df['PERFORM_CNS.SCORE'][df['PERFORM_CNS.SCORE'] < df['PERFORM_CNS.SCORE'].quantile(.99)],kind='hist',kde=True) plt.show() #5 sns.displot(df['PRI.NO.OF.ACCTS'][df['PRI.NO.OF.ACCTS'] < df['PRI.NO.OF.ACCTS'].quantile(.99)],kind='hist',kde=True) plt.show() #6 sns.displot(df['PRI.ACTIVE.ACCTS'][df['PRI.ACTIVE.ACCTS'] < df['PRI.ACTIVE.ACCTS'].quantile(.99)],kind='hist',kde=True) plt.show() #6 sns.displot(df['PRI.OVERDUE.ACCTS'][df['PRI.OVERDUE.ACCTS'] < df['PRI.OVERDUE.ACCTS'].quantile(.99)],kind='hist',kde=True) plt.show() #7 sns.displot(df['PRI.CURRENT.BALANCE'][df['PRI.CURRENT.BALANCE'] < df['PRI.CURRENT.BALANCE'].quantile(.99)],kind='hist',kde=True) plt.show() #8 sns.displot(df['PRI.SANCTIONED.AMOUNT'][df['PRI.SANCTIONED.AMOUNT'] < df['PRI.SANCTIONED.AMOUNT'].quantile(.99)],kind='hist',kde=True) plt.show() #9 sns.displot(df['PRI.DISBURSED.AMOUNT'][df['PRI.DISBURSED.AMOUNT'] < df['PRI.DISBURSED.AMOUNT'].quantile(.99)],kind='hist',kde=True) plt.show() #10 sns.displot(df['SEC.NO.OF.ACCTS'][df['SEC.NO.OF.ACCTS'] < df['SEC.NO.OF.ACCTS'].quantile(.99)],kind='hist',kde=True) plt.show() #11 sns.displot(df['SEC.ACTIVE.ACCTS'][df['SEC.ACTIVE.ACCTS'] < df['SEC.ACTIVE.ACCTS'].quantile(.99)],kind='hist',kde=True) plt.show() #12 sns.displot(df['SEC.OVERDUE.ACCTS'][df['SEC.OVERDUE.ACCTS'] < df['SEC.OVERDUE.ACCTS'].quantile(.99)],kind='hist',kde=True) plt.show() #13 sns.displot(df['SEC.CURRENT.BALANCE'][df['SEC.CURRENT.BALANCE'] < df['SEC.CURRENT.BALANCE'].quantile(.99)],kind='hist',kde=True) plt.show() #14 sns.displot(df['SEC.SANCTIONED.AMOUNT'][df['SEC.SANCTIONED.AMOUNT'] < df['SEC.SANCTIONED.AMOUNT'].quantile(.99)],kind='hist',kde=True) plt.show() #15 sns.displot(df['SEC.DISBURSED.AMOUNT'][df['SEC.DISBURSED.AMOUNT'] < df['SEC.DISBURSED.AMOUNT'].quantile(.99)],kind='hist',kde=True) plt.show() #16 sns.displot(df['PRIMARY.INSTAL.AMT'][df['PRIMARY.INSTAL.AMT'] < df['PRIMARY.INSTAL.AMT'].quantile(.99)],kind='hist',kde=True) plt.show() #17 sns.displot(df['NEW.ACCTS.IN.LAST.SIX.MONTHS'][df['NEW.ACCTS.IN.LAST.SIX.MONTHS'] < df['NEW.ACCTS.IN.LAST.SIX.MONTHS'].quantile(.99)],kind='hist',kde=True) plt.show() #18 sns.displot(df['DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS'][df['DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS'] < df['DELINQUENT.ACCTS.IN.LAST.SIX.MONTHS'].quantile(.99)],kind='hist',kde=True) plt.show() #19 sns.displot(df['AVERAGE.ACCT.AGE'][df['AVERAGE.ACCT.AGE'] < df['AVERAGE.ACCT.AGE'].quantile(.99)],kind='hist',kde=True) plt.show() #20 sns.displot(df['CREDIT.HISTORY.LENGTH'][df['CREDIT.HISTORY.LENGTH'] < df['CREDIT.HISTORY.LENGTH'].quantile(.99)],kind='hist',kde=True) plt.show() #21 sns.displot(df['CREDIT.HISTORY.LENGTH'][df['CREDIT.HISTORY.LENGTH'] < df['CREDIT.HISTORY.LENGTH'].quantile(.99)],kind='hist',kde=True) plt.show() #22 sns.displot(df['NO.OF_INQUIRIES'][df['NO.OF_INQUIRIES'] < df['NO.OF_INQUIRIES'].quantile(.99)],kind='hist',kde=True) plt.show() #23 sns.displot(df['Age'][df['Age'] < df['Age'].quantile(.99)],kind='hist',kde=True) plt.show() #23 sns.displot(df['Disbursal_months'][df['Disbursal_months'] < df['Disbursal_months'].quantile(.99)],kind='hist',kde=True) plt.show() ########Multivariate Analysis plt.rcParams["figure.figsize"] = (10,7) sns.heatmap(df_continuous.corr()) plt.show() #Heat map sns.heatmap(df_continuous.corr(), cmap="YlGnBu", annot=False,mask=np.triu(df_continuous.corr())) plt.show() #Heat map that highligts if the correlation is greater than 0.6 sns.heatmap(df_continuous.corr().abs()>0.6, cmap="YlGnBu", annot=False,mask=np.triu(df_continuous.corr())) plt.show() # black are with the highest correlation def get_redundant_pairs(df): '''Get diagonal and lower triangular pairs of correlation matrix''' pairs_to_drop = set() cols = df.columns for i in range(0, df.shape[1]): for j in range(0, i+1): pairs_to_drop.add((cols[i], cols[j])) return pairs_to_drop def get_top_abs_correlations(df, n=5): au_corr = df.corr().abs().unstack() labels_to_drop = get_redundant_pairs(df) au_corr = au_corr.drop(labels=labels_to_drop).sort_values(ascending=False) return au_corr[0:n] list1=get_top_abs_correlations(df_continuous,n=9) print(list1) ''' 11/22 Aihan added, file name unchanged test needed ''' # Continuous variable vs categorical variables score_ranking = ["A-Very Low Risk", "B-Very Low Risk", "C-Very Low Risk", "D-Very Low Risk", \ "E-Low Risk", "F-Low Risk", "G-Low Risk", "H-Medium Risk", "I-Medium Risk", "J-High Risk", "K-High Risk",\ "L-Very High Risk", "M-Very High Risk", "No Bureau History Available", "Not Scored: No Activity seen on the customer (Inactive)", \ "Not Scored: Not Enough Info available on the customer", "Not Scored: Sufficient History Not Available", "Not Scored: Only a Guarantor",\ "Not Scored: No Updates available in last 36 months1", "Not Scored: More than 50 active Accounts found"] # sns.boxplot(x="PERFORM_CNS.SCORE.DESCRIPTION", y="PERFORM_CNS.SCORE", color="b", data=df_subset) # plt.show() def df_boxplot(df, xstr, ystr): sns.boxplot(x=xstr, y=ystr, palette=sns.color_palette(), data=df) plt.show() # continuous variable vs target df_subset = merge_df[merge_df['PERFORM_CNS.SCORE.DESCRIPTION'] < 13] df_boxplot(df_subset, "PERFORM_CNS.SCORE.DESCRIPTION", "PERFORM_CNS.SCORE") #continuous variable vs target df_boxplot(merge_df, "loan_default", y="PERFORM_CNS.SCORE") # t-test # stats.ttest_ind(a, b, equal_var = False)
3.25
3
tests/test_test_tools/test_test_cases.py
marcofavorito/agents-aea
0
12783487
<gh_stars>0 # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains a test for aea.test_tools.test_cases.""" import os import time from pathlib import Path import pytest import aea from aea.configurations.base import AgentConfig from aea.mail.base import Envelope from aea.protocols.base import Message from aea.protocols.dialogue.base import Dialogue from aea.test_tools.exceptions import AEATestingException from aea.test_tools.test_cases import AEATestCase, AEATestCaseEmpty from packages.fetchai.protocols.default.dialogues import ( DefaultDialogue, DefaultDialogues, ) from packages.fetchai.protocols.default.message import DefaultMessage from packages.fetchai.skills.echo import PUBLIC_ID as ECHO_SKILL_PUBLIC_ID from tests.conftest import FETCHAI, MY_FIRST_AEA_PUBLIC_ID from tests.test_cli import test_generate_wealth, test_interact TestWealthCommandsPositive = test_generate_wealth.TestWealthCommandsPositive TestInteractCommand = test_interact.TestInteractCommand class TestConfigCases(AEATestCaseEmpty): """Test config set/get.""" def test_agent_nested_set_agent_crudcollection(self): """Test agent test nested set from path.""" key_name = "agent.private_key_paths.cosmos" self.nested_set_config(key_name, "testdata2000") result = self.run_cli_command("config", "get", key_name, cwd=self._get_cwd()) assert b"testdata2000" in result.stdout_bytes def test_agent_nested_set_agent_crudcollection_all(self): """Test agent test nested set from path.""" key_name = "agent.private_key_paths" self.nested_set_config(key_name, {"cosmos": "testdata2000"}) result = self.run_cli_command( "config", "get", f"{key_name}.cosmos", cwd=self._get_cwd() ) assert b"testdata2000" in result.stdout_bytes def test_agent_nested_set_agent_simple(self): """Test agent test nested set from path.""" key_name = "agent.registry_path" self.nested_set_config(key_name, "some_path") result = self.run_cli_command("config", "get", key_name, cwd=self._get_cwd()) assert b"some_path" in result.stdout_bytes def test_agent_nested_set_skill_simple(self): """Test agent test nested set from path.""" key_name = "vendor.fetchai.skills.error.handlers.error_handler.args.some_key" self.nested_set_config(key_name, "some_value") result = self.run_cli_command("config", "get", key_name, cwd=self._get_cwd()) assert b"some_value" in result.stdout_bytes def test_agent_nested_set_skill_simple_nested(self): """Test agent test nested set from path.""" key_name = "vendor.fetchai.skills.error.handlers.error_handler.args.some_key" self.nested_set_config(f"{key_name}.some_nested_key", "some_value") def test_agent_nested_set_skill_all(self): """Test agent test nested set from path.""" key_name = "vendor.fetchai.skills.error.handlers.error_handler.args" self.nested_set_config(key_name, {"some_key": "some_value"}) result = self.run_cli_command( "config", "get", f"{key_name}.some_key", cwd=self._get_cwd() ) assert b"some_value" in result.stdout_bytes def test_agent_nested_set_skill_all_nested(self): """Test agent test nested set from path.""" key_name = "vendor.fetchai.skills.error.handlers.error_handler.args" self.nested_set_config( key_name, {"some_key": {"some_nested_key": "some_value"}} ) def test_agent_nested_set_connection_simple(self): """Test agent test nested set from path.""" key_name = "vendor.fetchai.connections.stub.config.input_file" self.nested_set_config(key_name, "some_value") result = self.run_cli_command("config", "get", key_name, cwd=self._get_cwd()) assert b"some_value" in result.stdout_bytes def test_agent_nested_set_connection_dependency(self): """Test agent test nested set from path.""" key_name = "vendor.fetchai.connections.stub.dependencies" self.nested_set_config(key_name, {"dep": {"version": "==1.0.0"}}) def test_agent_set(self): """Test agent test set from path.""" value = True key_name = "agent.logging_config.disable_existing_loggers" self.set_config(key_name, value) result = self.run_cli_command("config", "get", key_name, cwd=self._get_cwd()) assert str(value) in str(result.stdout_bytes) def test_agent_get_exception(self): """Test agent test get non exists key.""" with pytest.raises(Exception, match=".*bad_key.*"): self.run_cli_command("config", "get", "agent.bad_key", cwd=self._get_cwd()) class TestRunAgent(AEATestCaseEmpty): """Tests test for generic cases of AEATestCases.""" def test_run_agent(self): """Run agent and test it's launched.""" process = self.run_agent() assert self.is_running(process, timeout=30) class TestGenericCases(AEATestCaseEmpty): """Tests test for generic cases of AEATestCases.""" def test_disable_aea_logging(self): """Call logging disable.""" self.disable_aea_logging() def test_start_subprocess(self): """Start a python subprocess and check output.""" proc = self.start_subprocess("-c", "print('hi')") proc.wait(10) assert "hi" in self.stdout[proc.pid] def test_start_thread(self): """Start and join thread for python code.""" called = False def fn(): nonlocal called called = True thread = self.start_thread(fn) thread.join(10) assert called def test_fetch_and_delete(self): """Fetch and delete agent from repo.""" agent_name = "some_agent_for_tests" self.fetch_agent(str(MY_FIRST_AEA_PUBLIC_ID), agent_name) assert os.path.exists(agent_name) self.delete_agents(agent_name) assert not os.path.exists(agent_name) def test_diff(self): """Test difference_to_fetched_agent.""" agent_name = "some_agent_for_tests2" self.fetch_agent(str(MY_FIRST_AEA_PUBLIC_ID), agent_name) self.run_cli_command( "config", "set", "agent.default_ledger", "test_ledger", cwd=agent_name ) result = self.run_cli_command( "config", "get", "agent.default_ledger", cwd=agent_name ) assert b"test_ledger" in result.stdout_bytes diff = self.difference_to_fetched_agent(str(MY_FIRST_AEA_PUBLIC_ID), agent_name) assert diff assert "test_ledger" in diff[1] def test_no_diff(self): """Test no difference for two aea configs.""" agent_name = "some_agent_for_tests3" self.fetch_agent(str(MY_FIRST_AEA_PUBLIC_ID), agent_name) diff = self.difference_to_fetched_agent(str(MY_FIRST_AEA_PUBLIC_ID), agent_name) assert not diff def test_terminate_subprocesses(self): """Start and terminate long running python subprocess.""" proc = self.start_subprocess("-c", "import time; time.sleep(10)") assert proc.returncode is None self._terminate_subprocesses() assert proc.returncode is not None def test_miss_from_output(self): """Test subprocess output missing output.""" proc = self.start_subprocess("-c", "print('hi')") assert len(self.missing_from_output(proc, ["hi"], timeout=5)) == 0 assert "HI" in self.missing_from_output(proc, ["HI"], timeout=5) def test_replace_file_content(self): """Replace content of the file with another one.""" file1 = "file1.txt" file2 = "file2.txt" with open(file1, "w") as f: f.write("hi") with open(file2, "w") as f: f.write("world") self.replace_file_content(Path(file1), Path(file2)) with open(file2, "r") as f: assert f.read() == "hi" class TestLoadAgentConfig(AEATestCaseEmpty): """Test function 'load_agent_config'.""" def test_load_agent_config(self): """Test load_agent_config.""" agent_config = self.load_agent_config(self.agent_name) assert isinstance(agent_config, AgentConfig) def test_load_agent_config_when_agent_name_not_exists(self): """Test load_agent_config with a wrong agent name.""" wrong_agent_name = "non-existing-agent-name" with pytest.raises( AEATestingException, match=f"Cannot find agent '{wrong_agent_name}' in the current test case.", ): self.load_agent_config(wrong_agent_name) class TestAddAndEjectComponent(AEATestCaseEmpty): """Test add/reject components.""" def test_add_and_eject(self): """Test add/reject components.""" result = self.add_item("skill", str(ECHO_SKILL_PUBLIC_ID), local=True) assert result.exit_code == 0 result = self.eject_item("skill", str(ECHO_SKILL_PUBLIC_ID)) assert result.exit_code == 0 class TestAddAndRemoveComponent(AEATestCaseEmpty): """Test add/remove components.""" def test_add_and_eject(self): """Test add/reject components.""" result = self.add_item("skill", str(ECHO_SKILL_PUBLIC_ID), local=True) assert result.exit_code == 0 result = self.remove_item("skill", str(ECHO_SKILL_PUBLIC_ID)) assert result.exit_code == 0 class TestGenerateAndAddKey(AEATestCaseEmpty): """Test generate and add private key.""" def test_generate_and_add_key(self): """Test generate and add private key.""" result = self.generate_private_key("cosmos") assert result.exit_code == 0 result = self.add_private_key( "cosmos", "cosmos_private_key.txt", connection=True ) assert result.exit_code == 0 result = self.add_private_key("cosmos", "cosmos_private_key.txt") assert result.exit_code == 0 result = self.remove_private_key("cosmos") assert result.exit_code == 0 class TestGetWealth(AEATestCaseEmpty): """Test get_wealth.""" def test_get_wealth(self): """Test get_wealth.""" # just call it, network related and quite unstable self.get_wealth(FETCHAI) class TestAEA(AEATestCase): """Test agent test set from path.""" path_to_aea = Path("tests") / "data" / "dummy_aea" def test_scaffold_and_fingerprint(self): """Test component scaffold and fingerprint.""" result = self.scaffold_item("skill", "skill1") assert result.exit_code == 0 result = self.fingerprint_item("skill", "fetchai/skill1:0.1.0") assert result.exit_code == 0 def test_scaffold_and_fingerprint_protocol(self): """Test component scaffold and fingerprint protocol.""" result = self.scaffold_item("protocol", "protocol1") assert result.exit_code == 0 result = self.fingerprint_item("protocol", "fetchai/protocol1:0.1.0") assert result.exit_code == 0 class TestSendReceiveEnvelopesSkill(AEATestCaseEmpty): """Test that we can communicate with agent via stub connection.""" def test_send_receive_envelope(self): """Run the echo skill sequence.""" self.add_item("skill", str(ECHO_SKILL_PUBLIC_ID)) process = self.run_agent() is_running = self.is_running(process) assert is_running, "AEA not running within timeout!" # add sending and receiving envelope from input/output files sender = "sender" def role_from_first_message( # pylint: disable=unused-argument message: Message, receiver_address: str ) -> Dialogue.Role: return DefaultDialogue.Role.AGENT default_dialogues = DefaultDialogues(sender, role_from_first_message) message_content = b"hello" message = DefaultMessage( performative=DefaultMessage.Performative.BYTES, dialogue_reference=default_dialogues.new_self_initiated_dialogue_reference(), content=message_content, ) sent_envelope = Envelope( to=self.agent_name, sender=sender, protocol_id=message.protocol_id, message=message, ) self.send_envelope_to_agent(sent_envelope, self.agent_name) time.sleep(2.0) received_envelope = self.read_envelope_from_agent(self.agent_name) received_message = DefaultMessage.serializer.decode(received_envelope.message) assert sent_envelope.message.content == received_message.content class TestInvoke(AEATestCaseEmpty): """Test invoke method.""" def test_invoke(self): """Test invoke method.""" result = self.invoke("--version") assert result.exit_code == 0 assert f"aea, version {aea.__version__}" in result.stdout
1.773438
2
tangram/models.py
gutard/django-tangram
0
12783488
# -*- coding:utf-8 -*- from django.db import models from django.contrib.auth.models import User BRANCHE_CHOICES = ( (1, u"Lutins"), (2, u"Louveteaux"), (3, u"Éclés"), (4, u"Aînés"), ) EXPLOGRAM_CHOICES = ( (1, u"Le pont des cultures"), (2, u"On est cap !"), (3, u"Filles/garçons"), (4, u"Au fil du temps"), ) class Unite(models.Model): branche = models.IntegerField(u"Branche", choices=BRANCHE_CHOICES) nom = models.CharField(u"Nom de l'unité/équipage", max_length=100) inscr_explogram = models.NullBooleanField(u"Nous souhaitons participer à l'ExploGRAM") inscr_congram = models.NullBooleanField(u"Nous souhaitons participer au ConGRAM") inscr_tangram = models.NullBooleanField(u"Nous souhaitons participer au rassemblement TanGRAM") theme_explogram = models.CharField(max_length=100, blank=True) etat_explogram = models.TextField(u"Descriptif de l'ExploGRAM tel qu'il en est aujourd'hui", blank=True) effectif = models.PositiveIntegerField(u"Effectif approximatif", blank=True, null=True) contact = models.CharField(max_length=100, blank=True) tel = models.CharField(max_length=100, blank=True) user = models.OneToOneField(User) fg1_theme = models.IntegerField(u"Notre exploGRAM", null=True, blank=True, choices=EXPLOGRAM_CHOICES) fg1_projet = models.TextField(u"Le projet qu'on rêve de réaliser", blank=True) fg2_votants = models.CharField(u"Nombre de votants", max_length=100, blank=True) fg2_resultat = models.CharField(u"Résultats des votes", max_length=100, blank=True) fg2_elus = models.TextField(u"Sont élus", blank=True) fg2_adresses = models.TextField(u"Adresses", blank=True) fg2_propositions = models.TextField(u"Nombre de propositions à présenter", blank=True) fg3_date = models.CharField(u"Date", max_length=100, blank=True) fg3_temps = models.TextField(u"Temps consacré", blank=True) fg3_forme = models.TextField(u"Forme adoptée (conseil, jeux,...)", blank=True) fg4_theme = models.IntegerField(u"Notre exploGRAM", null=True, blank=True, choices=EXPLOGRAM_CHOICES) fg4_description = models.TextField(u"Le projet qu'on rêve de réaliser", blank=True) fg4_taches = models.BooleanField(u"Nous avons listé les tâches à faire") fg4_roles = models.BooleanField(u"Nous nous sommes répartis les rôles") fg4_partenaire = models.BooleanField(u"Nous allons chercher un partenaire") fg4_materiel = models.BooleanField(u"Nous avons fait la liste du matériel") fg4_reunions = models.IntegerField(u"Nombre de réunions de préparation", null=True, blank=True) fg5_theme = models.IntegerField(u"Notre exploGRAM", null=True, blank=True, choices=EXPLOGRAM_CHOICES) fg5_texte = models.TextField(u"La carte postale de l'exploGRAM", blank=True) fg5_photo = models.ImageField(u"Photo", blank=True, null=True, upload_to='carte_postale/') fg6_theme = models.IntegerField(u"Notre exploGRAM", null=True, blank=True, choices=EXPLOGRAM_CHOICES) fg6_date = models.CharField(u"Date", max_length=100, blank=True) fg6_descriptif = models.TextField(u"Descriptif de notre projet", blank=True) fg6_positifs = models.TextField(u"Les points positifs de notre projet", blank=True) fg7_theme = models.IntegerField(u"Notre exploGRAM", null=True, blank=True, choices=EXPLOGRAM_CHOICES) fg7_description = models.TextField(u"Description de notre retransmission", blank=True) fg7_install = models.CharField(u"Le temps qu'il nous faudra pour l'installer", max_length=100, blank=True) fg7_presentation = models.CharField(u"Le temps qu'il nous faudra pour le présenter pendant le rassemblement tanGRAM", max_length=100, blank=True) fg7_espace = models.CharField(u"L'espace qu'il nous faudra", max_length=100, blank=True) fg7_micro = models.BooleanField(u"Nous aurons besoin d'un micro") fg7_ecran = models.BooleanField(u"Nous aurons besoin d'un écran") fg7_expo = models.BooleanField(u"Nous aurons besoin de supports expo") fg7_autre = models.TextField(u"Nous aurons besoin d'autres choses", blank=True) fg1_ok = models.BooleanField(u"Gram attribué") fg2_ok = models.BooleanField(u"Gram attribué") fg3_ok = models.BooleanField(u"Gram attribué") fg4_ok = models.BooleanField(u"Gram attribué") fg5_ok = models.BooleanField(u"Gram attribué") fg6_ok = models.BooleanField(u"Gram attribué") fg7_ok = models.BooleanField(u"Gram attribué") nb_grams = models.IntegerField(u"nombre de grams", default=0) def save(self, *args, **kwargs): self.nb_grams = sum([int(getattr(self, 'fg%u_ok' % i)) for i in range(1, 8)]) super(Unite, self).save(*args, **kwargs) class FicheAction(models.Model): titre = models.CharField(u"Titre", max_length=100) par = models.CharField(u"Action réalisée par", max_length=100, blank=True) public = models.TextField(u"Description public (âge, autonomie, effectif…)", blank=True) deroule = models.TextField(u"Descriptif du déroulé", blank=True) activite = models.CharField(u"Type d'activité (grand jeux, forum, projet de longue durée…)", max_length=100, blank=True) objectifs = models.TextField(u"Objectifs", blank=True) place = models.TextField(u"Place dans une démarche d'année (lancement, construction, conclusion…)", blank=True) duree = models.CharField(u"Durée", max_length=100, blank=True) lancement = models.TextField(u"Place dans les respos dans le lancement", blank=True) realisation = models.TextField(u"Place dans les respos dans la réalisation", blank=True) valorisation = models.TextField(u"Place dans les respos dans la valorisation", blank=True) biblio = models.TextField(u"Bibliographie", blank=True) partenaires = models.TextField(u"Les partenaires (si c'est le cas)", blank=True) matos = models.TextField(u"Besoins matériels", blank=True) annexe = models.FileField(u"Annexes jointes", blank=True, upload_to='fiche_action') user = models.ForeignKey(User) def __unicode__(self): return self.titre
2.046875
2
hello_git.py
zhengwenhong/landsat578-water
0
12783489
<gh_stars>0 print('Hello git, this is <NAME>') print('Hello git, this is <NAME>') print('Hello git, this is <NAME>') print('Hello git, this is <NAME>') print('Hello git, this is <NAME>')
1.875
2
egg/platform_arm.py
TheMartianObserver/nsimd
247
12783490
<reponame>TheMartianObserver/nsimd<filename>egg/platform_arm.py # Copyright (c) 2020 Agenium Scale # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # This file gives the implementation of platform ARM, i.e. ARM SIMD. # Reading this file is rather straightforward. ARM SIMD extensions are rather # coherent and consistent. It implements the following architectures: # - ARMv7 -> 128 bits registers without f16 and f64 support # - Aarch32 -> 128 bits registers with optional f16 and without f64 support # - Aarch64 -> 128 bits registers with optional f16 and f64 support # - SVE -> up to 2048 bits registers # The first three SIMD extensions are collectively called NEON. Aarch32 and # Aarch64 correspond respectively to ARMv8 32 and 64 bits chips. Note that # the ARM documentation says that ARMv7, Aarch32 are different but it seems # that they differ by only a handful of intrinsics which are not in the scope # of NSIMD so we have implemented the following: # # - ARMv7 \ -> neon128 # - Aarch32 / # - Aarch64 -> aarch64 # - SVE -> sve import common # ----------------------------------------------------------------------------- # Helpers def neon_typ(typ): prefix = {'i': 'int', 'u': 'uint', 'f': 'float'} return '{}{}x{}_t'.format(prefix[typ[0]], typ[1:], 128 // int(typ[1:])) def half_neon64_typ(typ): prefix = {'i': 'int', 'u': 'uint', 'f': 'float'} return '{}{}x{}_t'.format(prefix[typ[0]], typ[1:], 64 // int(typ[1:])) def sve_typ(typ): prefix = {'i': 'svint', 'u': 'svuint', 'f': 'svfloat'} return '{}{}_t'.format(prefix[typ[0]], typ[1:]) def suf(typ): if typ[0] == 'i': return 's{}'.format(typ[1:]) else: return typ neon = ['neon128', 'aarch64'] fixed_sized_sve = ['sve128', 'sve256', 'sve512', 'sve1024', 'sve2048'] sve = ['sve'] + fixed_sized_sve fmtspec = {} def convert_from_predicate(opts, op): if opts.sve_emulate_bool: return '''svsel({op}, svdup_n_u{typnbits}_x({svtrue}, (u{typnbits})~0), svdup_n_u{typnbits}_x({svtrue}, 0))'''. \ format(op=op, **fmtspec) else: return op def convert_to_predicate(opts, op): if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return '''svcmpeq({svtrue}, (svuint{typnbits}_t){op}, svdup_n_u{typnbits}_x({svtrue}, (u{typnbits})~0))'''.format(op=op, **fmtspec) else: return op # ----------------------------------------------------------------------------- # Implementation of mandatory functions for this module def get_simd_exts(): return ['neon128', 'aarch64', 'sve', 'sve128', 'sve256', 'sve512', 'sve1024', 'sve2048'] def get_prev_simd_ext(simd_ext): if simd_ext in ['neon128', 'aarch64']: return 'cpu' elif simd_ext in sve: return 'aarch64' raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) def emulate_fp16(simd_ext): if not simd_ext in get_simd_exts(): raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) if simd_ext in sve: return False else: return True def get_type(opts, simd_ext, typ, nsimd_typ): if simd_ext in neon: if typ == 'f64': if simd_ext == 'neon128': return 'typedef struct {{ double v0; double v1; }} {};'. \ format(nsimd_typ) else: return 'typedef {} {};'.format(neon_typ('f64'), nsimd_typ) elif typ == 'f16': return ''' #ifdef NSIMD_ARM_FP16 typedef float16x8_t {nsimd_typ}; #else typedef struct {{ float32x4_t v0; float32x4_t v1; }} {nsimd_typ}; #endif '''.format(nsimd_typ=nsimd_typ) # extra \n are necessary else: return 'typedef {} {};'.format(neon_typ(typ), nsimd_typ) elif simd_ext == 'sve': return 'typedef {} {};'.format(sve_typ(typ), nsimd_typ) elif simd_ext in fixed_sized_sve: return 'typedef {} {} __attribute__((arm_sve_vector_bits({})));'. \ format(sve_typ(typ), nsimd_typ, simd_ext[3:]) else: raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) def get_logical_type(opts, simd_ext, typ, nsimd_typ): if typ not in common.types: raise ValueError('Unknown type "{}"'.format(typ)) if simd_ext not in get_simd_exts(): raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) if typ in common.ftypes + common.itypes: typ2 = 'u{}'.format(typ[1:]); else: typ2 = typ if simd_ext == 'neon128': if typ == 'f16': return \ ''' #ifdef NSIMD_ARM_FP16 typedef uint16x8_t {nsimd_typ}; #else typedef struct {{ uint32x4_t v0; uint32x4_t v1; }} {nsimd_typ}; #endif '''.format(nsimd_typ=nsimd_typ) # extra \n are necessary elif typ == 'f64': return 'typedef struct {{ u64 v0; u64 v1; }} {};'.format(nsimd_typ) else: return get_type(opts, simd_ext, typ2, nsimd_typ) if simd_ext == 'aarch64': if typ == 'f16': return get_logical_type(opts, 'neon128', 'f16', nsimd_typ) else: return get_type(opts, simd_ext, typ2, nsimd_typ) elif simd_ext in sve: if opts.sve_emulate_bool: return get_type(opts, simd_ext, 'u' + typ[1:], nsimd_typ) elif simd_ext in fixed_sized_sve: return \ 'typedef svbool_t {} __attribute__((arm_sve_vector_bits({})));'. \ format(nsimd_typ, simd_ext[3:]) else: return 'typedef svbool_t {};'.format(nsimd_typ) def get_nb_registers(simd_ext): if simd_ext in neon: return '16' elif simd_ext in sve: return '32' else: raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) def get_native_soa_typ(simd_ext, typ, deg): prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' }[typ[0]] if simd_ext in sve: return 'sv{}x{}_t'.format(prefix + typ[1:], deg) else: return '{}{}x{}x{}_t'.format(prefix, typ[1:], 128 // int(typ[1:]), deg) def get_SoA_type(simd_ext, typ, deg, nsimd_typ): if simd_ext != 'sve': raise ValueError('SIMD extension must be "sve"') prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' }[typ[0]] return 'typedef {} {};'.format(get_native_soa_typ(simd_ext, typ, deg), nsimd_typ) def has_compatible_SoA_types(simd_ext): if simd_ext not in neon + sve: raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) return False # ----------------------------------------------------------------------------- def get_additional_include(func, platform, simd_ext): ret = '''#include <nsimd/cpu/cpu/{}.h> '''.format(func) if simd_ext in sve: ret += '''#include <nsimd/arm/aarch64/{}.h> '''.format(func) if func in ['load2u', 'load3u', 'load4u', 'load2a', 'load3a', 'load4a']: deg = func[4] ret += '''#if NSIMD_CXX > 0 extern "C" {{ #endif NSIMD_INLINE nsimd_{simd_ext}_vu16x{deg} nsimd_{func}_{simd_ext}_u16(const u16*); # if NSIMD_CXX > 0 }} // extern "C" #endif '''.format(func=func, deg=deg, simd_ext=simd_ext) if func in ['mask_storea1', 'mask_storeu1', 'masko_loada1', 'masko_loadu1', 'maskz_loada1', 'maskz_loadu1'] and \ simd_ext not in sve: ret += '''#include <nsimd/scalar_utilities.h> ''' if func == 'mask_for_loop_tail' and simd_ext not in sve: ret += '''#include <nsimd/arm/{simd_ext}/set1.h> #include <nsimd/arm/{simd_ext}/set1l.h> #include <nsimd/arm/{simd_ext}/iota.h> #include <nsimd/arm/{simd_ext}/lt.h> '''.format(simd_ext=simd_ext) if simd_ext == 'neon128' and func == 'notl': ret += '''#include <nsimd/arm/neon128/notb.h> ''' if simd_ext in neon and func == 'ne': ret += '''#include <nsimd/arm/{simd_ext}/eq.h> # include <nsimd/arm/{simd_ext}/notl.h> '''.format(simd_ext=simd_ext) if simd_ext in neon and func in ['fms', 'fnms']: ret += '''#include <nsimd/arm/{simd_ext}/ne.h> #include <nsimd/arm/{simd_ext}/fma.h> #include <nsimd/arm/{simd_ext}/fnma.h> '''.format(simd_ext=simd_ext) if func == 'shra': ret += '''#include <nsimd/arm/{simd_ext}/shr.h> '''.format(simd_ext=simd_ext) if func in ['loadlu', 'loadla']: ret += '''#include <nsimd/arm/{simd_ext}/eq.h> # include <nsimd/arm/{simd_ext}/set1.h> # include <nsimd/arm/{simd_ext}/{load}.h> # include <nsimd/arm/{simd_ext}/notl.h> '''.format(load='load' + func[5], simd_ext=simd_ext) if func in ['storelu', 'storela']: ret += '''#include <nsimd/arm/{simd_ext}/if_else1.h> # include <nsimd/arm/{simd_ext}/set1.h> # include <nsimd/arm/{simd_ext}/{store}.h> '''.format(store='store' + func[6], simd_ext=simd_ext) if func == 'to_logical': ret += '''#include <nsimd/arm/{simd_ext}/reinterpret.h> #include <nsimd/arm/{simd_ext}/ne.h> ''' .format(simd_ext=simd_ext) if func == 'zip': ret += '''#include <nsimd/arm/{simd_ext}/ziplo.h> #include <nsimd/arm/{simd_ext}/ziphi.h> '''.format(simd_ext=simd_ext) if func == 'unzip': ret += '''#include <nsimd/arm/{simd_ext}/unziplo.h> #include <nsimd/arm/{simd_ext}/unziphi.h> '''.format(simd_ext=simd_ext) if func == 'adds': ret += '''#include <nsimd/arm/{simd_ext}/add.h> '''.format(simd_ext=simd_ext) if func == 'subs': ret += '''#include <nsimd/arm/{simd_ext}/sub.h> '''.format(simd_ext=simd_ext) if func in ['gather', 'scatter'] and simd_ext == 'sve': ret += '''#include <nsimd/arm/sve/len.h> ''' return ret # ----------------------------------------------------------------------------- # Emulators def emulate_op1(op, simd_ext, typ): if simd_ext in neon: le = 128 // int(typ[1:]); return '''int i; {typ} buf[{le}]; vst1q_{suf}(buf, {in0}); for (i=0; i < {le}; i += nsimd_len_cpu_{typ}()) {{ nsimd_storeu_cpu_{typ}( & buf[i], nsimd_{op}_cpu_{typ}( nsimd_loadu_cpu_{typ}(&buf[i])));}} return vld1q_{suf}(buf); '''. \ format(op=op, le=le, **fmtspec) if simd_ext in sve: le = 2048 // int(typ[1:]); return '''int i; {typ} buf[{le}]; svst1_{suf}({svtrue}, buf, {in0}); for (i=0; i < simd_len_{simd_ext}_{typ}(); i += nsimd_len_cpu_{typ}()) {{ nsimd_storeu_cpu_{typ}( & buf[i], nsimd_{op}_cpu_{typ}( nsimd_loadu_cpu_{typ}(&buf[i])));}} return svld1_{suf}({svtrue}, buf); '''. \ format(op=op, le=le, **fmtspec) def emulate_op2(op, simd_ext, typ): if simd_ext in neon: le = 128 // int(typ[1:]); return '''int i; {typ} buf0[{le}], buf1[{le}]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); for (i=0; i < {le}; i++) {{ buf0[i] = ({typ})(buf0[i] {op} buf1[i]);}} return vld1q_{suf}(buf0); '''. \ format(op=op, le=le, **fmtspec) if simd_ext in sve: le = 2048 // int(typ[1:]); return '''int i; {typ} buf0[{le}], buf1[{le}]; svst1_{suf}({svtrue}, buf0, {in0}); svst1_{suf}({svtrue}, buf1, {in1}); for (i=0; i < nsimd_len_{simd_ext}_{typ}(); i++) {{ buf0[i] = ({typ})(buf0[i] {op} buf1[i]);}} return svld1_{suf}({svtrue}, buf0); '''. \ format(op=op, le=le, **fmtspec) def emulate_lop2_neon(opts, op, simd_ext, typ): le = 128 // int(typ[1:]); ltyp = get_logical_type(opts, simd_ext, typ) lsuf = suf(ltyp) return '''int i; {ltyp} buf0[{le}], buf1[{le}]; vst1q_{lsuf}(buf0, {in0}); vst1q_{lsuf}(buf1, {in1}); for (i = 0; i < {le}; i++) {{ buf0[i] = buf0[i] {op} buf1[i] ? ({ltyp})-1 : 0; }} return vld1q_{lsuf}(buf0);'''. \ format(op=op, le=le, ltyp=ltyp, lsuf=lsuf, **fmtspec) def emulate_op3_neon(op, simd_ext, typ): le = 128 // int(typ[1:]); return '''int i; {typ} buf0[{le}], buf1[{le}], buf2[{le}]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); vst1q_{suf}(buf2, {in2}); for (i = 0; i < {le}; i += nsimd_len_cpu_{typ}()) {{ nsimd_storeu_cpu_{typ}(&buf0[i], nsimd_{op}_cpu_{typ}( nsimd_loadu_cpu_{typ}(&buf0[i]), nsimd_loadu_cpu_{typ}(&buf1[i]), nsimd_loadu_cpu_{typ}(&buf2[i]))); }} return vld1q_{suf}(buf0);'''.format(op=op, le=le, **fmtspec) def emulate_f64_neon(simd_ext, op, params): fmtspec2 = fmtspec.copy() fmtspec2['op'] = op fmtspec2['buf_ret_decl'] = 'nsimd_cpu_{}f64 buf_ret;'. \ format('v' if params[0] == 'v' else 'vl') fmtspec2['buf_decl'] = '\n'.join(['nsimd_cpu_{}f64 buf{};'. \ format('v' if p[1] == 'v' else 'vl', p[0]) \ for p in common.enum(params[1:])]) fmtspec2['bufs'] = ','.join(['buf{}'.format(i) \ for i in range(0, len(params) - 1)]) fmtspec2['ret_decl'] = 'nsimd_{}_{}f64 ret;'. \ format(simd_ext, 'v' if params[0] == 'v' else 'vl') buf_set = '\n'.join('''buf{i}.v0 = {ini}.v0; buf{i}.v1 = {ini}.v1;'''. \ format(i=i, ini=fmtspec['in{}'.format(i)]) \ for i in range(0, len(params) - 1)) return '''{buf_ret_decl} {buf_decl} {ret_decl} {buf_set} buf_ret = nsimd_{op}_cpu_f64({bufs}); ret.v0 = buf_ret.v0; ret.v1 = buf_ret.v1; return ret;'''.format(buf_set=buf_set, **fmtspec2) # ----------------------------------------------------------------------------- def f16f64(simd_ext, typ, op, armop, arity, forced_intrinsics = ''): fmtspec2 = fmtspec.copy() tmpl = ', '.join(['{{in{}}}.v{{{{i}}}}'.format(i).format(**fmtspec) \ for i in range(0, arity)]) fmtspec2['args1'] = tmpl.format(i='0') fmtspec2['args2'] = tmpl.format(i='1') fmtspec2['armop'] = armop fmtspec2['op'] = op if simd_ext in neon and typ == 'f16': if forced_intrinsics != '': fmtspec2['intrinsics'] = forced_intrinsics else: temp = ', '.join(['{{in{}}}'.format(i).format(**fmtspec) \ for i in range(0, arity)]) fmtspec2['intrinsics'] = 'return v{}q_f16({});'.format(armop, temp) return '''#ifdef NSIMD_ARM_FP16 {intrinsics} #else nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_{op}_{simd_ext}_f32({args1}); ret.v1 = nsimd_{op}_{simd_ext}_f32({args2}); return ret; #endif'''.format(**fmtspec2) elif simd_ext == 'neon128' and typ == 'f64': return emulate_f64_neon(simd_ext, op, ['v'] * (arity + 1)) return '' # ----------------------------------------------------------------------------- # Lenghts def max_len(simd_ext, typ): if simd_ext == 'sve': return 2048 // int(typ[1:]) elif simd_ext in fixed_sized_sve: return int(simd_ext[3:]) // int(typ[1:]) else: return 128 // int(typ[1:]) def real_len(simd_ext, typ): if simd_ext == 'sve': return 'nsimd_len_sve_{typ}()'.format(**fmtspec) else: return max_len(simd_ext, typ) # ----------------------------------------------------------------------------- # Loads of degree 1, 2, 3 and 4 def load1234(opts, simd_ext, typ, deg): if simd_ext in neon: if deg == 1: normal = 'return vld{deg}q_{suf}({in0});'. \ format(deg=deg, **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else /* Note that we can do much better but is it useful? */ nsimd_{simd_ext}_vf16 ret; f32 buf[4]; buf[0] = nsimd_u16_to_f32(*(u16*){in0}); buf[1] = nsimd_u16_to_f32(*((u16*){in0} + 1)); buf[2] = nsimd_u16_to_f32(*((u16*){in0} + 2)); buf[3] = nsimd_u16_to_f32(*((u16*){in0} + 3)); ret.v0 = vld1q_f32(buf); buf[0] = nsimd_u16_to_f32(*((u16*){in0} + 4)); buf[1] = nsimd_u16_to_f32(*((u16*){in0} + 5)); buf[2] = nsimd_u16_to_f32(*((u16*){in0} + 6)); buf[3] = nsimd_u16_to_f32(*((u16*){in0} + 7)); ret.v1 = vld1q_f32(buf); return ret; #endif'''.format(normal=normal, **fmtspec) elif typ == 'f64' and simd_ext == 'neon128': return \ '''nsimd_neon128_vf64 ret; ret.v0 = *{in0}; ret.v1 = *({in0} + 1); return ret;'''.format(**fmtspec) else: return normal else: normal = \ '''nsimd_{simd_ext}_v{typ}x{deg} ret; {soa_typ} buf = vld{deg}q_{suf}({in0}); {assignment} return ret;'''. \ format(deg=deg, soa_typ=get_native_soa_typ(simd_ext, typ, deg), assignment='\n'.join(['ret.v{i} = buf.val[{i}];'. \ format(i=i) for i in range(0, deg)]), **fmtspec) if typ == 'f16': assignment = \ '''vst1q_u16(buf, temp.val[{{i}}]); ret.v{{i}} = nsimd_loadu_{simd_ext}_f16((f16 *)buf);'''. \ format(**fmtspec) return \ '''{soa_typ} temp = vld{deg}q_u16((u16 *){in0}); u16 buf[8]; nsimd_{simd_ext}_vf16x{deg} ret; {assignment} return ret;'''. \ format(deg=deg, assignment='\n'.join([assignment. \ format(i=i) for i in range(0, deg)]), soa_typ=get_native_soa_typ(simd_ext, 'u16', deg), **fmtspec) elif typ in 'f64' and simd_ext == 'neon128': return \ 'nsimd_neon128_vf64x{} ret;\n'.format(deg) + \ '\n'.join(['ret.v{i}.v0 = *({in0} + {i});'. \ format(i=i, **fmtspec) for i in range(0, deg)]) + \ '\n'.join(['ret.v{i}.v1 = *({in0} + {ipd});'. \ format(i=i, ipd=i + deg, **fmtspec) \ for i in range(0, deg)]) + \ '\nreturn ret;\n' elif typ in ['i64', 'u64'] and simd_ext == 'neon128': return \ '''nsimd_neon128_v{typ}x{deg} ret; {typ} buf[2];'''.format(deg=deg, **fmtspec) + \ '\n'.join(['''buf[0] = *({in0} + {i}); buf[1] = *({in0} + {ipd}); ret.v{i} = vld1q_{suf}(buf);'''. \ format(i=i, ipd=i + deg, **fmtspec) \ for i in range(0, deg)]) + \ '\nreturn ret;\n' else: return normal else: if deg == 1: return 'return svld{deg}_{suf}({svtrue}, {in0});'. \ format(deg=deg, **fmtspec) else: return \ '''nsimd_{simd_ext}_v{typ}x{deg} ret; {sve_typ} buf = svld{deg}_{suf}({svtrue}, {in0}); {assignment} return ret;'''.format(assignment=\ '\n'.join(['ret.v{i} = svget{deg}_{suf}(buf, {i});'. \ format(i=i, deg=deg, **fmtspec) \ for i in range(deg)]), sve_typ=get_native_soa_typ('sve', typ, deg), deg=deg, **fmtspec) # ----------------------------------------------------------------------------- # Mask loads def maskoz_load(oz, simd_ext, typ): if simd_ext in sve: return 'return svsel_{suf}({in0}, svld1_{suf}({in0}, {in1}), {oz});'. \ format(oz='{in2}'.format(**fmtspec) if oz == 'o' \ else 'svdup_n_{suf}(({typ})0)'.format(**fmtspec), **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vf64 ret; if ({in0}.v0) {{ ret.v0 = {in1}[0]; }} else {{ ret.v0 = {oz0}; }} if ({in0}.v1) {{ ret.v1 = {in1}[1]; }} else {{ ret.v1 = {oz1}; }} return ret;'''.format( oz0 = '0.0f' if oz == 'z' else '{in2}.v0'.format(**fmtspec), oz1 = '0.0f' if oz == 'z' else '{in2}.v1'.format(**fmtspec), **fmtspec) le = 128 // int(typ[1:]) normal = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; vst1q_{suf}(buf, {oz}); vst1q_u{typnbits}(mask, {in0}); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ buf[i] = {in1}[i]; }} }} return vld1q_{suf}(buf);'''. \ format(oz='vdupq_n_{suf}(({typ})0)'.format(**fmtspec) \ if oz == 'z' else '{in2}'.format(**fmtspec), le=le, **fmtspec) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else int i; nsimd_{simd_ext}_vf16 ret; f32 buf[8]; u32 mask[8]; vst1q_f32(buf, {oz0}); vst1q_f32(buf + 4, {oz1}); vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + 4, {in0}.v1); for (i = 0; i < 8; i++) {{ if (mask[i]) {{ buf[i] = nsimd_f16_to_f32({in1}[i]); }} }} ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''. \ format(oz0='vdupq_n_f32(0.0f)'.format(**fmtspec) \ if oz == 'z' else '{in2}.v0'.format(**fmtspec), oz1='vdupq_n_f32(0.0f)'.format(**fmtspec) \ if oz == 'z' else '{in2}.v1'.format(**fmtspec), normal=normal, **fmtspec) return normal # ----------------------------------------------------------------------------- # Stores of degree 1, 2, 3 and 4 def store1234(opts, simd_ext, typ, deg): if simd_ext in neon: if deg == 1: normal = 'vst{deg}q_{suf}({in0}, {in1});'. \ format(deg=deg, **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else f32 buf[4]; vst1q_f32(buf, {in1}.v0); *((u16*){in0} ) = nsimd_f32_to_u16(buf[0]); *((u16*){in0} + 1) = nsimd_f32_to_u16(buf[1]); *((u16*){in0} + 2) = nsimd_f32_to_u16(buf[2]); *((u16*){in0} + 3) = nsimd_f32_to_u16(buf[3]); vst1q_f32(buf, {in1}.v1); *((u16*){in0} + 4) = nsimd_f32_to_u16(buf[0]); *((u16*){in0} + 5) = nsimd_f32_to_u16(buf[1]); *((u16*){in0} + 6) = nsimd_f32_to_u16(buf[2]); *((u16*){in0} + 7) = nsimd_f32_to_u16(buf[3]); #endif'''.format(normal=normal, **fmtspec) elif typ == 'f64' and simd_ext == 'neon128': return \ '''*{in0} = {in1}.v0; *({in0} + 1) = {in1}.v1;'''.format(**fmtspec) else: return normal else: normal = \ '''{soa_typ} buf; {assignment} vst{deg}q_{suf}({in0}, buf);'''. \ format(deg=deg, assignment='\n'.join([ 'buf.val[{{}}] = {{in{}}};'.format(i). \ format(i - 1, **fmtspec) for i in range(1, deg + 1)]), soa_typ=get_native_soa_typ(simd_ext, typ, deg), **fmtspec) if typ == 'f16': assignment = \ '''nsimd_storeu_{{simd_ext}}_f16((f16 *)buf, {{in{}}}); temp.val[{{}}] = vld1q_u16(buf);''' return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else {soa_typ} temp; u16 buf[8]; {assignment} vst{deg}q_u16((u16 *){in0}, temp); #endif'''. \ format(assignment='\n'.join([assignment.format(i). \ format(i - 1, **fmtspec) \ for i in range(1, deg + 1)]), deg=deg, normal=normal, soa_typ=get_native_soa_typ(simd_ext, 'u16', deg), **fmtspec) elif typ == 'f64' and simd_ext == 'neon128': return \ '\n'.join(['*({{in0}} + {}) = {{in{}}}.v0;'. \ format(i - 1, i).format(**fmtspec) \ for i in range(1, deg + 1)]) + '\n' + \ '\n'.join(['*({{in0}} + {}) = {{in{}}}.v1;'. \ format(i + deg - 1, i).format(**fmtspec) \ for i in range(1, deg + 1)]) elif typ in ['i64', 'u64'] and simd_ext == 'neon128': return \ '{typ} buf[{biglen}];'.format(biglen=2 * deg, **fmtspec) + \ '\n'.join(['vst1q_{{suf}}(buf + {im1x2}, {{in{i}}});'. \ format(im1x2=2 * (i - 1), i=i).format(**fmtspec) \ for i in range(1, deg + 1)]) + \ '\n'.join(['''*({in0} + {i}) = buf[{ix2}]; *({in0} + {ipd}) = buf[{ix2p1}];'''. \ format(i=i, ipd=i + deg, ix2=i * 2, ix2p1=2 * i + 1, **fmtspec) \ for i in range(0, deg)]) else: return normal else: if deg == 1: return 'svst{deg}_{suf}({svtrue}, {in0}, {in1});'. \ format(deg=deg, **fmtspec) fill_soa_typ = \ '\n'.join(['tmp = svset{{deg}}_{{suf}}(tmp, {im1}, {{in{i}}});'. \ format(im1=i - 1, i=i).format(deg=deg, **fmtspec) \ for i in range(1, deg + 1)]) return \ '''{soa_typ} tmp = svundef{deg}_{suf}(); {fill_soa_typ} svst{deg}_{suf}({svtrue}, {in0}, tmp);'''. \ format(soa_typ=get_native_soa_typ('sve', typ, deg), deg=deg, fill_soa_typ=fill_soa_typ, **fmtspec) # ----------------------------------------------------------------------------- # Mask stores def mask_store(simd_ext, typ): if simd_ext in sve: return 'svst1_{suf}({in0}, {in1}, {in2});'.format(**fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''if ({in0}.v0) {{ {in1}[0] = {in2}.v0; }} if ({in0}.v1) {{ {in1}[1] = {in2}.v1; }}'''.format(**fmtspec) le = 128 // int(typ[1:]) normal = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; vst1q_{suf}(buf, {in2}); vst1q_u{typnbits}(mask, {in0}); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ {in1}[i] = buf[i]; }} }}'''.format(le=le, **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else f32 buf[8]; u32 mask[8]; int i; vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + 4, {in0}.v1); vst1q_f32(buf, {in2}.v0); vst1q_f32(buf + 4, {in2}.v1); for (i = 0; i < 8; i++) {{ if (mask[i]) {{ {in1}[i] = nsimd_f32_to_f16(buf[i]); }} }} #endif'''.format(normal=normal, **fmtspec) return normal # ----------------------------------------------------------------------------- # Length def len1(simd_ext, typ): if simd_ext in neon: return 'return {};'.format(128 // int(typ[1:])) elif simd_ext == 'sve': return 'return (int)svcntp_b{typnbits}({svtrue}, {svtrue});'. \ format(**fmtspec) elif simd_ext in fixed_sized_sve: return 'return {};'.format(int(simd_ext[3:]) // int(typ[1:])) # ----------------------------------------------------------------------------- # Add/sub def addsub(op, simd_ext, typ): ret = f16f64(simd_ext, typ, op, op, 2) if ret != '': return ret if simd_ext in neon: return 'return v{op}q_{suf}({in0}, {in1});'. \ format(op=op, **fmtspec) else: return 'return sv{op}_{suf}_x({svtrue}, {in0}, {in1});'. \ format(op=op, **fmtspec) # ----------------------------------------------------------------------------- # Multiplication def mul2(simd_ext, typ): ret = f16f64(simd_ext, typ, 'mul', 'mul', 2) if ret != '': return ret elif simd_ext in neon and typ in ['i64', 'u64']: return emulate_op2('*', simd_ext, typ) else: if simd_ext in neon: return 'return vmulq_{suf}({in0}, {in1});'.format(**fmtspec) else: return 'return svmul_{suf}_x({svtrue}, {in0}, {in1});'. \ format(**fmtspec) # ----------------------------------------------------------------------------- # Division def div2(simd_ext, typ): if simd_ext == 'aarch64' and typ in ['f32', 'f64']: return 'return vdivq_{suf}({in0}, {in1});'.format(**fmtspec) elif simd_ext in sve and \ typ in ['f16', 'f32', 'f64', 'i32', 'u32', 'i64', 'u64']: return 'return svdiv_{suf}_x({svtrue}, {in0}, {in1});'. \ format(**fmtspec) else: ret = f16f64(simd_ext, typ, 'div', 'div', 2) if ret != '': return ret return emulate_op2('/', simd_ext, typ) # ----------------------------------------------------------------------------- # Binary operators: and, or, xor, andnot def binop2(op, simd_ext, typ): armop = {'orb': 'orr', 'xorb': 'eor', 'andb': 'and', 'andnotb': 'bic'} if typ in common.iutypes: if simd_ext in neon: return 'return v{armop}q_{suf}({in0}, {in1});'. \ format(armop=armop[op], **fmtspec) else: return 'return sv{armop}_{suf}_x({svtrue}, {in0}, {in1});'. \ format(armop=armop[op], **fmtspec) # From here only float types if typ == 'f16': intrinsics = \ '''return vreinterpretq_f16_u16(v{armop}q_u16(vreinterpretq_u16_f16( {in0}), vreinterpretq_u16_f16({in1})));'''. \ format(armop=armop[op], **fmtspec) else: intrinsics = '' ret = f16f64(simd_ext, typ, op, armop[op], 2, intrinsics) if ret != '': return ret if simd_ext in neon: return \ '''return vreinterpretq_f{typnbits}_u{typnbits}(v{armop}q_u{typnbits}( vreinterpretq_u{typnbits}_f{typnbits}({in0}), vreinterpretq_u{typnbits}_f{typnbits}({in1})));'''. \ format(armop=armop[op], **fmtspec) else: return \ '''return svreinterpret_f{typnbits}_u{typnbits}( sv{armop}_u{typnbits}_x({svtrue}, svreinterpret_u{typnbits}_f{typnbits}({in0}), svreinterpret_u{typnbits}_f{typnbits}({in1})));'''. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Binary not def not1(simd_ext, typ): if typ in common.iutypes: if simd_ext in neon: if typ in ['i8', 'u8', 'i16', 'u16', 'i32', 'u32']: return 'return vmvnq_{suf}({in0});'.format(**fmtspec) else: return \ '''return vreinterpretq_{suf}_u32(vmvnq_u32( vreinterpretq_u32_{suf}({in0})));'''. \ format(**fmtspec) if simd_ext in sve: return 'return svnot_{suf}_x({svtrue}, {in0});'.format(**fmtspec) # From here only float types if typ == 'f16': intrinsics = \ '''return vreinterpretq_f16_u16(vmvnq_u16(vreinterpretq_u16_f16( {in0})));'''.format(**fmtspec) else: intrinsics = '' ret = f16f64(simd_ext, typ, 'notb', 'mvn', 1, intrinsics) if ret != '': return ret if simd_ext in neon: return \ '''return vreinterpretq_{suf}_u32(vmvnq_u32( vreinterpretq_u32_{suf}({in0})));'''. \ format(**fmtspec) else: return \ '''return svreinterpret_{suf}_u{typnbits}(svnot_u{typnbits}_x( {svtrue}, svreinterpret_u{typnbits}_{suf}({in0})));'''. \ format(**fmtspec) # ----------------------------------------------------------------------------- # Logical operators: and, or, xor, andnot def lop2(opts, op, simd_ext, typ): armop = {'orl': 'orr', 'xorl': 'eor', 'andl': 'and', 'andnotl': 'bic'} if simd_ext in neon: if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 return v{armop}q_u16({in0}, {in1}); #else nsimd_{simd_ext}_vlf16 ret; ret.v0 = v{armop}q_u32({in0}.v0, {in1}.v0); ret.v1 = v{armop}q_u32({in0}.v1, {in1}.v1); return ret; #endif'''.format(armop=armop[op], **fmtspec) elif simd_ext == 'neon128' and typ == 'f64': if op == 'andnotl': return '''nsimd_{simd_ext}_vlf64 ret; ret.v0 = {in0}.v0 & (~{in1}.v0); ret.v1 = {in0}.v1 & (~{in1}.v1); return ret;'''.format(**fmtspec) else: cpuop = {'orl': '|', 'xorl': '^', 'andl': '&'} return '''nsimd_{simd_ext}_vlf64 ret; ret.v0 = {in0}.v0 {cpuop} {in1}.v0; ret.v1 = {in0}.v1 {cpuop} {in1}.v1; return ret;'''.format(cpuop=cpuop[op], **fmtspec) else: return 'return v{armop}q_u{typnbits}({in0}, {in1});'. \ format(armop=armop[op], **fmtspec) else: if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return \ '''return sv{armop}_x({svtrue}, (svuint{typnbits}_t){in0}, (svuint{typnbits}_t){in1});'''. \ format(armop=armop[op], **fmtspec) else: return '''return sv{armop}_z({svtrue}, {in0}, {in1});'''. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Logical not def lnot1(opts, simd_ext, typ): if simd_ext in neon: if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 return vmvnq_u16({in0}); #else nsimd_{simd_ext}_vlf16 ret; ret.v0 = vmvnq_u32({in0}.v0); ret.v1 = vmvnq_u32({in0}.v1); return ret; #endif'''.format(**fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vlf64 ret; ret.v0 = ~{in0}.v0; ret.v1 = ~{in0}.v1; return ret;'''.format(**fmtspec) elif typ in ['i64', 'u64', 'f64']: return '''return vreinterpretq_u{typnbits}_u32(vmvnq_u32( vreinterpretq_u32_u{typnbits}({in0})));'''. \ format(**fmtspec) else: return 'return vmvnq_u{typnbits}({in0});'.format(**fmtspec) elif simd_ext in sve: if opts.sve_emulate_bool: # TODO: the cast is a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return 'return svnot_x({svtrue}, (svuint{typnbits}_t){in0});'.format(**fmtspec) else: return 'return svnot_z({svtrue}, {in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Square root def sqrt1(simd_ext, typ): if simd_ext == 'neon128': if typ in 'f16': return '''nsimd_neon128_vf16 ret; ret.v0 = nsimd_sqrt_neon128_f32({in0}.v0); ret.v1 = nsimd_sqrt_neon128_f32({in0}.v1); return ret;'''.format(**fmtspec) elif typ == 'f64': return f16f64('neon128', 'f64', 'sqrt', 'sqrt', 1) else: return emulate_op1('sqrt', simd_ext, typ) elif simd_ext == 'aarch64': if typ == 'f16': return f16f64('aarch64', 'f16', 'sqrt', 'sqrt', 1) else: return 'return vsqrtq_{suf}({in0});'.format(**fmtspec) else: return 'return svsqrt_{suf}_x({svtrue}, {in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Shifts def shl_shr(op, simd_ext, typ): if simd_ext in neon: sign = '-' if op == 'shr' else '' if typ in common.utypes: return '''return vshlq_{suf}({in0}, vdupq_n_s{typnbits}( (i{typnbits})({sign}{in1})));'''. \ format(sign=sign, **fmtspec) else: return \ '''return vreinterpretq_s{typnbits}_u{typnbits}(vshlq_u{typnbits}( vreinterpretq_u{typnbits}_s{typnbits}({in0}), vdupq_n_s{typnbits}((i{typnbits})({sign}{in1}))));'''. \ format(sign=sign, **fmtspec) else: armop = 'lsl' if op == 'shl' else 'lsr' if op == 'shr' and typ in common.itypes: return \ '''return svreinterpret_{suf}_{suf2}(sv{armop}_{suf2}_x({svtrue}, svreinterpret_{suf2}_{suf}({in0}), svdup_n_u{typnbits}((u{typnbits}){in1})));'''. \ format(suf2=common.bitfield_type[typ], armop=armop, **fmtspec) else: return '''return sv{armop}_{suf}_x({svtrue}, {in0}, svdup_n_u{typnbits}((u{typnbits}){in1}));'''. \ format(armop=armop, **fmtspec) def shra(simd_ext, typ): if typ in common.utypes: return '''return nsimd_shr_{simd_ext}_{typ}({in0}, {in1});'''. \ format(**fmtspec) if simd_ext in neon: return '''return vshlq_{suf}( {in0}, vdupq_n_s{typnbits}((i{typnbits})-{in1}));'''.\ format(**fmtspec) elif simd_ext in sve: if typ[0] == 'i': return '''return svasr_n_{suf}_x({svtrue}, {in0}, (u{typnbits}){in1});'''.\ format(**fmtspec) elif typ[0] == 'u': return 'return svlsl_n_{suf}_x({svtrue}, {in0}, (u64){in1});'.\ format(**fmtspec) # ----------------------------------------------------------------------------- # Set1 def set1(simd_ext, typ): if simd_ext in neon: if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vdupq_n_f16({in0}); #else nsimd_{simd_ext}_vf16 ret; f32 f = nsimd_f16_to_f32({in0}); ret.v0 = nsimd_set1_{simd_ext}_f32(f); ret.v1 = nsimd_set1_{simd_ext}_f32(f); return ret; #endif'''.format(**fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}; ret.v1 = {in0}; return ret;'''.format(**fmtspec) else: return 'return vdupq_n_{suf}({in0});'.format(**fmtspec) else: return 'return svdup_n_{suf}({in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Set1l def lset1(simd_ext, typ): if simd_ext in sve: return '''if ({in0}) {{ return svptrue_b{typnbits}(); }} else {{ return svpfalse_b(); }}'''.format(**fmtspec) # getting here means no NEON and AARCH64 only mask = 'vdupq_n_u{typnbits}((u{typnbits}){{}})'.format(**fmtspec) normal = '''if ({in0}) {{ return {ones}; }} else {{ return {zeros}; }}'''.format(ones=mask.format('-1'), zeros=mask.format('0'), **fmtspec) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else nsimd_{simd_ext}_vlf16 ret; ret.v0 = nsimd_set1l_{simd_ext}_f32({in0}); ret.v1 = ret.v0; return ret; #endif'''.format(normal=normal, **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vlf64 ret; ret.v0 = (u64)({in0} ? -1 : 0); ret.v1 = ret.v0; return ret;'''.format(**fmtspec) return normal # ----------------------------------------------------------------------------- # Comparison operators: ==, <, <=, >, >= def cmp2(opts, op, simd_ext, typ): binop = {'eq': '==', 'lt': '<', 'le': '<=', 'gt': '>', 'ge': '>='} armop = {'eq': 'eq', 'lt': 'lt', 'le': 'le', 'gt': 'gt', 'ge': 'ge'} if simd_ext in neon: emul_f16 = '''nsimd_{simd_ext}_vlf16 ret; ret.v0 = nsimd_{op}_{simd_ext}_f32({in0}.v0, {in1}.v0); ret.v1 = nsimd_{op}_{simd_ext}_f32({in0}.v1, {in1}.v1); return ret;'''.format(op=op, **fmtspec) normal = 'return vc{armop}q_{suf}({in0}, {in1});'. \ format(armop=armop[op], **fmtspec) if typ == 'f16': if simd_ext == 'neon128': return emul_f16 else: return \ '''#ifdef NSIMD_ARM_FP16 {} #else {} #endif'''.format(normal, emul_f16) if simd_ext == 'neon128' and typ == 'f64': return '''nsimd_{simd_ext}_vl{typ} ret; ret.v0 = {in0}.v0 {op} {in1}.v0 ? (u64)-1 : 0; ret.v1 = {in0}.v1 {op} {in1}.v1 ? (u64)-1 : 0; return ret;'''.format(op=binop[op], **fmtspec) elif simd_ext == 'neon128' and typ in ['i64', 'u64']: return '''{typ} buf0[2], buf1[2]; u64 ret[2]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); ret[0] = buf0[0] {op} buf1[0] ? (u64)-1 : 0; ret[1] = buf0[1] {op} buf1[1] ? (u64)-1 : 0; return vld1q_u64(ret);'''. \ format(op=binop[op], **fmtspec) else: return normal elif simd_ext in sve: if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected comp = 'svcmp{op}_{suf}({svtrue}, ({svetyp}){in0}, ({svetyp}){in1})'. \ format(op=armop[op], **fmtspec) return 'return {};'.format(convert_from_predicate(opts, comp)) else: return 'return svcmp{op}_{suf}({svtrue}, {in0}, {in1});'. \ format(op=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Not equal def neq2(opts, simd_ext, typ): if simd_ext in neon: return '''return nsimd_notl_{simd_ext}_{typ}( nsimd_eq_{simd_ext}_{typ}({in0}, {in1}));'''. \ format(**fmtspec) elif simd_ext in sve: comp='svcmpne_{suf}({svtrue}, {in0}, {in1})'. \ format(**fmtspec) return 'return {};'.format(convert_from_predicate(opts, comp)) # ----------------------------------------------------------------------------- # If_else def if_else3(opts, simd_ext, typ): if simd_ext in neon: intrinsic = 'return vbslq_{suf}({in0}, {in1}, {in2});'. \ format(**fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {intrinsic} #else nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_if_else1_{simd_ext}_f32( {in0}.v0, {in1}.v0, {in2}.v0); ret.v1 = nsimd_if_else1_{simd_ext}_f32( {in0}.v1, {in1}.v1, {in2}.v1); return ret; #endif'''.format(intrinsic=intrinsic, **fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}.v0 != 0u ? {in1}.v0 : {in2}.v0; ret.v1 = {in0}.v1 != 0u ? {in1}.v1 : {in2}.v1; return ret;'''.format(**fmtspec) else: return intrinsic elif simd_ext in sve: if opts.sve_emulate_bool: # TODO: the casts are a workaround to avoid a bug in gcc trunk for sve # it needs to be deleted when the bug is corrected return 'return svsel_{suf}({cond}, ({svetyp}){in1}, ({svetyp}){in2});' \ .format(cond=convert_to_predicate(opts, '{in0}'.format(**fmtspec)), **fmtspec) else: return 'return svsel_{suf}({in0}, {in1}, {in2});' \ .format(**fmtspec) # ----------------------------------------------------------------------------- # Minimum and maximum def minmax2(op, simd_ext, typ): ret = f16f64(simd_ext, typ, op, op, 2) if ret != '': return ret if simd_ext in neon: if typ in ['i64', 'u64']: binop = '<' if op == 'min' else '>' return '''{typ} buf0[2], buf1[2]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); buf0[0] = buf0[0] {binop} buf1[0] ? buf0[0] : buf1[0]; buf0[1] = buf0[1] {binop} buf1[1] ? buf0[1] : buf1[1]; return vld1q_{suf}(buf0);'''. \ format(binop=binop, **fmtspec) else: return 'return v{op}q_{suf}({in0}, {in1});'. \ format(op=op, **fmtspec) else: return 'return sv{op}_{suf}_x({svtrue}, {in0}, {in1});'. \ format(op=op, **fmtspec) # ----------------------------------------------------------------------------- # Abs def abs1(simd_ext, typ): if typ in common.utypes: return 'return {in0};'.format(**fmtspec) elif simd_ext in neon: if typ == 'f16': return f16f64(simd_ext, 'f16', 'abs', 'abs', 1) elif (typ in ['i8', 'i16', 'i32', 'f32']) or \ (simd_ext == 'aarch64' and typ in ['i64', 'f64']): return 'return vabsq_{suf}({in0});'.format(**fmtspec) elif typ == 'i64': return emulate_op1('abs', 'neon128', 'i64') else: return f16f64(simd_ext, 'f64', 'abs', 'abs', 1) else: return 'return svabs_{suf}_x({svtrue}, {in0});'. \ format(**fmtspec) # ----------------------------------------------------------------------------- # Round, trunc, ceil and round_to_even def round1(op, simd_ext, typ): if typ in common.iutypes: return 'return {in0};'.format(**fmtspec) armop = {'floor': 'rndm', 'ceil': 'rndp', 'trunc': 'rnd', 'round_to_even': 'rndn'} if simd_ext == 'neon128': ret = f16f64('neon128', typ, op, 'v{armop}q_{suf}'. \ format(armop=armop, **fmtspec), 1) if ret != '': return ret return emulate_op1(op, 'neon128', typ); elif simd_ext == 'aarch64': if typ == 'f16': return f16f64('aarch64', 'f16', op, armop[op], 1) else: return 'return v{armop}q_{suf}({in0});'. \ format(armop=armop[op], **fmtspec) else: armop = {'floor': 'rintm', 'ceil': 'rintp', 'trunc': 'rintz', 'round_to_even': 'rintn'} return 'return sv{armop}_{suf}_x({svtrue}, {in0});'. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # FMA and FNMA def fmafnma3(op, simd_ext, typ): if typ in common.ftypes and simd_ext == 'aarch64': armop = {'fma': 'fma', 'fnma': 'fms'} else: armop = {'fma': 'mla', 'fnma': 'mls'} if simd_ext in neon: normal = 'return v{armop}q_{suf}({in2}, {in1}, {in0});'. \ format(armop=armop[op], **fmtspec) emul = emulate_op3_neon(op, simd_ext, typ) if typ == 'f16': using_f32 = \ '''nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_{op}_{simd_ext}_f32({in0}.v0, {in1}.v0, {in2}.v0); ret.v1 = nsimd_{op}_{simd_ext}_f32({in0}.v1, {in1}.v1, {in2}.v1); return ret;'''.format(op=op, **fmtspec) if simd_ext == 'aarch64': return \ '''#ifdef NSIMD_ARM_FP16 {} #else {} #endif'''.format(emul, using_f32) else: return using_f32 elif simd_ext == 'neon128' and typ == 'f64': return emulate_f64_neon('neon128', op, ['v'] * 4) elif simd_ext == 'aarch64' and typ == 'f64': return normal elif typ in ['i64', 'u64']: return emul else: return normal else: return 'return sv{armop}_{suf}_x({svtrue}, {in2}, {in1}, {in0});'. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # FMS and FNMS def fmsfnms3(op, simd_ext, typ): if typ in common.iutypes: return \ '''return nsimd_neg_{simd_ext}_{typ}(nsimd_{op2}_{simd_ext}_{typ}( {in0}, {in1}, {in2}));'''. \ format(op2='fma' if op == 'fnms' else 'fnma', **fmtspec) if simd_ext in neon: return \ '''return nsimd_{op2}_{simd_ext}_{typ}({in0}, {in1}, nsimd_neg_{simd_ext}_{typ}({in2}));'''. \ format(op2='fma' if op == 'fms' else 'fnma', **fmtspec) else: armop = {'fnms': 'nmla', 'fms': 'nmls'} return 'return sv{armop}_{suf}_x({svtrue}, {in2}, {in1}, {in0});'. \ format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Neg def neg1(simd_ext, typ): if simd_ext in neon: normal = 'return vnegq_{suf}({in0});'.format(**fmtspec) if typ == 'f16': return f16f64(simd_ext, 'f16', 'neg', 'neg', 1) elif typ in ['i8', 'i16', 'i32', 'f32']: return normal elif typ in ['u8', 'u16', 'u32']: return \ '''return vreinterpretq_{suf}_s{typnbits}( vnegq_s{typnbits}( vreinterpretq_s{typnbits}_{suf}({in0})));'''. \ format(**fmtspec) elif simd_ext == 'neon128' and typ in ['i64', 'u64']: return emulate_op1('neg', simd_ext, typ) elif simd_ext == 'neon128' and typ == 'f64': return \ '''nsimd_neon128_vf64 ret; ret.v0 = -{in0}.v0; ret.v1 = -{in0}.v1; return ret;'''.format(**fmtspec) elif simd_ext == 'aarch64' and typ in ['f64', 'i64']: return normal elif simd_ext == 'aarch64' and typ == 'u64': return \ '''return vreinterpretq_u64_s64(vnegq_s64( vreinterpretq_s64_u64({in0})));'''. \ format(**fmtspec) else: if typ in common.utypes: return \ '''return svreinterpret_{suf}_s{typnbits}( svneg_s{typnbits}_x({svtrue}, svreinterpret_s{typnbits}_{suf}({in0})));'''. \ format(**fmtspec) else: return 'return svneg_{suf}_x({svtrue}, {in0});'.format(**fmtspec) # ----------------------------------------------------------------------------- # Reciprocals def recs1(op, simd_ext, typ): cte = '({typ})1'.format(**fmtspec) if typ != 'f16' \ else 'nsimd_f32_to_f16(1.0f)' if op in ['rec', 'rec11']: return \ '''return nsimd_div_{simd_ext}_{typ}( nsimd_set1_{simd_ext}_{typ}({cte}), {in0});'''. \ format(cte=cte, **fmtspec) elif op == 'rsqrt11': return \ '''return nsimd_div_{simd_ext}_{typ}( nsimd_set1_{simd_ext}_{typ}({cte}), nsimd_sqrt_{simd_ext}_{typ}({in0}));'''. \ format(cte=cte, **fmtspec) elif op in ['rec8', 'rsqrt8']: armop = 'recpe' if op == 'rec8' else 'rsqrte' if simd_ext in sve: return 'return sv{armop}_{suf}({in0});'. \ format(armop=armop, **fmtspec) else: ret = f16f64(simd_ext, typ, op, armop, 1) if ret != '': return ret return 'return v{armop}q_{suf}({in0});'. \ format(armop=armop, **fmtspec) # Rec11 and rsqrt11 # According to http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka14282.html # reciprocal estimates only work when inputs is restrained in some small # interval so we comment these for now and return full-precision reciprocals. # def rec11rsqrt11(op, simd_ext, typ): # armop = {'rec11': 'recpe', 'rsqrt11': 'rsqrte'} # if simd_ext in neon: # ret = f16f64(simd_ext, typ, op, armop[op], 1) # if ret != '': # return ret # return 'return v{armop}q_{suf}({in0});'. \ # format(armop=armop[op], **fmtspec) # else: # return 'return sv{armop}_{suf}({in0});'. \ # format(armop=armop[op], **fmtspec) # ----------------------------------------------------------------------------- # Load of logicals def loadl(aligned, simd_ext, typ): return \ '''/* This can surely be improved but it is not our priority. */ return nsimd_notl_{simd_ext}_{typ}(nsimd_eq_{simd_ext}_{typ}( nsimd_load{align}_{simd_ext}_{typ}( {in0}), nsimd_set1_{simd_ext}_{typ}({zero})));'''. \ format(align='a' if aligned else 'u', zero = 'nsimd_f32_to_f16(0.0f)' if typ == 'f16' else '({})0'.format(typ), **fmtspec) # ----------------------------------------------------------------------------- # Store of logicals def storel(aligned, simd_ext, typ): return \ '''/* This can surely be improved but it is not our priority. */ nsimd_store{align}_{simd_ext}_{typ}({in0}, nsimd_if_else1_{simd_ext}_{typ}({in1}, nsimd_set1_{simd_ext}_{typ}({one}), nsimd_set1_{simd_ext}_{typ}({zero})));'''. \ format(align = 'a' if aligned else 'u', one = 'nsimd_f32_to_f16(1.0f)' if typ == 'f16' else '({})1'.format(typ), zero = 'nsimd_f32_to_f16(0.0f)' if typ == 'f16' else '({})0'.format(typ), **fmtspec) # ----------------------------------------------------------------------------- # All and any def allany1(opts, op, simd_ext, typ): binop = '&&' if op == 'all' else '||' if simd_ext == 'neon128': if typ == 'f16': return \ '''return nsimd_{op}_neon128_f32({in0}.v0) {binop} nsimd_{op}_neon128_f32({in0}.v1);'''. \ format(op=op, binop=binop, **fmtspec) elif typ == 'f64': return 'return {in0}.v0 {binop} {in0}.v1;'. \ format(binop=binop, **fmtspec) else: return 'return ' + \ binop.join(['vgetq_lane_u{typnbits}({in0}, {i})'. \ format(i=i, **fmtspec) \ for i in range(0, 128 // int(fmtspec['typnbits']))]) + \ ';' elif simd_ext == 'aarch64': armop = {'all': 'min', 'any': 'max'} normal = 'return v{armop}vq_u{typnbits}({in0}) != 0;'. \ format(armop=armop[op], **fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else return nsimd_{op}_aarch64_f32({in0}.v0) {binop} nsimd_{op}_aarch64_f32({in0}.v1); #endif'''.format(normal=normal, op=op, binop=binop, **fmtspec) elif typ in ['i64', 'u64', 'f64']: return \ 'return v{armop}vq_u32(vreinterpretq_u32_u64({in0})) != 0;'. \ format(armop=armop[op], **fmtspec) else: return normal elif simd_ext in sve: if op == 'any': operand= convert_to_predicate(opts, '{in0}'.format(**fmtspec)) return '''return svptest_any({svtrue}, {operand});'''. \ format(operand=operand, **fmtspec) else: operand='svnot_z({svtrue}, {op})'. \ format(op=convert_to_predicate(opts, '{in0}'.format(**fmtspec)), **fmtspec) return '''return !svptest_any({svtrue}, {operand});'''. \ format(operand=operand, **fmtspec) # ----------------------------------------------------------------------------- # nbtrue def nbtrue1(opts, simd_ext, typ): if simd_ext == 'neon128': if typ == 'f16': return \ '''return nsimd_nbtrue_neon128_f32({in0}.v0) + nsimd_nbtrue_neon128_f32({in0}.v1);'''. \ format(**fmtspec) elif typ == 'f64': return 'return -(int)((i64){in0}.v0 + (i64){in0}.v1);'. \ format(**fmtspec) else: return \ '''nsimd_neon128_vi{typnbits} temp = vreinterpretq_s{typnbits}_u{typnbits}({in0}); return -(int)('''.format(**fmtspec) + \ '+'.join(['vgetq_lane_s{typnbits}(temp, {i})'. \ format(i=i, **fmtspec) \ for i in range(0, 128 // int(fmtspec['typnbits']))]) + \ ');' elif simd_ext == 'aarch64': normal = \ '''return -(int)vaddvq_s{typnbits}( vreinterpretq_s{typnbits}_u{typnbits}({in0}));'''. \ format(**fmtspec) if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {normal} #else return nsimd_nbtrue_aarch64_f32({in0}.v0) + nsimd_nbtrue_aarch64_f32({in0}.v1); #endif'''.format(normal=normal, **fmtspec) elif typ in ['i64', 'u64', 'f64']: return \ '''return -(vaddvq_s32(vreinterpretq_s32_u64({in0})) >> 1);'''. \ format(**fmtspec) else: return normal elif simd_ext in sve: return 'return (int)svcntp_b{typnbits}({svtrue}, {op});'. \ format(op=convert_to_predicate(opts, '{in0}'.format(**fmtspec)), **fmtspec) # ----------------------------------------------------------------------------- # Reinterpret logical def reinterpretl1(simd_ext, from_typ, to_typ): if from_typ == to_typ or simd_ext in sve: return 'return {in0};'.format(**fmtspec) to_f16_with_f32 = \ '''nsimd_{simd_ext}_vlf16 ret; u32 buf[4]; buf[0] = (vgetq_lane_u16({in0}, 0) ? (u32)-1 : 0); buf[1] = (vgetq_lane_u16({in0}, 1) ? (u32)-1 : 0); buf[2] = (vgetq_lane_u16({in0}, 2) ? (u32)-1 : 0); buf[3] = (vgetq_lane_u16({in0}, 3) ? (u32)-1 : 0); ret.v0 = vld1q_u32(buf); buf[0] = (vgetq_lane_u16({in0}, 4) ? (u32)-1 : 0); buf[1] = (vgetq_lane_u16({in0}, 5) ? (u32)-1 : 0); buf[2] = (vgetq_lane_u16({in0}, 6) ? (u32)-1 : 0); buf[3] = (vgetq_lane_u16({in0}, 7) ? (u32)-1 : 0); ret.v1 = vld1q_u32(buf); return ret;'''.format(**fmtspec) from_f16_with_f32 = \ '''u16 buf[8]; buf[0] = (vgetq_lane_u32({in0}.v0, 0) ? (u16)-1 : 0); buf[1] = (vgetq_lane_u32({in0}.v0, 1) ? (u16)-1 : 0); buf[2] = (vgetq_lane_u32({in0}.v0, 2) ? (u16)-1 : 0); buf[3] = (vgetq_lane_u32({in0}.v0, 3) ? (u16)-1 : 0); buf[4] = (vgetq_lane_u32({in0}.v1, 0) ? (u16)-1 : 0); buf[5] = (vgetq_lane_u32({in0}.v1, 1) ? (u16)-1 : 0); buf[6] = (vgetq_lane_u32({in0}.v1, 2) ? (u16)-1 : 0); buf[7] = (vgetq_lane_u32({in0}.v1, 3) ? (u16)-1 : 0); return vld1q_u16(buf);'''.format(**fmtspec) if simd_ext == 'neon128': if to_typ == 'f16': return to_f16_with_f32 elif from_typ == 'f16': return from_f16_with_f32 elif to_typ == 'f64': return '''nsimd_neon128_vlf64 ret; ret.v0 = vgetq_lane_u64({in0}, 0); ret.v1 = vgetq_lane_u64({in0}, 1); return ret;'''.format(**fmtspec) elif from_typ == 'f64': return '''u64 buf[2]; buf[0] = {in0}.v0; buf[1] = {in0}.v1; return vld1q_u64(buf);'''.format(**fmtspec) else: return 'return {in0};'.format(**fmtspec) elif simd_ext == 'aarch64': if to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return {in0}; #else {using_f32} #endif'''.format(using_f32=to_f16_with_f32, **fmtspec) elif from_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return {in0}; #else {using_f32} #endif'''.format(using_f32=from_f16_with_f32, **fmtspec) else: return 'return {in0};'.format(**fmtspec) # ----------------------------------------------------------------------------- # Convert def convert1(simd_ext, from_typ, to_typ): fmtspec2 = fmtspec.copy() fmtspec2['to_suf'] = suf(to_typ) fmtspec2['from_suf'] = suf(from_typ) if from_typ == to_typ: return 'return {in0};'.format(**fmtspec) if from_typ in common.iutypes and to_typ in common.iutypes: if simd_ext in neon: return 'return vreinterpretq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) else: return 'return svreinterpret_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) if simd_ext in sve: return 'return svcvt_{to_suf}_{from_suf}_x({svtrue}, {in0});'. \ format(**fmtspec2) to_f16_with_f32 = \ '''nsimd_{simd_ext}_vf16 ret; f32 buf[4]; buf[0] = (f32)vgetq_lane_{from_suf}({in0}, 0); buf[1] = (f32)vgetq_lane_{from_suf}({in0}, 1); buf[2] = (f32)vgetq_lane_{from_suf}({in0}, 2); buf[3] = (f32)vgetq_lane_{from_suf}({in0}, 3); ret.v0 = vld1q_f32(buf); buf[0] = (f32)vgetq_lane_{from_suf}({in0}, 4); buf[1] = (f32)vgetq_lane_{from_suf}({in0}, 5); buf[2] = (f32)vgetq_lane_{from_suf}({in0}, 6); buf[3] = (f32)vgetq_lane_{from_suf}({in0}, 7); ret.v1 = vld1q_f32(buf); return ret;'''.format(**fmtspec2) from_f16_with_f32 = \ '''{to_typ} buf[8]; buf[0] = ({to_typ})vgetq_lane_f32({in0}.v0, 0); buf[1] = ({to_typ})vgetq_lane_f32({in0}.v0, 1); buf[2] = ({to_typ})vgetq_lane_f32({in0}.v0, 2); buf[3] = ({to_typ})vgetq_lane_f32({in0}.v0, 3); buf[4] = ({to_typ})vgetq_lane_f32({in0}.v1, 0); buf[5] = ({to_typ})vgetq_lane_f32({in0}.v1, 1); buf[6] = ({to_typ})vgetq_lane_f32({in0}.v1, 2); buf[7] = ({to_typ})vgetq_lane_f32({in0}.v1, 3); return vld1q_{to_suf}(buf);'''.format(**fmtspec2) if simd_ext == 'neon128': if to_typ == 'f16': return to_f16_with_f32 elif from_typ == 'f16': return from_f16_with_f32 elif to_typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = (f64)vgetq_lane_{from_suf}({in0}, 0); ret.v1 = (f64)vgetq_lane_{from_suf}({in0}, 1); return ret;'''.format(**fmtspec2) elif from_typ == 'f64': return '''{to_typ} buf[2]; buf[0] = ({to_typ}){in0}.v0; buf[1] = ({to_typ}){in0}.v1; return vld1q_{to_suf}(buf);'''.format(**fmtspec2) else: return 'return vcvtq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) elif simd_ext == 'aarch64': if to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vcvtq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=to_f16_with_f32, **fmtspec2) elif from_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vcvtq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=from_f16_with_f32, **fmtspec2) else: return 'return vcvtq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) # ----------------------------------------------------------------------------- # Reinterpret def reinterpret1(simd_ext, from_typ, to_typ): fmtspec2 = fmtspec.copy() fmtspec2['to_suf'] = suf(to_typ) fmtspec2['from_suf'] = suf(from_typ) if from_typ == to_typ: return 'return {in0};'.format(**fmtspec) if simd_ext in sve: return 'return svreinterpret_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) to_f16_with_f32 = \ '''nsimd_{simd_ext}_vf16 ret; f32 buf[4]; buf[0] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 0)); buf[1] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 1)); buf[2] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 2)); buf[3] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 3)); ret.v0 = vld1q_f32(buf); buf[0] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 4)); buf[1] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 5)); buf[2] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 6)); buf[3] = nsimd_u16_to_f32((u16)vgetq_lane_{from_suf}({in0}, 7)); ret.v1 = vld1q_f32(buf); return ret;'''.format(**fmtspec2) from_f16_with_f32 = \ '''{to_typ} buf[8]; buf[0] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 0)); buf[1] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 1)); buf[2] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 2)); buf[3] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v0, 3)); buf[4] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 0)); buf[5] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 1)); buf[6] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 2)); buf[7] = ({to_typ})nsimd_f32_to_u16(vgetq_lane_f32({in0}.v1, 3)); return vld1q_{to_suf}(buf);'''.format(**fmtspec2) if simd_ext == 'neon128': if to_typ == 'f16': return to_f16_with_f32 elif from_typ == 'f16': return from_f16_with_f32 elif to_typ == 'f64': return '''nsimd_neon128_vf64 ret; union {{ f64 to; {from_typ} from; }} buf; buf.from = vgetq_lane_{from_suf}({in0}, 0); ret.v0 = buf.to; buf.from = vgetq_lane_{from_suf}({in0}, 1); ret.v1 = buf.to; return ret;'''.format(**fmtspec2) elif from_typ == 'f64': return '''union {{ f64 from; {to_typ} to; }} buf_; {to_typ} buf[2]; buf_.from = {in0}.v0; buf[0] = buf_.to; buf_.from = {in0}.v1; buf[1] = buf_.to; return vld1q_{to_suf}(buf);'''.format(**fmtspec2) else: return 'return vreinterpretq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) elif simd_ext == 'aarch64': if to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vreinterpretq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=to_f16_with_f32, **fmtspec2) elif from_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vreinterpretq_{to_suf}_{from_suf}({in0}); #else {using_f32} #endif'''.format(using_f32=from_f16_with_f32, **fmtspec2) else: return 'return vreinterpretq_{to_suf}_{from_suf}({in0});'. \ format(**fmtspec2) # ----------------------------------------------------------------------------- # reverse def reverse1(simd_ext, typ): armtyp = suf(typ) if simd_ext in sve: return '''return svrev_{suf}( {in0} );'''.format(**fmtspec) elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}.v1; ret.v1 = {in0}.v0; return ret;'''.format(**fmtspec) elif typ in [ 'i64', 'u64', 'f64' ]: return '''return vcombine_{armtyp}(vget_high_{armtyp}({in0}), vget_low_{armtyp}({in0}));'''. \ format(armtyp=armtyp, **fmtspec) elif typ == 'f16': return '''nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_reverse_{simd_ext}_f32(a0.v1); ret.v1 = nsimd_reverse_{simd_ext}_f32(a0.v0); return ret;'''.format(**fmtspec) else: return '''{in0} = vrev64q_{armtyp}({in0}); return vcombine_{armtyp}(vget_high_{armtyp}({in0}), vget_low_{armtyp}({in0}));'''. \ format(armtyp=armtyp, **fmtspec) # ----------------------------------------------------------------------------- # Horizontal sum def addv(simd_ext, typ): if simd_ext == 'neon128': if typ == 'f64': return 'return ({typ})({in0}.v0 + {in0}.v1);'.format(**fmtspec) elif typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {t} tmp = vadd_{suf}(vget_low_{suf}({in0}), vget_high_{suf}({in0})); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 3)); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 0)); return vget_lane_{suf}(tmp, 0); #else float32x2_t tmp0 = vadd_f32(vget_low_f32({in0}.v0), vget_high_f32({in0}.v0)); tmp0 = vadd_f32(tmp0, vext_f32(tmp0, tmp0, 1)); float32x2_t tmp1 = vadd_f32(vget_low_f32({in0}.v1), vget_high_f32({in0}.v1)); tmp1 = vadd_f32(tmp1, vext_f32(tmp1, tmp1, 1)); return nsimd_f32_to_f16(vget_lane_f32(tmp0, 0) + vget_lane_f32(tmp1, 0)); #endif''' .format(t=half_neon64_typ(typ), **fmtspec) elif typ == 'f32': return \ '''{t} tmp = vadd_{suf}(vget_low_{suf}({in0}), vget_high_{suf}({in0})); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 1)); return vget_lane_{suf}(tmp, 0);'''. \ format(t=half_neon64_typ(typ), **fmtspec) elif typ[0] in ['i', 'u']: le = 128 // int(typ[1:]); return \ '''{typ} res = ({typ})0; {typ} buf[{le}]; vst1q_{suf}(buf, {in0}); for (int i = 0; i < {le}; i++) {{ res += buf[i]; }} return res;'''. \ format(le=le, **fmtspec) elif simd_ext == 'aarch64': if typ == 'f16': return \ '''#ifdef NSIMD_ARM_FP16 {t} tmp = vadd_{suf}(vget_low_{suf}({in0}), vget_high_{suf}({in0})); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 3)); tmp = vadd_{suf}(tmp, vext_{suf}(tmp, tmp, 0)); return vget_lane_{suf}(tmp, 0); #else float32x2_t tmp0 = vadd_f32(vget_low_f32({in0}.v0), vget_high_f32({in0}.v0)); tmp0 = vadd_f32(tmp0, vext_f32(tmp0, tmp0, 1)); float32x2_t tmp1 = vadd_f32(vget_low_f32({in0}.v1), vget_high_f32({in0}.v1)); tmp1 = vadd_f32(tmp1, vext_f32(tmp1, tmp1, 1)); return nsimd_f32_to_f16(vget_lane_f32(tmp0, 0) + vget_lane_f32(tmp1, 0)); #endif''' .format(t=half_neon64_typ(typ), **fmtspec) elif typ in ['f32', 'f64']: return 'return vaddvq_{suf}({in0});'.format(**fmtspec) elif simd_ext in sve: return 'return svaddv_{suf}({svtrue}, {in0});' .format(**fmtspec) # ----------------------------------------------------------------------------- # Up convert def upcvt1(simd_ext, from_typ, to_typ): # For integer upcast, due to 2's complement representation # _s : signed -> bigger signed # _s : signed -> bigger unsigned # _u : unsigned -> bigger signed # _u : unsigned -> bigger unsigned if simd_ext in neon: if from_typ == 'f16' and to_typ == 'f32': return \ '''#ifdef NSIMD_ARM_FP16 nsimd_{simd_ext}_vf32x2 ret; ret.v0 = vcvt_f32_f16(vget_low_{suf}({in0})); ret.v1 = vcvt_f32_f16(vget_high_{suf}({in0})); return ret; #else nsimd_{simd_ext}_vf32x2 ret; ret.v0 = {in0}.v0; ret.v1 = {in0}.v1; return ret; #endif'''.format(**fmtspec) elif from_typ == 'f32' and to_typ == 'f64': if simd_ext == 'neon128': return \ '''nsimd_neon128_vf64x2 ret; f32 buf[4]; vst1q_f32(buf, {in0}); ret.v0.v0 = (f64)buf[0]; ret.v0.v1 = (f64)buf[1]; ret.v1.v0 = (f64)buf[2]; ret.v1.v1 = (f64)buf[3]; return ret;'''.format(**fmtspec) else: return \ '''nsimd_aarch64_vf64x2 ret; ret.v0 = vcvt_f64_f32(vget_low_{suf}({in0})); ret.v1 = vcvt_f64_f32(vget_high_{suf}({in0})); return ret;'''.format(**fmtspec) elif (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = vmovl_{suf}(vget_low_{suf}({in0})); ret.v1 = vmovl_{suf}(vget_high_{suf}({in0})); return ret;'''.format(**fmtspec) elif (from_typ in common.itypes and to_typ in common.utypes) or \ (from_typ in common.utypes and to_typ in common.itypes): return '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = vreinterpretq_{suf_to_typ}_{suf_int_typ}( vmovl_{suf}(vget_low_{suf}({in0}))); ret.v1 = vreinterpretq_{suf_to_typ}_{suf_int_typ}( vmovl_{suf}(vget_high_{suf}({in0}))); return ret;'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(from_typ[0] + to_typ[1:]), **fmtspec) else: return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; nsimd_{simd_ext}_v{int_typ}x2 tmp; tmp = nsimd_upcvt_{simd_ext}_{int_typ}_{from_typ}({in0}); ret.v0 = nsimd_cvt_{simd_ext}_{to_typ}_{int_typ}(tmp.v0); ret.v1 = nsimd_cvt_{simd_ext}_{to_typ}_{int_typ}(tmp.v1); return ret;'''. \ format(int_typ=from_typ[0] + to_typ[1:], **fmtspec) # Getting here means that we deal with SVE if (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svunpklo_{suf_to_typ}({in0}); ret.v1 = svunpkhi_{suf_to_typ}({in0}); return ret;'''.format(suf_to_typ=suf(to_typ), **fmtspec) elif (from_typ in common.itypes and to_typ in common.utypes) or \ (from_typ in common.utypes and to_typ in common.itypes): return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svreinterpret_{suf_to_typ}_{suf_int_typ}( svunpklo_{suf_int_typ}({in0})); ret.v1 = svreinterpret_{suf_to_typ}_{suf_int_typ}( svunpkhi_{suf_int_typ}({in0})); return ret;'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(from_typ[0] + to_typ[1:]), **fmtspec) elif from_typ in common.iutypes and to_typ in common.ftypes: return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svcvt_{suf_to_typ}_{suf_int_typ}_x( {svtrue}, svunpklo_{suf_int_typ}({in0})); ret.v1 = svcvt_{suf_to_typ}_{suf_int_typ}_x( {svtrue}, svunpkhi_{suf_int_typ}({in0})); return ret;'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(from_typ[0] + to_typ[1:]), **fmtspec) else: return \ '''nsimd_{simd_ext}_v{to_typ}x2 ret; ret.v0 = svcvt_{suf_to_typ}_{suf}_x({svtrue}, svzip1_{suf}( {in0}, {in0})); ret.v1 = svcvt_{suf_to_typ}_{suf}_x({svtrue}, svzip2_{suf}( {in0}, {in0})); return ret;'''.format(suf_to_typ=suf(to_typ), **fmtspec) # ----------------------------------------------------------------------------- # Down convert def downcvt1(simd_ext, from_typ, to_typ): if simd_ext in neon: if from_typ == 'f64' and to_typ == 'f32': if simd_ext == 'neon128': return '''f32 buf[4]; buf[0] = (f32){in0}.v0; buf[1] = (f32){in0}.v1; buf[2] = (f32){in1}.v0; buf[3] = (f32){in1}.v1; return vld1q_f32(buf);'''.format(**fmtspec) else: return '''return vcombine_f32(vcvt_f32_f64({in0}), vcvt_f32_f64({in1}));'''. \ format(**fmtspec) elif from_typ == 'f32' and to_typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 return vcombine_f16(vcvt_f16_f32({in0}), vcvt_f16_f32({in1})); #else nsimd_{simd_ext}_vf16 ret; ret.v0 = {in0}; ret.v1 = {in1}; return ret; #endif'''.format(**fmtspec) elif (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''return vcombine_{suf_to_typ}(vmovn_{suf}({in0}), vmovn_{suf}({in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) elif (from_typ in common.itypes and to_typ in common.itypes) or \ (from_typ in common.utypes and to_typ in common.utypes): return '''return vreinterpretq_{suf_to_typ}( vcombine_{suf_to_typ}(vmovn_{suf}({in0}), vmovn_{suf}({in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) else: return \ '''return nsimd_downcvt_{simd_ext}_{to_typ}_{int_typ}( nsimd_cvt_{simd_ext}_{int_typ}_{from_typ}({in0}), nsimd_cvt_{simd_ext}_{int_typ}_{from_typ}({in1}));'''.\ format(int_typ=to_typ[0] + from_typ[1:], **fmtspec) # Getting here means that we deal with SVE if from_typ in common.iutypes and to_typ in common.iutypes: return '''return svuzp1_{suf_to_typ}( svreinterpret_{suf_to_typ}_{suf}({in0}), svreinterpret_{suf_to_typ}_{suf}({in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) elif from_typ in common.ftypes and to_typ in common.iutypes: return \ '''return svuzp1_{suf_to_typ}(svreinterpret_{suf_to_typ}_{suf_int_typ}( svcvt_{suf_int_typ}_{suf}_x({svtrue}, {in0})), svreinterpret_{suf_to_typ}_{suf_int_typ}( svcvt_{suf_int_typ}_{suf}_x({svtrue}, {in1})));'''. \ format(suf_to_typ=suf(to_typ), suf_int_typ=suf(to_typ[0] + from_typ[1:]), **fmtspec) else: return \ '''return svuzp1_{suf_to_typ}(svcvt_{suf_to_typ}_{suf}_x( {svtrue}, {in0}), svcvt_{suf_to_typ}_{suf}_x( {svtrue}, {in1}));'''. \ format(suf_to_typ=suf(to_typ), **fmtspec) # ----------------------------------------------------------------------------- # adds def adds(simd_ext, from_typ): if from_typ in common.ftypes: return 'return nsimd_add_{simd_ext}_{from_typ}({in0}, {in1});'. \ format(**fmtspec) if simd_ext in neon: return 'return vqaddq_{suf}({in0}, {in1});'.format(**fmtspec) else: return 'return svqadd_{suf}({in0}, {in1});'.format(**fmtspec) # ----------------------------------------------------------------------------- # subs def subs(simd_ext, from_typ): if from_typ in common.ftypes: return 'return nsimd_sub_{simd_ext}_{from_typ}({in0}, {in1});'. \ format(**fmtspec) elif simd_ext in neon: return 'return vqsubq_{suf}({in0}, {in1});'.format(**fmtspec) else: return 'return svqsub_{suf}({in0}, {in1});'.format(**fmtspec) # ----------------------------------------------------------------------------- # to_mask def to_mask1(opts, simd_ext, typ): if typ in common.itypes + common.ftypes: normal = 'return vreinterpretq_{suf}_u{typnbits}({in0});'. \ format(**fmtspec) else: normal = 'return {in0};'.format(**fmtspec) emulate_f16 = '''nsimd_{simd_ext}_vf16 ret; ret.v0 = nsimd_to_mask_{simd_ext}_f32({in0}.v0); ret.v1 = nsimd_to_mask_{simd_ext}_f32({in0}.v1); return ret;'''.format(**fmtspec) if simd_ext == 'neon128' and typ == 'f16': return emulate_f16 elif simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; ret.v0 = nsimd_scalar_reinterpret_f64_u64({in0}.v0); ret.v1 = nsimd_scalar_reinterpret_f64_u64({in0}.v1); return ret;'''.format(**fmtspec) elif simd_ext == 'aarch64' and typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else {emulate_f16} #endif'''.format(normal=normal, emulate_f16=emulate_f16) elif simd_ext in sve: if opts.sve_emulate_bool: return 'return svreinterpret_{suf}_u{typnbits}({in0});'. \ format(**fmtspec) else: utyp = 'u{}'.format(fmtspec['typnbits']) return '''return svreinterpret_{suf}_{utyp}(svsel_{utyp}( {in0}, svdup_n_{utyp}(({utyp})-1), svdup_n_{utyp}(({utyp})0)));'''. \ format(utyp=utyp, **fmtspec) else: return normal # ----------------------------------------------------------------------------- # iota def iota(simd_ext, typ): if simd_ext in sve: if typ in common.iutypes: return 'return svindex_{suf}(0, 1);'.format(**fmtspec) else: return \ '''return svcvt_{suf}_s{typnbits}_x({svtrue}, svindex_s{typnbits}(0, 1));'''.format(**fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vf64 ret; ret.v0 = 0.0; ret.v1 = 1.0; return ret;'''.format(**fmtspec) typ2 = 'f32' if typ == 'f16' else typ le = 128 // int(typ[1:]) iota = ', '.join(['({typ2}){i}'.format(typ2=typ2, i=i) \ for i in range(le)]) normal = '''{typ} buf[{le}] = {{ {iota} }}; return vld1q_{suf}(buf);'''. \ format(le=le, iota=iota, **fmtspec) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {normal} #else f32 buf[8] = {{ {iota} }}; nsimd_{simd_ext}_vf16 ret; ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''.format(iota=iota, normal=normal, **fmtspec) return normal # ----------------------------------------------------------------------------- # mask_for_loop_tail def mask_for_loop_tail(simd_ext, typ): if typ == 'f16': threshold = 'nsimd_f32_to_f16((f32)({in1} - {in0}))'.format(**fmtspec) else: threshold = '({typ})({in1} - {in0})'.format(**fmtspec) if simd_ext == 'sve': le = 'nsimd_len_sve_{typ}()'.format(**fmtspec) elif simd_ext in fixed_sized_sve: le = int(simd_ext[3:]) // int(typ[1:]) else: le = 128 // int(typ[1:]) return '''if ({in0} >= {in1}) {{ return nsimd_set1l_{simd_ext}_{typ}(0); }} if ({in1} - {in0} < {le}) {{ nsimd_{simd_ext}_v{typ} n = nsimd_set1_{simd_ext}_{typ}({threshold}); return nsimd_lt_{simd_ext}_{typ}( nsimd_iota_{simd_ext}_{typ}(), n); }} else {{ return nsimd_set1l_{simd_ext}_{typ}(1); }}'''.format(le=le, threshold=threshold, **fmtspec) # ----------------------------------------------------------------------------- # to_logical def to_logical1(opts, simd_ext, typ): if typ in common.iutypes: return '''return nsimd_ne_{simd_ext}_{typ}({in0}, nsimd_set1_{simd_ext}_{typ}(({typ})0));'''. \ format(**fmtspec) normal_fp = \ '''return nsimd_reinterpretl_{simd_ext}_{suf}_{utyp}( nsimd_ne_{simd_ext}_{utyp}( nsimd_reinterpret_{simd_ext}_{utyp}_{typ}( {in0}), nsimd_set1_{simd_ext}_{utyp}(({utyp})0)));'''. \ format(utyp='u{}'.format(fmtspec['typnbits']), **fmtspec) if typ in ['f32', 'f64'] or (typ == 'f16' and simd_ext in sve): return normal_fp emulate_fp16 = \ '''nsimd_{simd_ext}_vlf16 ret; ret.v0 = nsimd_to_logical_{simd_ext}_f32({in0}.v0); ret.v1 = nsimd_to_logical_{simd_ext}_f32({in0}.v1); return ret;'''.format(**fmtspec) if simd_ext == 'aarch64': return '''#ifdef NSIMD_ARM_FP16 {normal_fp} #else {emulate_fp16} #endif'''.format(normal_fp=normal_fp, emulate_fp16=emulate_fp16) elif simd_ext == 'neon128': return emulate_fp16 # ----------------------------------------------------------------------------- # unpack functions def zip_unzip_half(func, simd_ext, typ): if simd_ext == 'aarch64' or simd_ext in sve: if typ =='f16' and simd_ext == 'aarch64': if func in ['zip1', 'zip2']: return '''\ #ifdef NSIMD_ARM_FP16 return {s}v{op}{q}_{suf}({in0}, {in1}); #else nsimd_{simd_ext}_v{typ} ret; ret.v0 = {s}vzip1{q}_f32({in0}.v{i}, {in1}.v{i}); ret.v1 = {s}vzip2{q}_f32({in0}.v{i}, {in1}.v{i}); return ret; #endif '''.format(op=func, i = '0' if func in ['zip1', 'uzp1'] else '1', s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', **fmtspec) else: return '''\ #ifdef NSIMD_ARM_FP16 return {s}v{op}{q}_{suf}({in0}, {in1}); #else nsimd_{simd_ext}_v{typ} ret; ret.v0 = {s}v{func}{q}_f32({in0}.v0, {in0}.v1); ret.v1 = {s}v{func}{q}_f32({in1}.v0, {in1}.v1); return ret; #endif'''.format(op=func, func=func, s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', **fmtspec) else: return 'return {s}v{op}{q}_{suf}({in0}, {in1});'. \ format(op=func, s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', **fmtspec) elif simd_ext == 'neon128': armop = {'zip1': 'zipq', 'zip2': 'zipq', 'uzp1': 'uzpq', 'uzp2': 'uzpq'} prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' } neon_typ = '{}{}x{}x2_t'. \ format(prefix[typ[0]], typ[1:], 128 // int(typ[1:])) if typ == 'f16': if func in ['zip1', 'zip2']: return '''\ nsimd_{simd_ext}_v{typ} ret; float32x4x2_t tmp = v{op}_f32({in0}.v{i}, {in1}.v{i}); ret.v0 = tmp.val[0]; ret.v1 = tmp.val[1]; return ret; '''.format(i = '0' if func == 'zip1' else '1', op=armop[func], **fmtspec) else: return '''\ nsimd_{simd_ext}_v{typ} ret; float32x4x2_t tmp0 = vuzpq_f32({in0}.v0, {in0}.v1); float32x4x2_t tmp1 = vuzpq_f32({in1}.v0, {in1}.v1); ret.v0 = tmp0.val[{i}]; ret.v1 = tmp1.val[{i}]; return ret; '''.format(i = '0' if func == 'uzp1' else '1', **fmtspec) elif typ in ['i64', 'u64']: return '''\ {typ} buf0[2], buf1[2]; {typ} ret[2]; vst1q_{suf}(buf0, {in0}); vst1q_{suf}(buf1, {in1}); ret[0] = buf0[{i}]; ret[1] = buf1[{i}]; return vld1q_{suf}(ret);'''. \ format(**fmtspec, i= '0' if func in ['zip1', 'uzp1'] else '1') elif typ == 'f64' : return '''\ nsimd_{simd_ext}_v{typ} ret; ret.v0 = {in0}.v{i}; ret.v1 = {in1}.v{i}; return ret;'''. \ format(**fmtspec, i= '0' if func in ['zip1', 'uzp1'] else '1') else : return '''\ {neon_typ} res; res = v{op}_{suf}({in0}, {in1}); return res.val[{i}];'''. \ format(neon_typ=neon_typ, op=armop[func], **fmtspec, i = '0' if func in ['zip1', 'uzp1'] else '1') def zip_unzip(func, simd_ext, typ): lo_hi = '''\ nsimd_{simd_ext}_v{typ}x2 ret; ret.v0 = nsimd_{func}lo_{simd_ext}_{typ}({in0}, {in1}); ret.v1 = nsimd_{func}hi_{simd_ext}_{typ}({in0}, {in1}); return ret; '''.format(func='zip' if func == 'zip' else 'unzip', **fmtspec) if simd_ext == 'aarch64' or simd_ext in sve: content = '''\ nsimd_{simd_ext}_v{typ}x2 ret; ret.v0 = {s}v{func}1{q}_{suf}({in0}, {in1}); ret.v1 = {s}v{func}2{q}_{suf}({in0}, {in1}); return ret;'''.format(s = 's' if simd_ext in sve else '', q = '' if simd_ext in sve else 'q', func=func, **fmtspec) if typ == 'f16': return '''\ #ifdef NSIMD_ARM_FP16 {c} #else {default} #endif'''.\ format(c=content, default=lo_hi, s = 's' if simd_ext in sve else '', **fmtspec) else: return content else: prefix = { 'i': 'int', 'u': 'uint', 'f': 'float' } neon_typ = '{}{}x{}x2_t'.\ format(prefix[typ[0]], typ[1:], 128 // int(typ[1:])) content = '''\ nsimd_{simd_ext}_v{typ}x2 ret; {neon_typ} tmp = v{func}q_{suf}({in0}, {in1}); ret.v0 = tmp.val[0]; ret.v1 = tmp.val[1]; return ret;'''\ .format(func=func, neon_typ=neon_typ, **fmtspec) if typ in ['u64', 'i64', 'f64']: return lo_hi elif typ == 'f16': return '''\ #ifdef NSIMD_ARM_FP16 {content} #else {default} #endif'''.\ format(content=content, default=lo_hi, f='zip' if func == 'zip' else 'unzip', **fmtspec) else: return content # ----------------------------------------------------------------------------- # gather def gather(simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: emul = '''int i; {typ} buf[{le}]; i{typnbits} offset_buf[{le}]; svst1_s{typnbits}({svtrue}, offset_buf, {in1}); for (i = 0; i < {real_le}; i++) {{ buf[i] = {in0}[offset_buf[i]]; }} return svld1_{suf}({svtrue}, buf);'''. \ format(le=le, real_le=real_le, **fmtspec) else: emul = \ '''nsimd_{simd_ext}_v{typ} ret; ret = vdupq_n_{suf}({in0}[vgetq_lane_s{typnbits}({in1}, 0)]);'''. \ format(**fmtspec) + ''.join([ '''ret = vsetq_lane_{suf}({in0}[ vgetq_lane_s{typnbits}({in1}, {i})], ret, {i});\n'''. \ format(i=i, **fmtspec) for i in range(1, le)]) + \ 'return ret;' if typ == 'f16': if simd_ext in sve: return emul return '''#ifdef NSIMD_ARM_FP16 {emul} #else nsimd_{simd_ext}_vf16 ret; f32 buf[8]; '''.format(emul=emul, **fmtspec) + \ ''.join(['buf[{i}] = nsimd_f16_to_f32({in0}[' \ 'vgetq_lane_s16({in1}, {i})]);\n'. \ format(i=i, **fmtspec) for i in range(4)]) + \ ''.join(['buf[4 + {i}] = nsimd_f16_to_f32({in0}[' \ 'vgetq_lane_s16({in1}, 4 + {i})]);\n'. \ format(i=i, **fmtspec) for i in range(4)]) + \ ''' ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''.format(**fmtspec) if simd_ext == 'neon128' and typ == 'f64': return '''nsimd_neon128_vf64 ret; i64 offset_buf[2]; vst1q_s64(offset_buf, {in1}); ret.v0 = {in0}[offset_buf[0]]; ret.v1 = {in0}[offset_buf[1]]; return ret;'''.format(**fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE return 'return svld1_gather_s{typnbits}index_{suf}({svtrue}, {in0}, ' \ '{in1});'.format(**fmtspec) # ----------------------------------------------------------------------------- # linear gather def gather_linear(simd_ext, typ): if simd_ext in sve: if typ in ['i8', 'u8', 'i16', 'u16', 'f16']: le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) return '''{typ} buf[{le}]; int i; for (i = 0; i < {real_le}; i++) {{ buf[i] = {in0}[i * {in1}]; }} return svld1_{suf}({svtrue}, buf);'''. \ format(le=le, real_le=real_le, **fmtspec) else: return 'return svld1_gather_s{typnbits}index_{suf}({svtrue}, ' \ '{in0}, svindex_s{typnbits}(0, (i{typnbits}){in1}));'. \ format(**fmtspec) # getting here means neon128 and aarch64 intrinsic = '''nsimd_{simd_ext}_v{typ} ret; ret = vdupq_n_{suf}({in0}[0]); '''.format(**fmtspec) + ''.join([ 'ret = vsetq_lane_{suf}({in0}[{i} * {in1}], ret, {i});\n'. \ format(i=i, **fmtspec) \ for i in range(1, 128 // int(fmtspec['typnbits']))]) + \ '''return ret;''' if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {intrinsic} #else nsimd_{simd_ext}_vf16 ret; f32 buf[8]; int i; for (i = 0; i < 8; i++) {{ buf[i] = nsimd_f16_to_f32({in0}[i * {in1}]); }} ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + 4); return ret; #endif'''.format(intrinsic=intrinsic, **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''nsimd_neon128_vf64 ret; ret.v0 = {in0}[0]; ret.v1 = {in0}[{in1}]; return ret;'''.format(**fmtspec) return intrinsic # ----------------------------------------------------------------------------- # masked gather def maskoz_gather(oz, simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: utyp = 'u{typnbits}'.format(**fmtspec) store = '''svst1_s{typnbits}({svtrue}, offset_buf, {in2}); svst1_{utyp}({svtrue}, mask, svsel_{utyp}( {in0}, svdup_n_{utyp}(({utyp})-1), svdup_n_{utyp}( ({utyp})0))); '''.format(utyp=utyp, **fmtspec) if oz == 'z': store += 'svst1_{suf}({svtrue}, buf, svdup_n_{suf}(({typ})0));'. \ format(**fmtspec) else: store += 'svst1_{suf}({svtrue}, buf, {in3});'.format(**fmtspec) load = 'svld1_{suf}({svtrue}, buf)'.format(**fmtspec) else: store = '''vst1q_s{typnbits}(offset_buf, {in2}); vst1q_u{typnbits}(mask, {in0});'''.format(**fmtspec) if oz == 'z': store += 'vst1q_{suf}(buf, vdupq_n_{suf}(({typ})0));'. \ format(**fmtspec) else: store += 'vst1q_{suf}(buf, {in3});'.format(**fmtspec) load = 'vld1q_{suf}(buf)'.format(**fmtspec) emul = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; i{typnbits} offset_buf[{le}]; {store} for (i = 0; i < {real_le}; i++) {{ if (mask[i]) {{ buf[i] = {in1}[offset_buf[i]]; }} }} return {load};'''. \ format(le=le, real_le=real_le, store=store, load=load, **fmtspec) if typ == 'f16': if simd_ext in sve: return emul if oz == 'z': oz0 = 'vdupq_n_f32(0.0f)' oz1 = oz0 else: oz0 = '{in3}.v0'.format(**fmtspec) oz1 = '{in3}.v1'.format(**fmtspec) return '''#ifdef NSIMD_ARM_FP16 {emul} #else nsimd_{simd_ext}_vf16 ret; int i; f32 buf[{le}]; u32 mask[{le}]; i16 offset_buf[{le}]; vst1q_s16(offset_buf, {in2}); vst1q_f32(buf, {oz0}); vst1q_f32(buf + {leo2}, {oz1}); vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + {leo2}, {in0}.v1); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ buf[i] = nsimd_f16_to_f32({in1}[offset_buf[i]]); }} }} ret.v0 = vld1q_f32(buf); ret.v1 = vld1q_f32(buf + {leo2}); return ret; #endif'''.format(emul=emul, leo2=le // 2, le=le, oz0=oz0, oz1=oz1, **fmtspec) if simd_ext == 'neon128' and typ == 'f64': oz0 = '0.0' if oz == 'z' else '{in3}.v0'.format(**fmtspec) oz1 = '0.0' if oz == 'z' else '{in3}.v1'.format(**fmtspec) return '''nsimd_neon128_vf64 ret; i64 offset_buf[2]; vst1q_s64(offset_buf, {in2}); if ({in0}.v0) {{ ret.v0 = {in1}[offset_buf[0]]; }} else {{ ret.v0 = {oz0}; }} if ({in0}.v1) {{ ret.v1 = {in1}[offset_buf[1]]; }} else {{ ret.v1 = {oz1}; }} return ret;'''.format(oz0=oz0, oz1=oz1, **fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE oz0 = 'svdup_n_{suf}(({typ})0)'.format(**fmtspec) if oz == 'z' \ else '{in3}'.format(**fmtspec) return '''return svsel_{suf}({in0}, svld1_gather_s{typnbits}index_{suf}( {in0}, {in1}, {in2}), {oz0});'''. \ format(oz0=oz0, **fmtspec) # ----------------------------------------------------------------------------- # scatter def scatter(simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: emul = '''int i; {typ} buf[{le}]; i{typnbits} offset_buf[{le}]; svst1_s{typnbits}({svtrue}, offset_buf, {in1}); svst1_{suf}({svtrue}, buf, {in2}); for (i = 0; i < {real_le}; i++) {{ {in0}[offset_buf[i]] = buf[i]; }}'''.format(le=le, real_le=real_le, **fmtspec) else: emul = '\n'.join(['{in0}[vgetq_lane_s{typnbits}({in1}, {i})] = ' \ 'vgetq_lane_{suf}({in2}, {i});\n'. \ format(i=i, **fmtspec) for i in range(int(le))]) if typ == 'f16': if simd_ext in sve: return emul return '''#ifdef NSIMD_ARM_FP16 {emul} #else '''.format(emul=emul) + \ '\n'.join(['{in0}[vgetq_lane_s16({in1}, {i})] = ' \ 'nsimd_f32_to_f16(vgetq_lane_f32({in2}.v0, ' '{i}));\n'.format(i=i, **fmtspec) \ for i in range(4)]) + \ '\n'.join(['{in0}[vgetq_lane_s16({in1}, 4 + {i})] = ' \ 'nsimd_f32_to_f16(vgetq_lane_f32({in2}.v1, ' '{i}));\n'.format(i=i, **fmtspec) \ for i in range(4)]) + \ ''' #endif''' if simd_ext == 'neon128' and typ == 'f64': return '''i64 offset_buf[2]; vst1q_s64(offset_buf, {in1}); {in0}[offset_buf[0]] = {in2}.v0; {in0}[offset_buf[1]] = {in2}.v1;'''.format(**fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE return 'svst1_scatter_s{typnbits}index_{suf}({svtrue}, {in0}, ' \ '{in1}, {in2});'.format(le=le, **fmtspec) # ----------------------------------------------------------------------------- # linear scatter def scatter_linear(simd_ext, typ): if simd_ext in sve: if typ in ['i8', 'u8', 'i16', 'u16', 'f16']: le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) return '''{typ} buf[{le}]; int i; svst1_{suf}({svtrue}, buf, {in2}); for (i = 0; i < {real_le}; i++) {{ {in0}[i * {in1}] = buf[i]; }}'''.format(le=le, real_le=real_le, **fmtspec) else: return 'svst1_scatter_s{typnbits}index_{suf}({svtrue}, {in0}, ' \ 'svindex_s{typnbits}(0, (i{typnbits}){in1}), {in2});'. \ format(**fmtspec) # getting here means neon128 and aarch64 intrinsic = '\n'.join([ '{in0}[{i} * {in1}] = vgetq_lane_{suf}({in2}, {i});'. \ format(i=i, **fmtspec) for i in range(128 // int(fmtspec['typnbits']))]) if typ == 'f16': return '''#ifdef NSIMD_ARM_FP16 {intrinsic} #else f32 buf[8]; int i; vst1q_f32(buf, {in2}.v0); vst1q_f32(buf + 4, {in2}.v1); for (i = 0; i < 8; i++) {{ {in0}[i * {in1}] = nsimd_f32_to_f16(buf[i]); }} #endif'''.format(intrinsic=intrinsic, **fmtspec) if typ == 'f64' and simd_ext == 'neon128': return '''{in0}[0] = {in2}.v0; {in0}[{in1}] = {in2}.v1;'''.format(**fmtspec) return intrinsic # ----------------------------------------------------------------------------- # mask_scatter def mask_scatter(simd_ext, typ): le = max_len(simd_ext, typ) real_le = real_len(simd_ext, typ) if simd_ext in sve: store = '''svst1_s{typnbits}({svtrue}, offset_buf, {in2}); svst1_u{typnbits}({svtrue}, mask, svsel_u{typnbits}( {in0}, svdup_n_u{typnbits}((u{typnbits})1), svdup_n_u{typnbits}((u{typnbits})0))); svst1_{suf}({svtrue}, buf, {in3});'''.format(**fmtspec) else: store = '''vst1q_s{typnbits}(offset_buf, {in2}); vst1q_{suf}(buf, {in3}); vst1q_u{typnbits}(mask, {in0});'''.format(**fmtspec) emul = '''int i; {typ} buf[{le}]; u{typnbits} mask[{le}]; i{typnbits} offset_buf[{le}]; {store} for (i = 0; i < {real_le}; i++) {{ if (mask[i]) {{ {in1}[offset_buf[i]] = buf[i]; }} }}'''.format(le=le, real_le=real_le, store=store, **fmtspec) if typ == 'f16': if simd_ext in sve: return emul return '''#ifdef NSIMD_ARM_FP16 {emul} #else int i; f32 buf[{le}]; u32 mask[{le}]; i16 offset_buf[{le}]; vst1q_s16(offset_buf, {in2}); vst1q_f32(buf, {in3}.v0); vst1q_f32(buf + {leo2}, {in3}.v1); vst1q_u32(mask, {in0}.v0); vst1q_u32(mask + {leo2}, {in0}.v1); for (i = 0; i < {le}; i++) {{ if (mask[i]) {{ {in1}[offset_buf[i]] = nsimd_f32_to_f16(buf[i]); }} }} #endif'''.format(emul=emul, le=le, leo2=le // 2, **fmtspec) if simd_ext == 'neon128' and typ == 'f64': return '''i64 offset_buf[2]; vst1q_s64(offset_buf, {in2}); if ({in0}.v0) {{ {in1}[offset_buf[0]] = {in3}.v0; }} if ({in0}.v1) {{ {in1}[offset_buf[1]] = {in3}.v1; }}'''.format(**fmtspec) if simd_ext in neon or typ in ['i8', 'u8', 'i16', 'u16']: return emul # getting here means SVE return 'svst1_scatter_s{typnbits}index_{suf}({in0}, {in1}, ' \ '{in2}, {in3});'.format(le=le, **fmtspec) # ----------------------------------------------------------------------------- # get_impl function def get_impl(opts, func, simd_ext, from_typ, to_typ): global fmtspec simd_ext2 = simd_ext if not simd_ext in fixed_sized_sve else 'sve' fmtspec = { 'simd_ext': simd_ext, 'simd_ext2': simd_ext2, 'typ': from_typ, 'from_typ': from_typ, 'to_typ': to_typ, 'suf': suf(from_typ), 'in0': common.in0, 'in1': common.in1, 'in2': common.in2, 'in3': common.in3, 'in4': common.in4, 'in5': common.in5, 'typnbits': from_typ[1:], 'svtrue': 'svptrue_b{}()'.format(from_typ[1:]), 'svetyp': sve_typ(from_typ), } impls = { 'loada': lambda: load1234(opts, simd_ext, from_typ, 1), 'masko_loada1': lambda: maskoz_load('o', simd_ext, from_typ), 'maskz_loada1': lambda: maskoz_load('z', simd_ext, from_typ), 'load2a': lambda: load1234(opts, simd_ext, from_typ, 2), 'load3a': lambda: load1234(opts, simd_ext, from_typ, 3), 'load4a': lambda: load1234(opts, simd_ext, from_typ, 4), 'loadu': lambda: load1234(opts, simd_ext, from_typ, 1), 'masko_loadu1': lambda: maskoz_load('o', simd_ext, from_typ), 'maskz_loadu1': lambda: maskoz_load('z', simd_ext, from_typ), 'load2u': lambda: load1234(opts, simd_ext, from_typ, 2), 'load3u': lambda: load1234(opts, simd_ext, from_typ, 3), 'load4u': lambda: load1234(opts, simd_ext, from_typ, 4), 'storea': lambda: store1234(opts, simd_ext, from_typ, 1), 'mask_storea1': lambda: mask_store(simd_ext, from_typ), 'store2a': lambda: store1234(opts, simd_ext, from_typ, 2), 'store3a': lambda: store1234(opts, simd_ext, from_typ, 3), 'store4a': lambda: store1234(opts, simd_ext, from_typ, 4), 'storeu': lambda: store1234(opts, simd_ext, from_typ, 1), 'mask_storeu1': lambda: mask_store(simd_ext, from_typ), 'store2u': lambda: store1234(opts, simd_ext, from_typ, 2), 'store3u': lambda: store1234(opts, simd_ext, from_typ, 3), 'store4u': lambda: store1234(opts, simd_ext, from_typ, 4), 'gather': lambda: gather(simd_ext, from_typ), 'gather_linear': lambda: gather_linear(simd_ext, from_typ), 'maskz_gather': lambda: maskoz_gather('z', simd_ext, from_typ), 'masko_gather': lambda: maskoz_gather('o', simd_ext, from_typ), 'scatter': lambda: scatter(simd_ext, from_typ), 'scatter_linear': lambda: scatter_linear(simd_ext, from_typ), 'mask_scatter': lambda: mask_scatter(simd_ext, from_typ), 'andb': lambda: binop2("andb", simd_ext2, from_typ), 'xorb': lambda: binop2("xorb", simd_ext2, from_typ), 'orb': lambda: binop2("orb", simd_ext2, from_typ), 'andl': lambda: lop2(opts, "andl", simd_ext2, from_typ), 'xorl': lambda: lop2(opts, "xorl", simd_ext2, from_typ), 'orl': lambda: lop2(opts, "orl", simd_ext2, from_typ), 'notb': lambda: not1(simd_ext2, from_typ), 'notl': lambda: lnot1(opts, simd_ext2, from_typ), 'andnotb': lambda: binop2("andnotb", simd_ext2, from_typ), 'andnotl': lambda: lop2(opts, "andnotl", simd_ext2, from_typ), 'add': lambda: addsub("add", simd_ext2, from_typ), 'sub': lambda: addsub("sub", simd_ext2, from_typ), 'adds': lambda: adds(simd_ext2, from_typ), 'subs': lambda: subs(simd_ext2, from_typ), 'div': lambda: div2(simd_ext2, from_typ), 'sqrt': lambda: sqrt1(simd_ext2, from_typ), 'len': lambda: len1(simd_ext, from_typ), 'mul': lambda: mul2(simd_ext2, from_typ), 'shl': lambda: shl_shr("shl", simd_ext2, from_typ), 'shr': lambda: shl_shr("shr", simd_ext2, from_typ), 'shra': lambda: shra(simd_ext2, from_typ), 'set1': lambda: set1(simd_ext2, from_typ), 'set1l': lambda: lset1(simd_ext2, from_typ), 'eq': lambda: cmp2(opts, "eq", simd_ext2, from_typ), 'lt': lambda: cmp2(opts, "lt", simd_ext2, from_typ), 'le': lambda: cmp2(opts, "le", simd_ext2, from_typ), 'gt': lambda: cmp2(opts, "gt", simd_ext2, from_typ), 'ge': lambda: cmp2(opts, "ge", simd_ext2, from_typ), 'ne': lambda: neq2(opts, simd_ext2, from_typ), 'if_else1': lambda: if_else3(opts, simd_ext2, from_typ), 'min': lambda: minmax2("min", simd_ext2, from_typ), 'max': lambda: minmax2("max", simd_ext2, from_typ), 'loadla': lambda: loadl(True, simd_ext2, from_typ), 'loadlu': lambda: loadl(False, simd_ext2, from_typ), 'storela': lambda: storel(True, simd_ext2, from_typ), 'storelu': lambda: storel(False, simd_ext2, from_typ), 'abs': lambda: abs1(simd_ext2, from_typ), 'fma': lambda: fmafnma3("fma", simd_ext2, from_typ), 'fnma': lambda: fmafnma3("fnma", simd_ext2, from_typ), 'fms': lambda: fmsfnms3("fms", simd_ext2, from_typ), 'fnms': lambda: fmsfnms3("fnms", simd_ext2, from_typ), 'ceil': lambda: round1("ceil", simd_ext2, from_typ), 'floor': lambda: round1("floor", simd_ext2, from_typ), 'trunc': lambda: round1("trunc", simd_ext2, from_typ), 'round_to_even': lambda: round1("round_to_even", simd_ext2, from_typ), 'all': lambda: allany1(opts, "all", simd_ext2, from_typ), 'any': lambda: allany1(opts, "any", simd_ext2, from_typ), 'reinterpret': lambda: reinterpret1(simd_ext2, from_typ, to_typ), 'reinterpretl': lambda: reinterpretl1(simd_ext2, from_typ, to_typ), 'cvt': lambda: convert1(simd_ext2, from_typ, to_typ), 'rec11': lambda: recs1("rec11", simd_ext2, from_typ), 'rec8': lambda: recs1("rec8", simd_ext2, from_typ), 'rsqrt11': lambda: recs1("rsqrt11", simd_ext2, from_typ), 'rsqrt8': lambda: recs1("rsqrt8", simd_ext2, from_typ), 'rec': lambda: recs1("rec", simd_ext2, from_typ), 'neg': lambda: neg1(simd_ext2, from_typ), 'nbtrue': lambda: nbtrue1(opts, simd_ext2, from_typ), 'reverse': lambda: reverse1(simd_ext2, from_typ), 'addv': lambda: addv(simd_ext2, from_typ), 'upcvt': lambda: upcvt1(simd_ext2, from_typ, to_typ), 'downcvt': lambda: downcvt1(simd_ext2, from_typ, to_typ), 'to_logical': lambda: to_logical1(opts, simd_ext2, from_typ), 'to_mask': lambda: to_mask1(opts, simd_ext2, from_typ), 'ziplo': lambda: zip_unzip_half("zip1", simd_ext2, from_typ), 'ziphi': lambda: zip_unzip_half("zip2", simd_ext2, from_typ), 'unziplo': lambda: zip_unzip_half("uzp1", simd_ext2, from_typ), 'unziphi': lambda: zip_unzip_half("uzp2", simd_ext2, from_typ), 'zip' : lambda: zip_unzip("zip", simd_ext2, from_typ), 'unzip' : lambda: zip_unzip("uzp", simd_ext2, from_typ), 'mask_for_loop_tail': lambda : mask_for_loop_tail(simd_ext, from_typ), 'iota': lambda : iota(simd_ext2, from_typ) } if simd_ext not in get_simd_exts(): raise ValueError('Unknown SIMD extension "{}"'.format(simd_ext)) if not from_typ in common.types: raise ValueError('Unknown type "{}"'.format(from_typ)) if not func in impls: return common.NOT_IMPLEMENTED else: return impls[func]()
1.648438
2
db_dump/etender2mongoscripts/dumptenderitems.py
EBRD-MoldovaOpenContracting/Moldova-Data-Load
4
12783491
import pymongo import os import json import myconfig dbEtenders = myconfig.getMongoDb() tender_items_collection = dbEtenders.tender_items_collection tender_items_collection.remove({}) def dumpJsonFileToDatabase(jsonfile, collection): if(os.path.isfile(jsonfile)): with open(jsonfile) as _file: data = json.load(_file) count = 0 while(count < len(data["rows"])): collection.insert_one(data["rows"][count]) count += 1 def dumpAllJsonFiles(jsonfolder, collection): print "dumping json from " + jsonfolder for jsonfile in os.listdir(jsonfolder): if os.path.isfile(jsonfolder + os.sep + jsonfile): dumpJsonFileToDatabase(jsonfolder + os.sep + jsonfile, collection) dumpAllJsonFiles(os.path.join(myconfig.jsonfolder,"tenderitems"), tender_items_collection)
2.9375
3
main.py
Forward-UIUC-2021F/haoxiang-sun-keyword-deduplication
0
12783492
from phrase_similarity import dedup_by_embedding, dedup_by_stemming # Test1 result1 = dedup_by_stemming(['civilization', 'civil', 'computer']) sol1 = ['civilization', 'computer'] if result1 == sol1: print("Test 1 Passed") else: print("Test 1 Failed") print(result1) exit() #Test 2 result2 = dedup_by_embedding(["database technique", "database techniques", "cloud network", "cloud networks", "machine learning", "supervised learning", "un supervised learning", "data mining", "data mining technique", "data mining techniques"]) sol2 = ['database technique', 'cloud network', 'machine learning', 'supervised learning', 'un supervised learning', 'data mining', 'data mining technique' ] if result2 == sol2: print("Test 2 Passed") else: print("Test 2 Failed") print(result2) exit() #Test 3 result3 = dedup_by_embedding(["Linear Neural network", "Convolutional Neural Network", "Database system", "Database systems", "database system", "data mining techniques", "Data mining methods", "programming language", "program languages", "cloud storage", "cloud network", "cloud networks"]) sol3 = ['linear neural network', 'convolutional neural network', 'database system', 'data mining techniques', 'programming language', 'cloud storage', 'cloud network'] if result3 == sol3: print("Test 3 Passed") else: print("Test 3 Failed") print(result3) exit() #Test 4 result4 = dedup_by_embedding(["machine learning", "machine-learning", "machine learn", "machine translation", "machine translation system", "machine translation evaluation", "machine vision", "machine vision system", "machine vision application", "machine intelligence", "machine consciousness", "machine perception", "machine learning algorithm", "machine learning algorithms", "machine learn algorithm", "machine learning techniques", "machine learning technique", "machine learn technique", "machine learn method", "machine learning methods", "machine learning method", "machine learning approach", "machine learn approach", "machine learning classifiers", "machine learning classifier", "machine-type communications", "machine type communications", "machine-type communication", "machine type communication", "machine structure", "machine structures" ]) sol4 = ['machine learning', 'machine translation', 'machine translation system', 'machine translation evaluation', 'machine vision', 'machine vision system', 'machine vision application', 'machine consciousness', 'machine learning algorithm', 'machine learning techniques', 'machine learning approach', 'machine learning classifiers', 'machine type communications', 'machine structure'] if result4 == sol4: print("Test 4 Passed") else: print("Test 4 Failed") print(result4) exit() #Test 5 result5 = dedup_by_embedding([ "data mining", "data mining algorithm", "data mining technique", "data structure", "data structures", "database design", "data stream", "data streams", "database", "databases", "data analysis", "data analytics", "big data analytics", "data visualization", "database system", "data privacy", "data security", "image database", "graph database", ]) sol5 = ['data mining', 'data mining algorithm', 'data mining technique', 'data structure', 'database design', 'data stream', 'database', 'data analysis', 'big data analytics', 'data visualization', 'database system', 'data privacy', 'image database', 'graph database'] if result5 == sol5: print("Test 5 Passed") else: print("Test 5 Failed") print(result5) exit() #Test 6 result6 = dedup_by_embedding(["helloworld", "world", "network"]) sol6 = ["helloworld", "world", "network"] if result6 == sol6: print("Test 6 Passed") else: print("Test 6 Failed") print(result6) exit()
3.203125
3
employee_portal/vacation_schedule/views.py
Dmitriy200123/employee_portal
0
12783493
import xlwt from django.shortcuts import get_object_or_404, HttpResponse from django.urls import reverse_lazy from django.utils.datetime_safe import datetime from django.views.generic import DetailView, ListView, UpdateView, DeleteView, TemplateView # Create your views here. from employee_information_site.models import Employee from vacation_schedule.forms import VacationPeriodForm from vacation_schedule.models import EmployeeVacationPeriod, DaysRemainder class VacationListPage(ListView): template_name = 'vacation_schedule/vacation_list_page.html' model = EmployeeVacationPeriod context_object_name = 'vacation_periods' def get_queryset(self): queryset = super().get_queryset() employee = Employee.objects.filter(user=self.request.user.id).first() current_year = datetime.now().year return queryset.filter(employeeId=employee.id, startDateVacation__year=current_year) def get_context_data(self, **kwargs): context = super(VacationListPage, self).get_context_data(**kwargs) employee = Employee.objects.filter(user=self.request.user.id).first() context['current_user'] = employee context['days_remainder'] = DaysRemainder.objects.filter(employee=employee).first() return context class UpdateOrCreateVacationPeriod(UpdateView): model = EmployeeVacationPeriod form_class = VacationPeriodForm template_name = 'vacation_schedule/add_vacation_page.html' success_url = reverse_lazy('vacation_schedule:vacationListPage') context_object_name = 'vacation_period' def get_object(self, **kwargs): vacation_id = self.kwargs.get('id') return self.model.objects.filter(id=vacation_id).first() def form_invalid(self, form): return self.form_validate(form) def form_valid(self, form): return self.form_validate(form) def form_validate(self, form): if not form.errors.get('employeeId') is None: form.errors.pop('employeeId') if not form.errors.get('vacationDays') is None: form.errors.pop('vacationDays') employee = Employee.objects.filter(user=self.request.user.id).first() days_remainder = DaysRemainder.objects.filter(employee=employee).first() if form.instance.vacationDays: days_remainder.remainder += form.instance.vacationDays form.instance.employeeId = employee form.instance.vacationDays = (form.instance.endDateVacation - form.instance.startDateVacation).days self.validate_date(form, days_remainder) if form.is_valid(): days_remainder.remainder -= form.instance.vacationDays days_remainder.save() return super().form_valid(form) return super().form_invalid(form) def validate_date(self, form, days_remainder): if form.instance.vacationDays <= 0: form.add_error('endDateVacation', 'Неправильно выбрана дата окончания отпуска') if form.instance.vacationDays > days_remainder.remainder: form.add_error('vacationDays', 'Выбрано больше дней, чем осталось') vacation_periods = self.model.objects.filter(employeeId=days_remainder.employee) if vacation_periods: if any(x for x in vacation_periods if self.check_date_intersection(form, x)): form.add_error('startDateVacation', 'Период отпуска пересекается с предыдущими периодамами') def get_context_data(self, **kwargs): context = super(UpdateOrCreateVacationPeriod, self).get_context_data(**kwargs) current_user = Employee.objects.filter(user=self.request.user.id).first() context['current_user'] = current_user return context @staticmethod def check_date_intersection(form, vacation_period): return form.instance.id != vacation_period.id and ( vacation_period.startDateVacation <= form.instance.startDateVacation <= vacation_period.endDateVacation or vacation_period.startDateVacation <= form.instance.endDateVacation <= vacation_period.endDateVacation or form.instance.startDateVacation <= vacation_period.startDateVacation <= form.instance.endDateVacation or form.instance.startDateVacation <= vacation_period.endDateVacation <= form.instance.endDateVacation) class DeleteVacationPeriod(DeleteView): model = EmployeeVacationPeriod success_url = reverse_lazy('vacation_schedule:vacationListPage') context_object_name = 'period' def get_object(self, **kwargs): vacation_id = self.kwargs.get('id') return get_object_or_404(self.model, id=vacation_id) def delete(self, request, *args, **kwargs): vacation_period = self.get_object(**kwargs) days_remainder = DaysRemainder.objects.filter(employee=vacation_period.employeeId).first() days_remainder.remainder += vacation_period.vacationDays if days_remainder.remainder > days_remainder.maxCountDays.maxCountDays: days_remainder.remainder = days_remainder.maxCountDays.maxCountDays days_remainder.save() return super(DeleteVacationPeriod, self).delete(request, *args, **kwargs) class EmployeeVacationPage(TemplateView): template_name = 'vacation_schedule/employee_vacation_page.html' def get_context_data(self, **kwargs): context = super(EmployeeVacationPage, self).get_context_data(**kwargs) current_user = Employee.objects.filter(user=self.request.user.id).first() context['current_user'] = current_user return context class ExportVacationXlsView(DetailView): def get(self, request, *args, **kwargs): response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = 'attachment; filename="users.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('Users') row_num = 0 columns = [field for field in EmployeeVacationPeriod._meta.get_fields()][1:] for col_num in range(len(columns)): ws.write(row_num, col_num, columns[col_num].verbose_name) rows = EmployeeVacationPeriod.objects.all() for row_object in rows: row_num += 1 for col_num, value in enumerate(columns): ws.write(row_num, col_num, str(getattr(row_object, value.name))) wb.save(response) return response
2.140625
2
2020/day02/solve.py
h3ssto/advent_of_code
0
12783494
from _shared_python.aoc import * #------------------------------------------------------------------------------# INPUT = input_from_file(__file__) INPUT = map_split(INPUT, r"-|\s+|:\s+") INPUT = entries_as_tuples(INPUT, types = (int, int, str, str)) #------------------------------------------------------------------------------# preview_input(INPUT) #------------------------------------------------------------------------------# output1 = 0 output2 = 0 #------------------------------------------------------------------------------# for l,u,c,s in INPUT: s1 = [x for x in s if x == c] if l <= len(s1) <= u: output1 += 1 if (s[l-1] == c) != (s[u-1] == c): output2 += 1 #------------------------------------------------------------------------------# print("-" * 64) print("Output 1:", green(output1)) print("Output 2:", green(output2))
2.90625
3
code/single_scene_optimization.py
dukomoran/PESFM
52
12783495
import cv2 # DO NOT REMOVE from datasets import SceneData, ScenesDataSet import train from utils import general_utils, path_utils from utils.Phases import Phases import torch def train_single_model(conf, device, phase): # Create data scene_data = SceneData.create_scene_data(conf) # Create model model = general_utils.get_class("models." + conf.get_string("model.type"))(conf).to(device) if phase is Phases.FINE_TUNE: path = path_utils.path_to_model(conf, Phases.TRAINING) model.load_state_dict(torch.load(path)) # Sequential Optimization if conf.get_bool("train.sequential", default=False): n_cams = scene_data.y.shape[0] conf['train']['num_of_epochs'] = 1000 conf['train']['scheduler_milestone'] = [] for subset_size in range(2, n_cams): print("########## Train model on subset of size {} ##########".format(subset_size)) subset_data = SceneData.get_subset(scene_data, subset_size) conf["dataset"]["scan"] = subset_data.scan_name dubscene_dataset = ScenesDataSet.ScenesDataSet([subset_data], return_all=True) subscene_loader = ScenesDataSet.DataLoader(dubscene_dataset).to(device) _, _, _, _ = train.train(conf, subscene_loader, model, phase) conf['train']['num_of_epochs'] = 20000 conf['train']['scheduler_milestone'] = [10000] conf["dataset"]["scan"] = scene_data.scan_name # Optimize Scene scene_dataset = ScenesDataSet.ScenesDataSet([scene_data], return_all=True) scene_loader = ScenesDataSet.DataLoader(scene_dataset).to(device) train_stat, train_errors, _, _ = train.train(conf, scene_loader, model, phase) # Write results train_errors.drop("Mean", inplace=True) train_stat["Scene"] = train_errors.index train_stat.set_index("Scene", inplace=True) train_res = train_errors.join(train_stat) general_utils.write_results(conf, train_res, file_name="Results_" + phase.name, append=True) if __name__ == "__main__": conf, device, phase = general_utils.init_exp(Phases.OPTIMIZATION.name) train_single_model(conf, device, phase)
2.625
3
python/functest/sdk_test.py
spiralgenetics/biograph
16
12783496
<reponame>spiralgenetics/biograph<filename>python/functest/sdk_test.py """ sdk.py: Test the python SDK and ipython notebooks. """ import os import glob import queue import unittest import subprocess import tabix from python.functest.utils.setup import ( ftest_setup, ftest_teardown, ftest_module_setup ) from python.functest.utils.fileops import ( sha1_file ) from python.functest.utils.defaults import ( GOLDEN_DIR ) import biograph from biograph.tools.coverage import MICROCONTIGS, get_regions def setUpModule(): """ Announce ourselves by printing the module docstring. """ print(__doc__) # Module requirements ftest_module_setup() class SDKTestCases(unittest.TestCase): """ unittest Test definitions follow """ # keep pylint happy data_dir = None def setUp(self): ftest_setup(self) def tearDown(self): ftest_teardown(self) def check(self, cmd, code=0): """ Run a shell command, assert exit code is correct """ actual = subprocess.call(cmd # + ">/dev/null 2>&1" , shell=True) self.assertEqual(code, actual, f"{cmd} exited code {actual}") def check_results(self, file1, file2): """ sha1 two files, throw if they don't match """ self.assertEqual(sha1_file(test=self, file_name=file1), sha1_file(file2), "%s and %s do not match" % (file1, file2)) # @unittest.skip('nope') def test_basic_sdk(self): """ Basic SDK test """ my_bg = biograph.BioGraph("datasets/lambdaToyData/benchmark/proband_lambda.bg") self.assertEqual(my_bg.metadata.accession_id, 'proband') self.assertEqual(my_bg.metadata.samples['proband'], '47b43dbb0306fb5da00bca9c33b2fb3de9db7bf4') self.assertEqual(str(my_bg.seqset.find('ACGT')), '<SeqsetEntry 11049-11336: ACGT>') self.assertEqual(my_bg.seqset.size(), 97340) r = my_bg.open_readmap() self.assertEqual(r.get_num_bases(), 7235142) stats = r.get_pair_stats() self.assertEqual(stats.paired_reads, 39974) self.assertEqual(stats.unpaired_reads, 8982) # @unittest.skip('nope') def test_basic_sdk_reference(self): """ Basic reference test """ grch37 = biograph.Reference("/reference/human_g1k_v37/") # 16 contigs in chr 7 self.assertEqual(len(grch37.find_ranges("7", 1, 1000000000)), 16) # 11 contigs in chr 21 self.assertEqual(len(grch37.find_ranges("21", 1, 1000000000)), 11) rc = grch37.find('ACGT') self.assertEqual(rc.matches, 2153084) # @unittest.skip('nope') def test_sequence_splice(self): """ Testing the splicing/indexing and string comparisons for sequence """ string = "ATCGAATACATAA" j = biograph.Sequence(string) # Some random splicing and access self.assertEqual(string[1], j[1]) self.assertEqual(string[1:5], j[1:5]) # self.assertEqual(string[2:7:2], j[2:7:2]) # self.assertEqual(string[::-1], j[::-1]) # @unittest.skip('nope') def test_bgtools_basic(self): """ bgtools script tests """ bgtools = "./python/functest/biograph_main " # exit 1 self.check(bgtools, code=1) # exit 0 self.check(f"{bgtools} -h") # version cmd = f"{bgtools} version" self.assertEqual(subprocess.check_output(cmd, shell=True).rstrip().decode(), f"biograph version {biograph.version()}") # Every command we ship should have a help for cmd in ( "full_pipeline", "reference", "create", "discovery", "coverage", "qual_classifier", "vdb", "stats", ): self.check(f"{bgtools} {cmd} -h") # @unittest.skip('nope') def test_bgtools_stats(self): """ bgtools script tests """ self.maxDiff = None bgtools = "./python/functest/biograph_main " cmd = f"{bgtools} stats -b golden/e_coli_merged.bg -r datasets/reference/e_coli_k12_ASM584v1/" # pylint: disable=bad-continuation self.assertEqual(subprocess.check_output(cmd, shell=True).decode(), """Sample: e_coli_test NumReads: 38,047 NumBases: 3,804,700 MaxReadLength: 100 MinReadLength: 100 NumPairedReads: 25,762 NumUnpairedReads: 12,285 NumPairedBases: 2,576,200 NumUnpairedBases: 1,228,500 MeanInsertSize: 504.73 MedianInsertSize: 502.00 SDInsertSize: 49.72 EstimatedCoverage: 0.80 Sample: test_accession_id NumReads: 8,444 NumBases: 288,464 MaxReadLength: 35 MinReadLength: 30 NumPairedReads: 0 NumUnpairedReads: 8,444 NumPairedBases: 0 NumUnpairedBases: 288,464 MeanInsertSize: 0.00 MedianInsertSize: 0.00 SDInsertSize: 0.00 EstimatedCoverage: 0.06 """) # @unittest.skip('nope') def test_bgtools_pcmp(self): """ bgtools script tests """ os.environ['PATH'] = "/share/software/bin:" + os.environ['PATH'] bgtools = "./python/functest/biograph_main " bgb = "./modules/biograph/bgbinary " dd = self.data_dir self.check(f"{bgb} create --in datasets/bams/e_coli/e_coli_test.bam --out {dd}/e_coli.bg --ref datasets/reference/e_coli_k12_ASM584v1/") self.check(f"{bgb} discovery --in {dd}/e_coli.bg --out {dd}/e_coli_variants.vcf --enable-pop-tracer=false --ref datasets/reference/e_coli_k12_ASM584v1/") self.assertEqual(subprocess.call(f"vcf-sort < {dd}/e_coli_variants.vcf | bgzip > {dd}/e_coli_variants.vcf.gz", shell=True), 0) self.check(f"tabix {dd}/e_coli_variants.vcf.gz") self.check(f"{bgtools} coverage -d {dd}/ecoli.cov.jl -b {dd}/e_coli.bg -v {dd}/e_coli_variants.vcf.gz -r datasets/reference/e_coli_k12_ASM584v1/ -o /dev/stdout | vcf-sort > {dd}/output.vcf") self.check(f"{bgb} discovery --in {dd}/e_coli.bg --out {dd}/e_coli_variants_ml.vcf --ref datasets/reference/e_coli_k12_ASM584v1/") self.assertEqual(subprocess.call(f"vcf-sort < {dd}/e_coli_variants_ml.vcf | bgzip > {dd}/e_coli_variants_ml.vcf.gz", shell=True), 0) self.check(f"tabix {dd}/e_coli_variants_ml.vcf.gz") self.check(f"{bgtools} coverage -d {dd}/e_coli_ml.cov.jl -b {dd}/e_coli.bg -v {dd}/e_coli_variants_ml.vcf.gz -r datasets/reference/e_coli_k12_ASM584v1/ -o /dev/stdout | vcf-sort > {dd}/output2.vcf") # Better test would be truvari to validate the actual variants, but an identical output line count is close enough for now. self.assertEqual(subprocess.check_output(f"wc -l < {dd}/output.vcf", shell=True).rstrip(), b'166', 0) # This will exit 1 if exceptions correctly propagate from child workers back up to the main process (DEV-511) self.check(f"{bgtools} coverage -d {dd}/ecoli.cov.jl -b {dd}/e_coli.bg -v golden/ftest/bad.vcf.gz -r datasets/reference/e_coli_k12_ASM584v1 -o {dd}/bad_out.vcf", 1) # @unittest.skip('nope') def test_bgtools_qual_classifier(self): """ bgtools script tests """ os.environ['PATH'] = "/share/software/bin:" + os.environ['PATH'] dd = self.data_dir bgtools = "./python/functest/biograph_main " toydata = "datasets/ml_toydata_lambda" sample_dir = "proband_jul17" golden_file = "proband_17feb2021" df = f"{toydata}/{sample_dir}/df.jl" grm = f"{toydata}/{sample_dir}/grm.jl" pcmp = f"{toydata}/{sample_dir}/pcmp.vcf.gz" sv_ao_model = "python/functest/biograph_model.ml" # Strip headers and compare variants for sv and ao self.check(f"{bgtools} qual_classifier --grm {grm} --dataframe {df} --vcf {pcmp} --model {sv_ao_model} --out {dd}/sv_ao.vcf") self.check(f"grep -v ^# {GOLDEN_DIR}/ml/{golden_file}.filter.vcf > {dd}/sv_ao.golden.vcf") self.check(f"vcf-sort < {dd}/sv_ao.vcf | grep -v ^# > {dd}/sv_ao.check.vcf") self.check_results(f"{dd}/sv_ao.golden.vcf", f"{dd}/sv_ao.check.vcf") # @unittest.skip('nope') def test_coverage_microcontigs(self): """ microcontig boundary generation tests """ contigq = queue.Queue() workerq = queue.Queue() variants = set() ref = biograph.Reference('datasets/reference/e_coli_k12_ASM584v1/') # This VCF should cover every edge case (multiple variants on the same # position, deletions that span a boundary, begin, end, one before begin, one # after end, with and without a bed file, etc.) # # This tests counts on the vcf ID field being unique for each variant vcf_file = f'{GOLDEN_DIR}/microcontigs.vcf.gz' for bed_file in None, f'{GOLDEN_DIR}/microcontigs.bed': for clearance in range(2, 10): for contig_size in range(1, 20): for region in get_regions(bed_file, ref): contigq.put(region) contigq.put(None) # Find the microcontigs while True: item = contigq.get() if item is None: break MICROCONTIGS.find(item, vcf_file, clearance, contig_size, workerq) workerq.put(None) # Add every variant t = tabix.open(vcf_file) for ctg in ref.scaffolds: try: for v in t.query(ctg, 0, int(ref.scaffold_lens[ctg])): variants.add(v[2]) except tabix.TabixError: pass self.assertTrue(len(variants) > 0, f"No variants to process. Are you using the correct reference? (bed: {bed_file} clearance: {clearance} contig_size: {contig_size})") # Remove each variant, one microcontig at a time while True: contig = workerq.get() if contig is None: break # print(contig) for v in t.query(contig[0], contig[1], contig[2]): # This will raise if the variant was previously removed variants.remove(v[2]) # There should be none left over self.assertEqual(len(variants), 0, f"There were {len(variants)} unprocessed variants remaining. (bed: {bed_file} clearance: {clearance} contig_size: {contig_size})") def setup_dirs(self): "Makes a bin directory with bgbinary, biograph, and truvari, and adds it to the path." bindir = os.path.join(self.data_dir, "bin") tmpdir = os.path.join(self.data_dir, "tmp") for dirname in bindir, tmpdir: os.mkdir(dirname) os.symlink(os.getcwd() + "/modules/biograph/bgbinary", bindir + "/bgbinary") truvari_dir = glob.glob(os.getcwd() + "/external/*pypi__Truvari_2*/Truvari-*.data/scripts")[0] os.symlink(os.getcwd() + "/python/functest/biograph_main", bindir + "/biograph") with open(bindir + "/truvari", "w") as f: f.write(f"""#!/bin/sh\nexec python3 {truvari_dir}/truvari "$@"\n""") os.chmod(bindir + "/truvari", 0o755) os.environ['PATH'] = (bindir + ":" + os.environ['PATH'] + ":" + "/share/software/bin") return tmpdir @unittest.skip('lambda toydata is broken') def test_bgtools_squareoff(self): """ bgtools script tests """ self.setup_dirs() dd = self.data_dir toydata = "/share/ml_toydata_lambda" sample_dir = "proband_jul17" golden_file = "proband_16feb2021" pcmp = f"{toydata}/{sample_dir}/pcmp.vcf.gz" sv_ao_model = "/share/classifier/model_sv_ao_gt_16Feb2021.ml" bg = "datasets/lambdaToyData/benchmark/proband_lambda.bg" ref = "datasets/lambdaToyData/benchmark/ref_lambda/" self.check(f"biograph squareoff -b {bg} --variants {pcmp} --model {sv_ao_model} --reference {ref} -o {dd}/sq.vcf.gz") self.check(f"zcat {dd}/sq.vcf.gz | vcf-sort | grep -v ^# > {dd}/sq.check.vcf") self.check(f"grep -v ^# {GOLDEN_DIR}/ml/{golden_file}.filter.vcf > {dd}/sv_ao.golden.vcf") with open(f"{dd}/sv_ao.golden.vcf") as fha, open(f"{dd}/sq.check.vcf") as fhb: acnt = len(fha.readlines()) bcnt = len(fhb.readlines()) self.assertEqual(acnt, bcnt, f"Incorrect line counts {acnt} != {bcnt}") # @unittest.skip('runipy output is not deterministic') # def test_notebooks(self): # """ # Test all jupyter (iPython) notebooks # This doesn't currently work because runipy doesn't produce deterministic output # when the script writes to STDOUT (the output fields are arbitrarily chunked and # impossible to compare without further manipulation.) # To make golden files for new notebooks, run this: # runipy new_notebook.ipynb $GOLDEN_DIR/jupyter/new_notebook.ipynb.out # """ # ipydir = "{0}/python/jupyter/biograph/".format(SPIRAL_ROOT) # for f in os.listdir(ipydir): # if f.endswith(".ipynb"): # self.check("runipy '{0}/{1}' '{2}/{1}.out'".format(ipydir, f, self.data_dir)) # # strip out "matplotlib.figure.Figure at <0xaddress>" from txt lines # subprocess.call( # "grep -v matplotlib.figure.Figure '{0}/{1}.out' > '{0}/{1}.out.clean'".format(self.data_dir, f), shell=True) # self.check_results('{0}/jupyter/{1}.out'.format( # GOLDEN_DIR, f), '{0}/{1}.out.clean'.format(self.data_dir, f)) if __name__ == '__main__': unittest.main(verbosity=2)
2.203125
2
backend/src/procyon_api/domain/exceptions/root.py
KitKod/Procyon
0
12783497
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # class ProcyonException(Exception): code = "root_exception" class NotFoundError(ProcyonException): code = "not_found_error" class AlreadyExistsError(ProcyonException): code = "already_exists_error" class ForbiddenError(ProcyonException): code = "forbidden_error"
1.820313
2
helpers.py
andodevel/rmbg
0
12783498
<gh_stars>0 import datetime import os import timeit import cv2 import numpy as np from config import get_logger logger = get_logger() class Timer: """Measure time used.""" def __init__(self, id: str, round_ndigits: int = 2): self._id = id self._round_ndigits = round_ndigits self._start_time = (timeit.default_timer() * 1000) def __call__(self) -> float: return (timeit.default_timer() * 1000) - self._start_time def __str__(self) -> str: return f"Time elapsed of `{self._id}`: " + str( datetime.timedelta(milliseconds=round(self(), self._round_ndigits))) def time_exec(id, method, *args, **kwargs): _timer = Timer(id) result = method(*args, **kwargs) logger.info(_timer) return result def load_image(imagePath): image = cv2.imread(imagePath) if image is None: raise Exception(f"Invalid image with path `{imagePath}`") return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def to_gray_image(image): gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) return cv2.cvtColor(gray_image, cv2.COLOR_GRAY2RGB) def rgb_to_lab(image): return cv2.cvtColor(image, cv2.COLOR_RGB2LAB) def apply_image_mask(masks, image, fallback_image): """Apply mask to image, masked pixel keep original value, otherwise use its gray version""" return np.where( masks, image, fallback_image ).astype(np.uint8) def slide_window(array, window=(0,), a_steps=None, w_steps=None, axes=None, to_end=True): array = np.asarray(array) orig_shape = np.asarray(array.shape) window = np.atleast_1d(window).astype(int) # maybe crude to cast to int... if axes is not None: axes = np.atleast_1d(axes) w = np.zeros(array.ndim, dtype=int) for axis, size in zip(axes, window): w[axis] = size window = w # Check if window is legal: if window.ndim > 1: raise ValueError("`window` must be one-dimensional.") if np.any(window < 0): raise ValueError("All elements of `window` must be larger then 1.") if array.ndim < len(window): raise ValueError("`window` length must be less or equal `array` dimension.") tmp_a_steps = np.ones_like(orig_shape) if a_steps is not None: a_steps = np.atleast_1d(a_steps) if a_steps.ndim != 1: raise ValueError("`asteps` must be either a scalar or one dimensional.") if len(a_steps) > array.ndim: raise ValueError("`asteps` cannot be longer then the `array` dimension.") # does not enforce alignment, so that steps can be same as window too. tmp_a_steps[-len(a_steps):] = a_steps if np.any(a_steps < 1): raise ValueError("All elements of `asteps` must be larger then 1.") a_steps = tmp_a_steps tmp_w_steps = np.ones_like(window) if w_steps is not None: w_steps = np.atleast_1d(w_steps) if w_steps.shape != window.shape: raise ValueError("`wsteps` must have the same shape as `window`.") if np.any(w_steps < 0): raise ValueError("All elements of `wsteps` must be larger then 0.") tmp_w_steps[:] = w_steps tmp_w_steps[window == 0] = 1 # make sure that steps are 1 for non-existing dims. w_steps = tmp_w_steps # Check that the window would not be larger then the original: if np.any(orig_shape[-len(window):] < window * w_steps): raise ValueError("`window` * `wsteps` larger then `array` in at least one dimension.") new_shape = orig_shape # just renaming... # For calculating the new shape 0s must act like 1s: _window = window.copy() _window[_window == 0] = 1 new_shape[-len(window):] += w_steps - _window * w_steps new_shape = (new_shape + a_steps - 1) // a_steps # make sure the new_shape is at least 1 in any "old" dimension (ie. steps # is (too) large, but we do not care. new_shape[new_shape < 1] = 1 shape = new_shape strides = np.asarray(array.strides) strides *= a_steps new_strides = array.strides[-len(window):] * w_steps # The full new shape and strides: if to_end: new_shape = np.concatenate((shape, window)) new_strides = np.concatenate((strides, new_strides)) else: _ = np.zeros_like(shape) _[-len(window):] = window _window = _.copy() _[-len(window):] = new_strides _new_strides = _ new_shape = np.zeros(len(shape) * 2, dtype=int) new_strides = np.zeros(len(shape) * 2, dtype=int) new_shape[::2] = shape new_strides[::2] = strides new_shape[1::2] = _window new_strides[1::2] = _new_strides new_strides = new_strides[new_shape != 0] new_shape = new_shape[new_shape != 0] return np.lib.stride_tricks.as_strided(array, shape=new_shape, strides=new_strides) def simple_correlate(array, kernel): pass def resize_image(image, width=None, height=None, inter=cv2.INTER_AREA): dim = None (h, w) = image.shape[:2] if width is None and height is None: return image if (width is not None and width > w) or (height is not None and height > h): return image if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) resized = cv2.resize(image, dim, interpolation=inter) return resized # TODO: replace by checking magic numbers of file format def is_image_file(file_path): _, filename = os.path.split(file_path) return os.path.isfile(file_path) and filename.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif'))
2.578125
3
01-algorithm-design-and-techniques/5_dynamic_programming/knapsack.py
hamidgasmi/training.computerscience.algorithms-datastructures
8
12783499
<filename>01-algorithm-design-and-techniques/5_dynamic_programming/knapsack.py<gh_stars>1-10 import sys def optimal_weight(W, w): V = [[0 for j in range(W + 1)] for i in range(len(w) + 1)] for i in range(1, len(w) + 1): for j in range(1, W + 1): V[i][j] = V[i - 1][j] if w[i - 1] <= j: val = V[i - 1][j - w[i - 1]] + w[i - 1] if val > V[i][j]: V[i][j] = val return V[len(w)][W] if __name__ == '__main__': input = sys.stdin.read() W, n, *w = list(map(int, input.split())) print(optimal_weight(W, w)) #python3 knapsack.py <<< "10 3 1 4 8" 9
3.75
4
04.2_Comparative_MC.py
massimopizzol/B4B
11
12783500
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 30 07:05:07 2018 @author: massimo """ from brightway2 import * import pandas as pd import numpy as np from matplotlib import pyplot as plt from scipy import stats projects projects.set_current('bw2_import_ecoinvent_3.4') databases db = Database("ecoinvent 3.4 conseq") ipcc = ('IPCC 2013', 'climate change', 'GTP 100a') # Simple montecarlo on ecoinvent process as we know it. mydemand = {db.random(): 1} # select a random process lca = LCA(mydemand, ipcc) lca.lci() lca.lcia() lca.score mc = MonteCarloLCA(mydemand, ipcc) mc_results = [next(mc) for x in range(500)] plt.hist(mc_results, density=True) plt.ylabel("Probability") plt.xlabel(methods[ipcc]["unit"]) pd.DataFrame(mc_results).describe() lca.score np.exp(np.mean(np.log(mc_results))) # geometric mean # Now comparative analysis db.search('lorry transport euro5') # look at the names activity_name = 'transport, freight, lorry >32 metric ton, EURO5' for activity in Database("ecoinvent 3.4 conseq"): if activity['name'] == activity_name: truckE5 = Database("ecoinvent 3.4 conseq").get(activity['code']) activity_name = 'transport, freight, lorry >32 metric ton, EURO6' for activity in Database("ecoinvent 3.4 conseq"): if activity['name'] == activity_name: truckE6 = Database("ecoinvent 3.4 conseq").get(activity['code']) truckE5.as_dict() truckE6.as_dict() # make a list with the alternatives demands = [{truckE5: 1}, {truckE6: 1}] mc = MonteCarloLCA(demands[0], ipcc) next(mc) # look at this first mc.redo_lcia(demands[0]) mc.score mc.redo_lcia(demands[1]) mc.score mc.redo_lcia(demands[0]) mc.score # Now for several iterations iterations = 100 simulations = [] for _ in range(iterations): print(_) next(mc) mcresults = [] for i in demands: mc.redo_lcia(i) mcresults.append(mc.score) simulations.append(mcresults) simulations df = pd.DataFrame(simulations, columns = ['truckE5','truckE6']) df.to_csv('ComparativeMCsimulation.csv') # to save it #plot stuff (using the matplotlib package) df.plot(kind = 'box') #df.T.melt() plt.plot(df.truckE5, df.truckE6, 'o') plt.xlabel('truckE5 - kg CO2-eq') plt.ylabel('truckE6 - kg CO2-eq') # You can see how many times the difference is positive. This is what Simapro does df.diffe = df.truckE5 - df.truckE6 plt.hist(df.diffe.values) len(df.diffe[df.diffe < 0]) len(df.diffe[df.diffe > 0]) len(df.diffe[df.diffe == 0]) # Statistical testing (using the stats package) # I can use a paired t-test t_value, p_value = stats.ttest_rel(df.truckE5,df.truckE6) t_value p_value # But wait! did we check for normality? plt.hist(df.truckE5.values) plt.xlabel('truckE5 - kg CO2-eq') SW_value, SW_p_value = stats.shapiro(df.truckE5) SW_p_value # Not normally distributed... plt.hist(df.truckE6.values) SW_value, SW_p_value = stats.shapiro(df.truckE6) SW_p_value # Normally distributed if alpha = 0.05...Not strong though if we hasd say 1000 samples # Alright need a non-parametric test. Wilcox sign rank test s_value, p_value = stats.wilcoxon(df.truckE5, df.truckE6) s_value p_value # Not bad, significant difference! # What if we had done the MC on the processes independently. mc1 = MonteCarloLCA({truckE5: 1}, ipcc) mc1_results = [next(mc1) for x in range(100)] mc2 = MonteCarloLCA({truckE5: 1}, ipcc) # it's still truckE5! mc2_results = [next(mc2) for x in range(100)] df_ind = pd.DataFrame({'mc1': mc1_results, 'mc2' : mc2_results}) # compare to this demands = [{truckE5: 1}, {truckE5: 1}] # I am using the smae process two times. mc = MonteCarloLCA(demands[0], ipcc) iterations = 100 simulations = [] for _ in range(iterations): print(_) next(mc) mcresults = [] for i in demands: mc.redo_lcia(i) mcresults.append(mc.score) simulations.append(mcresults) simulations df_dep = pd.DataFrame(simulations, columns = ['mc1','mc2']) # Plot stuff df_dep.plot(kind = 'box') df_ind.plot(kind = 'box') plt.plot(df_dep.mc1, df_dep.mc2, 'o') plt.plot(df_ind.mc1, df_ind.mc2, 'o') # see? # and of course: t_value, p_value = stats.ttest_rel(df_dep.mc1, df_dep.mc2) t_value p_value # no difference AT ALL (as expected) t_value, p_value = stats.ttest_rel(df_ind.mc1, df_ind.mc2) t_value p_value # no difference (as expected! But still some variance!) s_value, p_value = stats.wilcoxon(df_ind.mc1, df_ind.mc2) s_value p_value
2.796875
3
model_training/torch2npy.py
wurenzhi/-learned_ndv_estimator
0
12783501
from network import Regressor, Loss_gamma_0_6 import numpy as np import skorch from skorch import NeuralNetRegressor from torch import optim def load_model(load_cp, n_in=106,device='cuda'): cp = skorch.callbacks.Checkpoint(dirname=load_cp) net = NeuralNetRegressor( Regressor(n_in=n_in), criterion=Loss_gamma_0_6, max_epochs=2000, optimizer=optim.Adam, optimizer__amsgrad=True, optimizer__weight_decay=0.1, lr=0.0003, iterator_train__shuffle=True, iterator_train__num_workers=32, iterator_train__pin_memory=True, device=device, batch_size=50000, iterator_train__batch_size=50000, ) net.initialize() net.load_params(checkpoint=cp) return net def save_model_para(model_cp): ''' convert trained model paras(saved at checkpoint model_cp) to numpy format :param model_cp: :return: ''' model = load_model(model_cp, n_in=106,device='cpu') paras = [] for para in model.get_params()['module'].parameters(): paras.append(para.data.cpu().numpy()) np.save("model_paras.npy", paras) save_model_para('cp_gamma_0_6')
2.34375
2
Kapitel_1/_E1_int_string_adder.py
Geralonx/Classes_Tutorial
1
12783502
<filename>Kapitel_1/_E1_int_string_adder.py<gh_stars>1-10 # --- Diese Klasse soll demonstrieren, dass das 'other'-Arguemnt der 'Dunder'-Methods alles sein darf ---# class IntStringAdder(int): def __init__(self, number): self.number = number def __add__(self, other): if isinstance(other, str): try: x = int(other) except: raise ValueError(f"String Value >{other}< cannot be converted to 'int'.") else: raise TypeError("Wrong datatype, expected a 'str' as 2nd operand.") return IntStringAdder(self.number + x) def __str__(self): return f"My Value is {self.number}" # --- Instanziierung der Klasse mittels Konstruktor --- # my_number = IntStringAdder(10) # --- Addition mittels expliziter Syntax und implizitem Methodenaufruf --- # # --- Die Rückgabe ist eine neue Instanz der Klasse --- # my_new_number = my_number + '15' print(my_new_number) # --- Wirft einen Error, da sich der str-Wert 'Simon' nicht in einen Integer umwandeln lässt --- # my_new_number = my_number + 'Simon'
3.71875
4
odvm/cuboids.py
pmp-p/odvm
3
12783503
<reponame>pmp-p/odvm def ijk1b_to_idx0_7( i, j, k ): assert( 0 <= i <= 1 and 0 <= j <= 1 and 0 <= k <= 1 ) return ((k&1)<<2)|((j&1)<<1)|(i&1) def idx0_7_to_ijk1b( idx ): assert( 0 <= idx <= 7 ) return ( idx&1, (idx&2)>>1, (idx&4)>>2 ) def ijk2b_to_idx0_63( i, j, k ): assert( 0 <= i <= 3 and 0 <= j <= 3 and 0 <= k <= 3 ) return ( ((k&1)<<2)|((j&1)<<1)|(i&1) ) | ( ((k&2)<<4)|((j&2)<<3)|((i&2)<<2) ) def idx0_63_to_ijk2b( idx ): assert( 0 <= idx <= 63 ) return ( ((idx&8)>>2)|(idx&1), ((idx&16)>>3)|((idx&2)>>1), ((idx&32)>>4)|((idx&4)>>2) ) mask_to_2x2x2 = [(0,0,0,0)]*8 mask_to_1x2x2 = [(0,0,0,0)]*16 mask_to_2x1x2 = [(0,0,0,0)]*16 mask_to_2x2x1 = [(0,0,0,0)]*16 mask_to_2x1x1 = [(0,0,0,0)]*32 mask_to_1x2x1 = [(0,0,0,0)]*32 mask_to_1x1x2 = [(0,0,0,0)]*32 mask_to_i2_j2 = [(0,0,0,0,0,0,0)]*64 mask_to_i2_k2 = [(0,0,0,0,0,0,0)]*64 mask_to_j2_k2 = [(0,0,0,0,0,0,0)]*64 def calc_mask_to_xxxxx(): idx0 = 0 idx1 = 0 idx2 = 0 idx3 = 0 for k in (0,2): for j in (0,2): for i in (0,2): m000 = 1<<ijk2b_to_idx0_63( i , j , k ) m010 = 1<<ijk2b_to_idx0_63( i , j+1, k ) m001 = 1<<ijk2b_to_idx0_63( i , j , k+1 ) m011 = 1<<ijk2b_to_idx0_63( i , j+1, k+1 ) m100 = 1<<ijk2b_to_idx0_63( i+1, j , k ) m110 = 1<<ijk2b_to_idx0_63( i+1, j+1, k ) m101 = 1<<ijk2b_to_idx0_63( i+1, j , k+1 ) m111 = 1<<ijk2b_to_idx0_63( i+1, j+1, k+1 ) mask_to_2x2x2[idx0] = (m000|m010|m001|m011|m100|m110|m101|m111,i,j,k) idx0 += 1 mask_to_1x2x2[idx1+0] = (m000|m010|m001|m011,i ,j ,k ) mask_to_1x2x2[idx1+1] = (m100|m110|m101|m111,i+1,j ,k ) mask_to_2x1x2[idx1+0] = (m000|m100|m001|m101,i ,j ,k ) mask_to_2x1x2[idx1+1] = (m010|m110|m011|m111,i ,j+1,k ) mask_to_2x2x1[idx1+0] = (m000|m100|m010|m110,i ,j ,k ) mask_to_2x2x1[idx1+1] = (m001|m101|m011|m111,i ,j ,k+1) idx1 += 2 mask_to_2x1x1[idx2+0] = (m000|m100,i ,j ,k ) mask_to_2x1x1[idx2+1] = (m010|m110,i ,j+1,k ) mask_to_2x1x1[idx2+2] = (m001|m101,i ,j ,k+1) mask_to_2x1x1[idx2+3] = (m011|m111,i ,j+1,k+1) mask_to_1x2x1[idx2+0] = (m000|m010,i ,j ,k ) mask_to_1x2x1[idx2+1] = (m100|m110,i+1,j ,k ) mask_to_1x2x1[idx2+2] = (m001|m011,i ,j ,k+1) mask_to_1x2x1[idx2+3] = (m101|m111,i+1,j ,k+1) mask_to_1x1x2[idx2+0] = (m000|m001,i ,j ,k ) mask_to_1x1x2[idx2+1] = (m100|m101,i+1,j ,k ) mask_to_1x1x2[idx2+2] = (m010|m011,i ,j+1,k ) mask_to_1x1x2[idx2+3] = (m110|m111,i+1,j+1,k ) idx2 += 4 mask_to_i2_j2[idx3+0] = (m000|m100|m001|m011,i ,j ,k ,i ,j ,k+1) mask_to_i2_j2[idx3+1] = (m000|m100|m101|m111,i ,j ,k ,i+1,j ,k+1) mask_to_i2_j2[idx3+2] = (m010|m110|m001|m011,i ,j+1,k ,i ,j ,k+1) mask_to_i2_j2[idx3+3] = (m010|m110|m101|m111,i ,j+1,k ,i+1,j ,k+1) mask_to_i2_j2[idx3+4] = (m001|m101|m000|m010,i ,j ,k+1,i ,j ,k ) mask_to_i2_j2[idx3+5] = (m001|m101|m100|m110,i ,j ,k+1,i+1,j ,k ) mask_to_i2_j2[idx3+6] = (m011|m111|m000|m010,i ,j+1,k+1,i ,j ,k ) mask_to_i2_j2[idx3+7] = (m011|m111|m100|m110,i ,j+1,k+1,i+1,j ,k ) mask_to_i2_k2[idx3+0] = (m000|m100|m010|m011,i ,j ,k ,i ,j+1,k ) mask_to_i2_k2[idx3+1] = (m000|m100|m110|m111,i ,j ,k ,i+1,j+1,k ) mask_to_i2_k2[idx3+2] = (m010|m110|m000|m001,i ,j+1,k ,i ,j ,k ) mask_to_i2_k2[idx3+3] = (m010|m110|m100|m101,i ,j+1,k ,i+1,j ,k ) mask_to_i2_k2[idx3+4] = (m001|m101|m010|m011,i ,j ,k+1,i ,j+1,k ) mask_to_i2_k2[idx3+5] = (m001|m101|m110|m111,i ,j ,k+1,i+1,j+1,k ) mask_to_i2_k2[idx3+6] = (m011|m111|m000|m001,i ,j+1,k+1,i ,j ,k ) mask_to_i2_k2[idx3+7] = (m011|m111|m100|m101,i ,j+1,k+1,i+1,j ,k ) mask_to_j2_k2[idx3+0] = (m000|m010|m100|m101,i ,j ,k ,i+1,j ,k ) mask_to_j2_k2[idx3+1] = (m000|m010|m110|m111,i ,j ,k ,i+1,j+1,k ) mask_to_j2_k2[idx3+2] = (m100|m110|m000|m001,i+1,j ,k ,i ,j ,k ) mask_to_j2_k2[idx3+3] = (m100|m110|m010|m011,i+1,j ,k ,i ,j+1,k ) mask_to_j2_k2[idx3+4] = (m000|m011|m100|m101,i ,j ,k+1,i+1,j ,k ) mask_to_j2_k2[idx3+5] = (m000|m011|m110|m111,i ,j ,k+1,i+1,j+1,k ) mask_to_j2_k2[idx3+6] = (m101|m111|m000|m001,i+1,j ,k+1,i ,j ,k ) mask_to_j2_k2[idx3+7] = (m101|m111|m010|m011,i+1,j ,k+1,i ,j+1,k ) idx3 += 8 calc_mask_to_xxxxx() class packed_cuboids(list): def __init__(self): list.__init__(self) self.extend([0]*64) def add( self, i, j, k ): assert( 0 <= i <= 15 and 0 <= j <= 15 and 0 <= k <= 15 ) self[ijk2b_to_idx0_63(i>>2,j>>2,k>>2)] |= 1<<ijk2b_to_idx0_63(i&3,j&3,k&3) def sub( self, i, j, k ): assert( 0 <= i <= 15 and 0 <= j <= 15 and 0 <= k <= 15 ) idx = ijk2b_to_idx0_63(i>>2,j>>2,k>>2) mask = 1<<ijk2b_to_idx0_63(i&3,j&3,k&3) if self[idx] & mask == 0: return False else: self[idx] &= ~mask return True def get( self, i, j, k ): assert( 0 <= i <= 15 and 0 <= j <= 15 and 0 <= k <= 15 ) return self[ijk2b_to_idx0_63(i>>2,j>>2,k>>2)] & (1<<ijk2b_to_idx0_63(i&3,j&3,k&3)) != 0 class cuboids_level(list): def __init__( self, bits=8 ): list.__init__(self) self.extend([None]*64) self.bits = bits def add( self, i, j, k ): idx = ijk2b_to_idx0_63(i>>self.bits,j>>self.bits,k>>self.bits) if self[idx] is None: if self.bits == 4: self[idx] = packed_cuboids() else : self[idx] = cuboids_level(self.bits-2) mask = (1<<self.bits)-1 self[idx].add( i&mask, j&mask, k&mask ) def sub( self, i, j, k ): idx = ijk2b_to_idx0_63(i>>self.bits,j>>self.bits,k>>self.bits) if self[idx] is None: return False else: mask = (1<<self.bits)-1 return self[idx].sub( i&mask, j&mask, k&mask ) def get( self, i, j, k ): idx = ijk2b_to_idx0_63(i>>self.bits,j>>self.bits,k>>self.bits) if self[idx] is None: return False else: mask = (1<<self.bits)-1 return self[idx].get( i&mask, j&mask, k&mask ) def compact(self): empty = 0 if self.bits == 4: for idx,cs in enumerate(self): if cs is not None: if not any(mask for mask in cs): self[idx] = cs = None if cs is None: empty += 1 else: for idx,cs in enumerate(self): if cs is not None: if cs.compact(): self[idx] = cs = None if cs is None: empty += 1 return empty == len(self) def items(self): if self.bits == 4: for idx,cs in enumerate(self): if cs is not None: i,j,k = idx0_63_to_ijk2b(idx) yield ( (i<<4,j<<4,k<<4), cs ) else: for idx,cs1 in enumerate(self): if cs1 is not None: i,j,k = idx0_63_to_ijk2b(idx) i <<= self.bits j <<= self.bits k <<= self.bits for ijk,cs in cs1.items(): yield ( (i+ijk[0],j+ijk[1],k+ijk[2]), cs )
1.929688
2
offers/migrations/0002_alter_emailipo_data_sent.py
ccunhafinance/sistema
0
12783504
<reponame>ccunhafinance/sistema # Generated by Django 3.2.5 on 2021-08-11 15:12 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('offers', '0001_initial'), ] operations = [ migrations.AlterField( model_name='emailipo', name='data_sent', field=models.DateTimeField(default=django.utils.timezone.now, editable=False), ), ]
1.40625
1
src/features/skip_gram.py
RausellLab/tiresias
6
12783505
import numpy as np from gensim.models import Word2Vec from src.utils import io def run( random_walk_files, output_file, dimensions=128, context_size=10, epochs=1, workers=1 ): """Generates node vector embeddings from a list of files containing random walks performed on different layers of a multilayer network. Parameters ---------- random_walk_files: list List of files containing random walks. Each file should correspond to random walks perform on a different layer of the network of interest. output_file: str The file in which the node embeddings will be saved. dimensions: int (default: 128) Number of dimensions of the generated vector embeddings. context_size: int (default: 10) Context size in Word2Vec. epochs: int (default: 1) Number of epochs in stochastic gradient descent. workers: int (default: 1) Number of worker threads used to train the model. """ walks = np.concatenate([io.read_random_walks(file) for file in random_walk_files]) #print(walks.shape) walks_trim = np.split(walks, walks.shape[0]) walks_trim = [walk[walk!=0].astype(str).tolist() for walk in walks] #print(walks_trim) model = Word2Vec( walks_trim, size=dimensions, window=context_size, min_count=0, sg=1, # use skip-gram workers=workers, iter=epochs, ) model.wv.save_word2vec_format(output_file)
3.0625
3
greedy/basic/leetcode/F1282/Solution.py
ashtishad/problem-solving
17
12783506
<reponame>ashtishad/problem-solving<filename>greedy/basic/leetcode/F1282/Solution.py # problem name: Group the People Given the Group Size They Belong To # problem link: https://leetcode.com/problems/group-the-people-given-the-group-size-they-belong-to/ # contest link: (?) # time: (?) # author: ratul14 # other_tags: (?) # difficulty_level: medium class Solution: def groupThePeople(self, groupSizes: List[int]) -> List[List[int]]: ans = list() gs = groupSizes def proc(gs: List[int]) -> any: if set(gs) == {-1}: return itm = 0 for i in gs: if i == -1: continue else: itm = i break tmpl = list() for _ in [0]*itm: idx = gs.index(itm) tmpl.append(idx) gs[idx] = -1 ans.append(tmpl) proc(gs) proc(gs) return ans;
3.4375
3
src/bromine/utils/wait.py
Etiqa/bromine
2
12783507
<reponame>Etiqa/bromine from selenium.webdriver.support.ui import WebDriverWait class Wait(WebDriverWait): def __init__(self, *args, **kwargs): super(Wait, self).__init__(None, *args, **kwargs) def until(self, method, message=''): return super(Wait, self).until(lambda _: method(), message) def until_not(self, method, message=''): return super(Wait, self).until_not(lambda _: method(), message)
2.625
3
python_challenges/project_euler/p034_digit_factorials.py
bruckhaus/challenges
1
12783508
import math __author__ = 'tilmannbruckhaus' class DigitFactorials: """ Digit factorials Problem 34 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are equal to the sum of the factorial of their digits. Note: as 1! = 1 and 2! = 2 are not sums they are not included. """ def __init__(self): pass @staticmethod def find(n): d = DigitFactorials digit_factorial_sum = 0 for i in range(3, n): if d.is_digit_factorial(i): if __name__ == '__main__': print "found digit factorial:", i digit_factorial_sum += i if __name__ == '__main__': if i % 1000000 == 0: print i return digit_factorial_sum @staticmethod def is_digit_factorial(i): factorial_sum = 0 for digit in str(i): factorial_sum += math.factorial(int(digit)) return factorial_sum == i if __name__ == '__main__': d = DigitFactorials.find(10000000) print "The sum of all numbers which are equal to the sum of the factorial of their digits is", d
3.9375
4
GUI_tools/OpenMX_orbitals/PAO_parser.py
Hiroaki-Tanaka-0606/calcPSF
1
12783509
<reponame>Hiroaki-Tanaka-0606/calcPSF # PAO_parser # read .pao files (before or after optimized) import re import numpy as np import math import Config class PAO_parser: def __init__(self, filePath, optimized): # variables self.number_optpao=0 self.grid_output=0 self.maxL_pao=0 self.num_pao=0 self.PAO_Lmax=0 self.PAO_Mul=0 self.CCoes=None self.PAOs=None self.x=None self.r=None self.OrthNorm=None self.valence_min=[] # read contraction coefficients, grid.num.output, number.vps, <pseudo.NandL> # read maxL.pao, num.pao # read PAO.Lmax(=maxL.pao), PAO.Mul(=num.pao), pseudo.atomic.orbitals with open(filePath, "r") as f: # number.optpao while optimized: line=f.readline() re_result=re.findall(r"number\.optpao\s*(\d+)", line) if len(re_result)>0: self.number_optpao=int(re_result[0]) print(("number.optpao is {0:d}").format(self.number_optpao)) break re_result=re.findall(r"^\s*Input file\s*$", line) if len(re_result)>0: print("Warning: number.optpao is not found") break ccoes=[] # Contraction.coefficients for cindex in range(1, self.number_optpao+1): while len(re.findall(r"<Contraction.coefficients"+str(cindex), line))==0: line=f.readline() num_rows=int(f.readline()) for lindex in range(0, num_rows): line=f.readline() re_result=re.findall(r"^\s+Atom=\s*\d+\s*"+\ r"L=\s*(\d+)\s*"+\ r"Mul=\s*\d+\s*"+\ r"p=\s*(\d+)\s*"+\ r"([0-9\.\-]+)", line) if len(re_result)==0: print("Error in parsing Contraction.coefficients") return ccoes.append([int(re_result[0][0]),\ int(re_result[0][1]),\ float(re_result[0][2])]) line=f.readline() if len(re.findall(r"Contraction.coefficients"+str(cindex)+">", line))==1: print(("Reading contraction coefficients {0:d} finished").format(cindex)) else: print("Error in reading Contraction.coefficients") return # grid.num.output while True: line=f.readline() re_result=re.findall(r"grid\.num\.output\s*(\d+)", line) if len(re_result)>0: self.grid_output=int(re_result[0]) print(("grid.num.output is {:d}").format(self.grid_output)) break if len(line)==0: print("Error: cannot find grid.num.output") return # number.vps number_vps=-1 while True: line=f.readline() re_result=re.findall(r"number\.vps\s*(\d+)", line) if len(re_result)>0: number_vps=int(re_result[0]) print(("number.vps is {:d}").format(number_vps)) break if len(line)==0: print("Error: cannot find number.vps") return # <pseudo.NandL> pseudo_NL=[] maxL=-1 while True: line=f.readline() re_result=re.findall(r"<pseudo.NandL", line) if len(re_result)>0: for i in range(0, number_vps): line=f.readline() re_result=re.findall(r"\s*\d+\s*(\d+)\s*(\d+)", line) if len(re_result)>0: pseudo_NL.append([int(re_result[0][0]), int(re_result[0][1])]) if maxL<int(re_result[0][1]): maxL=int(re_result[0][1]) line=f.readline() re_result=re.findall("pseudo.NandL>", line) if len(re_result)==0: print("Error in pseudo.NandL") return for l in range(0, maxL+1): self.valence_min.append(-1) for data in pseudo_NL: if self.valence_min[data[1]]<0 or self.valence_min[data[1]]>data[0]: self.valence_min[data[1]]=data[0] break # maxL.pao while True: line=f.readline() re_result=re.findall(r"maxL\.pao\s*(\d+)", line) if len(re_result)>0: self.maxL_pao=int(re_result[0]) print(("maxL.pao is {:d}").format(self.maxL_pao)) break if len(line)==0: print("Error: cannot find maxL.pao") return # num.pao while True: line=f.readline() re_result=re.findall(r"num\.pao\s*(\d+)", line) if len(re_result)>0: self.num_pao=int(re_result[0]) print(("num.pao is {:d}").format(self.num_pao)) break if len(line)==0: print("Error: cannot find num.pao") return # PAO.Lmax while True: line=f.readline() re_result=re.findall(r"PAO.Lmax\s*(\d+)", line) if len(re_result)>0: self.PAO_Lmax=int(re_result[0]) print(("PAO.Lmax is {:d}").format(self.PAO_Lmax)) if self.PAO_Lmax!=self.maxL_pao: print("Error: maxL.pao!=PAO.Lmax") return break if len(line)==0: print("Error: cannot find PAO.Lmax") return # PAO.Mul while True: line=f.readline() re_result=re.findall(r"PAO\.Mul\s*(\d+)", line) if len(re_result)>0: self.PAO_Mul=int(re_result[0]) print(("PAO.Mul is {:d}").format(self.PAO_Mul)) if self.PAO_Mul!=self.num_pao: print("Error: num.pao!=PAO_Mul") return break if len(line)==0: print("Error: cannot find PAO_Mul") return # put contraction coefficients in numpy self.CCoes=np.zeros((self.PAO_Lmax+1, self.PAO_Mul, self.PAO_Mul)) Mul_indices=[] for i in range(0,self.PAO_Lmax+1): Mul_indices.append(-1) for j in range(0, self.PAO_Mul): self.CCoes[i][j][j]=1 for ccoe in ccoes: if ccoe[1]==0: Mul_indices[ccoe[0]]+=1 i=Mul_indices[ccoe[0]] self.CCoes[ccoe[0]][i][ccoe[1]]=ccoe[2] self.OrthNorm=np.zeros((self.PAO_Lmax+1, self.PAO_Mul, self.PAO_Mul)) # for mat in self.CCoes: # print(mat) # pseudo atomic orbitals self.x=np.zeros((self.grid_output,)) self.r=np.zeros((self.grid_output,)) self.PAOs=np.zeros((self.PAO_Lmax+1, self.PAO_Mul, self.grid_output)) for l in range(0, self.PAO_Lmax+1): while True: line=f.readline() re_result=re.findall(r"<pseudo\.atomic\.orbitals\.L="+str(l), line) if len(re_result)>0: break if len(line)==0: print("Error: cannot find pseudo atomic orbitals") return for i in range(0, self.grid_output): line_arr=f.readline().split() try: self.x[i]=float(line_arr[0]) self.r[i]=float(line_arr[1]) for j in range(0, self.PAO_Mul): self.PAOs[l][j][i]=float(line_arr[j+2]) except Exception as e: print(e) return line=f.readline() re_result=re.findall(r"pseudo.atomic.orbitals.L="+str(l)+">", line) if len(re_result)>0: print(("Reading pseudo atomic orbitals L= {0:d} finished").format(l)) # Gram-Schmidt orthonormalization if optimized: for l, CCoe_mat in enumerate(self.CCoes): for i in range(1, self.PAO_Mul): for j in range(0, i): # orthogonalization norm=np.dot(CCoe_mat[i], CCoe_mat[j]) CCoe_mat[i]-=norm*CCoe_mat[j] # normalization norm2=np.dot(CCoe_mat[i], CCoe_mat[i]) CCoe_mat[i]/=math.sqrt(norm2) # print(("Orthonormalized contraction coefficients for L= {0:d}").format(l)) # for i in range(0, self.PAO_Mul): # for j in range(0, self.PAO_Mul): # print(("{0:7.4f} ").format(CCoe_mat[i][j]), end="") # # print("") # print("") # Orthonormalization check of orbitals for l in range(0, self.PAO_Lmax+1): for i in range(0, self.PAO_Mul): for j in range(0, i+1): norm=0.0 for k in range(0, self.grid_output-1): norm+=self.PAOs[l][i][k]*self.PAOs[l][j][k]*math.pow(self.r[k], 2)*(self.r[k+1]-self.r[k]) self.OrthNorm[l][i][j]=norm self.OrthNorm[l][j][i]=norm def calcContraction(after, before, matrix): Lmax=after.PAO_Lmax Mul1=after.PAO_Mul Mul2=before.PAO_Mul grid=after.grid_output for l in range(0, Lmax+1): for i in range(0, Mul1): for j in range(0, Mul2): norm1=0.0 norm2=0.0 for k in range(0, grid-1): norm1+=after.PAOs[l][i][k]*before.PAOs[l][j][k]*math.pow(before.r[k],2)*(before.r[k+1]-before.r[k]) norm2+=before.PAOs[l][j][k]*before.PAOs[l][j][k]*math.pow(before.r[k],2)*(before.r[k+1]-before.r[k]) matrix[l][i][j]=norm1/norm2 def reproducePAO(before, ccoes, reproduced): Lsize=len(ccoes) Mul1=len(ccoes[0]) Mul2=before.PAO_Mul for l in range(0, Lsize): for i in range(0, Mul1): for j in range(0, Mul2): reproduced[l][i]+=before.PAOs[l][j]*ccoes[l][i][j] def normCheck(PAO, AO): Lmax=PAO.PAO_Lmax valence_min=PAO.valence_min Mul=PAO.PAO_Mul grid=PAO.grid_output for Mul_PAO in range(0, Mul): for l in range(0, Lmax+1): Mul_AO=Mul_PAO+(valence_min[l]-(l+1) if len(valence_min)>l else 0) norm1=0.0 norm2=0.0 for k in range(round(grid*0.9), grid-1): norm1+=PAO.PAOs[l][Mul_PAO][k]*AO.AOs[l][Mul_AO][k]*math.pow(PAO.r[k],2)*(PAO.r[k+1]-PAO.r[k]) norm2+=PAO.PAOs[l][Mul_PAO][k]*PAO.PAOs[l][Mul_PAO][k]*math.pow(PAO.r[k],2)*(PAO.r[k+1]-PAO.r[k]) if norm1/norm2<Config.invert_criterion: print(("{0:d}{1:s} in AO is inverted, norm={2:.3f}").format(Mul_AO+l+1, Config.azimuthal[l], norm1/norm2)) AO.AOs[l][Mul_AO]*=-1 def reproduceAO(AO, PAO, ccoes, reproduced): Lsize=len(ccoes) Mul1=len(ccoes[0]) Mul2=PAO.PAO_Mul for l in range(0, Lsize): for i in range(0, Mul1): for j in range(0, Mul2): Mul_AO=j+(PAO.valence_min[l]-(l+1) if len(PAO.valence_min)>l else 0) reproduced[l][i]+=AO.AOs[l][Mul_AO]*ccoes[l][i][j]
2.609375
3
src/models/items/item.py
prajesh-ananthan/web-store
0
12783510
__author__ = "<NAME>" class Item(object): def __init__(self, name, price, url): self.name = name self.price = price self.url = url def __repr__(self): return "<Item {} with url: {}".format(self.name, self.url)
3.359375
3
create_grid_layers.py
boris-fx/mocha-scripts
6
12783511
# BSD 3-Clause License # # Copyright (c) 2020, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from mocha.project import * import sys import ast from collections import OrderedDict import shiboken2 from PySide2.QtCore import QCoreApplication from PySide2.QtWidgets import * app = QApplication.instance() widgets = app.allWidgets() class GridLayers(QDialog): def __init__(self, parent=None): QDialog.__init__(self, parent) self._widgets = dict() self.create_widgets() self.create_layout() self.create_connections() def create_widgets(self): self._widgets['num_x'] = QLineEdit(self) self._widgets['num_y'] = QLineEdit(self) self._widgets['ok'] = QPushButton("OK", self) self._widgets['cancel'] = QPushButton("Cancel", self) def create_layout(self): main_layout = QGridLayout(self) form_layout = QFormLayout(self) form_layout.addRow("Number in X:", self._widgets['num_x']) form_layout.addRow("Number in Y:", self._widgets['num_y']) main_layout.addLayout(form_layout, 0, 0, 3, 3) main_layout.addWidget(self._widgets['ok'], 3, 1) main_layout.addWidget(self._widgets['cancel'], 3, 2) self.setLayout(main_layout) def create_connections(self): self._widgets['ok'].clicked.connect(self.create_grid) self._widgets['cancel'].clicked.connect(self.reject) def create_layer(self, proj, clip, width, height, x, y): x_points = ( XControlPointData(corner=True, active=True, x=float(width * x), y=float(height * y), edge_width=0.0, edge_angle_ratio=0.5, weight=0.0), XControlPointData(corner=True, active=True, x=float(width * x), y=float((height * y) + height), edge_width=0.0, edge_angle_ratio=0.5, weight=0.0), XControlPointData(corner=True, active=True, x=float((width * x) + width), y=float((height * y) + height), edge_width=0.0, edge_angle_ratio=0.5, weight=0.0), XControlPointData(corner=True, active=True, x=float((width * x) + width), y=float(height * y), edge_width=0.0, edge_angle_ratio=0.5, weight=0.0), ) x_layer = proj.add_layer(clip, name=("cell" + str(x) + str(y)), view=0, frame_number=0) x_layer.add_xspline_contour(0, x_points) x_layer.parameter(["Track", "TrackingModel"]).set(3, time=0, view=View(0)) # turn shear off print(x_layer.parameter(["Track", "TrackingModel"]).keyframes) # turn shear off def create_grid(self): proj = get_current_project() if not proj: self.reject() num_x = int(self._widgets['num_x'].text()) num_y = int(self._widgets['num_y'].text()) first_clip = proj.default_trackable_clip clip_size = proj.clips[first_clip.name].frame_size cell_width = int(clip_size[0] / num_x) cell_height = int(clip_size[1] / num_y) # build layers from bottom of frame to top for y in range(num_y - 1, -1, -1): for x in range(0, num_x): self.create_layer(proj, first_clip, cell_width, cell_height, x, y) self.accept() if __name__ == "__main__": grid = GridLayers() grid.show()
1.226563
1
part_map/object.py
jdpatt/bga_color_map
2
12783512
"""Class representing the object being modeled.""" import json import logging import re from pathlib import Path from typing import Dict, List, Tuple, Union from natsort import natsorted from openpyxl import load_workbook class PartObject: """ Load and create a part from a source """ def __init__(self, pins, filename): super().__init__() self.log = logging.getLogger("partmap.object") self._pins = pins self._columns, self._rows = self.sort_and_split_pin_list() self.filename = Path(filename) @classmethod def from_excel(cls, filename): """ Import an Excel and create a PartObject """ number = "Number" name = "Name" workbook = load_workbook(filename) sheet = workbook.active # Grab the first sheet try: column = get_col_index([number, name], sheet) bga = dict() for excel_row in range(2, sheet.max_row + 1): pin = sheet.cell(row=excel_row, column=column[number]).value net = sheet.cell(row=excel_row, column=column[name]) if pin is not None or net.value is not None: if net.fill.patternType == "solid": bga.update( { pin: { "name": net.value, "color": str("#" + net.fill.start_color.rgb[2:]), } } ) else: bga.update({pin: {"name": net.value, "color": "#ffffff"}}) except (TypeError, ValueError, KeyError, UnboundLocalError) as error: print(error) raise return cls(bga, filename) @classmethod def from_telesis(cls, filename, refdes): """ Import a Telesis formatted file and create a PartObject """ with open(filename, "r") as tel_file: tel_text = tel_file.readlines() tel_netlist = dict() for line in tel_text: reg = re.match(r"(.*);", line) reg2 = re.findall(refdes + r"\.([a-zA-Z0-9]+)", line) if reg and reg2: net = reg.group(1) for reg_match in reg2: pin = reg_match tel_netlist.update({pin: {"name": net, "color": "#ffffff"}}) return cls(tel_netlist, filename) @classmethod def from_json(cls, filename): """ Import a json file with a format {pin: {name:, color:}} """ return cls(json.load(open(filename)), filename) def add_pin(self, pin: str, net: str, color: str) -> None: """Add a new pin to the part. Args: pin: The Pin Number. (A12) net: The functional name of the net. (USB_P) color: The color to fill with. """ self._pins.update({pin: {"name": net, "color": color}}) @property def columns(self) -> List: """ Get the columns in a part. [1-n] """ return self._columns @columns.setter def columns(self, new_columns): """Update the columns.""" self._columns = new_columns @property def rows(self) -> List: """ Get the rows in a part. [A - AZ] """ return self._rows @rows.setter def rows(self, new_rows): """Update the rows.""" self._rows = new_rows def get_pin(self, prefix: str, suffix: str) -> Union[str, None]: """ Get the name and color of a pin """ pin = None if prefix + suffix in self._pins: pin = self._pins[prefix + suffix] elif suffix + prefix in self._pins: pin = self._pins[suffix + prefix] return pin @property def pins(self): """ Return the pin names """ return self._pins.keys() def get_number_of_pins(self): """ Return how many pins are in the part """ return len(self._pins) def get_net_names(self): """ Return the net names """ return self._pins.values()["name"] def dump_json(self): """ Dump the PartObject dictionary to a .json file """ save_file = self.filename.with_suffix(".json") self.log.info(f"Saved as json to {save_file}") with open(save_file, "w") as outfile: json.dump(self._pins, outfile, sort_keys=True, indent=4, separators=(",", ": ")) def sort_and_split_pin_list(self) -> Tuple[List, List]: """ Take a list of pins and spilt by letter and number then sort """ r_list: List = list() c_list = list() for pin in self.pins: split_pin = re.split(r"(\d+)", pin) if split_pin[0] not in r_list: r_list.append(split_pin[0]) c_list.append(split_pin[1]) temp = list() temp2 = list() for item in r_list: if len(item) > 1: temp.append(item) else: temp2.append(item) temp2 = natsorted(temp2) temp2.extend(natsorted(temp)) return natsorted(set(c_list)), temp2 def get_col_index(name: List, worksheet) -> Dict: """ return a list of the column numbers if it matches """ indexes = dict() for rows in worksheet.iter_rows(min_row=1, max_row=1, min_col=1): for column in rows: if column.value in name: indexes.update({column.value: column.col_idx}) return indexes
2.859375
3
WebTree.py
Tinka8ell/Prayers-and-Readings
0
12783513
<reponame>Tinka8ell/Prayers-and-Readings # parse html # Read a requested web page into a "tree" and parse it. # # Requires a url and will take an optional dictionary of values # to be sent as parameters on the HTTP GET. from datetime import date import os from pathlib import Path import re import urllib.parse import urllib.request # as Request from bs4 import BeautifulSoup # used to parse values into the url from dateutil.parser import parse class WebTree: """ Read a requested web page into a "tree" and parse it. Requires a url and will take an optional dictionary of values to be sent as parameters on the HTTP GET. """ def __init__(self, url, values=None): # unknown if this is used or not or even why it is here ... self.directory = "/var/www/html" self.prefix = "http://piweb/" # known code ... self.url = url self.values = values self.data = None if values: data = urllib.parse.urlencode(values) self.data = data.encode('utf-8') # data should be bytes self.root = None self.root = self.read() # root of the tree self.parse() # use the overrideable parse() method to process it. return def read(self): url = self.url data = self.data # could be None if no headers passed # create a bunch of headers so we don't look too robot like headers = {} headers['User-Agent'] = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/79.0.3945.88 " "Safari/537.36" req = urllib.request.Request(url, headers=headers, data=data) with urllib.request.urlopen(req) as f: g = f.read().decode('utf-8') # generate element tree root = BeautifulSoup(g, 'html.parser') return root def parse(self): """ Default is to do nothing, but should be overridden by subclasses. """ return def show(self): """ Basic display function for debugging. """ print("url:", self.url) print("values:", self.values) return if __name__ == "__main__": # simple test of a known source page tree = WebTree("https://www.moravian.org/the-daily-texts/") tree.show()
3.375
3
agi_ast/turbobil.py
roramirez/turbobil
5
12783514
#!/usr/bin/env python 'Turbobil agi Asterisk' __author__ = "<NAME>" __version__ = "0.1.2" __email__ = "<EMAIL>" import os import sys from turbodb import * import logging from agi import * from dialer import * #Type pay PRE_PAY = 1 POST_PAY = 2 # INFO, DEBUG, WARNING, CRITICAL, ERROR def set_logging(cfg_level=logging.INFO): logging.basicConfig(level=cfg_level) logFormatter = logging.Formatter("%(asctime)s [%(threadName)s] [%(levelname)s] %(message)s") rootLogger = logging.getLogger() consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) rootLogger.addHandler(consoleHandler) logger = logging.getLogger(__name__) def check_credit(customer): """ Check customer credit """ if customer.type_pay == PRE_PAY: if customer.credit <= 0: logging.info('customer id %s dont have credit' % customer.id) sys.exit() elif customer.type_pay == POST_PAY: logging.info('customer id %s POST_PAY' % customer.id) else: logging.error('customer id %s dont have valid method pay' % customer.id) sys.exit() if __name__ == '__main__': set_logging() accountcode = sys.argv[1].strip() destination = sys.argv[2].strip() timeout = 45 database = TurboDb() customer = database.get_customer_by_accountcode(accountcode) if not customer: logging.error('customer not found') sys.exit() check_credit(customer) #TODO #Not yet implement #if customer.customer_id: #check reseller credit # reseller = database.get_customer_by_id(customer.customer_id) # check_credit(reseller) #check route routes = database.get_routes_to_customer(customer, destination) if not routes: logging.error('routes not found') sys.exit() #dialer call agi = AGI() dialer = dialer(agi) for r in routes: price = database.get_price_customer_route(r) agi.verbose(price) if customer.type_pay == PRE_PAY: limit = int(customer.credit /(price / 60) * 1000) else: limit = 10000000 str_provider = 'SIP/%s@%s_provider,%s' % (destination, r.Provider.id, timeout) op_dial = '|L(%s:0:0),90' % (limit) str_dial = str_provider + op_dial d_status = dialer.dial(str_dial) database.save_call(destination, customer, r, d_status, price) if d_status['dialstatus'] in ['NOANSWER', 'CANCEL'] : break elif d_status['dialstatus'] in ['ANSWER']: break elif d_status['dialstatus'] in ['CHANUNAVAIL', 'CONGESTION', 'BUSY']: continue sys.exit()
2.3125
2
Python/Cracking the Coding Interview/Chapter 1_Arrays and Strings/1.6.py
honghaoz/Interview-Algorithm-in-Swift
1
12783515
# Given an image represented by NxN matrix, # where each pixel in the image is 4 bytes, # write a method to rotate the image by 90 degrees, # In place? # In place from math import ceil def rotate(m): degree = len(m) # Precondition for eachLine in m: if not degree == len(eachLine): return False # layer by layer for i in xrange(int(ceil(degree / 2.0))): for y in xrange(degree - i * 2 - 1): j = y + i # i stands for layer # j stands for index m[i][j], m[j][degree - 1 - i] = m[j][degree - 1 - i], m[i][j] m[i][j], m[degree - 1 - i][degree - 1 - j] = m[degree - 1 - i][degree - 1 - j], m[i][j] m[i][j], m[degree - 1 - j][i] = m[degree - 1 - j][i], m[i][j] return m # Helper def printMatrix(m): degree = len(m) # Precondition for eachLine in m: if not degree == len(eachLine): return False for row in xrange(degree): print m[row] def test(): matrix1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] matrix1Rotated = [[13, 9, 5, 1], [14, 10, 6, 2], [15, 11, 7, 3], [16, 12, 8, 4]] matrix2 = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]] matrix2Rotated = [[21, 16, 11, 6, 1], [22, 17, 12, 7, 2], [23, 18, 13, 8, 3], [24, 19, 14, 9, 4], [25, 20, 15, 10, 5]] print "Passed" if rotate(matrix1) == matrix1Rotated else "Failed" print "Passed" if rotate(matrix2) == matrix2Rotated else "Failed" test()
3.5
4
anuga/parallel/tests/test_sequential_dist_sw_flow.py
samcom12/anuga_core
136
12783516
<reponame>samcom12/anuga_core """ Simple water flow example using ANUGA Water driven up a linear slope and time varying boundary, similar to a beach environment This is a very simple test of the parallel algorithm using the simplified parallel API """ from __future__ import print_function from __future__ import division #------------------------------------------------------------------------------ # Import necessary modules #------------------------------------------------------------------------------ from past.utils import old_div from future.utils import raise_ import unittest import os import sys #import pypar import numpy as num import anuga from anuga import Domain from anuga import Reflective_boundary from anuga import Dirichlet_boundary from anuga import Time_boundary from anuga import Transmissive_boundary from anuga import rectangular_cross_domain from anuga import distribute, myid, numprocs, send, receive, barrier, finalize from anuga.parallel.sequential_distribute import sequential_distribute_dump from anuga.parallel.sequential_distribute import sequential_distribute_load import anuga.utilities.plot_utils as util #-------------------------------------------------------------------------- # Setup parameters #-------------------------------------------------------------------------- yieldstep = 0.25 finaltime = 1.0 nprocs = 4 N = 29 M = 29 verbose = False new_parameters = {} new_parameters['ghost_layer_width'] = 2 #--------------------------------- # Setup Functions #--------------------------------- def topography(x,y): return old_div(-x,2) ########################################################################### # Setup Test ########################################################################## def run_simulation(parallel=False, verbose=False): #-------------------------------------------------------------------------- # Setup computational domain and quantities #-------------------------------------------------------------------------- if myid == 0: domain = rectangular_cross_domain(M, N) domain.set_name('odomain') # Set sww filename domain.set_datadir('.') domain.set_quantity('elevation', topography) # Use function for elevation domain.set_quantity('friction', 0.0) # Constant friction domain.set_quantity('stage', expression='elevation') # Dry initial stage else: domain = None #-------------------------------------------------------------------------- # Create pickled partition #-------------------------------------------------------------------------- if myid == 0: if verbose: print('DUMPING PARTITION DATA') sequential_distribute_dump(domain, numprocs, verbose=verbose, parameters=new_parameters) #-------------------------------------------------------------------------- # Create the parallel domains #-------------------------------------------------------------------------- if parallel: if myid == 0 and verbose : print('DISTRIBUTING TO PARALLEL DOMAIN') pdomain = distribute(domain, verbose=verbose, parameters=new_parameters) pdomain.set_name('pdomain') if myid == 0 and verbose : print('LOADING IN PARALLEL DOMAIN') sdomain = sequential_distribute_load(filename='odomain', verbose = verbose) sdomain.set_name('sdomain') if myid == 0 and verbose: print('EVOLVING pdomain') setup_and_evolve(pdomain, verbose=verbose) if myid == 0 and verbose: print('EVOLVING sdomain') setup_and_evolve(sdomain, verbose=verbose) if myid == 0: if verbose: print('EVOLVING odomain') setup_and_evolve(domain, verbose=verbose) if myid == 0 and verbose: parameter_file=open('odomain.txt', 'w') from pprint import pprint pprint(domain.get_algorithm_parameters(),parameter_file,indent=4) parameter_file.close() parameter_file=open('sdomain.txt', 'w') from pprint import pprint pprint(sdomain.get_algorithm_parameters(),parameter_file,indent=4) parameter_file.close() parameter_file=open('pdomain.txt', 'w') from pprint import pprint pprint(pdomain.get_algorithm_parameters(),parameter_file,indent=4) parameter_file.close() assert num.allclose(pdomain.quantities['stage'].centroid_values, sdomain.quantities['stage'].centroid_values) assert num.allclose(pdomain.quantities['stage'].vertex_values, sdomain.quantities['stage'].vertex_values) assert num.allclose(pdomain.vertex_coordinates, sdomain.vertex_coordinates) assert num.allclose(pdomain.centroid_coordinates, sdomain.centroid_coordinates) #--------------------------------- # Now compare the merged sww files #--------------------------------- if myid == 0: if verbose: print('COMPARING SWW FILES') odomain_v = util.get_output('odomain.sww') odomain_c = util.get_centroids(odomain_v) pdomain_v = util.get_output('pdomain.sww') pdomain_c = util.get_centroids(pdomain_v) sdomain_v = util.get_output('sdomain.sww') sdomain_c = util.get_centroids(sdomain_v) # Test some values against the original ordering if verbose: order = 2 print('PDOMAIN CENTROID VALUES') print(num.linalg.norm(odomain_c.x-pdomain_c.x,ord=order)) print(num.linalg.norm(odomain_c.y-pdomain_c.y,ord=order)) print(num.linalg.norm(odomain_c.stage[-1]-pdomain_c.stage[-1],ord=order)) print(num.linalg.norm(odomain_c.xmom[-1]-pdomain_c.xmom[-1],ord=order)) print(num.linalg.norm(odomain_c.ymom[-1]-pdomain_c.ymom[-1],ord=order)) print(num.linalg.norm(odomain_c.xvel[-1]-pdomain_c.xvel[-1],ord=order)) print(num.linalg.norm(odomain_c.yvel[-1]-pdomain_c.yvel[-1],ord=order)) print('SDOMAIN CENTROID VALUES') print(num.linalg.norm(odomain_c.x-sdomain_c.x,ord=order)) print(num.linalg.norm(odomain_c.y-sdomain_c.y,ord=order)) print(num.linalg.norm(odomain_c.stage[-1]-sdomain_c.stage[-1],ord=order)) print(num.linalg.norm(odomain_c.xmom[-1]-sdomain_c.xmom[-1],ord=order)) print(num.linalg.norm(odomain_c.ymom[-1]-sdomain_c.ymom[-1],ord=order)) print(num.linalg.norm(odomain_c.xvel[-1]-sdomain_c.xvel[-1],ord=order)) print(num.linalg.norm(odomain_c.yvel[-1]-sdomain_c.yvel[-1],ord=order)) print('PDOMAIN VERTEX VALUES') print(num.linalg.norm(odomain_v.stage[-1]-pdomain_v.stage[-1],ord=order)) print(num.linalg.norm(odomain_v.xmom[-1]-pdomain_v.xmom[-1],ord=order)) print(num.linalg.norm(odomain_v.ymom[-1]-pdomain_v.ymom[-1],ord=order)) print(num.linalg.norm(odomain_v.xvel[-1]-pdomain_v.xvel[-1],ord=order)) print(num.linalg.norm(odomain_v.yvel[-1]-pdomain_v.yvel[-1],ord=order)) print('SDOMAIN VERTEX VALUES') print(num.linalg.norm(odomain_v.stage[-1]-sdomain_v.stage[-1],ord=order)) print(num.linalg.norm(odomain_v.xmom[-1]-sdomain_v.xmom[-1],ord=order)) print(num.linalg.norm(odomain_v.ymom[-1]-sdomain_v.ymom[-1],ord=order)) print(num.linalg.norm(odomain_v.xvel[-1]-sdomain_v.xvel[-1],ord=order)) print(num.linalg.norm(odomain_v.yvel[-1]-sdomain_v.yvel[-1],ord=order)) assert num.allclose(odomain_c.stage,pdomain_c.stage) assert num.allclose(odomain_c.xmom,pdomain_c.xmom) assert num.allclose(odomain_c.ymom,pdomain_c.ymom) assert num.allclose(odomain_c.xvel,pdomain_c.xvel) assert num.allclose(odomain_c.yvel,pdomain_c.yvel) assert num.allclose(odomain_v.x,pdomain_v.x) assert num.allclose(odomain_v.y,pdomain_v.y) assert num.linalg.norm(odomain_v.x-pdomain_v.x,ord=0) == 0 assert num.linalg.norm(odomain_v.y-pdomain_v.y,ord=0) == 0 assert num.linalg.norm(odomain_v.stage[-1]-pdomain_v.stage[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.xmom[-1]-pdomain_v.xmom[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.ymom[-1]-pdomain_v.ymom[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.xvel[-1]-pdomain_v.xvel[-1],ord=0) < 100 assert num.linalg.norm(odomain_v.yvel[-1]-pdomain_v.yvel[-1],ord=0) < 100 assert num.allclose(odomain_c.x,sdomain_c.x) assert num.allclose(odomain_c.y,sdomain_c.y) assert num.allclose(odomain_c.stage,sdomain_c.stage) assert num.allclose(odomain_c.xmom,sdomain_c.xmom) assert num.allclose(odomain_c.ymom,sdomain_c.ymom) assert num.allclose(odomain_c.xvel,sdomain_c.xvel) assert num.allclose(odomain_c.yvel,sdomain_c.yvel) assert num.allclose(odomain_v.x,sdomain_v.x) assert num.allclose(odomain_v.y,sdomain_v.y) order = 0 assert num.linalg.norm(odomain_v.x-sdomain_v.x,ord=order) == 0 assert num.linalg.norm(odomain_v.y-sdomain_v.y,ord=order) == 0 assert num.linalg.norm(odomain_v.stage[-1]-sdomain_v.stage[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.xmom[-1]-sdomain_v.xmom[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.ymom[-1]-sdomain_v.ymom[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.xvel[-1]-sdomain_v.xvel[-1],ord=order) < 100 assert num.linalg.norm(odomain_v.yvel[-1]-sdomain_v.yvel[-1],ord=order) < 100 # COMPARE CENTROID PDOMAIN SDOMAIN assert num.allclose(pdomain_c.x,sdomain_c.x) assert num.allclose(pdomain_c.y,sdomain_c.y) assert num.allclose(pdomain_c.stage[-1],sdomain_c.stage[-1]) assert num.allclose(pdomain_c.xmom[-1],sdomain_c.xmom[-1]) assert num.allclose(pdomain_c.ymom[-1],sdomain_c.ymom[-1]) assert num.allclose(pdomain_c.xvel[-1],sdomain_c.xvel[-1]) assert num.allclose(pdomain_c.yvel[-1],sdomain_c.yvel[-1]) # COMPARE VERTEX PDOMAIN SDOMAIN assert num.allclose(pdomain_v.x,sdomain_v.x) assert num.allclose(pdomain_v.y,sdomain_v.y) assert num.allclose(pdomain_v.stage[-1],sdomain_v.stage[-1]) assert num.allclose(pdomain_v.xmom[-1],sdomain_v.xmom[-1]) assert num.allclose(pdomain_v.ymom[-1],sdomain_v.ymom[-1]) assert num.allclose(pdomain_v.xvel[-1],sdomain_v.xvel[-1]) assert num.allclose(pdomain_v.yvel[-1],sdomain_v.yvel[-1]) import os os.remove('odomain.sww') os.remove('pdomain.sww') os.remove('sdomain.sww') os.remove('odomain_P3_0.pickle') os.remove('odomain_P3_1.pickle') os.remove('odomain_P3_2.pickle') #os.remove('odomain_P4_3.pickle') import glob [ os.remove(fl) for fl in glob.glob('*.npy') ] def setup_and_evolve(domain, verbose=False): #-------------------------------------------------------------------------- # Setup domain parameters #-------------------------------------------------------------------------- domain.set_flow_algorithm('DE0') #domain.set_store_vertices_uniquely() #------------------------------------------------------------------------------ # Setup boundary conditions # This must currently happen *AFTER* domain has been distributed #------------------------------------------------------------------------------ Br = Reflective_boundary(domain) # Solid reflective wall Bd = Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values # Associate boundary tags with boundary objects domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) #------------------------------------------------------------------------------ # Evolve #------------------------------------------------------------------------------ for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): if myid == 0 and verbose : domain.write_time() #if myid == 0 and verbose : print domain.quantities['stage'].get_maximum_value() domain.sww_merge(delete_old=True) # Test an nprocs-way run of the shallow water equations # against the sequential code. class Test_parallel_sw_flow(unittest.TestCase): def test_parallel_sw_flow(self): if verbose : print("Expect this test to fail if not run from the parallel directory.") cmd = anuga.mpicmd(os.path.abspath(__file__)) result = os.system(cmd) assert_(result == 0) # Because we are doing assertions outside of the TestCase class # the PyUnit defined assert_ function can't be used. def assert_(condition, msg="Assertion Failed"): if condition == False: #pypar.finalize() raise_(AssertionError, msg) if __name__=="__main__": if numprocs == 1: runner = unittest.TextTestRunner() suite = unittest.makeSuite(Test_parallel_sw_flow, 'test') runner.run(suite) else: from anuga.utilities.parallel_abstraction import global_except_hook import sys sys.excepthook = global_except_hook #------------------------------------------ # Run the codel and compare sequential # results at 4 gauge stations #------------------------------------------ if myid ==0 and verbose: print('PARALLEL START') run_simulation(parallel=True, verbose=verbose) finalize()
2.65625
3
Examples/example.py
lorcan2440/SimpleTrussCalculator
1
12783517
<filename>Examples/example.py import _import_helper # noqa from Source import Truss_Calculator as tc ''' It is recommended to use the factory functions to build trusses (Example 1). However, it is also possible to directly create the objects using classes (Example 2). ''' ######################################################### # Example 1: Building a truss using factory functions # ######################################################### # set some initial parameters default_bar_params = {"b": 16, "t": 1.1, "D": 5, "E": 210, "strength_max": 0.216} units_system = 'kN, mm' # initialise a truss (and set it as the active truss) tc.init_truss('My First Truss', default_bar_params, units_system) # create the joints: name, x, y tc.create_joint('A', 0, 0) tc.create_joint('B', 0, 100) tc.create_joint('C', 100, 0) tc.create_joint('D', 100, 100) tc.create_joint('E', 200, 0) tc.create_joint('F', 200, 100) # create the bars: name, *between_which_joints_names tc.create_bar('AB', 'A', 'B') tc.create_bar('AC', 'A', 'C') tc.create_bar('AD', 'A', 'D') tc.create_bar('BD', 'B', 'D') tc.create_bar('CD', 'C', 'D') tc.create_bar('CE', 'C', 'E') tc.create_bar('DE', 'D', 'E') tc.create_bar('DF', 'D', 'F') tc.create_bar('EF', 'E', 'F') # apply loads: name, joint, x, y tc.create_load('W', 'D', 0, -100) # put supports at joints: name, joint, type tc.create_support('A', 'A', 'pin') tc.create_support('E', 'E', 'roller', roller_normal=(0, 1)) # make calculations and get results of analysis my_results = tc.active_truss.Result(tc.active_truss, sig_figs=3, solution_method=tc.SolveMethod.SCIPY) # show the results in text form print(my_results) # get e.g. force and stress in a specific bar print(tc.active_truss.results['internal_forces']['AD']) # unrounded print(tc.active_truss.results['stresses']['AD']) print(my_results.tensions['AD']) # rounded print(my_results.stresses['AD']) # show the results in graphical form. If we may want to use this truss again (e.g. in Example 3) # then we must set _delete_truss_after = False. tc.plot_diagram(tc.active_truss, my_results, show_reactions=True, _delete_truss_after=False) ############################################### # Example 2: Building a truss using objects # ############################################### # initialise a truss (and set it as the active truss). # NOTE: if the var_name argument is omitted, there can be issues with saving/loading. my_truss = tc.Truss('My Second Truss', default_bar_params, units_system, var_name='my_truss') # create the joints: truss object, name, x, y joint_a = my_truss.Joint(my_truss, 'A', 0, 0) joint_b = my_truss.Joint(my_truss, 'B', 0, 100) joint_c = my_truss.Joint(my_truss, 'C', 100, 0) joint_d = my_truss.Joint(my_truss, 'D', 100, 100) joint_e = my_truss.Joint(my_truss, 'E', 200, 0) joint_f = my_truss.Joint(my_truss, 'F', 200, 100) # create the bars: truss, name, *between_which_joints_objects bar_ab = my_truss.Bar(my_truss, 'AB', joint_a, joint_b) bar_ac = my_truss.Bar(my_truss, 'AC', joint_a, joint_c) bar_ad = my_truss.Bar(my_truss, 'AD', joint_a, joint_d) bar_bd = my_truss.Bar(my_truss, 'BD', joint_b, joint_d) bar_cd = my_truss.Bar(my_truss, 'CD', joint_c, joint_d) bar_ce = my_truss.Bar(my_truss, 'CE', joint_c, joint_e) bar_de = my_truss.Bar(my_truss, 'DE', joint_d, joint_e) bar_df = my_truss.Bar(my_truss, 'DF', joint_d, joint_f) bar_ef = my_truss.Bar(my_truss, 'EF', joint_e, joint_f) # apply loads: name, joint object, x, y load_w = my_truss.Load('W', joint_d, 0, -100) # put supports at joints: name, joint, type support_a = my_truss.Support('A', joint_a, 'pin') support_e = my_truss.Support('E', joint_e, 'roller', (0, 1)) # make calculations and get results of analysis my_results = my_truss.Result(my_truss, sig_figs=3, solution_method=tc.SolveMethod.SCIPY) # show the results in text form print(my_results) # show the results in graphical form. If we may want to use this truss again (e.g. in Example 3) # then we must set _delete_truss_after = False. tc.plot_diagram(my_truss, my_results, show_reactions=True, _delete_truss_after=False) ################################### # Example 3: Saving and loading # ################################### # NOTE: saving and loading does not work on trusses created using objects, # unless a var_name is specified when initialising the truss. tc.active_truss.dump_truss_to_json('./Saved Trusses') my_truss.dump_truss_to_json('./Saved Trusses') tc.load_truss_from_json('./Saved Trusses/my_first_truss.json') # load truss from Example 1 tc.load_truss_from_json('./Saved Trusses/my_truss.json') # load truss from Example 2
3.296875
3
function1.py
shreya-n-kumari/python
0
12783518
<filename>function1.py #Defining and Calling the Function in Python Script. def list_product(my_list): result = 1 for number in my_list: result = result * number return result print(list_product([2, 3])) print(list_product([2, 10, 15])) def add_suffix(suffix = '.com'): return 'google' + suffix print(add_suffix()) #without specifying argument(default argument). print(add_suffix('.nic.in')) #with argument.
3.734375
4
Cookie_Cutter.py
devcoinfet/Cookie_Inject0r
0
12783519
<reponame>devcoinfet/Cookie_Inject0r import requests import uuid import subprocess import os import sys import binascii import json from urllib3.exceptions import InsecureRequestWarning from threading import Thread, Lock from multiprocessing import Process, cpu_count import telegram from urllib.parse import urlparse import glob import time import ast #token that can be generated talking with @BotFather on telegram api_token = '<PASSWORD>' chat_ids = ['chatisgoeshere']#,'@yourbotname'] session_proxied = requests.Session() session_proxied.proxies = { "http": "http://ilike_2rotate@proxyhost.com:80", } PROCESS = cpu_count() * 2 requests.packages.urllib3.disable_warnings(InsecureRequestWarning) THREADS = 4 lock = Lock() # Suppress only the single warning from urllib3 needed. requests.packages.urllib3.disable_warnings(category=InsecureRequestWarning) false_positives = ['handl_landing_page','handl_url', 'handl_url','REQUEST','uri','URI','landingpage','Set-Cookie:'] vuln_cookies_found = [] def get_ips(dataset_path): ips = [] file = open(dataset_path, "r") dataset = list(filter(None, file.read().split("\n"))) for line in dataset: # line = json.loads(line) # ips.append(line['IP']) ips.append(line.rstrip()) return ips def ip_to_process(a, n): # ode to devil the best coder i know ;) k, m = divmod(len(a), n) for i in range(n): yield a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] def crlf_injection_tester(hosts_in): for hosts in hosts_in: domain = urlparse(hosts).netloc cookie_scope = domain cookie_rand = "BugBountyTestOnly" url_pay = 'https://'+hosts+"/%0d%0aSet-Cookie:{}:{};domain={}".format(str(cookie_rand),str(cookie_rand),str(domain)) test_url = url_pay try: response = session_proxied.get(test_url,timeout=3,verify=False) print(response.status_code) if session_proxied.cookies: cookies = session_proxied.cookies.get_dict() for key in cookies.items(): if "__cfruid" or "__cfduid" in key: print("We have a hit dodging WAF probably not Vuln") pass else: for cook in key: print(cook) if cookie_rand in cook: #todo check for false positive by looking for reflection in location type headrers print("CRLF Injection Possibly Detected") sys.exit() tested_info = {} tested_info['target_url'] = test_url tested_info['cookie_set'] = cookie_rand tested_info['cookies_returned'] = session_proxied.cookies.get_dict() tested_info['is_vuln'] = True vuln_cookies_found.append(json.dumps(tested_info)) print(json.dumps(tested_info)) try: for chat_id in chat_ids: #send_notification(tested_info,chat_id) print("Mock Send") except Exception as ex1: print(ex1) pass else: #print(json.dumps(tested_info)) pass except Exception as issues: print(str(issues)) pass def send_notification(msg, chat_id, token=api_token): """ Send a mensage to a telegram user specified on chatId chat_id must be a number! """ try: bot = telegram.Bot(token=token) bot.sendMessage(chat_id=chat_id, text=msg) except Exception as ex: print(ex) pass if __name__ == "__main__": ip_list = get_ips(sys.argv[1]) ips = ip_to_process(ip_list, PROCESS) for _ in range(PROCESS): p = Thread(target=crlf_injection_tester, args=(next(ips),)) p.daemon = True p.start() for _ in range(PROCESS): p.join() for result in vuln_cookies_found: print(result)
2
2
wsdet/modules/models/base/assigner/builder.py
DetectionBLWX/WSDDN.pytorch
7
12783520
''' Function: builder the assigner Author: <NAME> ''' from .maxiouassigner import MaxIoUAssigner '''builder the assigner''' def BuildAssigner(cfg, **kwargs): supported_assigners = { 'max_iou': MaxIoUAssigner, } assert cfg['type'] in supported_assigners, 'unsupport assigner type %s...' % cfg['type'] return supported_assigners[cfg['type']](**cfg['opts'])
2.390625
2
Classes_and_Object_Programs/cls1.py
saratkumar17mss040/Python-lab-programs
3
12783521
# simple class - general class -1 class StudentDetails: name = 'sam' age = 21 college = 'ABC' average = 9.2 # class StudentDetails object s1 = StudentDetails() print('Student details') print('Name:',s1.name) print('Age:', s1.age) print('College', s1.college) print('Average', s1.average)
3.90625
4
screen/title.py
wooky/xtremettt
0
12783522
import pygame, assets from options import OptionsScreen class TitleScreen: def __init__(self, screen): self.screen = screen big_font = pygame.font.SysFont(assets.font, 90) small_font = pygame.font.SysFont(assets.font, 24) self.heading = small_font.render("Super Extreme", True, (255,255,255)) self.title = big_font.render("TIC-TAC-TOE", True, (255,255,255)) self.title_shadow = big_font.render("TIC-TAC-TOE", True, (192,192,192)) self.start = small_font.render("Press ENTER to start!", True, (255,255,255)) self.title_shadow_rect = self.title_shadow.get_rect() self.title_shadow_rect.center = (screen.get_width()/2, screen.get_height()/2) self.title_rect = self.title_shadow_rect.move(-10, -10) self.heading_rect = self.heading.get_rect() self.heading_rect.topleft = self.title_rect.topleft self.heading_rect.left -= 5 self.start_rect = self.start.get_rect() self.start_rect.center = (self.title_shadow_rect.centerx, (self.title_rect.bottom + screen.get_height())/2) def event(self, event): if event.type == pygame.KEYDOWN and event.key == pygame.K_RETURN: OptionsScreen.instance = OptionsScreen(self.screen) return OptionsScreen.instance else: return self def logic(self): assets.background.logic() def draw(self): self.screen.fill((0,0,0)) assets.background.draw() self.screen.blit(self.title_shadow, self.title_shadow_rect) self.screen.blit(self.title, self.title_rect) self.screen.blit(self.heading, self.heading_rect) self.screen.blit(self.start, self.start_rect)
2.875
3
moon.py
zhoudaxia233/icey
0
12783523
import random import math from PIL import Image def sample(x, y, num_of_sample_directions=64): s = 0.0 for i in range(num_of_sample_directions): # random_rad = 2 * math.pi * random.uniform(0.0, 1.0) random_rad = 2 * math.pi * (i + random.uniform(0.0, 1.0)) / num_of_sample_directions s += trace(x, y, math.cos(random_rad), math.sin(random_rad)) return s / num_of_sample_directions # * 2 * math.pi def trace(ox, oy, dx, dy): t = 0.0 i = 0 while (i < 10) and (t < 2.0): i += 1 sd = circleSDF(ox + dx * t, oy + dy * t, 0.5, 0.5, 0.1) if sd < 1e-6: return 2.0 t += sd return 0.0 def circleSDF(x, y, cx, cy, cr): """Return: negative if (x, y) is inside the circle; positive if (x, y) is outside the circle; zero if (x, y) is on the circle """ return math.sqrt((x - cx) * (x - cx) + (y - cy) * (y - cy)) - cr def main(): width, height = 512, 512 img = Image.new('L', (width, height)) pixels = img.load() for h in range(height): for w in range(width): pixels[h, w] = int(min(sample(h / float(height), w / float(width)) * 255.0, 255.0)) img.save("moon2.png") if __name__ == '__main__': main()
2.84375
3
utils/mongodb.py
josemcorderoc/twitterconstituyente
0
12783524
from pymongo.errors import BulkWriteError import logging import time import tqdm import tweepy logging.basicConfig(format='[%(asctime)s] - %(name)s - %(funcName)s - %(levelname)s : %(message)s', level=logging.INFO) log = logging.getLogger(__name__) def bulk_write_to_mongo(collection, data): to_insert = len(data) try: if to_insert > 0: collection.insert_many(data, ordered=False) return to_insert, 0 except BulkWriteError as e: log.error("BulkWriteError") inserted = e.details["nInserted"] return inserted, to_insert - inserted def download_timeline(user_id: str, n: int = 3200, count: int = 200, trim_user=True, tweet_mode="extended", **kwargs): log.info(f'Downloading timeline from user id: {user_id}') start_time = time.time() tweets = [status for status in tqdm.tqdm(tweepy.Cursor( api.user_timeline, user_id=user_id, count=count, trim_user=trim_user, tweet_mode=tweet_mode, **kwargs).items(n), total=n)] total_time = time.time() - start_time log.info(f"Downloaded finished: {len(tweets)} tweets in {total_time:.4f} seconds.") return tweets
2.578125
3
main.py
VIVelev/Flappy-AI
3
12783525
<gh_stars>1-10 import numpy as np from Game.main import Game from NeuroEvolution.Population import Population N_BIRDS = 15 MUTATION_RATE = 0.02 N_WINNERS = 2 pop = Population(N_BIRDS, MUTATION_RATE, n_winners=N_WINNERS) game = Game(pop, n_birds=N_BIRDS) game.run()
2.40625
2
basic/annotationtable.py
ChaitanyaArora/text2image
10
12783526
<reponame>ChaitanyaArora/text2image import os from common import ROOT_PATH def niceName(qid): return '0'if qid[1:-2] == '' else qid[1:-2] def readAnnotations(inputfile, skip_0=True): data = [(str.split(x)[0], int(str.split(x)[1])) for x in open(inputfile).readlines()] names = [x[0] for x in data] labels = [x[1] for x in data] if skip_0: idx = [i for i in range(len(names)) if labels[i] != 0] names = [names[x] for x in idx] labels = [labels[x] for x in idx] return (names, labels) def readAnnotationsFrom(collection, annotationName, concept, skip_0=True, rootpath=ROOT_PATH): annotationfile = os.path.join(rootpath, collection, "Annotations", "Image", annotationName, concept + ".txt") if not os.path.exists(annotationfile): annotationfile = os.path.join(rootpath, collection, "Annotations", "Image", annotationName, niceName(concept), concept + ".txt") return readAnnotations(annotationfile, skip_0) def readConcepts(collection, annotationName, rootpath=ROOT_PATH): conceptfile = os.path.join(rootpath, collection, "Annotations", annotationName) return [x.strip() for x in open(conceptfile).readlines() if x.strip()] def writeConcepts(concepts, resultfile): try: os.makedirs(os.path.split(resultfile)[0]) except Exception, e: #print e pass fout = open(resultfile, "w") fout.write("\n".join(concepts) + "\n") fout.close() def writeConceptsTo(concepts, collection, annotationName, rootpath=ROOT_PATH): resultfile = os.path.join(rootpath, collection, "Annotations", annotationName) writeConcepts(concepts, resultfile) def writeAnnotations(names, labels, resultfile): try: os.makedirs(os.path.split(resultfile)[0]) except: pass fout = open(resultfile, "w") fout.write("".join(["%s %g\n" % (im,lab) for (im,lab) in zip(names,labels)])) fout.close() def writeAnnotationsTo(names, labels, collection, annotationName, concept, rootpath=ROOT_PATH): annotationfile = os.path.join(rootpath, collection, "Annotations", "Image", annotationName, concept + ".txt") writeAnnotations(names, labels, annotationfile) def readQueries(inputfile): data = [ str.split(x, " ", 1) for x in open(inputfile).readlines()] qids = [x[0] for x in data] queries = [x[1].rstrip('\n') for x in data] return (qids, queries) def readQueriesFrom(collection, rootpath=ROOT_PATH): queryfile = os.path.join(rootpath, collection, "Annotations", "qid.text.txt") return readQueries(queryfile)
2.703125
3
src/copy_mechanism/copy_layer.py
Ravi-0809/question-generation
212
12783527
from typing import Callable from tensorflow.python.layers import base from tensorflow.python.eager import context from tensorflow.python.estimator import util as estimator_util from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.layers import utils as layers_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops import variables as tf_variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.layers import base from tensorflow.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import standard_ops from tensorflow.contrib.layers import fully_connected import tensorflow as tf import sys from helpers.misc_utils import debug_tensor, debug_shape from helpers.ops import safe_log FLAGS = tf.app.flags.FLAGS class CopyLayer(base.Layer): """Densely-connected layer class. This layer implements the operation: `outputs = activation(inputs * kernel + bias)` Where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`). Note: if the input to the layer has a rank greater than 2, then it is flattened prior to the initial matrix multiply by `kernel`. Arguments: units: Integer or Long, dimensionality of the output space. activation: Activation function (callable). Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.get_variable`. bias_initializer: Initializer function for the bias. kernel_regularizer: Regularizer function for the weight matrix. bias_regularizer: Regularizer function for the bias. activity_regularizer: Regularizer function for the output. kernel_constraint: An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: An optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Properties: units: Python integer, dimensionality of the output space. activation: Activation function (callable). use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer instance (or name) for the kernel matrix. bias_initializer: Initializer instance (or name) for the bias. kernel_regularizer: Regularizer instance for the kernel matrix (callable) bias_regularizer: Regularizer instance for the bias (callable). activity_regularizer: Regularizer instance for the output (callable) kernel_constraint: Constraint function for the kernel matrix. bias_constraint: Constraint function for the bias. kernel: Weight matrix (TensorFlow variable or tensor). bias: Bias vector, if applicable (TensorFlow variable or tensor). """ def __init__(self, embedding_dim, units, switch_units=64, activation=None, use_bias=False, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, source_provider: Callable[[], tf.Tensor] = None, source_provider_sl: Callable[[], tf.Tensor] = None, condition_encoding: Callable[[], tf.Tensor] = None, output_mask: Callable[[], tf.Tensor] = None, training_mode=False, vocab_size=None, context_as_set=False, max_copy_size=None, mask_oovs=False, **kwargs): super(CopyLayer, self).__init__(trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs) self.vocab_size = vocab_size self.source_provider = source_provider self.source_provider_sl = source_provider_sl self.embedding_dim = embedding_dim self.units = units self.switch_units = switch_units self.activation = activation self.use_bias = use_bias self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.kernel_regularizer = kernel_regularizer self.bias_regularizer = bias_regularizer self.kernel_constraint = kernel_constraint self.bias_constraint = bias_constraint self.input_spec = base.InputSpec(min_ndim=2) self.training_mode=training_mode # self.output_mask=output_mask self.max_copy_size=max_copy_size self.mask_oovs = mask_oovs self.context_as_set=context_as_set self.condition_encoding = condition_encoding def build(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) # print("building copy layer") # print(input_shape) self.built = True def call(self, inputs): inputs = ops.convert_to_tensor(inputs, dtype=self.dtype) # batch x len_source+emb_dim # inputs = debug_shape(inputs, "inputs") # print(inputs) # [batch_size, emb_dim + len_source] in eval, # [len_target, batch_size,emb_dim + len_source] in train source = self.source_provider() # [batch_size, len_source] # source = debug_shape(source,"src") source_sl = self.source_provider_sl() condition_encoding = self.condition_encoding() # condition_encoding = debug_shape(condition_encoding, "cond enc") batch_size = tf.shape(source)[0] len_source = tf.shape(source)[1] shape = tf.shape(inputs) is_eval = len(inputs.get_shape()) == 2 beam_width = tf.constant(1) if is_eval else shape[1] # len_target = tf.Print(len_target, [len_target, batch_size, shape[-1]], "input reshape") # inputs = tf.reshape(inputs, [-1, shape[-1]]) # [len_target * batch_size, len_source + emb_dim] inputs_new = tf.reshape(inputs, [batch_size*beam_width, shape[-1]]) # [len_target, batch_size, len_source + emb_dim] # inputs_new = debug_shape(inputs_new, "inputs_new") # -- [len_target, batch_size, embedding_dim] attention, [] # -- [len_target, batch_size, len_source] alignments # attention, alignments = tf.split(inputs, [self.embedding_dim, -1], axis=1) attention, alignments = tf.split(inputs_new, num_or_size_splits=[self.embedding_dim, -1], axis=-1) # [len_target, batch_size, vocab_size] if FLAGS.out_vocab_cpu: with tf.device('/cpu:*'): shortlist = tf.layers.dense(attention, self.vocab_size, activation=tf.nn.softmax, use_bias=False) else: shortlist = tf.layers.dense(attention, self.vocab_size, activation=tf.nn.softmax, use_bias=False) # attention = debug_shape(attention, "attn") # alignments = debug_shape(alignments, "align ("+str(self.units)+" desired)") # alignments = debug_tensor(alignments, "alignments") # print(alignments) # shortlist = debug_shape(shortlist, "shortlist") # TEMP: kill OOVs s = tf.shape(shortlist) mask = tf.concat([tf.ones((s[0],1)),tf.zeros((s[0],1)),tf.ones((s[0],s[1]-2))], axis=1) shortlist = tf.cond(self.mask_oovs, lambda: shortlist * mask, lambda: shortlist) # pad the alignments to the longest possible source st output vocab is fixed size # TODO: Check for non zero alignments outside the seq length # alignments_padded = debug_shape(alignments_padded, "align padded") # switch takes st, vt and yt−1 as inputs # vt = concat(weighted context encoding at t; condition encoding) # st = hidden state at t # y_t-1 is previous generated token condition_encoding_tiled = tf.contrib.seq2seq.tile_batch(condition_encoding, multiplier=beam_width) vt = tf.concat([attention, condition_encoding_tiled], axis=1) # NOTE: this is missing the previous input y_t-1 and s_t switch_input = tf.concat([vt],axis=1) switch_h1 = tf.layers.dropout(tf.layers.dense(switch_input, self.switch_units, activation=tf.nn.tanh, kernel_initializer=tf.glorot_uniform_initializer()), rate=0.3, training=self.training_mode) switch_h2 = tf.layers.dropout(tf.layers.dense(switch_h1, self.switch_units, activation=tf.nn.tanh, kernel_initializer=tf.glorot_uniform_initializer()), rate=0.3, training=self.training_mode) self.switch = tf.layers.dense(switch_h2, 1, activation=tf.sigmoid, kernel_initializer=tf.glorot_uniform_initializer()) # switch = debug_shape(switch, "switch") if FLAGS.disable_copy: self.switch = 0 elif FLAGS.disable_shortlist: self.switch = 1 # if self.output_mask is not None: # alignments = self.output_mask() * alignments source_tiled = tf.contrib.seq2seq.tile_batch(source, multiplier=beam_width) source_tiled_sl = tf.contrib.seq2seq.tile_batch(source_sl, multiplier=beam_width) shortlist = (1-self.switch)*shortlist alignments = self.switch*alignments # Take any tokens that are the same in either vocab and combine their probabilities # old: mult by a big sparse matrix - not v mem efficient.. # opt1: mult the copy dist by a vocab x copy matrix and add to vocab part # opt2: do an nd_gather to copy the relevant prob mass, then mask carefully to remove it if FLAGS.combine_vocab: # copy everything in real shortlist except special toks # print(len_source, self.max_copy_size) source_tiled_sl_padded = tf.pad(source_tiled_sl, [[0, 0], [0, self.max_copy_size-tf.shape(source_tiled_sl)[-1]]], 'CONSTANT', constant_values=0) # attempt 2! batch_ix = tf.tile(tf.expand_dims(tf.range(batch_size*beam_width),axis=-1),[1,len_source]) # seq_ix = tf.tile(tf.expand_dims(tf.range(len_source),axis=0),[batch_size*beam_width,1]) tgt_indices = tf.reshape(tf.concat([tf.expand_dims(batch_ix,-1),tf.expand_dims(source_tiled_sl,-1)], axis=2),[-1,2]) ident_indices = tf.where(tf.greater(source_tiled_sl, -1)) # get ixs of all elements # ident_indices = tf.where() # tgt_indices = debug_tensor(tgt_indices) # get the copy probs at each point in the source.. updates = tf.reshape(tf.gather_nd(alignments, ident_indices),[-1]) # and send them to the their shortlist index sum_part = tf.scatter_nd(tgt_indices, updates, [batch_size*beam_width, self.vocab_size+self.max_copy_size]) # then zero out the ix's that got copied align_zeroed = alignments * tf.cast(tf.greater_equal(source_tiled_sl,self.vocab_size),tf.float32) align_moved = alignments * tf.cast(tf.less(source_tiled_sl,self.vocab_size),tf.float32) # ie only let through stuff that *isnt* in SL # and add the correct pieces together alignments = align_zeroed shortlist = shortlist + sum_part[:,:self.vocab_size] # result = tf.Print(result, [tf.reduce_sum(result[:,:self.vocab_size],-1)], "result sl sum") # shortlist = tf.Print(shortlist, [tf.reduce_sum(align_moved,-1)], "sum align_moved") # shortlist = tf.Print(shortlist, [tf.reduce_sum(sum_part[:,:self.vocab_size],-1)], "sum sum_part") # convert position probs to ids if self.context_as_set: # print(source) # batch x seq # print(alignments) # batch x seq pos_to_id = tf.one_hot(source_tiled-self.vocab_size, depth=self.max_copy_size) # batch x seq x vocab if FLAGS.maxout_pointer: copy_dist = tf.reduce_max(pos_to_id * tf.expand_dims(alignments, 2), axis=1) else: copy_dist = tf.squeeze(tf.matmul(tf.expand_dims(alignments,1), pos_to_id), axis=1) else: copy_dist=alignments copy_dist_padded = tf.pad(copy_dist, [[0, 0], [0, self.max_copy_size-tf.shape(copy_dist)[-1]]], 'CONSTANT', constant_values=0) result = tf.concat([shortlist,copy_dist_padded], axis=1) # this used to be safe_log'd # if FLAGS.combine_vocab: # result = tf.Print(result, [tf.reduce_sum(result,-1)], "result sum") target_shape = tf.concat([shape[:-1], [-1]], 0) result =tf.reshape(result, target_shape) return result # return tf.Print(result, [tf.reduce_max(switch), tf.reduce_max(shortlist), # tf.reduce_max(alignments)], summarize=10) def compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape) input_shape = input_shape.with_rank_at_least(2) # print(input_shape) if input_shape[-1].value is None: raise ValueError( 'The innermost dimension of input_shape must be defined, but saw: %s' % input_shape) return input_shape[:-1].concatenate(self.units+self.vocab_size if not self.context_as_set else self.vocab_size+self.max_copy_size) # this for older tf versions def _compute_output_shape(self, input_shape): return self.compute_output_shape(input_shape) def dense( inputs, units, activation=None, use_bias=True, kernel_initializer=None, bias_initializer=init_ops.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, reuse=None): """Functional interface for the densely-connected layer. This layer implements the operation: `outputs = activation(inputs.kernel + bias)` Where `activation` is the activation function passed as the `activation` argument (if not `None`), `kernel` is a weights matrix created by the layer, and `bias` is a bias vector created by the layer (only if `use_bias` is `True`). Note: if the `inputs` tensor has a rank greater than 2, then it is flattened prior to the initial matrix multiply by `kernel`. Arguments: inputs: Tensor input. units: Integer or Long, dimensionality of the output space. activation: Activation function (callable). Set it to None to maintain a linear activation. use_bias: Boolean, whether the layer uses a bias. kernel_initializer: Initializer function for the weight matrix. If `None` (default), weights are initialized using the default initializer used by `tf.get_variable`. bias_initializer: Initializer function for the bias. kernel_regularizer: Regularizer function for the weight matrix. bias_regularizer: Regularizer function for the bias. activity_regularizer: Regularizer function for the output. kernel_constraint: An optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: An optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see `tf.Variable`). name: String, the name of the layer. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: Output tensor. Raises: ValueError: if eager execution is enabled. """ layer = CopyLayer(units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint, trainable=trainable, name=name, dtype=inputs.dtype.base_dtype, _scope=name, _reuse=reuse) print("inside copy layer, yaaay!") sys.exit(0) return layer.apply(inputs)
2.265625
2
tests/math/perm_test.py
muhrin/e3nn
1
12783528
import math import pytest from e3nn.math import perm @pytest.mark.parametrize('n', [0, 1, 2, 3, 4, 5]) def test_inverse(n): for p in perm.group(n): ip = perm.inverse(p) assert perm.compose(p, ip) == perm.identity(n) assert perm.compose(ip, p) == perm.identity(n) @pytest.mark.parametrize('n', [0, 1, 2, 3, 4, 5]) def test_int_inverse(n): for j in range(math.factorial(n)): p = perm.from_int(j, n) i = perm.to_int(p) assert i == j @pytest.mark.parametrize('n', [0, 1, 2, 3, 4, 5]) def test_int_injection(n): group = {perm.from_int(j, n) for j in range(math.factorial(n))} assert len(group) == math.factorial(n) def test_germinate(): assert perm.is_group(perm.germinate({(1, 2, 3, 4, 0)})) assert perm.is_group(perm.germinate({(1, 0, 2, 3), (0, 2, 1, 3), (0, 1, 3, 2)})) @pytest.mark.parametrize('n', [0, 1, 2, 3, 4, 5]) def test_rand(n): perm.is_perm(perm.rand(n)) def test_not_group(): assert not perm.is_group(set()) # empty assert not perm.is_group({(1, 0, 2), (0, 2, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}) # missing neutral assert not perm.is_group({(0, 1, 2), (1, 2, 0)}) # missing inverse
2.625
3
north-greenland/Elmer/4a_DIAGNOSTIC/PlotScript.py
ElmerCSC/ElmerIceCourses
0
12783529
<gh_stars>0 from paraview.simple import * import sys sys.path.append('../../Codes/PostProcessing') from ToStreamLine import * from PlotGroundingLine import * """ Simple script to show how to use pvpython to automatise post processing """ StreamLine="../../Data/StreamLine/StreamLine.csv" SaveFile="ResOnStreamLine.csv" vtuFile='MESH_1/RUN1__t0001.vtu' # read vtu file vtu = XMLUnstructuredGridReader(FileName=vtuFile) # Show results renderView1 = GetActiveViewOrCreate('RenderView') renderView1.ViewSize = [600, 600] Display = Show(vtu, renderView1) # set scalar coloring ColorBy(Display, ('POINTS', 'ssavelocity', 'Magnitude')) ssavelocityLUT = GetColorTransferFunction('ssavelocity') ssavelocityLUT.MapControlPointsToLogSpace() ssavelocityLUT.UseLogScale = 1 ssavelocityLUT.RescaleTransferFunction(1.0, 2000.0) ## plot Grounding line edges SetActiveSource(vtu) GLEdges() ## plot Grounding line from flotation SetActiveSource(vtu) GLFlot() ## resample stream Line SetActiveSource(vtu) Resample(StreamLine) ## save resampled SaveResampled(SaveFile) ## Save screenshot # current camera placement for renderView1 renderView1.InteractionMode = '2D' renderView1.CameraPosition = [-249524.47156507644, -1022008.0234601084, 10000.0] renderView1.CameraFocalPoint = [-249524.47156507644, -1022008.0234601084, 0.0] renderView1.CameraParallelScale = 226895.9823084111 SaveScreenshot('map.png') ## make pv 2D plots FlowLinePlot() ## save screenshot layout = GetLayoutByName("FlowLine Layout") SaveScreenshot('Stream.png', layout, SaveAllViews=1)
2.21875
2
2017/day_01/day_01.py
viddrobnic/adventofcode
0
12783530
l = list(map(int, input())) s_1, s_2 = 0, 0 for i in range(len(l)): s_1 += l[i] if l[i] == l[(i + 1) % len(l)] else 0 s_2 += l[i] if l[i] == l[(i + len(l) // 2) % len(l)] else 0 print('Part One: {}\nPart Two: {}'.format(s_1, s_2))
3.3125
3
server/processes/services/schedule_checker.py
CloudReactor/task_manager
0
12783531
from typing import Generic, Optional, TypeVar from abc import ABCMeta, abstractmethod from datetime import datetime, timedelta import logging from crontab import CronTab from dateutil.relativedelta import * from django.db import transaction from django.utils import timezone from processes.common.request_helpers import context_with_request from processes.models import ( Alert, AlertSendStatus, AlertMethod, MissingScheduledExecution, Schedulable ) MIN_DELAY_BETWEEN_EXPECTED_AND_ACTUAL_SECONDS = 300 MAX_EARLY_STARTUP_SECONDS = 60 MAX_STARTUP_SECONDS = 10 * 60 MAX_SCHEDULED_LATENESS_SECONDS = 30 * 60 logger = logging.getLogger(__name__) BoundSchedulable = TypeVar('BoundSchedulable', bound=Schedulable) class ScheduleChecker(Generic[BoundSchedulable], metaclass=ABCMeta): def check_all(self) -> None: model_name = self.model_name() for schedulable in self.manager().filter(enabled=True).exclude(schedule='').all(): logger.info(f"Found {model_name} {schedulable} with schedule {schedulable.schedule}") try: self.check_execution_on_time(schedulable) except Exception: logger.exception(f"check_all() failed on {model_name} {schedulable.uuid}") def check_execution_on_time(self, schedulable: BoundSchedulable) \ -> Optional[MissingScheduledExecution]: model_name = self.model_name() schedule = schedulable.schedule.strip() if not schedule: logger.warning(f"For schedulable entity {schedulable.uuid}, schedule '{schedule}' is blank, skipping") return None mse: Optional[MissingScheduledExecution] = None m = Schedulable.CRON_REGEX.match(schedule) if m: cron_expr = m.group(1) logger.info( f"check_execution_on_time(): {model_name} {schedulable.name} with schedule {schedulable.schedule} has cron expression '{cron_expr}'") try: entry = CronTab(cron_expr) except Exception as ex: logger.exception(f"Can't parse cron expression '{cron_expr}'") raise ex utc_now = timezone.now() negative_previous_execution_seconds_ago = entry.previous( default_utc=True) if negative_previous_execution_seconds_ago is None: logger.info('check_execution_on_time(): No expected previous execution, returning') return None previous_execution_seconds_ago = -(negative_previous_execution_seconds_ago or 0.0) if previous_execution_seconds_ago < MIN_DELAY_BETWEEN_EXPECTED_AND_ACTUAL_SECONDS: logger.info('check_execution_on_time(): Expected previous execution too recent, returning') return None expected_datetime = (utc_now - timedelta(seconds=previous_execution_seconds_ago) + timedelta( microseconds=500000)).replace(microsecond=0) if expected_datetime < schedulable.schedule_updated_at: logger.info( f"check_execution_on_time(): Previous execution expected to start at at {expected_datetime} but that is before the schedule was last updated at {schedulable.schedule_updated_at}") return None logger.info( f"check_execution_on_time(): Previous execution was supposed to start {previous_execution_seconds_ago / 60} minutes ago at {expected_datetime}") with transaction.atomic(): mse = self.check_executed_at(schedulable, expected_datetime) else: m = Schedulable.RATE_REGEX.match(schedule) if m: n = int(m.group(1)) time_unit = m.group(2).lower().rstrip('s') logger.info( f"{model_name} {schedulable.name} with schedule {schedulable.schedule} has rate {n} per {time_unit}") relative_delta = self.make_relative_delta(n, time_unit) utc_now = timezone.now() expected_datetime = utc_now - relative_delta if expected_datetime < schedulable.schedule_updated_at: logger.info( f"check_execution_on_time(): Previous execution expected after {expected_datetime} but that is before the schedule was last updated at {schedulable.schedule_updated_at}") return None logger.info( f"check_execution_on_time(): Previous execution was supposed to start executed after {expected_datetime}") with transaction.atomic(): mse = self.check_executed_after(schedulable, expected_datetime, relative_delta, utc_now) else: raise Exception(f"Schedule '{schedule}' is not a cron or rate expression") if mse: self.send_alerts(mse) return mse def check_executed_at(self, schedulable: BoundSchedulable, expected_datetime: datetime) -> Optional[MissingScheduledExecution]: model_name = self.model_name() mse = self.missing_scheduled_executions_of(schedulable).filter( expected_execution_at=expected_datetime).first() if mse: logger.info( f"check_executed_at(): Found existing matching missing scheduled execution {mse.uuid}, not alerting") return None logger.info('check_executed_at(): No existing matching missing scheduled execution found') pe = self.executions_of(schedulable).filter( started_at__gte=expected_datetime - timedelta(seconds=MAX_EARLY_STARTUP_SECONDS), started_at__lte=expected_datetime + timedelta(seconds=MAX_STARTUP_SECONDS)).first() if pe: logger.info( f"check_execution_on_time(): Found execution of {model_name} {schedulable.uuid} within the expected time window") return None logger.info( f"check_executed_at(): No execution of {model_name} {schedulable.uuid} found within the expected time window") if schedulable.max_concurrency and \ (schedulable.max_concurrency > 0): concurrency = schedulable.concurrency_at(expected_datetime) if concurrency >= schedulable.max_concurrency: logger.info( f"check_executed_at(): {concurrency} concurrent executions of execution of {model_name} {schedulable.uuid} during the expected execution time prevented execution") return None mse = self.make_missing_scheduled_execution(schedulable, expected_datetime) mse.save() return mse def check_executed_after(self, schedulable: BoundSchedulable, expected_datetime: datetime, relative_delta: relativedelta, utc_now: datetime): model_name = self.model_name() mse = self.missing_scheduled_executions_of(schedulable).order_by('-expected_execution_at').first() if mse: next_expected_execution_at = mse.expected_execution_at + relative_delta if next_expected_execution_at >= expected_datetime: logger.info( f"check_executed_after(): Found existing missing scheduled execution {mse.uuid} expected at {mse.expected_execution_at}, next expected at {next_expected_execution_at}, not alerting") return None else: logger.info( f"check_executed_after(): No existing missing scheduled execution instances for {model_name} {schedulable.uuid}") pe = self.executions_of(schedulable).filter( started_at__gte=expected_datetime - timedelta(seconds=MAX_EARLY_STARTUP_SECONDS), started_at__lte=utc_now).first() if pe: logger.info( f"check_executed_after(): Found execution of {model_name} {schedulable.uuid} after the expected time") return None logger.info( f"check_executed_after(): No execution of {model_name} {schedulable.uuid} found after expected time") if schedulable.max_concurrency and \ (schedulable.max_concurrency > 0): concurrency = schedulable.concurrency_at(expected_datetime) if concurrency >= schedulable.max_concurrency: logger.info( f"check_executed_after(): {concurrency} concurrent executions of execution of {model_name} {schedulable.uuid} during the expected execution time prevent execution") return None mse = self.make_missing_scheduled_execution(schedulable, expected_datetime) mse.save() return mse @staticmethod def make_relative_delta(n: int, time_unit: str) -> relativedelta: if time_unit == 'second': return relativedelta(seconds=n) if time_unit == 'minute': return relativedelta(minutes=n) if time_unit == 'hour': return relativedelta(hours=n) if time_unit == 'day': return relativedelta(days=n) if time_unit == 'month': return relativedelta(months=n) if time_unit == 'year': return relativedelta(years=n) raise Exception(f"Unknown time unit '{time_unit}'") def send_alerts(self, mse) -> None: details = self.missing_scheduled_execution_to_details(mse, context_with_request()) for am in mse.schedulable_instance.alert_methods.filter( enabled=True).exclude(error_severity_on_missing_execution='').all(): severity = am.error_severity_on_missing_execution mspea = self.make_missing_execution_alert(mse, am) mspea.save() epoch_minutes = divmod(mse.expected_execution_at.timestamp(), 60)[0] grouping_key = f"missing_scheduled_{self.model_name().replace(' ', '_')}-{mse.schedulable_instance.uuid}-{epoch_minutes}" try: result = am.send(details=details, severity=severity, summary_template=self.alert_summary_template(), grouping_key=grouping_key) mspea.send_result = result mspea.send_status = AlertSendStatus.SUCCEEDED mspea.completed_at = timezone.now() except Exception as ex: logger.exception(f"Failed to send alert for missing execution of {mse.schedulable_instance.uuid}") mspea.send_status = AlertSendStatus.FAILED mspea.error_message = str(ex)[:Alert.MAX_ERROR_MESSAGE_LENGTH] mspea.save() @abstractmethod def model_name(self) -> str: pass @abstractmethod def manager(self): pass @abstractmethod def missing_scheduled_executions_of(self, schedulable: BoundSchedulable): pass @abstractmethod def executions_of(self, schedulable: BoundSchedulable): pass @abstractmethod def make_missing_scheduled_execution(self, schedulable: BoundSchedulable, expected_execution_at: datetime) -> MissingScheduledExecution: pass @abstractmethod def missing_scheduled_execution_to_details(self, mse: MissingScheduledExecution, context) -> dict: pass @abstractmethod def make_missing_execution_alert(self, mse: MissingScheduledExecution, alert_method: AlertMethod) -> Alert: pass @abstractmethod def alert_summary_template(self) -> str: pass
2.203125
2
e1.5/boot.py
vwallen/hcde539-a2020
0
12783532
<gh_stars>0 import board import digitalio import storage import os # Make the file system writable # Via: https://learn.adafruit.com/circuitpython-essentials/circuitpython-storage # If the switch pin is connected to ground CircuitPython can write to the drive # Also used this to re-enable writing after a bad boot.py edit: # https://learn.adafruit.com/cpu-temperature-logging-with-circuit-python/writing-to-the-filesystem switch = digitalio.DigitalInOut(board.D7) switch.direction = digitalio.Direction.INPUT switch.pull = digitalio.Pull.UP # This allows both the host system and python to write to the file system # This is "dangerous" for unspecified reasons, so let's jump the canyon storage.remount("/", readonly=False, disable_concurrent_write_protection=True)
3.15625
3
script/env_sds_ddpg_cont.py
cyberphantom/Selfie-Drone-Stick
2
12783533
<filename>script/env_sds_ddpg_cont.py #!/usr/bin/env python import time import numpy as np import pandas import rospy import tf import cv2, os from cv_bridge import CvBridge, CvBridgeError from geometry_msgs.msg import Twist, Vector3Stamped, Pose, PoseWithCovarianceStamped from sensor_msgs.msg import CompressedImage, Image from gazebo_msgs.srv import SetModelState from gazebo_msgs.msg import ModelState from hector_uav_msgs.msg import Altimeter from sensor_msgs.msg import Imu from std_msgs.msg import Empty from std_msgs.msg import String import gym from gym import utils, spaces from gym.utils import seeding from gym.envs.registration import register from lib.gazebo_connection import GazeboConnection from face_human_detection_tracking_agent.dunet.droset_person_od import person_detector from lib.helper import * from lib.sds_cmd import cmdVel import math reg = register( id='sds_ddpg_cont-v0', entry_point='env_sds_ddpg_cont:envi', # timestep_limit=100, ) class envi(gym.Env): def __init__(self): # Gazebo self.g_set_state = rospy.ServiceProxy("/gazebo/set_model_state", SetModelState) # Publishing Nodes must be initialized before the environment self.takeoff_pub = rospy.Publisher('/drone/takeoff', Empty, queue_size=0) self.vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5) self.obs_pos = rospy.Publisher('/obs/pos', Pose, queue_size=5, latch=True) self.pos_pub = rospy.Publisher("/initialpose", PoseWithCovarianceStamped, latch=True) # comment in training self.sds_pub = rospy.Publisher("/sds/image_raw", Image, queue_size=10) # Get env. parameters from th yaml file self.max_alt = rospy.get_param("/alt_TH/max") self.min_alt = rospy.get_param("/alt_TH/min") self.yawMin = rospy.get_param("/yaw_TH/min") self.yawMax = rospy.get_param("/yaw_TH/max") self.ratioMin = rospy.get_param("/ratio_TH/min") self.ratioMax = rospy.get_param("/ratio_TH/max") self.f_W = rospy.get_param("/input_frame_size/w") self.f_H = rospy.get_param("/input_frame_size/h") self.step_dur = rospy.get_param("/step_duration") self.fail_sec_detect_TH = rospy.get_param("/failed_sec_detect_TH") self.steps_TH = rospy.get_param("/stepsTH") self.nactions = rospy.get_param("/nactions") #self.initPose.orientation.w = rospy.get_param('/init_state/ow') self.initPose = Pose() # Desired position based on the target that specified by the phone self.g_yaw = None self.g_cx = None self.g_cy = None self.g_ratio = None # Carfully discritize the drone world self.div_yaw = ((abs(self.yawMax) + abs(self.yawMin))/ 0.39) self.div_w = ((self.f_W+80) / 80) self.div_h = ((self.f_H+60) / 60) self.div_ratio = (self.ratioMax + self.ratioMin)/ 0.04 # Descretize the states (observations) # The no. of state is so huge so in order to simplify the situation, we discretize # the space to: [13, 17, 13, 9] bins self.yaw_bins = pandas.cut([self.yawMin, self.yawMax], bins=self.div_yaw, retbins=True)[1] # 8 bins self.cx_bins = pandas.cut([-40, 680], bins=self.div_w, retbins=True)[1][1:-1] # 8 bins self.cy_bins = pandas.cut([-30, 390], bins=self.div_h, retbins=True)[1][1:-1] # 6 bins self.ratio_bins = pandas.cut([self.ratioMin, self.ratioMax], bins=self.div_ratio, retbins=True)[1] # 7 bins # In __init__ we establish a connection to gazebo self.gazebo = GazeboConnection() self.bridge = CvBridge() self.dunet = person_detector() self.action_space = spaces.Discrete(self.nactions) #self._seed() self.rate = rospy.Rate(10) # 10Hz = 1/10 = 0.1 sec or 10 times/s self.drone_status = None # Reset observation and reward variables self.failure_detect_Count = 0 self.reset_bined_obs = [] self.stepCount = 0 self.reward = 0 self.drone_shot = 0 self.drone_shot_count = 0 self.done = False self.end = False self.bbx, self.imu, self.drone_yaw = [], None, None self.img, self.box_ratio, self.box_centroid = None, None, None self.bined_obs, self.prev_bined_obs, self.distXY, self.prev_distXY = [], [], None, None self.x1, self.x2, self.y1, self.y2 = None, None, None, None def _reset(self): # Reset observation and reward variables self.box_ratio, self.box_centroid = None, None self.reset_bined_obs = [] self.failure_detect_Count = 0 self.stepCount = 0 self.drone_shot_count = 0 self.reward = 0 self.done = False self.end = False #tar_pos = [[5, 6, 4, 2], [4, 4, 4, 2], [3, 2, 4, 3]] tar_pos = [[5, 6, 4, 2], [3, 2, 4, 3]] target = random.randint(0, 1) # Don't forget to change here self.bined_goal = tar_pos[target] # Reset every step too! self.bbx, self.drone_yaw = [], None self.box_ratio, self.box_centroid = None, None self.bined_obs, self.prev_bined_obs, self.distXY, self.prev_dist = [], [], None, None self.x1, self.x2, self.y1, self.y2 = None, None, None, None # Corrected: Takeff only happens once if self.drone_status is None: while (self.takeoff_pub.get_num_connections() != 0): try: self.takeoff_sequence() self.drone_status = "tookoff" rospy.loginfo("Taking off completed") break except: rospy.loginfo("No subscribers to Takeoff yet, so we wait and try again") else: self.reset_pos() self.send_up_cmd() while len(self.reset_bined_obs) == 0: try: self.reset_bined_obs = self.observe() self.reset_bined_obs = self.observe() except: rospy.loginfo("Getting observation again!") return self.reset_bined_obs+self.bined_goal def _step(self, action): self.stepCount += 1 self.reward = 0.0 # Reset every step self.bbx, self.imu, self.drone_yaw = [], None, None self.img, self.box_ratio, self.box_centroid = None, None, None obs_count = 0 cmd_vel = cmdVel(action, self.drone_speed) self.prev_bined_obs = self.bined_obs self.vel_pub.publish(cmd_vel) self.vel_pub.publish(cmd_vel) time.sleep(0.2) self.vel_pub.publish(cmdVel(0, 1)) self.vel_pub.publish(cmdVel(0, 1)) time.sleep(0.1) #time.sleep(self.step_dur) self.bined_obs = [] self.x1, self.x2, self.y1, self.y2 = None, None, None, None while len(self.bined_obs) == 0 and obs_count <= self.fail_sec_detect_TH: try: self.bined_obs = self.observe() obs_count += 1 except: rospy.loginfo("Getting observation again - Step!") # Get the reward and see if we reach the goal self.reward_function() return self.bined_obs+self.bined_goal, self.reward, self.done, [self.drone_shot, self.end] def reward_function(self): goal_reward = 1 # points fail_reward = 1 # points if len(self.bined_obs) != 0 or len(self.prev_bined_obs) != 0: if len(self.bined_obs) == 0: print("previous", self.prev_bined_obs, "current", self.bined_obs) #self.bined_obs = self.prev_bined_obs self.reward = -1.0 #self.done = True self.end = True if self.x1 < 5 or self.y1 < 5 or self.x2 > 635 or self.y2 > 355: self.reward = -1.0 # self.done = True self.end = True else: # if self.stepCount <= self.steps_TH: diff0 = abs(self.bined_goal[0] - self.bined_obs[0]) diff1 = abs(self.bined_goal[1] - self.bined_obs[1]) diff2 = abs(self.bined_goal[2] - self.bined_obs[2]) diff3 = abs(self.bined_goal[3] - self.bined_obs[3]) # self.reward = -(((float(diff0) / 8.0) + (float(diff1) / 8.0) + (float(diff2) / 6.0) + # (float(diff3) / 7.0)) / 4.0) if diff0 > 1: self.reward -= ((float(diff0) * 21.0) / 168.0) / 4.0 elif diff0 == 1: self.reward += 0.0 elif diff0 == 0: self.reward += 0.1 if diff1 > 1: self.reward -= ((float(diff1) * 21.0) / 168.0) / 4.0 elif diff1 == 1: self.reward += 0.0 elif diff1 == 0: self.reward += 0.1 if diff2 > 1: self.reward -= ((float(diff2) * 28.0) / 168.0) / 4.0 elif diff2 == 1: self.reward += 0.0 elif diff2 == 0: self.reward += 0.1 if diff3 > 1: self.reward -= ((float(diff3) * 24.0) / 168.0) / 4.0 elif diff3 == 1: self.reward += 0.0 elif diff3 == 0: self.reward += 0.1 if diff0 == 0 and diff1 == 0 and diff2 == 0 and diff3 == 0: self.reward = 1.0 self.drone_shot += 1 # self.drone_shot_count += 1 # if self.drone_shot_count == 2: self.done = True # if self.stepCount == self.steps_TH: # self.done = True # return observation either [] or [Drone_Yaw, bbx_centroid.x, bbx_centroid.y, bbx_ratio] def observe(self): self.imu = None while self.imu is None: try: self.imu = rospy.wait_for_message('/drone/imu', Imu, timeout=5) self.drone_yaw = self.process_imu() except: rospy.loginfo("Current drone Imu is not ready yet, retrying for getting phone IMU") self.img = None while self.img is None: try: self.img = rospy.wait_for_message('/drone/front_camera/image_raw', Image, timeout=1) except: rospy.loginfo("Current drone Image is not ready yet") if self.img is not None: frame = self.bridge.imgmsg_to_cv2(self.img, "bgr8") ready_image = frame.copy() self.bbx = self.dunet.run_detect(ready_image) if len(self.bbx) !=0: self.box_ratio, self.box_centroid, self.x1, self.y1, self.x2, self.y2 = bounding_box_DUNET(self.f_W, self.f_H, self.bbx) '''[Drone_Yaw, bbx_centroid.x, bbx_centroid.y, bbx_ratio]''' obs = [self.drone_yaw, self.box_centroid[0], self.box_centroid[1], self.box_ratio] self.bined_obs = [self.to_bin(obs[0], self.yaw_bins), self.to_bin(obs[1], self.cx_bins), self.to_bin(obs[2], self.cy_bins), self.to_bin(obs[3], self.ratio_bins)] else: self.bined_obs = [] return self.bined_obs def takeoff_sequence(self, seconds_taking_off=1.0): # Before taking off, make sure that cmd_vel is not null to avoid drifts. self.vel_pub.publish(cmdVel(0, 1)) self.takeoff_pub.publish(Empty()) time.sleep(seconds_taking_off) def process_imu(self): if self.imu is not None: euler = tf.transformations.euler_from_quaternion( [self.imu.orientation.x, self.imu.orientation.y, self.imu.orientation.z, self.imu.orientation.w] ) # roll = euler[0] # pitch = euler[1] yaw = euler[2] return yaw # Arange Value based on bins: return indices def to_bin(self, value, bins): return np.digitize(x=[value], bins=bins)[0] # Random Number Generator, used by the learning algorithm when generating random actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] # Go up and wait for 1 sec def send_up_cmd(self): self.vel_pub.publish(cmdVel(5, 1)) # 5 time.sleep(0.8) self.vel_pub.publish(cmdVel(0, 1)) time.sleep(0.5) # Reset position def reset_pos(self): state = ModelState() state.model_name = "sjtu_drone" # Define Initial position for _reset # init_pos = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-1.4, -2.9, 0.0, 0.0, 0.0, 0.0], [-1.65, 1.8, 0.0, 0.0, 0.0, 0.0]] init_pos = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] # p = random.randint(0, 2) self.initPose.position.x = init_pos[0] self.initPose.position.y = init_pos[1] self.initPose.position.z = init_pos[2] self.initPose.orientation.x = init_pos[3] self.initPose.orientation.y = init_pos[4] self.initPose.orientation.z = init_pos[5] self.initPose.orientation.w = 0.0 state.pose = self.initPose ret = self.g_set_state(state) loc = PoseWithCovarianceStamped() loc.pose.pose = self.initPose loc.header.frame_id = "/map" self.pos_pub.publish(loc) self.pos_pub.publish(loc) self.pos_pub.publish(loc)
1.820313
2
anypubsub/backends/memory.py
smarzola/anypubsub
6
12783534
<filename>anypubsub/backends/memory.py from collections import defaultdict from anypubsub.interfaces import PubSub, Subscriber from six.moves.queue import Queue from weakref import WeakSet class MemorySubscriber(Subscriber): def __init__(self, queue_factory): self.messages = queue_factory(maxsize=0) def __iter__(self): return self def next(self): return self.messages.get(block=True, timeout=None) __next__ = next # PY3 def put(self, message): self.messages.put_nowait(message) class MemoryPubSub(PubSub): def __init__(self, queue_factory=Queue): self.subscribers = defaultdict(WeakSet) self.queue_factory = queue_factory def publish(self, channel, message): subscribers = self.subscribers[channel] for subscriber in subscribers: subscriber.put(message) return len(subscribers) def subscribe(self, *channels): subscriber = MemorySubscriber(self.queue_factory) for channel in channels: self.subscribers[channel].add(subscriber) return subscriber backend = MemoryPubSub
2.453125
2
LED-control/software/scripts/setoff.py
jeremywrnr/life-of-the-party
1
12783535
import liblo import time addresses = [liblo.Address("192.168.1.3","2222"),liblo.Address("192.168.1.4","2222"),liblo.Address("192.168.1.5","2222"),liblo.Address("192.168.1.6","2222"),liblo.Address("192.168.1.7","2222"),liblo.Address("192.168.1.8","2222"),liblo.Address("192.168.1.9","2222"),liblo.Address("192.168.1.10","2222"),liblo.Address("192.168.1.11","2222"),liblo.Address("192.168.1.12","2222"),liblo.Address("192.168.1.13","2222"),liblo.Address("192.168.1.14","2222"),liblo.Address("192.168.1.15","2222"),liblo.Address("192.168.1.16","2222"),liblo.Address("192.168.1.17","2222")] r=0 g=0 b=0 for address in addresses: liblo.send(address,'22',('f', r),('f', g),('f', b))
2.09375
2
tests/utils/utils.py
bossjones/ultron8
0
12783536
<reponame>bossjones/ultron8<gh_stars>0 import logging import random import string from typing import Dict import requests from requests.models import Response from sqlalchemy.orm import Session from starlette.testclient import TestClient from ultron8.api import settings logger = logging.getLogger(__name__) def random_lower_string() -> str: return "".join(random.choices(string.ascii_lowercase, k=32)) def random_email() -> str: return f"{random_lower_string()}@{random_lower_string()}.com" def get_server_api() -> str: server_name = f"http://{settings.SERVER_NAME}" logger.debug("server_name: '%s'", server_name) return server_name def get_server_api_with_version() -> str: """Return url w/ api versioning in it. eg. http://localhost:11267/v1 Returns: str -- url in string format """ server_name = f"http://{settings.SERVER_NAME}{settings.API_V1_STR}" logger.debug("server_name: '%s'", server_name) return server_name def get_superuser_jwt_request() -> Response: server_api = get_server_api() login_data = { "username": settings.FIRST_SUPERUSER, "password": <PASSWORD>.FIRST_<PASSWORD>, } r = requests.post( f"{server_api}{settings.API_V1_STR}/login/access-token", data=login_data ) return r def get_superuser_token_headers() -> Dict[str, str]: r = get_superuser_jwt_request() tokens = r.json() a_token = tokens["access_token"] headers = {"Authorization": f"Bearer {a_token}"} # superuser_token_headers = headers return headers superuser_credentials = [ settings.FIRST_SUPERUSER.encode(), settings.FIRST_SUPERUSER_PASSWORD.encode(), ] # TODO: Figure out if we want to use this or not def get_superuser_token_headers2(client: TestClient) -> Dict[str, str]: """Does basically the same as get_superuser_token_headers() only this time it uses the starlette TestClient Arguments: client {TestClient} -- [description] Returns: Dict[str, str] -- [description] """ login_data = { "username": settings.FIRST_SUPERUSER, "password": settings.FIRST_SUPERUSER_PASSWORD, } r = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) tokens = r.json() a_token = tokens["access_token"] headers = {"Authorization": f"Bearer {a_token}"} return headers
2.34375
2
src/v1/views.py
Diaga/Spekit_Tech_Project
0
12783537
<reponame>Diaga/Spekit_Tech_Project from rest_framework.viewsets import GenericViewSet, mixins from . import models from . import serializers from . import filters class TopicViewSet(GenericViewSet, mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin): queryset = models.Topic.objects.all() serializer_class = serializers.TopicSerializer class FolderViewSet(GenericViewSet, mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin): queryset = models.Folder.objects.all() serializer_class = serializers.FolderSerializer filterset_class = filters.FolderFilter class DocumentViewSet(GenericViewSet, mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.ListModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin): queryset = models.Document.objects.all() serializer_class = serializers.DocumentSerializer filterset_class = filters.DocumentFilter class FolderTopicViewSet(GenericViewSet, mixins.CreateModelMixin, mixins.DestroyModelMixin): queryset = models.FolderTopic.objects.all() serializer_class = serializers.FolderTopicSerializer class DocumentTopicViewSet(GenericViewSet, mixins.CreateModelMixin, mixins.DestroyModelMixin): queryset = models.DocumentTopic.objects.all() serializer_class = serializers.DocumentTopicSerializer
1.96875
2
src/datasets/dataset_student.py
oscareriksson/FedML-master-thesis
0
12783538
<filename>src/datasets/dataset_student.py from torch.utils.data import Dataset class StudentData(Dataset): def __init__(self, dataset): self.dataset = dataset def __getitem__(self, index): if isinstance(index, list): data, _ = self.dataset[[i for i in index]] else: data, _ = self.dataset[index] return data, index def __len__(self): """Total number of samples""" return len(self.dataset)
3
3
shfl/differential_privacy/probability_distribution.py
joarreg/Sherpa.ai-Federated-Learning-Framework
2
12783539
import numpy as np import abc class ProbabilityDistribution(abc.ABC): """ Class representing the interface for a probability distribution """ @abc.abstractmethod def sample(self, size): """ This method must return an array with length "size", sampling the distribution # Arguments: size: Size of the sampling """ class NormalDistribution(ProbabilityDistribution): """ Implements Normal Distribution # Arguments: mean: Mean of the normal distribution. std: Standard deviation of the normal distribution """ def __init__(self, mean, std): self._mean = mean self._std = std def sample(self, size): """ This method provides a sample of the given size of a gaussian distributions # Arguments: size: size of the sample # Returns: Sample of a gaussian distribution of a given size """ return np.random.normal(self._mean, self._std, size) class GaussianMixture(ProbabilityDistribution): """ Implements the combination of Normal Distributions # Arguments: params: Array of arrays with mean and std for every gaussian distribution. weights: Array of weights for every distribution with sum 1. # Example: ```python # Parameters for two Gaussian mu_M = 178 mu_F = 162 sigma_M = 7 sigma_F = 7 # Parameters norm_params = np.array([[mu_M, sigma_M], [mu_F, sigma_F]]) weights = np.ones(2) / 2.0 # Creating combination of gaussian distribution = GaussianMixture(norm_params, weights) ``` """ def __init__(self, params, weights): self._gaussian_distributions = [] for param in params: self._gaussian_distributions.append(NormalDistribution(param[0], param[1])) self._weights = weights def sample(self, size): """ This method provides a sample of the given size of a mixture of gaussian distributions # Arguments: size: size of the sample # Returns: Sample of a mixture of gaussian distributions of a given size """ mixture_idx = np.random.choice(len(self._weights), size=size, replace=True, p=self._weights) values = [] for i in mixture_idx: gaussian_distributions = self._gaussian_distributions[i] values.append(gaussian_distributions.sample(1)) return np.fromiter(values, dtype=np.float64)
3.890625
4
service/user_service.py
LianGee/galio
8
12783540
<filename>service/user_service.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @File : user_service.py # @Author: zaoshu # @Date : 2020-02-10 # @Desc : import json from common.exception import ServerException from model.user import User class UserService: @classmethod def get_user_from_cas_resp(cls, response) -> User: resp = json.loads(response.text).get('serviceResponse') if resp.get('authenticationFailure'): raise ServerException(msg=f"{resp.get('authenticationFailure').get('description')}") else: attributes = resp.get('authenticationSuccess').get('attributes') return User( **attributes.get('user') )
2.453125
2
core/app/models/point.py
bitreport-org/Bitreport
3
12783541
<reponame>bitreport-org/Bitreport class Point: info = None def __init__(self, x, y): self.x = x self.y = y def __repr__(self): return f"Point({self.x}, {self.y}), {self.info}" def __eq__(self, other): return (self.x == other.x) and (self.y == other.y) def __hash__(self): return hash((self.x, self.y)) def add_info(self, info: str): self.info = info
3.046875
3
GoogleAppEngine_Side/main.py
nickolyamba/android-chem-app
0
12783542
<filename>GoogleAppEngine_Side/main.py import webapp2 from google.appengine.api import oauth config = {'Root':'default'} app = webapp2.WSGIApplication([ ('/supplier', 'supplier.Supplier'), ('/chemical', 'chemical.Chemical'), ('/solution', 'solution.Solution'), ('/signin', 'signin.GetToken'), ], debug=True) # Source: lecture + reading # https://webapp-improved.appspot.com/guide/routing.html#guide-routing # [0-9]+ matches one or more digits, /? matches 0 or 1 '/' # : is given after name, <> place for regex app.router.add(webapp2.Route(r'/supplier/<id:[0-9]+>', 'supplier.Supplier')) app.router.add(webapp2.Route(r'/supplier/<id:[a-zA-Z-]*>', 'supplier.SupplierSearch')) #app.router.add(webapp2.Route(r'/supplier/search', 'supplier.SupplierSearch')) app.router.add(webapp2.Route(r'/chemical/<cid:[a-zA-Z0-9]*><:/+><:[a-zA-Z]*><:/*><sid:[a-zA-Z0-9]*>', 'chemical.ChemicalSupplier')) app.router.add(webapp2.Route(r'/chemical/<cid:[a-zA-Z0-9]+>', 'chemical.EditDeleteChem')) app.router.add(webapp2.Route(r'/solution/<id:[0-9]+>', 'solution.Solution'))
2.765625
3
morphodynamics/landscapes/analysis/save_ims.py
hcbiophys/morphodynamics
1
12783543
import tensorflow as tf import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import copy from morphodynamics.landscapes.utils import get_meshgrid from morphodynamics.landscapes.analysis.get_fields import * from morphodynamics.landscapes.analysis.sde_forward import * class Save_Ims(): """ Save losses during training and the potential as an array """ def __init__(self, model, save_dir): """ - model: this is the physics-informed neural network (PINN) - save_dir: where to save the plot and potential to """ self.model = model self.save_dir = save_dir x_test, y_test = get_meshgrid(model.xlims, model.ylims, model.dims, flatBool = True) self.x_test , self.y_test = tf.convert_to_tensor(x_test), tf.convert_to_tensor(y_test) self.fig = plt.figure(figsize = (30, 20)) self.gs = gridspec.GridSpec(nrows = 15, ncols = 17) def __call__(self): self._plot_losses() self._plot_pdfs_getUandD() self._plot_and_save_U() #plt.savefig(self.save_dir + 'View_{}_{}.png'.format(self.model.save_append, self.model.idx_save)) #plt.close() def _setup_ax(self, ax): ax.set_aspect('equal', adjustable = 'box') ax.set_xlim(self.model.xlims) ax.set_ylim(self.model.ylims) def _plot_losses(self): """ Plot how each of the loss terms changes in time """ ax = self.fig.add_subplot(self.gs[2:5, :7]) losses = [self.model.data_losses, self.model.BC_losses, self.model.pde_losses, self.model.total_losses, self.model.norm_losses] labels = ['pdf', 'BC', 'pde', 'total', 'norm'] zipped = zip(losses, labels) for loss_list, label in zipped: ax.plot(np.log10(loss_list), label = label) ax.legend() def _plot_pdfs_getUandD(self): """ Run inference to get the pdf, potential (U) and diffusivity (D) """ p_max = 0 D_max = 0 for idx_t, test_time in enumerate(np.linspace(self.model.tlims[0], self.model.tlims[1], 7)): # test for a range of unseen times t_test = np.tile(np.array([test_time]), (self.x_test.shape[0], 1)) t_test = tf.convert_to_tensor(t_test) xyt_test = tf.concat((self.x_test, self.y_test, t_test), axis = 1) p_out, D_out, U_out = self.model.predict(xyt_test) D_out = D_out.numpy() p_max = max(p_max, np.max(p_out)) D_max = max(D_max, np.max(D_out)) for idx_t, test_time in enumerate(np.linspace(self.model.tlims[0], self.model.tlims[1], 7)): # test for a range of unseen times t_test = np.tile(np.array([test_time]), (self.x_test.shape[0], 1)) t_test = tf.convert_to_tensor(t_test) xyt_test = tf.concat((self.x_test, self.y_test, t_test), axis = 1) p_out, D_out, U_out = self.model.predict(xyt_test) p_out = p_out.numpy() D_out = D_out.numpy() U_out = U_out.numpy() ax_p = self.fig.add_subplot(self.gs[6, idx_t]) p_out[p_out<1e-7] = np.nan ax_p.scatter(self.x_test, self.y_test, c = np.log10(p_out), vmin = -7, vmax = max(np.log10(p_max), -7)) self._setup_ax(ax_p) ax_D = self.fig.add_subplot(self.gs[6, 8+idx_t]) ax_D.scatter(self.x_test, self.y_test, c = D_out, vmin = 0, vmax = D_max) self._setup_ax(ax_D) for idx_t, arr in enumerate(self.model.pdf_list): ax = self.fig.add_subplot(self.gs[14, idx_t]) to_log = copy.deepcopy(arr) to_log[to_log<1e-7] = np.nan ax.imshow(np.log10(to_log.reshape((200, 200))[::-1, :])) self.U_out = U_out def _plot_and_save_U(self): """ Plot and save the potential as an array """ U = np.reshape(self.U_out, (self.model.dims, self.model.dims)) path = self.save_dir + 'potential.pickle' dump_pickle(U, path) ax = self.fig.add_subplot(self.gs[:4, 10:14]) gx, gy = np.gradient(U) ax.imshow(np.log10(np.sqrt(gx**2 + gy**2))[::-1, :]) ax.set_aspect('equal', adjustable = 'box')
2.21875
2
nso/test_api.py
caputomarcos/network-programmability-stream
120
12783544
<reponame>caputomarcos/network-programmability-stream #!/usr/bin/env python3 import ncs from ncs.maagic import Root from typing import Iterator, Tuple NSO_USERNAME = 'admin' NSO_CONTEXT = 'python' # NSO_GROUPS = ['ncsadmin'] def get_device_name(nso: Root) -> Iterator[Tuple[str, str]]: for device in nso.devices.device: # print device.config.ios__cached_show.version.model breakpoint() yield (device.name, device.ios__cached_show.version.model) def main() -> None: with ncs.maapi.single_read_trans(NSO_USERNAME, NSO_CONTEXT) as transaction: nso = ncs.maagic.get_root(transaction) devices = nso.devices.device # print(devices["isp1-pe1"].config.ios__ntp.server.peer_list) # breakpoint() for device in devices: device.config.ios__ntp.server.peer_list.append({"name": "192.168.3.11"}) # device.config.ios__ntp.server.ip = "192.168.3.11" # print(device.name) # print(device.config.ios__ntp) # print(device.config.ios__cached_show.version) transaction.apply() if __name__ == '__main__': main()
2.0625
2
test/test_macro/test_system_macro.py
takahish/lispy
4
12783545
# Copyright 2019 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import unittest from clispy.macro.system_macro import * from clispy.package import PackageManager from clispy.parser import Parser class SystemMacroUnitTestCase(unittest.TestCase): def testSystemMacro(self): # Makes an instance of SystemMacro. macro = SystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO SYSTEM-MACRO \{[0-9A-Z]+\}>") class BlockSystemMacroUnitTestCase(unittest.TestCase): def testBlockSystemMacro(self): # Makes an instance of BlockSystemMacro. macro = BlockSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO BLOCK \{[0-9A-Z]+\}>") def testBlockSystemMacro_call(self): # Makes an instance of BlockSystemMacro. macro = BlockSystemMacro() # Checks official representation. forms = Parser.parse('(NAME (+ 1 2 3))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(BLOCK NAME (PROGN (+ 1 2 3)))') class FletSystemMacroUnitTestCase(unittest.TestCase): def testFletSystemMacro(self): # Makes an instance of FletSystemMacro. macro = FletSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO FLET \{[0-9A-Z]+\}>") def testFletSystemMacro_call(self): # Makes an instance of FletSystemMacro. macro = FletSystemMacro() # Checks official representation. forms = Parser.parse('(((TEST (X) (* X X X))) (TEST 10))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(FLET ((TEST (X) (* X X X))) (PROGN (TEST 10)))') class IfSystemMacroUnitTestCase(unittest.TestCase): def testIfSystemMacro(self): # Makes an instance of IfSystemMacro. macro = IfSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO IF \{[0-9A-Z]+\}>") def testIfSystemMacro_call(self): # Makes an instance of IfSystemMacro. macro = IfSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO IF \{[0-9A-Z]+\}>") # Checks official representation. forms = Parser.parse('((= 1 2) 3)') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(IF (= 1 2) 3 NIL)') class LabelsSystemMacroUnitTestCase(unittest.TestCase): def testLabelsSystemMacro(self): # Makes an instance of LabelsSystemMacro. macro = LabelsSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO LABELS \{[0-9A-Z]+\}>") def testLabelsSystemMacro_call(self): # Makes an instance of LabelsSystemMacro. macro = LabelsSystemMacro() # Checks official representation. forms = Parser.parse('(((TEST (X) (* X X X))) (TEST 10))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(LABELS ((TEST (X) (* X X X))) (PROGN (TEST 10)))') class LetSystemMacroUnitTestCase(unittest.TestCase): def testLetSystemMacro(self): # Makes an instance of LetSystemMacro. macro = LetSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO LET \{[0-9A-Z]+\}>") def testLetSystemMacro_call(self): # Makes an instance of LetSystemMacro. macro = LetSystemMacro() # Checks official representation. forms = Parser.parse('(((TEST 10)) (CONS TEST NIL))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(LET ((TEST 10)) (PROGN (CONS TEST NIL)))') class LetAsterSystemMacroUnitTestCase(unittest.TestCase): def testLetAsterSystemMacro(self): # Makes an instance of LetAsterSystemMacro. macro = LetAsterSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO LET\* \{[0-9A-Z]+\}>") def testLetAsterSystemMacro_call(self): # Makes an instance of LetAsterSystemMacro. macro = LetAsterSystemMacro() # Checks official representation. forms = Parser.parse('(((TEST 10)) (CONS TEST NIL))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(LET* ((TEST 10)) (PROGN (CONS TEST NIL)))') class QuoteSystemMacroUnitTestCase(unittest.TestCase): def testQuoteSystemMacro(self): # Makes an instance of QuoteSystemMacro. macro = QuoteSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO QUOTE \{[0-9A-Z]+\}>") def testQuoteSystemMacro_call(self): # Makes an instance of QuoteSystemMacro. macro = QuoteSystemMacro() # Checks official representation. forms = Parser.parse('(A)') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(QUOTE A)') class LambdaSystemMacroUnitTestCase(unittest.TestCase): def testLambdaSystemMacro(self): # Makes an instance of LambdaSystemMacro. macro = LambdaSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO LAMBDA \{[0-9A-Z]+\}>") def testLambdaSystemMacro_call(self): # Makes an instance of LambdaSystemMacro. macro = LambdaSystemMacro() # Checks official representation. forms = Parser.parse('((X) (* X X X))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(LAMBDA (X) (PROGN (* X X X)))') class DefunSystemMacroUnitTestCase(unittest.TestCase): def testDefunSystemMacro(self): # Makes an instance of DefunSystemMacro. macro = DefunSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO DEFUN \{[0-9A-Z]+\}>") def testDefunSystemMacro_call(self): # Makes an instance of DefunSystemMacro. macro = DefunSystemMacro() # Checks official representation. forms = Parser.parse('(NAME (X) (* X X X))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(DEFUN NAME (X) (BLOCK NAME (PROGN (* X X X))))') class DefmacroSystemMacroUnitTestCase(unittest.TestCase): def testDefmacroSystemMacro(self): # Makes an instance of DefmacroSystemMacro. macro = DefmacroSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO DEFMACRO \{[0-9A-Z]+\}>") def testDefmacroSystemMacro_call(self): # Makes an instance of DefunSystemMacro. macro = DefmacroSystemMacro() # Checks official representation. forms = Parser.parse('(NAME (X) (* X X X))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(DEFMACRO NAME (X) (BLOCK NAME (PROGN (* X X X))))') class BackquoteSystemMacroUnitTestCase(unittest.TestCase): def testBackquoteSystemMacro(self): # Makes an instance of BackquoteSystemMacro. macro = BackquoteSystemMacro() # Checks official representation. self.assertRegex(str(macro), r"#<SYSTEM-MACRO BACKQUOTE \{[0-9A-Z]+\}>") def testBackquoteSystemMacro_call(self): # Makes an instance of DefunSystemMacro. macro = BackquoteSystemMacro() # Checks official representation. forms = Parser.parse('(((UNQUOTE X) (UNQUOTE-SPLICING Y)))') forms = macro( forms, PackageManager.current_package.env['VARIABLE'], PackageManager.current_package.env['FUNCTION'], PackageManager.current_package.env['MACRO'] ) # Checks expanded forms. self.assertEqual(str(forms), '(CONS X (APPEND Y (QUOTE NIL)))')
2.28125
2
backend/routers/timeline.py
DavidLee0216/SWOOSH
0
12783546
from flask import request, Blueprint from controllers import timelines from pkg.warpResponse import warpResponse timeline = Blueprint('timeline', __name__) @timeline.route("/", methods=['GET']) def getAllTimelines(): resp, code = timelines.FindAll() if resp is not None: return warpResponse(resp) else: return warpResponse(None, code) @timeline.route("/findOne", methods=['POST']) def getOneTimelines(): r = request.get_json() if 'start' in r: resp, code = timelines.FindAllWithCond(r) else: resp, code = timelines.FindOne(r) if resp is not None: return warpResponse(resp) else: return warpResponse(None, code) @timeline.route("/add", methods=['POST']) def createTimelines(): r = request.get_json() code = timelines.Create(r) if code is not None: return warpResponse(None, code) else: return warpResponse(None, code) @timeline.route("/<id>", methods=['POST']) def patchTimelines(id): r = request.get_json() code = timelines.Patch(id, r) if code is not None: return warpResponse(None, code) else: return warpResponse(None, code)
2.484375
2
glue_vaex/__init__.py
glue-viz/glue-vaex
0
12783547
from __future__ import absolute_import, division, print_function import os import glob from glue.logger import logger from glue.core.data import Data from glue.config import data_factory import vaex.hdf5.dataset from .data import DataVaex def is_vaex_file(source): return vaex.hdf5.dataset.Hdf5MemoryMapped.can_open(source) @data_factory( label='vaex file or directory', identifier=is_vaex_file, priority=1000, ) def vaex_reader(source): """ Read a vaex hdf5 file """ if os.path.isdir(source): arrays = {} for filename in glob.glob(os.path.join(source, '*')): if is_vaex_file(filename): logger.info("Reading vaex data from {0}".format(filename)) ds = vaex.open(filename) else: logger.info("Not a vaex file: {0}".format(filename)) # If there are no vaex files, we raise an error, and if there is one # then we are done! if len(arrays) == 0: raise Exception("No vaex files found in directory: {0}".format(source)) elif len(arrays) == 1: label = list(arrays.keys())[0] return [Data(array=arrays[label], label=label)] # We now check whether all the shapes of the vaex files are the same, # and if so, we merge them into a single file. labels = sorted(arrays) ref_shape = arrays[labels[0]].shape for label in labels[1:]: if arrays[label].shape != ref_shape: break else: # Since we are here, the shapes of all the vaex files match, so # we can construct a higher-dimensional array. # Make sure arrays are sorted while constructing array array = np.array([arrays[label] for label in labels]) # We flip the array here on that in most cases we expect that the # scan will start at the top of e.g. the body and move downwards. array = array[::-1] return [Data(array=array, label=dicom_label(source))] # If we are here, the shapes of the vaex files didn't match, so we # simply return one Data object per vaex file. return [Data(array=arrays[label], label=label) for label in labels] else: ds = vaex.open(source) data = [DataVaex(ds)] return data
2.40625
2
src/python/artisynth_envs/envs/point2point_env.py
amir-abdi/artisynth-rl
4
12783548
<filename>src/python/artisynth_envs/envs/point2point_env.py import numpy as np from common import constants as c from common.config import setup_logger from artisynth_envs.artisynth_base_env import ArtiSynthBase logger = setup_logger() class Point2PointEnv(ArtiSynthBase): def __init__(self, goal_threshold, wait_action, reset_step, goal_reward, **kwargs): super().__init__(**kwargs) self.goal_threshold = goal_threshold self.prev_distance = None self.wait_action = wait_action self.episode_counter = 0 self.reset_step = int(reset_step) self.goal_reward = goal_reward self.position_radius = self.get_radius(kwargs['artisynth_args']) self.init_spaces() @staticmethod def get_radius(args_str): return float(args_str.split('radius ')[1]) def get_state_boundaries(self, action_size): low = [] high = [] if self.include_current_state: for i in range(3): low.append(-self.position_radius) high.append(self.position_radius) for i in range(3): low.append(-self.position_radius) high.append(self.position_radius) low = np.array(low) high = np.array(high) if self.include_current_excitations: low = np.append(low, np.full((action_size,), 0)) high = np.append(high, np.full((action_size,), 1)) return low, high def reset(self): self.prev_distance = None logger.info('Reset') return super().reset() def configure(self, *args, **kwargs): pass def step(self, action): logger.debug('action:{}'.format(action)) self.episode_counter += 1 self.take_action(action) self.sleep(self.wait_action) state = self.get_state_dict() if not state: return None, 0, False, {} obs = state[c.OBSERVATION_STR] distance = self.distance_to_target(obs) reward, done, info = self.calculate_reward(distance, self.prev_distance) self.prev_distance = distance state_arr = self.state_dic_to_array(state) if self.episode_counter >= self.reset_step: done = True return state_arr, reward, done, info def calculate_reward(self, new_dist, prev_dist): if not prev_dist: return 0, False, {} done = False info = {'distance': new_dist} if new_dist < self.goal_threshold: done = True reward = 5 logger.log(msg='Achieved done state', level=18) else: if prev_dist - new_dist > 0: reward = 1 / self.episode_counter else: reward = -1 logger.log(msg='Reward: ' + str(reward), level=18) return reward, done, info
2.328125
2
pyapprox/benchmarks/spectral_diffusion.py
ConnectedSystems/pyapprox
26
12783549
import numpy as np import inspect from scipy.linalg import qr as qr_factorization from copy import deepcopy from pyapprox.utilities import cartesian_product, outer_product from pyapprox.univariate_polynomials.quadrature import gauss_jacobi_pts_wts_1D from pyapprox.barycentric_interpolation import ( compute_barycentric_weights_1d, multivariate_barycentric_lagrange_interpolation ) from pyapprox.models.wrappers import ( evaluate_1darray_function_on_2d_array ) from pyapprox.utilities import qr_solve def kronecker_product_2d(matrix1, matrix2): """ TODO: I can store kroneker as a sparse matrix see ( scipy.kron ) """ assert matrix1.shape == matrix2.shape assert matrix1.ndim == 2 block_num_rows = matrix1.shape[0] matrix_num_rows = block_num_rows**2 matrix = np.empty((matrix_num_rows, matrix_num_rows), float) # loop through blocks start_col = 0 for jj in range(block_num_rows): start_row = 0 for ii in range(block_num_rows): matrix[start_row:start_row+block_num_rows, start_col:start_col+block_num_rows] = \ matrix2*matrix1[ii, jj] start_row += block_num_rows start_col += block_num_rows return matrix def chebyshev_derivative_matrix(order): if order == 0: pts = np.array([1], float) derivative_matrix = np.array([0], float) else: # this is reverse order used by matlab cheb function pts = -np.cos(np.linspace(0., np.pi, order+1)) scalars = np.ones((order+1), float) scalars[0] = 2. scalars[order] = 2. scalars[1:order+1:2] *= -1 derivative_matrix = np.empty((order+1, order+1), float) for ii in range(order+1): row_sum = 0. for jj in range(order+1): if (ii == jj): denominator = 1. else: denominator = pts[ii]-pts[jj] numerator = scalars[ii] / scalars[jj] derivative_matrix[ii, jj] = numerator / denominator row_sum += derivative_matrix[ii, jj] derivative_matrix[ii, ii] -= row_sum # I return points and calculate derivatives using reverse order of points # compared to what is used by Matlab cheb function thus the # derivative matrix I return will be the negative of the matlab version return pts, derivative_matrix class SteadyStateDiffusionEquation1D(object): """ solve (a(x)*u_x)_x = f; x in [0,1]; subject to u(0)=a; u(1)=b """ def __init__(self): self.diffusivity = None self.forcing_function = None self.bndry_cond = [0., 0.] self.xlim = [0, 1] self.adjoint_derivative_matrix = None self.adjoint_mesh_pts = None self.num_time_steps = 0 self.time_step_size = None self.initial_sol = None self.num_stored_timesteps = 1 self.time_step_method = 'crank-nicholson' # default qoi functional is integral of solution over entire domain self.qoi_functional = self.integrate self.qoi_functional_deriv = lambda x: x*0.+1. def scale_canonical_pts(self, pts): return (self.xlim[1]-self.xlim[0])*(pts+1.)/2.+self.xlim[0] def initialize(self, order, bndry_cond=None, xlim=None): self.order = order if xlim is not None: self.xlim = xlim if bndry_cond is not None: self.bndry_cond = bndry_cond mesh_pts, self.derivative_matrix = chebyshev_derivative_matrix(order) # scale mesh points to from [-1,1] to [a,b] self.mesh_pts_1d = self.scale_canonical_pts(mesh_pts) self.mesh_pts = self.mesh_pts_1d # scale derivative matrix from [-1,1] to [a,b] self.derivative_matrix *= 2./(self.xlim[1]-self.xlim[0]) def set_diffusivity(self, func): assert callable(func) assert len(inspect.getargspec(func)[0]) == 2 self.diffusivity = func def set_forcing(self, func): assert callable(func) assert len(inspect.getargspec(func)[0]) == 2 self.forcing_function = func def form_collocation_matrix(self, derivative_matrix, diagonal): scaled_matrix = np.empty(derivative_matrix.shape) for i in range(scaled_matrix.shape[0]): scaled_matrix[i, :] = derivative_matrix[i, :] * diagonal[i] matrix = np.dot(derivative_matrix, scaled_matrix) return matrix def apply_boundary_conditions_to_matrix(self, matrix): matrix[0, :] = 0 matrix[-1, :] = 0 matrix[0, 0] = 1 matrix[-1, -1] = 1 return matrix def apply_boundary_conditions_to_rhs(self, rhs): rhs[0] = self.bndry_cond[0] rhs[-1] = self.bndry_cond[1] return rhs def apply_boundary_conditions(self, matrix, forcing): assert len(self.bndry_cond) == 2 matrix = self.apply_boundary_conditions_to_matrix(matrix) forcing = self.apply_boundary_conditions_to_rhs(forcing) return matrix, forcing def explicit_runge_kutta(self, rhs, sol, time, time_step_size): assert callable(rhs) dt2 = time_step_size/2. k1 = rhs(time, sol) k2 = rhs(time+dt2, sol+dt2*k1) k3 = rhs(time+dt2, sol+dt2*k2) k4 = rhs(time+time_step_size, sol+time_step_size*k3) new_sol = sol+time_step_size/6.*(k1+2.*k2+2.*k3+k4) new_sol[0] = self.bndry_cond[0] new_sol[-1] = self.bndry_cond[1] return new_sol def form_adams_moulton_3rd_order_system(self, matrix, current_sol, current_forcing, future_forcing, prev_forcing, prev_sol, time_step_size): """ 3rd order Adams-Moultobn method WARNING: seems to be unstable (at least my implementation) y_{n+2} = y_{n+1}+h(c_0y_{n+2}+c_1y_{n+1}+c_3y_{n}) c = (5/12,2/3,-1./12) """ dt12 = time_step_size/12. dt12matrix = dt12*matrix identity = np.eye(matrix.shape[0]) matrix = identity-5.*dt12matrix forcing = np.dot(identity+8.*dt12matrix, current_sol) forcing += dt12*(5.*future_forcing+8.*current_forcing-prev_forcing) forcing -= np.dot(dt12matrix, prev_sol) # currently I do not support time varying boundary conditions return self.apply_boundary_conditions(matrix, forcing) def get_implicit_time_step_rhs(self, current_sol, time, sample): future_forcing = self.forcing_function( self.mesh_pts, time+self.time_step_size, sample) if (self.time_step_method == "backward-euler"): forcing = current_sol + self.time_step_size*future_forcing elif (self.time_step_method == "crank-nicholson"): identity = np.eye(self.collocation_matrix.shape[0]) forcing = np.dot( identity+0.5*self.time_step_size*self.collocation_matrix, current_sol) current_forcing = self.forcing_function( self.mesh_pts, time, sample) forcing += 0.5*self.time_step_size*(current_forcing+future_forcing) else: raise Exception('incorrect timestepping method specified') # apply boundary conditions forcing[0] = self.bndry_cond[0] forcing[-1] = self.bndry_cond[1] return forcing def get_implicit_timestep_matrix_inverse_factors(self, matrix): identity = np.eye(matrix.shape[0]) if (self.time_step_method == "backward-euler"): matrix = identity-self.time_step_size*matrix elif (self.time_step_method == "crank-nicholson"): matrix = identity-self.time_step_size/2.*matrix else: raise Exception('incorrect timestepping method specified') self.apply_boundary_conditions_to_matrix(matrix) return qr_factorization(matrix) def time_step(self, current_sol, time, sample): if self.time_step_method == 'RK4': def rhs_func(t, u): return np.dot( self.collocation_matrix, u) +\ self.forcing_function(self.mesh_pts, t, sample) current_sol = self.explicit_runge_kutta( rhs_func, current_sol, time, self.time_step_size) else: rhs = self.get_implicit_time_step_rhs(current_sol, time, sample) current_sol = qr_solve( self.implicit_matrix_factors[0], self.implicit_matrix_factors[1], rhs[:, None])[:, 0] #current_sol = np.linalg.solve( matrix, rhs ) return current_sol def transient_solve(self, sample): # in future consider supporting time varying diffusivity. This would # require updating collocation matrix at each time-step # for now make diffusivity time-independent # assert self.diffusivity_function.__code__.co_argcount == 3 diffusivity = self.diffusivity_function(self.mesh_pts, sample) self.collocation_matrix = self.form_collocation_matrix( self.derivative_matrix, diffusivity) # consider replacing time = 0 with time = self.initial_time time = 0. assert self.forcing_function.__code__.co_argcount == 3 current_forcing = self.forcing_function(self.mesh_pts, time, sample) if self.num_time_steps > 0: assert self.initial_sol is not None assert self.time_step_size is not None current_sol = self.initial_sol.copy() assert self.num_stored_timesteps <= self.num_time_steps # num_time_steps is number of steps taken after initial time self.times = np.empty((self.num_stored_timesteps), float) sols = np.empty((self.initial_sol.shape[0], self.num_stored_timesteps), float) sol_cntr = 0 sol_storage_stride = self.num_time_steps/self.num_stored_timesteps if self.time_step_method != 'RK4': self.implicit_matrix_factors = \ self.get_implicit_timestep_matrix_inverse_factors( self.collocation_matrix) for i in range(1, self.num_time_steps+1): # Construct linear system current_sol = self.time_step(current_sol, time, sample) time += self.time_step_size # Store history if requested if i % sol_storage_stride == 0: sols[:, sol_cntr] = current_sol self.times[sol_cntr] = time sol_cntr += 1 assert sol_cntr == self.num_stored_timesteps return sols else: current_forcing = self.forcing_function( self.mesh_pts, time, sample) matrix, rhs = self.apply_boundary_conditions( self.collocation_matrix.copy(), current_forcing) return np.linalg.solve(matrix, rhs) def solve(self, diffusivity, forcing): assert diffusivity.ndim == 1 assert forcing.ndim == 1 # forcing will be overwritten with bounary values so must take a # deep copy forcing = forcing.copy() # we need another copy so that forcing can be used when solving adjoint self.forcing_vals = forcing.copy() assert not np.any(diffusivity <= 0.) self.collocation_matrix = self.form_collocation_matrix( self.derivative_matrix, diffusivity) matrix, forcing = self.apply_boundary_conditions( self.collocation_matrix.copy(), forcing) solution = np.linalg.solve(matrix, forcing) # store solution for use with adjoints self.fwd_solution = solution.copy() return solution def run(self, sample): assert sample.ndim == 1 diffusivity = self.diffusivity_function(self.mesh_pts, sample) forcing = self.forcing_function(self.mesh_pts, sample) solution = self.solve(diffusivity, forcing) return solution def solve_adjoint(self, sample, order): """ Typically with FEM we solve Ax=b and the discrete adjoint equation is A'y=z. But with collocation this does not work. Instead of taking the adjoint of the discrete system as the aforemntioned approach does. We discretize continuous adjoint equation. Which for the ellipic diffusion equation is just Ay=z. That is the adjoint of A is A. """ if order == self.order: # used when computing gradient from adjoint solution matrix = self.collocation_matrix.copy() else: # used when computing error estimate from adjoint solution if self.adjoint_derivative_matrix is None: adjoint_mesh_pts, self.adjoint_derivative_matrix = \ chebyshev_derivative_matrix(order) self.adjoint_mesh_pts = self.scale_canonical_pts( adjoint_mesh_pts) # scale derivative matrix from [-1,1] to [a,b] self.adjoint_derivative_matrix *= 2. / \ (self.xlim[1]-self.xlim[0]) diffusivity = self.diffusivity_function( self.adjoint_mesh_pts, sample) matrix = self.form_collocation_matrix( self.adjoint_derivative_matrix, diffusivity) self.adjoint_collocation_matrix = matrix.copy() # regardless of whether computing error estimate or # computing gradient, rhs is always derivative (with respect to the # solution) of the qoi_functional qoi_deriv = self.qoi_functional_deriv(self.fwd_solution) matrix = self.apply_boundary_conditions_to_matrix(matrix) qoi_deriv = self.apply_adjoint_boundary_conditions_to_rhs(qoi_deriv) adj_solution = np.linalg.solve(matrix, qoi_deriv) return adj_solution def apply_adjoint_boundary_conditions_to_rhs(self, qoi_deriv): # adjoint always has zero Dirichlet BC qoi_deriv[0] = 0 qoi_deriv[-1] = 0 return qoi_deriv def compute_residual(self, matrix, solution, forcing): matrix, forcing = self.apply_boundary_conditions(matrix, forcing) return forcing - np.dot(matrix, solution) def compute_residual_derivative(self, solution, diagonal, forcing_deriv): matrix = self.form_collocation_matrix(self.derivative_matrix, diagonal) # Todo: check if boundary conditions need to be applied to both # matrix and forcing_derivs or just matrix. If the former # what boundary conditions to I impose on the focing deriv matrix = self.apply_boundary_conditions_to_matrix( matrix) # the values here are the derivative of the boundary conditions # with respect to the random parameters. I assume that # this is always zero forcing_deriv[0] = 0 forcing_deriv[-1] = 0 return forcing_deriv.squeeze() - np.dot(matrix, solution) def compute_error_estimate(self, sample): raise NotImplementedError("Not passing tests") # must solve adjoint with a higher order grid adj_solution = self.solve_adjoint(sample, self.order*2) # interpolate forward solution onto higher-order grid interp_fwd_solution = self.interpolate( self.fwd_solution, self.adjoint_mesh_pts) # compute residual of forward solution using higher-order grid forcing_vals = self.forcing_function(self.adjoint_mesh_pts, sample) # compute residual residual = self.compute_residual(self.adjoint_collocation_matrix, interp_fwd_solution, forcing_vals) # self.plot(interp_fwd_solution+adj_solution, # plot_mesh_coords=self.adjoint_mesh_pts ) # self.plot(residual, plot_mesh_coords=self.adjoint_mesh_pts, # color='r') # pylab.show() # print self.integrate((adj_solution+interp_fwd_solution )**2) # print(np.dot(residual, adj_solution )/self.integrate( # residual * adj_solution) print('cond', np.linalg.cond(self.adjoint_collocation_matrix)) error_estimate = self.integrate(residual * adj_solution, self.order*2) return error_estimate def evaluate_gradient(self, sample): assert sample.ndim == 1 num_stoch_dims = sample.shape[0] # qoi_deriv = self.qoi_functional_deriv(self.mesh_pts) adj_solution = self.solve_adjoint(sample, self.order) gradient = np.empty((num_stoch_dims), float) for i in range(num_stoch_dims): diffusivity_deriv_vals_i = self.diffusivity_derivs_function( self.mesh_pts.squeeze(), sample, i) forcing_deriv_vals_i = self.forcing_derivs_function( self.mesh_pts.squeeze(), sample, i) residual_deriv = self.compute_residual_derivative( self.fwd_solution, diffusivity_deriv_vals_i, forcing_deriv_vals_i) gradient[i] = self.integrate(residual_deriv * adj_solution) return gradient def value(self, sample): assert sample.ndim == 1 solution = self.run(sample) qoi = self.qoi_functional(solution) if np.isscalar(qoi) or qoi.ndim == 0: qoi = np.array([qoi]) return qoi def integrate(self, mesh_values, order=None): if order is None: order = self.order # Get Gauss-Legendre rule gl_pts, gl_wts = gauss_jacobi_pts_wts_1D(order, 0, 0) # Scale points from [-1,1] to to physical domain x_range = self.xlim[1]-self.xlim[0] gl_pts = x_range*(gl_pts+1.)/2.+self.xlim[0] # Remove factor of 0.5 from weights gl_wts *= x_range # Interpolate mesh values onto quadrature nodes gl_vals = self.interpolate(mesh_values, gl_pts) # Compute and return integral return np.dot(gl_vals[:, 0], gl_wts) def interpolate(self, mesh_values, eval_samples): if eval_samples.ndim == 1: eval_samples = eval_samples[None, :] if mesh_values.ndim == 1: mesh_values = mesh_values[:, None] assert mesh_values.ndim == 2 num_dims = eval_samples.shape[0] abscissa_1d = [self.mesh_pts_1d]*num_dims weights_1d = [compute_barycentric_weights_1d(xx) for xx in abscissa_1d] interp_vals = multivariate_barycentric_lagrange_interpolation( eval_samples, abscissa_1d, weights_1d, mesh_values, np.arange(num_dims)) return interp_vals def plot(self, mesh_values, num_plot_pts_1d=None, plot_mesh_coords=None, color='k'): import pylab if num_plot_pts_1d is not None: # interpolate values onto plot points plot_mesh = np.linspace( self.xlim[0], self.xlim[1], num_plot_pts_1d) interp_vals = self.interpolate(mesh_values, plot_mesh) pylab.plot(plot_mesh, interp_vals, color+'-') elif plot_mesh_coords is not None: assert mesh_values.shape[0] == plot_mesh_coords.squeeze().shape[0] pylab.plot(plot_mesh_coords, mesh_values, 'o-'+color) else: # just plot values on mesh points pylab.plot(self.mesh_pts, mesh_values, color) def get_collocation_points(self): return np.atleast_2d(self.mesh_pts) def get_derivative_matrix(self): return self.derivative_matrix def __call__(self, samples): return evaluate_1darray_function_on_2d_array( self.value, samples, None) class SteadyStateDiffusionEquation2D(SteadyStateDiffusionEquation1D): """ solve (a(x)*u_x)_x = f; x in [0,1]x[0,1]; subject to u(0,:)=a(x); u(:,0)=b(x), u(1,:)=c(x), u(:,1)=d(x) """ def __init__(self): self.diffusivity = None self.forcing_function = None self.bndry_cond = [0., 0., 0., 0.] self.xlim = [0, 1] self.ylim = [0, 1] self.left_bc, self.right_bc = None, None self.top_bc, self.bottom_bc = None, None # default qoi functional is integral of solution over entire domain self.qoi_functional = self.integrate self.qoi_functional_deriv = lambda x: x*0.+1. def determine_boundary_indices(self): # boundary edges are stored with the following order, # left, right, bottom, top self.boundary_edges = [[], [], [], []] self.boundary_indices = np.empty((4*self.order), int) # To avoid double counting the bottom and upper boundaries # will not include the edge indices cntr = 0 for i in range(self.mesh_pts.shape[1]): if (self.mesh_pts[0, i] == self.xlim[0]): self.boundary_indices[cntr] = i self.boundary_edges[0].append(cntr) cntr += 1 elif (self.mesh_pts[0, i] == self.xlim[1]): self.boundary_indices[cntr] = i self.boundary_edges[1].append(cntr) cntr += 1 elif (self.mesh_pts[1, i] == self.ylim[0]): self.boundary_indices[cntr] = i self.boundary_edges[2].append(cntr) cntr += 1 elif (self.mesh_pts[1, i] == self.ylim[1]): self.boundary_indices[cntr] = i self.boundary_edges[3].append(cntr) cntr += 1 def initialize(self, order, bndry_cond=None, lims=None): # 1d model transforms mesh pts 1d from are on [-1,1] to [a,b] # I will asssume that second physical dimension is also [a,b] super(SteadyStateDiffusionEquation2D, self).initialize(order, bndry_cond[:2], lims[:2]) self.ylim = lims[2:] self.bndry_cond = bndry_cond self.order = order self.mesh_pts_1d = self.mesh_pts self.mesh_pts = cartesian_product([self.mesh_pts_1d]*2, 1) # note scaling of self.derivative_matrix to [a,b] happens at base class self.determine_boundary_indices() # form derivative (in x1-direction) matrix of a 2d polynomial # this assumes that 2d-mesh_pts varies in x1 faster than x2, # e.g. points are # [[x11,x21],[x12,x21],[x13,x12],[x11,x22],[x12,x22],...] Ident = np.eye(self.order+1) derivative_matrix_1d = self.get_derivative_matrix() self.derivative_matrix_1 = np.kron(Ident, derivative_matrix_1d) # form derivative (in x2-direction) matrix of a 2d polynomial self.derivative_matrix_2 = np.kron(derivative_matrix_1d, Ident) def form_collocation_matrix(self, derivative_matrix, diagonal): scaled_matrix_1 = np.empty(self.derivative_matrix_1.shape) scaled_matrix_2 = np.empty(self.derivative_matrix_2.shape) for i in range(scaled_matrix_1.shape[0]): scaled_matrix_1[i, :] = self.derivative_matrix_1[i, :]*diagonal[i] scaled_matrix_2[i, :] = self.derivative_matrix_2[i, :]*diagonal[i] matrix_1 = np.dot(self.derivative_matrix_1, scaled_matrix_1) matrix_2 = np.dot(self.derivative_matrix_2, scaled_matrix_2) return matrix_1 + matrix_2 def apply_boundary_conditions_to_matrix(self, matrix): # apply default homogeenous zero value direchlet conditions if # necessary if self.left_bc is None: self.left_bc = lambda x: 0. if self.right_bc is None: self.right_bc = lambda x: 0. if self.bottom_bc is None: self.bottom_bc = lambda x: 0. if self.top_bc is None: self.top_bc = lambda x: 0. # adjust collocation matrix matrix[self.boundary_indices, :] = 0. for i in range(self.boundary_indices.shape[0]): index = self.boundary_indices[i] matrix[index, index] = 1. return matrix def apply_boundary_conditions_to_rhs(self, forcing): # apply left boundary condition indices = self.boundary_indices[self.boundary_edges[0]] forcing[indices] = self.left_bc(self.mesh_pts[0, indices]) # apply right boundary condition indices = self.boundary_indices[self.boundary_edges[1]] forcing[indices] = self.right_bc(self.mesh_pts[0, indices]) # apply bottom boundary condition indices = self.boundary_indices[self.boundary_edges[2]] forcing[indices] = self.bottom_bc(self.mesh_pts[1, indices]) # apply top boundary condition indices = self.boundary_indices[self.boundary_edges[3]] forcing[indices] = self.top_bc(self.mesh_pts[1, indices]) return forcing def plot(self, mesh_values, num_plot_pts_1d=100): if num_plot_pts_1d is not None: # interpolate values onto plot points def func(x): return self.interpolate(mesh_values, x) from utilities.visualisation import plot_surface_from_function plot_surface_from_function(func, [self.xlim[0], self.xlim[1], self.ylim[0], self.ylim[1]], num_plot_pts_1d, False) def apply_adjoint_boundary_conditions_to_rhs(self, qoi_deriv): # adjoint always has zero Dirichlet BC # apply left boundary condition for ii in range(4): indices = self.boundary_indices[self.boundary_edges[ii]] qoi_deriv[indices] = 0 return qoi_deriv def integrate(self, mesh_values, order=None): if order is None: order = self.order # Get Gauss-Legendre rule gl_pts, gl_wts = gauss_jacobi_pts_wts_1D(order, 0, 0) pts_1d, wts_1d = [], [] lims = self.xlim+self.ylim for ii in range(2): # Scale points from [-1,1] to to physical domain x_range = lims[2*ii+1]-lims[2*ii] # Remove factor of 0.5 from weights and shift to [a,b] wts_1d.append(gl_wts*x_range) pts_1d.append(x_range*(gl_pts+1.)/2.+lims[2*ii]) # Interpolate mesh values onto quadrature nodes pts = cartesian_product(pts_1d) wts = outer_product(wts_1d) gl_vals = self.interpolate(mesh_values, pts) # Compute and return integral return np.dot(gl_vals[:, 0], wts)
2.1875
2
base.py
Lemma1/DPFE
16
12783550
import numpy as np import pandas as pd import datetime import os import matplotlib.pyplot as plt import matplotlib import networkx as nx import pickle from collections import OrderedDict import copy from scipy.sparse import csr_matrix from scipy import io import seaborn as sns import joblib class Link: def __init__(self, ID, length, fft): self.ID = ID self.length = length self.fft = fft class Path: def __init__(self): self.node_list = None self.link_list = None self.cost = None self.p = None return def node_to_list(self, G, link_dict): if self.node_list == None: print "Nothing to convert" return tmp = list() for i in xrange(len(self.node_list) - 1): try: link_ID = G[self.node_list[i]][self.node_list[i+1]]["ID"] if link_ID not in link_dict.keys(): tmp_link = Link(link_ID, G[self.node_list[i]][self.node_list[i+1]]["length"], G[self.node_list[i]][self.node_list[i+1]]["fft"]) tmp.append(tmp_link) link_dict[link_ID] = tmp_link else: tmp.append(link_dict[link_ID]) except: print "ERROR" print self.node_list[i], self.node_list[i+1] self.link_list = tmp def overlap(min1, max1, min2, max2): return max(0, min(max1, max2) - max(min1, min2)) def get_finish_time(spd, length_togo, start_time, tmp_date): basis = datetime.datetime.combine(tmp_date, datetime.time(0,0,0)) time_seq = map(lambda x: (datetime.datetime.combine(tmp_date, x) - basis).total_seconds(), spd.index) data = np.array(spd.tolist()).astype(np.float) # print data # print time_seq cur_spd = np.interp((datetime.datetime.combine(tmp_date, start_time) - basis).total_seconds(), time_seq, data) / 1600.0 * 3600.0 try: new_start_time = (datetime.datetime.combine(tmp_date, start_time) + datetime.timedelta(seconds = length_togo/cur_spd)).time() # print "need:", length_togo/cur_spd except: new_start_time = (datetime.datetime.combine(tmp_date, start_time) + datetime.timedelta(seconds = 10)).time() return new_start_time ######################## ## deprecated ######################## # def get_arrival_time(start_time, link_list, spd_data, tmp_date, link_dict, spd=None): # if len(link_list) == 0: # return start_time # link_to_pass = link_list[0] # if link_to_pass.length == np.float(0): # link_list.pop(0) # return get_arrival_time(start_time, link_list, spd_data, tmp_date, link_dict) # if link_to_pass.ID not in spd_data.keys(): # link_list.pop(0) # new_start_time = (datetime.datetime.combine(tmp_date, start_time) + datetime.timedelta(seconds = np.round(link_to_pass.fft))).time() # return get_arrival_time(new_start_time, link_list, spd_data, tmp_date, link_dict) # if type(spd) == type(None): # spd = spd_data[link_to_pass.ID].loc[tmp_date] # length_togo = link_to_pass.length # new_start_time = get_finish_time(spd, length_togo, start_time, tmp_date) # link_list.pop(0) # return get_arrival_time(new_start_time, link_list, spd_data, tmp_date, link_dict, spd) # def get_ratio(path, link, h, spd_data, analysis_start_time, time_interval, tmp_date, link_dict): # start_time = (datetime.datetime.combine(tmp_date, analysis_start_time) + h * time_interval).time() # start_time2 = (datetime.datetime.combine(tmp_date, analysis_start_time) + (h+1) * time_interval).time() # tmp_link_list = list() # for tmp_link in path.link_list: # if link != tmp_link: # tmp_link_list.append(tmp_link) # else: # break # # print tmp_link_list # arrival_time = get_arrival_time(start_time, copy.copy(tmp_link_list), spd_data, tmp_date, link_dict) # arrival_time2 = get_arrival_time(start_time2, copy.copy(tmp_link_list), spd_data, tmp_date, link_dict) # p_v = get_pv(arrival_time, arrival_time2, start_time, time_interval, tmp_date) # if (len(p_v) > 2): # print start_time, arrival_time, arrival_time2 # print p_v # return p_v # row_list = list() # col_list = list() # data_list = list() # for k, path in enumerate(path_list): # print k, len(path.link_list) # for a, link in enumerate(link_list): # if (delta[a, k] == 1): # for h in xrange(N): # p_v = get_ratio(path, link, h, spd_data, analysis_start_time, time_interval, tmp_date, link_dict) # for idx, p in enumerate(p_v): # if (h + idx < N): # x_loc = a + num_link * (h + idx) # y_loc = k + num_path * h # row_list.append(x_loc) # col_list.append(y_loc) # data_list.append(p) def get_pv(arrival_time, arrival_time2, analysis_start_time, time_interval, tmp_date): basis = datetime.datetime.combine(tmp_date, datetime.time(0,0,0)) arrival_time_date = datetime.datetime.combine(tmp_date, arrival_time) arrival_time_date2 = datetime.datetime.combine(tmp_date, arrival_time2) total = np.float((arrival_time_date2 -arrival_time_date).total_seconds()) cur_time_date = datetime.datetime.combine(tmp_date, analysis_start_time) pv = list() while(cur_time_date < arrival_time_date2): cur_time_date2 = cur_time_date + time_interval overlap_zone = overlap((cur_time_date - basis).total_seconds(), (cur_time_date2 - basis).total_seconds(), (arrival_time_date - basis).total_seconds(), (arrival_time_date2 - basis).total_seconds()) # print np.float(overlap_zone) / total pv.append(np.float(overlap_zone) / total) cur_time_date = cur_time_date2 return pv def get_arrival_time(start_time, link, spd_data, tmp_date, link_dict): link_to_pass = link if link_to_pass.length == np.float(0): return start_time if link_to_pass.ID not in spd_data.keys(): new_start_time = (datetime.datetime.combine(tmp_date, start_time) + datetime.timedelta(seconds = link_to_pass.fft)).time() return new_start_time try: spd = spd_data[link_to_pass.ID].loc[tmp_date] except: print "Except, not spd data" new_start_time = (datetime.datetime.combine(tmp_date, start_time) + datetime.timedelta(seconds = link_to_pass.fft)).time() return new_start_time length_togo = link_to_pass.length new_start_time = get_finish_time(spd, length_togo, start_time, tmp_date) return new_start_time def get_ratio(path, h, spd_data, analysis_start_time, time_interval, tmp_date, link_dict): pv_dict = dict() start_time = (datetime.datetime.combine(tmp_date, analysis_start_time) + h * time_interval).time() start_time2 = (datetime.datetime.combine(tmp_date, analysis_start_time) + (h+1) * time_interval).time() arrival_time = copy.copy(start_time) arrival_time2 = copy.copy(start_time2) for link in path.link_list: arrival_time = get_arrival_time(arrival_time, link, spd_data, tmp_date, link_dict) arrival_time2 = get_arrival_time(arrival_time2, link, spd_data, tmp_date, link_dict) p_v = get_pv(arrival_time, arrival_time2, start_time, time_interval, tmp_date) pv_dict[link] = p_v return pv_dict def get_assign_matrix(N, spd_data, analysis_start_time, time_interval, tmp_date, link_dict, link_list, link_loc, path_list): num_link = len(link_list) num_path = len(path_list) row_list = list() col_list = list() data_list = list() for k, path in enumerate(path_list): # if k % 1 == 0: # print k, len(path_list), len(path.link_list) for h in xrange(N): pv_dict = get_ratio(path, h, spd_data, analysis_start_time, time_interval, tmp_date, link_dict) # print pv_dict for link, p_v in pv_dict.iteritems(): a = link_loc[link] for idx, p in enumerate(p_v): if (h + idx < N): y_loc = a + num_link * (h + idx) x_loc = k + num_path * h row_list.append(y_loc) col_list.append(x_loc) data_list.append(p) # print row_list, col_list r = csr_matrix((data_list, (row_list, col_list)), shape=(num_link * N, num_path * N)) return r def save_r(N, spd_data, analysis_start_time, time_interval, single_date, link_dict, link_list, link_loc, path_list): import joblib date_str = single_date.strftime("%Y-%m-%d") print date_str r = get_assign_matrix(N, spd_data, analysis_start_time, time_interval, single_date, link_dict, link_list, link_loc, path_list) joblib.dump(r, os.path.join('R_matrix', date_str+".pickle")) def softmax(x, theta=-0.01): # print x """Compute softmax values for each sets of scores in x.""" y = np.copy(x) * theta print y p = np.minimum(np.maximum(np.exp(y), 1e-20), 1e20) / np.sum(np.minimum(np.maximum(np.exp(y), 1e-20), 1e20), axis=0) # print p if np.isnan(p).any(): p = np.ones(len(x)) / len(x) return p def get_full_arrival_time(start_time, link_list, spd_data, tmp_date, link_dict, spd=None): # if len(link_list) == 0: # return start_time # link_to_pass = link_list[0] # if link_to_pass.length == np.float(0): # link_list.pop(0) # return get_full_arrival_time(start_time, link_list, spd_data, tmp_date, link_dict) # if link_to_pass.ID not in spd_data.keys(): # link_list.pop(0) # new_start_time = (datetime.datetime.combine(tmp_date, start_time) + datetime.timedelta(seconds = np.round(link_to_pass.fft))).time() # return get_full_arrival_time(new_start_time, link_list, spd_data, tmp_date, link_dict) # if type(spd) == type(None): # spd = spd_data[link_to_pass.ID].loc[tmp_date] # length_togo = link_to_pass.length # new_start_time = get_finish_time(spd, length_togo, start_time, tmp_date) # link_list.pop(0) arrival_time = copy.copy(start_time) for link in link_list: arrival_time = get_arrival_time(arrival_time, link, spd_data, tmp_date, link_dict) return arrival_time # tmp_date = datetime.date(2014, 1, 1) def get_P(N, spd_data, analysis_start_time, time_interval, tmp_date, path_list, OD_paths): num_path_v = [len(x) for x in OD_paths.itervalues()] num_path = np.sum(num_path_v) OD_list = list(OD_paths.keys()) num_OD = len(OD_list) row_list = list() col_list = list() data_list = list() for h in xrange(N): # print h, N start_time = (datetime.datetime.combine(tmp_date, analysis_start_time) + h * time_interval).time() for (O,D), paths in OD_paths.iteritems(): # print (O,D) cost_list = list() for path in paths: arrival_time = get_full_arrival_time(start_time, path.link_list, spd_data, tmp_date, None) cost = (datetime.datetime.combine(tmp_date, arrival_time) - datetime.datetime.combine(tmp_date, start_time)).total_seconds() path.cost = cost cost_list.append(cost) p_list = softmax(cost_list) print cost_list, p_list for idx, path in enumerate(paths): path.p = p_list[idx] # print p_list for rs, (O,D) in enumerate(OD_list): for k, path in enumerate(path_list): if k < np.sum(num_path_v[0:rs+1]) and k >= np.sum(num_path_v[0:rs]): x_loc = h * num_OD + rs y_loc = h * num_path + k data = path.p row_list.append(y_loc) col_list.append(x_loc) data_list.append(data) P = csr_matrix((data_list, (row_list, col_list)), shape=(num_path * N, num_OD * N)) return P def save_p(N, spd_data, analysis_start_time, time_interval, single_date, path_list, OD_paths): import joblib date_str = single_date.strftime("%Y-%m-%d") print date_str P = get_P(N, spd_data, analysis_start_time, time_interval, single_date, path_list, OD_paths) joblib.dump(P, os.path.join('P_matrix', date_str+".pickle")) def to_south((O,D)): real_O = O % 1000 real_D = D % 1000 return real_O < real_D
2.171875
2