max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
basic/exercise1.py
jspw/Basic_Python
6
12779251
<gh_stars>1-10 print(" this is \\\\ double backslash \nthis is //\\//\\//\\//\\//\\ mountain \nhe is awesome\b y") print("\\\"\\n\\t\\\'")
2.234375
2
Exercicios/ex033_Maior e menor valores.py
GabrielMazzuchello/Curso-Em-Video
2
12779252
num1 = int(input('Primeiro valor: ')) num2 = int(input('Segundo valor: ')) num3 = int(input('Terceiro valor: ')) # Verificação do menor numero menor = num3 if num2 < num3 and num2 < num1: menor = num2 if num1 < num3 and num1 < num2: menor = num1 # verificação do maior numero maior = num3 if num2 > num1 and num2 > num3: maior = num2 if num1 > num2 and num1 > num3: maior = num1 print('O menor numero é {}'.format(menor)) print('O maior numero é {}'.format(maior))
4.15625
4
compare_one_sr_alpha_mask.py
lmmx/emoji-liif
1
12779253
<gh_stars>1-10 from pathlib import Path import sqlite3 import pandas as pd from tqdm import tqdm from sys import stderr from imageio import imread, imwrite import numpy as np from skimage import transform as tf from matplotlib import pyplot as plt from transform_utils import scale_pixel_box_coordinates, crop_image SAVING_PLOT = False JUPYTER = True osx_dir = Path("osx/catalina/").absolute() source_dir = osx_dir / "png" preproc_dir = osx_dir / "bg/" png_dir = Path("enlarged/").absolute() out_dir = Path("transparent/").absolute() png = png_dir / "glyph-u1F343.png" osx_bw_db = osx_dir / "emoji_bw_calc.db" NO_OVERWRITE = False def get_emoji_rgb_bg(glyph): with sqlite3.connect(osx_bw_db) as conn: query_sql = "SELECT * FROM images WHERE filename == (?)" query_df = pd.read_sql(query_sql, con=conn, params=[glyph]) [r] = [g] = [b] = query_df.loc[:, "furthest_shade"].values return r, g, b def alpha_composite_bg(img, background_shade): """ Linearly composite an RGBA image against a grayscale background. Image dtype is preserved. Output height/width will match those of `im`, but the alpha channel dimension will be dropped making it only RGB. """ if not isinstance(background_shade, int): raise TypeError("background_shade must be an integer") im = img.astype(float) bg = background_shade / 255 im_max = im.max() im /= im_max # scale im to [0,1] im_rgb = im[:,:,:3] bg_rgb = np.ones_like(im_rgb) * bg # Scale RGB according to A alpha_im = im[:,:,3] alpha_bg = 1 - alpha_im im_rgb *= alpha_im[:,:,None] bg_rgb *= alpha_bg[:,:,None] composited = im_rgb + bg_rgb # Rescale to original range and return to original dtype composited *= im_max composited = composited.astype(img.dtype) return composited def plot_comparison( scaled_source_img_sub_alpha, scaled_source_img_sub, img_sub, composited_grad, decomp_alpha, SAVING_PLOT ): fig, (ax0, ax1, ax2, ax3, ax4) = plt.subplots(1, 5, sharex=True, sharey=True) ax0.imshow(scaled_source_img_sub_alpha) ax0.set_title("Alpha") #ax1.imshow(scaled_preproc_img_sub[:,:,:3]) ax1.imshow(np.zeros_like(scaled_source_img_sub[:,:,:3])) ax1.imshow(scaled_source_img_sub) ax1.set_title("Source image (resize: nearest neighbour)") ax2.imshow(img_sub) ax2.set_title("LIIF superresolution") ax3.imshow(composited_grad) ax3.set_title("Difference of LIIF\nfrom resized composite") ax4.imshow(decomp_alpha) ax4.set_title("Difference of LIIF alpha from\nresized composite (estimated)") fig.tight_layout() if SAVING_PLOT: fig.set_size_inches((20,6)) fig_name = "alpha_composite_comparison.png" fig.savefig(fig_name) reload_fig = imread(fig_name) fig_s = reload_fig.shape clip_y_t = fig_s[0] // 15 # ~7% top crop clip_y_b = -(fig_s[0] // 10) # ~10% bottom crop clip_x_l = fig_s[1] // 17 # ~6% left crop clip_x_r = -(fig_s[1] // 50) # ~ 2% right crop cropped_fig = reload_fig[clip_y_t:clip_y_b, clip_x_l:clip_x_r] imwrite(fig_name, cropped_fig) else: return fig, (ax0, ax1, ax2, ax3, ax4)
2.359375
2
clusterpy/core/data/spatialLag.py
CentroGeo/clusterpy_python3
48
12779254
<reponame>CentroGeo/clusterpy_python3 # encoding: latin1 """spatial lag of a variable """ __author__ = "<NAME>, <NAME>" __credits__ = "Copyright (c) 2010-11 <NAME>" __license__ = "New BSD License" __version__ = "1.0.0" __maintainer__ = "RiSE Group" __email__ = "<EMAIL>" __all__ = ['spatialLag'] import numpy def spatialLag(data,w): """ This method recives a dictionary of variables an return a copy of the dictionary with variables spatially lagged. :param data: data dictionary to be lagged :type data: dictionary :rtype: dictionary (Y dictionary with the lag of vars) """ data = [data[x] for x in data] data = numpy.matrix(data) data = data.transpose() w = numpy.matrix(w) data = data*w data = data.transpose() y = {} for nd, d in enumerate(data): y[nd] = d.tolist()[0] return y
3.015625
3
AI Project/Movielens Experiment/kmeans_weighted_average.py
anshikam/CSCE-625
0
12779255
# -*- coding: utf-8 -*- """ A program that carries out mini batch k-means clustering on Movielens datatset""" from __future__ import print_function, division, absolute_import, unicode_literals from decimal import * #other stuff we need to import import csv import numpy as np from sklearn.cluster import MiniBatchKMeans from sklearn.metrics.cluster import v_measure_score from math import * def distance(user_id,i): distance=0 for j in range(len(user_movie_matrix[0])): if user_movie_matrix[user_id][j] !=0 and user_movie_matrix[i][j]!=0: distance+=Decimal(pow(Decimal(user_movie_matrix[user_id][j] - user_movie_matrix[i][j]),2)) distance=sqrt(distance) return distance #beginning of main program #read in u1.base training_file = open('ml-100k/u1.base','r') rows = training_file.readlines() training_file.close() training_data=[] for row in rows: list = row.split('\t') int_list = [int(item) for item in list] training_data.append(int_list) #read in u1.test test_file = open('ml-100k/u1.test','r') rows = test_file.readlines() test_file.close() test_data=[] for row in rows: list = row.split('\t') int_list = [int(item) for item in list] test_data.append(int_list) print(len(training_data)) print(len(test_data)) user_ids = [row[0] for row in training_data] user_ids = set(user_ids) user_ids = sorted(user_ids) number_of_users = len(user_ids) #print(user_ids) print(number_of_users) movie_ids = [row[1] for row in training_data] movie_ids = set(movie_ids) movie_ids = sorted(movie_ids) number_of_movies = len(movie_ids) #print(movie_ids) print(number_of_movies) #create a user movie matrix #pre-processing could be in two ways : # a. either ignore ratings <= 3 so rating of 4 or 5 = 1 in matrix and <=3 is 0 # b. calculate a mean for each user # c. or simply give 1 if rated and 0 if not rated user_movie_matrix = np.zeros((number_of_users,number_of_movies)) #user_movie_matrix.fill(0.001) for row in training_data: user_id = user_ids.index(row[0]) movie_id = movie_ids.index(row[1]) user_movie_matrix[user_id,movie_id] = row[2] #user_movie_matrix[user_id,movie_id] = row[2] #print(user_movie_matrix[0]) #print(user_movie_matrix[942][1]) #print(user_movie_matrix[942][8]) #Normalizing user-movie matrix #Additional step '''for i in range(number_of_users): tempList = [] tempList = user_movie_matrix[i].tolist() print('templist') print(tempList) minVal = min(tempList) maxVal = max(tempList) for j in tempList: j=Decimal(Decimal(j-minVal)/Decimal(maxVal-minVal)) j=j*5 user_movie_matrix[i] = tempList''' print(user_movie_matrix) print(len(user_movie_matrix)) print(len(user_movie_matrix[0])) #print(user_movie_matrix) #initialize and carry out clustering K=50 #km = KMeans(n_clusters = K) #km.fit(user_movie_matrix) #km = KMeans(n_clusters = K) km = MiniBatchKMeans(n_clusters = K) km.fit(user_movie_matrix) #labels labels = km.labels_ print(str(labels)) #find which cluster each user is in cluster_num_users=np.zeros(K) #maintain a list of users per cluster cluster_list_users=[] for i in range(K): cluster_list_users.append([]) print(cluster_list_users) prediction = km.predict(user_movie_matrix) print('\n--------Which cluster each user is in--------') print('{:<15}\t{}'.format('User','Cluster')) for i in range(len(prediction)): print('{:<15}\t{}'.format(user_ids[i],prediction[i])) cluster_num_users[prediction[i]]+=1 list_of_users = [] list_of_users = cluster_list_users[prediction[i]] list_of_users.append(i) cluster_list_users[prediction[i]]=list_of_users f=open('cluster_num_users','w') for i in range(K): f.write(str(i)) f.write('\t') f.write(str(cluster_num_users[i])) f.write('\n') f.close() print(cluster_num_users) print(cluster_list_users) #Number of users in each cluster print('\n--------Number of users in a cluster--------') for i in range(K): print('{:<15}\t{}'.format(i,cluster_num_users[i])) print(sum(cluster_num_users)) print('The total distance of the solution found is',sum((km.transform(user_movie_matrix)).min(axis=1))) #predicting rating for a movie by a user print('Number of test data ') print(len(test_data)) accuracy=0 root_mean_accuracy=0 weighted_sum=0 sum_of_weights=0 for row in test_data: print('Testing for user and movie in test : ' + str(row)) movie = row[1] rating = row[2] #print('Cluster for this user : ') user = row[0] #print(user) user_id = user_ids.index(user) #print(user_id) #print(labels) cluster_index = labels[user_id] #print(cluster_index) print('Other user ids in this cluster : ') print(cluster_num_users[cluster_index]) #print(len(cluster_list_users[cluster_index])) other_user_ids_in_same_cluster=cluster_list_users[cluster_index] print(other_user_ids_in_same_cluster) #print('Have they rated movie ') #print(movie) if movie in movie_ids: movie_id=movie_ids.index(movie) else: continue number_of_users_who_rated_movie=0 sum_total_rating=0 for i in other_user_ids_in_same_cluster: if user_movie_matrix[i][movie_id] > 0: #print(i) #print('index has rated movie ') #print(movie_id) #print(user_movie_matrix[i][movie_id]) if(Decimal(round(distance(user_id,i),2)) > Decimal(0.0)): weight = Decimal(1/(distance(user_id,i))) weighted_sum += weight*Decimal(user_movie_matrix[i][movie_id]) sum_of_weights += Decimal(weight) number_of_users_who_rated_movie += 1 sum_total_rating += user_movie_matrix[i][movie_id] print('Predicted Rating for this movie :') #print(sum_total_rating) if(number_of_users_who_rated_movie > 0 and sum_of_weights > 0): print(weighted_sum) print(sum_of_weights) rating_predicted = weighted_sum/sum_of_weights print(rating_predicted) print(rating) #rating_predicted = round(rating_predicted) root_mean_accuracy += Decimal(pow(Decimal(rating_predicted-rating),2)) if abs(Decimal(rating_predicted - rating)) <= Decimal(1.0): print("HERE") accuracy += 1 '''elif Decimal(rating - rating_predicted) < Decimal(0.5): print("HERE") accuracy += 1''' print(accuracy) print('% accuracy') print(accuracy*100/len(test_data)) root_mean_accuracy = root_mean_accuracy/len(test_data) root_mean_accuracy = sqrt(root_mean_accuracy) print(root_mean_accuracy)
3.0625
3
example/sales/models.py
browniebroke/django-admin-lightweight-date-hierarchy
91
12779256
from django.db import models class Sale(models.Model): created = models.DateTimeField() def __str__(self): return f'[{self.id}] {self.created:%Y-%m-%d}' class SaleWithDrilldown(Sale): """ We will use this model in the admin to illustrate the difference between date hierarchy with and without drilldown. """ class Meta: proxy = True verbose_name = 'Sale model with default drilldown' class SaleWithCustomDrilldown(Sale): class Meta: proxy = True verbose_name = 'Sale model with custom drilldown'
2.328125
2
libs/gym/tests/spaces/test_spaces.py
maxgold/icml22
0
12779257
import json # note: ujson fails this test due to float equality import copy import numpy as np import pytest from gym.spaces import Tuple, Box, Discrete, MultiDiscrete, MultiBinary, Dict @pytest.mark.parametrize( "space", [ Discrete(3), Discrete(5, start=-2), Box(low=0.0, high=np.inf, shape=(2, 2)), Tuple([Discrete(5), Discrete(10)]), Tuple( [ Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32), ] ), Tuple((Discrete(5), Discrete(2), Discrete(2))), Tuple((Discrete(5), Discrete(2, start=6), Discrete(2, start=-4))), MultiDiscrete([2, 2, 100]), MultiBinary(10), Dict( { "position": Discrete(5), "velocity": Box( low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32 ), } ), ], ) def test_roundtripping(space): sample_1 = space.sample() sample_2 = space.sample() assert space.contains(sample_1) assert space.contains(sample_2) json_rep = space.to_jsonable([sample_1, sample_2]) json_roundtripped = json.loads(json.dumps(json_rep)) samples_after_roundtrip = space.from_jsonable(json_roundtripped) sample_1_prime, sample_2_prime = samples_after_roundtrip s1 = space.to_jsonable([sample_1]) s1p = space.to_jsonable([sample_1_prime]) s2 = space.to_jsonable([sample_2]) s2p = space.to_jsonable([sample_2_prime]) assert s1 == s1p, "Expected {} to equal {}".format(s1, s1p) assert s2 == s2p, "Expected {} to equal {}".format(s2, s2p) @pytest.mark.parametrize( "space", [ Discrete(3), Discrete(5, start=-2), Box(low=np.array([-10, 0]), high=np.array([10, 10]), dtype=np.float32), Box(low=-np.inf, high=np.inf, shape=(1, 3)), Tuple([Discrete(5), Discrete(10)]), Tuple( [ Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32), ] ), Tuple((Discrete(5), Discrete(2), Discrete(2))), Tuple((Discrete(5), Discrete(2), Discrete(2, start=-6))), MultiDiscrete([2, 2, 100]), MultiBinary(6), Dict( { "position": Discrete(5), "velocity": Box( low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32 ), } ), ], ) def test_equality(space): space1 = space space2 = copy.copy(space) assert space1 == space2, "Expected {} to equal {}".format(space1, space2) @pytest.mark.parametrize( "spaces", [ (Discrete(3), Discrete(4)), (Discrete(3), Discrete(3, start=-1)), (MultiDiscrete([2, 2, 100]), MultiDiscrete([2, 2, 8])), (MultiBinary(8), MultiBinary(7)), ( Box(low=np.array([-10, 0]), high=np.array([10, 10]), dtype=np.float32), Box(low=np.array([-10, 0]), high=np.array([10, 9]), dtype=np.float32), ), ( Box(low=-np.inf, high=0.0, shape=(2, 1)), Box(low=0.0, high=np.inf, shape=(2, 1)), ), (Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(1), Discrete(10)])), ( Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(5, start=7), Discrete(10)]), ), (Dict({"position": Discrete(5)}), Dict({"position": Discrete(4)})), (Dict({"position": Discrete(5)}), Dict({"speed": Discrete(5)})), ], ) def test_inequality(spaces): space1, space2 = spaces assert space1 != space2, "Expected {} != {}".format(space1, space2) @pytest.mark.parametrize( "space", [ Discrete(5), Discrete(8, start=-20), Box(low=0, high=255, shape=(2,), dtype="uint8"), Box(low=-np.inf, high=np.inf, shape=(3, 3)), Box(low=1.0, high=np.inf, shape=(3, 3)), Box(low=-np.inf, high=2.0, shape=(3, 3)), ], ) def test_sample(space): space.seed(0) n_trials = 100 samples = np.array([space.sample() for _ in range(n_trials)]) expected_mean = 0.0 if isinstance(space, Box): if space.is_bounded(): expected_mean = (space.high + space.low) / 2 elif space.is_bounded("below"): expected_mean = 1 + space.low elif space.is_bounded("above"): expected_mean = -1 + space.high else: expected_mean = 0.0 elif isinstance(space, Discrete): expected_mean = space.start + space.n / 2 else: raise NotImplementedError np.testing.assert_allclose(expected_mean, samples.mean(), atol=3.0 * samples.std()) @pytest.mark.parametrize( "spaces", [ (Discrete(5), MultiBinary(5)), ( Box(low=np.array([-10, 0]), high=np.array([10, 10]), dtype=np.float32), MultiDiscrete([2, 2, 8]), ), ( Box(low=0, high=255, shape=(64, 64, 3), dtype=np.uint8), Box(low=0, high=255, shape=(32, 32, 3), dtype=np.uint8), ), (Dict({"position": Discrete(5)}), Tuple([Discrete(5)])), (Dict({"position": Discrete(5)}), Discrete(5)), (Tuple((Discrete(5),)), Discrete(5)), ( Box(low=np.array([-np.inf, 0.0]), high=np.array([0.0, np.inf])), Box(low=np.array([-np.inf, 1.0]), high=np.array([0.0, np.inf])), ), ], ) def test_class_inequality(spaces): assert spaces[0] == spaces[0] assert spaces[1] == spaces[1] assert spaces[0] != spaces[1] assert spaces[1] != spaces[0] @pytest.mark.parametrize( "space_fn", [ lambda: Dict(space1="abc"), lambda: Dict({"space1": "abc"}), lambda: Tuple(["abc"]), ], ) def test_bad_space_calls(space_fn): with pytest.raises(AssertionError): space_fn() def test_seed_Dict(): test_space = Dict( { "a": Box(low=0, high=1, shape=(3, 3)), "b": Dict( { "b_1": Box(low=-100, high=100, shape=(2,)), "b_2": Box(low=-1, high=1, shape=(2,)), } ), "c": Discrete(5), } ) seed_dict = { "a": 0, "b": { "b_1": 1, "b_2": 2, }, "c": 3, } test_space.seed(seed_dict) # "Unpack" the dict sub-spaces into individual spaces a = Box(low=0, high=1, shape=(3, 3)) a.seed(0) b_1 = Box(low=-100, high=100, shape=(2,)) b_1.seed(1) b_2 = Box(low=-1, high=1, shape=(2,)) b_2.seed(2) c = Discrete(5) c.seed(3) for i in range(10): test_s = test_space.sample() a_s = a.sample() assert (test_s["a"] == a_s).all() b_1_s = b_1.sample() assert (test_s["b"]["b_1"] == b_1_s).all() b_2_s = b_2.sample() assert (test_s["b"]["b_2"] == b_2_s).all() c_s = c.sample() assert test_s["c"] == c_s def test_box_dtype_check(): # Related Issues: # https://github.com/openai/gym/issues/2357 # https://github.com/openai/gym/issues/2298 space = Box(0, 2, tuple(), dtype=np.float32) # casting will match the correct type assert space.contains(0.5) # float64 is not in float32 space assert not space.contains(np.array(0.5)) assert not space.contains(np.array(1)) @pytest.mark.parametrize( "space", [ Discrete(3), Discrete(3, start=-4), Box(low=0.0, high=np.inf, shape=(2, 2)), Tuple([Discrete(5), Discrete(10)]), Tuple( [ Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32), ] ), Tuple((Discrete(5), Discrete(2), Discrete(2))), MultiDiscrete([2, 2, 100]), MultiBinary(10), Dict( { "position": Discrete(5), "velocity": Box( low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32 ), } ), ], ) def test_seed_returns_list(space): def assert_integer_list(seed): assert isinstance(seed, list) assert len(seed) >= 1 assert all([isinstance(s, int) for s in seed]) assert_integer_list(space.seed(None)) assert_integer_list(space.seed(0)) def convert_sample_hashable(sample): if isinstance(sample, np.ndarray): return tuple(sample.tolist()) if isinstance(sample, (list, tuple)): return tuple(convert_sample_hashable(s) for s in sample) if isinstance(sample, dict): return tuple( (key, convert_sample_hashable(value)) for key, value in sample.items() ) return sample def sample_equal(sample1, sample2): return convert_sample_hashable(sample1) == convert_sample_hashable(sample2) @pytest.mark.parametrize( "space", [ Discrete(3), Discrete(3, start=-4), Box(low=0.0, high=np.inf, shape=(2, 2)), Tuple([Discrete(5), Discrete(10)]), Tuple( [ Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32), ] ), Tuple((Discrete(5), Discrete(2), Discrete(2))), MultiDiscrete([2, 2, 100]), MultiBinary(10), Dict( { "position": Discrete(5), "velocity": Box( low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32 ), } ), ], ) def test_seed_reproducibility(space): space1 = space space2 = copy.deepcopy(space) space1.seed(None) space2.seed(None) assert space1.seed(0) == space2.seed(0) assert sample_equal(space1.sample(), space2.sample()) @pytest.mark.parametrize( "space", [ Tuple([Discrete(100), Discrete(100)]), Tuple([Discrete(5), Discrete(10)]), Tuple([Discrete(5), Discrete(5, start=10)]), Tuple( [ Discrete(5), Box(low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32), ] ), Tuple((Discrete(5), Discrete(2), Discrete(2))), Dict( { "position": Discrete(5), "velocity": Box( low=np.array([0, 0]), high=np.array([1, 5]), dtype=np.float32 ), } ), ], ) def test_seed_subspace_incorrelated(space): subspaces = space.spaces if isinstance(space, Tuple) else space.spaces.values() space.seed(0) states = [ convert_sample_hashable(subspace.np_random.bit_generator.state) for subspace in subspaces ] assert len(states) == len(set(states)) def test_multidiscrete_as_tuple(): # 1D multi-discrete space = MultiDiscrete([3, 4, 5]) assert space.shape == (3,) assert space[0] == Discrete(3) assert space[0:1] == MultiDiscrete([3]) assert space[0:2] == MultiDiscrete([3, 4]) assert space[:] == space and space[:] is not space assert len(space) == 3 # 2D multi-discrete space = MultiDiscrete([[3, 4, 5], [6, 7, 8]]) assert space.shape == (2, 3) assert space[0, 1] == Discrete(4) assert space[0] == MultiDiscrete([3, 4, 5]) assert space[0:1] == MultiDiscrete([[3, 4, 5]]) assert space[0:2, :] == MultiDiscrete([[3, 4, 5], [6, 7, 8]]) assert space[:, 0:1] == MultiDiscrete([[3], [6]]) assert space[0:2, 0:2] == MultiDiscrete([[3, 4], [6, 7]]) assert space[:] == space and space[:] is not space assert space[:, :] == space and space[:, :] is not space def test_multidiscrete_subspace_reproducibility(): # 1D multi-discrete space = MultiDiscrete([100, 200, 300]) space.seed(None) assert sample_equal(space[0].sample(), space[0].sample()) assert sample_equal(space[0:1].sample(), space[0:1].sample()) assert sample_equal(space[0:2].sample(), space[0:2].sample()) assert sample_equal(space[:].sample(), space[:].sample()) assert sample_equal(space[:].sample(), space.sample()) # 2D multi-discrete space = MultiDiscrete([[300, 400, 500], [600, 700, 800]]) space.seed(None) assert sample_equal(space[0, 1].sample(), space[0, 1].sample()) assert sample_equal(space[0].sample(), space[0].sample()) assert sample_equal(space[0:1].sample(), space[0:1].sample()) assert sample_equal(space[0:2, :].sample(), space[0:2, :].sample()) assert sample_equal(space[:, 0:1].sample(), space[:, 0:1].sample()) assert sample_equal(space[0:2, 0:2].sample(), space[0:2, 0:2].sample()) assert sample_equal(space[:].sample(), space[:].sample()) assert sample_equal(space[:, :].sample(), space[:, :].sample()) assert sample_equal(space[:, :].sample(), space.sample()) def test_space_legacy_state_pickling(): legacy_state = { "shape": ( 1, 2, 3, ), "dtype": np.int64, "np_random": np.random.default_rng(), "n": 3, } space = Discrete(1) space.__setstate__(legacy_state) assert space.shape == legacy_state["shape"] assert space._shape == legacy_state["shape"] assert space.np_random == legacy_state["np_random"] assert space._np_random == legacy_state["np_random"] assert space.n == 3 assert space.dtype == legacy_state["dtype"]
2.28125
2
tests/integration_tests/tests/agentless_tests/policies/__init__.py
yeshess/cloudify-manager
0
12779258
######## # Copyright (c) 2014 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. from integration_tests.tests.test_cases import BaseTestCase from integration_tests.framework import riemann from integration_tests.tests.utils import do_retries from integration_tests.tests.utils import get_resource as resource class PoliciesTestsBase(BaseTestCase): NUM_OF_INITIAL_WORKFLOWS = 2 def tearDown(self): super(PoliciesTestsBase, self).tearDown() riemann.reset_data_and_restart() def launch_deployment(self, yaml_file, expected_num_of_node_instances=1): deployment, _ = self.deploy_application(resource(yaml_file)) self.deployment = deployment self.node_instances = self.client.node_instances.list( deployment_id=deployment.id ) self.assertEqual( expected_num_of_node_instances, len(self.node_instances) ) self.wait_for_executions(self.NUM_OF_INITIAL_WORKFLOWS, expect_exact_count=False) def get_node_instance_by_name(self, name): for nodeInstance in self.node_instances: if nodeInstance.node_id == name: return nodeInstance def wait_for_executions(self, expected_count, expect_exact_count=True): def assertion(): executions = self.client.executions.list( deployment_id=self.deployment.id) if expect_exact_count: self.assertEqual(len(executions), expected_count) else: self.assertGreaterEqual(len(executions), expected_count) self.do_assertions(assertion) def wait_for_invocations(self, deployment_id, expected_count): def assertion(): invocations = self.get_plugin_data( plugin_name='testmockoperations', deployment_id=deployment_id )['mock_operation_invocation'] self.assertEqual(expected_count, len(invocations)) return invocations return do_retries(assertion) def publish(self, metric, ttl=60, node_name='node', service='service', node_id=''): if node_id == '': node_id = self.get_node_instance_by_name(node_name).id deployment_id = self.deployment.id self.publish_riemann_event( deployment_id, node_name=node_name, node_id=node_id, metric=metric, service='{}.{}.{}.{}'.format( deployment_id, service, node_name, node_id ), ttl=ttl )
1.8125
2
Cours 3 - Language Models/solutions/ngrams.py
AntoineSimoulin/m2-data-sciences
7
12779259
def sentence_2_n_grams(sentences, n=3, start_token='<s>', end_token='</s>'): ngrams = [] for s in sentences: tokens = [start_token] + s + [end_token] ngrams += zip(*[tokens[i:] for i in range(n)]) return Counter([" ".join(ngram) for ngram in ngrams])
3.28125
3
src/niweb/apps/noclook/migrations/0009_auto_20190902_0759.py
SUNET/ni
0
12779260
# -*- coding: utf-8 -*- # Generated by Django 1.11.21 on 2019-09-02 07:59 from __future__ import unicode_literals from django.db import migrations import django.db.models.deletion from apps.noclook.models import DEFAULT_ROLEGROUP_NAME, DEFAULT_ROLE_KEY, DEFAULT_ROLES def init_default_roles(Role): # and then get or create the default roles and link them for role_slug, roledict in DEFAULT_ROLES.items(): role = Role.objects.get(slug=role_slug) if role: # add a default description and name to the roles if not role.description and roledict['description']: role.description = roledict['description'] role.save() if roledict['name']: role.name = roledict['name'] role.save() role.save() def forwards_func(apps, schema_editor): Role = apps.get_model("noclook", "Role") init_default_roles(Role) def reverse_func(apps, schema_editor): pass class Migration(migrations.Migration): dependencies = [ ('noclook', '0008_role_squashed_0013_auto_20190725_1153'), ] operations = [ migrations.RunPython(forwards_func, reverse_func), ]
1.929688
2
03a_sec-dsrg/DSRG.py
lyndonchan/wsss-analysis
47
12779261
import numpy as np import tensorflow as tf from lib.crf import crf_inference from lib.CC_labeling_8 import CC_lab def single_generate_seed_step(params): """Implemented seeded region growing Parameters ---------- params : 3-tuple of numpy 4D arrays (tag) : numpy 4D array (size: B x 1 x 1 x C), where B = batch size, C = number of classes GT label (cue) : numpy 4D array (size: B x H_c x W_c x C), where H_c = cue height, W_c = cue width Weak cue (prob) : numpy 4D array (size: B x H_c x W_c x C), where H_c = cue height, W_c = cue width Final feature map Returns ------- (cue) : numpy 4D array (size: B x H_c x W_c x C), where H_c = cue height, W_c = cue width Weak cue, after seeded region growing """ # th_f,th_b = 0.85,0.99 th_f, th_b = 0.5, 0.7 tag, cue, prob = params existing_prob = prob * tag existing_prob_argmax = np.argmax(existing_prob, axis=2) + 1 # to tell the background pixel and the not-satisfy-condition pixel tell_where_is_foreground_mask = (existing_prob_argmax > 1).astype(np.uint8) existing_prob_fg_th_mask = (np.sum((existing_prob[:, :, 1:] > th_f).astype(np.uint8), axis=2) > 0.5).astype( np.uint8) # if there is one existing category's score is bigger than th_f, the the mask is 1 for this pixel existing_prob_bg_th_mask = (np.sum((existing_prob[:, :, 0:1] > th_b).astype(np.uint8), axis=2) > 0.5).astype( np.uint8) label_map = (existing_prob_fg_th_mask * tell_where_is_foreground_mask + existing_prob_bg_th_mask * ( 1 - tell_where_is_foreground_mask)) * existing_prob_argmax # the label map is a two-dimensional map to show which category satisify the following three conditions for each pixel # 1. the category is in the tags of the image # 2. the category has a max probs among the tags # 3. the prob of the category is bigger that the threshold # and those three conditions is the similarity criteria # for the value in label_map, 0 is for no category satisifies the conditions, n is for the category n-1 satisifies the conditions cls_index = np.where(tag > 0.5)[2] # the existing labels index for c in cls_index: mat = (label_map == (c + 1)) mat = mat.astype(int) cclab = CC_lab(mat) cclab.connectedComponentLabel() # this divide each connected region into a group, and update the value of cclab.labels which is a two-dimensional list to show the group index of each pixel high_confidence_set_label = set() # this variable colloects the connected region index for (x, y), value in np.ndenumerate(mat): if value == 1 and cue[x, y, c] == 1: high_confidence_set_label.add(cclab.labels[x][y]) elif value == 1 and np.sum(cue[x, y, :]) == 1: cclab.labels[x][y] = -1 for (x, y), value in np.ndenumerate(np.array(cclab.labels)): if value in high_confidence_set_label: cue[x, y, c] = 1 return np.expand_dims(cue, axis=0) class DSRG(): """Class for the DSRG method""" def __init__(self, config): self.config = config self.dataset = self.config.get('dataset') self.h, self.w = (self.config.get('img_size'), self.config.get('img_size')) self.num_classes = self.config.get('num_classes') self.batch_size = self.config.get("batch_size") self.phase = self.config.get('phase') self.img_mean = self.config.get('img_mean') self.seed_size = self.config.get('seed_size') self.init_model_path = self.config.get('init_model_path', None) self.crf_config_train = {"g_sxy":3/12,"g_compat":3,"bi_sxy":80/12,"bi_srgb":13,"bi_compat":10,"iterations":5} self.crf_config_test = {"g_sxy":3,"g_compat":3,"bi_sxy":80,"bi_srgb":13,"bi_compat":10,"iterations":10} self.net = {} self.weights = {} self.trainable_list = [] self.loss = {} self.metric = {} self.variables={"total":[]} self.min_prob = 0.0001 self.stride = {} self.stride["input"] = 1 # different lr for different variable self.lr_1_list = [] self.lr_2_list = [] self.lr_10_list = [] self.lr_20_list = [] self.pool = self.config.get('pool') def build(self,net_input=None,net_label=None,net_cues=None,net_id=None,phase='train'): """Build DSRG model Parameters ---------- net_input : Tensor, optional Input images in batch, after resizing and normalizing net_label : Tensor, optional GT segmentation in batch, after resizing net_cues : Tensor, optional Weak cue labels in batch, after resizing net_id : Tensor, optional Filenames in batch phase : str, optional Phase to run DSRG model Returns ------- (output) : Tensor Final layer of FCN model of DSRG """ if "output" not in self.net: if phase == 'train': with tf.name_scope("placeholder"): self.net["input"] = net_input self.net["label"] = net_label # [None, self.num_classes], int32 self.net["cues"] = net_cues # [None,41,41,self.num_classes]) self.net["id"] = net_id self.net["drop_prob"] = tf.Variable(0.5, trainable=False) self.net["output"] = self.create_network(phase) self.pred() elif phase in ['val', 'tuning', 'segtest', 'test']: with tf.name_scope("placeholder"): self.net["input"] = net_input # self.net["label"] = net_label # [None, self.num_classes], int32 # self.net["cues"] = net_cues # [None,41,41,self.num_classes]) self.net["id"] = net_id self.net["drop_prob"] = tf.Variable(0.0, trainable=False) self.net["output"] = self.create_network(phase) self.pred() elif phase == 'debug': with tf.name_scope("placeholder"): self.net["input"] = net_input self.net["label"] = net_label # [None, self.num_classes], int32 self.net["cues"] = net_cues # [None,41,41,self.num_classes]) self.net["id"] = net_id self.net["drop_prob"] = tf.Variable(0.0, trainable=False) self.net["output"] = self.create_network(phase) self.pred() self.net["epoch"] = tf.Variable(0.0, trainable=False) return self.net["output"] def create_network(self, phase): """Helper function to build DSRG model Parameters ---------- phase : str, optional Phase to run DSRG model Returns ------- (crf) : Tensor Final layer of FCN model of DSRG """ if self.init_model_path is not None: self.load_init_model() with tf.name_scope("vgg") as scope: # build block block = self.build_block("input",["conv1_1","relu1_1","conv1_2","relu1_2","pool1"]) block = self.build_block(block,["conv2_1","relu2_1","conv2_2","relu2_2","pool2"]) block = self.build_block(block,["conv3_1","relu3_1","conv3_2","relu3_2","conv3_3","relu3_3","pool3"]) block = self.build_block(block,["conv4_1","relu4_1","conv4_2","relu4_2","conv4_3","relu4_3","pool4"]) block = self.build_block(block,["conv5_1","relu5_1","conv5_2","relu5_2","conv5_3","relu5_3","pool5","pool5a"]) fc1 = self.build_fc(block,["fc6_1","relu6_1","drop6_1","fc7_1","relu7_1","drop7_1","fc8_1"], dilate_rate=6) fc2 = self.build_fc(block,["fc6_2","relu6_2","drop6_2","fc7_2","relu7_2","drop7_2","fc8_2"], dilate_rate=12) fc3 = self.build_fc(block,["fc6_3","relu6_3","drop6_3","fc7_3","relu7_3","drop7_3","fc8_3"], dilate_rate=18) fc4 = self.build_fc(block,["fc6_4","relu6_4","drop6_4","fc7_4","relu7_4","drop7_4","fc8_4"], dilate_rate=24) self.net["fc8"] = self.net[fc1]+self.net[fc2]+self.net[fc3]+self.net[fc4] # DSRG softmax = self.build_sp_softmax("fc8","fc8-softmax") if phase in ['train', 'debug']: new_seed = self.build_dsrg_layer("cues","fc8-softmax","new_cues") crf = self.build_crf("fc8-softmax", "crf") # new return self.net[crf] # NOTE: crf is log-probability def build_block(self,last_layer,layer_lists): """Build a block of the DSRG model Parameters ---------- last_layer : Tensor The most recent layer used to build the DSRG model layer_lists : list of str List of strings of layer names to build inside the current block Returns ------- last_layer : Tensor The output layer of the current block """ for layer in layer_lists: if layer.startswith("conv"): if layer[4] != "5": with tf.name_scope(layer) as scope: self.stride[layer] = self.stride[last_layer] weights,bias = self.get_weights_and_bias(layer) self.net[layer] = tf.nn.conv2d( self.net[last_layer], weights, strides = [1,1,1,1], padding="SAME", name="conv") self.net[layer] = tf.nn.bias_add( self.net[layer], bias, name="bias") last_layer = layer if layer[4] == "5": with tf.name_scope(layer) as scope: self.stride[layer] = self.stride[last_layer] weights,bias = self.get_weights_and_bias(layer) self.net[layer] = tf.nn.atrous_conv2d( self.net[last_layer], weights, rate=2, padding="SAME", name="conv") self.net[layer] = tf.nn.bias_add( self.net[layer], bias, name="bias") last_layer = layer if layer.startswith("relu"): with tf.name_scope(layer) as scope: self.stride[layer] = self.stride[last_layer] self.net[layer] = tf.nn.relu( self.net[last_layer],name="relu") last_layer = layer elif layer.startswith("pool5a"): with tf.name_scope(layer) as scope: self.stride[layer] = self.stride[last_layer] self.net[layer] = tf.nn.avg_pool( self.net[last_layer], ksize=[1,3,3,1], strides=[1,1,1,1],padding="SAME",name="pool") last_layer = layer elif layer.startswith("pool"): if layer[4] not in ["4","5"]: with tf.name_scope(layer) as scope: self.stride[layer] = 2 * self.stride[last_layer] self.net[layer] = tf.nn.max_pool( self.net[last_layer], ksize=[1,3,3,1], strides=[1,2,2,1],padding="SAME",name="pool") last_layer = layer if layer[4] in ["4","5"]: with tf.name_scope(layer) as scope: self.stride[layer] = self.stride[last_layer] self.net[layer] = tf.nn.max_pool( self.net[last_layer], ksize=[1,3,3,1], strides=[1,1,1,1],padding="SAME",name="pool") last_layer = layer return last_layer def build_fc(self,last_layer, layer_lists, dilate_rate=12): """Build a block of fully-connected layers Parameters ---------- last_layer : Tensor The most recent layer used to build the DSRG model layer_lists : list of str List of strings of layer names to build inside the current block dilate_rate : int, optional Dilation rate for atrous 2D convolutional layers Returns ------- last_layer : Tensor The output layer of the current block """ for layer in layer_lists: if layer.startswith("fc"): with tf.name_scope(layer) as scope: weights,bias = self.get_weights_and_bias(layer) if layer.startswith("fc6"): self.net[layer] = tf.nn.atrous_conv2d( self.net[last_layer], weights, rate=dilate_rate, padding="SAME", name="conv") else: self.net[layer] = tf.nn.conv2d( self.net[last_layer], weights, strides = [1,1,1,1], padding="SAME", name="conv") self.net[layer] = tf.nn.bias_add( self.net[layer], bias, name="bias") last_layer = layer if layer.startswith("batch_norm"): with tf.name_scope(layer) as scope: self.net[layer] = tf.contrib.layers.batch_norm(self.net[last_layer]) last_layer = layer if layer.startswith("relu"): with tf.name_scope(layer) as scope: self.net[layer] = tf.nn.relu( self.net[last_layer]) last_layer = layer if layer.startswith("drop"): with tf.name_scope(layer) as scope: self.net[layer] = tf.nn.dropout( self.net[last_layer], keep_prob=1-self.net["drop_prob"]) last_layer = layer return last_layer def build_sp_softmax(self,last_layer,layer): """Build a block of a fully-connected layer and softmax Parameters ---------- last_layer : Tensor The most recent layer used to build the DSRG model layer : str Name of the softmax output layer Returns ------- layer : str Name of the softmax output layer """ preds_max = tf.reduce_max(self.net[last_layer],axis=3,keepdims=True) preds_exp = tf.exp(self.net[last_layer] - preds_max) self.net[layer] = preds_exp / tf.reduce_sum(preds_exp,axis=3,keepdims=True) + self.min_prob self.net[layer] = self.net[layer] / tf.reduce_sum(self.net[layer],axis=3,keepdims=True) return layer def build_crf(self,featmap_layer,layer): """Build a custom dense CRF layer Parameters ---------- featemap_layer : str Layer name of the feature map inputted to dense CRF layer layer : str Layer name of the dense CRF layer Returns ------- layer : str Layer name of the dense CRF layer """ origin_image = self.net["input"] + self.img_mean origin_image_zoomed = tf.image.resize_bilinear(origin_image,(self.seed_size, self.seed_size)) featemap = self.net[featmap_layer] featemap_zoomed = tf.image.resize_bilinear(featemap,(self.seed_size, self.seed_size)) def crf(featemap,image): batch_size = featemap.shape[0] image = image.astype(np.uint8) ret = np.zeros(featemap.shape,dtype=np.float32) for i in range(batch_size): ret[i,:,:,:] = crf_inference(image[i],self.crf_config_train,self.num_classes,featemap[i],use_log=True) ret[ret < self.min_prob] = self.min_prob ret /= np.sum(ret,axis=3,keepdims=True) ret = np.log(ret) return ret.astype(np.float32) crf = tf.py_func(crf,[featemap_zoomed,origin_image_zoomed],tf.float32) # shape [N, h, w, C], RGB or BGR doesn't matter self.net[layer] = crf return layer def build_dsrg_layer(self,seed_layer,prob_layer,layer): """Build DSRG layer Parameters ---------- seed_layer : str Layer name of the weak cues prob_layer : str Layer name of softmax layer : str Layer name of the DSRG layer Returns ------- layer : str Layer name of the DSRG layer """ def generate_seed_step(tags,cues,probs): tags = np.reshape(tags,[-1,1,1,self.num_classes]) params_list = [] for i in range(self.batch_size): params_list.append([tags[i],cues[i],probs[i]]) ret = self.pool.map(single_generate_seed_step, params_list) new_cues = ret[0] for i in range(1,self.batch_size): new_cues = np.concatenate([new_cues,ret[i]],axis=0) return new_cues self.net[layer] = tf.py_func(generate_seed_step,[self.net["label"],self.net[seed_layer],self.net[prob_layer]],tf.float32) return layer def load_init_model(self): """Load initialized layer""" model_path = self.config["init_model_path"] self.init_model = np.load(model_path, encoding="latin1", allow_pickle=True).item() def get_weights_and_bias(self,layer,shape=None): """Load saved weights and biases for saved network Parameters ---------- layer : str Name of current layer shape : list of int (size: 4), optional 4D shape of the convolutional or fully-connected layer Returns ------- weights : Variable Saved weights bias : Variable Saved biases """ if layer in self.weights: return self.weights[layer] if shape is not None: pass elif layer.startswith("conv"): shape = [3,3,0,0] if layer == "conv1_1": shape[2] = 3 else: shape[2] = 64 * self.stride[layer] if shape[2] > 512: shape[2] = 512 if layer in ["conv2_1","conv3_1","conv4_1"]: shape[2] = int(shape[2]/2) shape[3] = 64 * self.stride[layer] if shape[3] > 512: shape[3] = 512 elif layer.startswith("fc"): if layer.startswith("fc6"): shape = [3,3,512,1024] if layer.startswith("fc7"): shape = [1,1,1024,1024] if layer.startswith("fc8"): shape = [1,1,1024,self.num_classes] if self.init_model_path is None: init = tf.random_normal_initializer(stddev=0.01) weights = tf.get_variable(name="%s_weights" % layer,initializer=init, shape = shape) init = tf.constant_initializer(0) bias = tf.get_variable(name="%s_bias" % layer,initializer=init, shape = [shape[-1]]) else: if layer.startswith("fc8"): init = tf.contrib.layers.xavier_initializer(uniform=True) else: init = tf.constant_initializer(self.init_model[layer]["w"]) weights = tf.get_variable(name="%s_weights" % layer,initializer=init,shape = shape) if layer.startswith("fc8"): init = tf.constant_initializer(0) else: init = tf.constant_initializer(self.init_model[layer]["b"]) bias = tf.get_variable(name="%s_bias" % layer,initializer=init,shape = [shape[-1]]) self.weights[layer] = (weights,bias) if layer.startswith("fc8"): self.lr_10_list.append(weights) self.lr_20_list.append(bias) else: self.lr_1_list.append(weights) self.lr_2_list.append(bias) self.trainable_list.append(weights) self.trainable_list.append(bias) self.variables["total"].append(weights) self.variables["total"].append(bias) return weights,bias def pred(self): """Implement final segmentation prediction as argmax of final feature map""" if self.h is not None: self.net["rescale_output"] = tf.image.resize_bilinear(self.net["output"], (self.h, self.w)) else: label_size = tf.py_func(lambda x: x.shape[1:3], [self.net["input"]], [tf.int64, tf.int64]) self.net["rescale_output"] = tf.image.resize_bilinear(self.net["output"], [tf.cast(label_size[0], tf.int32), tf.cast(label_size[1], tf.int32)]) self.net["pred"] = tf.argmax(self.net["rescale_output"], axis=3) def getloss(self): """Construct overall loss function Returns ------- loss : Tensor Output of overall loss function """ loss = 0 # for DSRG seed_loss = self.get_balanced_seed_loss(self.net["fc8-softmax"],self.net["new_cues"]) constrain_loss = self.get_constrain_loss(self.net["fc8-softmax"],self.net["crf"]) self.loss["seed"] = seed_loss self.loss["constrain"] = constrain_loss loss += seed_loss + constrain_loss return loss def get_balanced_seed_loss(self,softmax,cues): """Balanced seeding loss function Parameters ---------- softmax : Tensor Final feature map cues : Tensor Weak cues Returns ------- (loss) : Tensor Output of balanced seeding loss function (sum of foreground/background losses) """ count_bg = tf.reduce_sum(cues[:,:,:,0:1],axis=(1,2,3),keepdims=True) loss_bg = -tf.reduce_mean(tf.reduce_sum(cues[:,:,:,0:1]*tf.log(softmax[:,:,:,0:1]),axis=(1,2,3),keepdims=True)/(count_bg+1e-8)) count_fg = tf.reduce_sum(cues[:,:,:,1:],axis=(1,2,3),keepdims=True) loss_fg = -tf.reduce_mean(tf.reduce_sum(cues[:,:,:,1:]*tf.log(softmax[:,:,:,1:]),axis=(1,2,3),keepdims=True)/(count_fg+1e-8)) return loss_bg+loss_fg def get_constrain_loss(self,softmax,crf): """Constrain loss function Parameters ---------- softmax : Tensor Final feature map crf : Tensor Output of dense CRF Returns ------- loss : Tensor Output of constrain loss function """ probs_smooth = tf.exp(crf) loss = tf.reduce_mean(tf.reduce_sum(probs_smooth * tf.log(probs_smooth/(softmax+1e-8)+1e-8), axis=3)) return loss
2.375
2
asv_oggm_plugin.py
skachuck/oggm
156
12779262
<reponame>skachuck/oggm import subprocess import requests import tempfile import os import logging from asv.plugins.conda import _find_conda, Conda from asv.console import log from asv import util logging.getLogger("requests").setLevel(logging.WARNING) OGGM_CONDA_ENV_URL = ("https://raw.githubusercontent.com/OGGM/" "OGGM-dependency-list/master/Linux-64/{0}") OGGM_CONDA_ENVS = { "36": "oggmdev-1.2.0.202002022248_20200202_py36.yml", "37": "oggmdev-1.2.0.202002022248_20200202_py37.yml", } class OggmVirtualenv(Conda): tool_name = "oggm_conda" def _setup(self): log.info("Creating oggm conda environment for {0}".format(self.name)) env_file = tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".yml") try: pyver = str(self._python).replace(".", "")[:2] oggm_env = OGGM_CONDA_ENVS[pyver] req = requests.get(OGGM_CONDA_ENV_URL.format(oggm_env)) req.raise_for_status() for line in req.text.splitlines(): if line.startswith("prefix:"): continue elif line.startswith("name:"): env_file.write("name: {0}\n".format(self.name)) else: env_file.write(line + "\n") env_file.close() self._conda_channels = ["conda-forge", "defaults"] self._conda_environment_file = env_file.name return super()._setup() except Exception as exc: if os.path.isfile(env_file.name): with open(env_file.name, "r") as f: text = f.read() log.info("oggm conda env create failed: in {} with:\n{}" .format(self._path, text)) raise finally: os.unlink(env_file.name)
2.3125
2
src/fleets/water_heater_fleet/load_config.py
GMLC-1-4-2/battery_interface
1
12779263
# -*- coding: utf-8 -*- """ Created on Tue Feb 19 13:46:46 2019 Description: Last update: Version: 1.0 Author: <NAME> (NREL) """ import pandas as pd class LoadConfig(object): def __init__(self, config_file): self.config_file = config_file def str_to_bool(self, s): if s == 'True': return True elif s == 'False': return False else: raise ValueError('Insert boolean values in the config file') def get_config_models(self): df = pd.DataFrame() df['MaxAnnualConditions'] = self.config_file.get('Water Heater Models', 'MaxAnnualConditions', fallback = None).split(',') #df['TtankInitial'] = self.config_file.get('Water Heater Models', 'TtankInitial', fallback = None).split(',') #df['TsetInitial'] = list(map(float, self.config_file.get('Water Heater Models', 'TsetInitial', fallback = None).split(','))) #df['Capacity'] = list(map(int, self.config_file.get('Water Heater Models', 'Capacity', fallback = None).split(','))) #df['Type'] = list(map(float, self.config_file.get('Water Heater Models', 'Type', fallback = None).split(','))) #df['Location'] = list(map(float, self.config_file.get('Water Heater Models', 'Location', fallback = None).split(','))) #df['MaxServiceCalls'] = list(map(float, self.config_file.get('Water Heater Models', 'MaxServiceCalls', fallback = None).split(','))) return df def get_n_subfleets(self): return int(self.config_file.get('Water Heater Fleet', 'NumberSubfleets', fallback = 100)) def get_run_baseline(self): return self.str_to_bool(self.config_file.get('Water Heater Fleet', 'RunBaseline', fallback = False)) def get_n_days_MC(self): return int(self.config_file.get('Water Heater Fleet', 'NumberDaysBase', fallback = 10)) def get_fleet_config(self): is_p_priority = self.str_to_bool(self.config_file.get('Fleet Configuration', 'Is_P_Priority', fallback = True)) is_aut = self.str_to_bool(self.config_file.get('Fleet Configuration', 'IsAutonomous', fallback = False)) return [is_p_priority, is_aut] def get_FW(self): fw_enabled = list() fw_enabled.append(self.str_to_bool(self.config_file.get('FW', 'FW21_Enabled', fallback = True))) # Discrete version of the response to frequency deviations (artificial inertia service) fw_enabled.append(list(map(float, (self.config_file.get('FW', 'db_UF', fallback = None).split(','))))) fw_enabled.append(list(map(float, (self.config_file.get('FW', 'db_OF', fallback = None).split(','))))) # TODO: These parameters must be removed in future realeases of the API fw_enabled.append(float(self.config_file.get('FW', 'k_UF', fallback = 0.05))) fw_enabled.append(float(self.config_file.get('FW', 'k_UF', fallback = 0.05))) fw_enabled.append(float(self.config_file.get('FW', 'P_avl', fallback = 1.0))) fw_enabled.append(float(self.config_file.get('FW', 'P_min', fallback = 0.0))) fw_enabled.append(float(self.config_file.get('FW', 'P_pre', fallback = 1.0))) return fw_enabled def get_impact_metrics_params(self): metrics = list() # Aveage tank baseline metrics.append(float(self.config_file.get('Impact Metrics', 'ave_Tin_base', fallback = 123))) # Aveage tank temperature under grid service metrics.append(float(self.config_file.get('Impact Metrics', 'ave_Tin_grid', fallback = 123))) # Cylces in baseline metrics.append(float(self.config_file.get('Impact Metrics', 'cycle_basee', fallback = 100))) # Cylces in grid operation metrics.append(float(self.config_file.get('Impact Metrics', 'cycle_grid', fallback = 100))) # State of Charge of the battery equivalent model under baseline metrics.append(float(self.config_file.get('Impact Metrics', 'SOCb_metric', fallback = 100))) # State of Charge of the battery equivalent model metrics.append(float(self.config_file.get('Impact Metrics', 'SOC_metric', fallback = 1.0))) # Unmet hours of the fleet metrics.append(float(self.config_file.get('Impact Metrics', 'unmet_hours', fallback = 1.0))) return metrics def get_service_weight(self): return float(self.config_file.get('Service Weighting Factor', 'ServiceWeight', fallback=0.5))
2.84375
3
test/utils_fetch_pytest.py
LaraFerCue/jail_manager
1
12779264
import os import shutil from pathlib import PosixPath from tempfile import TemporaryDirectory, mkdtemp from urllib.error import URLError import pytest from jmanager.models.distribution import Architecture, Version, VersionType, Component from jmanager.utils.fetch import HTTPFetcher from test.globals import TEST_DISTRIBUTION TEMPORARY_RELEASE_FTP_DIR = "releases/amd64/12.0-RELEASE" TEMPORARY_SNAPSHOT_FTP_DIR = "snapshots/amd64/12.0-STABLE" class MockingFetcher(HTTPFetcher): FTP_BASE_DIRECTORY = PosixPath() def __init__(self): self.tmp_dir = mkdtemp() self.SERVER_URL = f"file://{self.tmp_dir}" def __enter__(self): for folder in [TEMPORARY_RELEASE_FTP_DIR, TEMPORARY_SNAPSHOT_FTP_DIR]: temporary_folder = f"{self.tmp_dir}/{folder}" os.makedirs(temporary_folder) with open(f"{temporary_folder}/base.txz", "w") as base_file: base_file.write("base.txz") return self def __exit__(self, exc_type, exc_val, exc_tb): shutil.rmtree(self.tmp_dir, ignore_errors=True) class TestFetchUtils: class ErrorToBeRaised(BaseException): pass def test_fetch_base_tarball(self): with MockingFetcher() as http_fetcher: with TemporaryDirectory() as temp_dir: temp_dir_path = PosixPath(temp_dir) http_fetcher.fetch_tarballs_into( version=TEST_DISTRIBUTION.version, architecture=TEST_DISTRIBUTION.architecture, components=TEST_DISTRIBUTION.components, temp_dir=temp_dir_path) assert temp_dir_path.joinpath('base.txz').is_file() def test_fetch_tarballs_invalid_version(self): distribution_version = Version(major=10, minor=6, version_type=VersionType.RELEASE) with MockingFetcher() as http_fetcher: with pytest.raises(URLError, match=r'\[Errno 2\] No such file or directory: '): http_fetcher.fetch_tarballs_into( version=distribution_version, architecture=Architecture.AMD64, components=[Component.BASE], temp_dir=PosixPath('/tmp')) def test_fetch_tarballs_from_snapshots(self): distribution_version = Version(major=12, minor=0, version_type=VersionType.STABLE) with MockingFetcher() as http_fetcher: with TemporaryDirectory() as temp_dir: temp_dir_path = PosixPath(temp_dir) http_fetcher.fetch_tarballs_into( version=distribution_version, architecture=Architecture.AMD64, components=[Component.BASE], temp_dir=temp_dir_path) assert temp_dir_path.joinpath('base.txz').is_file() def test_fetch_with_callback_function(self): def callback_function(text_to_show: str, received_bytes: int, total_bytes: int, time_elapsed: float): assert isinstance(text_to_show, str) assert isinstance(received_bytes, int) assert isinstance(total_bytes, int) assert isinstance(time_elapsed, float) raise TestFetchUtils.ErrorToBeRaised(f"test message") distribution_version = Version(major=12, minor=0, version_type=VersionType.STABLE) with pytest.raises(TestFetchUtils.ErrorToBeRaised): with MockingFetcher() as http_fetcher: http_fetcher.fetch_tarballs_into( version=distribution_version, architecture=Architecture.AMD64, components=[Component.BASE], temp_dir=PosixPath('/tmp'), callback=callback_function)
2.203125
2
Source/GUI_1/SimulatorGUI.py
pranavjain110/CarHealthMonitor
1
12779265
<gh_stars>1-10 from tkinter import * from tkinter import ttk import sender window = Tk() window.iconbitmap(r'carsensors.ico') window.title("Car Health Monitor") window.minsize(800, 600) window.maxsize(800, 600) window.configure(bg='black') temp = 40 press = 35 oil_time_days = 0 tire_dist_kms = 0 mailID = StringVar() email = "<EMAIL>" # setting up the font size and style fontstyle = "Helvetica" small_fsize = 13 large_fsize = 15 combostyle = ttk.Style() combostyle.theme_create('combostyle', parent='alt', settings={'TCombobox': {'configure': {'selectbackground': 'black', 'foreground': 'white', 'fieldbackground': 'black', 'background': 'dark grey', 'arrowcolor': 'black', 'bordercolor': 'white' }}}) combostyle.theme_use('combostyle') # Initializing an object of sender rabbit_mq = sender.RabbitMq(queue='Hello', host='localhost', exchange='', routing_key='Hello') # x = 0 sensor1Data = [] sensor2Data = [] # Main titles lbl_Title = Label(window, text="\n Sensor Data \n", bg="black", fg="cyan3", font=(large_fsize, large_fsize)) lbl_Temp = Label(window, text="Engine Temperature (°C)", font=( fontstyle, small_fsize), bg="black", fg="white") lbl_Press = Label(window, text="Tire Pressure (psi)", font=( fontstyle, small_fsize), bg="black", fg="white") lbl_blank2 = Label(window, text=" ", bg="black") lbl_cat1 = Label(window, text="Vehicle Type", font=( fontstyle, small_fsize), bg="black", fg="white") lbl_blank3 = Label(window, text=" ", bg="black") lbl_cat2 = Label(window, text="Driving Weather Condition", font=(fontstyle, small_fsize), bg="black", fg="white") lbl_blank4 = Label(window, text=" ", bg="black") lbl_heading = Label(window, text="\nTime elapsed after last replacement\n ", bg="black", fg="cyan3", font=(fontstyle, large_fsize)) lbl_blank5 = Label(window, text=" ", bg="black") lbl_oilTime = Label(window, text="For Oil (in days)", font=( fontstyle, small_fsize), bg="black", fg="white") lbl_blank3 = Label(window, text=" ", bg="black") lbl_tireDist = Label(window, text="For Tire (in kms)", font=( fontstyle, small_fsize), bg="black", fg="white") lbl_blank6 = Label(window, text=" \n ", bg="black") lbl_blank7 = Label(window, text=" \n ", bg="black") email_input = Entry(window, textvariable=mailID, bg="dark grey", font=(fontstyle, large_fsize), fg="black") lbl_blank8 = Label(window, text=" \n ", bg="black") lbl_email = Label(window, text="Please enter email id to receive notifications", font=(fontstyle, small_fsize), bg="black", fg="white") # Number labels count_Temp = Label(window, text=temp, bg="black", fg="white", font=(fontstyle, small_fsize)) count_Press = Label(window, text=press, bg="black", fg="white", font=(fontstyle, small_fsize)) count_oil_time = Label(window, text=oil_time_days, bg="black", fg="white", font=(fontstyle, small_fsize)) count_tire_dist = Label(window, text=tire_dist_kms, bg="black", fg="white", font=(fontstyle, small_fsize)) makes = ['Car', 'Truck'] make_select = ttk.Combobox(window, values=makes, width=0) weather_condition = ['Summer', 'Winter'] weather_select = ttk.Combobox(window, values=weather_condition, width=0) # Placing Labels using grid function # Text Labels lbl_Title.grid(row=0, column=1, sticky=N + S + E + W, columnspan=3) lbl_Temp.grid(row=4, column=0, sticky=N + S + E + W) lbl_Press.grid(row=6, column=0, sticky=N + S + E + W) lbl_blank2.grid(row=7, column=0, sticky=N + S + E + W) lbl_cat1.grid(row=8, column=0, sticky=N + S + E + W) lbl_blank3.grid(row=9, column=0, sticky=N + S + E + W) lbl_cat2.grid(row=10, column=0, sticky=N + S + E + W) lbl_blank4.grid(row=11, column=0, sticky=N + S + E + W) lbl_heading.grid(row=12, column=1, sticky=N + S + E + W, columnspan=3) lbl_blank5.grid(row=13, column=0, sticky=N + S + E + W) lbl_oilTime.grid(row=14, column=0, sticky=N + S + E + W) lbl_blank6.grid(row=15, column=4, sticky=N + S + E + W) lbl_tireDist.grid(row=16, column=0, sticky=N + S + E + W) lbl_blank7.grid(row=17, column=4, sticky=N + S + E + W) email_input.grid(row=18, column=2, sticky=N + S + E + W) lbl_email.grid(row=18, column=0, sticky=N + S + E + W, columnspan=1) lbl_blank8.grid(row=19, column=4, sticky=N + S + E + W) # Number Labels count_Temp.grid(row=4, column=2, sticky=N + S + E + W) count_Press.grid(row=6, column=2, sticky=N + S + E + W) make_select.grid(row=8, column=2, sticky=N + S + E + W) weather_select.grid(row=10, column=2, sticky=N + S + E + W) count_oil_time.grid(row=14, column=2, sticky=N + S + E + W) count_tire_dist.grid(row=16, column=2, sticky=N + S + E + W) # Reading image files # image file used for + and - button img_increase = PhotoImage(file='increase.png') img_decrease = PhotoImage(file='decrease.png') def increase_temp(): """Function to increase temperature variable """ global temp temp = temp + 10 count_Temp.configure(text=temp) def decrease_temp(): """Function to decrease temperature variable """ global temp if temp > 0: temp = temp - 10 count_Temp.configure(text=temp) def increase_press(): """Function to increase pressure variable """ global press if press < 40: press = press + 1 count_Press.configure(text=press) def decrease_press(): """Function to decrease pressure variable """ global press if press > 0: press = press - 1 count_Press.configure(text=press) def increase_oilTime(): """Function to increase oil variable Oil time represents time elapsed since oil was replaced. """ global oil_time_days oil_time_days = oil_time_days + 5 count_oil_time.configure(text=oil_time_days) def decrease_oilTime(): """Function to decrease oilTime variable Oil time represents time elapsed since oil was replaced. """ global oil_time_days # Condition to limit the minimum value of the variable to 0 if oil_time_days > 0: oil_time_days = oil_time_days - 5 count_oil_time.configure(text=oil_time_days) def increase_tireDist(): """Function to increase tire Distance variable Tire distance represents distance car has moved since tire was changed. """ global tire_dist_kms tire_dist_kms = tire_dist_kms + 5000 count_tire_dist.configure(text=tire_dist_kms) def decrease_tireDist(): """Function to decrease tire Distance variable Tire distance represents distance car has moved since tire was changed. """ global tire_dist_kms # Condition to limit the minimum value of the variable to 0 if tire_dist_kms > 0: tire_dist_kms = tire_dist_kms - 5000 count_tire_dist.configure(text=tire_dist_kms) def transmit(): """Function to set the value of email to the one entered by the user in the text box """ global mailID global email email = mailID.get() # Button to increment and decrement the parameters btn_decTemp = Button(window, image=img_decrease, command=decrease_temp, bg="black", borderwidth=0, activebackground="black") btn_incTemp = Button(window, image=img_increase, command=increase_temp, bg="black", borderwidth=0, activebackground="black") btn_incPress = Button(window, image=img_decrease, command=decrease_press, bg="black", borderwidth=0, activebackground="black") btn_decPress = Button(window, image=img_increase, command=increase_press, bg="black", borderwidth=0, activebackground="black") btn_decOilTime = Button(window, image=img_decrease, command=decrease_oilTime, bg="black", borderwidth=0, activebackground="black") btn_incOilTime = Button(window, image=img_increase, command=increase_oilTime, bg="black", borderwidth=0, activebackground="black") btn_decTireDist = Button(window, image=img_decrease, command=decrease_tireDist, bg="black", borderwidth=0, activebackground="black") btn_incTireDist = Button(window, image=img_increase, command=increase_tireDist, bg="black", borderwidth=0, activebackground="black") btn_mailID = Button(window, text="Enter", command=transmit, bg="black", fg="cyan3", height=2, width=4) # Placing buttons using grid function btn_decTemp.grid(row=4, column=1, sticky=N + S + E + W) btn_incTemp.grid(row=4, column=3, sticky=N + S + E + W) btn_incPress.grid(row=6, column=1, sticky=N + S + E + W) btn_decPress.grid(row=6, column=3, sticky=N + S + E + W) btn_decOilTime.grid(row=14, column=1, sticky=N + S + E + W) btn_incOilTime.grid(row=14, column=3, sticky=N + S + E + W) btn_decTireDist.grid(row=16, column=1, sticky=N + S + E + W) btn_incTireDist.grid(row=16, column=3, sticky=N + S + E + W) btn_mailID.grid(row=18, column=3, sticky=N + S + E + W) window.grid_columnconfigure(0, weight=1) window.grid_columnconfigure(1, weight=1) window.grid_columnconfigure(2, weight=1) window.grid_columnconfigure(3, weight=1) window.grid_rowconfigure(0, weight=4) window.grid_rowconfigure(5, weight=4) def timer(): # global x # if x < 1100: # call this function again in 1,000 milliseconds window.after(1000, timer) print("Updating ...") sensor1Data.append(temp) sensor2Data.append(press) category1 = weather_select.get() category2 = make_select.get() # store 10 reading in a list and then publish at once if len(sensor1Data) == 10: rabbit_mq.publish(payload={"sensor1Data": sensor1Data, "sensor2Data": sensor2Data, "oilTime_hrs": oil_time_days * 24, "tire_dist_kms": tire_dist_kms, "email": email, "category1": category1, "category2": category2}) sensor2Data.clear() sensor1Data.clear() # Set X=0 to run timer function in an infinite loop # if x > 1000: # x = 0 # x += 1 timer() window.mainloop()
2.828125
3
code/kuantum-komputers/randomp python shit.py
SoftwareCornwall/m2m-teams-july-2019
0
12779266
<gh_stars>0 users = ["will", "ok", "roberto", "nou"] LoggedIn=False while not LoggedIn: user = input("Username>> ") for i in range(len(users)-1): if user == users[i]: password = input("Password>> ") if password == users[i+1]: print("Correct login details") LoggedIn=True else: print("User details wrong")
3.796875
4
python/132_Palindrome_Partition_II.py
liaison/LeetCode
17
12779267
<filename>python/132_Palindrome_Partition_II.py class Solution: def minCut(self, s: str) -> int: # element indicates the minimal number of partitions # we need to divide the corresponding substring dp = [0] * (len(s)+1) for right in range(1, len(s)+1): num_parts = float('inf') for left in range(0, right): substr = s[left:right] # isPalindrome(s[left:right]) if substr == substr[::-1]: num_parts = min(num_parts, dp[left]+1) if left == 0: # cannot have less than one partition break dp[right] = num_parts return dp[len(s)] - 1
3.390625
3
model_trainer/tf_logger.py
NeverendingNotification/nnlibs
0
12779268
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Sep 30 12:07:19 2018 @author: nn """ from collections import OrderedDict import os import cv2 from . import tf_metrics def get_logger(arc_type, logger_params): if arc_type == "sl": logger = SlLogger(**logger_params) elif arc_type == "ae": logger = AELogger(**logger_params) elif arc_type == "gan": logger = GanLogger(**logger_params) return logger class BaseLogger: def __init__(self, log_dir=None, out_root=None, metrics={}, metric_period=1, sample_dirname="sample"): if out_root is not None: log_dir = os.path.join(out_root, log_dir) if log_dir is not None: if not os.path.isdir(log_dir): os.makedirs(log_dir) self.log_dir = log_dir self.metrics = metrics self.sample = sample_dirname def start_epoch(self, trainer, loader, epoch): self.losses = OrderedDict() def log_batch(self, batch, loss_keys=["loss"]): for key in loss_keys: if key not in batch: continue if key not in self.losses: self.losses[key] = 0.0 self.losses[key] += batch[key] def end_epoch(self, trainer, loader, epoch): raise NotImplementedError() def get_loss_str(self): key = ", ".join(["{} : {:.04f}".format(k, v) for k, v in self.losses.items()]) return key def log_end(self, trainer, loader): pass class SlLogger(BaseLogger): def end_epoch(self, trainer, loader, epoch): out = tf_metrics.get_metrics_classifier(loader, trainer, metrics=self.metrics) loss_key = self.get_loss_str() key = ", ".join(["{} : {}".format(metric, out[metric]) for metric in self.metrics]) print("Epoch : {}, {}, {}".format(epoch, loss_key, key)) class AELogger(BaseLogger): def end_epoch(self, trainer, loader, epoch): out, images = tf_metrics.get_metrics_generator(loader, trainer, metrics=self.metrics) o_dir = os.path.join(self.log_dir, self.sample) if not os.path.isdir(o_dir): os.makedirs(o_dir) for i, image in enumerate(images): cv2.imwrite(os.path.join(o_dir, "{:05d}_{:04d}.png".format(epoch, i)), image) loss_key = self.get_loss_str() key = ", ".join(["{} : {}".format(metric, out[metric]) for metric in self.metrics]) print("Epoch : {}, {}, {}".format(epoch, loss_key, key)) class GanLogger(BaseLogger): def end_epoch(self, trainer, loader, epoch): out, images = tf_metrics.get_metrics_generator(loader, trainer, metrics=self.metrics) o_dir = os.path.join(self.log_dir, self.sample) if not os.path.isdir(o_dir): os.makedirs(o_dir) for i, image in enumerate(images): cv2.imwrite(os.path.join(o_dir, "{:05d}_{:04d}.png".format(epoch, i)), image) loss_key = self.get_loss_str() key = ", ".join(["{} : {}".format(metric, out[metric]) for metric in self.metrics]) print("Epoch : {}, {}, {}".format(epoch, loss_key, key))
2.03125
2
utils/fortran_utils.py
IAEA-NDS/FENDL-Code
1
12779269
<gh_stars>1-10 from fortranformat import FortranRecordReader, FortranRecordWriter from .generic_utils import flatten, static_vars @static_vars(frr_cache={}) def fort_read(fobj, formatstr, none_as=None, varnames=None, debug=False): """Read from a file or string using a format descriptor Keyword arguments: fobj -- file object or string to read from formatstr -- the Fortran format description string none_as -- conversion of None resulting from incomplete reads varnames -- a list with variable names used as keys in the resulting dictionary that contains the values read. If None, return the values read as a list debug -- print extra information on stdout for debugging purposes """ if formatstr not in fort_read.frr_cache: fort_read.frr_cache[formatstr] = FortranRecordReader(formatstr) frr = fort_read.frr_cache[formatstr] if not isinstance(fobj, str): fname = fobj.name inpline = fobj.readline() else: fname = 'console' inpline = fobj res = frr.read(inpline) if none_as is not None: res = [none_as if x is None else x for x in res] if varnames: res = {k: res[i] for i, k in enumerate(varnames)} if debug: print('--- reading ---') print('file: ' + fname) print('fmt: ' + formatstr) print('str: ' + inpline) return res @static_vars(frw_cache={}) def fort_write(fobj, formatstr, values, debug=False): """Write values to a file in a specified Fortran format. Keyword arguments: fobj -- file object for output formatstr -- the Fortran format description string values -- values given in a (potentially nested) list debug -- print extra information for debugging purposes """ vals = list(flatten(values)) vals = [v for v in vals if v is not None] if debug: print('--- writing ---') try: print('file: ' + fobj.name) except AttributeError: print('file: console') print('fmt: ' + formatstr) print('values: ') print(vals) if formatstr not in fort_write.frw_cache: fort_write.frw_cache[formatstr] = FortranRecordWriter(formatstr) frw = fort_write.frw_cache[formatstr] line = frw.write(vals) if fobj is None: print(line) else: fobj.write(line + '\n') def fort_range(*args): """Specify a range Fortran style. For instance, fort_range(1,3) equals range(1,4). """ if len(args) == 2: return range(args[0], args[1]+1) elif len(args) == 3: return range(args[0], args[1]+1, args[2]) else: raise IndexError
2.8125
3
tests/test_auth.py
ported-pw/asgi-webdav
0
12779270
from base64 import b64encode import pytest from asgi_webdav.constants import DAVPath, DAVUser from asgi_webdav.config import update_config_from_obj, get_config from asgi_webdav.auth import DAVPassword, DAVPasswordType, DAVAuth from asgi_webdav.request import DAVRequest USERNAME = "username" PASSWORD = "password" HASHLIB_USER = "user-hashlib" basic_authorization = b"Basic " + b64encode( "{}:{}".format(USERNAME, PASSWORD).encode("utf-8") ) basic_authorization_bad = b"Basic bad basic_authorization" def get_basic_authorization(username, password) -> bytes: return b"Basic " + b64encode("{}:{}".format(username, password).encode("utf-8")) def fake_call(): pass request = DAVRequest( {"method": "GET", "headers": {b"authorization": b"placeholder"}, "path": "/"}, fake_call, fake_call, ) def test_dev_password_class(): pw_obj = DAVPassword("password") assert pw_obj.type == DAVPasswordType.RAW pw_obj = DAVPassword( "<hashlib>:sha256:salt:291e247d155354e48fec2b579637782446821935fc96a5a08a0b7885179c408b" ) assert pw_obj.type == DAVPasswordType.HASHLIB pw_obj = DAVPassword("<digest>:ASGI-WebDAV:c1d34f1e0f457c4de05b7468d5165567") assert pw_obj.type == DAVPasswordType.DIGEST pw_obj = DAVPassword( "<ldap>#1#ldaps://rexzhang.myds.me#SIMPLE#" "uid=user-ldap,cn=users,dc=rexzhang,dc=myds,dc=me" ) assert pw_obj.type == DAVPasswordType.LDAP @pytest.mark.asyncio async def test_basic_access_authentication(): config_data = { "account_mapping": [ {"username": USERNAME, "password": PASSWORD, "permissions": list()}, { "username": HASHLIB_USER, "password": "<<PASSWORD>:" "<PASSWORD>", "permissions": list(), }, ] } update_config_from_obj(config_data) dav_auth = DAVAuth(get_config()) request.headers[b"authorization"] = get_basic_authorization(USERNAME, PASSWORD) user, message = await dav_auth.pick_out_user(request) print(basic_authorization) print(user) print(message) assert isinstance(user, DAVUser) request.headers[b"authorization"] = get_basic_authorization(HASHLIB_USER, PASSWORD) user, message = await dav_auth.pick_out_user(request) assert isinstance(user, DAVUser) request.headers[b"authorization"] = basic_authorization_bad user, message = await dav_auth.pick_out_user(request) print(user) print(message) assert user is None def test_verify_permission(): username = USERNAME password = PASSWORD admin = False # "+" permissions = ["+^/aa"] dav_user = DAVUser(username, password, permissions, admin) assert not dav_user.check_paths_permission([DAVPath("/a")]) assert dav_user.check_paths_permission([DAVPath("/aa")]) assert dav_user.check_paths_permission([DAVPath("/aaa")]) permissions = ["+^/bbb"] dav_user = DAVUser(username, password, permissions, admin) assert not dav_user.check_paths_permission( [DAVPath("/aaa")], ) # "-" permissions = ["-^/aaa"] dav_user = DAVUser(username, password, permissions, admin) assert not dav_user.check_paths_permission( [DAVPath("/aaa")], ) # "$" permissions = ["+^/a$"] dav_user = DAVUser(username, password, permissions, admin) assert dav_user.check_paths_permission( [DAVPath("/a")], ) assert not dav_user.check_paths_permission( [DAVPath("/ab")], ) assert not dav_user.check_paths_permission( [DAVPath("/a/b")], ) # multi-rules permissions = ["+^/a$", "+^/a/b"] dav_user = DAVUser(username, password, permissions, admin) assert dav_user.check_paths_permission( [DAVPath("/a")], ) assert dav_user.check_paths_permission( [DAVPath("/a/b")], ) permissions = ["+^/a$", "+^/a/b", "-^/a/b/c"] dav_user = DAVUser(username, password, permissions, admin) assert dav_user.check_paths_permission( [DAVPath("/a")], ) assert dav_user.check_paths_permission( [DAVPath("/a/b")], ) assert not dav_user.check_paths_permission( [DAVPath("/a/b/c")], ) permissions = ["+^/a$", "+^/a/b1", "-^/a/b2"] dav_user = DAVUser(username, password, permissions, admin) assert dav_user.check_paths_permission( [DAVPath("/a")], ) assert dav_user.check_paths_permission( [DAVPath("/a/b1")], ) assert not dav_user.check_paths_permission( [DAVPath("/a/b2")], )
2.203125
2
examples/basic_bot.py
nkpro2000sr/discord-reargparse
1
12779271
<filename>examples/basic_bot.py import discord from discord.ext import commands from discord_reargparse import * import random import shlex description = "An example bot to showcase the discord_reargparse module." bot = commands.Bot(command_prefix='?', description=description) @bot.event async def on_ready(): print('Logged in as') print(bot.user.name) print(bot.user.id) print('------') re_convert = RegExArgConverter( r"(\d+) (\d+)", left = Parameter(int), right = Parameter(int), ) @bot.command() async def add(ctx, *, param:re_convert=re_convert.defaults): """Adds two numbers together.""" await ctx.send(param["left"] + param["right"]) re_convert = RegExArgConverter( r"(\d+d\d+)", dice = Parameter(), ) @bot.command() async def roll(ctx, *, param:re_convert=re_convert.defaults): """Rolls a dice in NdN format.""" rolls, limit = map(int, param["dice"].split('d')) result = ', '.join(str(random.randint(1, limit)) for r in range(rolls)) await ctx.send(result) re_convert = RegExArgConverter( r"(\S+)", choices = Parameter(shlex.split), ) @bot.command(description='For when you wanna settle the score some other way') async def choose(ctx, *, param:re_convert=re_convert.defaults): """Chooses between multiple choices.""" await ctx.send(random.choice(param["choices"])) re_convert = RegExArgConverter( r"(\d+)(?:\ (\S+))?", times = Parameter(int), content = Parameter(default='repeating...'), ) @bot.command() async def repeat(ctx, *, param:re_convert=re_convert.defaults): """Repeats a message multiple times.""" for i in range(param["times"]): await ctx.send(param["content"]) re_convert = RegExArgConverter( r"(\S+)", member = Parameter(discord.Member), ) @bot.command() async def joined(ctx, *, param:re_convert=re_convert.defaults): """Says when a member joined.""" await ctx.send('{0.name} joined in {0.joined_at}'.format(param["member"])) @bot.group() async def cool(ctx): """Says if a user is cool. In reality this just checks if a subcommand is being invoked. """ if ctx.invoked_subcommand is None: await ctx.send('No, {0.subcommand_passed} is not cool'.format(ctx)) @cool.command(name='bot') async def _bot(ctx): """Is the bot cool?""" await ctx.send('Yes, the bot is cool.') bot.run('token')
3.296875
3
code/wheel_examples.py
garyjames/building-skills-oo-design-book
32
12779272
<filename>code/wheel_examples.py """ Building Skills in Object-Oriented Design V4 Wheel Examples """ from typing import List, Any import random Bin = Any class Wheel_RNG: def __init__(self, bins: List[Bin], rng: random.Random=None) -> None: self.bins = bins self.rng = rng or random.Random() def choose(self) -> Bin: return self.rng.choice(self.bins) class Wheel: def __init__(self, bins: List[Bin]) -> None: self.bins = bins self.rng = random.Random() def choose(self) -> Bin: return self.rng.choice(self.bins)
3.703125
4
evaluate.py
sYeaLumin/SketchGNN
11
12779273
import os import ndjson import json import time from options import TestOptions from framework import SketchModel from utils import load_data from writer import Writer import numpy as np from evalTool import * def run_eval(opt=None, model=None, loader=None, dataset='test', write_result=False): if opt is None: opt = TestOptions().parse() if model is None: model = SketchModel(opt) if loader is None: loader = load_data(opt, datasetType=dataset, permutation=opt.permutation) # print(len(loader)) if opt.eval_way == 'align': predictList, lossList = eval_align_batchN(model, loader, P=opt.points_num) elif opt.eval_way == 'unalign': predictList, lossList = eval_unalign_batch1(model, loader) else: raise NotImplementedError('eval_way {} not implemented!'.format(opt.eval_way)) # print(predictList.shape) testData = [] with open(os.path.join('data', opt.dataset, 'train', '{}_{}.ndjson'.format(opt.class_name, dataset)), 'r') as f: testData = ndjson.load(f) if opt.metric_way == 'wlen': p_metric_list, c_metric_list = eval_with_len(testData, predictList) elif opt.metric_way == 'wolen': p_metric_list, c_metric_list = eval_without_len(testData, predictList) else: raise NotImplementedError('metric_way {} not implemented!'.format(opt.metric_way)) if write_result: testData = get_eval_result(testData, predictList) result_path = os.path.join('data', opt.dataset, 'train', '{}_{}.ndjson'.format(opt.class_name, 'res')) with open(result_path, 'w') as f: ndjson.dump(testData, f) loss_avg = np.average(lossList) P_metric = np.average(p_metric_list) C_metric = np.average(c_metric_list) # print('P_metric:{:.4}%\tC_metric:{:.4}%'.format(P_metric*100, C_metric*100)) return loss_avg, P_metric, C_metric if __name__ == "__main__": _, P_metric, C_metric = run_eval(write_result=True) print('P_metric:{:.4}%\tC_metric:{:.4}%'.format(P_metric*100, C_metric*100))
2.125
2
tests/modeling/test_split_modeled_energy_trace.py
tsennott/eemeter
0
12779274
<reponame>tsennott/eemeter import tempfile from datetime import datetime import pandas as pd import numpy as np from numpy.testing import assert_allclose import pytest import pytz from eemeter.modeling.formatters import ModelDataFormatter from eemeter.modeling.models.seasonal import SeasonalElasticNetCVModel from eemeter.modeling.split import SplitModeledEnergyTrace from eemeter.structures import ( EnergyTrace, ModelingPeriod, ModelingPeriodSet, ) from eemeter.testing.mocks import MockWeatherClient from eemeter.weather import ISDWeatherSource @pytest.fixture def trace(): data = { "value": np.tile(1, (365,)), "estimated": np.tile(False, (365,)), } columns = ["value", "estimated"] index = pd.date_range('2000-01-01', periods=365, freq='D', tz=pytz.UTC) df = pd.DataFrame(data, index=index, columns=columns) return EnergyTrace("ELECTRICITY_CONSUMPTION_SUPPLIED", df, unit="KWH") @pytest.fixture def mock_isd_weather_source(): tmp_url = "sqlite:///{}/weather_cache.db".format(tempfile.mkdtemp()) ws = ISDWeatherSource("722880", tmp_url) ws.client = MockWeatherClient() return ws @pytest.fixture def modeling_period_set(): modeling_period_1 = ModelingPeriod( "BASELINE", end_date=datetime(2000, 9, 1, tzinfo=pytz.UTC), ) modeling_period_2 = ModelingPeriod( "REPORTING", start_date=datetime(2001, 1, 1, tzinfo=pytz.UTC), ) modeling_periods = { "modeling_period_1": modeling_period_1, "modeling_period_2": modeling_period_2, } grouping = [ ("modeling_period_1", "modeling_period_2"), ] return ModelingPeriodSet(modeling_periods, grouping) def test_basic_usage(trace, modeling_period_set, mock_isd_weather_source): # create SplitModeledEnergyTrace formatter = ModelDataFormatter('D') model_mapping = { 'modeling_period_1': SeasonalElasticNetCVModel(65, 65), 'modeling_period_2': SeasonalElasticNetCVModel(65, 65), } smet = SplitModeledEnergyTrace( trace, formatter, model_mapping, modeling_period_set) # fit normally outputs = smet.fit(mock_isd_weather_source) assert 'modeling_period_1' in smet.fit_outputs assert 'modeling_period_2' in smet.fit_outputs assert len(smet.fit_outputs) == 2 assert outputs['modeling_period_1']['status'] == 'SUCCESS' assert outputs['modeling_period_1']['start_date'] == \ datetime(2000, 1, 1, tzinfo=pytz.UTC) assert outputs['modeling_period_1']['end_date'] == \ datetime(2000, 9, 1, tzinfo=pytz.UTC) assert outputs['modeling_period_1']['n_rows'] == 245 index = pd.date_range('2001-01-01', periods=6, freq='D', tz=pytz.UTC) demand_fixture_data = \ smet.formatter.create_demand_fixture(index, mock_isd_weather_source) mp1_pred, variance = smet.predict( 'modeling_period_1', demand_fixture_data, summed=False) mp2_pred = smet.predict('modeling_period_2', demand_fixture_data) assert mp1_pred.shape == (6,) assert mp2_pred is None assert variance > 0 with pytest.raises(KeyError): smet.predict('modeling_period_3', demand_fixture_data) def callable_(formatter, model, returnme): return returnme mp1_deriv = smet.compute_derivative( 'modeling_period_1', callable_, {"returnme": "A"}) mp2_deriv = smet.compute_derivative( 'modeling_period_2', callable_, {"returnme": "A"}) assert mp1_deriv == "A" assert mp2_deriv is None pred, variance = smet.predict( 'modeling_period_1', demand_fixture_data, summed=True) # predict summed assert_allclose(pred, 6.035919) assert variance > 0 # bad weather source smet.fit(None) assert outputs['modeling_period_1']['status'] == 'FAILURE' def test_bad_weather_source(trace, modeling_period_set): # create SplitModeledEnergyTrace formatter = ModelDataFormatter('D') model_mapping = { 'modeling_period_1': SeasonalElasticNetCVModel(65, 65), 'modeling_period_2': SeasonalElasticNetCVModel(65, 65), } smet = SplitModeledEnergyTrace( trace, formatter, model_mapping, modeling_period_set) # need to see that it gives a data sufficiency exception outputs = smet.fit(None) assert 'DataSufficiencyException' in outputs['modeling_period_1']['traceback'] assert 'DataSufficiencyException' in outputs['modeling_period_2']['traceback']
2.140625
2
AutoApiTest/apps.py
github-xiaoh/httpRunnerManager
1
12779275
<reponame>github-xiaoh/httpRunnerManager from django.apps import AppConfig class AutoapitestConfig(AppConfig): name = 'AutoApiTest'
1.257813
1
2020/day6/1.py
darkterbear/advent-of-code-2015
0
12779276
import re file = open('./input', 'r') lines = file.readlines() lines = list(map(lambda line: line[:-1], lines)) sum = 0 exists = set() for line in lines: if len(line) == 0: sum += len(exists) exists = set() else: for c in line: exists.add(c) print(sum)
3.609375
4
efficientdet/test_now.py
Rambledeng/automl
0
12779277
<reponame>Rambledeng/automl import os import sys import tensorflow.compat.v1 as tf import PIL import os import wget def download(m): if m not in os.listdir(): # !wget https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/{m}.tar.gz dl_url = 'https://storage.googleapis.com/cloud-tpu-checkpoints/efficientdet/coco/'+m+'.tar.gz' wget.download(dl_url) !tar zxf {m}.tar.gz ckpt_path = os.path.join(os.getcwd(), m) return ckpt_path if __name__ == '__main__': MODEL = 'efficientdet-d0' #@param # Download checkpoint. ckpt_path = download(MODEL) print('Use model in {}'.format(ckpt_path)) # Prepare image and visualization settings. image_url = 'https://user-images.githubusercontent.com/11736571/77320690-099af300-6d37-11ea-9d86-24f14dc2d540.png'#@param image_name = 'test0.png' #@param # wget.download(image_url, 'img.png') img_path = os.path.join(os.getcwd(), 'test0.png') min_score_thresh = 0.35 #@param max_boxes_to_draw = 200 #@param line_thickness = 2#@param # Get the largest of height/width and round to 128. image_size = max(PIL.Image.open(img_path).size) # In case you need to specify different image size or batch size or #boxes, then # you need to export a new saved model and run the inferernce. serve_image_out = 'serve_image_out' # !mkdir {serve_image_out} saved_model_dir = 'savedmodel' # !rm -rf {saved_model_dir} # # Step 1: export model # !python model_inspect.py --runmode=saved_model \ # --model_name=efficientdet-d0 --ckpt_path=efficientdet-d0 \ # --hparams="image_size=1920x1280" --saved_model_dir={saved_model_dir} # Step 2: do inference with saved model. !python model_inspect.py --runmode=saved_model_infer \ --model_name=efficientdet-d0 --saved_model_dir={saved_model_dir} \ --input_image=test0.png --output_image_dir={serve_image_out} \ --min_score_thresh={min_score_thresh} --max_boxes_to_draw={max_boxes_to_draw} \ from IPython import display display.display(display.Image(os.path.join(serve_image_out, '0.jpg')))
2.625
3
application/response/LinearClassifier.py
librairy/explainable-qa
1
12779278
<reponame>librairy/explainable-qa #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 25 12:54:44 2021 @author: cbadenes """ import logging import os import pandas import joblib import spacy from time import time from scipy.sparse import csr_matrix from sklearn.naive_bayes import GaussianNB from sklearn.svm import LinearSVC logger = logging.getLogger(__name__) class TRECClassifier: def __init__(self): self.en_nlp_l = spacy.load("en_core_web_lg") training_data_path = os.path.join("./application/question/train/train_5500.csv") self.df_question_train = pandas.read_csv(training_data_path, sep='|', header=0, encoding = "ISO-8859-1") self.df_question_class = self.df_question_train.pop('Class') self.df_question_train.pop('Question') self.df_question_train.pop('WH-Bigram') self.df_question_train = pandas.get_dummies(self.df_question_train) self.question_clf = joblib.load("./application/question/question_classifier.pkl") print("TREC Question Classifier ready") def get_category(self, question): en_doc_l = self.en_nlp_l(u'' + question) question_class = self.classify_question(en_doc=en_doc_l, df_question_train=self.df_question_train) return question_class def pre_process(self,dta): return pandas.get_dummies(dta) def remove_irrelevant_features(self, df_question): df_question_class = df_question.pop('Class') df_question.pop('Question') df_question.pop('WH-Bigram') return df_question_class def transform_data_matrix(self, df_question_train, df_question_predict): df_question_train_columns = list(df_question_train.columns) df_question_predict_columns = list(df_question_predict.columns) df_question_trans_columns = list(set(df_question_train_columns + df_question_predict_columns)) logger.debug("Union Columns: {0}".format(len(df_question_trans_columns))) trans_data_train = {} for feature in df_question_trans_columns: if feature not in df_question_train: trans_data_train[feature] = [0 for i in range(len(df_question_train.index))] else: trans_data_train[feature] = list(df_question_train[feature]) df_question_train = pandas.DataFrame(trans_data_train) logger.debug("Training data: {0}".format(df_question_train.shape)) df_question_train = csr_matrix(df_question_train) trans_data_predict = {} for feature in trans_data_train: if feature not in df_question_predict: trans_data_predict[feature] = 0 else: trans_data_predict[feature] = list(df_question_predict[feature]) # KeyError df_question_predict = pandas.DataFrame(trans_data_predict) logger.debug("Target data: {0}".format(df_question_predict.shape)) df_question_predict = csr_matrix(df_question_predict) return df_question_train, df_question_predict def naive_bayes_classifier(self, x_train, y, x_predict): gnb = GaussianNB() gnb.fit(x_train, y) prediction = gnb.predict(x_predict) return prediction def support_vector_machine(self, df_question_train, df_question_class, df_question_predict): lin_clf = LinearSVC() lin_clf.fit(df_question_train, df_question_class) prediction = lin_clf.predict(df_question_predict) return prediction, lin_clf def predict_question_class(self, question_clf, df_question_predict): return question_clf.predict(df_question_predict), question_clf def load_classifier_model(self, model_type="linearSVC"): # HELP: Not using the persistent classifier. SVC fails when it encounters previously unseen features at training. # Refer the comment in query_container training_model_path = os.path.join("./application/question/question_classifier.pkl") if model_type == "linearSVC": return joblib.load(training_model_path) def get_question_predict_data(self, en_doc=None, df_question_test=None): if df_question_test is None: # currently only supports single sentence classification sentence_list = list(en_doc.sents)[0:1] else: sentence_list = df_question_test["Question"].tolist() import spacy en_nlp = spacy.load("en_core_web_lg") question_data_frame = [] for sentence in sentence_list: wh_bi_gram = [] root_token, wh_pos, wh_nbor_pos, wh_word = [""] * 4 if df_question_test is not None: en_doc = en_nlp(u'' + sentence) sentence = list(en_doc.sents)[0] for token in sentence: if token.tag_ == "WDT" or token.tag_ == "WP" or token.tag_ == "WP$" or token.tag_ == "WRB": wh_pos = token.tag_ wh_word = token.text wh_bi_gram.append(token.text) wh_bi_gram.append(str(en_doc[token.i + 1])) wh_nbor_pos = en_doc[token.i + 1].tag_ if token.dep_ == "ROOT": root_token = token.tag_ question_data_frame_obj = {'WH': wh_word, 'WH-POS': wh_pos, 'WH-NBOR-POS': wh_nbor_pos, 'Root-POS': root_token} question_data_frame.append(question_data_frame_obj) logger.debug("WH : {0} | WH-POS : {1} | WH-NBOR-POS : {2} | Root-POS : {3}" .format(wh_word, wh_pos, wh_nbor_pos, root_token)) df_question = pandas.DataFrame(question_data_frame) return df_question def classify_question(self, en_doc=None, df_question_train=None, df_question_test=None): """ Determine whether this is a who, what, when, where or why question """ if df_question_test is None: df_question_predict = self.get_question_predict_data(en_doc=en_doc) else: df_question_predict = self.get_question_predict_data(df_question_test=df_question_test) df_question_predict = self.pre_process(df_question_predict) df_question_train, df_question_predict = self.transform_data_matrix(self.df_question_train, df_question_predict) #logger.debug("Classifier: {0}".format(question_clf)) predicted_class, svc_clf = self.support_vector_machine(df_question_train, self.df_question_class, df_question_predict) if df_question_test is not None: return predicted_class, svc_clf, self.df_question_class, df_question_train else: return predicted_class
2.640625
3
bot/python/handlers/message_handlers.py
darrso/parse_channels
0
12779279
import sys import time import aiogram.types from aiogram import types, Dispatcher, Bot from aiogram.dispatcher import FSMContext sys.path.append('bot') from database.sess import get_users_by_link from database.sess import create_new_user, check_on_off, switch_on_off, check_parse_channels, check_channel, \ add_channels, reemove_channels from python.States.StatesClasses import Adding, Removing from python.config import bToken, admin_chat, admin_id bot = Bot(token=bToken) async def start_command(message: types.Message): await message.answer("Hey!\n" "I am a parser for telegram channels.\n\n" "For the main menu, send - /menu.\n" "Everything will be written in detail there.") await message.answer_sticker(r'CAACAgIAAxkBAAIKpWHbI3SO<KEY>') # ДОБАВЛЕНИЕ НОВОГО ПОЛЬЗОВАТЕЛЯ В БАЗУ ДАННЫХ await create_new_user(message.from_user.id, message.from_user.username, 'on') async def main_menu(message: types.Message): await message.answer(f"Welcome to the main menu, {message.from_user.username}!\n" f"I am a bot that parses telegram channels.\n\n" "Here are my commands:\n" "/menu - main menu\n" "/parse_channels - a list of channels you are following\n" "/add_parse_channel - add to the channel list\n" "/remove_parse_channel - remove a channel from the list\n" "/off - turn off parsing of your channels\n" "/on - enable parsing of your channels\n\n" f"P.S. now - {await check_on_off(message.from_user.id)}\n\n" "My creator is @darrso") await message.answer_sticker(r'CAACAgIAAxkBAAIKrmHbJw6ckgI0IrCLe_TJrbUyCJ_xAALRAAM27BsFCW1Sl32PAAEsIwQ') async def switch_parametr(message: types.Message): text = (message.text).replace("/", "") if text == 'on': await switch_on_off('on', message.from_user.id) elif text == 'off': await switch_on_off('off', message.from_user.id) await message.answer(f'Parameter changed to: {text}' f'\nSend /menu to check it out!') async def parse_channel(message: types.Message): data = (await check_parse_channels(message.from_user.id)) if data: await message.answer(f'Here is the list of channels you are parsing:\n{data}\n\n' f'Delete channel - /remove_parse_channel\n' f'Add channel - /add_parse_channel\n' f'Main menu - /menu') else: await message.answer("You are not parsing any channels yet.\n\nTo add channels send /add_parse_channel") async def add_channel(message: types.Message): await message.answer("To add a new channel send LINK TO CHANNEL\n\n" "Example:\n" "https://t.me/test\n\n" "P.S. The bot cannot join private channels.\n" "You can add a channel to the list of those that you are parsing, but the bot will subscribe to it only after a while\n" "(you will receive a notification about this)") await Adding.first.set() async def adding_channel(message: types.Message, state: FSMContext): res = await check_channel(message.text, message.from_user.id) if res == 'NOT LINK!': await message.answer('This link is not working!\n' 'Try again - /add_parse_channel') elif res: await bot.send_message(chat_id=admin_chat, text="/add " + message.text) await add_channels(message.from_user.id, message.text) await message.answer('Successfully!\n\nSend /menu for main menu!') else: if await add_channels(message.from_user.id, message.text): await message.answer('Successfully!\n\nSend /menu for main menu!') else: await message.answer('This channel is already on your list!\n\n' 'View a list of your channels - /parse_channels') await state.finish() async def remove_channel(message: types.Message): data = (await check_parse_channels(message.from_user.id)) if data == 'No one channels': await message.answer("You cannot remove telegram channels from the list, because you have not added any!\n\n" "Checking the list of channels - /parse_channels") else: await message.answer("Choose number of channel and send it!\n" "Example:\n" "1\n\n" f"Here is the list of channels you are parsing:\n{data}") await Removing.first.set() async def removing_channel(message: types.Message, state: FSMContext): data = await reemove_channels(message.from_user.id, message.text) if data: await message.answer('Success!\n\n' 'List of your channels - /parse_channels') else: await message.answer('Error!\n\n' 'Try again - /remove_parse_channel\n' 'Main menu - /menu') await state.finish() async def new_post(message: types.Message): try: time.sleep(2); if message.chat.id == admin_chat: if message.text[0:9] != "/NEW_POST": pass else: messageid = message.message_id + 1 users = await get_users_by_link(message.text[10:]) if users: for i in users: await bot.forward_message(chat_id=int(i), from_chat_id=(admin_chat), message_id=messageid) else: pass except: pass def register_message_handlers(dp: Dispatcher): dp.register_message_handler(start_command, commands="start") dp.register_message_handler(main_menu, commands="menu") dp.register_message_handler(switch_parametr, commands=['on', 'off']) dp.register_message_handler(parse_channel, commands="parse_channels") dp.register_message_handler(add_channel, commands='add_parse_channel') dp.register_message_handler(adding_channel, state=Adding.first) dp.register_message_handler(remove_channel, commands='remove_parse_channel') dp.register_message_handler(removing_channel, state=Removing.first) dp.register_channel_post_handler(new_post, lambda message: message.text[0:9] == "/NEW_POST")
2.421875
2
art-generator/genius.py
GFX-Automated/GFX
0
12779280
<filename>art-generator/genius.py #!/bin/bash/python3.8 import os import lyricsgenius as genius credentials = { "id": "", "secret": "", "access_token": "", } os.environ["GENIUS_ACCESS_TOKEN"] = credentials["access_token"] GENIUS_ACCESS_TOKEN
1.6875
2
CommandLineCalculator.py
CoderDuino/CommandLineCalculator
0
12779281
import time def is_number(s): try: float(s) return True except ValueError: pass return False def ValidateInput(equation): if len(equation) != 3: return False if not (is_number(equation[0]) and is_number(equation[2])): return False if not equation[1] in ["*", "/", "-", "+"]: return False return True print("Welcome to command line calculator!") time.sleep(1) # sleep for a second while True: equation = input("Enter your calculation: ") # look for calculation if equation.lower() in ["exit", "stop", "quit", "end", "leave", "done", "finish"]: break if equation.lower() in ["expression", "test", "expr", "exec"]: expressionInput = input("Enter Expression: ") print(eval(expressionInput())) continue equation = equation.split(" ") # split equation into three pieces if not ValidateInput(equation): continue equation[0] = float(equation[0]) equation[2] = float(equation[2]) if equation[1] == "*": print(str(equation[0] * equation[2])) elif equation[1] == "/": print(str(equation[0] / equation[2])) elif equation[1] == "+": print(str(equation[0] + equation[2])) elif equation[1] == "-": print(str(equation[0] - equation[2]))
4
4
HW Tasks/hw6.py
bzhumakova/FirstProject
2
12779282
# Дан список обьектов спам-писем пришедших на почту. С помощью метода split найти слово # которое повторяется в списке больше всего (напомню что split возвращает из строки – список). # Найденное слово сохранить в переменную. # Далее на вход подается единственная строка – нужно проверить спам это или нет data = [ {'text':'oh hi duuuude how r uy??check this 1xbet'}, {'text':'Dear <NAME>, i am <NAME> i represent 1xbet company.Best bet service'}, {'text':'wooooh yoow harry look at my jackpot 100000000$ at 1xbet service'}, {'text':'Harry , today i saw the man who looks like Hawkeye from Avengers on 100% and he dont use 1xbet service'}, ] final_mail = 'Hello Harry, my name is Maksim, Im still waiting for the letter from Hogwarts' list=final_mail.split() # print(list) q_spam=0 spam_word='' database=[] for mail in data: str=mail['text'].lower().split() database.extend(str) for word in database: quantity=database.count(word) #print(quantity) if quantity>q_spam: q_spam=quantity spam_word=word print(q_spam,spam_word) if spam_word in final_mail.lower(): print('Mail is not OK') else: print("Mail is OK")
3.5625
4
00_Code/01_LeetCode/590_N-aryTreePostorderTraversal.py
KartikKannapur/Data_Structures_and_Algorithms_Python
1
12779283
""" Given an n-ary tree, return the postorder traversal of its nodes' values. For example, given a 3-ary tree: Return its postorder traversal as: [5,6,3,2,4,1]. """ """ # Definition for a Node. class Node(object): def __init__(self, val, children): self.val = val self.children = children """ class Solution(object): def postorder(self, root): """ :type root: Node :rtype: List[int] """ """ Method 1: BFS + Stack + Return in Reverse Order Your runtime beats 81.43 % of python submissions. """ # #Boundary Conditions: if not root: return [] res = [] stack = [root] while stack: node = stack.pop() for ele in node.children: stack.append(ele) res += [node.val] return res[::-1]
4.09375
4
losses.py
Liut2016/ecg-supcontrast
2
12779284
""" Author: <NAME> (<EMAIL>) Date: May 07, 2020 """ from __future__ import print_function import torch import torch.nn as nn import numpy as np from itertools import combinations class SupConLoss(nn.Module): """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. It also supports the unsupervised contrastive loss in SimCLR""" def __init__(self, temperature=0.07, contrast_mode='all', base_temperature=0.07): super(SupConLoss, self).__init__() self.temperature = temperature self.contrast_mode = contrast_mode self.base_temperature = base_temperature def forward(self, features, labels=None, mask=None): """Compute loss for model. If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf Args: features: hidden vector of shape [bsz, n_views, ...]. labels: ground truth of shape [bsz]. mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. Returns: A loss scalar. """ device = (torch.device('cuda') if features.is_cuda else torch.device('cpu')) if len(features.shape) < 3: raise ValueError('`features` needs to be [bsz, n_views, ...],' 'at least 3 dimensions are required') if len(features.shape) > 3: features = features.view(features.shape[0], features.shape[1], -1) batch_size = features.shape[0] if labels is not None and mask is not None: raise ValueError('Cannot define both `labels` and `mask`') elif labels is None and mask is None: mask = torch.eye(batch_size, dtype=torch.float32).to(device) elif labels is not None: labels = labels.contiguous().view(-1, 1) if labels.shape[0] != batch_size: raise ValueError('Num of labels does not match num of features') mask = torch.eq(labels, labels.T).float().to(device) else: mask = mask.float().to(device) contrast_count = features.shape[1] contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) if self.contrast_mode == 'one': anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == 'all': anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) # compute logits anchor_dot_contrast = torch.div( torch.matmul(anchor_feature, contrast_feature.T), self.temperature) # for numerical stability logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() a = anchor_feature.detach().cpu().numpy() b = contrast_feature.T.detach().cpu().numpy() c = anchor_dot_contrast.detach().cpu().numpy() d = np.matmul(a, b) # tile mask mask = mask.repeat(anchor_count, contrast_count) # mask-out self-contrast cases logits_mask = torch.scatter( torch.ones_like(mask), 1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0 ) mask = mask * logits_mask # compute log_prob exp_logits = torch.exp(logits) * logits_mask log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # compute mean of log-likelihood over positive mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # loss loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.view(anchor_count, batch_size).mean() return loss def testNan(self, x): x = x.detach().cpu().numpy() return np.isnan(x).any() # CLOCS 中用于对比学习的loss def obtain_contrastive_loss(latent_embeddings, pids, trial): """ Calculate NCE Loss For Latent Embeddings in Batch Args: latent_embeddings (torch.Tensor): embeddings from model for different perturbations of same instance (BxHxN) pids (list): patient ids of instances in batch Outputs: loss (torch.Tensor): scalar NCE loss """ if trial in ['CMSC', 'CMLC', 'CMSMLC']: pids = np.array(pids, dtype=np.object) pid1, pid2 = np.meshgrid(pids, pids) pid_matrix = pid1 + '-' + pid2 pids_of_interest = np.unique(pids + '-' + pids) # unique combinations of pids of interest i.e. matching bool_matrix_of_interest = np.zeros((len(pids), len(pids))) for pid in pids_of_interest: bool_matrix_of_interest += pid_matrix == pid rows1, cols1 = np.where(np.triu(bool_matrix_of_interest, 1)) rows2, cols2 = np.where(np.tril(bool_matrix_of_interest, -1)) nviews = set(range(latent_embeddings.shape[2])) view_combinations = combinations(nviews, 2) loss = 0 ncombinations = 0 loss_terms = 2 # 如果报错误 UnboundLocalError: local variable 'loss_terms' referenced before assignment # 那就重启PyCharm吧! for combination in view_combinations: view1_array = latent_embeddings[:, :, combination[0]] # (BxH) view2_array = latent_embeddings[:, :, combination[1]] # (BxH) norm1_vector = view1_array.norm(dim=1).unsqueeze(0) norm2_vector = view2_array.norm(dim=1).unsqueeze(0) sim_matrix = torch.mm(view1_array, view2_array.transpose(0, 1)) norm_matrix = torch.mm(norm1_vector.transpose(0, 1), norm2_vector) temperature = 0.1 argument = sim_matrix / (norm_matrix * temperature) sim_matrix_exp = torch.exp(argument) if trial == 'CMC': """ Obtain Off Diagonal Entries """ # upper_triangle = torch.triu(sim_matrix_exp,1) # lower_triangle = torch.tril(sim_matrix_exp,-1) # off_diagonals = upper_triangle + lower_triangle diagonals = torch.diag(sim_matrix_exp) """ Obtain Loss Terms(s) """ loss_term1 = -torch.mean(torch.log(diagonals / torch.sum(sim_matrix_exp, 1))) loss_term2 = -torch.mean(torch.log(diagonals / torch.sum(sim_matrix_exp, 0))) loss += loss_term1 + loss_term2 loss_terms = 2 elif trial == 'SimCLR': self_sim_matrix1 = torch.mm(view1_array, view1_array.transpose(0, 1)) self_norm_matrix1 = torch.mm(norm1_vector.transpose(0, 1), norm1_vector) temperature = 0.1 argument = self_sim_matrix1 / (self_norm_matrix1 * temperature) self_sim_matrix_exp1 = torch.exp(argument) self_sim_matrix_off_diagonals1 = torch.triu(self_sim_matrix_exp1, 1) + torch.tril(self_sim_matrix_exp1, -1) self_sim_matrix2 = torch.mm(view2_array, view2_array.transpose(0, 1)) self_norm_matrix2 = torch.mm(norm2_vector.transpose(0, 1), norm2_vector) temperature = 0.1 argument = self_sim_matrix2 / (self_norm_matrix2 * temperature) self_sim_matrix_exp2 = torch.exp(argument) self_sim_matrix_off_diagonals2 = torch.triu(self_sim_matrix_exp2, 1) + torch.tril(self_sim_matrix_exp2, -1) denominator_loss1 = torch.sum(sim_matrix_exp, 1) + torch.sum(self_sim_matrix_off_diagonals1, 1) denominator_loss2 = torch.sum(sim_matrix_exp, 0) + torch.sum(self_sim_matrix_off_diagonals2, 0) diagonals = torch.diag(sim_matrix_exp) loss_term1 = -torch.mean(torch.log(diagonals / denominator_loss1)) loss_term2 = -torch.mean(torch.log(diagonals / denominator_loss2)) loss += loss_term1 + loss_term2 loss_terms = 2 elif trial in ['CMSC', 'CMLC', 'CMSMLC']: # ours #CMSMLC = positive examples are same instance and same patient triu_elements = sim_matrix_exp[rows1, cols1] tril_elements = sim_matrix_exp[rows2, cols2] diag_elements = torch.diag(sim_matrix_exp) triu_sum = torch.sum(sim_matrix_exp, 1) tril_sum = torch.sum(sim_matrix_exp, 0) loss_diag1 = -torch.mean(torch.log(diag_elements / triu_sum)) loss_diag2 = -torch.mean(torch.log(diag_elements / tril_sum)) loss_triu = -torch.mean(torch.log(triu_elements / triu_sum[rows1])) loss_tril = -torch.mean(torch.log(tril_elements / tril_sum[cols2])) loss = loss_diag1 + loss_diag2 loss_terms = 2 if len(rows1) > 0: loss += loss_triu # technically need to add 1 more term for symmetry loss_terms += 1 if len(rows2) > 0: loss += loss_tril # technically need to add 1 more term for symmetry loss_terms += 1 # print(loss,loss_triu,loss_tril) ncombinations += 1 loss = loss / (loss_terms * ncombinations) return loss
2.78125
3
tests/test_helper_node.py
GNaive/naive-rete
54
12779285
# -*- coding: utf-8 -*- from rete import Has, Filter, Rule from rete.common import WME, Bind from rete.network import Network def test_filter_compare(): net = Network() c0 = Has('spu:1', 'price', '$x') f0 = Filter('$x>100') f1 = Filter('$x<200') f2 = Filter('$x>200 and $x<400') f3 = Filter('$x>300') p0 = net.add_production(Rule(c0, f0, f1)) p1 = net.add_production(Rule(c0, f2)) p2 = net.add_production(Rule(c0, f3)) net.add_wme(WME('spu:1', 'price', '100')) net.add_wme(WME('spu:1', 'price', '150')) net.add_wme(WME('spu:1', 'price', '300')) assert len(p0.items) == 1 token = p0.items.pop() assert token.get_binding('$x') == '150' assert len(p1.items) == 1 token = p1.items.pop() assert token.get_binding('$x') == '300' assert not p2.items def test_bind(): net = Network() c0 = Has('spu:1', 'sales', '$x') b0 = Bind('len(set($x) & set(range(1, 100)))', '$num') f0 = Filter('$num > 0') p0 = net.add_production(Rule(c0, b0, f0)) b1 = Bind('len(set($x) & set(range(100, 200)))', '$num') p1 = net.add_production(Rule(c0, b1, f0)) b2 = Bind('len(set($x) & set(range(300, 400)))', '$num') p2 = net.add_production(Rule(c0, b2, f0)) net.add_wme(WME('spu:1', 'sales', 'range(50, 110)')) assert len(p0.items) == 1 assert len(p1.items) == 1 assert len(p2.items) == 0 t0 = p0.items[0] t1 = p1.items[0] assert t0.get_binding('$num') == 50 assert t1.get_binding('$num') == 10
2.078125
2
util/util.py
VMReyes/keypointgan
11
12779286
from __future__ import print_function import torch import numpy as np from PIL import Image import os import time # Converts a Tensor into an image array (numpy) # |imtype|: the desired type of the converted numpy array def tensor2im(input_image, imtype=np.uint8): if isinstance(input_image, torch.Tensor): image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = (image_numpy - np.min(image_numpy)) / (np.max(image_numpy) - np.min(image_numpy)) image_numpy = image_numpy * 2 - 1 image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 image_numpy = np.clip(image_numpy, 0.0, 255.0) return image_numpy.astype(imtype) def diagnose_network(net, name='network'): mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def isclose(a, b, rel_tol=1e-09, abs_tol=0.0): return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol) class Timer(object): def __init__(self, name=None, acc=False, avg=False): self.name = name self.acc = acc self.avg = avg self.total = 0.0 self.iters = 0 def __enter__(self): self.start() def __exit__(self, type, value, traceback): self.stop() def start(self): self.tstart = time.time() def stop(self): self.iters += 1 self.total += time.time() - self.tstart if not self.acc: self.reset() def reset(self): name_string = '' if self.name: name_string = '[' + self.name + '] ' value = self.total msg = 'Elapsed' if self.avg: value /= self.iters msg = 'Avg Elapsed' print('%s%s: %.4f' % (name_string, msg, value)) self.total = 0.0
2.71875
3
gradertools/isolation/isolate_simple.py
david58/gradertools
0
12779287
import subprocess import shutil import os import time from .interface import IsolateInterface class IsolateSimple(IsolateInterface): def isolate(self, files, command, parameters, envvariables, directories, allowmultiprocess, stdinfile, stdoutfile): if os.path.isdir("/tmp/gradertools/isolation/"): shutil.rmtree("/tmp/gradertools/isolation/") os.makedirs("/tmp/gradertools/isolation/") box = "/tmp/gradertools/isolation/" for file in files: shutil.copy(file, os.path.join(box, os.path.basename(file))) isolateio=" " if stdinfile is not None: isolateio+="< "+stdinfile if stdoutfile is not None: isolateio+="> "+stdoutfile t0 = time.perf_counter() out = subprocess.run(" ".join(["cd "+ box+ ";"]+[command]+parameters+[isolateio]), shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) t1 = time.perf_counter() self._boxdir = box self._status = 'OK' self._runtime = t1-t0 self._walltime = t1-t0 self._maxrss = 0 # Maximum resident set size of the process (in kilobytes). self._cswv = 0 # Number of context switches caused by the process giving up the CPU voluntarily. self._cswf = 0 # Number of context switches forced by the kernel. self._cgmem = 0 # Total memory use by the whole control group (in kilobytes). self._exitcode = out.returncode self._stdout = out.stdout def clean(self): shutil.rmtree("/tmp/gradertools/isolation/")
2.390625
2
apps/common/api/exceptions.py
YC-Cheung/hattori
1
12779288
from rest_framework import status class APIException(Exception): """ 通用 API 异常 """ def __init__(self, message='', code=4999, status_code=status.HTTP_400_BAD_REQUEST): self.message = message self.code = code self.status_code = status_code @property def data(self): return { 'err_code': self.code, 'msg': self.message, } class AuthFailedException(APIException): """ 登录认证失败异常 """ def __init__(self, message='Unauthenticated.', code=4001, status_code=status.HTTP_401_UNAUTHORIZED): super().__init__(message, code, status_code) class CrossDomainException(AuthFailedException): """ Token 跨域认证 """ def __init__(self, message='Invalid token.', code=4003, status_code=status.HTTP_403_FORBIDDEN): super().__init__(message, code, status_code) class AdminUserForbiddenException(AuthFailedException): """ 后台管理员被禁用 """ def __init__(self, message='You have been banned.', code=4003, status_code=status.HTTP_403_FORBIDDEN): super().__init__(message, code, status_code)
2.609375
3
main_tts.py
archity/rg_text_to_sound
1
12779289
import os, sys sys.path.append( os.path.join(os.path.dirname(os.path.abspath(__file__)),'tts_websocketserver','src') ) from tts_websocketserver.tts_server import run if __name__ == '__main__': run()
1.65625
2
libs/visualization/vis.py
FullStackD3vs/Detectron-PYTORCH
37
12779290
<reponame>FullStackD3vs/Detectron-PYTORCH<gh_stars>10-100 import cv2 import numpy as np import PIL.ImageColor as ImageColor STANDARD_COLORS = [ 'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Crimson', 'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite', 'Chocolate', 'MistyRose', 'OliveDrab', 'Cornsilk', 'Cyan', 'Violet', 'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange', 'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet', 'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite', 'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod', 'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki', 'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue', 'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey', 'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue', 'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime', 'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid', 'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen', 'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'Moccasin', 'NavajoWhite', 'OldLace', 'Olive', 'Orange', 'OrangeRed', 'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed', 'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple', 'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown', 'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue', 'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow', 'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Wheat', 'White', 'Coral', 'WhiteSmoke', 'Yellow', 'YellowGreen', 'Beige', 'Bisque', 'CornflowerBlue' ] STANDARD_COLORS = [ 'darkblue', 'aqua', 'blueviolet', 'brown', 'chocolate', 'darkcyan', 'darkgreen', 'darkmagenta', 'darkolivegreen', 'darkturquoise', 'deeppink', 'deepskyblue', 'dodgerblue', 'gold', 'indigo', 'lawngreen', 'lightseagreen', 'limegreen', 'magenta', 'olive', 'orange', 'purple', 'seagreen', 'violet', 'yellowgreen', 'tomato', 'sienna', ] + STANDARD_COLORS # STANDARD_COLORS.sort() # for display ############################ def _to_color(indx, base): """ return (b, r, g) tuple""" base2 = base * base b = 2 - indx / base2 r = 2 - (indx % base2) / base g = 2 - (indx % base2) % base return r * 127, g * 127, b * 127 # def get_color(indx, cls_num=-1): # if indx < 0: # return (255, 255, 255) # if indx >= cls_num: # return (23 * indx % 255, 47 * indx % 255, 137 * indx % 255) # base = int(np.ceil(pow(cls_num, 1. / 3))) # return _to_color(indx, base) def get_color(indx, cls_num=-1): return ImageColor.getrgb(STANDARD_COLORS[indx])[::-1] # BGR def draw_detection(im, bboxes, scores=None, cls_inds=None, cls_name=None, color=None, thick=None, ellipse=False): # draw image bboxes = np.round(bboxes).astype(np.int) if cls_inds is not None: cls_inds = cls_inds.astype(np.int) cls_num = len(cls_name) if cls_name is not None else -1 imgcv = np.copy(im) h, w, _ = imgcv.shape for i, box in enumerate(bboxes): cls_indx = cls_inds[i] if cls_inds is not None else None color_ = get_color(cls_indx, cls_num) if color == None else color color_ = (0, 0, 0) if cls_indx < 0 else color_ thick = int((h + w) / 500) if thick == None else thick if not ellipse: cv2.rectangle(imgcv, (box[0], box[1]), (box[2], box[3]), color_, thick) else: cv2.ellipse(imgcv, (box[0]/2 + box[2]/2, box[1]/2 + box[3]/2), (box[2]/2 - box[0]/2, box[3]/2 - box[1]/2), 0, 0, 360, color=color_, thickness=thick) if cls_indx is not None: score = scores[i] if scores is not None else 1 name = cls_name[cls_indx] if cls_name is not None else str(cls_indx) name = 'ign' if cls_indx < 0 else name mess = '%s: %.2f' % (name[:4], score) cv2.putText(imgcv, mess, (box[0], box[1] - 8), 0, 1e-3 * h, color_, thick // 3) return imgcv
1.96875
2
tests/utils.py
rolandmueller/rita-dsl
0
12779291
import re import pytest import rita def load_rules(rules_path): with open(rules_path, "r") as f: return f.read() def spacy_engine(rules, **kwargs): spacy = pytest.importorskip("spacy", minversion="2.1") patterns = rita.compile_string(rules, **kwargs) nlp = spacy.load("en") ruler = spacy.pipeline.EntityRuler(nlp, overwrite_ents=True) print(patterns) ruler.add_patterns(patterns) nlp.add_pipe(ruler) def parse(text): doc = nlp(text) return list([(e.text, e.label_) for e in doc.ents]) return parse def standalone_engine(rules, **kwargs): parser = rita.compile_string(rules, use_engine="standalone", **kwargs) print(parser.patterns) def parse(text): results = list(parser.execute(text, include_submatches=False)) return list([(r["text"], r["label"]) for r in results]) return parse def rust_engine(rules, **kwargs): from rita.engine.translate_rust import load_lib lib = load_lib() if lib is None: pytest.skip("Missing rita-rust dynamic lib, skipping related tests") print("Trying to run: {}".format(rules)) parser = rita.compile_string(rules, use_engine="rust", **kwargs) print(parser.patterns) def parse(text): results = list(parser.execute(text, include_submatches=False)) return list([(r["text"], r["label"]) for r in results]) return parse def normalize_output(r): return re.sub(r"\s+", " ", r.strip().replace("\n", "")) def raw_compare(r1, r2): r1 = normalize_output(r1) r2 = normalize_output(r2) assert r1 == r2
2.265625
2
clash/fastest/fast-clash1.py
a93-git/codingame-solutions
0
12779292
import sys import math # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. n = int(input()) w = input() # Write an action using print # To debug: print("Debug messages...", file=sys.stderr) for i in range(n): print(w)
3.578125
4
mlcomp/parallelm/components/external_component.py
lisapm/mlpiper
7
12779293
""" This file in intended to be used by external component that can use python (like R + reticulate). This will be a single place needed to be imported (thus the short name) in order to get the api functions to work with connected components, and possibly more in the future. """ from parallelm.common.singleton import Singleton from parallelm.components.connectable_external_component import ConnectableExternalComponent # An instance of the MLOps to be used when importing the pm library. @Singleton class ConnectableExternalComponentSingleton(ConnectableExternalComponent): pass mlcomp = ConnectableExternalComponentSingleton.Instance()
1.804688
2
src/main-gui.py
FlingJLJ/ThrowawayNameGenerator
0
12779294
import generator from tkinter import Tk
1.21875
1
sailenv/dynamics/uniform_movement_random_bounce.py
sailab-code/SAILenv
0
12779295
from dataclasses import dataclass from sailenv import Vector3 from sailenv.dynamics import Dynamic @dataclass class UniformMovementRandomBounce(Dynamic): start_direction: Vector3 = Vector3(0, 0, 1) speed: float = 5 angular_speed: float = 2 seed: int = 42 @staticmethod def get_type(): return "uniform_movement_random_bounce"
2.921875
3
tests/unit/compress/CompressCssCompiler.py
wangjeaf/CSSCheckStyle
21
12779296
from helper import * def doTest(): _no_space() _has_space() _just_prefix() def _no_space(): msg = doCssCompress('@-css-compiler{selector-compile:no-combinator;rule-compile:all}html{width:100px;}') equal(msg, 'html{width:100px}', '@css-compiler compressed') def _has_space(): msg = doCssCompress('@-css-compiler {selector-compile:no-combinator;rule-compile:all}html{width:100px;}') equal(msg, 'html{width:100px}', '@css-compiler compressed') def _just_prefix(): msg = doCssCompress('@-css-compiler-prefix fdsafdsafdsa;html{width:100px;}') equal(msg, 'html{width:100px}', '@css-compiler compressed')
2.328125
2
features/bvp_features.py
anascacais/MLB-P5-P6
0
12779297
<filename>features/bvp_features.py<gh_stars>0 # built-in import json import os # third-party import numpy as np # local from biosppy import utils from biosppy import ppg from biosppy import tools as st from . import statistic_features, hrv_features def bvp_features(signal=None, sampling_rate=1000.): """ Compute BVP characteristic metrics describing the signal. Parameters ---------- signal : array Input signal. sampling_rate : float Sampling frequency. Returns ------- ons : list Signal onsets. hr: list Bvp heart rate. """ # ensure numpy array signal = np.array(signal) args, names = [], [] ons = ppg.find_onsets_elgendi2013(signal, sampling_rate)['onsets'] _, hr = st.get_heart_rate(beats=ons, sampling_rate=sampling_rate, smooth=True, size=3) hr_stats = statistic_features.signal_stats(hr) hr_ppg_ft = hrv_features.hrv_features(np.diff(ons)) return utils.ReturnTuple(tuple(args), tuple(names))
2.390625
2
main/views.py
ArighnaIITG/NoDues-Portal
0
12779298
<filename>main/views.py from django.http import HttpResponse from django.template import loader from .models import * from django.contrib.auth import authenticate, login from django.contrib.auth import logout from django.http import JsonResponse from django.shortcuts import render, get_object_or_404, redirect, HttpResponseRedirect from django.db.models import Q from .forms import UserForm def login_user(request): if request.method == "POST": username = request.POST['username'] password = request.POST['password'] role = request.POST['role'] # print str(role) user = authenticate(username=username, password=password) if user is not None: if user.is_active: login(request, user) role = str(role) username=request.user.username username = str(username) if role == "Student": students = Student.objects.all() flag=0 for stud in students: if stud.webmail == username: flag=1 if flag==1: return redirect('/student_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Faculty": faculty = Faculty.objects.all() flag=0 for fac in faculty: if fac.webmail == username: flag=1 if flag==1: return redirect('/faculty_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Lab": labs = Lab.objects.all() flag=0 for lab in labs: if lab.webmail == username: flag=1 if flag==1: return redirect('/lab_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Caretaker": caretaker = Caretaker.objects.all() flag=0 for care in caretaker: if care.webmail == username: flag=1 if flag==1: return redirect('/caretaker_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Warden": warden = Warden.objects.all() flag=0 for ward in warden: if ward.webmail == username: flag=1 if flag==1: return redirect('/warden_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Gymkhana": gymkhana = Gymkhana.objects.all() flag=0 for gym in gymkhana: if gym.webmail == username: flag=1 if flag==1: return redirect('/gymkhana_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "OnlineCC": onlinecc = OnlineCC.objects.all() flag=0 for onl in onlinecc: if onl.webmail == username: flag=1 if flag==1: return redirect('/onlinecc_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "CC": cc = CC.objects.all() flag=0 for c in cc: if c.webmail == username: flag=1 if flag==1: return redirect('cc_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Thesis Manager": thesis = SubmitThesis.objects.all() flag=0 for thes in thesis: if thes.webmail == username: flag=1 if flag==1: return redirect('/thesis_manager_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Library": library = Library.objects.all() flag=0 for lib in library: if lib.webmail == username: flag=1 if flag==1: return redirect('/library_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Assistant Registrar": asst = asstreg.objects.all() flag=0 for a in asst: if a.webmail == username: flag=1 if flag==1: return redirect('/assistant_registrar_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "HOD": hod = HOD.objects.all() flag=0 for h in hod: if h.webmail == username: flag=1 if flag==1: return redirect('/hod_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) elif role == "Account": account = Account.objects.all() flag=0 for acc in account: if acc.webmail == username: flag=1 if flag==1: return redirect('/account_profile') else: return render(request, 'main/login.html', {'error_message': 'Invalid Role'}) else: return render(request, 'main/login.html', {'error_message': 'Invalid Credentials'}) else: return render(request, 'main/login.html', {'error_message': 'Invalid Credentials'}) else: return render(request, 'main/login.html', {'error_message': 'Invalid Credentials'}) return render(request, 'main/login.html',{'error_message': 'Valid Login'}) def logout_user(request): logout(request) form = UserForm(request.POST or None) context = { "form": form, } return render(request, 'main/login.html', context) def student_profile(request): username=request.user.username username=str(username) student = Student.objects.get(webmail=username) return render(request, 'main/student.html',{'error_message': 'valid login', 'student': student}) def student_dept_detail(request): username=request.user.username username=str(username) student = Student.objects.get(webmail=username) faculty_dept = Faculty.objects.filter(dept=student.dept) stud_fac_status = StudFacStatus.objects.filter(student=student) return render(request,'main/student_dept_detail.html',{'error_message': 'valid login','student': student, 'faculty':faculty_dept, 'StudFacStatus': stud_fac_status}) def student_lab_detail(request): username = request.user.username username = str(username) student = Student.objects.get(webmail=username) labs = Lab.objects.all() stud_lab_status = StudLabStatus.objects.filter(student=student) return render(request, 'main/student_lab_detail.html', {'error_message': 'valid login', 'student': student, 'labs' : labs, 'StudLabStatus':stud_lab_status}) def account_profile(request): if request.method == "GET": username = request.user.username account = Account.objects.get(webmail=username) students = Student.objects.filter(hod_approval=True) return render(request, 'main/account.html', {'error_message': 'valid login', 'students': students, 'account': account}) elif request.method == "POST": username = request.user.username account = Account.objects.get(webmail=username) students = Student.objects.filter(hod_approval=True) for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.account_approval = True stud.save() else: stud.account_approval = False stud.save() return redirect('/account_profile',{'error_message': 'valid login', 'students': students,'account': account}) def assistant_registrar_profile(request): if request.method == "GET": username = request.user.username assistant_registrar= asstreg.objects.get(webmail=username) students = Student.objects.filter(caretaker_approval=True,warden_approval=True,gymkhana_approval=True) return render(request, 'main/assistant_registrar.html', {'error_message': 'valid login', 'students': students, 'assistant_registrar': assistant_registrar}) elif request.method == "POST": username = request.user.username assistant_registrar= asstreg.objects.get(webmail=username) students = Student.objects.filter(caretaker_approval=True, warden_approval=True, gymkhana_approval=True) for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.assistant_registrar_approval = True stud.save() else: stud.assistant_registrar_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/assistant_registrar_profile',{'students': students, 'assistant_registrar': assistant_registrar}) def caretaker_profile(request): if request.method == "GET": username = request.user.username caretaker = Caretaker.objects.get(webmail=username) hostel = caretaker.hostel students = Student.objects.filter(hostel=hostel) return render(request, 'main/caretaker.html', {'error_message': 'valid login', 'students': students, 'caretaker': caretaker, 'hostel': hostel}) elif request.method=="POST": username = request.user.username caretaker = Caretaker.objects.get(webmail=username) hostel = caretaker.hostel students = Student.objects.filter(hostel=hostel) for stud in students: if request.POST.get(stud.webmail,"") == 'on': stud.caretaker_approval=True stud.save() else : stud.caretaker_approval = False stud.warden_approval = False stud.assistant_registrar_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/caretaker_profile',{ 'students': students, 'caretaker': caretaker, 'hostel': hostel }) def onlinecc_profile(request): if request.method == "GET": username = request.user.username onlinecc = OnlineCC.objects.get(webmail=username) students = Student.objects.all() return render(request, 'main/onlinecc.html', {'error_message': 'valid login', 'students': students, 'onlinecc': onlinecc}) elif request.method == "POST": username = request.user.username onlinecc = OnlineCC.objects.get(webmail=username) students = Student.objects.all() for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.online_cc_approval = True stud.save() else: stud.online_cc_approval = False stud.cc_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/onlinecc_profile',{'students': students, 'onlinecc': onlinecc}) def cc_profile(request): if request.method == "GET": username = request.user.username cc = CC.objects.get(webmail=username) students = Student.objects.filter(online_cc_approval=True) return render(request, 'main/cc.html', {'error_message': 'valid login', 'students': students, 'cc': cc}) elif request.method == "POST": username = request.user.username cc = CC.objects.get(webmail=username) students = Student.objects.filter(online_cc_approval=True) for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.cc_approval = True stud.save() else: stud.cc_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/cc_profile',{'students': students, 'cc': cc}) def faculty_profile(request): if request.method == "GET": username = request.user.username fac = Faculty.objects.get(webmail=username) dept = fac.dept students = Student.objects.filter(dept=dept) stud_fac_status = StudFacStatus.objects.filter(faculty=fac) return render(request, 'main/faculty.html', {'error_message': 'valid login', 'students': students, 'faculty': fac, 'dept': dept,'StudFacStatus': stud_fac_status}) elif request.method=="POST": username = request.user.username fac = Faculty.objects.get(webmail=username) dept = fac.dept students = Student.objects.filter(dept=dept) stud_fac_status = StudFacStatus.objects.filter(faculty=fac) for stud in students: for i in stud_fac_status : if i.student.name == stud.name: if request.POST.get(stud.webmail,"") == 'on': x=StudFacStatus.objects.get(student=stud, faculty=fac) x.approval=True x.save() else : x = StudFacStatus.objects.get(student=stud, faculty=fac) print x x.approval=False x.save() stud.dept_status = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/faculty_profile',{'students': students, 'faculty': fac, 'dept':dept,'StudFacStatus': stud_fac_status}) def gymkhana_profile(request): if request.method == "GET": username = request.user.username gymkhana = Gymkhana.objects.get(webmail=username) students = Student.objects.all() return render(request, 'main/gymkhana.html', {'error_message': 'valid login', 'students': students, 'gymkhana': gymkhana}) elif request.method == "POST": username = request.user.username gymkhana = Gymkhana.objects.get(webmail=username) students = Student.objects.all() for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.gymkhana_approval = True stud.save() else: stud.gymkhana_approval = False stud.assistant_registrar_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/gymkhana_profile',{'students': students, 'gymkhana': gymkhana}) def hod_profile(request): if request.method == "GET": username = request.user.username hod = HOD.objects.get(webmail=username) students = Student.objects.filter(dept=hod.dept, assistant_registrar_approval=True,library_approval=True, cc_approval=True) return render(request, 'main/hod.html', {'error_message': 'valid login', 'students': students, 'hod': hod}) elif request.method == "POST": username = request.user.username hod = HOD.objects.get(webmail=username) students = Student.objects.filter(dept=hod.dept, assistant_registrar_approval=True,library_approval=True, cc_approval=True) for stud in students: if stud.lab_status() == True and stud.dept_status() == True: if request.POST.get(stud.webmail, "") == 'on': stud.hod_approval = True stud.save() else: stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/hod_profile',{'error_message': 'valid login', 'students': students,'hod': hod}) def lab_profile(request): if request.method == "GET": username = request.user.username lab = Lab.objects.get(webmail=username) students = Student.objects.all() stud_lab_status = StudLabStatus.objects.filter(lab=lab) return render(request, 'main/lab.html', {'error_message': 'valid login', 'students': students, 'lab': lab, 'StudLabStatus': stud_lab_status}) elif request.method=="POST": username = request.user.username lab = Lab.objects.get(webmail=username) students = Student.objects.all() stud_lab_status = StudLabStatus.objects.filter(lab=lab) for stud in students: for i in stud_lab_status : if i.student.name == stud.name: if request.POST.get(stud.webmail,"") == 'on': x=StudLabStatus.objects.get(student=stud, lab=lab) x.approval=True x.save() else : x = StudLabStatus.objects.get(student=stud, lab=lab) x.approval=False x.save() stud.lab_status = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/lab_profile',{'students': students, 'lab': lab, 'StudLabStatus': stud_lab_status}) def library_profile(request): if request.method == "GET": username = request.user.username library = Library.objects.get(webmail=username) students = Student.objects.filter(submit_thesis=True) return render(request, 'main/library.html', {'error_message': 'valid login', 'students': students, 'library': library}) elif request.method == "POST": username = request.user.username library = Library.objects.get(webmail=username) students = Student.objects.filter(submit_thesis=True) for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.library_approval = True stud.save() else: stud.library_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/library_profile',{'students': students, 'library': library}) def thesis_manager_profile(request): if request.method == "GET": username = request.user.username thesis_manager = SubmitThesis.objects.get(webmail=username) students = Student.objects.all() return render(request, 'main/thesis_manager.html', {'error_message': 'valid login', 'students': students, 'thesis_manager':thesis_manager}) elif request.method == "POST": username = request.user.username thesis_manager = SubmitThesis.objects.get(webmail=username) students = Student.objects.all() for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.submit_thesis = True stud.save() else: stud.submit_thesis = False stud.library_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/thesis_manager_profile',{'students': students, 'thesis_manager':thesis_manager}) def warden_profile(request): if request.method == "GET": username = request.user.username warden = Warden.objects.get(webmail=username) hostel = warden.hostel students = Student.objects.filter(hostel=hostel, caretaker_approval=True) return render(request, 'main/warden.html', {'error_message': 'valid login', 'students': students, 'warden': warden, 'hostel': hostel}) elif request.method == "POST": username = request.user.username warden = Warden.objects.get(webmail=username) hostel = warden.hostel students = Student.objects.filter(hostel=hostel, caretaker_approval=True) for stud in students: if request.POST.get(stud.webmail, "") == 'on': stud.warden_approval = True stud.save() else: stud.warden_approval = False stud.assistant_registrar_approval = False stud.hod_approval = False stud.account_approval = False stud.save() return redirect('/warden_profile', {'students': students, 'warden': warden, 'hostel': hostel }) def rules(request): return render(request,'main/rules.html') def contact(request): return render(request,'main/contact.html')
2.21875
2
pdpy/core.py
olihawkins/pdpy
13
12779299
# -*- coding: utf-8 -*- """Core download functions.""" # Imports --------------------------------------------------------------------- import datetime import json import numpy as np import pandas as pd import requests from . import constants from . import errors from . import settings # Functions ------------------------------------------------------------------ def request(query): """Send an http request with a query and return the response. request sends a SPARQL query to the api endpoint and returns the response object. It is a simple wrapper around request.post. It sets the appropriate headers and sends the query as the request body. It does not validate the query or handle the response in any way. The response format is JSON. Parameters ---------- query : str A SPARQL query as a string. Returns ------- out : Response The http response object from requests. """ url = settings.get_api_url() headers = {} headers['content-type'] = 'application/sparql-query' headers['accept'] = 'application/sparql-results+json' response = requests.post(url, headers=headers, data=query) return response def sparql_select(query): """Send a select query and return the response as a DataFrame. sparql_select sends a SPARQL query to the api endpoint and returns the response as a DataFrame. The SPARQL should be a SELECT query as the response is processed as tabular data. The function will convert datatypes that it recognises. It currently recognises date types. All other data returned in the DataFrame will be strings. If the query syntax is not valid or the request fails for any other reason a RequestError will be raised with the response text. Parameters ---------- query : str A SPARQL SELECT query as a string. Returns ------- out : DataFrame A pandas dataframe containing the results of the query. """ # Send the query and get the response response = request(query) # If the server returned an error raise it with the response text if not response.ok: raise errors.RequestError(response.text) # Process the response as tabular data and return it as a DataFrame json = response.json() rows = [] headers = json['head']['vars'] records = json['results']['bindings'] # For each record build a row and assign values based on the data type for record in records: row = [] for header in headers: if header in record: if 'datatype' in record[header] and \ record[header]['datatype'] == constants.XML_DATE: row.append( datetime.datetime.strptime( record[header]['value'], '%Y-%m-%d+%H:%M').date()) else: row.append(record[header]['value'].strip()) else: row.append(None) rows.append(row) return pd.DataFrame(data=rows, columns=headers).fillna(value=np.NaN)
3.40625
3
wavelet_product_edge_detector.py
ryagi97/wavelet-product-edge-detection
0
12779300
# -*- coding: utf-8 -*- """ Created on Mon Jan 14 09:10:29 2021 Author: <NAME> Functions for implementing the edge detection scheme first proposed by Zhang and Bao [1]. Modified for use with pywt's SWT2 transform and employs double thresholding similar to canny to improve noise resilience and revovery of weak edges. Portions of code adapted from scikit-image's implementation of the canny edge detector; Title: canny.py - Canny Edge detector Author: <NAME> Date: 11/02/2020 Code version: 0.17.2 Availability: https://github.com/scikit-image/scikit-image/blob/master/skimage/feature/_canny.py [1] <NAME>. and <NAME>., 2002. Edge detection by scale multiplication in wavelet domain. Pattern Recognition Letters, 23(14), pp.1771-1784. """ import numpy as np from pywt import swt2, Wavelet from scipy.ndimage import generate_binary_structure, binary_erosion, label from scipy import ndimage as ndi def wavelet_edge_detector(image, start_level=0, levels=2, wavelet='rbio3.1', c=0.15, noise_var=40, t1=1, t2=2, dbl_th=True): """ Extracts the edge local maxima of the passed image using the product of two consecutive stationary wavelet coefficients ----------- image : 2D array Input image, grayscale start_level : int Initial coefficient scale level to be extracted by the SWT levels : int number of levels to consider, must be even wavelet : string Name of wavelet as listed by pywt.wavelist() c : float Multiplier for calculating the threshold noise_var : float Estimate of the Gaussian Noise variance present in the image t1 : float Threshold multiplier for the lower threshold t2 : float Threshold multiplier for the lower threshold Returns ------- local_maxima : 2D array local maxima extracted by the local maxima method edge_mask : 2D array Binary array marking edges present in the local maxima ----- """ assert(levels%2 == 0) #calculate the maximum level to decompose the image with max_level = start_level+levels #Decompse the image to its detail coefficients using the 2D SWT coeffs = swt2(image, wavelet=wavelet, level=max_level, start_level=start_level, norm=False, trim_approx=True) #create empty arrays to store the detail coefficients #algoritmhs only require Horizontal and Vertical details, so Diagonal is not calculated coeff_arr_H = np.empty((image.shape + (max_level-start_level,))) coeff_arr_V = np.empty((image.shape + (max_level-start_level,))) #offset the coefficients based on the decomposition scale for i in range(max_level-start_level): coeff_arr_H[:,:,i] = np.roll(coeffs[-1-i][0], 2**(i+start_level)) coeff_arr_V[:,:,i] = np.roll(coeffs[-1-i][1], 2**(i+start_level)) #Get the Horizontal and Vertical products; the magnitude gradient matrices Mdx = np.prod(coeff_arr_H, axis=2) Mdy = np.prod(coeff_arr_V, axis=2) #Remove negative coefficients, as these are solely due to noise pts_Mdx_plus = (Mdx >= 0) Mdx = pts_Mdx_plus * Mdx pts_Mdy_plus = (Mdy >= 0) Mdy = pts_Mdy_plus * Mdy #Get the angle gradient matrices Adx = np.sign(coeff_arr_H[:,:,1])*np.sqrt(Mdx) Ady = np.sign(coeff_arr_V[:,:,1])*np.sqrt(Mdy) #Obtain the local modulus maximum in the direction of the normal of the edge local_maxima = local_modulus_maxima(Adx, Ady, Mdx, Mdy) if dbl_th: #Perform double thresholding and return the edge mask edge_mask = dbl_thresholding_ZhangBao(local_maxima, wavelet=wavelet, start_level=start_level, c=c, noise_var=noise_var, t1=t1, t2=t2) else: edge_mask = None return local_maxima, edge_mask def local_modulus_maxima(Adx, Ady, Mdx, Mdy, mask=None): """ Code adapted from scikit-image's canny implementation for faster execution Title: canny.py - Canny Edge detector Author: <NAME> Date: 11/02/2020 Code version: 0.17.2 Availability: https://github.com/scikit-image/scikit-image/blob/master/skimage/feature/_canny.py """ """Fast computation of the local maxima using custom gradient and angle matrices Parameters ----------- Adx : 2D array Gradient array along axis 0 (Horizontal Detail Coefficients) to be used for calculating the normal to the edges Ady : 2D array Gradient array along axis 1 (Vertical Detail Coefficients) to be used for calculating the normal to the edges Mdx : 2D array Gradient array along axis 0 (Horizontal Detail Coefficients) to be used for calculating the value of the edges Mdy : 2D array Gradient array along axis 1 (Vertical Detail Coefficients) to be used for calculating the value of the edges mask : array, dtype=bool, optional Mask to limit the application of Canny to a certain area. Returns ------- output : 2D array The local maxima ----- The steps of the algorithm are as follows: * Thin potential edges to 1-pixel wide curves. First, find the normal to the edge at each point. This is done by looking at the signs and the relative magnitude of the X-Sobel and Y-Sobel to sort the points into 4 categories: horizontal, vertical, diagonal and antidiagonal. Then look in the normal and reverse directions to see if the values in either of those directions are greater than the point in question. Use interpolation to get a mix of points instead of picking the one that's the closest to the normal. """ # # The steps involved: # # * Find the normal to the edge at each point using the arctangent of the # ratio of the Y sobel over the X sobel - pragmatically, we can # look at the signs of X and Y and the relative magnitude of X vs Y # to sort the points into 4 categories: horizontal, vertical, # diagonal and antidiagonal. # # * Look in the normal and reverse directions to see if the values # in either of those directions are greater than the point in question. # Use interpolation to get a mix of points instead of picking the one # that's the closest to the normal. # assert (Mdx.shape == Mdy.shape) assert (Mdx.shape == Adx.shape) assert (Adx.shape == Ady.shape) if mask is None: mask = np.ones(Mdx.shape, dtype=bool) jsobel = Ady isobel = Adx abs_isobel = np.abs(isobel) abs_jsobel = np.abs(jsobel) magnitude = np.hypot(Mdx, Mdy) # # Make the eroded mask. Setting the border value to zero will wipe # out the image edges for us. # s = generate_binary_structure(2, 2) eroded_mask = binary_erosion(mask, s, border_value=0) eroded_mask = eroded_mask & (magnitude > 0) # #--------- Find local maxima -------------- # # Assign each point to have a normal of 0-45 degrees, 45-90 degrees, # 90-135 degrees and 135-180 degrees. # local_maxima = np.zeros(Mdx.shape) #----- 0 to 45 degrees ------ pts_plus = (isobel >= 0) & (jsobel >= 0) & (abs_isobel >= abs_jsobel) pts_minus = (isobel <= 0) & (jsobel <= 0) & (abs_isobel >= abs_jsobel) pts = pts_plus | pts_minus pts = eroded_mask & pts # Get the magnitudes shifted left to make a matrix of the points to the # right of pts. Similarly, shift left and down to get the points to the # top right of pts. c1 = magnitude[1:, :][pts[:-1, :]] c2 = magnitude[1:, 1:][pts[:-1, :-1]] m = magnitude[pts] w = abs_jsobel[pts] / abs_isobel[pts] c_plus = c2 * w + c1 * (1 - w) <= m c1 = magnitude[:-1, :][pts[1:, :]] c2 = magnitude[:-1, :-1][pts[1:, 1:]] c_minus = c2 * w + c1 * (1 - w) <= m local_maxima[pts] = c_plus & c_minus #----- 45 to 90 degrees ------ # Mix diagonal and vertical # pts_plus = (isobel >= 0) & (jsobel >= 0) & (abs_isobel <= abs_jsobel) pts_minus = (isobel <= 0) & (jsobel <= 0) & (abs_isobel <= abs_jsobel) pts = pts_plus | pts_minus pts = eroded_mask & pts c1 = magnitude[:, 1:][pts[:, :-1]] c2 = magnitude[1:, 1:][pts[:-1, :-1]] m = magnitude[pts] w = abs_isobel[pts] / abs_jsobel[pts] c_plus = c2 * w + c1 * (1 - w) <= m c1 = magnitude[:, :-1][pts[:, 1:]] c2 = magnitude[:-1, :-1][pts[1:, 1:]] c_minus = c2 * w + c1 * (1 - w) <= m local_maxima[pts] = c_plus & c_minus #----- 90 to 135 degrees ------ # Mix anti-diagonal and vertical # pts_plus = (isobel <= 0) & (jsobel >= 0) & (abs_isobel <= abs_jsobel) pts_minus = (isobel >= 0) & (jsobel <= 0) & (abs_isobel <= abs_jsobel) pts = pts_plus | pts_minus pts = eroded_mask & pts c1a = magnitude[:, 1:][pts[:, :-1]] c2a = magnitude[:-1, 1:][pts[1:, :-1]] m = magnitude[pts] w = abs_isobel[pts] / abs_jsobel[pts] c_plus = c2a * w + c1a * (1.0 - w) <= m c1 = magnitude[:, :-1][pts[:, 1:]] c2 = magnitude[1:, :-1][pts[:-1, 1:]] c_minus = c2 * w + c1 * (1.0 - w) <= m local_maxima[pts] = c_plus & c_minus #----- 135 to 180 degrees ------ # Mix anti-diagonal and anti-horizontal # pts_plus = (isobel <= 0) & (jsobel >= 0) & (abs_isobel >= abs_jsobel) pts_minus = (isobel >= 0) & (jsobel <= 0) & (abs_isobel >= abs_jsobel) pts = pts_plus | pts_minus pts = eroded_mask & pts c1 = magnitude[:-1, :][pts[1:, :]] c2 = magnitude[:-1, 1:][pts[1:, :-1]] m = magnitude[pts] w = abs_jsobel[pts] / abs_isobel[pts] c_plus = c2 * w + c1 * (1 - w) <= m c1 = magnitude[1:, :][pts[:-1, :]] c2 = magnitude[1:, :-1][pts[:-1, 1:]] c_minus = c2 * w + c1 * (1 - w) <= m local_maxima[pts] = c_plus & c_minus return local_maxima * magnitude def dbl_thresholding_ZhangBao(local_maxima, start_level=0, wavelet='rbio3.1', c=20, noise_var=1, t1=1, t2=2): """ Portions of code adapted from scikit-image's canny implementation for faster execution Title: canny.py - Canny Edge detector Author: <NAME> Date: 11/02/2020 Code version: 0.17.2 Availability: https://github.com/scikit-image/scikit-image/blob/master/skimage/feature/_canny.py """ """Performs double thresholding based the wavelet energy and noise variance values Parameters ----------- local_maxima : 2D array Local maxima extracted by the local maxima method, same shape as input image wavelet : string Name of wavelet as listed by pywt.wavelist() start_level : int Initial coefficient scale level to be extracted by the SWT c : float Multiplier for calculating the threshold noise_var : float Estimate of the Gaussian Noise variance present in the image t1 : float Threshold multiplier for the lower threshold t2 : float Threshold multiplier for the lower threshold Returns ------- edge_mask : 2D array Binary array marking edges present in the local maxima ----- """ # #---- Create two masks at the two thresholds. # # * Label all points above the high threshold as edges. # * Recursively label any point above the low threshold that is 8-connected # to a labeled point as an edge. # # Regarding masks, any point touching a masked point will have a gradient # that is "infected" by the masked point, so it's enough to erode the # mask by one and then mask the output. We also mask out the border points # because who knows what lies beyond the edge of the image? # #First lower threshold is the same as in Zhang and Bao's paper #Set to remove the majority of the noise present #threshold = c * energy of wavelet at scale j, energy at scale j+1, #noise_var, scaled noise_var #get wavelet coefficients w = Wavelet(wavelet) if w.orthogonal: (_, psi_d1, _) = w.wavefun(level=start_level+1) (_, psi_d2, _) = w.wavefun(level=start_level+2) else: (_, psi_d1, _, _, _) = w.wavefun(level=start_level+1) (_, psi_d2, _, _, _) = w.wavefun(level=start_level+2) #compute their enegries (in reality, square root of energy) energy_psi_d1 = np.sqrt(np.sum(psi_d1**2)) energy_psi_d2 = np.sqrt(np.sum(psi_d2**2)) #add zeros to psi_d1 to compute the next variable psi_d1_up = psi_d1.repeat(2) psi_d1_up[1::2] = 0 if wavelet == 'haar': psi_d1_up = psi_d1_up[1:-1] #get the sigma_i value sigma_i_sq = 2*np.sum((psi_d1_up/energy_psi_d1 + psi_d2/energy_psi_d2)**2) t = c * energy_psi_d1 * energy_psi_d2 * noise_var * sigma_i_sq T_low = t*t1 T_high = t*t2 high_mask = (local_maxima >= T_high) low_mask = (local_maxima >= T_low) # Segment the low-mask, then only keep low-segments that have # some high_mask component in them strel = np.ones((3, 3), bool) labels, count = label(low_mask, strel) if count == 0: return low_mask sums = (np.array(ndi.sum(high_mask, labels, np.arange(count, dtype=np.int32) + 1), copy=False, ndmin=1)) good_label = np.zeros((count + 1,), bool) good_label[1:] = sums > 0 output_mask = good_label[labels] return output_mask #run demo if __name__ == "__main__": import cv2 as cv lvl = 0 c = 0.345 t1 = 1.0 t2 = 2.75 noise_var = 7237.754103671255 cv.namedWindow('Camera Capture', cv.WINDOW_NORMAL) cv.namedWindow('Product Local Maxima - Haar Wavelet', cv.WINDOW_NORMAL) cv.namedWindow('Product Local Maxima - Reverse Biorthogonal 3.1 Wavelet', cv.WINDOW_NORMAL) cv.namedWindow('Edges - Haar Wavelet', cv.WINDOW_NORMAL) cv.namedWindow('Edges - Reverse Biorthogonal 3.1 Wavelet', cv.WINDOW_NORMAL) cv.namedWindow('Overlay - Haar Wavelet', cv.WINDOW_NORMAL) cv.namedWindow('Overlay - Reverse Biorthogonal 3.1 Wavelet', cv.WINDOW_NORMAL) image = cv.imread('test_images/USAF.tiff', cv.IMREAD_GRAYSCALE) #convert image from 8-bit to 12-bit, same as camera depth image = image.astype(np.float) image = image * 4095/256 image = image.astype(np.uint16) #find local maxima and edges using the Haar wavelet local_maxima_hr, edges_hr = wavelet_edge_detector(image, start_level=lvl, wavelet='haar',c=c, noise_var=noise_var, t1=t1, t2=t2) local_maxima_hr = local_maxima_hr / np.max(local_maxima_hr) * 65535 local_maxima_hr = local_maxima_hr.astype(np.uint16) edges_hr = edges_hr * np.ones(edges_hr.shape) * 65535 edges_hr = edges_hr.astype(np.uint16) comb_hr = np.zeros((image.shape + (3,))) comb_hr[:,:,0] = image / 4096 comb_hr[:,:,1] = comb_hr[:,:,0] comb_hr[:,:,2] = comb_hr[:,:,0] comb_hr[:,:,2] += (edges_hr/65535) comb_hr[:,:,2] = np.clip(comb_hr[:,:,2], 0, 1) #find local maxima and edges using the Reverse Biorthogonal 3.1 wavelet local_maxima_rb, edges_rb = wavelet_edge_detector(image, start_level=lvl, wavelet='rbio3.1',c=c, noise_var=noise_var, t1=t1, t2=t2) local_maxima_rb = local_maxima_rb / np.max(local_maxima_rb) * 65535 local_maxima_rb = local_maxima_rb.astype(np.uint16) edges_rb = edges_rb * np.ones(edges_rb.shape) * 65535 edges_rb = edges_rb.astype(np.uint16) comb_rb = np.zeros((image.shape + (3,))) comb_rb[:,:,0] = image / 4096 comb_rb[:,:,1] = comb_rb[:,:,0] comb_rb[:,:,2] = comb_rb[:,:,0] comb_rb[:,:,2] += (edges_rb/65535) comb_rb[:,:,2] = np.clip(comb_rb[:,:,2], 0, 1) image = image.astype(np.float) image = image * 65535/4096 image = image.astype(np.uint16) try: while True: cv.imshow('Camera Capture', image) cv.imshow('Product Local Maxima - Haar Wavelet', local_maxima_hr) cv.imshow('Product Local Maxima - Reverse Biorthogonal 3.1 Wavelet', local_maxima_rb) cv.imshow('Edges - Haar Wavelet', edges_hr) cv.imshow('Edges - Reverse Biorthogonal 3.1 Wavelet', edges_rb) cv.imshow('Overlay - Haar Wavelet', comb_hr) cv.imshow('Overlay - Reverse Biorthogonal 3.1 Wavelet', comb_rb) cv.waitKey(1) except KeyboardInterrupt: cv.destroyAllWindows()
3.078125
3
flaskr/blog.py
LSWarss/Flask-Blog-App
1
12779301
from flask import ( Blueprint, flash, g, redirect, render_template, request, url_for ) from werkzeug.exceptions import abort from flask_login import login_required, current_user from flaskr.models import Post, db, PostComment, User from flaskr import csrf blog = Blueprint('blog', __name__) @blog.route('/') def index(): posts = Post.query.order_by(Post.created).all() return render_template('blog/index.html', posts=posts, getPostUser=getPostUser) @blog.route('/create', methods=('GET', 'POST')) @login_required def create(): if request.method == 'POST': title = request.form['title'] body = request.form['body'] error = None if not title: error = 'Title is required.' if error is not None: flash(error) else: data = Post(current_user.id,title,body) db.session.add(data) db.session.commit() return redirect(url_for('blog.index')) return render_template('blog/create.html') def get_post(id, check_author=True): post = Post.query.get(id) if post is None: abort(404, "Post id {0} doesn't exist.".format(id)) return post @blog.route('/<int:id>/update', methods=('GET', 'POST')) @login_required def update(id): post = get_post(id) if request.method == 'POST': title = request.form['title'] body = request.form['body'] error = None if not title: error = 'Title is required.' if error is not None: flash(error) else: post.title = title post.body = body db.session.commit() return redirect(url_for('blog.index')) return render_template('blog/update.html', post=post) @blog.route("/<int:id>/delete", methods=('POST',)) @login_required def delete(id): Post.query.filter_by(id=id).delete() db.session.commit() return redirect(url_for('blog.index')) @blog.route("/<int:id>/<action>") @login_required def like(id, action): post = get_post(id) if action == 'like': current_user.like_post(post) db.session.commit() if action == 'unlike': current_user.unlike_post(post) db.session.commit() return redirect(request.referrer) @blog.route("/<int:id>/comments", methods=('GET', 'POST')) def showComments(id): post = get_post(id) comments = post.comments return render_template('blog/comments.html', comments = comments, post = post) @blog.route("/addComment", methods=('POST',)) def addComment(): if request.method == 'POST': post_id = int(request.form['post_id']) print(post_id) body = request.form['body'] error = None if body == '': error = 'Body is required.' if error is not None: flash(error) else: comment = PostComment(current_user.id, post_id, body) print(current_user.id) db.session.add(comment) db.session.commit() return redirect(request.referrer) def getPostUser(id): return User.query.get(id).username
2.375
2
pyvmodule/tools/modules/amba/axi/axi2ram.py
tanhongze/pyvmodule
0
12779302
from pyvmodule.develope import * from pyvmodule.tools.modules.sram.dual import SRamR,SRamW from pyvmodule.tools.modules.fifo import Fifo from .common import AxiComponent,update_data_burst_addr,compute_address class Axi2RamR(SRamR): class FifoAR(Fifo): def update_data_araddr(self,field): return update_data_burst_addr(field,self.data.arburst) def __init__(self,axi,io=None,**kwargs): SRamR.__init__(self,awidth=axi.awidth,bwidth=axi.bwidth,io=io,**kwargs) self.reset = ~axi.aresetn self.rcur = Reg(4) axi.rresp[:]=0 for name in ['rid','rlast','rvalid']: driver = Reg(len(getattr(axi,name))) getattr(axi,name)[:] = driver setattr(self,name,driver) self.a = self.FifoAR(self.reset,axi,push=axi.arvalid, names=['arid','araddr','arlen','arsize','arburst'],depth=0) compute_address(self.a.data.araddr,self.a.data.arlen,axi.size_v) axi.arready[:]= ~self.a.full self.allow_out = Wire(axi.rready|~axi.rvalid) self.a.data.arlen.last = Wire(self.a.data.arlen.equal_to(self.rcur)) self.a.pop[:] = self.en&self.a.data.arlen.last self.a.data.araddr.update[:] = self.en&~self.a.data.arlen.last self.rcur.reset = Wire(self.reset|self.a.pop) When(self.rcur.reset)[self.rcur:0]\ .When(self.en)[self.rcur:self.rcur+1] When(self.reset)[self.rvalid:0]\ .When(self.en)[self.rvalid:1]\ .When(axi.rready)[self.rvalid:0] When(self.a.pop)[self.rid:self.a.data.arid] When(self.en)[self.rlast:self.a.data.arlen.last] self.en [:] = self.a.valid&self.allow_out self.addr[:] = self.a.data.araddr axi.rdata[:] = self.data class Axi2RamW(SRamW): class FifoAW(Fifo): def update_data_awaddr(self,field): return update_data_burst_addr(field,self.data.awburst) def __init__(self,axi,io=None,**kwargs): SRamW.__init__(self,awidth=axi.awidth,bwidth=axi.bwidth,io=io,**kwargs) self.reset = ~axi.aresetn self.w = VStruct() for name in ['wdata','wstrb','wlast','wvalid']: setattr(self,name,Reg(len(getattr(axi,name)))) self.a = self.FifoAW(self.reset,axi,push=axi.awvalid, names=['awid','awaddr','awlen','awsize','awburst'],depth=0) self.b = Fifo(self.reset,self.a.data.awid,pop=axi.bready) axi.bid [:]= self.b.data axi.bvalid[:]= self.b.valid axi.bresp [:]= 0 compute_address(self.a.data.awaddr,self.a.data.awlen,axi.size_v) self.allow_out = Wire(self.a.valid&~self.b.full) self.a.data.awaddr.update[:] = self.en&~self.wlast self.a.pop [:] = self.en& self.wlast self.b.push [:] = self.a.pop self.go = Wire(axi.wvalid&axi.wready) blk = When(self.go) for name in ['wdata','wstrb','wlast']: blk[getattr(self,name):getattr(axi,name)] When(self.reset)[self.wvalid:0]\ .When(self.go)[self.wvalid:1]\ .When(self.en)[self.wvalid:0] axi.awready[:] = ~self.a.full axi.wready [:] = self.allow_out|~self.wvalid self.en [:] = self.wvalid&self.allow_out&~self.reset self.addr[:] = self.a.data.awaddr self.data[:] = self.wdata self.strb[:] = self.wstrb
2.46875
2
bankManage/backEndService/test.py
ShangziXue/A-simple-bank-system
0
12779303
<reponame>ShangziXue/A-simple-bank-system from flask import Flask from flask import request from flask import jsonify from flask import make_response from flask_cors import * import json import time app = Flask(__name__) CORS(app, supports_credentials=True) #============================================================================================== # Oracle 数据字典化函数 def makeDictFactory(cursor): columnNames = [d[0].lower() for d in cursor.description] def createRow(*args): return dict(zip(columnNames, args)) return createRow #============================================================================================== # 登录 后台功能 @app.route('/login', methods=['POST']) def login(): username = request.form['username'] password = request.form['password'] custype = request.form['custype'] print(username) print(password) print(custype) # print("登录成功") response = make_response(jsonify({ 'code':200, 'msg':'get', 'token':username }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response #============================================================================================== # 支行管理 后台功能 @app.route('/bank',methods=['POST']) def bank(): rstype=request.form['type'] if (rstype=="Search"): # Todo: 实现数据库操作,返回查询的结果 response = make_response(jsonify({ 'code':200, 'list':[ {'name': '合肥城南支行','city': '合肥','money': 100000000}, {'name': '南京城北支行','city': '南京','money': 102500000}, {'name': '无锡城北支行','city': '无锡','money': 1000} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Update"): # Todo: 实现数据库操作,修改或新增记录 response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Delete"): # Todo: 实现数据库操作,删除记录 response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/staff',methods=['POST']) def staff(): rstype=request.form['type'] if (rstype=="Search"): # Todo: 实现数据库操作,返回查询的结果 print('Search') response = make_response(jsonify({ 'code':200, 'list':[ {'id':'331002199802021545','name': '张三','dept':'人事处','tel':'10086','addr':'黄山路','date_s':'2010-12-30'}, {'id':'33100220001002002X','name': '李四','dept':'财务处','tel':'10010','addr':'合作化路','date_s':'2011-02-00'}, {'id':'331002199011110010','name': '王五','dept':'前台','tel':'10000','addr':'肥西路','date_s':'2019-04-30'} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Update"): # Todo: 实现数据库操作,修改或新增记录 print('Update') date_s=request.form['date_s'] print(date_s) response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Delete"): # Todo: 实现数据库操作,删除记录 print('Delete') response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/staffCustomer',methods=['POST']) def staffCustomer(): rstype=request.form['type'] # staffID=request.form['staffID'] # 员工身份证号,用于查询和修改、删除 # custID=request.form['custID'] # 客户身份证号,用于修改、删除 # serviceType=request.form['serviceType'] # 服务类型,用于修改 # old_custID=request.form['old_custID'] # 旧的客户身份证号,用于修改,null代表新增 # old_staffID=request.form['old_staffID'] # 旧的员工身份证号,用于修改 if (rstype=="SearchByStaff"): # Todo: 实现数据库操作,返回查询的结果 staffID=request.form['staffid'] # 员工身份证号,查找所有关于该员工的客户联系 print('SearchByStaff') print(staffID) response = make_response(jsonify({ 'code':200, 'list':[ {'id':'331002199802021545','name': '张三','type':'1'}, {'id':'331002195602021545','name': '李四','type':'0'}, ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=='SearchByCustomer'): # Todo: 实现数据库操作,返回查询的结果 custID=request.form['custid'] # 客户身份证号,查找所有关于该客户的员工联系 print('SearchByCustomer') print(custID) response = make_response(jsonify({ 'code':200, 'list':[ {'staffid':'331002199802021545','staffname': '张三','type':'1'}, {'staffid':'331002195602021545','staffname': '李四','type':'0'}, ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Update"): # Todo: 实现数据库操作,修改或新增记录(建议使用视图) # 并将修改或新增的记录返回给前端(前端需要的主要是名字,但是为了兼容性,应该将整条记录都返回) print('Update') response = make_response(jsonify({ 'code':200, 'record': {'id':'331002199802021545','name': '张三','staffid':'331002199802021545','staffname': '李四','type':'1'} }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Delete"): # Todo: 实现数据库操作,删除记录 print('Delete') staffID=request.form['staffid'] # 员工身份证号 custID=request.form['custid'] # 客户身份证号,这两个主键可以用于删除联系 print(staffID) print(custID) response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/pay',methods=['POST']) def pay(): rstype=request.form['type'] # id=request.form['loanID'] # 贷款号,用于查询和新增支付记录 # date=request.form['date'] # 支付日期,用于新增记录 # money=request.form['money'] # 支付金额,用于新增记录 if (rstype=="Search"): # Todo: 实现数据库操作,返回查询的结果 print('Search') response = make_response(jsonify({ 'code':400, 'list':[ #{'date':'2019-05-03','money':2500}, #{'date':'2019-05-04','money':2000}, #{'date':'2019-05-05','money':3000} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Insert"): # Todo: 实现数据库操作,修改或新增记录 print('Insert') response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/accountCustomer',methods=['POST']) def accountCustomer(): rstype=request.form['type'] # id=request.form['accID'] # 账户号,用于查询和新增户主 # bank=request.form['bank'] # 开户银行 # ownerID=request.form['ownerID'] # 户主身份证号,用于新增记录 print(rstype) if (rstype=="Search"): # Todo: 实现数据库操作,返回查询的结果 print('Search') response = make_response(jsonify({ 'code':200, 'list':[ {'ownerID':'11111','ownerName':'柳树'}, {'ownerID':'11112','ownerName':'杨树'}, {'ownerID':'11222','ownerName':'柏树'} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Insert"): # Todo: 实现数据库操作,新增记录 print('Insert') id=request.form['accID'] # 账户号,用于查询和新增户主 bank=request.form['bank'] # 开户银行 ownerID=request.form['ownerID'] # 户主身份证号,用于新增记录 response = make_response(jsonify({ 'code':200, 'record': {'ID':id,'bank':bank,'ownerID':ownerID,'ownerName':'王五'} }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Delete"): # Todo: 实现数据库操作,删除记录 print('Delete') response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/customer',methods=['POST']) def customer(): rstype=request.form['type'] if (rstype=="Search"): # Todo: 实现数据库操作,返回查询的结果 print('Search') response = make_response(jsonify({ 'code':200, 'list':[ {'id':'331002199802021545','name': '张三','tel':'10086','addr':'黄山路', 'name_link':'张三丰','tel_link':'112','email_link':'<EMAIL>','relation':'父子'}, {'id':'331002195602021545','name': '李四','tel':'10086','addr':'黄山路', 'name_link':'张三丰','tel_link':'112','email_link':'<EMAIL>','relation':'父子'}, {'id':'331002199802021555','name': '王五','tel':'10086','addr':'黄山路', 'name_link':'张三丰','tel_link':'112','email_link':'<EMAIL>','relation':'父子'} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Update"): # Todo: 实现数据库操作,修改或新增记录 print('Update') response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Delete"): # Todo: 实现数据库操作,删除记录 print('Delete') response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/account',methods=['POST']) def account(): rstype=request.form['type'] if (rstype=="Search"): # Todo: 实现数据库操作,返回查询的结果 print('Search') response = make_response(jsonify({ 'code':200, 'list':[ {'id': "123000",'owner': "张三,李四,王五,马云,刘强东",'bank': "合肥支行",'money':2563.00, 'open_date': '2016-2-20','visit_date': '2018-5-6','type': '0','interest': 0.043,'cashtype': '1'}, {'id': "123020",'owner': "刘强东",'bank': "合肥支行",'money':23563.00, 'open_date': '2016-2-20','visit_date': '2018-5-6','type': '1','overdraft': 25000000} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Update"): # Todo: 实现数据库操作,修改或新增记录 print('Update') ownerid=request.form['ownerid'] print(ownerid) response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Delete"): # Todo: 实现数据库操作,删除记录 print('Delete') response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/loan',methods=['POST']) def loan(): rstype=request.form['type'] if (rstype=="Search"): # Todo: 实现数据库操作,返回查询的结果 print('Search') response = make_response(jsonify({ 'code':200, 'list':[ {'id': "123000",'customer': "10000 张三",'bank': "合肥支行",'amount':2563.00,'status':'0'}, {'id': "123001",'customer': "10001 李四",'bank': "合肥支行",'amount':252263.00,'status':'1'}, {'id': "123023",'customer': "10002 王五",'bank': "合肥支行",'amount':25.00,'status':'2'} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Update"): # Todo: 实现数据库操作,新增记录,注意customer字段是所有贷款人的身份证号,使用英文逗号分隔,建议使用事务发放贷款 print('Update') response = make_response(jsonify({ 'code':200, 'customer': '10000 张三\n10001 李四\n10002 王五' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if (rstype=="Delete"): # Todo: 实现数据库操作,删除记录 print('Delete') response = make_response(jsonify({ 'code':200, 'msg': 'ok' }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response @app.route('/summary',methods=['POST']) def summary(): # Todo: 根据前端返回的要求,实现数据库操作,返回统计数据。另外,可以生成统计图,路径为static/summary.png,以供前端调用 response = make_response(jsonify({ 'code':200, 'columnList':['合肥支行','南京支行','上海支行','杭州支行','宁波支行'], 'rawData':[ {'time':'2018.4','合肥支行':52,'南京支行':5,'杭州支行':52,'宁波支行':20}, {'time':'2018.12','合肥支行':25,'南京支行':45,'上海支行':21,'杭州支行':41,'宁波支行':25}, {'time':'2020.2','南京支行':35,'上海支行':54,'杭州支行':29,'宁波支行':17} ] }) ) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Methods'] = 'OPTIONS,HEAD,GET,POST' response.headers['Access-Control-Allow-Headers'] = 'x-requested-with' return response if __name__ == '__main__': app.run(host='0.0.0.0') # app.run()
2.984375
3
server01.py
maysrp/ESP32-monitor
0
12779304
<reponame>maysrp/ESP32-monitor<filename>server01.py import psutil import serial import time import requests uid="1369152" ser=serial.Serial("com3",115200,timeout=0.5) url="http://api.bilibili.com/x/relation/stat?vmid="+uid headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE' } def x(cv): if cv<1024*1024*1024: return str(cv//(1024*1024))+"MB" else: return str(round(cv/(1024*1024*1024)))+"GB" re=requests.get(url,headers=headers) my=re.json() if my['code']==0: e= my['data']['follower'] else: e=0 while True: tm=time.localtime() if tm.tm_min%5==0: re=requests.get(url,headers=headers) my=re.json() if my['code']==0: e= my['data']['follower'] else: e=0 f=str(tm.tm_hour)+':'+str(tm.tm_min) a=psutil.cpu_count() b=psutil.cpu_percent() c=psutil.virtual_memory() # svmem(total=8071716864, available=6532554752, percent=19.1, used=1258717184, free=6526308352, active=1153519616, inactive=194592768, buffers=2129920, cached=284561408, shared=9011200, slab=39006208) d=psutil.disk_usage('c://') # sdiskusage(total=85857402880, used=3858100224, free=81999302656, percent=4.5) while b==0: b=psutil.cpu_percent() aa=str(a)+" CPU "+str(b)+"%" bb=x(c.total)+" Mem "+str(c.percent)+"%" cc="C: "+x(d.total)+" "+str(d.percent)+"%" time.sleep(1) print(aa,bb,cc) q="tu('%s','%s','%s','%s','%s')\r" % (aa,bb,cc,e,f) print(q) ser.write(q.encode())
2.328125
2
ics/icalendar.py
tomschr/ics.py
0
12779305
from typing import Dict, Iterable, List, Optional, Union import attr from attr.validators import instance_of from ics.component import Component from ics.event import Event from ics.grammar.parse import Container, calendar_string_to_containers from ics.parsers.icalendar_parser import CalendarParser from ics.serializers.icalendar_serializer import CalendarSerializer from ics.timeline import Timeline from ics.todo import Todo @attr.s class CalendarAttrs(Component): version: str = attr.ib(validator=instance_of(str)) # default set by Calendar.Meta.DEFAULT_VERSION prodid: str = attr.ib(validator=instance_of(str)) # default set by Calendar.Meta.DEFAULT_PRODID scale: Optional[str] = attr.ib(default=None) method: Optional[str] = attr.ib(default=None) version_params: Dict[str, List[str]] = attr.ib(factory=dict) prodid_params: Dict[str, List[str]] = attr.ib(factory=dict) scale_params: Dict[str, List[str]] = attr.ib(factory=dict) method_params: Dict[str, List[str]] = attr.ib(factory=dict) _timezones: Dict = attr.ib(factory=dict, init=False, repr=False, eq=False, order=False, hash=False) events: List[Event] = attr.ib(factory=list, converter=list) todos: List[Todo] = attr.ib(factory=list, converter=list) class Calendar(CalendarAttrs): """ Represents an unique RFC 5545 iCalendar. Attributes: events: a list of `Event`s contained in the Calendar todos: a list of `Todo`s contained in the Calendar timeline: a `Timeline` instance for iterating this Calendar in chronological order """ class Meta: name = 'VCALENDAR' parser = CalendarParser serializer = CalendarSerializer DEFAULT_VERSION = "2.0" DEFAULT_PRODID = "ics.py - http://git.io/lLljaA" def __init__( self, imports: Union[str, Container] = None, events: Optional[Iterable[Event]] = None, todos: Optional[Iterable[Todo]] = None, creator: str = None, **kwargs ): """Initializes a new Calendar. Args: imports (**str**): data to be imported into the Calendar, events (**Iterable[Event]**): `Event`s to be added to the calendar todos (**Iterable[Todo]**): `Todo`s to be added to the calendar creator (**string**): uid of the creator program. """ if events is None: events = tuple() if todos is None: todos = tuple() kwargs.setdefault("version", self.Meta.DEFAULT_VERSION) kwargs.setdefault("prodid", creator if creator is not None else self.Meta.DEFAULT_PRODID) super(Calendar, self).__init__(events=events, todos=todos, **kwargs) # type: ignore self.timeline = Timeline(self, None) if imports is not None: if isinstance(imports, Container): self._populate(imports) else: containers = calendar_string_to_containers(imports) if len(containers) != 1: raise NotImplementedError( 'Multiple calendars in one file are not supported by this method. Use ics.Calendar.parse_multiple()') self._populate(containers[0]) # Use first calendar @property def creator(self) -> str: return self.prodid @creator.setter def creator(self, value: str): self.prodid = value @classmethod def parse_multiple(cls, string): """" Parses an input string that may contain mutiple calendars and retruns a list of :class:`ics.event.Calendar` """ containers = calendar_string_to_containers(string) return [cls(imports=c) for c in containers] def __repr__(self) -> str: return "<Calendar with {} event{} and {} todo{}>" \ .format(len(self.events), "s" if len(self.events) > 1 else "", len(self.todos), "s" if len(self.todos) > 1 else "") def __iter__(self) -> Iterable[str]: """Returns: iterable: an iterable version of __str__, line per line (with line-endings). Example: Can be used to write calendar to a file: >>> c = Calendar(); c.events.append(Event(name="My cool event")) >>> open('my.ics', 'w').writelines(c) """ return iter(str(self).splitlines(keepends=True))
2.390625
2
secret/tests/test_utils.py
MinisterioPublicoRJ/apilabcontas
2
12779306
from unittest import TestCase from freezegun import freeze_time from secret.utils import create_secret class Utils(TestCase): @freeze_time('2019-03-12 12:00:00') def test_create_secret_key(self): secret = create_secret() self.assertEqual(secret, 'd3a4646728a9de9a74d8fc4c41966a42')
2.71875
3
tests/test_utils.py
cyan-at/cq-cam
7
12779307
import unittest from typing import List import cadquery as cq from cq_cam.utils import utils class ProjectFaceTest(unittest.TestCase): def setUp(self): pass def test_face_with_hole(self): # This should create a projected face that is 2x4 (XY) box = ( cq.Workplane('XZ') .lineTo(2, 0) .lineTo(2, 6) .close() .extrude(4) .faces('<Z') .workplane() .moveTo(1, 2) .rect(1, 1) .cutThruAll() ) face_wp = cq.Workplane(obj=box.faces().objects[1]) plane = face_wp.workplane().plane # Make sure we picked the right face self.assertEqual(plane.xDir, cq.Vector(0.0, -1.0, 0.0)) self.assertEqual(plane.yDir, cq.Vector(0.316227766016838, 0.0, 0.9486832980505139)) self.assertEqual(plane.zDir, cq.Vector(-0.9486832980505139, -0.0, 0.316227766016838)) result = utils.project_face(face_wp.objects[0]) class TestVector(cq.Vector): def __eq__(self, other): if getattr(other, 'wrapped', None): return super().__eq__(other) return False expected_outer_wire = [ TestVector(2, 0, 0), TestVector(2, -4, 0), TestVector(0, -4, 0), TestVector(0, 0, 0) ] expected_inner_wire = [ TestVector(0.5, -1.5, 0), TestVector(0.5, -2.5, 0), TestVector(1.5, -1.5, 0), TestVector(1.5, -2.5, 0) ] def wire_to_vectors(wire: cq.Wire) -> List[cq.Vector]: return [to_vector(vertex) for vertex in wire.Vertices()] def to_vector(vertex: cq.Vertex) -> cq.Vector: return TestVector(vertex.toTuple()) self.assertCountEqual(wire_to_vectors(result.outerWire()), expected_outer_wire) inner_wires = result.innerWires() self.assertEqual(len(inner_wires), 1) self.assertCountEqual(wire_to_vectors(inner_wires[0]), expected_inner_wire)
2.671875
3
secretsharing/charset.py
ml31415/secret-sharing
0
12779308
<gh_stars>0 from six import integer_types def int_to_charset(x, charset): """ Turn a non-negative integer into a string. """ if not (isinstance(x, integer_types) and x >= 0): raise ValueError("x must be a non-negative integer.") if x == 0: return charset[0] output = "" while x > 0: x, digit = divmod(x, len(charset)) output += charset[digit] return output def charset_to_int(s, charset): """ Turn a string into a non-negative integer. """ if not isinstance(s, (str)): raise ValueError("s must be a string.") if (set(s) - set(charset)): raise ValueError("s has chars that aren't in the charset.") return sum(len(charset)**i * charset.index(char) for i, char in enumerate(s)) """ Base16 includes numeric digits and the letters a through f. Here, we use the lowecase letters. """ base16_chars = '0123456789abcdef' """ The Base58 character set allows for strings that avoid visual ambiguity when typed. It consists of all the alphanumeric characters except for "0", "O", "I", and "l", which look similar in some fonts. https://en.bitcoin.it/wiki/Base58Check_encoding """ base58_chars = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz" """ The Base32 character set allows for accurate transcribing by hand. It consists of uppercase letters + numerals, excluding "0", "1", + "8", which could look similar to "O", "I", and "B" and so are omitted. http://en.wikipedia.org/wiki/Base32 """ base32_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" """ The z-base-32 character set is similar to the standard Base32 character set, except it uses lowercase letters + numerals and chooses to exclude "0", "l", "v", + "2". The set is also permuted so that easier chars occur more frequently. http://philzimmermann.com/docs/human-oriented-base-32-encoding.txt """ zbase32_chars = "ybndrfg8ejkmcpqxot1uwisza345h769" """ The Base64 character set is a popular encoding for transmitting data over media that are designed for textual data. It includes all alphanumeric characters plus two bonus characters, usually "+" and "/". http://en.wikipedia.org/wiki/Base64 """ base64_chars = ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" "0123456789+/")
3.875
4
scripts/generate-database-data.py
Crown-Commercial-Service/digitalmarketplace-scripts
1
12779309
<filename>scripts/generate-database-data.py #!/usr/bin/env python3 """ N.B.: this is a work in progress with only few steps implemented. The aim is to populate your local database with enough randomly generated data to run the DMp using the API. Usage: ./scripts/generate-database-data.py """ import sys from docopt import docopt from dmapiclient import DataAPIClient sys.path.insert(0, '.') from dmscripts.generate_database_data import ( open_gcloud_12, make_gcloud_12_live, create_buyer_email_domain_if_not_present, generate_user, set_all_frameworks_to_expired, ) from dmscripts.helpers.auth_helpers import get_auth_token from dmscripts.helpers.updated_by_helpers import get_user from dmutils.env_helpers import get_api_endpoint_from_stage STAGE = 'development' if __name__ == "__main__": args = docopt(__doc__) print("Generating test data...") user = get_user() api_token = get_auth_token('api', STAGE) data = DataAPIClient( base_url=get_api_endpoint_from_stage(STAGE), auth_token=api_token, user=user, ) # TODO complete the minimum set of data (see rest of this comment). # This document shows the data needed to make functional tests pass: # https://docs.google.com/document/d/1NE7owPrdUO3pW8Wri6sQu57LDsHH8CJd3kfMqXAd678 # If you can't access the document, the steps are: # - add users: one for each type of admin, 2 buyers, 2 users per supplier # Nice to have: add also the test logins the team knows about so that people can login to test # - add suppliers and services: 2 suppliers per lot, each supplier is on somewhere between 1 and all of the lots, # 1 service per lot per supplier on DOS frameworks, 2 services per lot per supplier on G-Cloud frameworks # - add opportunities: 1 closed per lot, 1 awarded per lot, 1 withdrawn per lot, 2 open per lot # Applying only the database migrations to an empty database creates several frameworks in various states. Set # them all to expired before we start adding new data set_all_frameworks_to_expired(data) open_gcloud_12(data) create_buyer_email_domain_if_not_present(data, "user.marketplace.team") generate_user(data, "buyer") make_gcloud_12_live(data) print("Generation has been completed.")
2.640625
3
main.py
QIN2DIM/armour-email
6
12779310
<gh_stars>1-10 # -*- coding: utf-8 -*- # Time : 2021/12/16 16:28 # Author : QIN2DIM # Github : https://github.com/QIN2DIM # Description: SSPanel-Uim 邮箱验证案例 # ============================================== # TODO [√]用于项目演示的运行实例,(也许)需要使用代理 # ============================================== # - `anti_email` 表示需要邮箱验证 # - 无标记实例为对照组 ActionNiuBiCloud = { "register_url": "https://niubi.cyou/auth/register", } ActionFreeDogCloud = { "register_url": "https://www.freedog.pw/auth/register", "anti_email": True } ActionSavierCloud = { "register_url": "https://savier.xyz/auth/register", "anti_email": True } # ============================================== # TODO [√]运行前请检查 chromedriver 配置 # ============================================== from examples import demo_email2walk if __name__ == '__main__': demo_email2walk( # 无验证对照组 # atomic=ActionNiuBiCloud, # 邮箱验证实验组 atomic=ActionSavierCloud, )
1.804688
2
src/class_namespaces/__init__.py
mwchase/class-namespace
1
12779311
"""Class Namespaces. Class namespaces implemented using metaclasses and context managers. Classes that contain namespaces need to have NamespaceableMeta as a metaclass. Namespaces are context managers within a class definition. They can be manipulated after they're defined. """ from . import namespaces NamespaceableMeta = namespaces.NamespaceableMeta Namespaceable = namespaces.Namespaceable Namespace = namespaces.Namespace
2.484375
2
utils/LSL_Tests/SendSphericalData.py
xfleckx/BeMoBI_Tools
0
12779312
<reponame>xfleckx/BeMoBI_Tools import sys sys.path.append('./pylsl') # help python find pylsl relative to this example program from pylsl import StreamInfo, StreamOutlet import random import time import math #Send spherical coordinats info = StreamInfo('RandomSpehricalData','3DCoord',3,100,'float32','myuid34234') # next make an outlet outlet = StreamOutlet(info) print("name="+ info.name() + "\n" + "type=" + info.type() + "\n") print("now sending data...") while True: current = time.time() # make a new random 3-channel sample; this is converted into a pylsl.vectorf (the data type that is expected by push_sample) sample = [1 + math.sin(current), 1 + math.cos(current), 1 + math.sin(current) ] # now send it and wait for a bit outlet.push_sample(sample) time.sleep(0.01)
2.53125
3
dockerfiles/examples/read-bytes-seed/scale-job.py
kaydoh/scale
121
12779313
<gh_stars>100-1000 import argparse import datetime import json import logging import sys import os logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', level=logging.DEBUG, stream=sys.stdout) def run_algorithm(bytes_total, input_file, out_dir): """Read the indicated number of bytes from input file and store in output directory :param bytes_total: :param input_file: :param out_dir: :return: """ bytes_read = 0 chunk_size = 512 logging.info('Reading %s bytes from %s and storing at %s.' % (bytes_total, input_file, out_dir)) base_path = os.path.join(out_dir, 'output_file') start = datetime.datetime.utcnow().isoformat() os.makedirs(base_path) output_file = os.path.join(base_path, os.path.basename(input_file)) logging.info('Data being stored in %s' % output_file) with open(input_file, 'rb') as infile: with open(output_file, 'wb') as outfile: while bytes_read <= bytes_total: if bytes_read + chunk_size > bytes_total: chunk_size = bytes_total - bytes_read chunk = infile.read(chunk_size) # Break if EOF is encountered if not chunk: break outfile.write(chunk) bytes_read += chunk_size logging.info('Copy complete') end = datetime.datetime.utcnow().isoformat() # Output metadata file for testing capture metadata = { 'type': 'Feature', 'geometry': None, 'properties': { 'dataStarted': start + 'Z', 'dataEnded': end + 'Z' } } metadata_file = output_file + '.metadata.json' with open(metadata_file, 'w') as outfile: json.dump(metadata, outfile) logging.info('Metadata written to %s' % metadata_file) return output_file if __name__ == '__main__': for key in os.environ.keys(): print "%30s %s" % (key,os.environ[key]) parser = argparse.ArgumentParser(description='Copy x number of bytes from input file to output file.') parser.add_argument('bytes_total', type=int, help='number of bytes to copy from input to output file') parser.add_argument('input_file', help='absolute path to input file') parser.add_argument('output_dir', help='absolute output directory path') args = parser.parse_args() logging.debug('Bytes to copy: {}'.format(args.bytes_total)) logging.debug('Input file: {}'.format(args.input_file)) logging.debug('Output directory: {}'.format(args.output_dir)) output_file = run_algorithm(args.bytes_total, args.input_file, args.output_dir) # Write an output manifest for testing JSON property capture with open(os.path.join(args.output_dir, 'seed.outputs.json'), 'w') as output_json: input_size = os.path.getsize(args.input_file) contents = {'INPUT_FILE_NAME': args.input_file, 'INPUT_SIZE': input_size} json.dump(contents, output_json) sys.exit(0)
2.40625
2
phy/gui/tests/test_gui.py
m-beau/phy
0
12779314
# -*- coding: utf-8 -*- """Test gui.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ from pytest import raises from ..qt import Qt, QApplication, QWidget, QMessageBox from ..gui import (GUI, GUIState, _try_get_matplotlib_canvas, _try_get_vispy_canvas, ) from phy.utils import Bunch from phy.utils._color import _random_color #------------------------------------------------------------------------------ # Utilities and fixtures #------------------------------------------------------------------------------ def _create_canvas(): """Create a VisPy canvas with a color background.""" from vispy import app c = app.Canvas() c.color = _random_color() @c.connect def on_draw(e): # pragma: no cover c.context.clear(c.color) return c #------------------------------------------------------------------------------ # Test views #------------------------------------------------------------------------------ def test_vispy_view(): from vispy.app import Canvas assert isinstance(_try_get_vispy_canvas(Canvas()), QWidget) def test_matplotlib_view(): from matplotlib.pyplot import Figure assert isinstance(_try_get_matplotlib_canvas(Figure()), QWidget) #------------------------------------------------------------------------------ # Test GUI #------------------------------------------------------------------------------ def test_gui_noapp(tempdir): if not QApplication.instance(): with raises(RuntimeError): # pragma: no cover GUI(config_dir=tempdir) def test_gui_1(tempdir, qtbot): gui = GUI(position=(200, 100), size=(100, 100), config_dir=tempdir) qtbot.addWidget(gui) assert gui.name == 'GUI' # Increase coverage. @gui.connect_ def on_show(): pass gui.unconnect_(on_show) qtbot.keyPress(gui, Qt.Key_Control) qtbot.keyRelease(gui, Qt.Key_Control) assert isinstance(gui.dialog("Hello"), QMessageBox) view = gui.add_view(_create_canvas(), floating=True, closable=True) gui.add_view(_create_canvas()) view.setFloating(False) gui.show() assert gui.get_view('Canvas') assert len(gui.list_views('Canvas')) == 2 # Check that the close_widget event is fired when the gui widget is # closed. _close = [] @view.connect_ def on_close_widget(): _close.append(0) @gui.connect_ def on_close_view(view): _close.append(1) view.close() assert _close == [1, 0] gui.close() assert gui.state.geometry_state['geometry'] assert gui.state.geometry_state['state'] gui.default_actions.exit() def test_gui_status_message(gui): assert gui.status_message == '' gui.status_message = ':hello world!' assert gui.status_message == ':hello world!' gui.lock_status() gui.status_message = '' assert gui.status_message == ':hello world!' gui.unlock_status() gui.status_message = '' assert gui.status_message == '' def test_gui_geometry_state(tempdir, qtbot): _gs = [] gui = GUI(size=(100, 100), config_dir=tempdir) qtbot.addWidget(gui) gui.add_view(_create_canvas(), 'view1') gui.add_view(_create_canvas(), 'view2') gui.add_view(_create_canvas(), 'view2') @gui.connect_ def on_close(): _gs.append(gui.save_geometry_state()) gui.show() qtbot.waitForWindowShown(gui) assert len(gui.list_views('view')) == 3 assert gui.view_count() == { 'view1': 1, 'view2': 2, } gui.close() # Recreate the GUI with the saved state. gui = GUI(config_dir=tempdir) gui.add_view(_create_canvas(), 'view1') gui.add_view(_create_canvas(), 'view2') gui.add_view(_create_canvas(), 'view2') @gui.connect_ def on_show(): gui.restore_geometry_state(_gs[0]) assert gui.restore_geometry_state(None) is None qtbot.addWidget(gui) gui.show() assert len(gui.list_views('view')) == 3 assert gui.view_count() == { 'view1': 1, 'view2': 2, } gui.close() #------------------------------------------------------------------------------ # Test GUI state #------------------------------------------------------------------------------ def test_gui_state_view(tempdir): view = Bunch(name='MyView0') state = GUIState(config_dir=tempdir) state.update_view_state(view, dict(hello='world')) assert not state.get_view_state(Bunch(name='MyView')) assert not state.get_view_state(Bunch(name='MyView1')) assert state.get_view_state(view) == Bunch(hello='world')
2.09375
2
elm/model/gconv_vae.py
jinxu06/gsubsampling
12
12779315
import os import sys from collections import OrderedDict from absl import logging import torch import torch.nn.functional as F import torch.optim as optim import torchvision.transforms.functional as TF import pytorch_lightning as pl import e2cnn.gspaces import e2cnn.nn from .base import VariationalAutoEncoderModule from elm.nn import MLP, GConvNN, GConvTransposeNN class GConvVAE(VariationalAutoEncoderModule): def __init__(self, in_channels, out_channels, n_channels, img_size, dim_latent, activation=F.relu, readout_fn=None, fiber_group='rot_2d', n_rot=4, optim_lr=0.0001, profiler=None): super().__init__(in_channels=in_channels, out_channels=out_channels, n_channels=n_channels, img_size=img_size, dim_latent=dim_latent, activation=activation, readout_fn=readout_fn, optim_lr=optim_lr, profiler=profiler) self.fiber_group = fiber_group self.n_rot = n_rot self._create_networks() self.params = self.parameters() logging.debug("-------- GConv VAE ---------") logging.debug("-------- Trainable Variables ---------") for name, p in self.named_parameters(): logging.debug("{}, {}".format(name, p.size())) logging.debug("--------------------------------------") def _create_networks(self): self.n_flip = 1 if 'flip' in self.fiber_group: self.n_flip = 2 nc = self.n_channels self.encoder = torch.nn.Sequential( GConvNN(in_channels=self.in_channels, out_channels=[nc,nc,2*nc,2*nc,2*nc], kernel_size=[3,3,3,3,5], stride=[2,2,2,2,2], padding_mode='circular', activation=self.activation, out_activation=None, use_bias=True, fiber_group=self.fiber_group, n_rot=self.n_rot)) self.flatten = torch.nn.Flatten() self.encoder_mlp = MLP(in_sizes=self.n_rot*self.n_flip*2*2*2*nc, out_sizes=[2*self.dim_latent]) self.decoder = torch.nn.Sequential( GConvTransposeNN(in_channels=2*nc, out_channels=[2*nc,2*nc,nc,nc,nc,self.in_channels], kernel_size=[5,3,3,3,3,3], stride=[2,2,2,2,2,1], padding_mode='circular', activation=self.activation, out_activation=self.readout_fn, use_bias=True, fiber_group=self.fiber_group, n_rot=self.n_rot)) self.decoder_mlp = MLP(in_sizes=self.dim_latent, out_sizes=[self.n_rot*self.n_flip*2*2*2*nc], out_activation=self.activation) self.unflatten = torch.nn.Unflatten(dim=1, unflattened_size=(2*nc*self.n_flip*self.n_rot,2,2)) def encode(self, x): z = self.encoder(x) z = self.encoder_mlp(self.flatten(z)) mu, log_sigma_sq = torch.chunk(z, chunks=2, dim=-1) return mu, log_sigma_sq def decode(self, z): z = self.unflatten(self.decoder_mlp(z)) x_hat = self.decoder(z) return x_hat def reparameterize(self, mu, log_sigma_sq): sigma = torch.exp(log_sigma_sq/2.) eps = torch.normal(torch.zeros_like(mu), torch.ones_like(sigma)) return eps * sigma + mu def reconstruct(self, x): mu, _ = self.encode(x) x_hat = self.decode(mu) return x_hat def generate(self, n_samples=16): z = torch.normal(torch.zeros(n_samples, self.dim_latent), torch.ones(n_samples, self.dim_latent)) x_hat = self.decode(z) return x_hat def forward(self, x): mu, _ = self.encode(x) return mu def compute_loss_and_metrics(self, x, y=None): mu, log_sigma_sq = self.encode(x) z = self.reparameterize(mu, log_sigma_sq) x_hat = self.decode(z) recon_loss = F.mse_loss(x_hat, x, reduction='sum') / x.size()[0] kl_loss = torch.sum(-0.5 * torch.sum(1 + log_sigma_sq - mu ** 2 - log_sigma_sq.exp(), dim = 1), dim = 0) / x.size()[0] loss = recon_loss + kl_loss logs = { "recon": recon_loss, "kl": kl_loss, "elbo": loss } return loss, logs
2.015625
2
code/oldtmpcodes/biasplay.py
modichirag/21cmhod
0
12779316
<filename>code/oldtmpcodes/biasplay.py import numpy as np from pmesh.pm import ParticleMesh from nbodykit.lab import BigFileCatalog, BigFileMesh, FFTPower from nbodykit.source.mesh.field import FieldMesh import matplotlib.pyplot as plt plt.switch_backend('Agg') # import sys sys.path.append('./utils') import tools, dohod # from time import time # #Global, fixed things scratch = '/global/cscratch1/sd/yfeng1/m3127/' project = '/project/projectdirs/m3127/H1mass/' cosmodef = {'omegam':0.309167, 'h':0.677, 'omegab':0.048} aafiles = [0.1429, 0.1538, 0.1667, 0.1818, 0.2000, 0.2222, 0.2500, 0.2857, 0.3333] #aafiles = aafiles[4:] zzfiles = [round(tools.atoz(aa), 2) for aa in aafiles] #Paramteres #Maybe set up to take in as args file? bs, nc = 256, 512 #ncsim, sim, prefix = 256, 'lowres/%d-9100-fixed'%256, 'lowres' ncsim, sim, prefix = 2560, 'highres/%d-9100-fixed'%2560, 'highres' def HI_masscutfiddle(mhalo,aa, mcutf=1.0): """Makes a 21cm "mass" from a box of halo masses. Use mcutf to fiddle with Mcut """ print('Assigning weights') zp1 = 1.0/aa zz = zp1-1 alp = (1+2*zz)/(2+2*zz) norm = 2e9*np.exp(-1.9*zp1+0.07*zp1**2) mcut= 1e10*(6.11-1.99*zp1+0.165*zp1**2)*mcutf xx = mhalo/mcut+1e-10 mHI = xx**alp * np.exp(-1/xx) mHI*= norm return(mHI) def fiddlebias(aa, saveb=False, bname='h1bias.txt', ofolder=None): #Fiddling bias for halos. Deprecated. print('Read in catalogs') halocat = readincatalog(aa, matter=False) hpos = halocat['Position'] hmass = halocat['Mass'] h1mass = dohod.HI_mass(hmass, aa) dm = BigFileMesh(project + sim + '/fastpm_%0.4f/'%aa + '/dmesh_N%04d'%nc, '1').paint() if ofolder is None: ofolder = project + '/%s/fastpm_%0.4f/'%(sim, aa) #measure power pm = ParticleMesh(BoxSize = bs, Nmesh = [nc, nc, nc]) pkm = FFTPower(dm/dm.cmean(), mode='1d').power k, pkm = pkm['k'], pkm['power'] ##H1 print("H1") h1mesh = pm.paint(hpos, mass=h1mass) pkh1 = FFTPower(h1mesh/h1mesh.cmean(), mode='1d').power['power'] pkh1m = FFTPower(h1mesh/h1mesh.cmean(), second=dm/dm.cmean(), mode='1d').power['power'] #Bias b1h1 = pkh1m/pkm b1h1sq = pkh1/pkm if saveb: np.savetxt(ofolder+bname, np.stack((k, b1h1, b1h1sq**0.5), axis=1), header='k, pkh1xm/pkm, pkh1/pkm^0.5') return k, b1h1, b1h1sq def fiddlebiasgal(aa, suff, nc=nc, mcfv=[1.], saveb=False, bname='h1bias', ofolder=None): '''Fiddle bias for galaxies''' if ofolder is None: ofolder = project + '/%s/fastpm_%0.4f/'%(sim, aa) pm = ParticleMesh(BoxSize = bs, Nmesh = [nc, nc, nc]) print('Read in catalogs') cencat = BigFileCatalog(project + sim + '/fastpm_%0.4f/cencat'%aa) satcat = BigFileCatalog(project + sim + '/fastpm_%0.4f/satcat'%aa+suff) cpos, spos = cencat['Position'], satcat['Position'] cmass, smass = cencat['Mass'], satcat['Mass'] pos = np.concatenate((cpos, spos), axis=0) dm = BigFileMesh(project + sim + '/fastpm_%0.4f/'%aa + '/dmesh_N%04d'%nc, '1').paint() pkm = FFTPower(dm/dm.cmean(), mode='1d').power k, pkm = pkm['k'], pkm['power'] b1, b1sq = np.zeros((k.size, len(mcfv))), np.zeros((k.size, len(mcfv))) for imc, mcf in enumerate(mcfv): print(mcf) ch1mass = HI_masscutfiddle(cmass, aa, mcutf=mcf) sh1mass = HI_masscutfiddle(smass, aa, mcutf=mcf) h1mass = np.concatenate((ch1mass, sh1mass), axis=0) # h1mesh = pm.paint(pos, mass=h1mass) pkh1 = FFTPower(h1mesh/h1mesh.cmean(), mode='1d').power['power'] pkh1m = FFTPower(h1mesh/h1mesh.cmean(), second=dm/dm.cmean(), mode='1d').power['power'] #Bias b1[:, imc] = pkh1m/pkm b1sq[:, imc] = pkh1/pkm np.savetxt(ofolder+bname+'auto'+suff+'.txt', np.concatenate((k.reshape(-1, 1), b1sq**0.5), axis=1), header='mcut factors = %s\nk, pkh1xm/pkm, pkh1/pkm^0.5'%mcfv) np.savetxt(ofolder+bname+'cross'+suff+'.txt', np.concatenate((k.reshape(-1, 1), b1), axis=1), header='mcut factors = %s\nk, pkh1xm/pkm, pkh1mx/pkm'%mcfv) return k, b1, b1sq if __name__=="__main__": #bs, nc, sim are set in the global parameters at the top print('Starting') for satsuff in ['-m1_5p0min-alpha_0p9', '-m1_8p0min-alpha_0p9']: fig, ax = plt.subplots(3, 3, figsize=(12, 12)) for ia, aa in enumerate(aafiles): mcfv = [0.5, 0.8, 1.0, 1.2, 1.5, 2] print('Redshift = %0.2f'%(zzfiles[ia])) ofolder = project + '/%s/fastpm_%0.4f/'%(sim, aa) k, b1, b1sq = fiddlebiasgal(aa, mcfv=mcfv, nc=256, suff=satsuff, ofolder=ofolder, saveb=False) axis=ax.flatten()[ia] axis.plot(mcfv, b1[1:5].mean(axis=0), 'C%do'%0, label='cross') axis.plot(mcfv, (b1sq**0.5)[1:5].mean(axis=0), 'C%d*'%0, label='auto') axis.set_title('z = %0.2f'%zzfiles[ia]) axis.grid(which='both', lw=0.3) ax[0, 0].legend() for axis in ax[:, 0]:axis.set_ylabel('b$_1$$') for axis in ax[-1, :]:axis.set_xlabel('M_{cut} factor$') fig.savefig('./figs/biasmcf-%s.png'%(satsuff)) # # fig, ax = plt.subplots(1, 2, figsize = (9, 4)) # for i, aa in enumerate(aafiles): # ofolder = project + '/%s/fastpm_%0.4f/'%(sim, aa) # print('Redshift = %0.2f'%(1/aa-1)) # k, b1, b1sq = fiddlebiasgal(aa, nc=256, suff=satsuff, ofolder=ofolder, saveb=False) # ax[0].plot(k, b1, 'C%d'%i, lw=1.5) # ax[0].plot(k, b1sq**0.5, 'C%d--'%i, lw=2) # ax[1].plot(1/aa-1, b1[1:5].mean(), 'C%do'%i, label='%0.2f'%(1/aa-1)) # ax[1].plot(1/aa-1, (b1sq**0.5)[1:5].mean(), 'C%d*'%i) # # for axis in ax: # axis.legend() # ax[0].set_xscale('log') # axis.set_ylim(1, 5) # #axis.grid(which='both', lw=0.3) # fig.savefig('./figs/bias%s.png'%satsuff
1.773438
2
error404detector/crawlertest.py
hayj/404Detector
0
12779317
from webcrawler.crawler import * def crawlingCallback(data, browser=None): print(data) crawler = Crawler\ ( ["https://github.com/hayj/WebCrawler"], crawlingCallback=crawlingCallback, browsersDriverType=DRIVER_TYPE.chrome, proxies=getAllProxies(), browserCount=10, stopCrawlerAfterSeconds=10000000, banditRoundDuration=10000000, browserParams=\ { "chromeDriverPath": "/home/hayj/Programs/browserdrivers/chromedriver", "phantomjsPath": "/home/hayj/Programs/headlessbrowsers/phantomjs-2.1.1-linux-x86_64/bin/phantomjs", }, ) crawler.start()
2.453125
2
ftprelayer/__init__.py
meteogrid/FTPRelayer
0
12779318
<reponame>meteogrid/FTPRelayer<filename>ftprelayer/__init__.py import re import sys import datetime import os import logging import shutil from threading import Thread, Event from fnmatch import fnmatchcase import zipfile from logging import Formatter try: import queue from io import BytesIO except ImportError: # support python < 3 import Queue as queue from cStringIO import StringIO as BytesIO import validate from configobj import ConfigObj from ftputil import FTPHost from pkg_resources import resource_filename import pyinotify import davclient from .util import import_string log = logging.getLogger(__name__) LOG_FORMAT = "%(asctime)s %(process)d %(levelname)-5.5s [%(name)s] %(message)s" SYSLOG_FORMAT = "%(name)s [%(process)d]: %(levelname)-5.5s %(message)s" class Application(object): _watch_mask = (pyinotify.IN_CLOSE_WRITE | pyinotify.IN_MOVED_TO) configspec_filename = resource_filename(__name__, 'configspec.ini') error_subdir = 'failed' now = datetime.datetime.now # To mock in tests def __init__(self, archive_dir=None): self._relayers = [] self._processors = {} self._wm = pyinotify.WatchManager() self._notifier = pyinotify.ThreadedNotifier(self._wm) self._queue_processor = Thread(target=self._process_queue) self._queue = queue.Queue() self._stopping = Event() self._archive_dir = archive_dir @classmethod def from_config(cls, configfile): spec = ConfigObj(cls.configspec_filename, list_values=False, _inspec=True) config = ConfigObj(configfile, configspec=spec) if config.validate(validate.Validator()) is not True: raise AssertionError("Config is not valid") cls._setup_logging(config['logging']) self = cls(**dict(config['main'])) for r in self._relayers_from_config(config['relayers']): self.add_relayer(r) return self @classmethod def _setup_logging(cls, config): logging.basicConfig( level = getattr(logging, config['level']), filename = config['filename'], mode = 'a+', stream = sys.stderr if not config['filename'] else None, format = LOG_FORMAT, ) if config['syslog']['address']: from logging.handlers import SysLogHandler cfg = dict(config['syslog']) if ':' in cfg['address']: cfg['address'] = cfg['address'].split(',') handler = logging.handlers.SysLogHandler(**cfg) handler.setFormatter(Formatter(SYSLOG_FORMAT)) logging.root.addHandler(handler) def _relayers_from_config(self, section): for name in section.sections: yield Relayer.from_config(name, section[name]) def start(self, block=False): self._notifier.start() self._queue_processor.start() if block: while True: self._stopping.wait(1) def stop(self): self._stopping.set() self._notifier.stop() self._queue_processor.join() def add_relayer(self, relayer): self._relayers.append(relayer) for p in relayer.paths: self._add_watch(relayer, p) def _add_watch(self, relayer, path): dir = os.path.dirname(path) processor = self._get_or_make_processor(dir) processor.add_relayer(relayer) def _get_or_make_processor(self, dir): processor = self._processors.get(dir) if processor is None: processor = self._processors[dir] = _EventProcessor(self._queue) self._wm.add_watch(dir, self._watch_mask, proc_fun=processor) return processor def _process_queue(self): while not self._stopping.isSet(): try: relayer, path = self._queue.get(True, .5) except queue.Empty: pass else: try: relayer.process(path) self._archive(relayer, path) except Exception as e: try: log.exception("When processing %r, %r, %r", relayer.name, path, e) self._archive(relayer, path, has_error=True) except: pass def _archive(self, relayer, path, has_error=False): if self._archive_dir is None: return dest = self._archive_path(relayer, path, has_error=has_error) destdir = os.path.dirname(dest) if not os.path.exists(destdir): os.makedirs(destdir) log.info("Archiving %s -> %s", path, dest) shutil.move(path, dest) _serial_re = re.compile(r'^(.*?)\.(\d+)$') def _archive_path(self, relayer, path, no_clobber=True, has_error=False): dir = self._archive_dir if has_error: dir = os.path.join(dir, self.error_subdir) subdir = os.path.join(dir, relayer.name, self.now().strftime('%Y/%m/%d')) ret = os.path.join(subdir, relayer.relpathto(path)) while no_clobber and os.path.exists(ret): m = self._serial_re.match(ret) if m: serial = int(m.group(2)) ret = m.group(1) + ('.%d'%(serial+1)) else: ret += '.1' return ret class _EventProcessor(pyinotify.ProcessEvent): def __init__(self, queue): self.queue = queue self.relayers = [] super(_EventProcessor, self).__init__() def _process(self, event): log.debug("got event: %r", event) for r in self.relayers: if r.path_matches(event.pathname): self.queue.put((r, event.pathname)) process_IN_CLOSE_WRITE = _process process_IN_MOVED_TO = _process def add_relayer(self, relayer): self.relayers.append(relayer) class Relayer(object): def __init__(self, name, uploader, paths, processor=None): self.name = name self.uploader = uploader if uploader is not None else _NullUploader() self.paths = paths self.processor = processor @classmethod def from_config(cls, name, section): uploader = Uploader.from_config(section['uploader']) processor = cls._make_processor(section['processor']) return cls(name=name, paths=section['paths'], uploader=uploader, processor=processor) @classmethod def _make_processor(cls, section): cls_or_func = import_string(section['use']) if section.extra_values: args = dict((k, section[k]) for k in section.extra_values) return cls_or_func(**args) else: return cls_or_func def path_matches(self, path): return any(fnmatchcase(path, p) for p in self.paths) def relpathto(self, path): base = os.path.commonprefix(self.paths+[path]) return os.path.relpath(path, base) def process(self, path): log.info("Relayer '%s' processing '%s'", self.name, path) if self.processor is not None: self._process_with_processor(path) else: self._process_without_processor(path) def _process_with_processor(self, path): for filename, data in self.processor(path): self.uploader.upload(filename, data) def _process_without_processor(self, path): with open(path) as f: self.uploader.upload(os.path.basename(path), f.read()) class Uploader(object): __uploaders__ = {} def __init__(self, host, username, password=<PASSWORD>, dir='/'): self.host = host self.username = username self.password = password self.dir = dir @classmethod def register(cls, key): def wrap(subcls): cls.__uploaders__[key] = subcls return subcls return wrap @classmethod def from_config(cls, section): if section['use'] and ':' in section['use']: subcls = import_string(section['use']) else: subcls = cls.__uploaders__[section['use']] if cls is subcls: raise AssertionError("%r must override from_config()"%subcls) return subcls.from_config(section) def upload(self, filename, data): raise NotImplementedError("Abstract method must be overriden") @Uploader.register(None) class _NullUploader(object): def upload(self, filename, data): pass @classmethod def from_config(cls, section): return cls() @Uploader.register('composite') class CompositeUploader(Uploader): @classmethod def from_config(cls, section): build = Uploader.from_config uploaders = [build(section[name]) for name in sorted(section.sections)] return cls(uploaders) def __init__(self, uploaders): self.uploaders = uploaders def upload(self, filename, data): for uploader in self.uploaders: try: uploader.upload(filename, data) except: log.exception("executing %r, %r", uploader, filename) @Uploader.register('ftp') class FTPUploader(Uploader): FTPHost = FTPHost # for mock inyection in tests @classmethod def from_config(cls, section): return cls(section['host'], section['username'], section.get('password'), section.get('dir','/')) def upload(self, filename, data): with self.FTPHost(self.host, self.username, self.password) as ftp: dir = self.dir.rstrip('/') + '/' ftp.makedirs(dir) destname = dir + filename dest = ftp.file(destname, 'wb') log.info("FTPUploader.upload: %s -> %s", filename, destname) ftp.copyfileobj(BytesIO(data), dest) dest.close() @Uploader.register('dav') class DAVUploader(Uploader): DAVClient = davclient.DAVClient # for mock inyection in tests @classmethod def from_config(cls, section): return cls(section['host'], section['username'], section.get('password')) def upload(self, filename, data): client = self.DAVClient(self.host) client.set_basic_auth(self.username, self.password) destname = self.host + filename log.info("DAVUploader.upload: %s -> %s", filename, destname) client.put(destname, data) assert 200 <= client.response.status < 300, client.response.reason @Uploader.register('scp') class SCPUploader(FTPUploader): def upload(self, filename, data): raise NotImplementedError("TODO") class add_prefix(object): def __init__(self, prefix): self.prefix = prefix def __call__(self, path): new_name = self.prefix + os.path.basename(path) with open(path) as f: yield new_name, f.read() class add_prefix_to_zip_contents(object): def __init__(self, prefix): self.prefix = prefix def __call__(self, path): buff = BytesIO() source = zipfile.ZipFile(path, 'r') target = zipfile.ZipFile(buff, 'w', zipfile.ZIP_DEFLATED) for zi in source.filelist: new_name = self.prefix + zi.filename target.writestr(new_name, source.read(zi)) source.close() target.close() yield os.path.basename(path), buff.getvalue() class add_date_prefix(object): """ Adds current date as a prefix >>> processor = add_date_prefix('%Y_%m_') >>> processor.now = lambda: datetime.datetime(2007,3,1) >>> processor._new_name('foo') '2007_03_foo' """ now = datetime.datetime.now # To mock in tests def __init__(self, format='%Y%m%d'): self.format = format def __call__(self, path): with open(path) as f: yield self._new_name(path), f.read() def _new_name(self, path): return self.now().strftime(self.format) + os.path.basename(path) def main(args=sys.argv): if len(args)<2: print>>sys.stderr, "Usage %s <configfile>"%args[0] return -1 app = Application.from_config(args[1]) try: log.info("Starting app") app.start(True) except (KeyboardInterrupt, SystemExit): log.info("Stopping app") app.stop() else: app.stop()
1.867188
2
bayleef/utils.py
Kelvinrr/bayleef
1
12779319
<filename>bayleef/utils.py import json import os import re import subprocess import sys from datetime import datetime from functools import partial, reduce from glob import glob from subprocess import PIPE, Popen import yaml import gdal import matplotlib.pyplot as plt import numpy as np import pandas as pd import plio import pvl import wget import osr from plio.io.io_gdal import GeoDataset import autocnet from autocnet import CandidateGraph from autocnet.graph.edge import Edge from autocnet.matcher import suppression_funcs from autocnet.matcher.subpixel import (clip_roi, subpixel_phase, subpixel_template) from pysis.exceptions import ProcessError from pysis.isis import (cam2map, campt, footprintinit, jigsaw, map2map, pointreg, spiceinit) sys.path.insert(0, os.path.abspath('..')) import logging logger = logging.getLogger('Bayleef') from bayleef import config def get_path(response, root, dataset): """ """ if isinstance(response, dict): response = [response] try: for data in response: scene_id = data['entityId'] s = data['summary'] date = datetime.strptime(data['acquisitionDate'], '%Y-%m-%d') pathstr, rowstr = re.findall(r'Path: \b\d+\b|Row: \b\d+\b', s) path = pathstr.split(' ')[1] row = rowstr.split(' ')[1] return os.path.join(root, dataset, str(date.year), row, path, scene_id) except Exception as e: logger.error('Failed to process request: {}'.format(e)) def keys_to_lower(dictionary): """ """ for key in dictionary.keys(): if isinstance(dictionary[key], dict): keys_to_lower(dictionary[key]) dictionary[key.lower()] = dictionary.pop(key) def apply_dict(dictionary, func, *args, **kwargs): """ """ for key in dictionary.keys(): if isinstance(dictionary[key], dict): apply_dict(dictionary[key], func) dictionary[key] = func(dictionary[key], *args, **kwargs) def geolocate(infile, outfile, lats, lons, dstSRS="EPSG:4326", format="GTiff", woptions={}, toptions={}): """ """ image = gdal.Open(infile, gdal.GA_Update) geoloc= { 'X_DATASET' : lons, 'X_BAND' : '1', 'Y_DATASET' : lats, 'Y_BAND' : '1', 'PIXEL_OFFSET' : '0', 'LINE_OFFSET' : '0', 'PIXEL_STEP' : '1', 'LINE_STEP' : '1' } image.SetMetadata(geoloc, 'GEOLOCATION') # explicity close image del image gdal.Warp(outfile, infile, format=format, dstSRS=dstSRS) return GeoDataset(outfile) def master_isvalid(file): if len(gdal.Open(file).GetSubDatasets()) != 17: return False calibrated_image = GeoDataset('HDF4_SDS:UNKNOWN:"{}":37'.format(file)) lats = GeoDataset('HDF4_SDS:UNKNOWN:"{}":30'.format(file)) lons = GeoDataset('HDF4_SDS:UNKNOWN:"{}":31'.format(file)) res = [] for ds in [calibrated_image, lats, lons]: arr = ds.read_array() test = np.empty(arr.shape) test[:] = ds.metadata['_FillValue'] res.append(not (test == arr).all()) return all(res) def run_davinci(script, infile=None, outfile=None, bin_dir=config.davinci_bin, args=[]): ''' ''' command = ['davinci', '-f', os.path.join(bin_dir, script), 'from={}'.format(infile), 'to={}'.format(outfile)] # add additional positional args if args: command.extend(args) logger.info(' '.join(command)) p = Popen(command, stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = p.communicate(b"input data that is passed to subprocess' stdin") rc = p.returncode if rc != 0: raise Exception('Davinci returned non-zero error code {} : \n{}\n{}'.format(rc, err.decode('utf-8'), output.decode('utf-8') )) return output.decode('utf-8'), err.decode('utf-8') def init(outfile, additional_kernels={}): try: logger.info("Running Spiceinit on {}".format(outfile)) spiceinit(from_=outfile, spksmithed=True, **additional_kernels) except ProcessError as e: logger.error('file: {}'.format(outfile)) logger.error("STDOUT: {}".format(e.stdout.decode('utf-8'))) logger.error("STDERR: {}".format(e.stderr.decode('utf-8'))) raise Exception('Spice Init Error') try: logger.info("Running Footprintinit on {}".format(outfile)) footprintinit(from_=outfile) except ProcessError as e: logger.error('file: {}'.format(outfile)) logger.error("STDOUT: {}".format(e.stdout.decode('utf-8'))) logger.error("STDERR: {}".format(e.stderr.decode('utf-8'))) raise Exception('Footprint Init Error') def thm_crop(infile, outfile, minlat, maxlat): run_davinci('thm_crop_lat.dv', infile, outfile, args=['minlat={}'.format(str(minlat)), 'maxlat={}'.format(maxlat)]) def match_pair(img1_path, img2_path, figpath=None): src_points = point_grid(GeoDataset(img1_path), step=50) f = open('temp.txt', 'w+') f.write('\n'.join('{}, {}'.format(int(x),int(y)) for x,y in src_points)) del f label = pvl.loads(campt(from_=img1_path, coordlist='temp.txt', coordtype='image')) points = [] for group in label: try: lat = group[1]['PlanetocentricLatitude'].value lon = group[1]['PositiveEast360Longitude'].value points.append([lat, lon]) except Exception as e: continue logger.info("{} points from image1 successfully reprojected to image2, rejected {}".format(str(len(points)), str(len(src_points)-len(points)))) if len(points) == 0: raise Exception("No valid points were found for pair {} {}".format(img1_path, img2_path)) f = open('temp.txt', 'w+') f.write('\n'.join('{}, {}'.format(x,y) for x,y in points)) del f img2label = pvl.loads(campt(from_=img2_path, coordlist='temp.txt', coordtype='ground', allowoutside=False)) dst_lookup = {} for i,group in enumerate(img2label): if not group[1]['Error']: line = group[1]['Line'] sample = group[1]['Sample'] dst_lookup[i] = [sample, line] filelist = [img1_path, img2_path] cg = CandidateGraph.from_filelist(filelist) edge = cg[0][1]['data'] img1 = GeoDataset(img1_path) img2 = GeoDataset(img2_path) src_keypoints = pd.DataFrame(data=src_points, columns=['x', 'y']) src_keypoints['response'] = 0 src_keypoints['angle'] = 0 src_keypoints['octave'] = 0 src_keypoints['layer'] = 0 src_keypoints edge.source._keypoints = src_keypoints results = [] dst_keypoints = [] dst_index = 0 distances = [] arr1 = img1.read_array() arr2 = img2.read_array() del img1 del img2 for keypoint in edge.source.keypoints.iterrows(): index, row = keypoint sx, sy = row['x'], row['y'] try: dx, dy = dst_lookup[index] except KeyError: continue try: ret = refine_subpixel(sx, sy, dx, dy, arr1, arr2, size=50, reduction=10, convergence_threshold=1) except Exception as ex: continue if ret is not None: x,y,metrics = ret else: continue dist = np.linalg.norm([x-dx, y-dy]) results.append([0, index, 1, dst_index, dist]) dst_keypoints.append([x,y, 0,0,0,0,0]) dst_index += 1 matches = pd.DataFrame(data=results, columns=['source_image', 'source_idx', 'destination_image', 'destination_idx', 'distance']) if matches.empty: logger.error("After matching points, matches dataframe returned empty.") dst_keypoints = pd.DataFrame(data=dst_keypoints, columns=['x', 'y', 'response', 'size', 'angle', 'octave', 'layer']) edge.destination._keypoints = dst_keypoints edge._matches = matches edge.compute_fundamental_matrix() distance_check(edge, clean_keys=['fundamental']) if figpath: plt.figure(figsize=(10,25)) cg[0][1]['data'].plot(clean_keys=['fundamental', 'distance'], nodata=-32768.0) plt.savefig(figpath) plt.close() return cg def refine_subpixel(sx, sy, dx, dy, s_img, d_img, size=100, reduction=25, convergence_threshold=.5): """ Iteratively apply a subpixel phase matcher to source (s_img) amd destination (d_img) images. The size parameter is used to set the initial search space. The algorithm is recursively applied to reduce the total search space by reduction until the convergence criteria are met. Convergence is defined as the point at which the computed shifts (x_shift,y_shift) are less than the convergence_threshold. In instances where the size is reducted to 1 pixel the algorithm terminates and returns None. Parameters ---------- sx : numeric The x position of the center of the template to be matched to sy : numeric The y position of the center of the template to be matched to dx : numeric The x position of the center of the search to be matched from dy : numeric The y position of the center of the search to be matched to s_img : object A plio geodata object from which the template is extracted d_img : object A plio geodata object from which the search is extracted size : int One half of the total size of the template, so a 251 default results in a 502 pixel search space reduction : int With each recursive call to this func, the size is reduced by this amount convergence_threshold : float The value under which the result can shift in the x and y directions to force a break Returns ------- dx : float The new x value for the match in the destination (d) image dy : float The new y value for the match in the destination (d) image metrics : tuple A tuple of metrics. In the case of the phase matcher this are difference and RMSE in the phase dimension. """ s_template, _, _ = clip_roi(s_img, sx, sy, size_x=size, size_y=size) d_search, dxr, dyr = clip_roi(d_img, dx, dy, size_x=size, size_y=size) if s_template.shape != d_search.shape: s_size = s_template.shape d_size = d_search.shape updated_size = int(min(s_size + d_size) / 2) s_template, _, _ = clip_roi(s_img, sx, sy, size_x=updated_size, size_y=updated_size) d_search, dxr, dyr = clip_roi(d_img, dx, dy, size_x=updated_size, size_y=updated_size) # Apply the phase matcher shift_x, shift_y, metrics = subpixel_phase(s_template, d_search, upsample_factor=100) # Apply the shift to d_search and compute the new correspondence location dx += (shift_x + dxr) dy += (shift_y + dyr) # Break if the solution has converged if abs(shift_x) < convergence_threshold and abs(shift_y) < convergence_threshold: return dx, dy, metrics else: size -= reduction if size < 1: return return refine_subpixel(sx, sy, dx, dy, s_img, d_img, size) def normalize_image_res(image1, image2, image2out, image1out, out_type='ISIS3', nodata=-32768.0): width = max(image1.pixel_width, image2.pixel_width) f1 = gdal.Warp('/vsimem/temp1.out', image1.file_name, targetAlignedPixels=True, xRes = width, yRes = width, format = out_type) f2 = gdal.Warp('/vsimem/temp2.out', image2.file_name, targetAlignedPixels=True, xRes = width, yRes = width, format = out_type) del(f1, f2) temp1 = GeoDataset('/vsimem/temp1.out') temp2 = GeoDataset('/vsimem/temp2.out') minx = 0 miny = 0 maxx = max(temp1.read_array().shape[1], temp2.read_array().shape[1]) maxy = max(temp1.read_array().shape[0], temp2.read_array().shape[0]) fp1 = gdal.Translate(image1out, '/vsimem/temp1.out', srcWin = [minx, miny, maxx - minx, maxy - miny], noData=nodata) fp2 = gdal.Translate(image2out, '/vsimem/temp2.out', srcWin = [minx, miny, maxx - minx, maxy - miny], noData=nodata) del(fp1, fp2) def preprocess(thm_id, outdir, day=True, validate=False, projected_images=True, map_file=config.themis.map_file, originals=True, gtiffs=False, meta=True, index=True): ''' Downloads Themis file by ID and runs it through spice init and footprint init. ''' original = os.path.join(outdir, 'original') images = os.path.join(outdir, 'images') ogcube = os.path.join(original, 'l1.cub') projcube = os.path.join(original, 'l2.cub') metafile = os.path.join(outdir, 'meta.json') indexfile = os.path.join(outdir, 'index.json') os.makedirs(original, exist_ok=True) os.makedirs(images, exist_ok=True) kerns = get_controlled_kernels(thm_id) if os.path.exists(outdir) and os.path.exists(original) and os.path.exists(metafile) and os.path.exists(indexfile) : logger.info("File {} Exists, skipping redownload.".format(outdir)) return bool(kerns) if originals: if day: out, err = run_davinci('thm_pre_process.dv', infile=thm_id, outfile=ogcube) else: out, err = run_davinci('thm_pre_process_night.dv', infile=thm_id, outfile=ogcube) if validate: try: init(ogcube, additional_kernels=kerns) label = pvl.loads(campt(from_=ogcube)) except ProcessError as e: logger.info('campt Error') logger.info('file: {}'.format(outfile)) logger.error("STDOUT: {}".format(e.stdout.decode('utf-8'))) logger.error("STDERR: {}".format(e.stderr.decode('utf-8'))) incidence_angle = label['GroundPoint']['Incidence'].value if day and incidence_angle > 90: logger.info("incidence angle suggests night, but {} was proccessed for day, reprocessing".format(thm_id)) out, err = run_davinci('thm_pre_process_night.dv', infile=thm_id, outfile=ogcube) init(ogcube, additional_kernels=kerns) elif not day and incidence_angle <= 90: logger.info("incidence angle suggests day, but {} was proccessed for night, reprocessing".format(thm_id)) out, err = run_davinci('thm_pre_process.dv', infile=thm_id, outfile=ogcube) init(ogcube, additional_kernels=kerns) else: init(ogcube, additional_kernels=kerns) if projected_images: project(ogcube, projcube, map_file) img = GeoDataset(ogcube) if meta: meta = json.loads(json.dumps(img.metadata, default = lambda o:str(o) if isinstance(o, datetime) else o)) try: meta['map_file'] = str(pvl.load(map_file)) except Exception as e: logger.error("Failed to load map file {}:\n{}".format(map_file, e)) raise Exception("Invalid map file.") json.dump(meta, open(metafile, 'w+')) if kerns: logger.info('Used Controlled Kernels') meta['used_control_kernels'] = True if index: date = img.metadata['IsisCube']['Instrument']['StartTime'] index_meta = {} index_meta['geom'] = img.footprint.ExportToWkt() index_meta['id'] = thm_id index_meta['time'] = {} index_meta['time']['year'] = date.year index_meta['time']['month'] = date.month index_meta['time']['day'] = date.day index_meta['time']['hour'] = date.hour nbands = img.nbands json.dump(index_meta, open(indexfile, 'w+')) del img if gtiffs: for band in range(1,nbands+1): tiffpath = os.path.join(images, 'b{}.tiff'.format(band)) logger.info('Writing: {}'.format(tiffpath)) gdal.Translate(tiffpath, ogcube, bandList=[band], format='GTiff') return bool(kerns) def date_converter(o): if isinstance(o, np.ndarray): return o.tolist() if isinstance(o, datetime): return o.isoformat() def print_dict(d): print(str(yaml.dump(json.loads(json.dumps(d, default=date_converter)), default_flow_style=False ))) def point_grid(img, nodata=-32768.0, step=50): arr = img.read_array() xs = np.linspace(0, arr.shape[1]-1, num=arr.shape[1]/step) ys = np.linspace(0, arr.shape[0]-1, num=arr.shape[0]/step) # array of x,y pairs points = np.transpose([np.tile(xs, len(ys)), np.repeat(ys, len(xs))]) points = [p for p in points if arr[int(p[1])][int(p[0])] != nodata] return points def distance_check(e, clean_keys=[]): matches, mask = e.clean(clean_keys) thresh = np.percentile(matches['distance'], 90) mask = np.ones(mask.shape[0], dtype=bool) mask[e.matches['distance'] >= thresh] = False e.masks['distance'] = mask def project(img, to, mapfile, matchmap=False): params = { 'from_' : img, 'map' : mapfile, 'to' : to, 'matchmap': matchmap } if GeoDataset(img).metadata['IsisCube'].get('Mapping', False): try: params['interp'] = 'NEARESTNEIGHBOR' logger.info('Running map2map on {} with params {}'.format(img, params)) map2map(**params) except ProcessError as e: logger.info('map2map Error') logger.error("STDOUT: {}".format(e.stdout.decode('utf-8'))) logger.error("STDERR: {}".format(e.stderr.decode('utf-8'))) else: try: logger.info('Running cam2map on {}'.format(img)) cam2map(**params) except ProcessError as e: logger.info('cam2map Error') logger.error("STDOUT: {}".format(e.stdout.decode('utf-8'))) logger.error("STDERR: {}".format(e.stderr.decode('utf-8'))) def get_controlled_kernels(thmid, kernel_dir=config.themis.controlled_kernels, day=True): if not kernel_dir: return {} found = False if day: kernels = os.path.join(kernel_dir, 'DIR') else: kernels = os.path.join(kernel_dir, 'NIR') files = glob(os.path.join(kernels, '*.txt')) for f in files: contents = open(f, 'r').read() if thmid in contents: found = True break return { 'ck' : glob(os.path.join(kernels, '*_ck.bc'))[0], 'spk' : glob(os.path.join(kernels, '*_spk.bsp'))[0] } if found else {} def array2raster(rasterfn, array, newRasterfn): """ Writes an array to a GeoDataset using another dataset as reference. Borrowed from: https://pcjericks.github.io/py-gdalogr-cookbook/raster_layers.html Parameters ---------- rasterfn : str, GeoDataset Dataset or path to the dataset to use as a reference. Geotransform and spatial reference information is copied into the new image. array : np.array Array to write newRasterfn : str Filename for new raster image Returns ------- : GeoDataset File handle for the new raster file """ naxis = len(array.shape) assert naxis == 2 or naxis == 3 if naxis == 2: # exapnd the third dimension array = array[:,:,None] nbands = array.shape[2] if isinstance(rasterfn, GeoDataset): rasterfn = rasterfn.file_name raster = gdal.Open(rasterfn) geotransform = raster.GetGeoTransform() originX = geotransform[0] originY = geotransform[3] pixelWidth = geotransform[1] pixelHeight = geotransform[5] cols = array.shape[1] rows = array.shape[0] driver = gdal.GetDriverByName('GTiff') outRaster = driver.Create(newRasterfn, cols, rows, nbands, gdal.GDT_Float32) outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight)) for band in range(1,nbands+1): outband = outRaster.GetRasterBand(band) # Bands use indexing starting at 1 outband.WriteArray(array[:,:,band-1]) outband.FlushCache() outRasterSRS = osr.SpatialReference() outRasterSRS.ImportFromWkt(raster.GetProjectionRef()) outRaster.SetProjection(outRasterSRS.ExportToWkt()) outRaster = None return GeoDataset(newRasterfn)
1.976563
2
graph-db/extractor/src/ncbi/taxonomy_LMDB_annotation.py
SBRG/lifelike
8
12779320
from ncbi.ncbi_taxonomy_parser import TaxonomyParser, Taxonomy from common.database import * from common.utils import get_data_dir import os # default strain for their species for organism searching LMDB_SPECIES_MAPPING_STRAIN = ['367830','511145', '272563', '208964', '559292'] DATA_SOURCE = 'NCBI Taxonomy' def write_LMDB_annotation_file(database, base_dir, excluded_names=['environmental sample']): ''' If species_only, export species and their children only :param excluded_names: list of tax names that should not be used for annotation :return: ''' # find the strains that are used to replace its parent species for annotation query = """ match p=(n:Taxonomy)-[:HAS_PARENT*0..]->(:Taxonomy {rank: 'species'}) where n.{PROP_ID} in $tax_ids with nodes(p) as nodes, n unwind nodes as p with n, p where n <> p return n.{PROP_ID} as tax_id, p.{PROP_ID} as parent_id, p.name as parent_name """ df = database.get_data(query, {'tax_ids': LMDB_SPECIES_MAPPING_STRAIN}) replace_id_map = {} for index, row in df.iterrows(): replace_id_map[row['parent_id']] = row['tax_id'] parser = TaxonomyParser(base_dir) nodes = parser.parse_files() outfile = os.path.join(parser.output_dir, 'species_for_LMDB.tsv') with open(outfile, 'w') as f: f.write('tax_id\trank\tcategory\tname\tname_class\torig_tax_id\tdata_source\n') for node in nodes.values(): if node.top_category and node.rank == 'species': _write_node_names(node, f, excluded_names, replace_id_map) def _write_node_names(tax, file, exclude_node_names=[], replace_id_map=None): """ recursively write node names and children names :param tax: tax node :param file: outfile :param exclude_node_names: :param replace_id_map: :return: """ if exclude_node_names: # if tax name contains the exclude_node_name, return without writing for name in tax.names.keys(): for exclude in exclude_node_names: if exclude in name: return if replace_id_map and tax.tax_id in replace_id_map: tax.orig_id = tax.tax_id tax.tax_id = replace_id_map[tax.orig_id] lines = '' for name, name_class in tax.names.items(): lines = lines + '\t'.join([tax.tax_id, tax.rank, tax.top_category, name, name_class, tax.orig_id, DATA_SOURCE]) + '\n' file.write(lines) for child in tax.children: _write_node_names(child, file, exclude_node_names, replace_id_map) def main(): database = get_database() # pass the write base_data_dir for the parser write_LMDB_annotation_file(database, get_data_dir()) database.close() if __name__ == "__main__": main()
2.21875
2
parse/parse_uniprot_header.py
Hua-CM/HuaSmallTools
21
12779321
# -*- coding: utf-8 -*- # @Time : 2020/11/15 13:49 # @Author : <NAME> # @FileName: parse_uniprot_header.py # @Usage: # @Note: # @E-mail: <EMAIL> import pandas as pd import re class UniprotParse: def __init__(self, _input_fasta): self.input = _input_fasta self.output = None def parse(self): with open(self.input, 'r', encoding='utf-8') as f: _header_list = [line.strip('>') for line in f if line.startswith('>')] _header_parse_list = [] for _header in _header_list: _ele_dict = {'ID': _header.split()[0].split('|')[1], 'Entry': _header.split()[0].split('|')[2]} _description_list = [] for _ele in _header.split()[1:]: pre_fix = re.match('OX=|OS=|GN=|PE=|SV=', _ele) if pre_fix: _ele_dict[pre_fix.group().strip("=")] = _ele.split('=')[1] else: _description_list.append(_ele) _ele_dict['Description'] = ' '.join(_description_list) _header_parse_list.append(_ele_dict) self.output = pd.DataFrame(_header_parse_list) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description="This is the script to get Uniprot fasta header information" "and use it intrepret BLAST results") sub_parser = parser.add_subparsers(title='', dest='interpret/parse') sub_parser.required = True parse_parser = sub_parser.add_parser( 'parse', help='Parse Uniprot fasta headers to a table') parse_parser.add_argument('-i', '--input_file', required=True, help='<filepath> The uniprot fasta') parse_parser.add_argument('-o', '--output_file', required=True, help='<filepath> The output path') parse_parser.set_defaults(subcmd="parse") interpret_parser = sub_parser.add_parser( 'interpret', help='Interpret BLAST results') interpret_parser.add_argument('-i', '--input_file', required=True, help='<filepath> The BLAST result, only format six is acceptable') interpret_parser.add_argument('-u', '--uniprot', required=True, help='<filepath> The niprot fasta header information generated by "parse" function') interpret_parser.add_argument('-c', '--column', required=True, type=int, help='<int> Specify which column in BLAST result contains the identifier of Uniprot') interpret_parser.add_argument('-o', '--output_file', required=True, help='<filepath> The output path') interpret_parser.set_defaults(subcmd="interpret") args = parser.parse_args() if args.subcmd == "parse": uni = UniprotParse(args.input_file) uni.parse() uni.output.to_csv(args.output_file, index=False, sep='\t') if args.subcmd == "interpret": blast_result = pd.read_table(args.input_file, header=None) uniprot_info = pd.read_table(args.uniprot) blast_result[args.column-1] = blast_result[args.column-1].apply(lambda x: x.split('|')[1]) result = pd.merge(blast_result, uniprot_info[['ID', 'GN', 'Description']], left_on=args.column-1, right_on='ID', how='left') result.drop('ID', axis=1, inplace=True) result.to_csv(args.output_file, header=False, index=False, sep='\t', float_format='%.3g')
3.015625
3
migrations/versions/da6f10c8ebf4_add_site_airtable.py
bwlynch/FbScraper
10
12779322
"""add site airtable Revision ID: da6f10c8ebf4 Revises: 9<PASSWORD>e<PASSWORD> Create Date: 2019-11-29 07:48:18.074193 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = "da6f10c8ebf4" down_revision = "aaae4ae18288" branch_labels = None depends_on = None def upgrade(): op.add_column( "Site", sa.Column("airtable_id", sa.String(256), nullable=True, unique=True) ) try: upgrade_data() op.alter_column( "Site", "airtable_id", nullable=False, existing_type=sa.String(256) ) except Exception as e: op.drop_column("Site", "airtable_id") raise e def downgrade(): op.drop_column("Site", "airtable_id") sites = sa.sql.table( "Site", sa.Column("site_id", sa.Integer), sa.Column("url", sa.String(1024)), sa.Column("airtable_id", sa.String(256)), ) def upgrade_data(): for site_id, url in [ (111, "https://www.youtube.com/channel/UCLZBXiS9ZrIXgKBs_SMfGBQ"), (58, "https://www.facebook.com/blesseverydayaroundyou/"), ]: op.execute( sites.delete().where(sites.c.site_id == site_id and sites.c.url == url) ) for url, airtable_id in airtable_id_map.items(): op.execute( sites.update() .where(sites.c.url == url) .values({"airtable_id": airtable_id}) ) airtable_id_map = { ## XXX duplicated # "https://www.youtube.com/channel/UCLZBXiS9ZrIXgKBs_SMfGBQ":"rec8rzS7SqKqnQuio", "https://www.youtube.com/channel/UCmgDmqjxbkqIXu4rNbrKodA": "rectV3bxAU2YrpWQW", "https://www.youtube.com/channel/UCLZBXiS9ZrIXgKBs_SMfGBQ": "rec6OsbxedCXaW1j1", "https://www.youtube.com/channel/UCpu3bemTQwAU8PqM4kJdoEQ": "recYUDT5JflPA2OoF", "https://www.youtube.com/channel/UCN2e8dLY9KnH-B15LyBM7Fg": "recQWxWEaVUWUcWYX", "https://www.ptt.cc/bbs/HatePolitics/index.html": "recsh7wPi68vLDNWk", "https://www.ptt.cc/bbs/Gossiping/index.html": "recLVrfhLyQDCzDA8", "https://taronews.tw/": "recJFqGr5a1xfaf8o", "https://www.cna.com.tw/": "recQUiciCUROnBe4A", "http://news.ltn.com.tw/": "recMqu8b2B0fjCWIF", "https://udn.com/": "reci0cxTv83iSeHl8", "https://tw.appledaily.com/new/realtime": "recgBO5TsaGP8MLbg", "https://tw.appledaily.com/": "recW0Y3DQ3DaeRQ7Y", "https://www.ettoday.net/": "recJ9pSXGsxE4kmn9", "https://news.ebc.net.tw/": "recBW5P0o0fKX2T1L", "https://www.chinatimes.com/": "recslfJAoVKDbdh24", "https://www.eatnews.net/": "rec3Wrnrb3GTcDivT", "https://www.taiwanmazu.org/": "recB4NpLrTvUwWovp", "http://tailian.taiwan.cn/": "recG8g1JoHti4T8fO", "https://www.toutiao.com/": "recirH5ayaKXA633m", "http://www.itaiwannews.cn/": "reczA8cBEGIcvwo1B", "http://nooho.net": "recXoBEAH8TRdhZYj", "http://taiwan-madnews.com": "recXa7wpjdcrWT8X7", "http://taiwan-politicalnews.com": "recPnWuwH01QTAZPX", "http://hssszn.com": "recBpcl1dLZQpY2Q5", "http://fafa01.com": "recGN46B3LnnA8LbF", "http://qiqi.today": "recRl8ORrU0IKWkBZ", "http://defense.rocks": "recgFCKXWH8hBt6Rw", "http://cnba.live": "rec3HARifvZvpwmzE", "http://i77.today": "recSV8S0hvZY3ZTuA", "http://77s.today": "recgTV83ZY5NWWnGT", "http://www.qiqi.world/": "reca6qh8fo3mCqfCh", "http://www.mission-tw.com/mission": "recJjdr5Jb4fGe9Os", "http://www.taiwan.cn/": "recuC7NzKlui3dcd6", "https://www.facebook.com/eatnews/": "recQshOYa9lZin1AU", "https://www.facebook.com/search/top/?q=%E6%96%87%E5%B1%B1%E4%BC%AF&epa=SEARCH_BOX": "rec7xrqokEMg3s5L9", "https://www.facebook.com/znk168/": "recIjToauNtBJdyQu", "https://www.facebook.com/almondbrother/": "receHukPdyaKCtBMj", "https://www.facebook.com/Colorlessrise/": "recMSPrWl8AuExQMk", "https://www.facebook.com/pg/KSMissLin/groups/?referrer=pages_groups_card_cta&ref=page_internal": "rech9IRKLxxB0kx2w", "https://www.facebook.com/%E5%BC%B7%E5%BC%B7%E6%BB%BE%E5%A4%A7%E5%93%A5-%E9%98%BF%E8%AA%8C-1088027454701943/?__tn__=%2Cd%2CP-R&eid=ARBiDxJohZf5_icvMw2BXVNG2nHG4VR9b_ArA_Tc6PfA98MtdnGw1xVKWvIdE-X1wfSteOnhr6PxVDUX": "recx88UIQkLjJ10wU", "https://www.facebook.com/twherohan/": "recAY2H12zcSbCfhv", "https://www.facebook.com/%E8%A8%B1%E6%B7%91%E8%8F%AF-130771133668155/": "recvnH2Lot8ypWNrl", "https://www.facebook.com/hsiweiC/": "recVBlckyMtFmlh82", "https://www.facebook.com/groups/260112827997606/": "recIttcUl3HPUoqzj", "https://www.facebook.com/groups/391568921608431/": "recpKtnBclXwY4aqG", "https://www.facebook.com/groups/2072874742809044/": "recDffdw3nHCyVE3j", "https://www.facebook.com/groups/488305761638330/": "recm3eGGXPkOtfFLr", "https://www.facebook.com/groups/389408621877306/": "recdvH8v3SJX5TpRZ", "https://www.facebook.com/groups/768267203515635/": "recvKtQ84sirCdMzD", "https://www.facebook.com/straitstoday/": "recLmQSJ5BUyrpKE6", "https://www.facebook.com/youth86/": "recH6lOgxmwbsfu6N", "https://www.facebook.com/groups/1148919035153224/": "recw8GIqZ6a4HXzR4", "https://www.facebook.com/knowledge.practice.studio/": "rec7YTWk5wIUlQ25Z", "https://www.facebook.com/Templelivenetwork/": "recwAHI4ZH36ZOeeb", "https://www.facebook.com/%E4%B8%80%E8%B5%B7%E8%BF%BD%E5%8A%87%E5%90%A7-2407159445968433/": "recBYOI6sd8UPLnsm", "https://www.facebook.com/KMTTCC/": "reciCaICxxil0pnSj", "https://www.facebook.com/Quotations.life168/": "recGSreihqP7XX1C0", "https://www.facebook.com/ZhongHuaYRM/": "recfLM0dY6CKhVNuR", "https://www.facebook.com/happyworld88": "recMx7tumAkDqZulR", "https://www.facebook.com/traveltheworld168/": "recSdwgOnLSFlZajU", "https://www.facebook.com/yifanfengshun888/": "recQTMyEWf2xsCelK", "https://www.facebook.com/world.tw/": "rec5cEt7NvB3TcI79", "https://www.facebook.com/HaterIsHere/": "recTMSPJmmQXBfcDO", "https://www.facebook.com/jesusSavesF13/": "rechrvzObklDq6Xcj", "https://www.facebook.com/TaiwanNeutra/": "recANFv93ormFlTiT", "https://www.facebook.com/%E9%9F%93%E5%AE%B6%E8%BB%8D%E9%90%B5%E7%B2%89%E8%81%AF%E7%9B%9F-837868789721803/": "recc9xwpmhaoLMgzx", "https://www.facebook.com/%E7%B5%B1%E4%B8%80%E4%B8%AD%E5%9C%8B%E4%B8%AD%E5%9C%8B%E7%B5%B1%E4%B8%80-%E7%BB%9F%E4%B8%80%E4%B8%AD%E5%9B%BD%E4%B8%AD%E5%9B%BD%E7%BB%9F%E4%B8%80-1403317033298680/": "recmv1QvbaruPxERN", "https://www.facebook.com/%E5%8F%8D%E8%94%A1%E8%8B%B1%E6%96%87%E7%B2%89%E7%B5%B2%E5%9C%98-257062087822640/": "recLTcnCQdOyMgZX4", "https://www.facebook.com/CTTATTACK/": "recuhN7EituL81XfD", "https://www.facebook.com/Gyhappyboard/": "recUfUuenCqEXY13X", "https://www.facebook.com/%E8%A9%B1%E8%AA%AA%E9%82%A3%E4%BA%9B%E7%B7%A8%E9%80%A0%E7%9A%84%E4%BA%8B-304688810020434/": "rec4z05fcic3vlQyq", ## XXX duplicated # "https://www.facebook.com/blesseverydayaroundyou/":"recUUs0ITu6PrpVIo", "https://www.facebook.com/%E8%94%A1%E8%8B%B1%E6%96%87%E4%B8%8B%E5%8F%B0%E7%BD%AA%E7%8B%80%E9%9B%86%E7%B5%90%E7%B8%BD%E9%83%A8-121570255108696/": "reclAN9s2yWASp9A8", "https://www.facebook.com/CapricornStory4U/": "recLduxn9D5XD2w3p", "https://www.facebook.com/blesseverydayaroundyou/": "recVQ6iGSGFFAuK3I", "https://www.facebook.com/inability.dpp/": "recojKVhcsmrUQVrV", "https://www.facebook.com/%E8%97%8D%E8%89%B2%E6%AD%A3%E7%BE%A9%E5%8A%9B%E9%87%8F-1100522356652838/": "recm0Qil3pdQRPJq3", "https://www.facebook.com/LIKEHISTORYWORLD/": "recaSQDs9KIuUZL3g", "https://www.facebook.com/GCAironbloodarmy/": "recxjVgJQ4QA7vnP2", "https://www.facebook.com/globalchinesenewsunion/": "recS0IahdjcUZ2uV5", "https://www.facebook.com/GlobalChineselove/": "recXvfkeYIWRS1yDG", "https://www.facebook.com/cbcarmy/": "rec0GLO9KrkL26Hl9", "https://www.facebook.com/Islandofghost/": "recaxv1mbJzhBUmvh", "https://www.facebook.com/GhostIslandNews/": "recnfmS6KQq8ADPdq", "https://www.facebook.com/lovebakinglovehealthy/": "recqDcHtzstSEYuEN", "https://www.facebook.com/getoutdpp/": "recGhjG3J67YawoV3", "https://www.facebook.com/%E7%BD%B7%E5%85%8D%E6%B0%91%E9%80%B2%E9%BB%A8-2129370967290567/": "rec3rJ5tNg2otD5qz", "https://www.facebook.com/johncelayo/": "rec8n4wKSsbOAyq1J", "https://www.facebook.com/grumbledpp/": "rec64LvmyaPlP4kBP", "https://www.facebook.com/%E6%96%87%E9%9D%92%E5%B7%A5%E4%BD%9C%E6%9C%83-510052339062419/": "rec8Z1YuT8hWKYbG2", "https://www.facebook.com/%E9%9D%A0%E5%8C%97%E6%B0%91%E9%80%B2%E9%BB%A8-454656575008713/": "recwLUUVEocoCeT8g", "https://www.facebook.com/bigchinalove/": "recPUgrixj8HPlVUp", "https://www.facebook.com/shengser/": "rec63fhQeP0MU3357", "https://www.facebook.com/%E8%A8%8E%E5%8E%AD%E6%B0%91%E9%80%B2%E9%BB%A8-504021696772145/": "rec7l2nBPLFj4sOmr", "https://www.facebook.com/%E9%9D%A0%E5%8C%97%E6%99%82%E4%BA%8B-165534787282102/": "recGCFPh0DWZ6MG4i", "https://www.facebook.com/taiwan1314520/": "rec9BS2RnG7Bi773d", "https://www.facebook.com/fuqidao168/": "recVbbS2hFI2S39z7", "https://www.facebook.com/GlobalChineseAlliance/": "recEvRHB5bqjxS6ES", "https://www.facebook.com/%E5%A4%A9%E5%8D%97%E5%9C%B0%E5%8C%97-1063653903655415/": "recdWAeftdXBwOLIX", "https://www.facebook.com/kmtdppisshit/": "rec6s2d1TXlmUI2nG", "https://www.facebook.com/catssssssssssssss/": "recpu60Ei5EqoEXxn", "https://www.facebook.com/qiqi.news/": "recOpNLBJ4R2mmCqM", "https://www.facebook.com/dogcat101300/": "recXy5Rkxp0PhMpCs", "https://www.facebook.com/travelmoviemusic/": "recw9FN2e3jZFJwqX", "https://www.facebook.com/imangonews/": "recVrU412hfv2dChw", "https://www.facebook.com/%E4%BA%BA%E7%94%9F%E6%AD%A3%E8%83%BD%E9%87%8F-1349834938455966/": "reccVfkXwa6u8R4o3", "https://www.facebook.com/%E4%BA%BA%E7%94%9F%E7%AC%91%E8%91%97%E8%B5%B0-1958092751106755/": "recEnSF53PkWENrhs", "https://www.facebook.com/thumbsuplifenews/": "recqbh2I61V2JArRi", "https://www.facebook.com/hssszn/": "recODAxW73l6JpJJ7", "https://www.facebook.com/aroundtheworld01/": "recjrgKJKwH1ru67m", "https://www.facebook.com/%E5%8F%8D%E8%94%A1%E8%8B%B1%E6%96%87%E8%81%AF%E7%9B%9F%E5%85%A8%E5%9C%8B%E6%B0%91%E6%80%A8%E5%97%86%E8%94%A1%E7%B8%BD%E9%83%A8-1566024720346478/": "rectYderJ2wfojGfN", "https://www.facebook.com/%E9%9D%92%E5%A4%A9%E7%99%BD%E6%97%A5%E6%AD%A3%E7%BE%A9%E5%8A%9B%E9%87%8F-1006889099430655/": "recjnR3SPoTTEUT15", "https://www.guancha.cn/": "recE5pFRI2dRUdsBB", "https://news.163.com": "recqZh8SLNtPITFo9", "https://kknews.cc/": "recKJwOC1QvSQJgKB", "http://www.readthis.one/": "recxMOjlGZDoUbLWc", "https://www.coco01.today/": "recjILSLlLRmkgP5I", "https://www.ptt01.cc/": "recj4kR6ExZgXdzOk", "https://www.xuehua.us/": "recbEZkJV8k2Fg91E", "https://www.orgs.one/": "recJVUAsWSsbKz9N0", "http://www.how01.com/": "rec03ujV04yeDHeAu", "https://read01.com/zh-tw/": "recwO0vYEkxI4JbBl", "https://www.youtube.com/channel/UCgkHTZsCdH8P9z7lazTXN3g": "recnUmD0TFC1UPMPH", "https://www.youtube.com/channel/UCJHq28mKJowPCGQ0WDIDU9A": "recjh6Rzp8iCarxF3", "https://www.youtube.com/channel/UCMcDqLHgIuXWtWsqPEkqnWA": "recyUFTVMNsGGuCAV", }
1.773438
2
xrspatial/tests/test_curvature.py
brendancol/xarray-spatial
0
12779323
import pytest import numpy as np import xarray as xr import dask.array as da from xrspatial import curvature from xrspatial.utils import doesnt_have_cuda from xrspatial.tests.general_checks import general_output_checks elevation = np.asarray([ [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], [1584.8767, 1584.8767, 1585.0546, 1585.2324, 1585.2324, 1585.2324], [1585.0546, 1585.0546, 1585.2324, 1585.588, 1585.588, 1585.588], [1585.2324, 1585.4102, 1585.588, 1585.588, 1585.588, 1585.588], [1585.588, 1585.588, 1585.7659, 1585.7659, 1585.7659, 1585.7659], [1585.7659, 1585.9437, 1585.7659, 1585.7659, 1585.7659, 1585.7659], [1585.9437, 1585.9437, 1585.9437, 1585.7659, 1585.7659, 1585.7659]], dtype=np.float32 ) def test_curvature_on_flat_surface(): # flat surface test_arr1 = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) expected_results = np.array([ [np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, 0, 0, 0, np.nan], [np.nan, 0, 0, 0, np.nan], [np.nan, 0, 0, 0, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan] ]) test_raster1 = xr.DataArray(test_arr1, attrs={'res': (1, 1)}) curv = curvature(test_raster1) general_output_checks(test_raster1, curv, expected_results) def test_curvature_on_convex_surface(): # convex test_arr2 = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, -1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) expected_results = np.asarray([ [np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, 0., 100., 0., np.nan], [np.nan, 100., -400., 100., np.nan], [np.nan, 0., 100., 0., np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan] ]) test_raster2 = xr.DataArray(test_arr2, attrs={'res': (1, 1)}) curv = curvature(test_raster2) general_output_checks(test_raster2, curv, expected_results) def test_curvature_on_concave_surface(): # concave test_arr3 = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) expected_results = np.asarray([ [np.nan, np.nan, np.nan, np.nan, np.nan], [np.nan, 0., -100., 0., np.nan], [np.nan, -100., 400., -100., np.nan], [np.nan, 0., -100., 0., np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan] ]) test_raster3 = xr.DataArray(test_arr3, attrs={'res': (1, 1)}) curv = curvature(test_raster3) general_output_checks(test_raster3, curv, expected_results) @pytest.mark.skipif(doesnt_have_cuda(), reason="CUDA Device not Available") def test_curvature_gpu_equals_cpu(): import cupy agg_numpy = xr.DataArray(elevation, attrs={'res': (10.0, 10.0)}) cpu = curvature(agg_numpy, name='numpy_result') agg_cupy = xr.DataArray( cupy.asarray(elevation), attrs={'res': (10.0, 10.0)} ) gpu = curvature(agg_cupy, name='cupy_result') general_output_checks(agg_cupy, gpu) np.testing.assert_allclose(cpu.data, gpu.data.get(), equal_nan=True) # NOTE: Dask + GPU code paths don't currently work because of # dask casting cupy arrays to numpy arrays during # https://github.com/dask/dask/issues/4842 def test_curvature_numpy_equals_dask(): agg_numpy = xr.DataArray(elevation, attrs={'res': (10.0, 10.0)}) numpy_curvature = curvature(agg_numpy, name='numpy_curvature') agg_dask = xr.DataArray( da.from_array(elevation, chunks=(3, 3)), attrs={'res': (10.0, 10.0)} ) dask_curvature = curvature(agg_dask, name='dask_curvature') general_output_checks(agg_dask, dask_curvature) # both produce same results np.testing.assert_allclose( numpy_curvature.data, dask_curvature.data.compute(), equal_nan=True)
2.125
2
rfapi/auth.py
cestrada-rf/rfapi-python
32
12779324
# Copyright 2016 Recorded Future, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Auth provider for RF tokens stored in environment.""" import os import email import hashlib import hmac import requests from .error import MissingAuthError # pylint: disable=too-few-public-methods class RFTokenAuth(requests.auth.AuthBase): """Authenticate using a token stored in an environment variable. The class will look for tokens in RF_TOKEN and RECFUT_TOKEN (legacy). """ def __init__(self, token, api_version=1): """Initialize the class. Provide a valid token.""" self.token = self._find_token() if token == 'auto' else token self._api_version = api_version def __call__(self, req): """Add the authentication header when class is called.""" # If we still haven't a token we need to bail. if not self.token: raise MissingAuthError if self._api_version == 1: req.headers['Authorization'] = "RF-TOKEN token=%s" % self.token else: req.headers['X-RFToken'] = self.token return req @staticmethod def _find_token(): if 'RF_TOKEN' in os.environ: return os.environ['RF_TOKEN'] if 'RECFUT_TOKEN' in os.environ: return os.environ['RECFUT_TOKEN'] raise MissingAuthError('Auth method auto selected but no token ' 'found in environment (RF_TOKEN or ' 'RECFUT_TOKEN).') class SignatureHashAuth(requests.auth.AuthBase): """Authenticate using signed queries.""" def __init__(self, username, userkey): """Initialize. Provide a valid username and key.""" self.username = username self.userkey = userkey def __call__(self, req): """Add the auth headers to a request.""" # pylint: disable=no-member timestamp = email.Utils.formatdate() split = req.path_url.split("?") path_params = split[1] if len(split) > 1 else "" body = req.body if req.body else "" if "v2" in req.path_url: v2_url = req.path_url.replace("/rfq", "") hash_text = v2_url + body + timestamp else: hash_text = "?" + path_params + body + timestamp hmac_hash = hmac.new(self.userkey, hash_text, hashlib.sha256).hexdigest() req.headers['Date'] = timestamp req.headers['Authorization'] = 'RF-HS256 user=%s, hash=%s' % ( self.username, hmac_hash ) return req
2.328125
2
genoplot/genoplot.py
ddnewell/genoplot
0
12779325
<reponame>ddnewell/genoplot # Copyright (c) 2016 by Welded Anvil Technologies (<NAME>). All Rights Reserved. # This software is the confidential and proprietary information of # Welded Anvil Technologies (<NAME>) ("Confidential Information"). # You shall not disclose such Confidential Information and shall use it # only in accordance with the terms of the license agreement you entered # into with Welded Anvil Technologies (<NAME>). # @author <EMAIL> import logging, itertools, svgwrite, time import networkx as nx from .family import Family from .familygraph import FamilyGraph from .pedigree import Pedigree from .utils import calculate_text_size logger = logging.getLogger("genoplot") class GenoPlot(object): def __init__(self, name, gedcom_file, output_file=None, font_size=10, hmargin=20, symbol_size=25, page_margin=100 ): """ GenoPlot - defines a pedigree plot based on specified gedcom file :param name: Plot name/title :type name: str :param gedcom_file: GEDCOM file path :type gedcom_file: str """ logger.info("Creating GenoPlot named '%s' from GEDCOM '%s'", name, gedcom_file) self.name = name self._pedigree = Pedigree(name, gedcom_file, font_size=font_size, hmargin=hmargin) if output_file is None: self._output_file = "{0}.svg".format(self.name) else: self._output_file = output_file if ".svg" not in self._output_file: self._output_file += ".svg" self._graph = None self._layout = None self._font_size = font_size self._symbol_size = symbol_size self._hmargin = hmargin self._node_height = self._symbol_size*2#*6 self._page_margin = page_margin self._connectors = [] self._image_layers = { "-1:duplicates": [], "0:connectors": [], "1:individuals": [], "2:text": [], "3:textextent": [] } def draw(self): """Draws pedigree plot based on specified parameters""" logger.info("Starting plot draw") draw_start = time.time() self._graph = FamilyGraph(self._pedigree, font_size=self._font_size, hmargin=self._hmargin, node_height=self._node_height, page_margin=self._page_margin) extremes = self._graph.extremes() self._svg = svgwrite.Drawing(filename=self._output_file, size=(extremes[1]+self._page_margin*2, extremes[3]*1.2+self._page_margin*2)) # for vid, loc in self._layout.items(): for vid, d in self._graph.items(): if vid[0] == "F": # Draw family family = d["el"] # father = family.father() # if not father is None: # fx = father.x # fy = father.y # else: # mother = family.mother() # fx = mother.x # fy = mother.y self._draw_family(family.id, family.x, family.y) # self._draw_family(int(vid[1:]), *loc) else: # Draw individual individual = d["el"] self._draw_individual(individual.id, individual.x, individual.y) # self._draw_individual(int(vid[1:]), *loc) # for vid, loc in self._layout.items(): for vid, d in self._graph.items(): if vid[0] == "F": # family = self._pedigree.family(int(vid[1:])) family = d["el"] father = family.father() parent = father if father is None: fwidth = self._hmargin parent = family.mother() else: fwidth = calculate_text_size(father.output_text(), self._font_size)[0] if parent is None: logger.critical("Parent is none for family %s; father: %s; parent: %s; cannot continue drawing", vid, father, parent) # Draw child connectors midpoint_x = parent.x+fwidth/2+self._hmargin+self._symbol_size/2 midpoint_y = parent.y+self._symbol_size/2 # midpoint_x = loc[0]+fwidth/2+self._hmargin+self._symbol_size/2 # midpoint_y = loc[1]+self._symbol_size/2 # Collect chlid coordinates start = (midpoint_x, midpoint_y) targets = [] # Draw edges to children, if the edges exist in branched graph for child in family.children(): nid = "P{0}".format(child.id) # if nid in self._branched_graph[vid] and nid in self._layout: if self._graph.has_edge(vid, nid): if not child.x is None and not child.y is None: child_x = child.x child_y = child.y else: logger.warn("Coordinates not persisted to %i", child.id) # child_x, child_y = self._layout["P{0}".format(child.id)] targets.append((child_x+self._symbol_size/2, child_y)) elif child.is_parent(): for fam in self._pedigree.individual_families(child.id, role="parent"): fid = "F{0}".format(fam.id) # if fid in self._branched_graph[vid]: if self._graph.has_edge(vid, fid): if not child.x is None and not child.y is None: child_x = child.x child_y = child.y else: logger.warn("Position not found for %i - %s, using family %s position", child.id, child.name, fid) logger.warn("Coordinates not persisted to %i", child.id) # child_x, child_y = self._layout[fid] targets.append((child_x+self._symbol_size/2, child_y)) # Draw elbow connectors if len(targets) > 0: self._draw_connector_to_multiple(start, targets) # Draw duplicate people connectors [self._draw_duplicate_person_link(individual) for individual in self._graph.duplicate_individuals()] # Draw connectors between added duplicate nodes for (nid1, nid2) in self._graph.branch_links(): individual = self._pedigree.individual(nid1) if not individual.x is None and not individual.y is None: start = (individual.x, individual.y) else: logger.warn("Coordinates not persisted to %i", individual.id) # start = self._layout["P{0}".format(individual.id)] duplicate = self._pedigree.individual(nid2) if not duplicate.x is None and not duplicate.y is None: end = (duplicate.x, duplicate.y) else: logger.warn("Coordinates not persisted to %i", duplicate.id) # end = self._layout["P{0}".format(duplicate.id)] logger.debug("Drawing added duplicate node connector: %s %s", start, end) self._draw_duplicate_connector(individual.sex, start, end) # Add cached drawing items to image [self._svg.add(item) for layer in sorted(self._image_layers) for item in self._image_layers[layer]] # Save image self._svg.save() logger.info("Plot draw complete, took %.2fs", time.time() - draw_start) def _draw_family(self, fid, x, y): """Draws family on drawing""" logger.debug("Drawing family %s at (%.1f, %.1f)", fid, x, y) family = self._pedigree.family(fid) # family.set_coordinates(x, y) father = family.father() mother = family.mother() if father is None: # Draw virtual father self._draw_virtual_individual("M", x, y) else: self._draw_individual(father.id, father.x, father.y) if mother is None: # Draw virtual mother if father is None: logger.warn("Family %s has no parents: drawing both virtual mother and father", fid) fwidth = self._hmargin else: fwidth = calculate_text_size(father.output_text(), self._font_size)[0] mwidth = self._symbol_size mx = x + self._hmargin*2+fwidth/2+mwidth/2 self._draw_virtual_individual("F", mx, y) end = (mx+self._symbol_size/2, y+self._symbol_size/2) else: self._draw_individual(mother.id, mother.x, mother.y) end = (mother.x+self._symbol_size/2, y+self._symbol_size/2) # Draw connector between parents start = (x+self._symbol_size, y+self._symbol_size/2) self._draw_connector(start, end) def _draw_virtual_individual(self, sex, x, y): """Draws individual on drawing""" if sex == "M": self._image_layers["1:individuals"].append( self._svg.rect( (x, y), (self._symbol_size, self._symbol_size), fill="white", stroke="#555555", style="stroke-dasharray: 4,5;" ) ) else: self._image_layers["1:individuals"].append( self._svg.ellipse( (x+self._symbol_size/2, y+self._symbol_size/2), (self._symbol_size/2, self._symbol_size/2), fill="white", stroke="#555555", style="stroke-dasharray: 4,5;" ) ) def _draw_individual(self, pid, x, y): """Draws individual on drawing""" individual = self._pedigree.individual(pid) individual.set_coordinates(x, y) if individual.sex == "M": self._image_layers["1:individuals"].append( self._svg.rect( (x, y), (self._symbol_size, self._symbol_size), fill=individual.color(), stroke="black" ) ) else: self._image_layers["1:individuals"].append( self._svg.ellipse( (x+self._symbol_size/2, y+self._symbol_size/2), (self._symbol_size/2, self._symbol_size/2), fill=individual.color(), stroke="black" ) ) text_y = y + 1.6*self._symbol_size for text in individual.output_text(): self._image_layers["2:text"].append( self._svg.text( text, insert=(x+self._symbol_size/2, text_y), color="black", style="font-size: {0}px; text-anchor: middle; font-family: 'Helvetica Neue';".format(self._font_size) ) ) ### Temporary text_width, text_height = calculate_text_size(text, self._font_size) self._image_layers["3:textextent"].append( self._svg.rect( (x+self._symbol_size/2-text_width/2, text_y-text_height), (text_width, text_height), fill="none", stroke="blue", style="stroke-dasharray: 1,2;" ) ) logger.debug("Text %s has width %.2f and height %.2f", text, text_width, text_height) text_y += text_height def _detect_straight_connector_overlap(self, x1, y1, x2, y2, fid=None): """Returns whether there is an overlapping straight line connector""" if y1 == y2: for cxn in self._connectors: if cxn[0][1] == y1 and cxn[1][1] == y2 and ( x1 <= cxn[0][0] <= x2 or x1 <= cxn[1][0] <= x2 or cxn[0][0] <= x1 <= cxn[1][0] or cxn[0][0] <= x2 <= cxn[1][0] ): return True # If no overlaps detected, return non-overlapping return False def _find_nonoverlapping_y(self, x1, x2, y): """Returns non-overlapping y value for connector""" i = 0 while self._detect_straight_connector_overlap(x1, y, x2, y): y -= 8 i += 1 if i > 100: logger.error("Drawing overlapping connector. Iterated 100 times and could not find open space on layout. X1: %i Y1: %i X2: %i Y2: %i", x1, y1, x2, y2) break if i > 0: logger.debug("Detected overlapping connector. Iterating %i times", i) return y def _draw_connector_to_multiple(self, start, targets): """Draws connector from start coordinate to one or more targets""" start_x, start_y = start max_x = start_x min_x = start_x max_y = start_y min_y = start_y for x, y in targets: if x > max_x: max_x = x if x < min_x: min_x = x if y > max_y: max_y = y if y < min_y: min_y = y middle_y = self._find_nonoverlapping_y(min_x, max_x, max_y - self._symbol_size) logger.debug("Drawing connector to multiple targets (%i). Max_X: %i Min_X: %i Max_Y: %i Min_Y: %i Middle_Y: %i", len(targets), max_x, min_x, max_y, min_y, middle_y) # Draw vertical section from start self._draw_connector(start, (start_x, middle_y)) # Draw horizontal section self._draw_connector((min_x, middle_y), (max_x, middle_y)) # Draw vertical sections to targets for tgt in targets: self._draw_connector((tgt[0], middle_y), tgt) def _draw_connector(self, start, end): """Draws connector between specified coordinates""" x1, y1 = start x2, y2 = end if y1 == y2 or x1 == x2: # Straight line connector if (start, end) not in self._connectors: self._image_layers["0:connectors"].append( self._svg.line( start=start, end=end, stroke="black" ) ) self._connectors.append(( start, end )) else: # Elbow connector middle_y = self._find_nonoverlapping_y(x1, x2, y2 - self._symbol_size) if (start, (x1, middle_y)) not in self._connectors: self._image_layers["0:connectors"].append( self._svg.line( start=start, end=(x1, middle_y), stroke="black" ) ) self._connectors.append(( start, (x1, middle_y) )) if ((x1, middle_y), (x2, middle_y)) not in self._connectors: self._image_layers["0:connectors"].append( self._svg.line( start=(x1, middle_y), end=(x2, middle_y), stroke="black" ) ) self._connectors.append(( (x1, middle_y), (x2, middle_y) )) if ((x2, middle_y), end) not in self._connectors: self._image_layers["0:connectors"].append( self._svg.line( start=(x2, middle_y), end=end, stroke="black" ) ) self._connectors.append(( (x2, middle_y), end )) def _draw_duplicate_person_link(self, individual): """Draws connectors for duplicate person""" coords = individual.coordinate_history() if len(coords) < 2: logger.warn("Individual %i - %s marked as duplicate but only has %i coordinates", individual.id, individual.name, len(coords)) return elif len(coords) > 2: coords = itertools.combinations(coords, 2) else: coords = [coords] logger.debug("Drawing duplicate person link for %s - coords: %s", individual.name, ", ".join(repr(c) for c in coords)) [self._draw_duplicate_connector(individual.sex, start, end) for (start, end) in coords] def _draw_duplicate_connector(self, sex, start, end): """Draws connector between specified coordinates""" x1 = start[0] + self._symbol_size/2 x2 = end[0] + self._symbol_size/2 y1 = start[1] + self._symbol_size/2 y2 = end[1] + self._symbol_size/2 sx, sy = start ex, ey = end # curve1_x = (x1 - x2) * 0.2 + x1 # curve1_y = (y1 - y2) * 0.3 + y1 # curve2_x = (x2 - x1) * 0.2 + x2 # curve2_y = (y2 - y1) * 0.3 + y2 # path = "M{0} {1} C {2} {3}, {4} {5}, {6} {7}".format(x1, y1, curve1_x, curve1_y, curve2_x, curve2_y, x2, y2) curve_dist = 100 if y1 == y2: curve1_x = (x1 + x2) / 2 curve1_y = y1 - curve_dist elif x1 == x2: curve1_x = x1 - curve_dist if sex == "M" else x1 + curve_dist curve1_y = (y1 + y2) / 2 else: dx = abs(x2 - x1) dy = abs(y2 - y1) if dy > dx: curve1_x = min(x1, x2) + dx * 0.2 curve1_y = min(y1, y2) + dy * 0.2 elif dy < dx: curve1_x = min(x1, x2) + dx * 0.1 curve1_y = max(y1, y2) - dy * 0.3 else: curve1_x = min(x1, x2) curve1_y = min(y1, y2) path = "M{0} {1} Q {2} {3}, {4} {5}".format(x1, y1, curve1_x, curve1_y, x2, y2) self._image_layers["-1:duplicates"].append( self._svg.path( d=path, stroke="#BAFFD2", fill="none" ) ) if sex == "M": self._image_layers["-1:duplicates"].append( self._svg.rect( (sx - self._symbol_size*0.2, sy - self._symbol_size*0.2), (self._symbol_size*1.4, self._symbol_size*1.4), fill="white", stroke="#BAFFD2" ) ) self._image_layers["-1:duplicates"].append( self._svg.rect( (ex - self._symbol_size*0.2, ey - self._symbol_size*0.2), (self._symbol_size*1.4, self._symbol_size*1.4), fill="white", stroke="#BAFFD2" ) ) else: self._image_layers["-1:duplicates"].append( self._svg.ellipse( (sx + self._symbol_size/2, sy + self._symbol_size/2), (self._symbol_size*1.4/2, self._symbol_size*1.4/2), fill="white", stroke="#BAFFD2" ) ) self._image_layers["-1:duplicates"].append( self._svg.ellipse( (ex + self._symbol_size/2, ey + self._symbol_size/2), (self._symbol_size*1.4/2, self._symbol_size*1.4/2), fill="white", stroke="#BAFFD2" ) )
2.546875
3
examples/notebooks/test_notebooks.py
mjc87/SHTOOLS
251
12779326
#!/usr/bin/env python3 """ This script will run all jupyter notebooks in order to test for errors. """ import sys import os import nbformat from nbconvert.preprocessors import ExecutePreprocessor if os.path.dirname(sys.argv[0]) != '': os.chdir(os.path.dirname(sys.argv[0])) notebooks = ('grids-and-coefficients.ipynb', 'localized-spectral-analysis.ipynb', 'gravity-and-magnetic-fields.ipynb', 'plotting-maps.ipynb', 'low-level-spherical-harmonic-analyses.ipynb', 'advanced-localized-spectral-analysis.ipynb', 'advanced-shcoeffs-and-shgrid-usage.ipynb', 'spherical-harmonic-normalizations.ipynb', 'advanced-shwindow-usage.ipynb', '3d-plots.ipynb') if sys.version_info.major == 3: kname = 'python3' else: raise ('Python version {:d} not supported.'.format(sys.version_info.major)) for i in range(len(notebooks)): with open(notebooks[i]) as f: nb = nbformat.read(f, as_version=4) ep = ExecutePreprocessor(timeout=240, kernel_name=kname) print('Processing file {:s}'.format(notebooks[i])) ep.preprocess(nb, {'metadata': {'path': '.'}})
2.4375
2
test/testDenseFactorization.py
TtheBC01/pEigen
0
12779327
import unittest import sys sys.path.append('/pEigen/src/peigen') import libpeigen as peigen class DenseFactorizationTest(unittest.TestCase): def setUp(self): self.rows = 1000 self.cols = 1000 self.dense_matrix = peigen.denseMatrixDouble(self.rows, self.cols) self.dense_matrix.setRandom(1) self.factorizer = peigen.denseDecomposition(self.dense_matrix) def test_thin_svd(self): self.factorizer.BDCSVD() S = self.factorizer.getSingularValues() norm_greater_than_0 = (S.diagonal(0).norm() > 0) U = self.factorizer.getU() UtU = U.transpose()*U trace = UtU.trace() residual = (trace - UtU.rows())**2/(UtU.rows()**2) res_less_than_eps = (residual < 1e-9) self.assertEqual(res_less_than_eps, True) self.assertEqual(norm_greater_than_0, True) def test_qr_decomp(self): self.factorizer.HouseholderQR() Q = self.factorizer.getQ() QtQ = Q.transpose()*Q trace = QtQ.trace() residual = (trace - QtQ.rows())**2/(QtQ.rows()**2) res_less_than_eps = (residual < 1e-9) self.assertEqual(res_less_than_eps, True) if __name__ == '__main__': unittest.main()
2.671875
3
tests/unit/asn/test_brcreateasncommand.py
ivcmartello/registrobrepp
0
12779328
<gh_stars>0 import pytest from eppy.doc import EppResponse from lxml import etree from registrobrepp.asn.brcreateasncommand import BrEppCreateAsnCommand from registrobrepp.asn.contactasn import ContactAsn class TestBrCreateAsnCommand: @pytest.fixture def createasncommand(self): number = 12345 organization = 'BR-ABCD-LACNIC' contacts = [ContactAsn.build('fan', routing=True), ContactAsn.build('hkk')] asIn = ['from AS2 10 accept AS1 A2'] asOut = ['to AS2 announce AS3 AS4'] command = BrEppCreateAsnCommand(number, organization, contacts, asIn, asOut) command.add_clTRID('ABC-12345') return command def test_create_asn_command(self, createasncommand, asnxmlschema, createasncommandxmlexpected): xml = createasncommand.to_xml(force_prefix=True).decode() assert asnxmlschema.validate(etree.fromstring(xml)) assert xml == createasncommandxmlexpected def test_create_asn_response(self, asnxmlschema, responseasncommandxmlexpected): response = EppResponse.from_xml(responseasncommandxmlexpected, extra_nsmap={'asn': 'urn:ietf:params:xml:ns:asn-1.0'}) xml = response.to_xml(force_prefix=True).decode() data = response['epp']['response']['resData']['asn:creData'] assert data.number == '64500' assert data.roid == '64500-REP' assert data.crDate == '1999-04-03T22:00:00.0Z' assert response['epp']['response']['trID']['clTRID'] == 'ABC-12345' assert response['epp']['response']['trID']['svTRID'] == '54321-XYZ' assert asnxmlschema.validate(etree.fromstring(xml))
1.960938
2
main.py
FDMZ17/log4j-test
0
12779329
<reponame>FDMZ17/log4j-test<gh_stars>0 from flask import Flask app = Flask(__name__) @app.route("/exploit.java") def exploit(): return open("exploit.java").read() app.run(port=8080)
1.953125
2
date_sorter/main.py
ImTheSquid/Image-Dupicate-Detector
2
12779330
<gh_stars>1-10 import os import shutil from datetime import datetime from os.path import basename, join from pathlib import Path from PIL import Image, ExifTags from PyQt5.QtCore import pyqtSignal, QThreadPool, Qt from PyQt5.QtWidgets import QWidget, QGroupBox, QVBoxLayout, QProgressBar, QLabel, QHBoxLayout, QLineEdit, \ QFileDialog, QRadioButton, QPushButton, QMessageBox from worker import Worker # Checks if a directory exists, then moves the specified file to that directory def check_exists(new_dir, file): # Makes directories and moves files os.makedirs(new_dir, exist_ok=True) shutil.move(file, join(new_dir, basename(file))) def convert_to_month(mon): return {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May', 6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October', 11: 'November', 12: 'December'}[mon] class DateSorter(QWidget): progress_signal = pyqtSignal(tuple) files = [] def __init__(self): super().__init__() self.choose_dest_dir = QPushButton('Choose...') self.start = QPushButton('Start') self.days = QRadioButton('Years, Months, and Days') self.months = QRadioButton('Years and Months') self.years = QRadioButton('Years') self.sorted_text = QLineEdit() self.choose_dir = QPushButton('Choose...') self.read_text = QLineEdit() # Thread stuff self.progress_signal.connect(self.update_progress) self.thread_pool = QThreadPool() self.thread_worker = Worker(self.sort_photos) self.thread_worker.setAutoDelete(False) self.thread_worker.signals.progress.connect(self.progress_signal) self.thread_worker.signals.finished.connect(self.update_after_completion) layout = QVBoxLayout() options = QGroupBox('Options') options.setLayout(self.setup_options()) progress = QGroupBox('Progress') progress_layout = QVBoxLayout() self.progress_bar = QProgressBar() self.progress_bar.setValue(0) self.progress_bar.setFormat('Waiting (%p%)') progress_layout.addWidget(self.progress_bar) progress.setLayout(progress_layout) layout.addWidget(options) layout.addWidget(progress) self.setLayout(layout) def setup_options(self): options = QVBoxLayout() read_dir_label = QLabel('Read Directory') options.addWidget(read_dir_label) read_box = QHBoxLayout() self.read_text.textEdited.connect(self.can_start_sort) read_box.addWidget(self.read_text) self.choose_dir.clicked.connect(self.open_chooser) read_box.addWidget(self.choose_dir) options.addLayout(read_box) dest_dir_label = QLabel('Destination Directory') options.addWidget(dest_dir_label) dest_box = QHBoxLayout() self.sorted_text.textEdited.connect(self.can_start_sort) dest_box.addWidget(self.sorted_text) self.choose_dest_dir.clicked.connect(self.open_dest_chooser) dest_box.addWidget(self.choose_dest_dir) options.addLayout(dest_box) radios = QVBoxLayout() sort_type_label = QLabel('Sort Type') radios.addWidget(sort_type_label) self.years.setChecked(True) radios.addWidget(self.years) radios.addWidget(self.months) radios.addWidget(self.days) options.addLayout(radios) options.addStretch() warning = QLabel('WARNING: There is no check for file permissions.\n' 'If you do not have permissions to access the selected directories the program will crash.') warning.setStyleSheet('color:#FF0000') warning.setAlignment(Qt.AlignCenter) self.start.setEnabled(False) self.start.clicked.connect(self.start_sorter) options.addWidget(warning) options.addWidget(self.start) return options def can_start_sort(self): if os.path.isdir(self.read_text.text()) and os.path.isdir(self.sorted_text.text()): self.start.setEnabled(True) self.progress_bar.setFormat('Ready (%p%)') else: self.start.setEnabled(False) self.progress_bar.setFormat('Waiting (%p%)') def open_chooser(self): dialog = QFileDialog.getExistingDirectory(self, 'Open Directory', '/home') if dialog: self.read_text.setText(dialog) self.can_start_sort() def open_dest_chooser(self): dialog = QFileDialog.getExistingDirectory(self, 'Open Directory', '/home') if dialog: self.sorted_text.setText(dialog) self.can_start_sort() def update_progress(self, val): self.progress_bar.setValue(val[0]) def start_sorter(self): self.read_text.setEnabled(False) self.sorted_text.setEnabled(False) self.start.setEnabled(False) self.choose_dir.setEnabled(False) self.choose_dest_dir.setEnabled(False) self.years.setEnabled(False) self.months.setEnabled(False) self.files.clear() self.find_photos() self.thread_pool.start(self.thread_worker) QMessageBox.information(self, 'Date Sorter', 'Sort completed successfully.') def sort_photos(self, update): for f in range(0, len(self.files)): file = self.files[f] with Image.open(file) as img: if file.lower().endswith('.jpeg'): exif = {ExifTags.TAGS[k]: v for k, v in img.getexif().items() if k in ExifTags.TAGS} elif file.lower().endswith('.png'): exif = img.text else: exif = img._getexif() if exif is not None and 36867 in exif and not exif[36867][0] == '{': date = datetime.strptime(exif[36867], '%Y:%m:%d %H:%M:%S') self.find_dir(file, date) else: self.find_dir(file, None) update.emit((f,)) def find_dir(self, file, date): if date is None: check_exists(self.read_text.text() + '/Not_Sortable/', file) else: check_exists(os.path.join(self.read_text.text(), str(date.year), (convert_to_month(date.month) if self.months.isChecked() or self.days.isChecked() else ''), (str(date.day) if self.days.isChecked() else '')), file) def update_after_completion(self): self.progress_bar.setValue(0) self.progress_bar.setFormat('Waiting (%p%)') self.read_text.setEnabled(True) self.sorted_text.setEnabled(True) self.start.setEnabled(True) self.choose_dir.setEnabled(True) self.choose_dest_dir.setEnabled(True) self.years.setEnabled(True) self.months.setEnabled(True) self.files.clear() def find_photos(self): self.progress_bar.setFormat('Sorting (%p%)') for filename in Path(self.read_text.text()).rglob('**/*.*'): if filename.as_posix().lower().endswith(('.png', '.jpg', '.jpeg')): self.files.append(filename.as_posix()) self.progress_bar.setMaximum(len(self.files))
2.46875
2
forms/file_metadata_form.py
dvrpc/tmc-uploader
0
12779331
<gh_stars>0 from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, TextField, IntegerField, FloatField class UpdateMetadataForm(FlaskForm): title = StringField("Title") model_id = StringField("model ID") lat = FloatField("lat") lng = FloatField("lng") legs = TextField("legs") leg_names = TextField("leg names") movements = TextField("movements") modes = TextField("modes")
2.4375
2
efb/terminal.py
dorpvom/efb
0
12779332
from typing import Optional from prompt_toolkit import PromptSession from prompt_toolkit import print_formatted_text as print_ from efb.validator import YesNoValidator SESSION = PromptSession() def make_decision(question: str, default: Optional[bool] = None) -> bool: default_string = f'(default {"y" if default else "n"})' if default is not None else '' while True: answer = SESSION.prompt(f'{question} [y/n] {default_string}: ', validator=YesNoValidator()) if answer == 'y': return True if answer == 'n': return False if not answer and default is not None: return default print_(f'Please state your decision as y or n (not {answer}')
3.0625
3
pynrc/psfs.py
kammerje/pynrc
1
12779333
<reponame>kammerje/pynrc from __future__ import absolute_import, division, print_function, unicode_literals # The six library is useful for Python 2 and 3 compatibility import six, os # Import libraries import numpy as np import matplotlib import matplotlib.pyplot as plt import datetime, time import sys, platform import multiprocessing as mp import traceback import scipy from scipy.interpolate import griddata, RegularGridInterpolator, interp1d from numpy.polynomial import legendre from astropy.io import fits, ascii import astropy.units as u import logging _log = logging.getLogger('pynrc') from . import conf from .logging_utils import setup_logging from .nrc_utils import read_filter, S, grism_res from .opds import opd_default, OPDFile_to_HDUList from .maths.image_manip import frebin, pad_or_cut_to_size from .maths.fast_poly import jl_poly_fit, jl_poly from .maths.coords import Tel2Sci_info, NIRCam_V2V3_limits, dist_image # Program bar from tqdm.auto import trange, tqdm __epsilon = np.finfo(float).eps ########################################################################### # # WebbPSF Stuff # ########################################################################### try: import webbpsf except ImportError: raise ImportError('WebbPSF is not installed. pyNRC depends on its inclusion.') # Check that minimum required version meets requirements on_rtd = os.environ.get('READTHEDOCS') == 'True' if not on_rtd: _webbpsf_version_min = (0,9,0) _ = webbpsf.utils.get_webbpsf_data_path(_webbpsf_version_min) from webbpsf.opds import OTE_Linear_Model_WSS # Link to WebbPSF's instance of poppy from webbpsf.webbpsf_core import poppy # Set up some poppy and webbpsf defaults # Turn off multiprocessing, which is faster now due to improved # underlying vectorization of poppy and numpy. Swapping large # amount of data between processes is now the bottleneck for mp (5/18/2020). poppy.conf.use_multiprocessing = False # Only use this if you have the FFTW C library installed # In general, numpy fft is actually pretty fast now, so default use_fftw=False # It also doesn't play well with multiprocessing poppy.conf.use_fftw = False # Make sure we can use multiprocessing! # Apple's Accelerate framework in 2.7 doesn't work with mp d = np.__config__.blas_opt_info accel_bool = ('extra_link_args' in d.keys() and ('-Wl,Accelerate' in d['extra_link_args'])) if (sys.version_info < (3,4,0)) and (platform.system()=='Darwin') and accel_bool: poppy.conf.use_multiprocessing = False # If the machine has 2 or less CPU cores, then no mp if mp.cpu_count()<3: poppy.conf.use_multiprocessing = False # n_processes will be considered the max number of processors we use for multiprocessing poppy.conf.n_processes = int(0.75 * mp.cpu_count()) #if poppy.conf.use_multiprocessing else 1 webbpsf.conf.default_output_mode = u'detector' ########################################################################### # # Create WebbPSF Coefficients and Images # ########################################################################### # Subclass of the WebbPSF NIRCam class to modify aberrations from webbpsf import NIRCam as webbpsf_NIRCam class webbpsf_NIRCam_mod(webbpsf_NIRCam): def __init__(self): webbpsf_NIRCam.__init__(self) # Remove limits for detector position # Values outside of [0,2047] will get transformed to the correct V2/V3 location @webbpsf_NIRCam.detector_position.setter def detector_position(self, position): try: x, y = map(int, position) except ValueError: raise ValueError("Detector pixel coordinates must be a pair of numbers, not {}".format(position)) # if x < 0 or y < 0: # raise ValueError("Detector pixel coordinates must be nonnegative integers") # if x > self._detector_npixels - 1 or y > self._detector_npixels - 1: # raise ValueError("The maximum allowed detector pixel coordinate value is {}".format( # self._detector_npixels - 1)) self._detector_position = (int(position[0]), int(position[1])) def nproc_use(fov_pix, oversample, nwavelengths, coron=False): """Estimate Number of Processors Attempt to estimate a reasonable number of processors to use for a multi-wavelength calculation. One really does not want to end up swapping to disk with huge arrays. NOTE: Requires ``psutil`` package. Otherwise defaults to ``mp.cpu_count() / 2`` Parameters ----------- fov_pix : int Square size in detector-sampled pixels of final PSF image. oversample : int The optical system that we will be calculating for. nwavelengths : int Number of wavelengths. coron : bool Is the nproc recommendation for coronagraphic imaging? If so, the total RAM usage is different than for direct imaging. """ try: import psutil except ImportError: nproc = int(mp.cpu_count() // 2) if nproc < 1: nproc = 1 _log.info("No psutil package available, cannot estimate optimal nprocesses.") _log.info("Returning nproc=ncpu/2={}.".format(nproc)) return nproc mem = psutil.virtual_memory() avail_GB = mem.available / 1024**3 # Leave 10% for other things avail_GB *= 0.9 fov_pix_over = fov_pix * oversample # For multiprocessing, memory accumulates into the main process # so we have to subtract the total from the available amount reserve_GB = nwavelengths * fov_pix_over**2 * 8 / 1024**3 # If not enough available memory, then just return nproc=1 if avail_GB < reserve_GB: _log.warn('Not enough available memory ({} GB) to \ to hold resulting PSF info ({} GB)!'.\ format(avail_GB,reserve_GB)) return 1 avail_GB -= reserve_GB # Memory formulas are based on fits to memory usage stats for: # fov_arr = np.array([16,32,128,160,256,320,512,640,1024,2048]) # os_arr = np.array([1,2,4,8]) if coron: # Coronagraphic Imaging (in MB) mem_total = (oversample*1024*2.4)**2 * 16 / (1024**2) + 500 if fov_pix > 1024: mem_total *= 1.6 else: # Direct Imaging (also spectral imaging) mem_total = 5*(fov_pix_over)**2 * 8 / (1024**2) + 300. # Convert to GB mem_total /= 1024 # How many processors to split into? nproc = int(avail_GB / mem_total) nproc = np.min([nproc, mp.cpu_count(), poppy.conf.n_processes]) # Each PSF calculation will constantly use multiple processors # when not oversampled, so let's divide by 2 for some time # and memory savings on those large calculations if oversample==1: nproc = np.ceil(nproc / 2) _log.debug('avail mem {}; mem tot: {}; nproc_init: {:.0f}'.\ format(avail_GB, mem_total, nproc)) nproc = np.min([nproc, nwavelengths]) # Resource optimization: # Split iterations evenly over processors to free up minimally used processors. # For example, if there are 5 processes only doing 1 iteration, but a single # processor doing 2 iterations, those 5 processors (and their memory) will not # get freed until the final processor is finished. So, to minimize the number # of idle resources, take the total iterations and divide by two (round up), # and that should be the final number of processors to use. np_max = np.ceil(nwavelengths / nproc) nproc = int(np.ceil(nwavelengths / np_max)) if nproc < 1: nproc = 1 # Multiprocessing can only swap up to 2GB of data from the child # process to the master process. Return nproc=1 if too much data. im_size = (fov_pix_over)**2 * 8 / (1024**3) nproc = 1 if (im_size * np_max) >=2 else nproc _log.debug('avail mem {}; mem tot: {}; nproc_fin: {:.0f}'.\ format(avail_GB, mem_total, nproc)) return int(nproc) def _wrap_coeff_for_mp(args): """ Internal helper routine for parallelizing computations across multiple processors for multiple WebbPSF monochromatic calculations. args => (inst,w,fov_pix,oversample) """ # No multiprocessing for monochromatic wavelengths mp_prev = poppy.conf.use_multiprocessing poppy.conf.use_multiprocessing = False inst,w,fov_pix,oversample = args # fov_pix_orig = fov_pix # Does calc_psf change fov_pix?? try: hdu_list = inst.calc_psf(fov_pixels=fov_pix, oversample=oversample, monochromatic=w*1e-6, add_distortion=False, crop_psf=True) # Distortions are ignored here. It's prefered do perform these later. # See the WebbPSF functions in webbpsf.distortion except Exception as e: print('Caught exception in worker thread (w = {}):'.format(w)) # This prints the type, value, and stack trace of the # current exception being handled. traceback.print_exc() print('') #raise e poppy.conf.use_multiprocessing = mp_prev return None # Return to previous setting poppy.conf.use_multiprocessing = mp_prev # return pad_or_cut_to_size(hdu_list[2].data, fov_pix_orig*oversample) return hdu_list[0] def gen_psf_coeff(filter_or_bp, pupil=None, mask=None, module='A', fov_pix=11, oversample=None, npsf=None, ndeg=None, nproc=None, offset_r=None, offset_theta=None, jitter=None, jitter_sigma=0.007, tel_pupil=None, opd=None, wfe_drift=None, include_si_wfe=False, detector=None, detector_position=None, apname=None, bar_offset=None, force=False, save=True, save_name=None, return_save_name=False, quick=False, return_webbpsf=False, add_distortion=False, crop_psf=True, use_legendre=True, pynrc_mod=True, **kwargs): """Generate PSF coefficients Creates a set of coefficients that will generate a simulated PSF at any arbitrary wavelength. This function first uses ``WebbPSF`` to simulate a number of evenly spaced PSFs throughout some specified bandpass. An nth-degree polynomial is then fit to each oversampled pixel using a linear-least square fitting routine. The final set of coefficients for each pixel is returned as an image cube. The returned set of coefficient can be used to produce a set of PSFs by: >>> psfs = pynrc.nrc_utils.jl_poly(waves, coeffs) where 'waves' can be a scalar, nparray, list, or tuple. All wavelengths are in microns. Distortions should be applied after creation of an image scene. For NIRCam, this involves first rotating the focal plane and then applying the distortions (see `webbpsf.distortion`). >>> psf_rotated = distortion.apply_rotation(psf, crop=True) # apply rotation >>> psf_distorted = distortion.apply_distortion(psf_rotated) # apply siaf distortion Parameters ---------- filter_or_bp : str, :mod:`pysynphot.obsbandpass` Either the name of a filter or a Pysynphot bandpass. pupil : str, None NIRCam pupil elements such as grisms or lyot stops. mask : str, None Specify the coronagraphic occulter (spots or bar). module : str Module 'A' or 'B'. fov_pix : int Size of the FoV in pixels (real SW or LW pixels) oversample : int Factor to oversample pixels (in one dimension). The resulting coefficients will have x/y dimensions of fov_pix*oversample. Default 2 for coronagraphy and 4 otherwise. npsf : int Number of evenly-spaced (with wavelength) monochromatic PSFs to generate with webbPSF. If not specified, then the default is to produce 20 PSFs/um. The wavelength range is determined by choosing those wavelengths where throughput is >0.001. There's a minimum of 5 monochromatic PSFs calculated over the bandpass. ndeg : int Polynomial degree for PSF fitting. Default = 10 (7 if quick=True). offset_r : float Radial offset from the center in arcsec. offset_theta : float Position angle for radial offset, in degrees CCW. bar_offset : float Offset along coronagraphic bar (wedge) occulter, in arcseconds. Keeps the resulting PSF at zero tip/tilt, unlike `offset_r` and `offset_theta`. Defaults to 0 offset. Use :func:`offset_bar` for filter-dependent offsets. opd : str, tuple, HDUList OPD specifications. If a tuple, then it should contain two elements (filename, slice index). Can also specify just the filename, which will default to the first image slice. Can also pass an HDUList where the OPD data is stored at HDUList[0].data. wfe_drift : float Wavefront error drift amplitude in nm. include_si_wfe : bool Include SI WFE measurements? Default=False. detector : str, None Name of detector [NRCA1, ..., NRCA5, NRCB1, ..., NRCB5]. detector_position : tuple, None The pixel position in (X, Y) on the detector ("science" coordinates) tel_pupil : str, HDUList, None Telescope entrance pupil mask. Should either be a filename string or HDUList. If None, then default: jwst_pupil_RevW_npix1024.fits.gz. jitter : str or None Currently either 'gaussian' or None. jitter_sigma : float If ``jitter = 'gaussian'``, then this is the size of the blurring effect. force : bool Forces a recalcuation of PSF even if saved PSF exists. (default: False) save : bool Save the resulting PSF coefficients to a file? (default: True) save_name : str, None Full path name of FITS file to save/load coefficents. If None, then a name is automatically generated. quick : bool Only perform a fit over the filter bandpass with a smaller default polynomial degree fit. Auto filename will have filter name appended. return_save_name : bool Return only the name for saving. return_webbpsf : bool Return the WebbPSF generated PSF rather than coefficients. add_distortion : bool Add instrument distortions to the PSF. Includes 2 new extensions to the PSF HDUlist object. crop_psf : bool Crop distorted PSF to match undistorted pixel shape. use_legendre : bool Use Legendre polynomials for coefficient fitting. """ from .version import __version__ grism_obs = (pupil is not None) and ('GRISM' in pupil) dhs_obs = (pupil is not None) and ('DHS' in pupil) coron_obs = (pupil is not None) and ('LYOT' in pupil) if oversample is None: oversample = 2 if coron_obs else 4 if opd is None: # Default OPD opd = opd_default elif isinstance(opd, six.string_types): opd = (opd, 0) # Default WFE drift wfe_drift = 0 if wfe_drift is None else wfe_drift assert wfe_drift >= 0, "wfe_drift must not be negative" # Update module in case detector is specific if detector is not None: module = 'A' if 'A' in detector else 'B' # Get filter throughput and create bandpass if isinstance(filter_or_bp, six.string_types): filter = filter_or_bp bp = read_filter(filter, pupil=pupil, mask=mask, module=module, **kwargs) else: bp = filter_or_bp filter = bp.name chan_str = 'SW' if bp.avgwave() < 24000 else 'LW' # Change log levels to WARNING for pyNRC, WebbPSF, and POPPY log_prev = conf.logging_level setup_logging('WARN', verbose=False) # Create a simulated PSF with WebbPSF inst = webbpsf_NIRCam_mod() if pynrc_mod else webbpsf.NIRCam() # inst = webbpsf_NIRCam_mod() #inst.options['output_mode'] = 'oversampled' # The fov_pix keyword overrides parity #inst.options['parity'] = 'odd' inst.filter = filter # Check if mask and pupil names exist in WebbPSF lists. # We don't want to pass values that WebbPSF does not recognize # but are otherwise completely valid in the pynrc framework. if mask in list(inst.image_mask_list): inst.image_mask = mask if pupil in list(inst.pupil_mask_list): inst.pupil_mask = pupil # If WLP4 is used, always using a narrow band, so turn on quick flag wl4_list = ['WEAK LENS +12 (=4+8)', 'WEAK LENS -4 (=4-8)', 'WEAK LENS +4', 'WLP12', 'WLM8', 'WLP4'] if (pupil in wl4_list): quick = True # Should we include field-dependent aberrations? inst.include_si_wfe = include_si_wfe # Set the SIAF aperture name if apname is not None: inst.auto_aperturename = False inst.aperturename = apname # Detector position # define defaults det_switch = {'SWA': 'A1', 'SWB':'B1', 'LWA':'A5', 'LWB':'B5'} detpos_switch = {'SW':(1024,1024), 'LW':(1024,1024)} if (detector is None) and (detector_position is None): inst.detector = 'NRC' + det_switch.get(chan_str+module) inst.detector_position = detpos_switch.get(chan_str) elif detector is None: inst.detector = 'NRC' + det_switch.get(chan_str+module) inst.detector_position = detector_position elif detector_position is None: inst.detector_position = detpos_switch.get(chan_str) inst.detector = detector else: inst.detector = detector inst.detector_position = detector_position # Print aperture and detector info _log.debug(inst.aperturename, inst.detector, inst.detector_position) # Telescope Pupil if tel_pupil is not None: inst.pupil = tel_pupil mtemp = 'NONE' if mask is None else mask ptemp = 'CLEAR' if pupil is None else pupil # Get source offset positions # 1. Round masks - Always assume theta=0 due to symmetry. # 2. Bar Masks - PSF positioning is different depending on r and theta. # 3. All other imaging - Just perform nominal r=theta=0. # Any PSF movement is more quickly applied with sub-pixel shifting routines. # NB: Implementation of field-dependent OPD maps may change these settings. if offset_r is None: offset_r = 0 if offset_theta is None: offset_theta = 0 rtemp, ttemp = (offset_r, offset_theta) inst.options['source_offset_r'] = rtemp inst.options['source_offset_theta'] = ttemp # Bar offsets (auto_offset not supported) # If observing with bar mask, default to 0 offset if 'B' in mtemp: bar_offset = 0 if bar_offset is None else bar_offset else: # Set to None if not observing with bar mask bar_offset = None bar_str = '' if bar_offset is None else '_bar{:.1f}'.format(bar_offset) inst.options['bar_offset'] = bar_offset jitter_sigma = 0 if jitter is None else jitter_sigma inst.options['jitter'] = jitter inst.options['jitter_sigma'] = jitter_sigma setup_logging(log_prev, verbose=False) # Deal with OPD file name #print(opd) if isinstance(opd, tuple): if not len(opd)==2: raise ValueError("opd passed as tuple must have length of 2.") # Filename info opd_name = opd[0] # OPD file name opd_num = opd[1] # OPD slice rev = [s for s in opd_name.split('_') if "Rev" in s] rev = '' if len(rev)==0 else rev[0] otemp = '{}slice{:.0f}'.format(rev,opd_num) opd = OPDFile_to_HDUList(opd_name, opd_num) elif isinstance(opd, fits.HDUList): # A custom OPD is passed. Consider using force=True. otemp = 'OPDcustom' opd_name = 'OPD from FITS HDUlist' opd_num = 0 elif isinstance(opd, poppy.OpticalElement): # OTE Linear Model # No need to do anything pass else: raise ValueError("OPD must be a string, tuple, or HDUList.") if wfe_drift>0: otemp = '{}-{:.0f}nm'.format(otemp,wfe_drift) if save_name is None: # Name to save array of oversampled coefficients save_dir = conf.PYNRC_PATH + 'psf_coeffs/' # Create directory if it doesn't already exist if not os.path.isdir(save_dir): os.makedirs(save_dir) # Build final filename to save coeff # Append filter name if using quick keyword fstr = '_{}'.format(filter) if quick else '' # fname = '{}{}{}_{}_{}'.format(chan_str,module,fstr,ptemp,mtemp) # fname = fname + '_pix{}_os{}'.format(fov_pix,oversample) # fname = fname + '_jsig{:.0f}_r{:.1f}_th{:.1f}'.format(jitter_sigma*1000,rtemp,ttemp) # fname = fname + '{}_{}'.format(bar_str,otemp) fname = '{}{}{}_{}_{}_pix{}_os{}_jsig{:.0f}_r{:.2f}_th{:+.1f}{}_{}'.\ format(chan_str,module,fstr, ptemp,mtemp,fov_pix,oversample,\ jitter_sigma*1000,rtemp,ttemp,bar_str,otemp) # Add SI WFE tag if included if inst.include_si_wfe: fname = fname + '_siwfe' if use_legendre: fname = fname + '_legendre' fname = fname + '.fits' save_name = save_dir + fname if return_save_name: return save_name # Load data from already saved FITS file if os.path.exists(save_name) and (not force) and (not return_webbpsf): #return np.load(save_name) # return fits.getdata(save_name) hdul = fits.open(save_name) data = hdul[0].data.astype(np.float) header = hdul[0].header hdul.close() return data, header if return_webbpsf: _log.info('Generating and returning WebbPSF HDUList') else: temp_str = 'and saving' if save else 'but not saving' _log.info('Generating {} new PSF coefficient'.format(temp_str)) # If there is wfe_drift, create a OTE Linear Model if (wfe_drift > 0): _log.debug('Performing WFE drift of {}nm'.format(wfe_drift)) # OPD should already be an HDUList or OTE LM by now # If we want more realistic time evolution, then need to use # procedure in dev_utils/WebbPSF_OTE_LM.ipynb to create a time # series of OPDs then pass those OPDs directly to create unique PSFs if isinstance(opd, fits.HDUList): hdul = opd header = hdul[0].header header['ORIGINAL'] = (opd_name, "Original OPD source") header['SLICE'] = (opd_num, "Slice index of original OPD") header['WFEDRIFT'] = (wfe_drift, "WFE drift amount [nm]") name = 'Modified from ' + opd_name opd = OTE_Linear_Model_WSS(name=name, opd=hdul, opd_index=opd_num, transmission=inst.pupil) # Apply WFE drift to OTE Linear Model (Amplitude of frill drift) inst.pupilopd = opd inst.pupil = opd # Split WFE drift amplitude between three processes # 1) IEC Heaters; 2) Frill tensioning; 3) OTE Thermal perturbations # Give IEC heaters 1 nm wfe_iec = 1 if np.abs(wfe_drift) > 2 else 0 # Split remainder evenly between frill and OTE thermal slew wfe_remain_var = wfe_drift**2 - wfe_iec**2 wfe_frill = np.sqrt(0.8*wfe_remain_var) wfe_therm = np.sqrt(0.2*wfe_remain_var) # wfe_th_frill = np.sqrt((wfe_drift**2 - wfe_iec**2) / 2) # Negate amplitude if supplying negative wfe_drift if wfe_drift < 0: wfe_frill *= -1 wfe_therm *= -1 wfe_iec *= -1 # Apply IEC opd.apply_iec_drift(wfe_iec, delay_update=True) # Apply frill opd.apply_frill_drift(wfe_frill, delay_update=True) # Apply OTE thermal slew amplitude # This is slightly different due to how thermal slews are specified import astropy.units as u delta_time = 14*24*60 * u.min wfe_scale = (wfe_therm / 24) if wfe_scale == 0: delta_time = 0 opd.thermal_slew(delta_time, case='BOL', scaling=wfe_scale) else: inst.pupilopd = opd # By default, WebbPSF has wavelength limits depending on the channel # which can interfere with pynrc calculations, so set these to low/high values inst.SHORT_WAVELENGTH_MIN = inst.LONG_WAVELENGTH_MIN = 1e-7 inst.SHORT_WAVELENGTH_MAX = inst.LONG_WAVELENGTH_MAX = 10e-6 # Select which wavelengths to use # If doing a "quick" PSF, only fit the filter wavelength range. # Otherwise, we fit the full channel wavelength. if quick: w1 = bp.wave.min() / 1e4 w2 = bp.wave.max() / 1e4 else: w1, w2 = (0.5,2.5) if 'SW' in chan_str else (2.4,5.1) # First determine polynomial fit degree # Must ensure npsf>ndeg if ndeg is None: if use_legendre: # TODO: Quantify these better ndeg = 7 if quick else 9 else: # TODO: Quantify these better ndeg = 7 if quick else 9 # Create set of monochromatic PSFs to fit. if npsf is None: dn = 20 # 20 PSF simulations per um npsf = np.ceil(dn * (w2-w1)) npsf = 5 if npsf<5 else int(npsf) npsf = ndeg+1 if npsf<=ndeg else int(npsf) waves = np.linspace(w1, w2, npsf) # Change log levels to WARNING for pyNRC, WebbPSF, and POPPY if return_webbpsf: setup_logging('WARN', verbose=False) if 'sp_norm' in list(kwargs.keys()): sp_norm = kwargs['sp_norm'] else: waveset = waves * 1e4 sp_flat = S.ArraySpectrum(waveset, 0*waveset + 10.) sp_flat.name = 'Flat spectrum in flam' # Bandpass unit response is the flux (in flam) of a star that # produces a response of one count per second in that bandpass sp_norm = sp_flat.renorm(bp.unit_response(), 'flam', bp) t0 = time.time() hdu_list = inst.calc_psf(source=sp_norm, fov_pixels=fov_pix, oversample=oversample, add_distortion=add_distortion, crop_psf=crop_psf) t1 = time.time() setup_logging(log_prev, verbose=False) time_string = 'Took {:.2f} seconds to generate WebbPSF images'.format(t1-t0) _log.info(time_string) # Take into account reduced beam factor for grism data # Account for the circular pupil that does not allow all grism grooves to have their # full length illuminated (Erickson & Rabanus 2000), effectively broadening the FWHM. # It's actually a hexagonal pupil, so the factor is 1.07, not 1.15. # We want to stretch the PSF in the dispersion direction if grism_obs: wfact = 1.07 scale = (1,wfact) if 'GRISM0' in pupil else (wfact,1) for hdu in hdu_list: im_scale = frebin(hdu.data, scale=scale) hdu.data = pad_or_cut_to_size(im_scale, hdu.data.shape) return hdu_list # How many processors to split into? if nproc is None: nproc = nproc_use(fov_pix, oversample, npsf) _log.debug('nprocessors: {}; npsf: {}'.format(nproc, npsf)) setup_logging('WARN', verbose=False) t0 = time.time() # Setup the multiprocessing pool and arguments to pass to each pool worker_arguments = [(inst, wlen, fov_pix, oversample) for wlen in waves] if nproc > 1: pool = mp.Pool(nproc) # Pass arguments to the helper function try: hdu_arr = pool.map(_wrap_coeff_for_mp, worker_arguments) if hdu_arr[0] is None: raise RuntimeError('Returned None values. Issue with multiprocess or WebbPSF??') except Exception as e: _log.error('Caught an exception during multiprocess.') _log.error('Closing multiprocess pool.') pool.terminate() pool.close() raise e else: _log.debug('Closing multiprocess pool.') pool.close() else: # Pass arguments to the helper function hdu_arr = [] for wa in worker_arguments: hdu = _wrap_coeff_for_mp(wa) if hdu is None: raise RuntimeError('Returned None values. Issue with WebbPSF??') hdu_arr.append(hdu) t1 = time.time() # Reset to original log levels setup_logging(log_prev, verbose=False) time_string = 'Took {:.2f} seconds to generate WebbPSF images'.format(t1-t0) _log.info(time_string) # Extract image data from HDU array images = [] for hdu in hdu_arr: images.append(hdu.data) # Take into account reduced beam factor for grism data # Account for the circular pupil that does not allow all grism grooves to have their # full length illuminated (Erickson & Rabanus 2000), effectively broadening the FWHM. # It's actually a hexagonal pupil, so the factor is 1.07, not 1.15. # We want to stretch the PSF in the dispersion direction if grism_obs: wfact = 1.07 scale = (1,wfact) if 'GRISM0' in pupil else (wfact,1) for i,im in enumerate(images): im_scale = frebin(im, scale=scale) images[i] = pad_or_cut_to_size(im_scale, im.shape) # Turn results into an numpy array (npsf,ny,nx) images = np.array(images) # Simultaneous polynomial fits to all pixels using linear least squares coeff_all = jl_poly_fit(waves, images, deg=ndeg, use_legendre=use_legendre, lxmap=[w1,w2]) hdu = fits.PrimaryHDU(coeff_all) hdr = hdu.header head_temp = hdu_arr[0].header hdr['DESCR'] = ('PSF Coeffecients', 'File Description') hdr['NWAVES'] = (npsf, 'Number of wavelengths used in calculation') hdr['PUPILOPD'] = (opd_name, 'Pupil wavefront OPD source') hdr['OPDSLICE'] = (opd_num, 'OPD slice index') copy_keys = ['PUPILINT', 'EXTNAME', 'OVERSAMP', 'DET_SAMP', 'PIXELSCL', 'FOV', 'JITRTYPE', 'JITRSIGM', 'INSTRUME', 'CHANNEL', 'DET_NAME', 'TEL_WFE', 'DET_X', 'DET_Y', 'DET_V2', 'DET_V3', 'DATE', 'AUTHOR', 'VERSION', 'DATAVERS'] for key in copy_keys: try: hdr[key] = (head_temp[key], head_temp.comments[key]) except (AttributeError, KeyError): hdr[key] = ('none', 'No key found') # gen_psf_coeff() Keyword Values hdr['FILTER'] = (filter, 'Filter Input') hdr['PUPIL'] = (ptemp, 'Pupil Setting') hdr['MASK'] = (mtemp, 'Coronagraphic Mask Setting') hdr['MODULE'] = (module, 'NIRCam Module A or B') hdr['FOVPIX'] = (fov_pix, 'WebbPSF pixel FoV') hdr['OSAMP'] = (oversample, 'WebbPSF pixel oversample') hdr['NPSF'] = (npsf, 'Number of wavelengths to calc') hdr['NDEG'] = (ndeg, 'Polynomial fit degree') hdr['WAVE1'] = (w1, 'First wavelength in calc') hdr['WAVE2'] = (w2, 'Last of wavelength in calc') hdr['LEGNDR'] = (use_legendre, 'Legendre polynomial fit?') if tel_pupil is None: hdr['TELPUP'] = ('None', 'Telescope pupil') elif isinstance(tel_pupil, fits.HDUList): hdr['TELPUP'] = ('HDUList', 'Telescope pupil') elif isinstance(tel_pupil, six.string_types): hdr['TELPUP'] = (tel_pupil, 'Telescope pupil') else: hdr['TELPUP'] = ('UNKNOWN', 'Telescope pupil') hdr['OFFR'] = (offset_r, 'Radial offset') hdr['OFFTH'] = (offset_theta, 'Position angle OFFR (CCW)') if jitter is None: hdr['JITTER'] = ('None', 'Jitter type') else: hdr['JITTER'] = (jitter, 'Jitter type') hdr['JITSIG'] = (jitter_sigma, 'Jitter sigma') if opd is None: hdr['OPD'] = ('None', 'Telescope OPD') elif isinstance(opd, fits.HDUList): hdr['OPD'] = ('HDUList', 'Telescope OPD') elif isinstance(opd, six.string_types): hdr['OPD'] = (opd, 'Telescope OPD') elif isinstance(opd, poppy.OpticalElement): hdr['OPD'] = ('OTE Linear Model', 'Telescope OPD') else: hdr['OPD'] = ('UNKNOWN', 'Telescope OPD') hdr['WFEDRIFT'] = (wfe_drift, "WFE drift amount [nm]") hdr['SIWFE'] = (include_si_wfe, "Was SI WFE included?") hdr['FORCE'] = (force, "Forced calculations?") hdr['SAVE'] = (save, "Save file?") hdr['FILENAME'] = (os.path.basename(save_name), "File save name") hdr['PYNRCVER'] = (__version__, "pyNRC version") hdr.insert('DATAVERS', '', after=True) hdr.insert('DATAVERS', ('','psf_coeff() Keyword Values'), after=True) hdr.insert('DATAVERS', '', after=True) hdr.add_history(time_string) if save: #np.save(save_name, coeff_all) hdu.writeto(save_name, overwrite=True) return coeff_all, hdr def gen_webbpsf_psf(filter_or_bp, pupil=None, mask=None, module='A', fov_pix=11, oversample=None, tel_pupil=None, opd=None, wfe_drift=None, drift_file=None, include_si_wfe=False, offset_r=None, offset_theta=None, jitter=None, jitter_sigma=0.007, detector=None, detector_position=None, apname=None, bar_offset=None, add_distortion=False, crop_psf=True, pynrc_mod=True, **kwargs): """Create WebbPSF PSF Kind of clunky way of generating a single PSF directly from WebbPSF by passing all the different options through keyword arguments. """ return gen_psf_coeff(filter_or_bp, pupil=pupil, mask=mask, module=module, fov_pix=fov_pix, oversample=oversample, tel_pupil=tel_pupil, opd=opd, wfe_drift=wfe_drift, drift_file=drift_file, include_si_wfe=include_si_wfe, offset_r=offset_r, offset_theta=offset_theta, jitter=jitter, jitter_sigma=jitter_sigma, detector=detector, detector_position=detector_position, apname=apname, bar_offset=bar_offset, add_distortion=add_distortion, crop_psf=crop_psf, pynrc_mod=pynrc_mod, return_webbpsf=True, **kwargs) def gen_webbpsf_siwfe(filter_or_bp, coords, pynrc_mod=True, **kwargs): """ Generate Location-specific PSF from WebbPSF Parameters ---------- filter_or_bp : str, :mod:`pysynphot.obsbandpass` Either the name of a filter or a Pysynphot bandpass. coords : tuple (V2,V3) coordinates in (arcmin) Keyword Args ------------ pynrc_mod : bool Use `webbpsf_NIRCam_mod` instead of `webbpsf.NIRCam`. This is a slightly modified version of NIRCam to fix minor coordinate issues. """ # Get filter throughput and create bandpass if isinstance(filter_or_bp, six.string_types): filter = filter_or_bp bp = read_filter(filter, **kwargs) else: bp = filter_or_bp filter = bp.name chan_str = 'SW' if bp.avgwave() < 24000 else 'LW' coords_asec = np.array(coords)*60 detector, detector_position, apname = Tel2Sci_info(chan_str, coords_asec, output='sci', return_apname=True, **kwargs) print(detector, detector_position, apname) kwargs['include_si_wfe'] = True kwargs['apname'] = apname kwargs['detector'] = detector kwargs['detector_position'] = detector_position kwargs['add_distortion'] = False return gen_webbpsf_psf(filter, pynrc_mod=pynrc_mod, **kwargs) def _wrap_wfed_coeff_for_mp(arg): args, kwargs = arg wfe = kwargs['wfe_drift'] # print('WFE Drift: {} nm'.format(wfe)) cf, _ = gen_psf_coeff(*args, **kwargs) return cf def wfed_coeff(filter_or_bp, force=False, save=True, save_name=None, nsplit=None, **kwargs): """PSF Coefficient Mod for WFE Drift This function finds a relationship between PSF coefficients in the presence of WFE drift. For a series of WFE drift values, we generate corresponding PSF coefficients and fit a polynomial relationship to the residual values. This allows us to quickly modify a nominal set of PSF image coefficients to generate a new PSF where the WFE has drifted by some amplitude. Keyword Arguments match those in :func:`gen_psf_coeff`. Parameters ---------- filter_or_bp : str Name of a filter. force : bool Forces a recalcuation of coefficients even if saved PSF already exists. (default: False) save : bool Save the resulting WFE drift coefficents to a file? (default: True) save_name : str, None Full path name of save file (.npy) to save/load. If None, then a name is automatically generated, matching the :func:`gen_psf_coeff` function. nsplit : int Number of processors to split over. There are checks to make sure you're not requesting more processors than the current machine has available. Example ------- Generate PSF coefficient, WFE drift modifications, then create an undrifted and drifted PSF. (pseudo-code) >>> fpix, osamp = (128, 4) >>> coeff, _ = gen_psf_coeff('F210M', fov_pix=fpix, oversample=osamp) >>> wfe_cf = wfed_coeff('F210M', fov_pix=fpix, oversample=osamp) >>> psf0 = gen_image_coeff('F210M', coeff=coeff, fov_pix=fpix, oversample=osamp) >>> # Drift the coefficients >>> wfe_drift = 5 # nm >>> cf_fit = wfe_cf.reshape([wfe_cf.shape[0], -1]) >>> cf_mod = jl_poly(np.array([wfe_drift]), cf_fit).reshape(coeff.shape) >>> cf_new = coeff + cf_mod >>> psf5nm = gen_image_coeff('F210M', coeff=cf_new, fov_pix=fpix, oversample=osamp) """ kwargs['force'] = True kwargs['save'] = False kwargs['save_name'] = None #kwargs['opd'] = opd_default # Get filter throughput and create bandpass if isinstance(filter_or_bp, six.string_types): filter = filter_or_bp bp = read_filter(filter, **kwargs) else: bp = filter_or_bp filter = bp.name # defaults fov_pix = kwargs['fov_pix'] if 'fov_pix' in list(kwargs.keys()) else 33 oversample = kwargs['oversample'] if 'oversample' in list(kwargs.keys()) else 4 # Final filename to save coeff if save_name is None: # Name to save array of oversampled coefficients save_dir = conf.PYNRC_PATH + 'psf_coeffs/' # Create directory if it doesn't already exist if not os.path.isdir(save_dir): os.makedirs(save_dir) # Final filename to save coeff save_name = gen_psf_coeff(bp, return_save_name=True, **kwargs) save_name = os.path.splitext(save_name)[0] + '_wfedrift.npz' # Load file if it already exists if (not force) and os.path.exists(save_name): out = np.load(save_name) return out['arr_0'], out['arr_1'] _log.warn('Generating WFE Drift coefficients. This may take some time...') # _log.warn('{}'.format(save_name)) # Cycle through WFE drifts for fitting wfe_list = np.array([0,1,2,5,10,20,40]) npos = len(wfe_list) # Split over multiple processors? nsplit_max = nproc_use(fov_pix, oversample, npos)#, coron=coron_obs) if nsplit is None: pupil = kwargs['pupil'] if 'pupil' in list(kwargs.keys()) else None coron_obs = (pupil is not None) and ('LYOT' in pupil) nsplit = nproc_use(fov_pix, oversample, npos)#, coron=coron_obs) # Compare to number of PSFs if ('quick' in list(kwargs.keys())) and (kwargs['quick']==True): w1 = bp.wave.min() / 1e4 w2 = bp.wave.max() / 1e4 dw = w2 - w1 else: dw = 2.5 npsf = np.ceil(20 * dw) npsf = 5 if npsf<5 else int(npsf) nsplit_psf = nproc_use(fov_pix, oversample, npsf)#, coron=coron_obs) if nsplit_psf > nsplit: nsplit = 1 # Double check we're not requesting too many processors nsplit = nsplit_max if nsplit > nsplit_max else nsplit # Create worker arguments with kwargs as an argument input worker_args = [] args = [bp] for wfe in wfe_list: kw = kwargs.copy() kw['wfe_drift'] = wfe worker_args.append((args, kw)) if nsplit>1: # If splitting, then cannot split in subprocess for each PSF (ie., across wavelengths) poppy_nproc_prev = poppy.conf.n_processes poppy.conf.n_processes = 1 cf_wfe = [] # pool = mp.Pool(nsplit) try: # cf_wfe = pool.map(_wrap_wfed_coeff_for_mp, worker_args) with mp.Pool(nsplit) as pool: for res in tqdm(pool.imap_unordered(_wrap_wfed_coeff_for_mp, worker_args), total=npos): cf_wfe.append(res) pool.close() if cf_wfe[0] is None: raise RuntimeError('Returned None values. Issue with multiprocess or WebbPSF??') except Exception as e: _log.error('Caught an exception during multiprocess.') _log.error('Closing multiprocess pool.') pool.terminate() pool.close() poppy.conf.n_processes = poppy_nproc_prev raise e else: _log.debug('Closing multiprocess pool.') # pool.close() poppy.conf.n_processes = poppy_nproc_prev else: # No multiprocessor cf_wfe = [] for wa in tqdm(worker_args): cf = _wrap_wfed_coeff_for_mp(wa) cf_wfe.append(cf) # cf_wfe = [_wrap_wfed_coeff_for_mp(wa) for wa in worker_args] # Get residuals cf_wfe = np.array(cf_wfe) - cf_wfe[0] # Fit each pixel with a polynomial and save the coefficient cf_shape = cf_wfe.shape[1:] cf_wfe = cf_wfe.reshape([npos, -1]) lxmap = np.array([np.min(wfe_list), np.max(wfe_list)]) cf_fit = jl_poly_fit(wfe_list, cf_wfe, deg=4, use_legendre=True, lxmap=lxmap) cf_fit = cf_fit.reshape([-1, cf_shape[0], cf_shape[1], cf_shape[2]]) if save: np.savez(save_name, cf_fit, lxmap) _log.info('Done.') return cf_fit, lxmap def _wrap_field_coeff_for_mp(arg): args, kwargs = arg apname = kwargs['apname'] det = kwargs['detector'] det_pos = kwargs['detector_position'] v2, v3 = kwargs['coords'] _log.info('V2/V3 Coordinates and det pixel (sci) on {}/{}: ({:.2f}, {:.2f}), ({:.1f}, {:.1f})' .format(det, apname, v2/60, v3/60, det_pos[0], det_pos[1])) cf, _ = gen_psf_coeff(*args, **kwargs) return cf def field_coeff_resid(filter_or_bp, coeff0, force=False, save=True, save_name=None, return_raw=False, nsplit=None, **kwargs): """PSF Coefficient Residuals w.r.t. Field Position Keyword Arguments match those in :func:`gen_psf_coeff`. Parameters ---------- filter_or_bp : str Name of a filter. ceoff0 : ndarray PSF coefficient to perform relative comparison. force : bool Forces a recalcuation of coefficients even if saved PSF already exists. (default: False) save : bool Save the resulting WFE drift coefficents to a file? (default: True) save_name : str, None Full path name of save file (.npy) to save/load. If None, then a name is automatically generated, matching the :func:`gen_psf_coeff` function. nsplit : int Number of processors to split over. There are checks to make sure you're not requesting more processors than the current machine has available. return_raw : bool Return PSF coefficients of unevenly sampled V2/V3 grid along with the V2/V3 coordinates (cf_resid, v2_all, v3_all). Example ------- Generate PSF coefficient, field position modifications, then create a PSF at some (V2,V3) location. (pseudo-code) >>> fpix, osamp = (128, 4) >>> coeff, _ = gen_psf_coeff('F210M', fov_pix=fpix, oversample=osamp) >>> cf_resid = field_coeff_resid('F210M', coeff, fov_pix=fpix, oversample=osamp) >>> # Some (V2,V3) location (arcmin) >>> v2, v3 = (1.2, -7) >>> cf_mod = field_model(v2, v3, cf_resid) >>> cf_new = coeff + cf_mod >>> psf = gen_image_coeff('F210M', coeff=cf_new, fov_pix=fpix, oversample=osamp) """ from astropy.table import Table kwargs['force'] = True kwargs['save'] = False kwargs['save_name'] = None if return_raw: save = False force = True _log.warn("return_raw=True; Setting 'save=False' and 'force=True'") # Get filter throughput and create bandpass if isinstance(filter_or_bp, six.string_types): filter = filter_or_bp bp = read_filter(filter, **kwargs) else: bp = filter_or_bp filter = bp.name channel = 'SW' if bp.avgwave() < 24000 else 'LW' # Set a default fov_pix and oversample fov_pix = kwargs['fov_pix'] if 'fov_pix' in list(kwargs.keys()) else 33 oversample = kwargs['oversample'] if 'oversample' in list(kwargs.keys()) else 4 # Cycle through a list of field points # These are the measured CV3 field positions module = kwargs.get('module', 'A') # If not specified, choose 'A' kwargs['module'] = module # Check if coronagraphy pupil = kwargs.get('pupil', 'CLEAR') # If not specified, choose 'CLEAR' kwargs['pupil'] = pupil # Read in measured SI Zernike data if (pupil is not None) and ('LYOT' in pupil): zfile = 'si_zernikes_coron_wfe.fits' if module=='B': raise NotImplementedError("There are no Full Frame SIAF apertures defined for Mod B coronagraphy") else: zfile = 'si_zernikes_isim_cv3.fits' data_dir = webbpsf.utils.get_webbpsf_data_path() + '/' zernike_file = data_dir + zfile ztable_full = Table.read(zernike_file) mod = channel + module ind_nrc = ['NIRCam'+mod in row['instrument'] for row in ztable_full] ind_nrc = np.where(ind_nrc) v2_all = np.array(ztable_full[ind_nrc]['V2'].tolist()) v3_all = np.array(ztable_full[ind_nrc]['V3'].tolist()) # Add detector corners v2_min, v2_max, v3_min, v3_max = NIRCam_V2V3_limits(module, channel=channel, pupil=pupil, rederive=True, border=1) igood = v3_all > v3_min v2_all = np.append(v2_all[igood], [v2_min, v2_max, v2_min, v2_max]) v3_all = np.append(v3_all[igood], [v3_min, v3_min, v3_max, v3_max]) npos = len(v2_all) # First is default value #kwargs['detector'] = None #kwargs['detector_position'] = None #kwargs['include_si_wfe'] = False #cf0 = gen_psf_coeff(filter, **kwargs) kwargs['include_si_wfe'] = True # Final filename to save coeff if save_name is None: # Name to save array of oversampled coefficients save_dir = conf.PYNRC_PATH + 'psf_coeffs/' # Create directory if it doesn't already exist if not os.path.isdir(save_dir): os.makedirs(save_dir) # Final filename to save coeff save_name = gen_psf_coeff(bp, return_save_name=True, **kwargs) save_name = os.path.splitext(save_name)[0] + '_cffields.npz' # Load file if it already exists if (not force) and os.path.exists(save_name): out = np.load(save_name) return out['arr_0'], out['arr_1'], out['arr_2'] _log.warn('Generating field-dependent coefficients. This may take some time...') # Split over multiple processors? nsplit_max = nproc_use(fov_pix, oversample, npos)#, coron=coron_obs) if nsplit is None: pupil = kwargs['pupil'] if 'pupil' in list(kwargs.keys()) else None coron_obs = (pupil is not None) and ('LYOT' in pupil) nsplit = nproc_use(fov_pix, oversample, npos)#, coron=coron_obs) # Compare to number of PSFs if ('quick' in list(kwargs.keys())) and (kwargs['quick']==True): w1 = bp.wave.min() / 1e4 w2 = bp.wave.max() / 1e4 dw = w2 - w1 else: dw = 2.5 npsf = np.ceil(20 * dw) npsf = 5 if npsf<5 else int(npsf) nsplit_psf = nproc_use(fov_pix, oversample, npsf)#, coron=coron_obs) if (nsplit <= 2) and (nsplit_psf > nsplit): nsplit = 1 # Double check we're not requesting too many processors nsplit = nsplit_max if nsplit > nsplit_max else nsplit # Create worker arguments with kwargs as an input dict worker_args = [] args = [filter] for (v2, v3) in zip(v2_all, v3_all): # Get the detector and pixel position coords = (v2*60, v3*60) # in arcsec det, det_pos, apname = Tel2Sci_info(channel, coords, pupil=pupil, output="sci", return_apname=True) kw = kwargs.copy() kw['apname'] = apname kw['detector'] = det kw['detector_position'] = det_pos kw['coords'] = coords worker_args.append((args, kw)) # Multiprocessing? if nsplit > 1: # If splitting, then cannot split in subprocess for each PSF (ie., across wavelengths) poppy_nproc_prev = poppy.conf.n_processes poppy.conf.n_processes = 1 cf_fields = [] ntot = len(worker_args) # pool = mp.Pool(nsplit) try: with mp.Pool(nsplit) as pool: for res in tqdm(pool.imap_unordered(_wrap_field_coeff_for_mp, worker_args), total=ntot): cf_fields.append(res) pool.close() # cf_fields = pool.map(_wrap_field_coeff_for_mp, worker_args) if cf_fields[0] is None: raise RuntimeError('Returned None values. Issue with multiprocess or WebbPSF??') except Exception as e: _log.error('Caught an exception during multiprocess.') _log.error('Closing multiprocess pool.') pool.terminate() pool.close() poppy.conf.n_processes = poppy_nproc_prev raise e else: _log.debug('Closing multiprocess pool.') # pool.close() poppy.conf.n_processes = poppy_nproc_prev else: # No multiprocessor cf_fields = [] for wa in tqdm(worker_args): cf = _wrap_field_coeff_for_mp(wa) cf_fields.append(cf) # cf_fields = [_wrap_field_coeff_for_mp(wa) for wa in worker_args] # Get residuals cf_fields_resid = np.array(cf_fields) - coeff0 if return_raw: return cf_fields_resid, v2_all, v3_all # Create an evenly spaced grid of V2/V3 coordinates nv23 = 8 v2grid = np.linspace(v2_min, v2_max, num=nv23) v3grid = np.linspace(v3_min, v3_max, num=nv23) # Interpolate onto an evenly space grid res = make_coeff_resid_grid(v2_all, v3_all, cf_fields_resid, v2grid, v3grid) if save: np.savez(save_name, *res) _log.warn('Done.') return res def make_coeff_resid_grid(xin, yin, cf_resid, xgrid, ygrid): # Create 2D grid arrays of coordinates xnew, ynew = np.meshgrid(xgrid,ygrid) nx, ny = len(xgrid), len(ygrid) _log.warn("Interpolating coefficient residuals onto regular grid...") sh = cf_resid.shape cf_resid_grid = np.zeros([ny,nx,sh[1],sh[2],sh[3]]) # Cycle through each coefficient to interpolate onto V2/V3 grid for i in range(sh[1]): cf_resid_grid[:,:,i,:,:] = griddata((xin, yin), cf_resid[:,i,:,:], (xnew, ynew), method='cubic') return (cf_resid_grid, xgrid, ygrid) def field_coeff_func(v2grid, v3grid, cf_fields, v2_new, v3_new): """Interpolation function for PSF coefficient residuals Uses RegularGridInterpolator to quickly determine new coefficient residulas at specified points. Parameters ---------- v2grid : ndarray V2 values corresponding to `cf_fields`. v3grid : ndarray V3 values corresponding to `cf_fields`. cf_fields : ndarray Coefficient residuals at different field points Shape is (nV3, nV2, ncoeff, ypix, xpix) v2_new : ndarray New V2 point(s) to interpolate on. Same units as v2grid. v3_new : ndarray New V3 point(s) to interpolate on. Same units as v3grid. """ func = RegularGridInterpolator((v3grid, v2grid), cf_fields, method='linear', bounds_error=False, fill_value=None) pts = np.array([v3_new,v2_new]).transpose() # If only 1 point, remove first axes res = func(pts) res = res.squeeze() if res.shape[0]==1 else res return res def wedge_coeff(filter, pupil, mask, force=False, save=True, save_name=None, **kwargs): """PSF Coefficient Mod w.r.t. Wedge Coronagraph Location Keyword Arguments match those in :func:`gen_psf_coeff`. Parameters ---------- filter : str Name of a filter. force : bool Forces a recalcuation of coefficients even if saved PSF already exists. (default: False) save : bool Save the resulting WFE drift coefficents to a file? (default: True) save_name : str, None Full path name of save file (.npy) to save/load. If None, then a name is automatically generated, matching the :func:`gen_psf_coeff` function. Example ------- Generate PSF coefficient at bar_offset=0, generate position modifications, then use these results to create a PSF at some arbitrary offset location. (pseudo-code) >>> fpix, osamp = (320, 2) >>> filt, pupil, mask = ('F430M', 'WEDGELYOT', 'MASKLWB') >>> coeff = gen_psf_coeff(filt, pupil, mask, fov_pix=fpix, oversample=osamp) >>> cf_resid = wedge_coeff(filt, pupil, mask, fov_pix=fpix, oversample=osamp) >>> # The narrow location (arcsec) >>> bar_offset = 8 >>> cf_fit = cf_resid.reshape([cf_resid.shape[0], -1]) >>> cf_mod = jl_poly(np.array([bar_offset]), cf_fit).reshape(coeff.shape) >>> cf_new = coeff + cf_mod >>> psf = gen_image_coeff(filt, pupil, mask, coeff=cf_new, fov_pix=fpix, oversample=osamp) """ kwargs['force'] = True kwargs['save'] = False kwargs['save_name'] = None kwargs['pupil'] = pupil kwargs['mask'] = mask module = kwargs.get('module', 'A') kwargs['module'] = module # Get filter throughput and create bandpass bp = read_filter(filter) channel = 'SW' if bp.avgwave() < 24000 else 'LW' # Final filename to save coeff if save_name is None: # Name to save array of oversampled coefficients save_dir = conf.PYNRC_PATH + 'psf_coeffs/' # Create directory if it doesn't already exist if not os.path.isdir(save_dir): os.makedirs(save_dir) # Final filename to save coeff save_name = gen_psf_coeff(filter, return_save_name=True, **kwargs) save_name = os.path.splitext(save_name)[0] + '_wedge.npy' # Load file if it already exists if (not force) and os.path.exists(save_name): return np.load(save_name) _log.warn('Generating wedge field-dependent coefficients. This may take some time...') # Cycle through a list of bar offset locations values = np.arange(-8,8,1) nvals = len(values) # First is default value kwargs['include_si_wfe'] = False cf0, _ = gen_psf_coeff(filter, bar_offset=0, **kwargs) cf_offset = [] for val in tqdm(values): _log.debug('Bar Offset: {:.1f} arcsec'.format(val)) kwargs['bar_offset'] = val cf, _ = gen_psf_coeff(filter, **kwargs) cf_offset.append(cf) cf_offset = np.array(cf_offset) # Get residuals cf_offset -= cf0 # Fit each pixel with a polynomial and save the coefficient cf_offset = cf_offset.reshape([nvals, -1]) cf_fit = jl_poly_fit(values, cf_offset, 4) cf_fit = cf_fit.reshape([-1, cf.shape[0], cf.shape[1], cf.shape[2]]) if save: np.save(save_name, cf_fit) _log.warn('Done.') return cf_fit def gen_image_from_coeff(coeff, coeff_hdr, **kwargs): """Generate PSF from coefficient Wrapper for :func:`gen_image_coeff` that uses information in the header to populate certain input parameters (filter, mask, pupil, fov_pix, oversample) so as to avoid any confusion. """ kwargs['pupil'] = None if 'NONE' in coeff_hdr['PUPIL'] else coeff_hdr['PUPIL'] kwargs['mask'] = coeff_hdr['MASK'] kwargs['module'] = coeff_hdr['MODULE'] kwargs['fov_pix'] = coeff_hdr['FOVPIX'] kwargs['oversample'] = coeff_hdr['OSAMP'] kwargs['coeff'] = coeff kwargs['coeff_hdr'] = coeff_hdr return gen_image_coeff(coeff_hdr['FILTER'], **kwargs) def gen_image_coeff(filter_or_bp, pupil=None, mask=None, module='A', coeff=None, coeff_hdr=None, sp_norm=None, nwaves=None, fov_pix=11, oversample=4, return_oversample=False, use_sp_waveset=False, **kwargs): """Generate PSF Create an image (direct, coronagraphic, grism, or DHS) based on a set of instrument parameters and PSF coefficients. The image is noiseless and doesn't take into account any non-linearity or saturation effects, but is convolved with the instrument throughput. Pixel values are in counts/sec. The result is effectively an idealized slope image. If no spectral dispersers (grisms or DHS), then this returns a single image or list of images if sp_norm is a list of spectra. Parameters ---------- filter_or_bp : str, :mod:`pysynphot.obsbandpass` Either the name of a filter or a Pysynphot bandpass. pupil : str, None NIRCam pupil elements such as grisms or lyot stops. mask : str, None Specify the coronagraphic occulter (spots or bar). module : str Module 'A' or 'B'. sp_norm : :mod:`pysynphot.spectrum` A normalized Pysynphot spectrum to generate image. If not specified, the default is flat in phot lam (equal number of photons per spectral bin). The default is normalized to produce 1 count/sec within that bandpass, assuming the telescope collecting area. Coronagraphic PSFs will further decrease this flux. coeff : ndarray A cube of polynomial coefficients for generating PSFs. This is generally oversampled with a shape (fov_pix*oversamp, fov_pix*oversamp, deg). If not set, this will be calculated using the :func:`gen_psf_coeff` function. coeff_hdr : FITS header Header information saved while generating coefficients. nwaves : int Option to specify the number of evenly spaced wavelength bins to generate and sum over to make final PSF. Useful for wide band filters with large PSFs over continuum source. use_sp_waveset : bool Set this option to use `sp_norm` waveset instead of bandpass waveset. Useful if user inputs a high-resolution spectrum with line emissions, so may wants to keep a grism PSF (for instance) at native resolution rather than blurred with the bandpass waveset. TODO: Test. fov_pix : int Number of detector pixels in the image coefficient and PSF. oversample : int Factor of oversampling of detector pixels. return_oversample: bool If True, then also returns the oversampled version of the PSF. Keyword Args ------------ grism_order : int Grism spectral order (default=1). npsf : int Number of evenly-spaced (with wavelength) monochromatic PSFs to generate with webbPSF. If not specified, then the default is to produce 20 PSFs/um. The wavelength range is determined by choosing those wavelengths where throughput is >0.001. ndeg : int Polynomial degree for PSF fitting. read_filter - ND_acq ND_acq : bool ND acquisition square in coronagraphic mask. """ is_grism = ((pupil is not None) and ('GRISM' in pupil)) is_dhs = ((pupil is not None) and ('DHS' in pupil)) if is_dhs: raise NotImplementedError('DHS has yet to be fully included') t0 = time.time() # Get filter throughput and create bandpass if isinstance(filter_or_bp, six.string_types): filter = filter_or_bp bp = read_filter(filter, pupil=pupil, mask=mask, module=module, **kwargs) else: bp = filter_or_bp filter = bp.name if (coeff is not None) and (coeff_hdr is not None): fov_pix = coeff_hdr['FOVPIX'] oversample = coeff_hdr['OSAMP'] module = coeff_hdr['MODULE'] elif (coeff is None) and (coeff_hdr is not None): raise AttributeError("`coeff_hdr` parameter set, but `coeff` is None") elif ((coeff is not None) and (coeff_hdr is None)): raise AttributeError("`coeff` parameter set, but `coeff_hdr` is None") else: coeff, coeff_hdr = gen_psf_coeff(bp, pupil=pupil, mask=mask, module=module, fov_pix=fov_pix, oversample=oversample, **kwargs) t1 = time.time() waveset = np.copy(bp.wave) if nwaves is not None: # Evenly spaced waves waveset = np.linspace(waveset.min(), waveset.max(), nwaves) elif not (is_grism or is_dhs): # For generating the PSF, let's save some time and memory by not using # ever single wavelength in the bandpass. # Do NOT do this for dispersed modes. binsize = 1 if coeff.shape[-1]>2000: binsize = 7 elif coeff.shape[-1]>1000: binsize = 5 elif coeff.shape[-1]>700: binsize = 3 if binsize>1: excess = waveset.size % binsize waveset = waveset[:waveset.size-excess] waveset = waveset.reshape(-1,binsize) # Reshape waveset = waveset[:,binsize//2] # Use the middle values waveset = np.concatenate(([bp.wave[0]],waveset,[bp.wave[-1]])) wgood = waveset / 1e4 w1 = wgood.min() w2 = wgood.max() wrange = w2 - w1 # print('nwaves: {}'.format(len(wgood))) t2 = time.time() # Flat spectrum with equal photon flux in each spectal bin if sp_norm is None: sp_flat = S.ArraySpectrum(waveset, 0*waveset + 10.) sp_flat.name = 'Flat spectrum in flam' # Bandpass unit response is the flux (in flam) of a star that # produces a response of one count per second in that bandpass sp_norm = sp_flat.renorm(bp.unit_response(), 'flam', bp) # Make sp_norm a list of spectral objects if it already isn't if not isinstance(sp_norm, list): sp_norm = [sp_norm] nspec = len(sp_norm) t3 = time.time() # Set up an observation of the spectrum using the specified bandpass if use_sp_waveset: if nspec>1: raise AttributeError("Only 1 spectrum allowed when use_sp_waveset=True.") # Modify waveset if use_sp_waveset=True obs_list = [] for sp in sp_norm: # Select only wavelengths within bandpass waveset = sp.wave waveset = waveset[(waveset>=w1*1e4) and (waveset<=w2*1e4)] obs_list.append(S.Observation(sp, bp, binset=waveset)) # Update wgood wgood = waveset / 1e4 w1 = wgood.min() w2 = wgood.max() wrange = w2 - w1 else: # Use the bandpass wavelength set to bin the fluxes obs_list = [S.Observation(sp, bp, binset=waveset) for sp in sp_norm] # Convert to count rate for obs in obs_list: obs.convert('counts') t4 = time.time() # Create a PSF for each wgood wavelength use_legendre = True if coeff_hdr['LEGNDR'] else False lxmap = [coeff_hdr['WAVE1'], coeff_hdr['WAVE2']] psf_fit = jl_poly(wgood, coeff, dim_reorder=False, use_legendre=use_legendre, lxmap=lxmap) # Just in case weird coeff gives negative values # psf_fit[psf_fit<=0] = np.min(psf_fit[psf_fit>0]) / 10 t5 = time.time() # Multiply each monochromatic PSFs by the binned e/sec at each wavelength # Array broadcasting: [nx,ny,nwave] x [1,1,nwave] # Do this for each spectrum/observation if nspec==1: psf_fit *= obs_list[0].binflux.reshape([-1,1,1]) psf_list = [psf_fit] else: psf_list = [psf_fit*obs.binflux.reshape([-1,1,1]) for obs in obs_list] del psf_fit # The number of pixels to span spatially fov_pix = int(fov_pix) oversample = int(oversample) fov_pix_over = int(fov_pix * oversample) t6 = time.time() # Grism spectroscopy if is_grism: # spectral resolution in um/pixel # res is in pixels per um and dw is inverse grism_order = kwargs['grism_order'] if ('grism_order' in kwargs.keys()) else 1 res, dw = grism_res(pupil, module, grism_order) # Number of real pixels that spectra will span npix_spec = int(wrange // dw + 1 + fov_pix) npix_spec_over = int(npix_spec * oversample) spec_list = [] spec_list_over = [] for psf_fit in psf_list: # If GRISM90 (along columns) rotate image by 90 deg CW if 'GRISM90' in pupil: psf_fit = np.rot90(psf_fit, k=1) elif module=='B': # Flip right to left to disperse in correct orientation psf_fit = psf_fit[:,:,::-1] # Create oversampled spectral image spec_over = np.zeros([fov_pix_over, npix_spec_over]) # Place each PSF at its dispersed location for i, w in enumerate(wgood): # Separate shift into an integer and fractional shift delx = oversample * (w-w1) / dw # Number of oversampled pixels to shift intx = int(delx) fracx = delx - intx if fracx < 0: fracx = fracx + 1 intx = intx - 1 # spec_over[:,intx:intx+fov_pix_over] += fshift(psf_fit[i], fracx) im = psf_fit[i] spec_over[:,intx:intx+fov_pix_over] += im*(1.-fracx) + np.roll(im,1,axis=1)*fracx spec_over[spec_over<__epsilon] = 0 #__epsilon # Rotate spectrum to its V2/V3 coordinates spec_bin = poppy.utils.krebin(spec_over, (fov_pix,npix_spec)) if 'GRISM90' in pupil: # Rotate image 90 deg CCW spec_over = np.rot90(spec_over, k=-1) spec_bin = np.rot90(spec_bin, k=-1) elif module=='B': # Flip right to left for sci coords spec_over = spec_over[:,::-1] spec_bin = spec_bin[:,::-1] # Rebin ovesampled spectral image to real pixels spec_list.append(spec_bin) spec_list_over.append(spec_over) # Wavelength solutions dw_over = dw/oversample w1_spec = w1 - dw_over*fov_pix_over/2 wspec_over = np.arange(npix_spec_over)*dw_over + w1_spec wspec = wspec_over.reshape((npix_spec,-1)).mean(axis=1) if ('GRISM0' in pupil) and (module=='B'): # Flip for sci coords wspec = wspec[::-1] if nspec == 1: spec_list = spec_list[0] spec_list_over = spec_list_over[0] # Return list of wavelengths for each horizontal pixel # as well as spectral image t7 = time.time() _log.debug('jl_poly: {:.2f} sec; binflux: {:.2f} sec; disperse: {:.2f} sec'.format(t5-t4, t6-t5, t7-t6)) if return_oversample: return (wspec, spec_list), (wspec_over, spec_list_over) else: return (wspec, spec_list) # DHS spectroscopy elif is_dhs: raise NotImplementedError('DHS has yet to be fully included') # Imaging else: # Create source image slopes (no noise) data_list = [] data_list_over = [] for psf_fit in psf_list: data_over = psf_fit.sum(axis=0) data_over[data_over<=__epsilon] = data_over[data_over>__epsilon].min() / 10 data_list_over.append(data_over) data_list.append(poppy.utils.krebin(data_over, (fov_pix,fov_pix))) if nspec == 1: data_list = data_list[0] data_list_over = data_list_over[0] t7 = time.time() _log.debug('jl_poly: {:.2f} sec; binflux: {:.2f} sec; PSF sum: {:.2f} sec'.format(t5-t4, t6-t5, t7-t6)) if return_oversample: return data_list, data_list_over else: return data_list
1.765625
2
madgrad/mirror_madgrad.py
haresh121/madgrad
0
12779334
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.optim import math from typing import TYPE_CHECKING, Any, Callable, Optional if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any class MirrorMADGRAD(torch.optim.Optimizer): """ Mirror MADGRAD_: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization. .. _MADGRAD: https://arxiv.org/abs/2101.11075 Mirror MADGRAD uses the weighting and momentum of MADGRAD but uses mirror descent rather than dual averaging as the base method. In general, the mirror variant works better than standard MADGRAD on problems where generalization gap is not an issue, such as large Transformer model training. On CIFAR-10/Image-Net and smaller NLP models the standard variant should be prefered. The Mirror variant is more numerically stable which may help with large model training. Currently does not support sparse gradients. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate (default: 1e-2). momentum (float): Momentum value in the range [0,1) (default: 0.9). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0). eps (float): Term added to the denominator outside of the root operation to improve numerical stability. (default: 0). This parameter is less important in MADGRAD than in Adam. A value of 0 will likely give the best results. decouple_decay (bool): Apply AdamW style decoupled weight decay (EXPERIMENTAL). Application of decay occurs before the step. """ def __init__( self, params: _params_t, lr: float = 1e-2, momentum: float = 0.9, weight_decay: float = 0, eps: float = 0, decouple_decay=False, ): if momentum < 0 or momentum >= 1: raise ValueError(f"Momentum {momentum} must be in the range [0,1]") if lr <= 0: raise ValueError(f"Learning rate {lr} must be positive") if weight_decay < 0: raise ValueError(f"Weight decay {weight_decay} must be non-negative") if eps < 0: raise ValueError(f"Eps must be non-negative") defaults = dict(lr=lr, eps=eps, momentum=momentum, weight_decay=weight_decay, decouple_decay=decouple_decay) super().__init__(params, defaults) @property def supports_memory_efficient_fp16(self) -> bool: return True @property def supports_flat_params(self) -> bool: return True def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() # step counter must be stored in state to ensure correct behavior under # optimizer sharding if 'k' not in self.state: self.state['k'] = torch.tensor([0], dtype=torch.long) k = self.state['k'].item() update_ratio = math.pow(k/(k+1), 1/2) lamb = math.pow(k+1, 1/3) for group in self.param_groups: eps = group["eps"] lr = group["lr"] + eps decay = group["weight_decay"] momentum = group["momentum"] decouple_decay = group["decouple_decay"] ck = 1 - momentum for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() state = self.state[p] p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() if "grad_sum_sq" not in state: state["grad_sum_sq"] = torch.zeros_like(p_data_fp32).detach() state["z"] = torch.clone(p_data_fp32).detach() if momentum != 0.0 and grad.is_sparse: raise RuntimeError("momentum != 0 is not compatible with sparse gradients") grad_sum_sq = state["grad_sum_sq"] z = state["z"] # Apply weight decay if decay != 0: if grad.is_sparse: raise RuntimeError("weight_decay option is not compatible with sparse gradients") if decouple_decay: z.data.add_(z.data, alpha=-lr*decay) else: grad.add_(p_data_fp32, alpha=decay) grad_sum_sq.mul_(update_ratio) # Accumulate second moments grad_sum_sq.addcmul_(grad, grad, value=1) rms = grad_sum_sq.pow(1 / 3).add_(eps) if eps == 0: rms[rms == 0] = float('inf') # Update z z.data.addcdiv_(grad, rms, value=-lr*lamb) # Step p_data_fp32.mul_(1 - ck).add_(z, alpha=ck) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) self.state['k'] += 1 return loss
2.28125
2
src/video_popup.py
OdatNurd/OdatNurdTestPackage
1
12779335
import sublime import sublime_plugin ###---------------------------------------------------------------------------- _video_popup = """ <body id="youtubeeditor-video-details"> <style> body {{ font-family: system; margin: 0.5rem 1rem; width: 40em; }} h1 {{ width: 33em; font-size: 1.2rem; font-weight: bold; margin: 0; padding: 0; border-bottom: 2px solid var(--bluish); color: var(--bluish); }} h1 span {{ font-size: 0.80rem; position: relative; left: 0; }} .private {{ color: var(--redish); }} .public {{ color: var(--greenish); }} .unlisted {{ color: var(--yellowish); }} .statistics {{ font-size: 0.8rem; line-height: 0.8rem; margin-top: -0.8rem; position: relative; }} .viewcount {{ color: var(--purplish); }} .likes {{ color: var(--greenish); }} .dislikes {{ color: var(--redish); }} .description {{ color: color(var(--foreground) alpha(0.70)); }} .tags {{ width: 40rem; margin: 0; padding: 0; border-top: 1px solid var(--greenish); color: color(var(--greenish) alpha(0.7)); font-size: 0.9rem; }} .commands {{ width: 40rem; margin: 0; padding: 0; border-top: 1px solid var(--greenish); color: color(var(--greenish) alpha(0.7)); font-size: 0.9rem; }} </style> {body} </body> """ _body = """ <h1>{title} <span class="{vis_class}">({visibility})</span></h1> <div class="statistics"> <span class="viewcount">{views} views</span> <span class="likes">✔:{likes}</span> <span class="dislikes">✘:{dislikes}</span> </div> <p class="description">{description}</p> <div class="tags">{tags}</div> <div class="commands"> [ <a href="subl:youtube_editor_view_video_link {{&quot;video_id&quot;:&quot;{video_id}&quot;}}">Watch</a> ] [ <a href="subl:youtube_editor_get_video_link {{&quot;video_id&quot;:&quot;{video_id}&quot;}}">Get Link</a> ] [ <a href="subl:youtube_editor_edit_video_details {{&quot;video_id&quot;:&quot;{video_id}&quot;}}">Edit</a> ] [ <a href="subl:youtube_editor_edit_in_studio {{&quot;video_id&quot;:&quot;{video_id}&quot;}}">Edit in Studio</a> ] </div> """ ###---------------------------------------------------------------------------- def show_video_popup(view, point, video): """ At the given point in the given view, display a hover popup for the video whose information is provided. The hover popup will contain the key information for the video, and also contain some links that will trigger commands that can be taken on the video as well. """ content = _video_popup.format( body=_body.format( title=video['snippet.title'], vis_class=video['status.privacyStatus'], visibility=video['status.privacyStatus'].title(), views=video['statistics.viewCount'], likes=video['statistics.likeCount'], dislikes=video['statistics.dislikeCount'], description=video['snippet.description'].split('\n', 1)[0], tags=", ".join(video.get("snippet.tags", [])), video_id=video['id'] ) ) view.show_popup(content, flags=sublime.HIDE_ON_MOUSE_MOVE_AWAY, location=point, max_width=1024, max_height=1024) ###----------------------------------------------------------------------------
2.203125
2
tests/flow/pipeline/conftest.py
mpearmain/forml
0
12779336
<gh_stars>0 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Flow unit tests fixtures. """ # pylint: disable=no-self-use import pytest from forml.flow import pipeline from forml.flow import task from forml.flow.graph import node from forml.flow.pipeline import topology @pytest.fixture(scope='function') def operator(spec: task.Spec) -> topology.Operator: """Operator fixture.""" class Operator(topology.Operator): """Operator mock.""" def compose(self, left: topology.Composable) -> pipeline.Segment: """Dummy composition.""" track = left.expand() trainer = node.Worker(spec, 1, 1) applier = trainer.fork() extractor = node.Worker(spec, 1, 1) trainer.train(track.train.publisher, extractor[0]) return track.use(label=track.train.extend(extractor)).extend(applier) return Operator() @pytest.fixture(scope='function') def origin(spec: task.Spec) -> topology.Operator: """Origin operator fixture.""" class Operator(topology.Operator): """Operator mock.""" def compose(self, left: topology.Composable) -> pipeline.Segment: """Dummy composition.""" trainer = node.Worker(spec, 1, 1) applier = trainer.fork() return pipeline.Segment(applier, trainer) return Operator()
1.84375
2
app_blog/controllers/article_controller.py
DubstepWar/flask-blog-test
0
12779337
<gh_stars>0 from flask import Blueprint, jsonify, request from flask_jwt import jwt_required from marshmallow import ValidationError from app_blog.extensions import db from app_blog.models import Article from app_blog.models.article import article_schema, articles_schema from app_blog.services.article_service import article_service articles_blueprint = Blueprint("articles", __name__, url_prefix="/articles") @articles_blueprint.route("", methods=["GET"]) def get_articles(): articles = article_service.get_articles() return jsonify(articles_schema.dump(articles)) @articles_blueprint.route("", methods=["POST"]) @jwt_required() def create_article(): data = request.get_json() if not data: return ( {"status": "error", "success": False, "message": "No input data provided"}, 400, ) # Валидируем входящие данные try: data = article_schema.load(data) except ValidationError as err: return err.messages, 422 return ( jsonify({"status": "error", "errors": err.messages, "success": False}), 422, ) article = article_service.create_article(data) return ( jsonify( {"status": "ok", "success": True, "result": article_schema.dump(article)} ), 201, ) @articles_blueprint.route("/<slug>", methods=["GET"]) def get_article(slug): article = Article.query.filter_by(slug=slug).first() if not article: return jsonify({"status": "error", "message": "Not found", "success": False}), 401 return jsonify(article_schema.dump(article)) @articles_blueprint.route("/<slug>", methods=["PUT"]) @jwt_required() def update_article(slug): article = Article.query.filter_by(slug=slug).first() if not article: return jsonify({"status": "error", "message": "Not found", "success": False}) data = request.get_json() if not data: return ( {"status": "error", "success": False, "message": "No input data provided"}, 400, ) # Валидируем входящие данные try: data = article_schema.load(data) except ValidationError as err: return err.messages, 422 return ( jsonify({"status": "error", "errors": err.messages, "success": False}), 422, ) article_service.update_article(article, data) return jsonify( {"success": True, "status": "Ok", "result": article_schema.dump(article)} ) @articles_blueprint.route("/<slug>", methods=["DELETE"]) @jwt_required() def delete_article(slug): article = Article.query.filter_by(slug=slug).first() if not article: return jsonify({"status": "error", "message": "Not found", "success": False}) db.session.delete(article) db.session.commit() return jsonify({"success": True, "status": "Ok"})
2.390625
2
src/networks/main.py
LukasKratochvila/Deep-SVDD-PyTorch
0
12779338
from .mnist_LeNet import MNIST_LeNet, MNIST_LeNet_Autoencoder from .cifar10_LeNet import CIFAR10_LeNet, CIFAR10_LeNet_Autoencoder from .cifar10_LeNet_elu import CIFAR10_LeNet_ELU, CIFAR10_LeNet_ELU_Autoencoder from .my_LeNet import MY_LeNet, MY_LeNet_Autoencoder from .my_LeNet_480x480 import MY_LeNet_480, MY_LeNet_480_Autoencoder from .my_LeNet_NN import MY_LeNet_NN, MY_LeNet_NN_Autoencoder def build_network(net_name): """Builds the neural network.""" implemented_networks = ('mnist_LeNet', 'cifar10_LeNet', 'cifar10_LeNet_ELU', 'my_LeNet', 'my_LeNet_480', 'my_LeNet_NN') assert net_name in implemented_networks net = None if net_name == 'mnist_LeNet': net = MNIST_LeNet() if net_name == 'cifar10_LeNet': net = CIFAR10_LeNet() if net_name == 'cifar10_LeNet_ELU': net = CIFAR10_LeNet_ELU() if net_name == 'my_LeNet': net = MY_LeNet() if net_name == 'my_LeNet_480': net = MY_LeNet_480() if net_name == 'my_LeNet_NN': net = MY_LeNet_NN() return net def build_autoencoder(net_name): """Builds the corresponding autoencoder network.""" implemented_networks = ('mnist_LeNet', 'cifar10_LeNet', 'cifar10_LeNet_ELU', 'my_LeNet', 'my_LeNet_480', 'my_LeNet_NN') assert net_name in implemented_networks ae_net = None if net_name == 'mnist_LeNet': ae_net = MNIST_LeNet_Autoencoder() if net_name == 'cifar10_LeNet': ae_net = CIFAR10_LeNet_Autoencoder() if net_name == 'cifar10_LeNet_ELU': ae_net = CIFAR10_LeNet_ELU_Autoencoder() if net_name == 'my_LeNet': ae_net = MY_LeNet_Autoencoder() if net_name == 'my_LeNet_480': ae_net = MY_LeNet_480_Autoencoder() if net_name == 'my_LeNet_NN': ae_net = MY_LeNet_NN_Autoencoder() return ae_net
2.546875
3
3.Object.Oriented.Programming/7.magicMethods.py
bhattvishal/programming-learning-python
1
12779339
class Book: def __init__(self, title, price, author): super().__init__() self.title = title self.price = price self.author = author # Magic Methods # use __str__ to writtren the string representation def __str__(self): return f"{self.title} is written by {self.author} and costs {self.price}" # __repr__ to return the object representation, it is more of a used for debugging easier def __repr__(self): return f"title: {self.title}, author: {self.author}, cost: {self.price}" def main(): b1 = Book("Hit Refresh", 500, "Satya Nadella") print(str(b1)) print(repr(b1)) if __name__ == "__main__": main()
3.828125
4
test.py
Mirorrn/Spline-Lane-Detection
1
12779340
import os path = os.getcwd() from cu__grid_cell.data_gen import data_gen from cu__grid_cell.preparation import preparation import numpy as np from cu__grid_cell.Validation.validation_utils import plot_image, grid_based_eval_with_iou, plot_image3d, nms, concatenate_cells import matplotlib.pyplot as plt import cv2 def sigmoid(x): return 1. / (1. + np.exp(-x)) batch = 2 model_obj = preparation(testing = True) config = model_obj.config a = data_gen(dataset=config.CU_test6_curve_hdf5_path, batchsize=batch, config=config, augment=False) generator = a.batch_gen(test=True) x_img, y, gt_image, gt_lanes = next(generator) y = y[0] concatenate_cells(y[0], config) prediction = model_obj.predict(x_img) scale_size_y = (1640 -1) / config.img_w scale_size_x = (590 -1) /config.img_h M = np.array([[scale_size_y, 0, 0], [0, scale_size_x, 0], [0, 0, 1.]]) M=M[0:2] if config.splitted: lok = prediction[-2] conf = prediction[-1] prediction = np.concatenate([lok, conf], axis=-1) #elif config.staged: # prediction = prediction[-1] for i, s in enumerate(prediction): s = nms(s, config) plt.figure(1) #f, axarr = plt.subplots(1, 2) #axarr[0].imshow(gt_image[i,:,:,::-1].astype(np.uint8)) #axarr[0].set_title('Ground Thruth', color='0.7') for a in gt_lanes[i]: gt_image[i] = cv2.polylines(gt_image[i], np.int32([a]), isClosed=0, color=(0, 255, 0), thickness=10) lanes_pred = concatenate_cells(s, config, prediction=True) original_points = lanes_pred for j, o in enumerate(original_points): o = np.array(o).T ones = np.ones_like(o[:, 0]) ones = ones[..., None] original_points[j] = np.concatenate((o, ones), axis=1) # we reuse 3rd column in completely different way here, it is hack for matmul with M original_points[j] = np.matmul(M, original_points[j].T).T # transpose for multiplikation lanes = original_points # take only coords! for a in lanes: gt_image[i] = cv2.polylines(gt_image[i], np.int32([a]), isClosed=0,color=(0,0,255), thickness=10) #pred_img = plot_image(s, config, with_print=True, plot_image =x_img[i,:,:]) plt.imshow(gt_image[i,:,:,::-1].astype(np.uint8)) # plt.set_title('Predicted', color='0.7') # now 3d plot plot_image3d(s, config, True, with_print=False) # plot_image3d(y[i], config, False, with_print=False) plt.show() test = 0
2.171875
2
app/models/attribute.py
Maxcutex/personal_ecommerce
0
12779341
"""module of attribute model class""" from .base_model import BaseModel, db class Attribute(BaseModel): """attribute Model class""" __tablename__ = 'attribute' attribute_id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(100), nullable=False) def __str__(self): return '<Attribute: {}>'.format(self.name)
2.90625
3
db_logic.py
apie/seriesbot
0
12779342
<filename>db_logic.py #!/usr/bin/env python3 import os from pydblite import Base SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) show_db = Base(os.path.join(SCRIPT_DIR, 'show.db')) show_db.create('show_id', 'name', 'latest_ep_id', mode="open") ep_db = Base(os.path.join(SCRIPT_DIR, 'episode.db')) ep_db.create('ep_id', 'show_id', 'season', 'number', 'name', 'airdate', 'downloaded', mode="open") def get_shows_from_db(): return { rec['show_id']: { 'name': rec.get('name'), 'latest_ep': rec.get('latest_ep_id'), } for rec in show_db } def save_shows_in_db(shows): db = show_db for show_id, value in shows.items(): rec = db("show_id") == show_id if not rec: rec_id = db.insert(show_id=show_id) db.commit() rec = db[rec_id] db.update(rec, name=value.get('name'), latest_ep_id=value.get('latest_ep')) db.commit() def get_new_eps_from_db(): return { rec['ep_id']: { 'show_id': rec.get('show_id'), 'season': rec.get('season'), 'number': rec.get('number'), 'name': rec.get('name'), 'airdate': rec.get('airdate'), 'downloaded': rec.get('downloaded'), } for rec in ep_db if not rec.get('downloaded') } def save_eps_in_db(eps): db = ep_db for ep_id, value in eps.items(): rec = db("ep_id") == ep_id if not rec: rec_id = db.insert(ep_id=ep_id) db.commit() rec = db[rec_id] db.update(rec, show_id=value.get('show_id'), season=value.get('season'), number=value.get('number'), name=value.get('name'), airdate=value.get('airdate'), downloaded=value.get('downloaded') ) db.commit() def get_rec(ep_id): db = ep_db rec = db("ep_id") == ep_id if not rec: rec_id = db.insert(ep_id=ep_id) db.commit() rec = db[rec_id] return rec def mark_ep_as_downloaded(ep_id, downloaded=True): rec = get_rec(ep_id) db = ep_db db.update(rec, downloaded=downloaded) db.commit() def list_show_db(): db = show_db for rec in db: print(rec) def list_ep_db(): db = ep_db for rec in db: print(rec)
2.328125
2
cloudkittyclient/v1/info_cli.py
NeCTAR-RC/python-cloudkittyclient
19
12779343
<reponame>NeCTAR-RC/python-cloudkittyclient # -*- coding: utf-8 -*- # Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from cliff import lister from cloudkittyclient import utils class CliInfoMetricGet(lister.Lister): """Get information about current metrics.""" info_columns = [ ('metric_id', 'Metric'), ('unit', 'Unit'), ('metadata', 'Metadata'), ] def take_action(self, parsed_args): resp = utils.get_client_from_osc(self).info.get_metric( metric_name=parsed_args.metric_name, ) values = utils.list_to_cols([resp], self.info_columns) return [col[1] for col in self.info_columns], values def get_parser(self, prog_name): parser = super(CliInfoMetricGet, self).get_parser(prog_name) parser.add_argument('metric_name', type=str, default='', help='Metric name') return parser class CliInfoMetricList(lister.Lister): """Get information about a single metric.""" info_columns = [ ('metric_id', 'Metric'), ('unit', 'Unit'), ('metadata', 'Metadata'), ] def take_action(self, parsed_args): resp = utils.get_client_from_osc(self).info.get_metric() values = utils.list_to_cols(resp['metrics'], self.info_columns) return [col[1] for col in self.info_columns], values class CliInfoConfigGet(lister.Lister): """Get information about the current configuration.""" def take_action(self, parsed_args): resp = utils.get_client_from_osc(self).info.get_config() values = [(key, value) for key, value in resp.items()] return ('Section', 'Value'), values
2.3125
2
account/exceptions.py
KimSoungRyoul/drf_unitteset_study_project
0
12779344
from rest_framework.exceptions import NotAuthenticated as DRFNotAuthenticated class NotAuthentication(DRFNotAuthenticated): default_detail = '인증 되지 않은 사용자입니다.'
1.890625
2
backend/api/resources/pedidos_resource.py
jklemm/menu-fullstack-challenge
0
12779345
import json import falcon from api.resources import BaseResource from core.pedidos.exceptions import PedidoNotFoundException from core.pedidos.gateway import PedidoGateway class PedidosResource(BaseResource): def on_get(self, req, resp, pedido_id=None): pedido_gateway = PedidoGateway(self.db.session) if pedido_id: try: pedidos = pedido_gateway.get_one(int(pedido_id)) content = pedidos.as_dict except PedidoNotFoundException as exc: resp.status = falcon.HTTP_404 resp.body = json.dumps({"erro": str(exc)}) return resp else: pedidos = pedido_gateway.get_all() content = [pedido.as_dict for pedido in pedidos] resp.status = falcon.HTTP_200 resp.body = json.dumps(content) def on_post(self, req, resp): pedido_gateway = PedidoGateway(self.db.session) body = req.bounded_stream.read().decode() if not body: resp.status = falcon.HTTP_PRECONDITION_FAILED resp.body = json.dumps({"erro": "POST precisa conter um body."}) return resp raw_json = json.loads(body) data = raw_json["data"] cliente_id = raw_json["cliente_id"] valor = raw_json["valor"] pedido_gateway.create(data, cliente_id, valor) resp.status = falcon.HTTP_201 def on_put(self, req, resp, pedido_id=None): pedido_gateway = PedidoGateway(self.db.session) if not pedido_id: resp.status = falcon.HTTP_412 resp.body = json.dumps({"erro": "Metodo PUT requer o campo 'pedido_id' na URL"}) return resp resp.status = falcon.HTTP_200 raw_json = json.loads(req.bounded_stream.read().decode()) data = raw_json.get("data", None) cliente_id = raw_json.get("cliente_id", None) valor = raw_json.get("valor", None) try: pedido_gateway.update(pedido_id, data, cliente_id, valor) except PedidoNotFoundException as exc: resp.status = falcon.HTTP_404 resp.body = json.dumps({"erro": str(exc)}) return resp
2.234375
2
edge/wiotp/netspeed2wiotp/mqtt_pub.py
alexzinovyev-intensivate/examples
34
12779346
import time import string import json import sys import paho.mqtt.publish as publish import paho.mqtt.client as mqtt from workload_config import * # Read configuration import utils # Utilities file in this dir (utils.py) def post_networkdata_single_wiotp(jsonpayload, event_id, heart_beat=False): """Tries once to send network data in json format to WIoTP via mqtt. Returns 1 if successful, 0 if not, -1 if failed because not registered. """ try: retain = True qos = 2 # since speed data is sent so infrequently we can afford to make sure it gets there exactly once if debug_flag: utils.print_("mqtt_pub.py: Sending data to mqtt... \ mqtt_topic=%s, mqtt_broker=%s, client_id=%s" % (mqtt_topic, mqtt_broker, mqtt_client_id)) # Publish to MQTT publish.single(topic=mqtt_topic, payload=jsonpayload, qos=qos, hostname=mqtt_broker, protocol=mqtt.MQTTv311, client_id=mqtt_client_id, port=mqtt_port, #auth=mqtt_auth, tls=mqtt_tls, retain=retain) if debug_flag: utils.print_('mqtt_pub.py: Send to mqtt successful') return 1 except: e = sys.exc_info()[1] if 'not authori' in str(e).lower() or 'bad user name or password' in str(e).lower(): # The data send failed because we are not successfully registered return -1 else: utils.print_('Send to mqtt failed: %s' % e) return 0
2.640625
3
myprodigy/urls.py
acdh-oeaw/nerdpool
0
12779347
# generated by appcreator from django.conf.urls import url from . import views, api_views app_name = 'myprodigy' urlpatterns = [ url( r'^annotator/detail/(?P<pk>[0-9]+)$', views.UserDetailView.as_view(), name='user_detail' ), url( r'^nerdataset/$', views.NerDataSetListView.as_view(), name='nerdataset_browse' ), url( r'^servers/$', views.ServerListView.as_view(), name='server_browse' ), url( r'^nerdataset/detail/(?P<pk>[0-9]+)$', views.NerDataSetDetailView.as_view(), name='nerdataset_detail' ), url( r'^nerdataset/create/$', views.NerDataSetCreate.as_view(), name='nerdataset_create' ), url( r'^nerdataset/edit/(?P<pk>[0-9]+)$', views.NerDataSetUpdate.as_view(), name='nerdataset_edit' ), url( r'^nerdataset/delete/(?P<pk>[0-9]+)$', views.NerDataSetDelete.as_view(), name='nerdataset_delete'), url( r'^nersample/$', views.NerSampleListView.as_view(), name='nersample_browse' ), url( r'^nersample/detail/(?P<pk>[0-9]+)$', views.NerSampleDetailView.as_view(), name='nersample_detail' ), url( r'^nersample/create/$', views.NerSampleCreate.as_view(), name='nersample_create' ), url( r'^nersample/edit/(?P<pk>[0-9]+)$', views.NerSampleUpdate.as_view(), name='nersample_edit' ), url( r'^nersample/delete/(?P<pk>[0-9]+)$', views.NerSampleDelete.as_view(), name='nersample_delete'), url( r'^spawnprodigy/$', api_views.ProdigyServers.as_view(), name="api_prodigy_servers" ) ]
1.929688
2
python/shared/research_pacs/shared/util.py
aws-samples/research-pacs-on-aws
13
12779348
<filename>python/shared/research_pacs/shared/util.py<gh_stars>10-100 # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import json import os import re import logging import signal from threading import Event import boto3 import yaml logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def load_file(location, aws_region, content_type='str', s3_credentials=None): """ Load and return a file either from Amazon S3 or from a local (or locally mounted) file system. Args: location (str): File location in the format `s3://bucket/key` if the file is stored in Amazon S3 aws_region (str): AWS region where the S3 bucket resides content_type (str): Can be `str` to return a string, `bytes` to return encoded bytes, `json` to parse a JSON document and return a dic, `yaml` to parse a YAML document and return a dict s3_credentials (dict): Optional S3 credentials passed to the boto3 S3 client. If no credentials are provided, we use the EC2 role or task role """ try: logger.debug(f'Load the file "{location}" as "{content_type}"') match = re.search('^s3:\/\/([^\/]+)\/(.+)$', location) # Log the file from S3 if the location matches the S3 pattern if match != None: if s3_credentials != None: s3 = boto3.client('s3', region_name=aws_region, **s3_credentials) else: s3 = boto3.client('s3', region_name=aws_region) s3_response = s3.get_object(Bucket=match.group(1), Key=match.group(2)) content_bytes = s3_response['Body'].read() # Otherwise, load the file from the local system, or locally-mounted file system else: with open(location, 'rb') as f: content_bytes = f.read() if content_type == 'bytes': return content_bytes elif content_type == 'str': return content_bytes.decode() elif content_type == 'json': return json.loads(content_bytes.decode()) elif content_type == 'yaml': return yaml.safe_load(content_bytes.decode()) except Exception as e: msg_err = f'Failed to load the file {location} as "{content_type}" - {e}' logger.debug(msg_err) raise Exception(msg_err) def write_file(content, location, aws_region, content_type='str', s3_credentials=None): """ Write a file either to Amazon S3 or to a local (or locally mounted) file system. Args: content: Can either by a bytes, str, JSON object location (str): File location in the format `s3://bucket/key` if the file is stored in Amazon S3 aws_region (str): AWS region where the S3 bucket resides content_type (str): Type of `content` (`str`, `bytes` or `json`) s3_credentials (dict): Optional S3 credentials passed to the boto3 S3 client. If no credentials are provided, we use the EC2 role or task role """ logger.debug(f'Write the file "{location}" as "{content_type}"') try: if content_type == 'bytes': content_bytes = content elif content_type == 'str': content_bytes.encode() elif content_type == 'json': content_bytes = json.dumps(content, indent=4, sort_keys=True).encode() match = re.search('^s3:\/\/([^\/]+)\/(.+)$', location) # Save to S3 if the location matches the S3 pattern if match != None: if s3_credentials != None: s3 = boto3.client('s3', region_name=aws_region, **s3_credentials) else: s3 = boto3.client('s3', region_name=aws_region) s3_response = s3.put_object(Body=content_bytes, Bucket=match.group(1), Key=match.group(2)) # Otherwise, save it to the local system else: with open(location, 'wb') as f: f.write(content_bytes) except Exception as e: msg_err = f'Failed to write the "{content_type}" input to {location} - {e}' logger.debug(msg_err) raise Exception(msg_err) class EnvVarList: """ Retrieve and store environment variables. Environment variable values are accessible as attributes of the object. """ def __init__(self): self.region = None def add(self, attr_name, var_name, cast=None, default=None, password=False): """ Add a class attribute that contains the value of an environment variable. The application exits if the environment variable is unset, unless a default value is provided. Args: attr_name (str): Attribute name var_name (str): Name of the environment variable cast (type, Optional): Type to cast the environment variable value default (Optional): Default value if the environment variable is unset password (bool, Optional): Hide the value when displaying debug logs """ value = os.getenv(var_name) if value is None and default != None: value = default # Cast the value if cast != None and value != None: try: value = cast(value) except Exception as e: msg_err = f'Unable to cast {var_name} to {cast}' logger.debug(msg_err) raise Exception(msg_err) # Return the value or raise an exception if the value is missing if value is None: msg_err = f'Missing value for environment variable {var_name}' logger.debug(msg_err) raise Exception(msg_err) else: if password is True: logger.debug(f'{var_name} = *******') else: logger.debug(f'{var_name} = {value}') setattr(self, attr_name, value) class ClientList: """ Store variables, notably client objects, and make them accessible as attributes of a class. """ def add(self, attr_name, client): setattr(self, attr_name, client) class GracefulKiller: """ Intercept SIGINT and SIGTERM and enable the program to exit gracefully. Use the `sleep` function instead of `time.sleep` to interrupt the sleep function when a signal is intercepted. """ def __init__(self): self.kill_now = False self.exit = Event() signal.signal(signal.SIGINT, self._exit_gracefully) signal.signal(signal.SIGTERM, self._exit_gracefully) def _exit_gracefully(self, sig_num, *args): self.exit.set() self.kill_now = True def sleep(self, seconds): self.exit.wait(seconds)
2.28125
2
zerver/tests/test_management_commands.py
Frouk/zulip
0
12779349
<reponame>Frouk/zulip # -*- coding: utf-8 -*- import os from mock import patch from django.test import TestCase from django.conf import settings from django.core.management import call_command class TestSendWebhookFixtureMessage(TestCase): COMMAND_NAME = 'send_webhook_fixture_message' def setUp(self): self.fixture_path = os.path.join('some', 'fake', 'path.json') self.url = '/some/url/with/hook' @patch('zerver.management.commands.send_webhook_fixture_message.Command.print_help') def test_check_if_command_exits_when_fixture_param_is_empty(self, print_help_mock): with self.assertRaises(SystemExit): call_command(self.COMMAND_NAME, url=self.url) print_help_mock.assert_any_call('python manage.py', self.COMMAND_NAME) @patch('zerver.management.commands.send_webhook_fixture_message.Command.print_help') def test_check_if_command_exits_when_url_param_is_empty(self, print_help_mock): with self.assertRaises(SystemExit): call_command(self.COMMAND_NAME, fixture=self.fixture_path) print_help_mock.assert_any_call('python manage.py', self.COMMAND_NAME) @patch('zerver.management.commands.send_webhook_fixture_message.os.path.exists') def test_check_if_command_exits_when_fixture_path_does_not_exist(self, os_path_exists_mock): os_path_exists_mock.return_value = False with self.assertRaises(SystemExit): call_command(self.COMMAND_NAME, fixture=self.fixture_path, url=self.url) os_path_exists_mock.assert_any_call(os.path.join(settings.DEPLOY_ROOT, self.fixture_path)) @patch('zerver.management.commands.send_webhook_fixture_message.os.path.exists') @patch('zerver.management.commands.send_webhook_fixture_message.Client') @patch('zerver.management.commands.send_webhook_fixture_message.ujson') @patch("zerver.management.commands.send_webhook_fixture_message.open", create=True) def test_check_if_command_post_request_to_url_with_fixture(self, open_mock, ujson_mock, client_mock, os_path_exists_mock): ujson_mock.loads.return_value = '{}' ujson_mock.dumps.return_value = {} os_path_exists_mock.return_value = True client = client_mock() call_command(self.COMMAND_NAME, fixture=self.fixture_path, url=self.url) self.assertTrue(ujson_mock.dumps.called) self.assertTrue(ujson_mock.loads.called) self.assertTrue(open_mock.called) client.post.assert_called_once_with(self.url, {}, content_type="application/json")
2.140625
2
Report2/Code/getDAWNData.py
cvanoort/USDrugUseAnalysis
0
12779350
import csv import gc # A small function for grabbing data from a list of dictionaries based on a shared key def countKey(key,listDataDicts): outDict = {} for row in listDataDicts: try: outDict[row[key]] += 1 except KeyError: outDict[row[key]] = 1 return outDict alcData = [0,0,0,0,0,0,0,0] nonAlcIllicitData = [0,0,0,0,0,0,0,0] nonMedPharmaData = [0,0,0,0,0,0,0,0] filePath1 = "data/DAWN_20" filePath2 = [ "04", "05", "06", "07", "08", "09", "10", "11" ] filePath3 = "/DS0001/" filePath4 = ["33041","33042","33221","32861","31264","31921","34083","34565"] filePath5 = "-0001-Data.tsv" for i in range(8): # Simple progress tracking print "Beginning loop iteration %d \n" %(i) # Create a path to a data set path = filePath1 + filePath2[i] + filePath3 + filePath4[i] + filePath5 # Read that data set into a python object listDataDicts = [] with open(path, 'r') as tsvFile: tsvReader = csv.DictReader(tsvFile,delimiter='\t') for row in tsvReader: if (row['ALCOHOL'] == "1"): alcData[i] += 1 if (row['NONALCILL'] == "1"): nonAlcIllicitData[i] += 1 if (row['NONMEDPHARMA'] == "1"): nonMedPharmaData[i] += 1 # Clean up the data objects from the prvious iteration in order to decrease memory usage gc.collect() # Simple progress tracking print "Loop iteration %d complete! \n" %(i) print alcData, "\n", nonAlcIllicitData, "\n", nonMedPharmaData, "\n" # Write the data to a smaller tsv file for later use with open("DAWN_data.tsv", 'w') as outFile: csvWriter = csv.writer(outFile, delimiter='\t') years = [x for x in range(2004, 2012)] drugData = [alcData, nonAlcIllicitData, nonMedPharmaData] csvWriter.writerow( years ) for i in drugData: csvWriter.writerow( i )
2.953125
3