max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/uwrov_cams/scripts/usb_cam.py
uwrov/nautilus_pi
0
12775051
#!/usr/bin/env python3 import rospy import os from sensor_msgs.msg import CompressedImage import numpy as np import cv2 def streaming(msg, rate, stream, image_pub): while not rospy.is_shutdown(): _, frame = stream.read() msg.header.stamp = rospy.Time.now() msg.format = 'jpeg' msg.data = np.array(cv2.imencode('.jpeg', frame)[1]).tostring() image_pub.publish(msg) rate.sleep() if __name__ == '__main__': src = 0 # 'http://[Pi IP]:8081/' stream = cv2.VideoCapture(src) hn = os.environ.get('HOSTNAME') hn = 'pi' if hn is None else hn image_pub = rospy.Publisher(f'/nautilus/{hn}/usbcam', CompressedImage, queue_size=1) rospy.init_node('compress_stream') rate = rospy.Rate(24) msg = CompressedImage() streaming(msg, rate, stream, image_pub)
2.828125
3
leetcode-63.py
comst007/myLeetCode
0
12775052
class Solution: def dfs(self,row_cnt:int, col_cnt:int, i:int, j:int, obs_arr:list, solve_dict:dict): if (i, j) in solve_dict: return solve_dict[(i,j)] right_cnt = 0 down_cnt = 0 #right if i + 1 < row_cnt and not obs_arr[i + 1][j]: if (i + 1, j) in solve_dict: right_cnt = solve_dict[(i + 1, j)] else: right_cnt = self.dfs(row_cnt, col_cnt,i + 1, j,obs_arr,solve_dict) #left if j + 1 < col_cnt and not obs_arr[i][j + 1]: if (i, j + 1) in solve_dict: down_cnt = solve_dict[(i, j + 1)] else: down_cnt = self.dfs(row_cnt, col_cnt, i, j + 1,obs_arr, solve_dict) res = right_cnt + down_cnt solve_dict[(i, j)] = res return res def uniquePathsWithObstacles(self, obstacleGrid: list) -> int: row = len(obstacleGrid) if not row: return 0 col = len(obstacleGrid[0]) if not col: return 0 if obstacleGrid[row - 1][col - 1]: return 0 if obstacleGrid[0][0]: return 0 res = self.dfs(row,col,0,0,obstacleGrid, {(row-1, col - 1):1}) return res t1 = [ [0,0,0], [0,1,0], [0,0,0] ] sl = Solution() res = sl.uniquePathsWithObstacles(t1) print(res)
3.046875
3
mkdocs_typer/_exceptions.py
bruce-szalwinski/mkdocs-typer
10
12775053
class MkDocsTyperException(Exception): """ Generic exception class for mkdocs-typer errors. """
1.5625
2
AutomatedTesting/Gem/PythonTests/physics/C4044460_Material_StaticFriction.py
aaarsene/o3de
1
12775054
<gh_stars>1-10 """ Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ # Test case ID : C4044460 # Test Case Title : Verify the functionality of static friction # fmt: off class Tests(): enter_game_mode = ("Entered game mode", "Failed to enter game mode") find_ramp = ("Ramp entity found", "Ramp entity not found") find_box_zero = ("Box entity 'zero' found", "Box entity 'zero' not found") find_box_low = ("Box entity 'low' found", "Box entity 'low' not found") find_box_mid = ("Box entity 'mid' found", "Box entity 'mid' not found") find_box_high = ("Box entity 'high' found", "Box entity 'high' not found") box_at_rest_zero = ("Box 'zero' began test motionless", "Box 'zero' did not begin test motionless") box_at_rest_low = ("Box 'low' began test motionless", "Box 'low' did not begin test motionless") box_at_rest_mid = ("Box 'mid' began test motionless", "Box 'mid' did not begin test motionless") box_at_rest_high = ("Box 'high' began test motionless", "Box 'high' did not begin test motionless") box_was_pushed_zero = ("Box 'zero' moved", "Box 'zero' did not move before timeout") box_was_pushed_low = ("Box 'low' moved", "Box 'low' did not move before timeout") box_was_pushed_mid = ("Box 'mid' moved", "Box 'mid' did not move before timeout") box_was_pushed_high = ("Box 'high' moved", "Box 'high' did not move before timeout") force_impulse_ordered = ("Boxes with greater static friction required greater impulses", "Boxes with greater static friction did not require greater impulses") exit_game_mode = ("Exited game mode", "Couldn't exit game mode") # fmt: on def C4044460_Material_StaticFriction(): """ Summary: Runs an automated test to ensure that greater static friction coefficient settings on a physX material results in rigidbodys (with that material) requiring a greater force in order to be set into motion Level Description: Four boxes sit on a horizontal 'ramp'. The boxes are identical, save for their physX material. A new material library was created with 4 materials and their static friction coefficient: zero_static_friction: 0.00 low_static_friction: 0.50 mid_static_friction: 1.00 high_static_friction: 1.50 Each material is identical otherwise Each box is assigned its corresponding friction material, the ramp is assigned low_static_friction The COM of the boxes is placed on the plane (0, 0, -0.5), so as to remove any torque moments and resulting rotations Expected Behavior: For each box, this script will apply a force impulse in the world X direction (starting at magnitude 0.0). Every frame, it checks if the box moved: If it didn't, we increase the magnitude slightly and try again If it did, the box retains the magnitude required to move it, and we move to the next box. Boxes with greater static friction coefficients should require greater forces in order to set them in motion. Test Steps: 1) Open level 2) Enter game mode 3) Find the ramp For each box: 4) Find the box 5) Ensure the box is stationary 6) Push the box until it moves 7) Assert that greater coefficients result in greater required force impulses 8) Exit game mode 9) Close the editor Note: - This test file must be called from the Open 3D Engine Editor command terminal - Any passed and failed tests are written to the Editor.log file. Parsing the file or running a log_monitor are required to observe the test results. :return: None """ import os import sys import ImportPathHelper as imports imports.init() from editor_python_test_tools.utils import Report from editor_python_test_tools.utils import TestHelper as helper import azlmbr import azlmbr.legacy.general as general import azlmbr.bus as bus import azlmbr.math as lymath FORCE_IMPULSE_INCREMENT = 0.005 # How much we increase the force every frame MIN_MOVE_DISTANCE = 0.02 # Distance magnitude that a box must travel in order to be considered moved STATIONARY_TOLERANCE = 0.0001 # Boxes must have velocities under this magnitude in order to be stationary TIMEOUT = 10 class Box: def __init__(self, name, valid_test, stationary_test, moved_test): self.name = name self.id = general.find_game_entity(name) self.start_position = self.get_position() self.force_impulse = 0.0 self.valid_test = valid_test self.stationary_test = stationary_test self.moved_test = moved_test def is_stationary(self): velocity = azlmbr.physics.RigidBodyRequestBus(bus.Event, "GetLinearVelocity", self.id) return vector_close_to_zero(velocity, STATIONARY_TOLERANCE) def get_position(self): return azlmbr.components.TransformBus(bus.Event, "GetWorldTranslation", self.id) def vector_close_to_zero(vector, tolerance): return abs(vector.x) <= tolerance and abs(vector.y) <= tolerance and abs(vector.z) <= tolerance def push(box): delta = box.start_position.Subtract(box.get_position()) if vector_close_to_zero(delta, MIN_MOVE_DISTANCE): box.force_impulse += FORCE_IMPULSE_INCREMENT impulse_vector = lymath.Vector3(box.force_impulse, 0.0, 0.0) azlmbr.physics.RigidBodyRequestBus(bus.Event, "ApplyLinearImpulse", box.id, impulse_vector) return False else: Report.info("Box {} required force was {:.3f}".format(box.name, box.force_impulse)) return True helper.init_idle() # 1) Open level helper.open_level("Physics", "C4044460_Material_StaticFriction") # 2) Enter game mode helper.enter_game_mode(Tests.enter_game_mode) # fmt: off # Set up our boxes box_zero = Box( name = "Zero", valid_test = Tests.find_box_zero, stationary_test = Tests.box_at_rest_zero, moved_test = Tests.box_was_pushed_zero ) box_low = Box( name = "Low", valid_test = Tests.find_box_low, stationary_test = Tests.box_at_rest_low, moved_test = Tests.box_was_pushed_low ) box_mid = Box( name = "Mid", valid_test = Tests.find_box_mid, stationary_test = Tests.box_at_rest_mid, moved_test = Tests.box_was_pushed_mid ) box_high = Box( name = "High", valid_test = Tests.find_box_high, stationary_test = Tests.box_at_rest_high, moved_test = Tests.box_was_pushed_high ) all_boxes = (box_zero, box_low, box_mid, box_high) # fmt: on # 3) Find the ramp ramp_id = general.find_game_entity("Ramp") Report.critical_result(Tests.find_ramp, ramp_id.IsValid()) for box in all_boxes: Report.info("********Pushing Box {}********".format(box.name)) # 4) Find the box Report.critical_result(box.valid_test, box.id.IsValid()) # 5) Ensure the box is stationary Report.result(box.stationary_test, box.is_stationary()) # 6) Push the box until it moves Report.critical_result(box.moved_test, helper.wait_for_condition(lambda: push(box), TIMEOUT)) # 7) Assert that greater coefficients result in greater required force impulses ordered_impulses = box_high.force_impulse > box_mid.force_impulse > box_low.force_impulse > box_zero.force_impulse Report.result(Tests.force_impulse_ordered, ordered_impulses) # 8) Exit game mode helper.exit_game_mode(Tests.exit_game_mode) if __name__ == "__main__": import ImportPathHelper as imports imports.init() from editor_python_test_tools.utils import Report Report.start_test(C4044460_Material_StaticFriction)
2.03125
2
login/apps/user/serializers.py
LHW6688/login
1
12775055
# -*- coding: utf-8 -*- ''' PROJECT_NAME:login FILE:serializers USERNAME: 李宏伟 DATE:2020/1/15 TIME:上午10:13 PRODUCT_NAME:PyCharm ''' import re from rest_framework import serializers from .models import User class CreateUserSerializer(serializers.ModelSerializer): """ 创建用户序列化器 """ password2 = serializers.CharField(label="确认密码", write_only=True) allow = serializers.CharField(label="同意协议", write_only=True) class Meta: model = User fields = ('id', 'username', 'password', 'password2', 'mobile', 'allow',) extra_kwargs = { "username": { "min_length": 5, "max_length": 20, "error_messages": { "min_length": "仅允许5-20个字符的用户名", "max_length": "仅允许5-20个字符的用户名", } }, "password": { "write_only": True, "min_length": 8, "max_length": 20, "error_messages": { "min_length": "仅允许8-20个字符的密码", "max_length": "仅允许8-20个字符的密码", } } } def validate_mobile(self, value): """验证手机号码""" if not re.match(r"1[1-9]\d{9}", value): raise serializers.ValidationError("手机号码格式错误") return value def validate_allow(self, value): if value != 'true': raise serializers.ValidationError('请同意用户协议') return value def validate(self, attrs): # 判断两次密码 if attrs['password'] != attrs['password2']: raise serializers.ValidationError('两次密码不一致') return attrs def create(self, validate_data): """创建用户""" # 移除数据库模型中不存在的属性 del validate_data['password2'] del validate_data['allow'] user = super(CreateUserSerializer, self).create(validate_data) # 调用Django的认证系统加密密码 user.set_password(validate_data["password"]) user.save() # 生成token from rest_framework_jwt.settings import api_settings jwt_payload_handler = api_settings.JWT_PAYLOAD_HANDLER jwt_encode_handler = api_settings.JWT_ENCODE_HANDLER payload = jwt_payload_handler(user) token = jwt_encode_handler(payload) user.token = token return user
2.609375
3
mmdetection2.11-ShipRSImageNet/configs/ShipRSImageNet/_base_/datasets/ShipRSImageNet_Level2_detection.py
zzndream/ShipRSImageNet
7
12775056
<reponame>zzndream/ShipRSImageNet dataset_type = 'ShipRSImageNet_Level2' # data_root = 'data/Ship_ImageNet/' data_root = './data/ShipRSImageNet/' CLASSES = ('Other Ship', 'Other Warship', 'Submarine', 'Aircraft Carrier', 'Cruiser', 'Destroyer', 'Frigate', 'Patrol', 'Landing', 'Commander', 'Auxiliary Ships', 'Other Merchant', 'Container Ship', 'RoRo', 'Cargo', 'Barge', 'Tugboat', 'Ferry', 'Yacht', 'Sailboat', 'Fishing Vessel', 'Oil Tanker', 'Hovercraft', 'Motorboat', 'Dock',) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=2, train=dict( type=dataset_type, classes=CLASSES, ann_file=data_root + 'COCO_Format/ShipRSImageNet_bbox_train_level_2.json', img_prefix=data_root + 'VOC_Format/JPEGImages/', pipeline=train_pipeline), val=dict( type=dataset_type, classes=CLASSES, ann_file=data_root + 'COCO_Format/ShipRSImageNet_bbox_val_level_2.json', img_prefix=data_root + 'VOC_Format/JPEGImages/', pipeline=test_pipeline), test=dict( type=dataset_type, classes=CLASSES, ann_file=data_root + 'COCO_Format/ShipRSImageNet_bbox_val_level_2.json', img_prefix=data_root + 'VOC_Format/JPEGImages/', pipeline=test_pipeline)) evaluation = dict(interval=10, metric='bbox')
1.757813
2
pages/MainPage.py
yadavdeepa365/HUDL_PYTHON
0
12775057
<reponame>yadavdeepa365/HUDL_PYTHON from selenium.webdriver.common.keys import Keys from pages.BasePage import BasePage from pages.LoginPage import LoginPage #from pages.MainPage import MainPage from utils.locators import * # Page objects are written in this module. # Depends on this Main page functionality we can have more functions for new classes, Currently I have only included below 2 functions for the test purpose class MainPage(BasePage): def __init__(self, driver): self.locator = MainPageLocators super().__init__(driver) # Python3 version def check_page_loaded(self): return True if self.find_element(*self.locator.MAINCONTENT) else False def click_sign_in_button(self): self.find_element(*self.locator.LOGIN_BUTTON).click() return LoginPage(self.driver)
2.578125
3
models/imagenet/arch/tests/test_utils_fuse_utils.py
a1004123217/pytorch-mobile
0
12775058
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import numpy as np import torch import mobile_cv.arch.fbnet_v2.basic_blocks as bb import mobile_cv.arch.fbnet_v2.fbnet_builder as fbnet_builder import mobile_cv.arch.utils.fuse_utils as fuse_utils def run_and_compare(model_before, model_after, input_size): inputs = torch.zeros(input_size, requires_grad=False) output_before = model_before(inputs) output_after = model_after(inputs) np.testing.assert_allclose( output_before.detach(), output_after.detach(), rtol=0, atol=1e-4 ) def _build_model(arch_def, dim_in): arch_def = fbnet_builder.unify_arch_def(arch_def, ["blocks"]) torch.manual_seed(0) builder = fbnet_builder.FBNetBuilder(1.0) model = builder.build_blocks(arch_def["blocks"], dim_in=dim_in) model.eval() return model def _find_modules(model, module_to_check): for x in model.modules(): if isinstance(x, module_to_check): return True return False class TestUtilsFuseUtils(unittest.TestCase): def test_fuse_convbnrelu(self): cbr = bb.ConvBNRelu( 3, 6, kernel_size=3, padding=1, bn_args="bn", relu_args="relu" ).eval() fused = fuse_utils.fuse_convbnrelu(cbr, inplace=False) self.assertTrue(_find_modules(cbr, torch.nn.BatchNorm2d)) self.assertFalse(_find_modules(fused, torch.nn.BatchNorm2d)) input_size = [2, 3, 7, 7] run_and_compare(cbr, fused, input_size) def test_fuse_convbnrelu_inplace(self): cbr = bb.ConvBNRelu( 3, 6, kernel_size=3, padding=1, bn_args="bn", relu_args="relu" ).eval() fused = fuse_utils.fuse_convbnrelu(cbr, inplace=True) self.assertFalse(_find_modules(cbr, torch.nn.BatchNorm2d)) self.assertFalse(_find_modules(fused, torch.nn.BatchNorm2d)) input_size = [2, 3, 7, 7] run_and_compare(cbr, fused, input_size) def test_fuse_model(self): e6 = {"expansion": 6} dw_skip_bnrelu = {"dw_skip_bnrelu": True} bn_args = {"bn_args": {"name": "bn", "momentum": 0.003}} arch_def = { "blocks": [ # [c, s, n, ...] # stage 0 [("conv_k3", 4, 2, 1, bn_args)], # stage 1 [ ("ir_k3", 8, 2, 2, e6, dw_skip_bnrelu, bn_args), ("ir_k5_sehsig", 8, 1, 1, e6, bn_args), ], ] } model = _build_model(arch_def, dim_in=3) fused_model = fuse_utils.fuse_model(model, inplace=False) print(model) print(fused_model) self.assertTrue(_find_modules(model, torch.nn.BatchNorm2d)) self.assertFalse(_find_modules(fused_model, torch.nn.BatchNorm2d)) input_size = [2, 3, 8, 8] run_and_compare(model, fused_model, input_size) def test_fuse_model_inplace(self): e6 = {"expansion": 6} dw_skip_bnrelu = {"dw_skip_bnrelu": True} bn_args = {"bn_args": {"name": "bn", "momentum": 0.003}} arch_def = { "blocks": [ # [c, s, n, ...] # stage 0 [("conv_k3", 4, 2, 1, bn_args)], # stage 1 [ ("ir_k3", 8, 2, 2, e6, dw_skip_bnrelu, bn_args), ("ir_k5_sehsig", 8, 1, 1, e6, bn_args), ], ] } model = _build_model(arch_def, dim_in=3) fused_model = fuse_utils.fuse_model(model, inplace=True) print(model) print(fused_model) self.assertFalse(_find_modules(model, torch.nn.BatchNorm2d)) self.assertFalse(_find_modules(fused_model, torch.nn.BatchNorm2d)) input_size = [2, 3, 8, 8] run_and_compare(model, fused_model, input_size) def test_fuse_model_swish(self): e6 = {"expansion": 6} dw_skip_bnrelu = {"dw_skip_bnrelu": True} bn_args = {"bn_args": {"name": "bn", "momentum": 0.003}} arch_def = { "blocks": [ # [c, s, n, ...] # stage 0 [("conv_k3", 4, 2, 1, bn_args, {"relu_args": "swish"})], # stage 1 [ ("ir_k3", 8, 2, 2, e6, dw_skip_bnrelu, bn_args), ("ir_k5_sehsig", 8, 1, 1, e6, bn_args), ], ] } model = _build_model(arch_def, dim_in=3) fused_model = fuse_utils.fuse_model(model, inplace=False) print(model) print(fused_model) self.assertTrue(_find_modules(model, torch.nn.BatchNorm2d)) self.assertFalse(_find_modules(fused_model, torch.nn.BatchNorm2d)) self.assertTrue(_find_modules(fused_model, bb.Swish)) input_size = [2, 3, 8, 8] run_and_compare(model, fused_model, input_size)
2.21875
2
django/BankAccount/BankAccount/settings_prod.py
akrysmalski/BankAccount
0
12775059
<reponame>akrysmalski/BankAccount import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = os.environ['DJANGO_SECRET'] DEBUG = False ALLOWED_HOSTS = ['localhost', '127.0.0.1'] SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') X_FRAME_OPTIONS = 'DENY' CSRF_COOKIE_SECURE = True SECURE_CONTENT_TYPE_NOSNIFF = True SECURE_BROWSER_XSS_FILTER = True SESSION_COOKIE_SECURE = True SECURE_SSL_REDIRECT = True SECURE_HSTS_SECONDS = 60 LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'file': { 'level': 'INFO', 'class': 'logging.FileHandler', 'filename': '/var/log/django/django.log' } }, 'loggers': { 'django': { 'handlers': ['file'], 'level': 'INFO', 'propagate': True } } } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'bank_account', 'USER': 'bank_account', 'PASSWORD': os.environ['DB_PASSWORD'], 'HOST': 'postgresql', 'PORT': '5432' } } STATIC_ROOT = '/var/lib/django/static' MEDIA_ROOT = '/var/lib/django/media'
1.929688
2
saved_models/Nb3d/nb_oxide_analysis.py
cassberk/xps_peakfit
1
12775060
<filename>saved_models/Nb3d/nb_oxide_analysis.py import numpy as np import matplotlib.pyplot as plt from copy import deepcopy as dc import lmfit as lm import XPyS import XPyS.config as cfg """ Series of funcitons for analyzing thicknesses of the different oxides for NbOxides """ def transfer_func(depth,depth_bins,EAL,angle): trans = np.ones([4,depth_bins]) # trans = np.ones(depth_bins) # iter = 0 # for angle in np.arange(0,70,10): for thick in range(depth_bins): trans[:,thick] = np.exp( -(depth/depth_bins) /(EAL*np.cos(angle*(np.pi/180))))**thick # iter+=1 return trans # def oxide_concentration(x,Nb2O5_T,NbO_T,NbO2_T): def oxide_concentration(x,pars): parsval = pars.valuesdict() NbO_T = parsval['NbO_T'] NbO2_T = parsval['NbO2_T'] Nb2O5_T = parsval['Nb2O5_T'] ox_c = np.ones([4,len(x)]) """Nb2O5""" ox_c[0,:] = 0.46*(np.ones(len(x))- np.heaviside(x - Nb2O5_T,1 )) """NbO2""" ox_c[1,:] = 0.51*(np.heaviside(x - Nb2O5_T,1) - np.heaviside(x-(Nb2O5_T + NbO2_T),1)) """NbO""" # ox_c[2,:] = np.heaviside(x-(thickness - NbO_T),1) ox_c[2,:] = 0.73*(np.heaviside(x - (Nb2O5_T + NbO2_T),1) - np.heaviside(x-(Nb2O5_T + NbO2_T + NbO_T),1) ) """Nb""" ox_c[3,:] = np.heaviside(x-(Nb2O5_T + NbO2_T + NbO_T),1) return ox_c def thickness_residual(pars,x,data,error,transfer,EAL,obj_fun = 'Chi', split=False): # parsval = pars.valuesdict() # NbO_T = parsval['NbO_T'] # NbO2_T = parsval['NbO2_T'] # Nb2O5_T = parsval['Nb2O5_T'] # calc_c = np.sum(transfer_func(thickness,len(x),EAL,0) * oxide_concentration(x,thickness,NbO_T,NbO2_T),axis = 1)/\ # np.sum(transfer_func(thickness,len(x),EAL,0)*oxide_concentration(x,thickness,NbO_T,NbO2_T) ) # calc_c = np.sum(transfer_func(np.max(x),len(x),EAL,0) * oxide_concentration(x,pars),axis = 1)/\ # np.sum(transfer_func(np.max(x),len(x),EAL,0)*oxide_concentration(x,pars )) calc_c = np.sum(transfer * oxide_concentration(x,pars),axis = 1)/\ np.sum(transfer*oxide_concentration(x,pars )) err_adj = np.empty(len(error.keys())) err_adj[0] = error['Nb2O5_52_'] err_adj[1] = error['NbO2_52_'] err_adj[2] = error['NbO_52_'] err_adj[3] = error['Nb_52_'] err_adj = np.where(np.isnan(err_adj), 1, err_adj) if split==True: return calc_c if obj_fun == 'Chi' : return (calc_c - data)/err_adj if obj_fun =='S': return calc_c - data # return calc_c - data def calc_oxide_thickness(sample,oxides=None,substrate=None,S_oxide=None,S_substrate=None,\ EAL=None,pars=None, fitting_alg = 'powell',obj_fun = 'S',specific_points = None,colors = None,fit_flag = True,\ plotflag = True): if pars is None: pars = lm.Parameters() pars.add('NbO_T',value = 1,min = 0,vary = 1) pars.add('NbO2_T',value = 1,min = 0, vary = 1) pars.add('Nb2O5_T',value = 4,min = 0, vary = 1) if oxides is None: oxides = ['NbO_52_','NbO2_52_','Nb2O5_52_'] if substrate is None: substrate = 'Nb_52_' if S_oxide is None: S_oxide = 10583 if S_substrate is None: S_substrate = 22917 if EAL is None: EAL = 1.7 if specific_points == None: # if hasattr(sample,'fit_results_idx'): pts = [j for j,x in enumerate(sample.fit_results) if x] # else: # pts = [j for j,x in enumerate(sample.params_full) if x] else: pts = dc(specific_points) print(pts) """Fit the thicknesses of NbOxides""" if fit_flag ==True: # areas = np.empty([len(sample.pairlist),len(pts)]) sample.fit_component = {key: np.empty(len(pts)) for key in [sample.pairlist[i][0] for i in range(len(sample.pairlist))]} sample.oxide_thickness = {key: np.empty(len(pts)) for key in oxides} sample.oxide_thickness_err = {key: np.empty(len(pts)) for key in oxides} sample.thickness =np.empty(len(pts)) oxide_thick_fit_result = [[] for i in range(len(pts))] iter=0 for k in enumerate(pts): for pairs in sample.pairlist: # if hasattr(sample,'fit_results_idx'): sample.fit_component[pairs[0]][k[0]] = sum( [sample.fit_results[k[1]].params[pairs[i] + 'amplitude'].value for i in range(len(pairs))] ) # else: # sample.fit_component[pairs[0]][k[0]] = sum( [sample.params_full[k[1]][pairs[i] + 'amplitude'].value for i in range(len(pairs))] ) sample.thickness[k[0]] = np.mean( EAL*np.log( 1 + S_substrate*sum([sample.fit_component[ox][k[0]] for ox in oxides])/(S_oxide*sample.fit_component[substrate][k[0]]) ) ) ex_c = np.empty(4) ex_c[0] = sample.fit_component['Nb2O5_52_'][k[0]] ex_c[1] = sample.fit_component['NbO2_52_'][k[0]] ex_c[2] = sample.fit_component['NbO_52_'][k[0]] ex_c[3] = sample.fit_component['Nb_52_'][k[0]] ex_c = ex_c/np.sum(ex_c) x = np.linspace(0,10,10001) # if hasattr(sample,'fit_results_idx'): err = {key[0]: sample.fit_results[k[0]].params[key[0] + 'amplitude'].stderr for key in sample.pairlist} # else: # err = {key[0]: sample.params_full[k[0]][key[0] + 'amplitude'].stderr for key in sample.pairlist} tran = transfer_func(np.max(x),len(x),EAL,0) fitter = lm.Minimizer(thickness_residual, pars,fcn_args=(x,),fcn_kws={'data': ex_c,'error':err,\ 'transfer': tran, 'EAL':EAL,'obj_fun':obj_fun}) result = fitter.minimize(method = fitting_alg) # sample.oxide_thick_fit_result[k[0]] = dc(result) sample.oxide_thickness['Nb2O5_52_'][k[0]] = result.params['Nb2O5_T'].value sample.oxide_thickness['NbO2_52_'][k[0]] = result.params['NbO2_T'].value sample.oxide_thickness['NbO_52_'][k[0]] = result.params['NbO_T'].value sample.oxide_thickness_err['Nb2O5_52_'][k[0]] = result.params['Nb2O5_T'].stderr sample.oxide_thickness_err['NbO2_52_'][k[0]] = result.params['NbO2_T'].stderr sample.oxide_thickness_err['NbO_52_'][k[0]] = result.params['NbO_T'].stderr # print(result.params['Nb2O5_T'].value) # print(result.params['Nb2O5_T'].stderr) """Plot the calculated thicknesses""" if plotflag: if colors is None: hue = cfg.element_color else: hue = colors width = 0.8 fig, ax = plt.subplots(figsize=(15,10)) p = [[] for i in range(len(oxides))] fit_legend = [cfg.element_text[element] for element in oxides] comps_so_far = [] for ox in enumerate(oxides): bottom_iter = sum([sample.oxide_thickness[i] for i in comps_so_far]) p[ox[0]] = ax.bar(np.arange(0,len(pts)),sample.oxide_thickness[ox[1]],width, bottom = bottom_iter, \ yerr = sample.oxide_thickness_err[ox[1]], color = hue[ox[1]],capsize = 5) comps_so_far.append(ox[1]) ax.set_xticks(np.arange(0,len(pts))) if hasattr(sample,'positions'): ax.set_xticklabels(sample.positions,rotation = 90) ax.tick_params(labelsize = 40) ax.set_ylabel('Thickness (nm)',fontsize=40); plt.legend(p,fit_legend,bbox_to_anchor=(0.9, 0.6, 0.0, 0.5),fontsize=20) plt.grid() plt.tight_layout() return fig, ax
2.25
2
scripts/2021-10-10_extract_data_montecarlo.py
wendong-wang/spinning_rafts_sim2
0
12775061
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 28 14:52:17 2020 @author: vimal """ """ This is for the Monte Carlo simulation of the configuration of many rafts The maximum characters per line is set to be 120. """ # import glob import os import sys import shelve import platform import datetime import cv2 as cv import matplotlib.pyplot as plt import numpy as np import pandas as pd import progressbar # from scipy.integrate import RK45 # from scipy.integrate import solve_ivp # from scipy.spatial import Voronoi as scipyVoronoi # import scipy.io from scipy.spatial import distance as scipy_distance parallel_mode = 0 if platform.node() == 'NOTESIT43' and platform.system() == 'Windows': projectDir = "D:\\simulationFolder\\spinning_rafts_sim2" elif platform.node() == 'NOTESIT71' and platform.system() == 'Linux': projectDir = r'/media/wwang/shared/spinning_rafts_simulation/spinning_rafts_sim2' else: projectDir = os.getcwd() if projectDir != os.getcwd(): os.chdir(projectDir) if parallel_mode == 1: import functions_spinning_rafts as fsr else: import scripts.functions_spinning_rafts as fsr scriptDir = os.path.join(projectDir, "scripts") # capSym6Dir = os.path.join(projectDir, '2019-05-13_capillaryForceCalculations-sym6') # capSym4Dir = os.path.join(projectDir, '2019-03-29_capillaryForceCalculations') dataDir = os.path.join(projectDir, 'data') if not os.path.isdir(dataDir): os.mkdir('data') #%% os.chdir(dataDir) resultFoldersFull = next(os.walk(dataDir))[1] resultFoldersFull.sort() resultFolders = resultFoldersFull[266:-2].copy() #%% arenaSize = 1.5e4 # unit: micron R = raftRadius = 1.5e2 # unit: micron numFrames_last = 10000 binSize_NDist = 0.5 # unit: radius binStart_NDist = 2 # unit: radius binEnd_NDist = 50 # unit: radius binEdgesNeighborDistances = list(np.arange(binStart_NDist, binEnd_NDist, binSize_NDist)) + [100] binSize_NAngles = 10 # unit: deg binStart_NAngles = 0 # unit: deg binEnd_NAngles = 360 # unit: deg binEdgesNeighborAngles = list(np.arange(binStart_NAngles, binEnd_NAngles, binSize_NAngles)) + [360] binSize_ODist = 0.5 # unit: radius binStart_ODist = 2 # unit: radius binEnd_ODist = 80 # unit: radius binEdgesOrbitingDistances = list(np.arange(binStart_ODist, binEnd_ODist, binSize_ODist)) + [100] binSize_XY = 2 # unit: radius binEdgesX = list(np.arange(0, arenaSize/R + binSize_XY, binSize_XY)) binEdgesY = list(np.arange(0, arenaSize/R + binSize_XY, binSize_XY)) summaryDataFrameColNames = ['date', 'time', 'spinspeed', 'Numofsteps', 'lastframe', 'Max|psi6|FrameNum', 'Max_|psi6|', 'Last_|psi6|', 'Last_psi6_avg', 'Min_KLD_X', 'Min_KLD_Y', 'Min_KLD_NDist', 'Min_KLD_ODist', 'NumAcceptedProb', 'XYorODist', '|psi6|_avg', '|psi6|_std', ' psi6_avg', 'psi6_std'] dfSummary = pd.DataFrame(columns = summaryDataFrameColNames) Mod_psi6 = np.zeros((len(resultFolders), numFrames_last)) # len(resultFolders) = number of simulations for each spinspeed or target distribution # num of frames to analyze = 10000. change this if needded. psi6_avg = np.zeros((len(resultFolders), numFrames_last)) # this is the average norm and the one above i the norm average. for index, resultFolderID in progressbar.progressbar(enumerate(range(len(resultFolders)))): parts = resultFolders[resultFolderID].split('_') os.chdir(resultFolders[resultFolderID]) numOfRafts = int(parts[2][:-5]) spinSpeed = int(parts[4][:2]) numOfSteps = int(parts[3][10:]) lastFrame = int(parts[7][9:]) date = parts[0] time = parts[1] XYorODist = parts[8] shelfToRead = shelve.open('simulation_{}Rafts_{}rps'.format(numOfRafts, spinSpeed), flag='r') listOfVariablesInShelfToRead = list(shelfToRead.keys()) for key in shelfToRead: globals()[key] = shelfToRead[key] shelfToRead.close() #store distributions in csv file count_NDist_all = np.zeros((len(binEdgesNeighborDistances[:-1]), 4)) # bin edges, frame with highest psi6, last frame, experimental distribution count_X_all = np.zeros((len(binEdgesX[:-1]), 4)) # bin edges, frame with highest psi6, last frame, experimental distribution count_Y_all = np.zeros((len(binEdgesY[:-1]), 4)) # bin edges, frame with highest psi6, last frame, experimental distribution count_ODist_all = np.zeros((len(binEdgesOrbitingDistances[:-1]), 4)) # bin edges, frame with highest psi6, last frame, experimental distribution Frame_max = hexaticOrderParameterModuliiAvgs.argmax() Mod_psi6_max = hexaticOrderParameterModuliiAvgs.max() Mod_psi6_last = hexaticOrderParameterModuliiAvgs[-2] psi6_avg_last = hexaticOrderParameterAvgNorms[-2] Mod_psi6[index,:] = hexaticOrderParameterModuliiAvgs[-numFrames_last:] psi6_avg[index,:] = hexaticOrderParameterAvgNorms[-numFrames_last:] count_NDist_all[:,0] = binEdgesNeighborDistances[:-1] count_NDist_all[:,1] = count_NDist[:,Frame_max] count_NDist_all[:,2] = count_NDist[:,-2] count_NDist_all[:,3] = target['count_NDist'] count_X_all[:,0] = binEdgesX[:-1] count_X_all[:,1] = count_X[:,Frame_max] count_X_all[:,2] = count_X[:,-2] count_X_all[:,3] = target['count_X'] count_Y_all[:,0] = binEdgesY[:-1] count_Y_all[:,1] = count_Y[:,Frame_max] count_Y_all[:,2] = count_Y[:,-2] count_Y_all[:,3] = target['count_Y'] count_ODist_all[:,0] = binEdgesOrbitingDistances[:-1] count_ODist_all[:,1] = count_ODist[:,Frame_max] count_ODist_all[:,2] = count_ODist[:,-2] count_ODist_all[:,3] = target['count_ODist'] count_accepted, _ = np.histogram(np.asarray(acceptedBasedOnProbs), bins=25) dfSummary.loc[resultFolderID, 'date'] = date dfSummary.loc[resultFolderID, 'time'] = time dfSummary.loc[resultFolderID, 'spinspeed'] = spinSpeed dfSummary.loc[resultFolderID, 'Numofsteps'] = numOfSteps dfSummary.loc[resultFolderID, 'lastframe'] = lastFrame dfSummary.loc[resultFolderID, 'Max|psi6|FrameNum'] = Frame_max dfSummary.loc[resultFolderID, 'Max_|psi6|'] = Mod_psi6_max dfSummary.loc[resultFolderID, 'Last_|psi6|'] = Mod_psi6_last dfSummary.loc[resultFolderID, 'Last_psi6_avg'] = psi6_avg_last dfSummary.loc[resultFolderID, 'Min_KLD_X'] = klDiv_X.min() dfSummary.loc[resultFolderID, 'Min_KLD_Y'] = klDiv_Y.min() dfSummary.loc[resultFolderID, 'Min_KLD_NDist'] = klDiv_NDist.min() dfSummary.loc[resultFolderID, 'Min_KLD_ODist'] = klDiv_ODist.min() dfSummary.loc[resultFolderID, 'NumAcceptedProb'] = count_accepted.sum() dfSummary.loc[resultFolderID, 'XYorODist'] = XYorODist np.savetxt("NDist_hist_" + str(numOfRafts) + "Rafts_" + str(spinSpeed) + "rps_" + "LastFrame" + str(ifLastFrameCount) + "_totalAcceptedProbability" + str(count_accepted.sum()), count_NDist_all, delimiter=",") np.savetxt("X_hist_" + str(numOfRafts) + "Rafts_" + str(spinSpeed) + "rps_" + "LastFrame" + str(ifLastFrameCount) + "_totalAcceptedProbability" + str(count_accepted.sum()), count_X_all, delimiter=",") np.savetxt("Y_hist_" + str(numOfRafts) + "Rafts_" + str(spinSpeed) + "rps_" + "LastFrame" + str(ifLastFrameCount) + "_totalAcceptedProbability" + str(count_accepted.sum()), count_Y_all, delimiter=",") np.savetxt("ODist_hist_" + str(numOfRafts) + "Rafts_" + str(spinSpeed) + "rps_" + "LastFrame" + str(ifLastFrameCount) + "_totalAcceptedProbability" + str(count_accepted.sum()), count_ODist_all, delimiter=",") np.savetxt("Mod_psi6" + str(numOfRafts) + "Rafts_" + str(spinSpeed) + "rps_" + "LastFrame" + str(ifLastFrameCount) + "_totalAcceptedProbability" + str(count_accepted.sum()), Mod_psi6, delimiter=",") np.savetxt("psi6_avg" + str(numOfRafts) + "Rafts_" + str(spinSpeed) + "rps_" + "LastFrame" + str(ifLastFrameCount) + "_totalAcceptedProbability" + str(count_accepted.sum()), psi6_avg, delimiter=",") os.chdir(dataDir) Mod_psi6_avg = Mod_psi6.mean() Mod_psi6_std = Mod_psi6.std() psi6_avg_avg = psi6_avg.mean() psi6_avg_std =psi6_avg.std() dfSummary.loc[resultFolderID, '|psi6|_avg'] = Mod_psi6_avg dfSummary.loc[resultFolderID, '|psi6|_std'] = Mod_psi6_std dfSummary.loc[resultFolderID, ' psi6_avg'] = psi6_avg_avg dfSummary.loc[resultFolderID, 'psi6_std'] = psi6_avg_std dfSummaryConverted = dfSummary.infer_objects() dfSummarySorted = dfSummaryConverted.sort_values(by = ['spinspeed', 'date'], ascending = [True, False]) dfSummarySorted.to_csv('MonteCarlo' + '_summary.csv', index = False, columns = summaryDataFrameColNames )
2.09375
2
popupcad_gazebo/__init__.py
popupcad/popupcad
19
12775062
<filename>popupcad_gazebo/__init__.py # -*- coding: utf-8 -*- """ Written by <NAME> and CONTRIBUTORS Email: danaukes<at>asu.edu. Please see LICENSE for full license. """ from . import gazebo_controller #import external modules import PIL import array import lxml import multiprocessing import pygazebo import trollius import collada import stl from . import enhanced_grid from . import gradient from . import image from . import perlin_noise def initialize(program): projectactions =[] projectactions.append({'text': 'Run Simulation', 'kwargs': {'triggered': lambda:gazebo_controller.export(program)}}) projectactions.append({'text': 'Export DAE', 'kwargs': {'triggered': lambda:export_dae(program)}}) projectactions.append({'text': 'Export STL', 'kwargs': {'triggered': lambda:export_stl(program)}}) program.editor.addMenu(projectactions, name='Gazebo') def export_dae(program): editor = program.editor ii, jj = editor.operationeditor.currentIndeces2()[0] output = editor.design.operations[ii].output[jj] output.generic_laminate().toDAE() def export_stl(program): editor = program.editor ii, jj = editor.operationeditor.currentIndeces2()[0] output = editor.design.operations[ii].output[jj] output.generic_laminate().toSTL()
2.125
2
Code/nebulae/nebulae.py
DaveSeidel/QB_Nebulae_V2
40
12775063
# Main Nebulae Source File import sys import os from subprocess import Popen import ctcsound import controlhandler as ch import conductor import ui import fileloader import time import logger import neb_globals cfg_path = "/home/alarm/QB_Nebulae_V2/Code/config/" debug = False debug_controls = False class Nebulae(object): def __init__(self): if neb_globals.remount_fs is False: print("Nebulae is operating in \"Read/Write\" mode.") print("Filesystem will not be remounted during operation.") os.system("/home/alarm/QB_Nebulae_V2/Code/scripts/mountfs.sh rw") print "Nebulae Initializing" self.instr_cfg = cfg_path + "bootinstr.txt" self.orc_handle = conductor.Conductor() # Initialize Audio File Tables and Csound Score/Orchestra #self.currentInstr = "a_granularlooper" self.c = None self.pt = None self.ui = None self.c_handle = None self.led_process = None self.log = logger.NebLogger() # Check the config file for last instr if os.path.isfile(self.instr_cfg) and os.path.getsize(self.instr_cfg) > 0: # Get bank/instr from factory with open(self.instr_cfg, 'rb') as f: print "Reading bootinstr.txt" for line in f: templist = line.strip().split(',') if templist[0] == 'bank': self.new_bank = templist[1] elif templist[0] == 'instr': self.new_instr = templist[1] else: self.new_bank = 'factory' self.new_instr = 'a_granularlooper' self.currentInstr = self.new_instr # Check if file exists, else reset to default instr factory_path = "/home/alarm/QB_Nebulae_V2/Code/instr/" user_path = "/home/alarm/instr/" pd_path = "/home/alarm/pd/" if self.new_bank == 'factory': path = factory_path + self.new_instr + '.instr' elif self.new_bank == 'user': path = user_path + self.new_instr + '.instr' elif self.new_bank == 'puredata': path = pd_path + self.new_instr + '.pd' else: print "bank not recocgnized." print self.new_bank path = 'factory' if os.path.isfile(path) == False: # set to default instr self.new_bank = 'factory' self.new_instr = 'a_granularlooper' self.first_run = True self.last_debug_print = time.time() def start(self, instr, instr_bank): print "Nebulae Starting" if self.currentInstr != self.new_instr: reset_settings_flag = True else: reset_settings_flag = False self.currentInstr = instr if self.c is None: self.c = ctcsound.Csound() self.log.spill_basic_info() floader = fileloader.FileLoader() floader.reload() self.orc_handle.generate_orc(instr, instr_bank) configData = self.orc_handle.getConfigDict() self.c.setOption("-iadc:hw:0,0") self.c.setOption("-odac:hw:0,0") # Set option for Csound if configData.has_key("-B"): self.c.setOption("-B"+str(configData.get("-B")[0])) else: self.c.setOption("-B512") # Liberal Buffer if configData.has_key("-b"): self.c.setOption("-b"+str(configData.get("-b")[0])) self.c.setOption("--realtime") self.c.setOption("-+rtaudio=alsa") # Set option for Csound if debug is True: self.c.setOption("-m7") else: self.c.setOption("-m0") # Set option for Csound self.c.setOption("-d") self.c.compileOrc(self.orc_handle.curOrc) # Compile Orchestra from String self.c.readScore(self.orc_handle.curSco) # Read in Score generated from notes self.c.start() # Start Csound self.c_handle = ch.ControlHandler(self.c, self.orc_handle.numFiles(), configData, self.new_instr, bank=self.new_bank) # Create handler for all csound comm. self.loadUI() self.pt = ctcsound.CsoundPerformanceThread(self.c.csound()) # Create CsoundPerformanceThread self.c_handle.setCsoundPerformanceThread(self.pt) self.pt.play() # Begin Performing the Score in the perforamnce thread self.c_handle.updateAll() # Update all values to ensure their at their initial state. if reset_settings_flag == True: print("Changing Instr File -- Resetting Secondary Settings") self.c_handle.restoreAltToDefault() def run(self): new_instr = None request = False if self.first_run == False: self.c_handle.restoreAltToDefault() while (self.pt.status() == 0): # Run a loop to poll for messages, and handle the UI. self.ui.update() self.c_handle.updateAll() if debug_controls == True: if time.time() - self.last_debug_print > 0.25: self.last_debug_print = time.time() self.c_handle.printAllControls() request = self.ui.getReloadRequest() if request == True: self.cleanup() if request == True: self.first_run = False print "Received Reload Request from UI" print "index of new instr is: " + str(self.c_handle.instr_sel_idx) self.new_instr = self.ui.getNewInstr() print "new instr: " + self.new_instr self.new_bank = self.c_handle.getInstrSelBank() print "new bank: " + self.new_bank self.c.cleanup() self.ui.reload_flag = False # Clear Reload Flag print "Reloading " + self.new_instr + " from " + self.new_bank # Store bank/instr to config self.writeBootInstr() # Get bank/instr from factory if self.new_bank == "puredata": self.start_puredata(self.new_instr) self.run_puredata() else: self.c.reset() self.start(self.new_instr, self.new_bank) self.run() else: print "Run Loop Ending." self.cleanup() print "Goodbye!" sys.exit() def cleanup(self): print "Cleaning Up" self.pt.stop() self.pt.join() def writeBootInstr(self): try: if neb_globals.remount_fs is True: os.system("sh /home/alarm/QB_Nebulae_V2/Code/scripts/mountfs.sh rw") with open(self.instr_cfg, 'w') as f: bankstr = 'bank,'+self.new_bank instrstr = 'instr,'+self.new_instr f.write(bankstr + '\n') f.write(instrstr + '\n') for line in f: templist = line.strip().split(',') if templist[0] == 'bank': self.new_bank = templist[1] elif templist[0] == 'instr': self.new_instr = templist[1] if neb_globals.remount_fs is True: os.system("sh /home/alarm/QB_Nebulae_V2/Code/scripts/mountfs.sh ro") except: "Could not write config file." def start_puredata(self, patch): self.log.spill_basic_info() if self.c is not None: self.c.cleanup() self.c = None self.c_handle = None self.currentInstr = patch self.newInstr = patch floader = fileloader.FileLoader() floader.reload() self.orc_handle.refreshFileHandler() fullPath = "/home/alarm/pd/" + patch + ".pd" #cmd = "pd -rt -nogui -verbose -audiobuf 5".split() if debug == False: cmd = "pd -rt -callback -nogui -audiobuf 5".split() else: cmd = "pd -rt -callback -nogui -verbose -audiobuf 5".split() cmd.append(fullPath) self.pt = Popen(cmd) print 'sleeping' time.sleep(2) self.c_handle = ch.ControlHandler(None, self.orc_handle.numFiles(), None, self.new_instr, bank="puredata") self.c_handle.setCsoundPerformanceThread(None) self.c_handle.enterPureDataMode() self.loadUI() def run_puredata(self): new_instr = None request = False self.c_handle.enterPureDataMode() while(request != True): self.c_handle.updateAll() if debug_controls == True: self.c_handle.printAllControls() self.ui.update() request = self.ui.getReloadRequest() if request == True: print "Received Reload Request from UI" print "index of new instr is: " + str(self.c_handle.instr_sel_idx) self.new_instr = self.ui.getNewInstr() self.new_bank = self.c_handle.getInstrSelBank() self.ui.reload_flag = False # Clear Reload Flag print "Reloading " + self.new_instr + " from " + self.new_bank self.cleanup_puredata() # Store bank/instr to config self.writeBootInstr() if self.new_bank == "puredata": self.start_puredata(self.new_instr) self.run_puredata() else: self.start(self.new_instr, self.new_bank) self.run() else: print "Run Loop Ending." self.cleanup_puredata() print "Goodbye!" sys.exit() def cleanup_puredata(self): self.pt.terminate() self.pt.kill() def loadUI(self): print "Killing LED program" cmd = "sudo pkill -1 -f /home/alarm/QB_Nebulae_V2/Code/nebulae/bootleds.py" os.system(cmd) if self.ui is None: self.ui = ui.UserInterface(self.c_handle) # Create User Interface else: self.ui.controlhandler = self.c_handle self.ui.clearAllLEDs() self.c_handle.setInstrSelBank(self.new_bank) self.ui.setCurrentInstr(self.new_instr) def launch_bootled(self): cmd = "sudo pkill -1 -f /home/alarm/QB_Nebulae_V2/Code/nebulae/bootleds.py" os.system(cmd) print "Launching LED program" fullCmd = "python2 /home/alarm/QB_Nebulae_V2/Code/nebulae/bootleds.py loading" self.led_process = Popen(fullCmd, shell=True) print 'led process created: ' + str(self.led_process) ### NEBULAE ### app = Nebulae() if app.new_bank == "puredata": app.start_puredata(app.new_instr) app.run_puredata() else: app.start(app.new_instr, app.new_bank) app.run()
2.171875
2
tests/test_magic.py
liranbg/nuclio-jupyter
62
12775064
# Copyright 2018 Iguazio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import redirect_stdout from io import StringIO from os import path from conftest import here from nuclio import magic def test_print_handler_code(): fname = path.join(here, "handler.ipynb") io = StringIO() with redirect_stdout(io): magic.print_handler_code(fname) assert 'def handler' in io.getvalue() def test_export(): line = path.join(here, "handler.ipynb") line = line.replace("\\", "/") # handle windows config, code = magic.build(line, None, return_dir=True) assert config.get('spec'), 'export failed, config={}'.format(config)
1.867188
2
code/ch20/20.1.1. 1284.minFlips.py
leetcode-pp/leetcode-pp1
22
12775065
class Solution: def minFlips(self, mat: List[List[int]]) -> int: # 放到 flip 函数外面可以减少计算 mapper = {"0": "1", "1": "0"} def flip(state: List[str], i: int) -> None: state[i] = mapper[state[i]] if i % n != 0: state[i - 1] = mapper[state[i - 1]] if i % n < n - 1: state[i + 1] = mapper[state[i + 1]] if i >= n: state[i - n] = mapper[state[i - n]] if i < (m - 1) * n: state[i + n] = mapper[state[i + n]] m = len(mat) n = len(mat[0]) target = "0" * (m * n) cur = "".join(str(cell) for row in mat for cell in row) queue = [cur] visited = set() steps = 0 while len(queue) > 0: for _ in range(len(queue)): cur = queue.pop(0) if cur == target: return steps if cur in visited: continue visited.add(cur) for i in range(len(cur)): s = list(cur) flip(s, i) queue.append("".join(s)) steps += 1 return -1
3.109375
3
agsconfig/services/parcel_fabric_server_extension.py
DavidWhittingham/agsconfig
1
12775066
<filename>agsconfig/services/parcel_fabric_server_extension.py """This module contains the ParcelFabricServer extension class""" # Python 2/3 compatibility # pylint: disable=wildcard-import,unused-wildcard-import,wrong-import-order,wrong-import-position from __future__ import (absolute_import, division, print_function, unicode_literals) from future.builtins.disabled import * from future.builtins import * from future.standard_library import install_aliases install_aliases() # pylint: enable=wildcard-import,unused-wildcard-import,wrong-import-order,wrong-import-position from .extension_base import ExtensionBase from .._enum import StrEnum as Enum class ParcelFabricServerExtension(ExtensionBase): """ ParcelFabricServer extension properties for ArcGIS services """ class Capability(Enum): assign_features_to_record = "AssignFeaturesToRecord" build = "Build" change_parcel_type = "ChangeParcelType" clip = "Clip" copy_lines_to_parcel_type = "CopyLinesToParcelType" create_seeds = "CreateSeeds" delete_parcels = "DeleteParcels" duplicate_parcels = "DuplicateParcels" merge = "Merge" update_parcel_history = "UpdateParcelHistory" def __init__(self, editor): super().__init__(editor, "ParcelFabricServer")
1.726563
2
setup.py
RockefellerArchiveCenter/rac_es
0
12775067
from setuptools import find_packages, setup with open("README.md", "r") as fh: long_description = fh.read() setup( name='rac_es', version='0.17.4', description="Helpers for Rockefeller Archive Center's Elasticsearch implementation.", long_description=long_description, long_description_content_type="text/markdown", url='http://github.com/RockefellerArchiveCenter/rac_es', author='Rockefeller Archive Center', author_email='<EMAIL>', license='MIT', packages=find_packages(), install_requires=[ 'elasticsearch', 'elasticsearch_dsl', ], test_suite='nose.collector', tests_require=['nose', 'coverage'], zip_safe=False)
1.304688
1
xcube/util/types.py
bcdev/xcube
0
12775068
# The MIT License (MIT) # Copyright (c) 2022 by the xcube development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from typing import Optional, Tuple, Type, TypeVar, Union from xcube.util.assertions import assert_true T = TypeVar('T') ItemType = Union[Type[T], Tuple[Type[T], ...]] Pair = Tuple[T, T] ScalarOrPair = Union[T, Pair] def normalize_scalar_or_pair( value: ScalarOrPair[T], *, item_type: Optional[ItemType[T]] = None, name: Optional[str] = None ) -> Pair: try: assert_true(len(value) <= 2, message=f"{name or 'Value'} must be a scalar or pair of " f"{item_type or 'scalars'}, was '{value}'") x, y = value except TypeError: x, y = value, value if item_type is not None: assert_true(isinstance(x, item_type) and isinstance(y, item_type), message=f"{name or 'Value'} must be a scalar or pair of " f"{item_type}, was '{value}'") return x, y
2.21875
2
cronman/base.py
ryancheley/django-cronman
17
12775069
# -*- coding: utf-8 -*- # vi:si:et:sw=4:sts=4:ts=4 from __future__ import unicode_literals import logging import platform from cronman.monitor import Cronitor, Sentry, Slack from cronman.utils import bool_param, config, ensure_dir, format_exception logger = logging.getLogger("cronman.command") class BaseCronObject(object): """Common base class for CronRemoteManager, CronScheduler, CronSpawner, CronWorker. """ def __init__(self, **kwargs): self.data_dir = kwargs.get("data_dir", config("CRONMAN_DATA_DIR")) self.debug = kwargs.get("debug", bool_param(config("CRONMAN_DEBUG"))) self.cronitor = Cronitor() self.sentry = Sentry() self.slack = Slack() ensure_dir(self.data_dir) self.logger = kwargs.get("logger", logger) def warning(self, exception, silent=False): """Handles exception as warning""" message = format_exception(exception) if not silent: self.logger.warning(message) system_name = platform.node() self.slack.post( "[{host}] {message}".format(host=system_name, message=message) ) return message + "\n" # to be printed on stdout
2.09375
2
app/models/vehicle.py
MTES-MCT/mobilic-api
0
12775070
<gh_stars>0 import graphene from app import db from app.helpers.db import DateTimeStoredAsUTC from app.helpers.graphene_types import BaseSQLAlchemyObjectType from app.models.base import BaseModel class Vehicle(BaseModel): registration_number = db.Column(db.TEXT, nullable=False) alias = db.Column(db.TEXT, nullable=True) company_id = db.Column( db.Integer, db.ForeignKey("company.id"), index=True, nullable=False ) company = db.relationship("Company", backref="vehicles") submitter_id = db.Column( db.Integer, db.ForeignKey("user.id"), index=False, nullable=False ) submitter = db.relationship("User") terminated_at = db.Column(DateTimeStoredAsUTC, nullable=True) __table_args__ = ( db.UniqueConstraint( "company_id", "registration_number", name="unique_registration_numbers_among_company", ), ) @property def name(self): return self.alias or self.registration_number @property def is_terminated(self): return self.terminated_at is not None class VehicleOutput(BaseSQLAlchemyObjectType): class Meta: model = Vehicle name = graphene.Field(graphene.String)
2.296875
2
tests/data/thirdParty/Four/csnFour.py
xplanes/CSnake
4
12775071
# Csnake project configuration import csnCilab from csnAll import three four = csnCilab.CilabModuleProject("Four", "third party") four.pathsManager.useFilePath = "%s/Four/UseFour.cmake" % four.GetBuildFolder() four.pathsManager.configFilePath = "%s/Four/FourConfig.cmake" % four.GetBuildFolder() four.AddProjects([three])
1.46875
1
Chapter14/data_preprocessing.py
andriitugai/Learning-Python-data-structures
202
12775072
import numpy as np import pandas from sklearn.preprocessing import MinMaxScaler, StandardScaler, Binarizer #handle the missing values data = pandas.DataFrame([ [4., 45., 984.], [np.NAN, np.NAN, 5.], [94., 23., 55.], ]) #print original data print(data) #fill the missing values with the constant 0.1 print(data.fillna(0.1)) #fill the missing values with the mean print(data.fillna(data.mean())) #Data normalization data1 = pandas.DataFrame([[ 58., 1., 43.], [ 10., 200., 65.], [ 20. , 75. , 7.]]) #scaling with min-max scaler scaled_values = MinMaxScaler(feature_range=(0,1)) results = scaled_values.fit(data1).transform(data1) print(results) #scaling with the standard scaling stand_scalar = StandardScaler().fit(data1) results = stand_scalar.transform(data1) print(results) #normalization using binarization results = Binarizer(50.0).fit(data1).transform(data1) print(results)
3.359375
3
sentinel_backend/sentinel_backend/repository/MentionRepository.py
szymanskir/Sentinel
0
12775073
<reponame>szymanskir/Sentinel import pandas as pd from datetime import datetime from sentinel_common.db_models import MentionDb, MentionDateIndex from typing import List from . import KeywordRepository _KEYWORD_REPOSITORY = KeywordRepository() class MentionRepository: def get_mentions( self, user: str, since: datetime, until: datetime, keywords: List[str] ): if keywords is None or len(keywords) == 0: keywords = _KEYWORD_REPOSITORY.get_by_user(user) queries = [ MentionDateIndex.query(keyword, MentionDb.origin_date.between(since, until)) for keyword in keywords ] mentions = [] for keyword in queries: for m in keyword: mentions.append(map_mention_to_dto(m)) return pd.DataFrame.from_records(mentions) def map_mention_to_dto(m: MentionDb) -> dict: return { "author": m.author, "origin_date": m.origin_date, "keyword": m.keyword, "id": m.id, "download_date": m.download_date, "text": m.text, "url": m.url, "source": m.source, "sentiment_score": m.sentiment_score, "metadata": m.metadata, }
2.765625
3
socks.py
lik78/Gravy-Reloaded
2
12775074
"""SocksiPy - Python SOCKS module. Version 1.00 Copyright 2006 Dan-Haim. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of Dan Haim nor the names of his contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY <NAME> "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <NAME> OR HIS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMANGE. This module provides a standard socket-like interface for Python for tunneling connections through SOCKS proxies. """ import socket import struct PROXY_TYPE_SOCKS4 = 1 PROXY_TYPE_SOCKS5 = 2 PROXY_TYPE_HTTP = 3 _defaultproxy = None _orgsocket = socket.socket class ProxyError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class GeneralProxyError(ProxyError): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class Socks5AuthError(ProxyError): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class Socks5Error(ProxyError): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class Socks4Error(ProxyError): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class HTTPError(ProxyError): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) _generalerrors = ('success', 'invalid data', 'not connected', 'not available', 'bad proxy type', 'bad input') _socks5errors = ('succeeded', 'general SOCKS server failure', 'connection not allowed by ruleset', 'Network unreachable', 'Host unreachable', 'Connection refused', 'TTL expired', 'Command not supported', 'Address type not supported', 'Unknown error') _socks5autherrors = ('succeeded', 'authentication is required', 'all offered authentication methods were rejected', 'unknown username or invalid password', 'unknown error') _socks4errors = ('request granted', 'request rejected or failed', 'request rejected because SOCKS server cannot connect to identd on the client', 'request rejected because the client program and identd report different user-ids', 'unknown error') def setdefaultproxy(proxytype = None, addr = None, port = None, rdns = True, username = None, password = None): """setdefaultproxy(proxytype, addr[, port[, rdns[, username[, password]]]]) Sets a default proxy which all further socksocket objects will use, unless explicitly changed. """ global _defaultproxy _defaultproxy = (proxytype, addr, port, rdns, username, password) class socksocket(socket.socket): """socksocket([family[, type[, proto]]]) -> socket object Open a SOCKS enabled socket. The parameters are the same as those of the standard socket init. In order for SOCKS to work, you must specify family=AF_INET, type=SOCK_STREAM and proto=0. """ def __init__(self, family = socket.AF_INET, type = socket.SOCK_STREAM, proto = 0, _sock = None): _orgsocket.__init__(self, family, type, proto, _sock) if _defaultproxy != None: self.__proxy = _defaultproxy else: self.__proxy = (None, None, None, None, None, None) self.__proxysockname = None self.__proxypeername = None return def __recvall(self, bytes): """__recvall(bytes) -> data Receive EXACTLY the number of bytes requested from the socket. Blocks until the required number of bytes have been received. """ data = '' while len(data) < bytes: data = data + self.recv(bytes - len(data)) return data def setproxy(self, proxytype = None, addr = None, port = None, rdns = True, username = None, password = <PASSWORD>): """setproxy(proxytype, addr[, port[, rdns[, username[, password]]]]) Sets the proxy to be used. proxytype - The type of the proxy to be used. Three types are supported: PROXY_TYPE_SOCKS4 (including socks4a), PROXY_TYPE_SOCKS5 and PROXY_TYPE_HTTP addr - The address of the server (IP or DNS). port - The port of the server. Defaults to 1080 for SOCKS servers and 8080 for HTTP proxy servers. rdns - Should DNS queries be preformed on the remote side (rather than the local side). The default is True. Note: This has no effect with SOCKS4 servers. username - Username to authenticate with to the server. The default is no authentication. password - Password to authenticate with to the server. Only relevant when username is also provided. """ self.__proxy = (proxytype, addr, port, rdns, username, password) def __negotiatesocks5(self, destaddr, destport): """__negotiatesocks5(self,destaddr,destport) Negotiates a connection through a SOCKS5 server. """ if self.__proxy[4] != None and self.__proxy[5] != None: self.sendall('\x05\x02\x00\x02') else: self.sendall('\x05\x01\x00') chosenauth = self.__recvall(2) if chosenauth[0] != '\x05': self.close() raise GeneralProxyError((1, _generalerrors[1])) if chosenauth[1] == '\x00': pass elif chosenauth[1] == '\x02': self.sendall('\x01' + chr(len(self.__proxy[4])) + self.__proxy[4] + chr(len(self.proxy[5])) + self.__proxy[5]) authstat = self.__recvall(2) if authstat[0] != '\x01': self.close() raise GeneralProxyError((1, _generalerrors[1])) if authstat[1] != '\x00': self.close() raise Socks5AuthError, (3, _socks5autherrors[3]) else: self.close() if chosenauth[1] == '\xff': raise Socks5AuthError((2, _socks5autherrors[2])) else: raise GeneralProxyError((1, _generalerrors[1])) req = '\x05\x01\x00' try: ipaddr = socket.inet_aton(destaddr) req = req + '\x01' + ipaddr except socket.error: if self.__proxy[3] == True: ipaddr = None req = req + '\x03' + chr(len(destaddr)) + destaddr else: ipaddr = socket.inet_aton(socket.gethostbyname(destaddr)) req = req + '\x01' + ipaddr req = req + struct.pack('>H', destport) self.sendall(req) resp = self.__recvall(4) if resp[0] != '\x05': self.close() raise GeneralProxyError((1, _generalerrors[1])) elif resp[1] != '\x00': self.close() if ord(resp[1]) <= 8: raise Socks5Error(ord(resp[1]), _generalerrors[ord(resp[1])]) else: raise Socks5Error(9, _generalerrors[9]) elif resp[3] == '\x01': boundaddr = self.__recvall(4) elif resp[3] == '\x03': resp = resp + self.recv(1) boundaddr = self.__recvall(resp[4]) else: self.close() raise GeneralProxyError((1, _generalerrors[1])) boundport = struct.unpack('>H', self.__recvall(2))[0] self.__proxysockname = (boundaddr, boundport) if ipaddr != None: self.__proxypeername = (socket.inet_ntoa(ipaddr), destport) else: self.__proxypeername = (destaddr, destport) return def getproxysockname(self): """getsockname() -> address info Returns the bound IP address and port number at the proxy. """ return self.__proxysockname def getproxypeername(self): """getproxypeername() -> address info Returns the IP and port number of the proxy. """ return _orgsocket.getpeername(self) def getpeername(self): """getpeername() -> address info Returns the IP address and port number of the destination machine (note: getproxypeername returns the proxy) """ return self.__proxypeername def __negotiatesocks4(self, destaddr, destport): """__negotiatesocks4(self,destaddr,destport) Negotiates a connection through a SOCKS4 server. """ rmtrslv = False try: ipaddr = socket.inet_aton(destaddr) except socket.error: if self.__proxy[3] == True: ipaddr = '\x00\x00\x00\x01' rmtrslv = True else: ipaddr = socket.inet_aton(socket.gethostbyname(destaddr)) req = '\x04\x01' + struct.pack('>H', destport) + ipaddr if self.__proxy[4] != None: req = req + self.__proxy[4] req = req + '\x00' if rmtrslv == True: req = req + destaddr + '\x00' self.sendall(req) resp = self.__recvall(8) if resp[0] != '\x00': self.close() raise GeneralProxyError((1, _generalerrors[1])) if resp[1] != 'Z': self.close() if ord(resp[1]) in (91, 92, 93): self.close() raise Socks4Error((ord(resp[1]), _socks4errors[ord(resp[1]) - 90])) else: raise Socks4Error((94, _socks4errors[4])) self.__proxysockname = (socket.inet_ntoa(resp[4:]), struct.unpack('>H', resp[2:4])[0]) if rmtrslv != None: self.__proxypeername = (socket.inet_ntoa(ipaddr), destport) else: self.__proxypeername = (destaddr, destport) return def __negotiatehttp(self, destaddr, destport): """__negotiatehttp(self,destaddr,destport) Negotiates a connection through an HTTP server. """ if self.__proxy[3] == False: addr = socket.gethostbyname(destaddr) else: addr = destaddr self.sendall('CONNECT ' + addr + ':' + str(destport) + ' HTTP/1.1\r\n' + 'Host: ' + destaddr + '\r\n\r\n') resp = self.recv(1) while resp.find('\r\n\r\n') == -1: resp = resp + self.recv(1) statusline = resp.splitlines()[0].split(' ', 2) if statusline[0] not in ('HTTP/1.0', 'HTTP/1.1'): self.close() raise GeneralProxyError((1, _generalerrors[1])) try: statuscode = int(statusline[1]) except ValueError: self.close() raise GeneralProxyError((1, _generalerrors[1])) if statuscode != 200: self.close() raise HTTPError((statuscode, statusline[2])) self.__proxysockname = ('0.0.0.0', 0) self.__proxypeername = (addr, destport) def connect(self, destpair): """connect(self,despair) Connects to the specified destination through a proxy. destpar - A tuple of the IP/DNS address and the port number. (identical to socket's connect). To select the proxy server use setproxy(). """ if type(destpair) in (list, tuple) == False or len(destpair) < 2 or type(destpair[0]) != str or type(destpair[1]) != int: raise GeneralProxyError((5, _generalerrors[5])) if self.__proxy[0] == PROXY_TYPE_SOCKS5: if self.__proxy[2] != None: portnum = self.__proxy[2] else: portnum = 1080 _orgsocket.connect(self, (self.__proxy[1], portnum)) self.__negotiatesocks5(destpair[0], destpair[1]) elif self.__proxy[0] == PROXY_TYPE_SOCKS4: if self.__proxy[2] != None: portnum = self.__proxy[2] else: portnum = 1080 _orgsocket.connect(self, (self.__proxy[1], portnum)) self.__negotiatesocks4(destpair[0], destpair[1]) elif self.__proxy[0] == PROXY_TYPE_HTTP: if self.__proxy[2] != None: portnum = self.__proxy[2] else: portnum = 8080 _orgsocket.connect(self, (self.__proxy[1], portnum)) self.__negotiatehttp(destpair[0], destpair[1]) elif self.__proxy[0] == None: _orgsocket.connect(self, (destpair[0], destpair[1])) else: raise GeneralProxyError((4, _generalerrors[4])) return
1.921875
2
iron/utilities/explode_bam.py
jason-weirather/Au-public
4
12775075
<reponame>jason-weirather/Au-public #!/usr/bin/python import sys, argparse, re, os from subprocess import Popen, PIPE from SamBasics import is_header from multiprocessing import cpu_count, Pool def main(): parser = argparse.ArgumentParser(description="Break a bam into evenly sized chunks",formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('input',help="name bam file") parser.add_argument('output_base',help="output base name myout will go to myout.1.bam") parser.add_argument('-k',type=int,required=True,help="Number per chunk") parser.add_argument('--threads',type=int,default=cpu_count(),help="Number of threads") parser.add_argument('--name',action='store_true',help="pre-sorted by query name keep queries together") parser.add_argument('-F',help="Add an input flag filter if you are reading from a bam file") args = parser.parse_args() # read header first header = [] cmd = "samtools view -H "+args.input p = Popen(cmd.split(),stdout=PIPE,bufsize=1) inf = p.stdout for line in inf: header.append(line) p.communicate() inf = None cmd = "samtools view "+args.input if args.F: cmd += " -F "+args.F p = Popen(cmd.split(),stdout=PIPE,bufsize=1) rex = re.compile('^(\S+)') buffersize = args.k buffer = [] prev_name = None i = 0 poo = Pool(processes=max(1,args.threads-2)) while True: line = p.stdout.readline() if not line: break if args.name: m = rex.match(line) if prev_name and m.group(1) != prev_name and len(buffer) >= buffersize: i+= 1 poo.apply_async(do_output,args=(buffer[:],header,i,args.output_base)) buffer = [] prev_name = m.group(1) else: if len(buffer) >= buffersize: i+=1 poo.apply_async(do_output,args=(buffer[:],header,i,args.output_base)) buffer = [] buffer.append(line) # Deal with remainder if len(buffer) > 0: i+=1 poo.apply_async(do_output,args=(buffer[:],header,i,args.output_base)) buffer = [] poo.close() poo.join() print i def do_output(buffer,header,i,output_base): of = open(output_base+'.'+str(i)+'.bam','w') cmd = 'samtools view - -Sb' p = Popen(cmd.split(),stdin=PIPE,stdout=of) for e in header: p.stdin.write(e) for e in buffer: p.stdin.write(e) p.communicate() of.close() return if __name__=="__main__": main()
2.421875
2
pytorch-version/train.py
bzantium/EA-LSTM
16
12775076
<gh_stars>10-100 import math import torch import torch.nn as nn import torch.optim as optim from utils import make_cuda from sklearn.metrics import mean_squared_error, mean_absolute_error def train(args, model, data_loader, initial=False): MSELoss = nn.MSELoss(reduction='mean') optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) model.train() num_epochs = args.initial_epochs if initial else args.num_epochs for epoch in range(num_epochs): loss = 0 for step, (features, targets) in enumerate(data_loader): features = make_cuda(features) targets = make_cuda(targets) optimizer.zero_grad() preds = model(features) mse_loss = MSELoss(preds, targets) loss += mse_loss.item() mse_loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() # print step info if (step + 1) % args.log_step == 0: print("Epoch [%.3d/%.3d] Step [%.3d/%.3d]: MSE_loss=%.4f, RMSE_loss=%.4f" % (epoch + 1, num_epochs, step + 1, len(data_loader), loss / args.log_step, math.sqrt(loss / args.log_step))) loss = 0 return model def evaluate(args, model, scaler, data_loader): model.eval() model.lstm.flatten_parameters() all_preds = [] all_targets = [] for features, targets in data_loader: features = make_cuda(features) with torch.no_grad(): preds = model(features) all_preds.append(preds) all_targets.append(targets) all_preds = scaler.inverse_transform(torch.cat(all_preds, dim=0).cpu().numpy().reshape(-1, 1)) all_targets = scaler.inverse_transform(torch.cat(all_targets, dim=0).cpu().numpy().reshape(-1, 1)) mse = mean_squared_error(all_targets, all_preds) rmse = math.sqrt(mse) mae = mean_absolute_error(all_targets, all_preds) print("RMSE = %.4f, MAE = %.4f\n" % (rmse, mae)) return rmse, mae
2.234375
2
nydus/db/backends/redis.py
jusbrasil/nydus
0
12775077
<reponame>jusbrasil/nydus """ nydus.db.backends.redis ~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2011-2012 DISQUS. :license: Apache License 2.0, see LICENSE for more details. """ from __future__ import absolute_import from redis import Redis as RedisClient, StrictRedis from redis import ConnectionError, InvalidResponse from nydus.db.backends import BaseConnection, BasePipeline from nydus.compat import izip class RedisPipeline(BasePipeline): def __init__(self, connection): self.pending = [] self.connection = connection self.pipe = connection.pipeline() def add(self, command): name, args, kwargs = command.get_command() self.pending.append(command) # ensure the command is executed in the pipeline getattr(self.pipe, name)(*args, **kwargs) def execute(self): return dict(izip(self.pending, self.pipe.execute())) class Redis(BaseConnection): # Exceptions that can be retried by this backend retryable_exceptions = frozenset([ConnectionError, InvalidResponse]) supports_pipelines = True def __init__(self, num, host='localhost', port=6379, db=0, timeout=None, password=<PASSWORD>, unix_socket_path=None, identifier=None, strict=True): self.host = host self.port = port self.db = db self.unix_socket_path = unix_socket_path self.timeout = timeout self.strict = strict self.__identifier = identifier self.__password = password super(Redis, self).__init__(num) @property def identifier(self): if self.__identifier is not None: return self.__identifier mapping = vars(self) mapping['klass'] = self.__class__.__name__ return "redis://%(host)s:%(port)s/%(db)s" % mapping def connect(self): if self.strict: cls = StrictRedis else: cls = RedisClient return cls( host=self.host, port=self.port, db=self.db, socket_timeout=self.timeout, password=self.__password, unix_socket_path=self.unix_socket_path) def disconnect(self): self.connection.disconnect() def get_pipeline(self, *args, **kwargs): return RedisPipeline(self)
2.28125
2
pybda/bda_03a_ave.py
OxfordSKA/bda
2
12775078
"""BDA with custom BDA code.""" import os import sys import subprocess if __name__ == "__main__": if len(sys.argv) - 1 < 1: print 'Usage:' print (' $ python bda/bda_03a_ave.py ' '<simulation dir>') sys.exit(1) sim_dir = sys.argv[-1] if not os.path.isdir(sim_dir): print 'ERROR: simulation directory not found!' sys.exit(1) # ------------------------------------------------------------------------- idt_max = 50 max_fact = 1.002 # Maximum amplitude loss factor. fov_radius = 0.9 # Field of view radius for max_fact # ------------------------------------------------------------------------- cmd = 'src/bda' ms = os.path.join(sim_dir, 'vis', 'model.ms') subprocess.call([cmd, ms, '%.5f' % max_fact, '%.3f' % fov_radius, '%i' % idt_max]) print '' print '*' * 60 print '*' * 60 print '*' * 60 print '' cmd = 'src/bda_2' ms = os.path.join(sim_dir, 'vis', 'corrupted.ms') subprocess.call([cmd, ms, '%.5f' % max_fact, '%.3f' % fov_radius, '%i' % idt_max])
2.09375
2
scripts/integration_fail_file.py
Hrovatin/scib
11
12775079
from snakemake.io import load_configfile from pathlib import Path if __name__=='__main__': import argparse parser = argparse.ArgumentParser(description='Create an empty output file for failed integration runs') parser.add_argument('-c', '--config', help='Snakemake config file', required=True) parser.add_argument('-t', '--task', required=True) parser.add_argument('-m', '--method', required=True) parser.add_argument("-v", '--hvgs', help='pre-processed by HVG filtering', action='store_true') parser.add_argument('-s', '--scale', action='store_true', help='pre-processed by scaling') args = parser.parse_args() config = args.config task = args.task hvgs = args.hvgs scale = args.scale method = args.method # Load config file params = load_configfile(config) # Check inputs if method not in params['METHODS']: raise ValueError(f'{method} is not a valid method.\n' f'Please choose one of: {list(params["METHODS"].keys())}') if task not in params['DATA_SCENARIOS']: raise ValueError(f'{task} is not a valid integration task.\n' f'Please choose one of: {list(params["DATA_SCENARIOS"].keys())}') # Get path values folder = params['ROOT'] t_folder = task s_folder = 'scaled' if scale else 'unscaled' h_folder = 'hvg' if hvgs else 'full_feature' r_folder = 'R/' if 'R' in params['METHODS'][method] else '' filename = method+'.h5ad' folder_path = '/'.join([folder,task,'integration',s_folder,h_folder])+'/'+r_folder full_path = folder_path+filename if 'R' in params['METHODS'][method]: filename_r = method+'.RDS' full_path_r = folder_path+filename_r Path(full_path_r).touch() Path(full_path_r+".benchmark").touch() #print(full_path) Path(full_path).touch() Path(full_path+".benchmark").touch()
2.296875
2
mongo/data_generator/models/models.py
svvladimir-ru/ugc_sprint_1
0
12775080
from uuid import UUID, uuid4 from datetime import datetime from typing import Optional from pydantic import BaseModel, Field class BaseCollection(BaseModel): id: Optional[UUID] = Field(alias='_id', default=uuid4()) created_at: Optional[datetime] = datetime.now() collection: Optional[str] def __init__(self, collection: str = None, **kwargs): super().__init__(**kwargs) self.id = uuid4() self.created_at = datetime.now() if collection: self.collection = collection class Likes(BaseCollection): user_id: UUID content_id: UUID value: int collection = "likes" class Reviews(BaseCollection): user_id: UUID movie_id: UUID text: str collection = "reviews" class Bookmarks(BaseCollection): movie_id: UUID user_id: UUID collection = "bookmarks"
2.859375
3
src/m6_your_turtles.py
kaysm/01-IntroductionToPython
0
12775081
""" Your chance to explore Loops and Turtles! Authors: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, their colleagues, and <NAME>. """ ######################################################################## # DONE: 1. # On Line 5 above, replace PUT_YOUR_NAME_HERE with your own name. ######################################################################## ######################################################################## # DONE: 2. # You should have RUN the m5e_loopy_turtles module and READ its code. # (Do so now if you have not already done so.) # # Below this comment, add ANY CODE THAT YOU WANT, as long as: # 1. You construct at least 2 rg.SimpleTurtle objects. # 2. Each rg.SimpleTurtle object draws something # (by moving, using its rg.Pen). ANYTHING is fine! # 3. Each rg.SimpleTurtle moves inside a LOOP. # # Be creative! Strive for way-cool pictures! Abstract pictures rule! # # If you make syntax (notational) errors, no worries -- get help # fixing them at either this session OR at the NEXT session. # # Don't forget to COMMIT-and-PUSH when you are done with this module. # ######################################################################## import rosegraphics as rg window = rg.TurtleWindow() window.tracer(100) blueboi = rg.SimpleTurtle('square') blueboi.pen = rg.Pen('blue', 3) blueboi.speed = 200 for k in range(500): blueboi.left(92) blueboi.forward(k) redboi = rg.SimpleTurtle('square') redboi.pen = rg.Pen('red', 3) redboi.speed = 200 for k in range(500): redboi.right(92) redboi.forward(k) greenboi = rg.SimpleTurtle('square') greenboi.pen = rg.Pen('green', 3) greenboi.speed = 200 greenboi.backward(10) for k in range(500): greenboi.backward(k) greenboi.right(2) greenboi.forward(k) window.close_on_mouse_click()
3.703125
4
canvas/core/model/statements.py
robinsax/canvas
4
12775082
# coding: utf-8 ''' Top-level statement objects. ''' from .ast import deproxy, nodeify from .joins import Join # TODO: Constructor docs. class Statement: '''The top-level AST node type, which must facilitate value collection.''' def write(self): '''Return an SQL, value list tuple of this statement's serialization''' raise NotImplementedError() class CreateStatement(Statement): '''A lazy SQL `CREATE` statement.''' def __init__(self, target): self.target = deproxy(target) def write(self): return ' '.join(( 'CREATE', self.target.object_type, 'IF NOT EXISTS', self.target.describe() )), tuple() class SelectStatement(Statement): '''An SQL `SELECT` statement.''' def __init__(self, target, condition=True, modifiers=tuple(), distinct=False): self.target, self.condition = deproxy(target), nodeify(condition) self.modifiers = modifiers self.distinct = distinct def write(self): name_policy = self.target.name_column if isinstance(self.target, Join) else None values = list() selection = '*' if not isinstance(self.target, Join): selection = self.target.serialize_selection() sql = ' '.join(( 'SELECT', selection, 'FROM', self.target.serialize_source(values), 'WHERE', nodeify(self.condition).serialize(values, name_policy=name_policy), *(modifier.serialize(values) for modifier in self.modifiers) )) return sql, values class InsertStatement(Statement): '''An SQL `INSERT` statement.''' def __init__(self, target, values): ''' ::target The target object reference. ::values A list of value, object-reference-esq tuples. ''' self.target = deproxy(target) self.values = [(nodeify(value[0]), value[1]) for value in values] def write(self): values = list() sql = ' '.join(( 'INSERT INTO', self.target.serialize(values), '(', ', '.join(value[1].name for value in self.values), ') VALUES (', ', '.join(value[0].serialize(values) for value in self.values), ') RETURNING ', self.target.primary_key.serialize() )) return sql, values class DeleteStatement(Statement): '''An SQL 'DELETE FROM' statement.''' def __init__(self, host, condition, cascade): self.host, self.condition = deproxy(host), condition self.cascade = cascade # TODO: Handle cascade options. def write(self): values = list() sql = ' '.join(( 'DELETE FROM', self.host.serialize(values), 'WHERE', self.condition.serialize(values) )) return sql, values class UpdateStatement(Statement): '''An SQL 'UPDATE' statement.''' def __init__(self, target, assignments, condition): self.target, self.condition = deproxy(target), nodeify(condition) self.assignments = ( (deproxy(target), nodeify(value)) for target, value in assignments ) def write(self): values, assignment_expressions = list(), list() for target, value in self.assignments: assignment_expressions.append( ' = '.join((target.name, value.serialize(values))) ) sql = ' '.join(( 'UPDATE', self.target.serialize(), 'SET', ', '.join(assignment_expressions), 'WHERE', self.condition.serialize(values) )) return sql, values
2.546875
3
mmtbx/conformation_dependent_library/cdl_database.py
rimmartin/cctbx_project
0
12775083
from __future__ import division version = "CDL v1.2" cdl_database = { "Gly_nonxpro" : { (-180, -180) : ['B', 14, 120.86, 1.62, -1, -1, 110.42, 1.49, -1, -1, 121.63, 0.95, 114.72, 1.32, 123.61, 1.16, 1.327, 0.0115, 1.4508, 0.0113, -1, -1, 1.5117, 0.0124, 1.2356, 0.0123], (-180, -170) : ['B', 7, 120.56, 1.42, -1, -1, 110.8, 1.41, -1, -1, 121.38, 1.05, 114.98, 1.64, 123.62, 1.15, 1.3269, 0.0101, 1.4489, 0.0121, -1, -1, 1.5118, 0.0114, 1.233, 0.0125], (-180, -160) : ['B', 7, 120.51, 1.22, -1, -1, 111.08, 1.62, -1, -1, 121.08, 1.12, 115.31, 1.79, 123.58, 1.13, 1.326, 0.0105, 1.4483, 0.0135, -1, -1, 1.5101, 0.012, 1.2324, 0.0113], (-180, -150) : ['I', 1379, 121.41, 1.96, -1, -1, 113.18, 2.37, -1, -1, 120.57, 1.74, 116.69, 2.04, 122.7, 1.3, 1.3305, 0.0146, 1.4492, 0.0145, -1, -1, 1.5143, 0.0141, 1.2347, 0.0135], (-180, 160) : ['B', 4, 120.92, 1.3, -1, -1, 110.38, 1.48, -1, -1, 121.49, 0.96, 114.58, 0.86, 123.87, 1.01, 1.3258, 0.0129, 1.4495, 0.0163, -1, -1, 1.513, 0.011, 1.236, 0.011], (-180, 170) : ['B', 10, 121.03, 1.51, -1, -1, 110.18, 1.56, -1, -1, 121.62, 0.98, 114.67, 1.11, 123.67, 1.16, 1.3267, 0.0124, 1.4516, 0.014, -1, -1, 1.512, 0.0121, 1.2358, 0.0115], (-170, -180) : ['B', 13, 120.84, 1.91, -1, -1, 110.55, 1.64, -1, -1, 121.6, 0.97, 114.82, 1.35, 123.55, 1.19, 1.3281, 0.0118, 1.4507, 0.0107, -1, -1, 1.5117, 0.0115, 1.2339, 0.0106], (-170, -170) : ['B', 13, 120.51, 1.63, -1, -1, 111.19, 1.45, -1, -1, 121.41, 0.95, 114.94, 1.39, 123.61, 1.21, 1.3262, 0.0109, 1.4471, 0.0119, -1, -1, 1.5114, 0.0118, 1.2323, 0.0116], (-170, -160) : ['B', 6, 120.57, 1.39, -1, -1, 111.59, 1.63, -1, -1, 121.21, 1.07, 115.11, 1.43, 123.64, 1.37, 1.3244, 0.0119, 1.445, 0.0131, -1, -1, 1.5104, 0.0139, 1.2319, 0.0105], (-170, 160) : ['B', 7, 121.09, 1.46, -1, -1, 110.91, 1.49, -1, -1, 121.29, 1.03, 114.84, 1.06, 123.76, 0.93, 1.3278, 0.0136, 1.4492, 0.0128, -1, -1, 1.5102, 0.01, 1.2358, 0.0112], (-170, 170) : ['B', 14, 121.05, 1.85, -1, -1, 110.56, 1.66, -1, -1, 121.56, 1.07, 114.73, 1.3, 123.66, 1.14, 1.3283, 0.0132, 1.4519, 0.0118, -1, -1, 1.5111, 0.0108, 1.2343, 0.0102], (-160, -180) : ['B', 11, 121.22, 2.05, -1, -1, 110.66, 1.9, -1, -1, 121.61, 1.05, 114.93, 1.52, 123.44, 1.16, 1.33, 0.0122, 1.4491, 0.0107, -1, -1, 1.5125, 0.011, 1.233, 0.0099], (-160, -170) : ['B', 5, 121.15, 1.8, -1, -1, 111.27, 1.67, -1, -1, 121.38, 0.94, 115.03, 1.27, 123.56, 1.24, 1.3274, 0.0117, 1.4439, 0.0119, -1, -1, 1.512, 0.0121, 1.2328, 0.0111], (-160, -160) : ['B', 5, 121.37, 1.56, -1, -1, 111.66, 1.91, -1, -1, 121.33, 1.18, 115.22, 1.15, 123.39, 1.73, 1.3232, 0.0146, 1.4429, 0.0117, -1, -1, 1.5101, 0.0183, 1.2319, 0.0098], (-160, -150) : ['B', 3, 121.83, 1.19, -1, -1, 111.04, 2.37, -1, -1, 121.16, 1.36, 115.69, 1.14, 123.1, 1.76, 1.3197, 0.0157, 1.4496, 0.0091, -1, -1, 1.5103, 0.0221, 1.2331, 0.007], (-160, 150) : ['B', 5, 121.27, 1.32, -1, -1, 110.87, 1.54, -1, -1, 121.06, 0.9, 115.59, 1.26, 123.27, 0.76, 1.3294, 0.013, 1.4497, 0.0094, -1, -1, 1.5089, 0.0092, 1.235, 0.0102], (-160, 160) : ['B', 7, 121.17, 1.66, -1, -1, 111.14, 1.8, -1, -1, 121.37, 1.09, 114.99, 1.39, 123.56, 0.93, 1.3297, 0.0136, 1.4499, 0.0105, -1, -1, 1.5098, 0.0103, 1.2352, 0.0108], (-160, 170) : ['B', 10, 121.22, 2.07, -1, -1, 110.83, 1.91, -1, -1, 121.68, 1.17, 114.77, 1.57, 123.51, 1.15, 1.3307, 0.0138, 1.4511, 0.0105, -1, -1, 1.5112, 0.011, 1.2331, 0.0098], (-150, -180) : ['B', 6, 121.93, 1.87, -1, -1, 110.73, 1.9, -1, -1, 121.46, 1.15, 115.24, 1.59, 123.29, 1.06, 1.3315, 0.0124, 1.4466, 0.0101, -1, -1, 1.5132, 0.0115, 1.2326, 0.0107], (-150, -150) : ['B', 3, 122.42, 1.13, -1, -1, 110.69, 2.05, -1, -1, 120.92, 1.3, 115.88, 1.21, 123.16, 1.31, 1.3233, 0.0166, 1.4527, 0.0086, -1, -1, 1.5109, 0.0197, 1.235, 0.0078], (-150, -140) : ['B', 3, 122.16, 0.77, -1, -1, 111.16, 1.76, -1, -1, 120.54, 1.25, 116.3, 1.35, 123.14, 0.76, 1.3276, 0.0187, 1.4578, 0.0092, -1, -1, 1.5035, 0.0183, 1.2391, 0.0085], (-150, 150) : ['B', 7, 121.38, 1.22, -1, -1, 110.8, 1.71, -1, -1, 121.19, 0.91, 115.53, 1.33, 123.23, 0.81, 1.325, 0.0133, 1.4525, 0.0103, -1, -1, 1.5102, 0.0111, 1.2353, 0.011], (-150, 160) : ['B', 7, 121.26, 1.42, -1, -1, 111.03, 1.87, -1, -1, 121.48, 1.09, 114.93, 1.51, 123.54, 0.92, 1.3301, 0.0132, 1.4504, 0.0109, -1, -1, 1.5126, 0.0108, 1.2355, 0.0122], (-150, 170) : ['B', 7, 121.47, 1.69, -1, -1, 110.97, 1.92, -1, -1, 121.61, 1.19, 114.92, 1.57, 123.45, 1.06, 1.3333, 0.014, 1.4485, 0.01, -1, -1, 1.5128, 0.0109, 1.2332, 0.0124], (-140, -180) : ['B', 3, 122.03, 1.28, -1, -1, 111.12, 1.49, -1, -1, 121.31, 1.09, 114.95, 1.41, 123.73, 0.88, 1.334, 0.0145, 1.4474, 0.0093, -1, -1, 1.5159, 0.0104, 1.2324, 0.0128], (-140, 150) : ['B', 5, 121.46, 0.95, -1, -1, 110.9, 1.53, -1, -1, 121.47, 0.9, 115.09, 1.29, 123.36, 0.89, 1.3251, 0.0119, 1.4507, 0.0106, -1, -1, 1.5127, 0.0103, 1.233, 0.0118], (-140, 160) : ['B', 13, 121.35, 1.03, -1, -1, 110.96, 1.49, -1, -1, 121.63, 1.07, 114.74, 1.48, 123.57, 0.93, 1.332, 0.0131, 1.4469, 0.0108, -1, -1, 1.5152, 0.0093, 1.2335, 0.0136], (-140, 170) : ['B', 8, 121.48, 1.06, -1, -1, 111.1, 1.46, -1, -1, 121.49, 1.15, 114.83, 1.49, 123.65, 0.92, 1.336, 0.0156, 1.4462, 0.0095, -1, -1, 1.5155, 0.0089, 1.2334, 0.0152], (-130, -180) : ['B', 4, 122.17, 0.89, -1, -1, 111.42, 1.42, -1, -1, 121.47, 0.91, 114.56, 1.22, 123.95, 0.77, 1.334, 0.0121, 1.4473, 0.0094, -1, -1, 1.5187, 0.0101, 1.2328, 0.0118], (-130, -150) : ['B', 5, 123.04, 1.89, -1, -1, 111.2, 1.39, -1, -1, 121.72, 0.96, 114.96, 1.34, 123.31, 1.01, 1.3304, 0.0169, 1.4446, 0.0083, -1, -1, 1.5178, 0.0124, 1.233, 0.0192], (-130, -140) : ['B', 3, 122.7, 1.81, -1, -1, 110.77, 1.59, -1, -1, 121.78, 0.91, 115.24, 1.44, 122.97, 1.15, 1.3291, 0.0185, 1.4509, 0.0086, -1, -1, 1.5166, 0.013, 1.2308, 0.019], (-130, 140) : ['B', 3, 121.65, 0.68, -1, -1, 111.46, 1.75, -1, -1, 120.94, 0.78, 115.49, 1.03, 123.49, 0.8, 1.3219, 0.0141, 1.4543, 0.0099, -1, -1, 1.5118, 0.0087, 1.2304, 0.0134], (-130, 150) : ['B', 5, 121.61, 0.77, -1, -1, 111.38, 1.63, -1, -1, 121.57, 0.87, 114.98, 1.14, 123.37, 0.88, 1.3267, 0.0115, 1.4483, 0.0104, -1, -1, 1.5135, 0.0086, 1.2308, 0.0121], (-130, 160) : ['B', 5, 121.58, 0.86, -1, -1, 111.18, 1.54, -1, -1, 121.76, 1.03, 114.75, 1.4, 123.42, 0.91, 1.3335, 0.0122, 1.4438, 0.0102, -1, -1, 1.5161, 0.0082, 1.2312, 0.0138], (-130, 170) : ['B', 5, 121.82, 0.84, -1, -1, 111.14, 1.46, -1, -1, 121.57, 1.07, 114.79, 1.49, 123.6, 0.87, 1.3365, 0.0137, 1.4446, 0.0099, -1, -1, 1.5187, 0.0089, 1.2337, 0.0154], (-120, -180) : ['B', 4, 122.67, 1.1, -1, -1, 112.06, 1.66, -1, -1, 121.88, 1.14, 114.5, 1.19, 123.59, 0.87, 1.3334, 0.0096, 1.4439, 0.0091, -1, -1, 1.5198, 0.0104, 1.2338, 0.012], (-120, 140) : ['B', 3, 122.33, 0.73, -1, -1, 111.04, 1.77, -1, -1, 120.57, 0.95, 115.89, 1.04, 123.48, 0.94, 1.3245, 0.0132, 1.4555, 0.0116, -1, -1, 1.5156, 0.0081, 1.2326, 0.0137], (-120, 150) : ['B', 3, 122.18, 0.69, -1, -1, 111.19, 1.75, -1, -1, 121.11, 0.9, 115.58, 1.07, 123.25, 0.9, 1.3292, 0.0119, 1.4491, 0.0114, -1, -1, 1.5161, 0.0093, 1.2322, 0.0124], (-120, 170) : ['B', 5, 122.47, 0.89, -1, -1, 111.57, 1.74, -1, -1, 121.77, 1.15, 114.9, 1.44, 123.29, 0.87, 1.3361, 0.0101, 1.444, 0.0102, -1, -1, 1.5218, 0.0106, 1.237, 0.015], (-110, -180) : ['B', 5, 122.77, 1.21, -1, -1, 112.64, 1.74, -1, -1, 122.56, 1.65, 114.3, 1.2, 123.12, 1.18, 1.3331, 0.01, 1.4431, 0.0086, -1, -1, 1.5213, 0.0113, 1.2287, 0.0125], (-110, -170) : ['B', 4, 122.69, 1.04, -1, -1, 112.81, 1.38, -1, -1, 122.23, 1.29, 114.65, 0.92, 123.11, 1.07, 1.3332, 0.011, 1.4418, 0.0077, -1, -1, 1.5176, 0.0107, 1.2326, 0.0095], (-110, -160) : ['B', 4, 122.85, 1.21, -1, -1, 112.79, 1.2, -1, -1, 121.93, 1.06, 115.27, 0.76, 122.79, 0.98, 1.3342, 0.0119, 1.4381, 0.0141, -1, -1, 1.5147, 0.0108, 1.2383, 0.0089], (-110, 10) : ['B', 5, 122.3, 1.52, -1, -1, 115.8, 1.74, -1, -1, 119.04, 0.91, 118.95, 1.06, 121.97, 0.95, 1.3324, 0.0106, 1.4485, 0.0132, -1, -1, 1.511, 0.0103, 1.2386, 0.0071], (-110, 130) : ['B', 3, 122.73, 0.93, -1, -1, 110.71, 1.53, -1, -1, 120.75, 0.94, 115.43, 1.18, 123.8, 0.92, 1.3299, 0.0085, 1.4525, 0.014, -1, -1, 1.5201, 0.0073, 1.2326, 0.0128], (-110, 140) : ['B', 8, 122.8, 0.97, -1, -1, 110.71, 1.78, -1, -1, 120.64, 0.98, 115.83, 1.32, 123.49, 1.1, 1.3274, 0.0111, 1.4562, 0.0132, -1, -1, 1.5185, 0.0073, 1.2342, 0.0134], (-110, 150) : ['B', 5, 122.66, 0.98, -1, -1, 111.12, 1.89, -1, -1, 120.94, 0.98, 115.83, 1.37, 123.18, 1.13, 1.3303, 0.0136, 1.4507, 0.0116, -1, -1, 1.5165, 0.0101, 1.2331, 0.0128], (-110, 170) : ['B', 5, 122.69, 1.08, -1, -1, 112.1, 1.82, -1, -1, 122.27, 1.54, 114.61, 1.26, 123.09, 1.11, 1.3335, 0.0111, 1.4439, 0.0093, -1, -1, 1.522, 0.0129, 1.2298, 0.0137], (-100, -180) : ['B', 10, 122.3, 1.03, -1, -1, 112.58, 1.58, -1, -1, 122.52, 1.46, 114.55, 1.16, 122.91, 1.22, 1.334, 0.012, 1.4445, 0.0096, -1, -1, 1.5227, 0.0136, 1.2285, 0.012], (-100, -170) : ['B', 5, 122.43, 0.89, -1, -1, 112.57, 1.37, -1, -1, 122.33, 1.11, 114.8, 1.04, 122.86, 1.06, 1.3332, 0.011, 1.4448, 0.0092, -1, -1, 1.5188, 0.0114, 1.2326, 0.0094], (-100, -160) : ['B', 4, 122.83, 1.21, -1, -1, 112.6, 1.43, -1, -1, 121.9, 1.02, 115.25, 0.98, 122.82, 1.06, 1.3295, 0.0126, 1.4445, 0.0142, -1, -1, 1.5147, 0.0119, 1.2363, 0.0092], (-100, -150) : ['B', 5, 123.29, 1.88, -1, -1, 112.55, 1.44, -1, -1, 121.53, 1.06, 115.61, 1.03, 122.8, 1.35, 1.3253, 0.0127, 1.4471, 0.0189, -1, -1, 1.5135, 0.0113, 1.2368, 0.0102], (-100, -140) : ['B', 4, 123.12, 2.16, -1, -1, 112.13, 1.34, -1, -1, 121.28, 1.01, 115.71, 1.0, 122.92, 1.43, 1.3247, 0.0123, 1.4533, 0.0197, -1, -1, 1.5133, 0.0106, 1.2362, 0.0109], (-100, -90) : ['B', 3, 123.95, 1.5, -1, -1, 110.21, 0.91, -1, -1, 121.36, 0.36, 116.75, 0.67, 121.85, 0.56, 1.3294, 0.0083, 1.4471, 0.0075, -1, -1, 1.5146, 0.0062, 1.2448, 0.0119], (-100, 0) : ['B', 5, 122.66, 2.06, -1, -1, 115.61, 1.74, -1, -1, 119.28, 1.39, 118.41, 1.29, 122.29, 1.26, 1.33, 0.0147, 1.4452, 0.0132, -1, -1, 1.5106, 0.0162, 1.2349, 0.0115], (-100, 10) : ['B', 7, 122.83, 1.8, -1, -1, 115.46, 1.63, -1, -1, 119.1, 1.26, 118.6, 1.16, 122.27, 1.14, 1.3296, 0.0124, 1.4468, 0.0124, -1, -1, 1.5127, 0.0128, 1.2368, 0.0094], (-100, 120) : ['B', 3, 122.29, 0.89, -1, -1, 111.34, 1.97, -1, -1, 120.81, 0.86, 115.82, 1.1, 123.35, 0.63, 1.3322, 0.005, 1.444, 0.0136, -1, -1, 1.5143, 0.0082, 1.233, 0.0135], (-100, 130) : ['B', 7, 122.2, 0.95, -1, -1, 110.95, 1.74, -1, -1, 120.91, 0.87, 115.47, 1.21, 123.61, 0.77, 1.3309, 0.0066, 1.4516, 0.014, -1, -1, 1.5174, 0.007, 1.2332, 0.0119], (-100, 140) : ['B', 7, 122.36, 0.97, -1, -1, 111.25, 1.79, -1, -1, 120.92, 0.91, 115.57, 1.37, 123.48, 1.04, 1.3287, 0.0097, 1.4536, 0.0137, -1, -1, 1.5188, 0.007, 1.2313, 0.0133], (-100, 150) : ['B', 7, 122.38, 1.08, -1, -1, 112.04, 2.02, -1, -1, 121.23, 1.08, 115.52, 1.46, 123.21, 1.2, 1.3287, 0.0139, 1.4487, 0.0118, -1, -1, 1.5175, 0.01, 1.2288, 0.0147], (-100, 160) : ['B', 4, 122.15, 1.17, -1, -1, 112.51, 1.9, -1, -1, 121.58, 1.5, 115.24, 1.4, 123.13, 1.49, 1.3324, 0.0191, 1.4441, 0.0106, -1, -1, 1.5177, 0.0156, 1.2287, 0.0143], (-100, 170) : ['B', 4, 122.16, 1.14, -1, -1, 112.51, 1.71, -1, -1, 122.2, 1.7, 114.74, 1.13, 123.03, 1.46, 1.3333, 0.017, 1.4448, 0.0101, -1, -1, 1.5225, 0.0169, 1.2278, 0.0142], (-90, -180) : ['B', 8, 121.83, 1.18, -1, -1, 112.6, 1.53, -1, -1, 122.36, 1.38, 114.78, 1.16, 122.84, 1.32, 1.3343, 0.0152, 1.4463, 0.0113, -1, -1, 1.5186, 0.0167, 1.2302, 0.0121], (-90, -170) : ['B', 9, 122.27, 0.99, -1, -1, 112.41, 1.5, -1, -1, 122.28, 1.0, 114.81, 1.16, 122.88, 0.95, 1.3317, 0.0129, 1.4463, 0.0106, -1, -1, 1.5168, 0.0133, 1.2324, 0.0091], (-90, -160) : ['B', 11, 122.55, 1.1, -1, -1, 112.55, 1.76, -1, -1, 121.92, 1.05, 115.06, 1.23, 122.96, 0.99, 1.3286, 0.0162, 1.4472, 0.0123, -1, -1, 1.5138, 0.0135, 1.2336, 0.0098], (-90, -150) : ['B', 4, 122.75, 1.28, -1, -1, 112.77, 1.74, -1, -1, 121.64, 1.04, 115.44, 1.28, 122.85, 1.2, 1.326, 0.0163, 1.4496, 0.0143, -1, -1, 1.5122, 0.013, 1.2351, 0.0116], (-90, -10) : ['B', 7, 121.82, 2.3, -1, -1, 115.66, 1.56, -1, -1, 119.59, 1.66, 117.97, 1.62, 122.42, 1.59, 1.3326, 0.0162, 1.4486, 0.0134, -1, -1, 1.5096, 0.0182, 1.2344, 0.0136], (-90, 0) : ['B', 21, 122.46, 2.7, -1, -1, 115.62, 1.71, -1, -1, 119.55, 1.85, 118.24, 1.65, 122.18, 1.51, 1.3299, 0.0161, 1.4458, 0.0137, -1, -1, 1.5098, 0.0167, 1.235, 0.0128], (-90, 10) : ['B', 9, 122.78, 2.61, -1, -1, 115.34, 1.67, -1, -1, 119.34, 1.75, 118.36, 1.46, 122.27, 1.37, 1.3289, 0.015, 1.4461, 0.0133, -1, -1, 1.5121, 0.0137, 1.2355, 0.0111], (-90, 130) : ['B', 5, 121.62, 0.96, -1, -1, 111.31, 1.95, -1, -1, 120.76, 0.81, 115.86, 1.13, 123.35, 0.74, 1.332, 0.0066, 1.4507, 0.0136, -1, -1, 1.5152, 0.0109, 1.2339, 0.0105], (-90, 140) : ['B', 3, 121.57, 0.97, -1, -1, 111.62, 1.77, -1, -1, 121.18, 0.88, 115.43, 1.22, 123.35, 1.0, 1.3307, 0.01, 1.452, 0.0159, -1, -1, 1.5204, 0.0099, 1.2294, 0.0134], (-90, 150) : ['B', 5, 121.45, 1.06, -1, -1, 112.54, 1.79, -1, -1, 121.53, 1.26, 115.32, 1.42, 123.11, 1.41, 1.33, 0.0158, 1.448, 0.0156, -1, -1, 1.5187, 0.0125, 1.2281, 0.0163], (-90, 160) : ['B', 5, 121.13, 1.35, -1, -1, 113.02, 1.59, -1, -1, 121.71, 2.04, 115.17, 1.43, 123.07, 2.05, 1.3342, 0.0254, 1.4448, 0.0133, -1, -1, 1.5183, 0.0201, 1.2294, 0.0164], (-90, 170) : ['B', 9, 121.3, 1.44, -1, -1, 112.89, 1.58, -1, -1, 121.99, 2.06, 114.96, 1.15, 123.02, 1.98, 1.3358, 0.0246, 1.4469, 0.0117, -1, -1, 1.5191, 0.0215, 1.2295, 0.0157], (-80, -180) : ['B', 13, 121.67, 1.43, -1, -1, 112.66, 1.62, -1, -1, 122.51, 1.41, 114.75, 1.26, 122.71, 1.26, 1.3316, 0.0154, 1.4455, 0.013, -1, -1, 1.5165, 0.0175, 1.2309, 0.0117], (-80, -170) : ['B', 11, 121.96, 1.38, -1, -1, 112.31, 1.59, -1, -1, 122.47, 1.08, 114.66, 1.37, 122.81, 0.86, 1.3296, 0.0131, 1.4457, 0.0123, -1, -1, 1.5171, 0.0143, 1.2321, 0.0094], (-80, -160) : ['B', 10, 122.04, 1.44, -1, -1, 112.27, 1.86, -1, -1, 122.03, 1.15, 114.96, 1.49, 122.92, 0.91, 1.3294, 0.0167, 1.4471, 0.0113, -1, -1, 1.515, 0.0127, 1.2336, 0.0099], (-80, -150) : ['B', 3, 122.19, 1.22, -1, -1, 112.64, 1.91, -1, -1, 121.67, 1.08, 115.5, 1.45, 122.77, 1.03, 1.3308, 0.0168, 1.4503, 0.0104, -1, -1, 1.513, 0.0122, 1.2368, 0.0123], (-80, -30) : ['B', 4, 120.34, 1.26, -1, -1, 113.86, 1.5, -1, -1, 120.09, 1.07, 117.55, 1.11, 122.34, 1.15, 1.3351, 0.0119, 1.4517, 0.0125, -1, -1, 1.5124, 0.0127, 1.235, 0.0118], (-80, -20) : ['B', 11, 120.79, 1.75, -1, -1, 114.66, 1.24, -1, -1, 119.45, 1.18, 117.82, 1.24, 122.71, 1.26, 1.3358, 0.0132, 1.4518, 0.0137, -1, -1, 1.5123, 0.0139, 1.2351, 0.0114], (-80, -10) : ['B', 10, 121.34, 2.32, -1, -1, 115.32, 1.31, -1, -1, 119.31, 1.6, 117.98, 1.54, 122.68, 1.41, 1.3329, 0.0157, 1.4505, 0.0157, -1, -1, 1.5119, 0.0167, 1.2347, 0.0123], (-80, 0) : ['B', 19, 122.06, 2.79, -1, -1, 115.73, 1.59, -1, -1, 119.54, 1.94, 118.17, 1.75, 122.26, 1.49, 1.3308, 0.0175, 1.4473, 0.0158, -1, -1, 1.5097, 0.0166, 1.2341, 0.0125], (-80, 10) : ['B', 3, 122.46, 2.9, -1, -1, 115.66, 1.63, -1, -1, 119.54, 1.92, 118.23, 1.65, 122.19, 1.41, 1.3313, 0.0179, 1.4462, 0.0152, -1, -1, 1.5099, 0.014, 1.2336, 0.0114], (-80, 130) : ['B', 4, 120.92, 1.15, -1, -1, 111.15, 1.76, -1, -1, 120.89, 0.92, 116.07, 1.12, 122.99, 0.86, 1.3319, 0.0086, 1.4536, 0.015, -1, -1, 1.5169, 0.0161, 1.2357, 0.0101], (-80, 140) : ['B', 6, 120.71, 1.13, -1, -1, 111.64, 1.57, -1, -1, 121.64, 0.92, 115.33, 1.15, 122.96, 1.02, 1.3313, 0.011, 1.4532, 0.0177, -1, -1, 1.5212, 0.0128, 1.2308, 0.0111], (-80, 150) : ['B', 10, 120.6, 1.01, -1, -1, 112.37, 1.4, -1, -1, 121.94, 1.19, 115.18, 1.36, 122.81, 1.37, 1.3315, 0.0146, 1.4487, 0.0168, -1, -1, 1.5177, 0.0118, 1.2304, 0.0138], (-80, 160) : ['B', 16, 120.64, 1.26, -1, -1, 112.82, 1.38, -1, -1, 122.14, 1.76, 115.01, 1.45, 122.8, 1.84, 1.3335, 0.0214, 1.4451, 0.0139, -1, -1, 1.517, 0.0167, 1.2306, 0.0151], (-80, 170) : ['B', 19, 121.05, 1.54, -1, -1, 112.85, 1.61, -1, -1, 122.27, 1.9, 114.88, 1.31, 122.82, 1.84, 1.3332, 0.0226, 1.4459, 0.013, -1, -1, 1.517, 0.0196, 1.2307, 0.0147], (-70, -180) : ['B', 8, 121.54, 1.43, -1, -1, 112.3, 1.68, -1, -1, 122.75, 1.27, 114.62, 1.38, 122.59, 1.03, 1.3284, 0.0134, 1.4457, 0.0139, -1, -1, 1.5182, 0.0166, 1.2316, 0.0107], (-70, -170) : ['B', 3, 121.48, 1.78, -1, -1, 111.98, 1.63, -1, -1, 122.76, 1.12, 114.4, 1.57, 122.71, 0.78, 1.328, 0.0113, 1.4444, 0.0134, -1, -1, 1.5194, 0.0147, 1.2319, 0.0092], (-70, -50) : ['B', 16, 119.94, 1.09, -1, -1, 112.49, 1.21, -1, -1, 120.9, 1.12, 116.89, 1.06, 122.19, 0.96, 1.3337, 0.0114, 1.4542, 0.0123, -1, -1, 1.5171, 0.0108, 1.2343, 0.0121], (-70, -40) : ['B', 74, 120.0, 1.1, -1, -1, 112.77, 1.28, -1, -1, 120.66, 1.06, 117.13, 1.03, 122.19, 0.97, 1.3339, 0.0121, 1.4534, 0.0124, -1, -1, 1.5166, 0.0114, 1.2342, 0.0119], (-70, -30) : ['B', 35, 120.22, 1.27, -1, -1, 113.37, 1.34, -1, -1, 120.3, 1.1, 117.4, 1.02, 122.28, 1.09, 1.3346, 0.0126, 1.4521, 0.0126, -1, -1, 1.5147, 0.0125, 1.2346, 0.0123], (-70, -20) : ['B', 35, 120.79, 1.78, -1, -1, 114.16, 1.21, -1, -1, 119.5, 1.18, 117.8, 1.11, 122.68, 1.13, 1.3347, 0.012, 1.4519, 0.014, -1, -1, 1.5137, 0.0141, 1.2355, 0.0121], (-70, -10) : ['B', 22, 121.19, 2.23, -1, -1, 114.67, 1.1, -1, -1, 119.01, 1.3, 118.13, 1.3, 122.84, 1.16, 1.3328, 0.0131, 1.4519, 0.0164, -1, -1, 1.514, 0.016, 1.2359, 0.0108], (-70, 0) : ['B', 4, 121.6, 2.51, -1, -1, 115.31, 1.24, -1, -1, 119.15, 1.6, 118.34, 1.54, 122.48, 1.34, 1.3318, 0.0169, 1.4497, 0.0174, -1, -1, 1.512, 0.0166, 1.2346, 0.011], (-70, 120) : ['B', 4, 120.98, 0.9, -1, -1, 110.97, 1.56, -1, -1, 120.3, 0.83, 117.06, 1.08, 122.62, 0.71, 1.3308, 0.0089, 1.4502, 0.0138, -1, -1, 1.516, 0.0163, 1.2427, 0.0093], (-70, 130) : ['B', 4, 120.43, 1.06, -1, -1, 111.03, 1.4, -1, -1, 120.98, 0.94, 116.19, 1.13, 122.77, 0.88, 1.3301, 0.0085, 1.4538, 0.0122, -1, -1, 1.5179, 0.0146, 1.237, 0.0097], (-70, 140) : ['B', 15, 120.31, 1.02, -1, -1, 111.54, 1.36, -1, -1, 121.58, 0.9, 115.51, 1.17, 122.84, 1.03, 1.33, 0.0102, 1.4516, 0.0137, -1, -1, 1.5191, 0.0115, 1.232, 0.0103], (-70, 150) : ['B', 20, 120.34, 0.95, -1, -1, 112.14, 1.29, -1, -1, 121.9, 1.08, 115.27, 1.34, 122.76, 1.27, 1.3304, 0.0126, 1.4487, 0.0139, -1, -1, 1.5168, 0.0096, 1.2312, 0.0133], (-70, 160) : ['B', 23, 120.53, 1.13, -1, -1, 112.54, 1.28, -1, -1, 122.31, 1.34, 114.95, 1.5, 122.69, 1.48, 1.3309, 0.0153, 1.4463, 0.0132, -1, -1, 1.5162, 0.0118, 1.2316, 0.0145], (-70, 170) : ['B', 13, 121.01, 1.42, -1, -1, 112.51, 1.53, -1, -1, 122.62, 1.46, 114.74, 1.51, 122.61, 1.4, 1.329, 0.0167, 1.4467, 0.0136, -1, -1, 1.517, 0.0155, 1.2318, 0.0133], (-60, -50) : ['B', 38, 119.94, 1.11, -1, -1, 112.5, 1.16, -1, -1, 121.0, 1.08, 116.81, 1.0, 122.18, 0.96, 1.3339, 0.0123, 1.4542, 0.0124, -1, -1, 1.5162, 0.0109, 1.2335, 0.0121], (-60, -40) : ['B', 119, 119.98, 1.11, -1, -1, 112.73, 1.2, -1, -1, 120.75, 1.03, 117.04, 0.99, 122.19, 0.96, 1.334, 0.0132, 1.4536, 0.0129, -1, -1, 1.5164, 0.0112, 1.2335, 0.012], (-60, -30) : ['B', 44, 120.14, 1.25, -1, -1, 113.24, 1.31, -1, -1, 120.4, 1.08, 117.34, 1.01, 122.24, 1.06, 1.3344, 0.0142, 1.4524, 0.0134, -1, -1, 1.5152, 0.0122, 1.234, 0.0129], (-60, -20) : ['B', 18, 120.74, 1.72, -1, -1, 113.99, 1.28, -1, -1, 119.65, 1.18, 117.79, 1.12, 122.54, 1.1, 1.3342, 0.0127, 1.4518, 0.0142, -1, -1, 1.5138, 0.014, 1.2357, 0.0135], (-60, -10) : ['B', 9, 121.17, 2.11, -1, -1, 114.4, 1.11, -1, -1, 119.09, 1.2, 118.17, 1.26, 122.73, 1.12, 1.3333, 0.0116, 1.4528, 0.0156, -1, -1, 1.5147, 0.0158, 1.2367, 0.0107], (-60, 140) : ['B', 6, 119.92, 0.96, -1, -1, 111.36, 1.17, -1, -1, 121.41, 0.88, 115.61, 1.15, 122.93, 0.99, 1.3301, 0.0088, 1.4522, 0.0105, -1, -1, 1.5186, 0.0097, 1.2332, 0.0102], (-60, 150) : ['B', 5, 120.1, 0.95, -1, -1, 111.93, 1.15, -1, -1, 121.71, 1.14, 115.32, 1.26, 122.91, 1.23, 1.3308, 0.012, 1.4501, 0.0119, -1, -1, 1.5164, 0.0089, 1.2326, 0.0139], (-60, 160) : ['B', 6, 120.44, 1.09, -1, -1, 112.33, 1.1, -1, -1, 122.24, 1.3, 114.88, 1.47, 122.82, 1.33, 1.3306, 0.0137, 1.4487, 0.0123, -1, -1, 1.5163, 0.0107, 1.2322, 0.015], (-60, 170) : ['B', 3, 121.06, 1.3, -1, -1, 112.25, 1.34, -1, -1, 122.82, 1.29, 114.54, 1.55, 122.6, 1.13, 1.3276, 0.0143, 1.4496, 0.0135, -1, -1, 1.5175, 0.0148, 1.2307, 0.0122], (-50, -50) : ['B', 3, 119.99, 1.13, -1, -1, 112.64, 1.21, -1, -1, 121.05, 1.03, 116.81, 0.99, 122.13, 0.99, 1.3338, 0.0127, 1.4545, 0.0122, -1, -1, 1.5147, 0.0115, 1.2332, 0.0117], (-50, -40) : ['B', 13, 120.03, 1.12, -1, -1, 112.83, 1.22, -1, -1, 120.8, 0.98, 117.02, 0.98, 122.17, 0.97, 1.3335, 0.0143, 1.4536, 0.0133, -1, -1, 1.5152, 0.0118, 1.2333, 0.012], (-50, -30) : ['B', 4, 120.13, 1.26, -1, -1, 113.27, 1.33, -1, -1, 120.45, 1.02, 117.34, 1.04, 122.19, 1.03, 1.3332, 0.0162, 1.4522, 0.0146, -1, -1, 1.5147, 0.0121, 1.2343, 0.0141], (50, -150) : ['B', 3, 120.73, 3.48, -1, -1, 111.78, 1.69, -1, -1, 122.0, 1.57, 115.34, 1.43, 122.6, 1.04, 1.3287, 0.0128, 1.4467, 0.0193, -1, -1, 1.5137, 0.0126, 1.235, 0.0166], (50, -140) : ['B', 13, 120.07, 1.98, -1, -1, 111.73, 1.73, -1, -1, 121.56, 1.25, 115.74, 1.31, 122.67, 1.17, 1.3294, 0.0126, 1.451, 0.0148, -1, -1, 1.5117, 0.0152, 1.2363, 0.0147], (50, -130) : ['B', 13, 120.07, 1.61, -1, -1, 111.34, 1.82, -1, -1, 121.44, 1.26, 116.01, 1.54, 122.52, 1.46, 1.3289, 0.0138, 1.4531, 0.0132, -1, -1, 1.5131, 0.0167, 1.237, 0.0138], (50, 40) : ['B', 3, 120.11, 1.51, -1, -1, 113.48, 1.46, -1, -1, 120.29, 1.3, 117.19, 1.19, 122.51, 0.81, 1.3282, 0.01, 1.4578, 0.0147, -1, -1, 1.511, 0.0102, 1.2378, 0.0113], (60, -170) : ['B', 3, 120.42, 3.34, -1, -1, 112.44, 2.44, -1, -1, 122.74, 1.3, 113.98, 1.54, 123.17, 1.12, 1.3297, 0.0186, 1.4467, 0.0232, -1, -1, 1.5239, 0.0167, 1.2291, 0.0168], (60, -160) : ['B', 8, 120.05, 4.05, -1, -1, 112.01, 2.34, -1, -1, 122.39, 1.34, 114.53, 1.61, 122.96, 1.22, 1.3298, 0.0159, 1.4453, 0.0235, -1, -1, 1.5225, 0.0163, 1.2335, 0.0152], (60, -150) : ['B', 12, 120.44, 3.25, -1, -1, 111.8, 1.82, -1, -1, 122.06, 1.39, 115.26, 1.49, 122.6, 1.07, 1.33, 0.0133, 1.4475, 0.0188, -1, -1, 1.5171, 0.0131, 1.2358, 0.0152], (60, -140) : ['B', 22, 120.07, 1.95, -1, -1, 111.5, 1.74, -1, -1, 121.68, 1.26, 115.66, 1.42, 122.61, 1.13, 1.3302, 0.0131, 1.4519, 0.0152, -1, -1, 1.5144, 0.0135, 1.2362, 0.0134], (60, -130) : ['B', 31, 120.0, 1.63, -1, -1, 111.02, 1.86, -1, -1, 121.51, 1.32, 115.91, 1.62, 122.55, 1.38, 1.3292, 0.0149, 1.4534, 0.0141, -1, -1, 1.5151, 0.0152, 1.2361, 0.0128], (60, -120) : ['B', 5, 120.25, 1.69, -1, -1, 110.77, 1.93, -1, -1, 121.46, 1.38, 116.15, 1.78, 122.36, 1.61, 1.3263, 0.0164, 1.4531, 0.014, -1, -1, 1.5157, 0.0159, 1.2372, 0.0146], (60, 20) : ['B', 5, 120.77, 1.94, -1, -1, 114.61, 1.49, -1, -1, 119.69, 1.27, 117.95, 1.34, 122.31, 1.14, 1.331, 0.013, 1.4501, 0.0144, -1, -1, 1.5099, 0.0146, 1.2337, 0.0143], (60, 30) : ['B', 14, 120.77, 1.74, -1, -1, 114.1, 1.51, -1, -1, 119.8, 1.21, 117.75, 1.26, 122.41, 0.98, 1.3306, 0.0121, 1.4526, 0.0143, -1, -1, 1.5111, 0.0125, 1.2357, 0.0131], (60, 40) : ['B', 9, 120.66, 1.89, -1, -1, 113.76, 1.8, -1, -1, 120.03, 1.2, 117.38, 1.22, 122.57, 0.91, 1.3291, 0.01, 1.4545, 0.0145, -1, -1, 1.5126, 0.0106, 1.2375, 0.0112], (70, -180) : ['B', 7, 121.44, 1.45, -1, -1, 112.22, 1.83, -1, -1, 122.61, 1.28, 114.56, 1.56, 122.77, 0.95, 1.329, 0.0163, 1.4497, 0.0145, -1, -1, 1.5196, 0.015, 1.2301, 0.0158], (70, -170) : ['B', 10, 120.99, 2.31, -1, -1, 112.45, 2.1, -1, -1, 122.58, 1.42, 114.28, 1.56, 123.05, 1.03, 1.3298, 0.0193, 1.4467, 0.0189, -1, -1, 1.5215, 0.0153, 1.2318, 0.0181], (70, -160) : ['B', 15, 120.36, 2.89, -1, -1, 112.17, 2.16, -1, -1, 122.33, 1.32, 114.62, 1.55, 122.95, 1.15, 1.331, 0.0176, 1.4474, 0.0199, -1, -1, 1.5219, 0.0149, 1.2343, 0.0174], (70, -150) : ['B', 12, 120.28, 2.48, -1, -1, 112.02, 1.86, -1, -1, 122.01, 1.19, 115.24, 1.49, 122.67, 1.1, 1.3321, 0.0143, 1.449, 0.0168, -1, -1, 1.5198, 0.0128, 1.2348, 0.0144], (70, -140) : ['B', 5, 120.07, 1.66, -1, -1, 111.47, 1.72, -1, -1, 121.67, 1.24, 115.65, 1.54, 122.62, 1.11, 1.3311, 0.0131, 1.4532, 0.0158, -1, -1, 1.5168, 0.0129, 1.2361, 0.0123], (70, -130) : ['B', 8, 119.98, 1.51, -1, -1, 110.86, 1.84, -1, -1, 121.4, 1.4, 115.98, 1.73, 122.58, 1.25, 1.3284, 0.015, 1.4544, 0.0161, -1, -1, 1.5155, 0.0149, 1.2362, 0.0127], (70, -10) : ['B', 3, 122.16, 1.73, -1, -1, 115.59, 1.32, -1, -1, 118.95, 0.99, 118.79, 1.21, 122.23, 1.19, 1.3328, 0.0137, 1.4469, 0.016, -1, -1, 1.511, 0.0145, 1.2374, 0.0145], (70, 0) : ['B', 12, 121.78, 1.98, -1, -1, 115.47, 1.31, -1, -1, 119.0, 1.12, 118.62, 1.29, 122.34, 1.27, 1.3314, 0.014, 1.4469, 0.0153, -1, -1, 1.5115, 0.0135, 1.2365, 0.0138], (70, 10) : ['B', 40, 121.18, 2.19, -1, -1, 115.3, 1.44, -1, -1, 119.25, 1.28, 118.36, 1.35, 122.35, 1.33, 1.3314, 0.0135, 1.4484, 0.0153, -1, -1, 1.5103, 0.0139, 1.2346, 0.0135], (70, 20) : ['B', 51, 120.8, 1.98, -1, -1, 114.9, 1.54, -1, -1, 119.58, 1.3, 118.04, 1.34, 122.34, 1.22, 1.3311, 0.0129, 1.4487, 0.0144, -1, -1, 1.5101, 0.0145, 1.2335, 0.0145], (70, 30) : ['B', 39, 120.87, 1.79, -1, -1, 114.48, 1.66, -1, -1, 119.72, 1.22, 117.82, 1.28, 122.41, 1.08, 1.3303, 0.0123, 1.4502, 0.0138, -1, -1, 1.5114, 0.014, 1.235, 0.0147], (70, 40) : ['B', 7, 121.06, 2.04, -1, -1, 114.16, 2.0, -1, -1, 119.82, 1.14, 117.61, 1.2, 122.54, 1.02, 1.3286, 0.0109, 1.4526, 0.015, -1, -1, 1.5132, 0.0123, 1.2378, 0.0132], (80, -180) : ['B', 10, 121.45, 1.54, -1, -1, 112.58, 1.8, -1, -1, 122.65, 1.28, 114.62, 1.66, 122.68, 1.07, 1.3309, 0.0175, 1.4474, 0.0136, -1, -1, 1.5166, 0.0158, 1.2323, 0.015], (80, -170) : ['B', 13, 121.32, 1.79, -1, -1, 112.62, 1.87, -1, -1, 122.52, 1.55, 114.51, 1.67, 122.91, 0.95, 1.3292, 0.0195, 1.4457, 0.0173, -1, -1, 1.5175, 0.0135, 1.2347, 0.0169], (80, -160) : ['B', 15, 121.01, 1.86, -1, -1, 112.37, 1.84, -1, -1, 122.28, 1.55, 114.75, 1.6, 122.9, 0.95, 1.33, 0.0181, 1.4476, 0.017, -1, -1, 1.519, 0.0119, 1.2358, 0.0174], (80, -150) : ['B', 6, 120.65, 1.54, -1, -1, 112.22, 1.74, -1, -1, 121.83, 1.26, 115.25, 1.43, 122.86, 0.97, 1.3313, 0.0148, 1.4501, 0.0144, -1, -1, 1.5204, 0.0106, 1.2323, 0.0143], (80, -130) : ['B', 3, 120.42, 1.13, -1, -1, 110.95, 1.7, -1, -1, 120.89, 1.21, 116.16, 1.66, 122.9, 1.17, 1.327, 0.0158, 1.4551, 0.0162, -1, -1, 1.5109, 0.0178, 1.2339, 0.0182], (80, -50) : ['B', 4, 121.34, 2.35, -1, -1, 115.86, 2.77, -1, -1, 120.12, 1.37, 117.53, 1.11, 122.31, 1.16, 1.3257, 0.0141, 1.4626, 0.0201, -1, -1, 1.511, 0.0219, 1.2343, 0.0098], (80, -20) : ['B', 10, 122.28, 1.49, -1, -1, 115.42, 1.27, -1, -1, 119.2, 0.99, 118.52, 1.22, 122.25, 1.25, 1.3335, 0.0141, 1.4458, 0.0153, -1, -1, 1.5121, 0.0141, 1.237, 0.0146], (80, -10) : ['B', 40, 122.09, 1.69, -1, -1, 115.4, 1.32, -1, -1, 119.04, 1.06, 118.65, 1.2, 122.28, 1.29, 1.3328, 0.0143, 1.4463, 0.0158, -1, -1, 1.512, 0.0149, 1.238, 0.0145], (80, 0) : ['B', 72, 121.93, 1.94, -1, -1, 115.36, 1.33, -1, -1, 119.02, 1.11, 118.55, 1.22, 122.39, 1.27, 1.3314, 0.0146, 1.4465, 0.0154, -1, -1, 1.5122, 0.014, 1.2378, 0.0138], (80, 10) : ['B', 79, 121.53, 1.97, -1, -1, 115.3, 1.39, -1, -1, 119.13, 1.22, 118.42, 1.26, 122.41, 1.25, 1.3309, 0.014, 1.4476, 0.0151, -1, -1, 1.5107, 0.0134, 1.2363, 0.013], (80, 20) : ['B', 61, 121.07, 1.79, -1, -1, 115.08, 1.54, -1, -1, 119.44, 1.3, 118.2, 1.27, 122.32, 1.24, 1.3309, 0.0132, 1.4484, 0.0143, -1, -1, 1.5097, 0.0138, 1.2348, 0.0134], (80, 30) : ['B', 15, 120.91, 1.62, -1, -1, 114.76, 1.7, -1, -1, 119.68, 1.25, 117.94, 1.22, 122.33, 1.17, 1.3304, 0.0127, 1.449, 0.0133, -1, -1, 1.5105, 0.0141, 1.2352, 0.0145], (80, 40) : ['B', 3, 121.0, 1.7, -1, -1, 114.46, 1.81, -1, -1, 119.88, 1.17, 117.74, 1.11, 122.34, 1.17, 1.3286, 0.0116, 1.4502, 0.0141, -1, -1, 1.5119, 0.0131, 1.2376, 0.0146], (80, 160) : ['B', 3, 121.87, 1.64, -1, -1, 112.65, 1.3, -1, -1, 122.39, 0.93, 114.88, 1.27, 122.7, 1.06, 1.3263, 0.0132, 1.4457, 0.0126, -1, -1, 1.5191, 0.0101, 1.2303, 0.0129], (80, 170) : ['B', 9, 121.85, 1.24, -1, -1, 112.61, 1.6, -1, -1, 122.59, 1.04, 114.77, 1.47, 122.6, 1.05, 1.3298, 0.0142, 1.4464, 0.0111, -1, -1, 1.5178, 0.0137, 1.2322, 0.0143], (90, -180) : ['B', 7, 121.57, 1.67, -1, -1, 112.83, 1.7, -1, -1, 122.78, 1.2, 114.49, 1.69, 122.68, 1.23, 1.3308, 0.0184, 1.448, 0.0135, -1, -1, 1.5146, 0.0159, 1.2345, 0.013], (90, -170) : ['B', 13, 121.39, 1.72, -1, -1, 112.77, 1.81, -1, -1, 122.71, 1.55, 114.38, 1.7, 122.86, 1.0, 1.3275, 0.018, 1.4473, 0.0168, -1, -1, 1.5144, 0.0131, 1.235, 0.0136], (90, -160) : ['B', 9, 121.42, 1.55, -1, -1, 112.53, 1.76, -1, -1, 122.43, 1.69, 114.64, 1.6, 122.88, 0.83, 1.3273, 0.0157, 1.4484, 0.017, -1, -1, 1.5167, 0.0114, 1.2348, 0.0134], (90, -130) : ['B', 3, 121.31, 0.94, -1, -1, 111.24, 1.49, -1, -1, 120.53, 0.9, 116.23, 1.22, 123.19, 0.98, 1.3264, 0.0153, 1.454, 0.0125, -1, -1, 1.5154, 0.0165, 1.2312, 0.021], (90, -120) : ['B', 3, 121.72, 1.51, -1, -1, 111.35, 1.2, -1, -1, 120.15, 1.41, 116.36, 1.06, 123.41, 0.81, 1.3199, 0.0198, 1.4604, 0.0126, -1, -1, 1.5237, 0.0133, 1.2291, 0.0263], (90, -110) : ['B', 3, 121.71, 1.82, -1, -1, 111.67, 0.92, -1, -1, 120.15, 1.83, 116.19, 1.03, 123.52, 0.74, 1.3233, 0.0217, 1.4643, 0.0112, -1, -1, 1.5305, 0.0104, 1.2271, 0.0259], (90, -50) : ['B', 3, 122.0, 2.13, -1, -1, 115.33, 2.74, -1, -1, 120.36, 1.3, 117.05, 1.3, 122.54, 1.25, 1.3206, 0.0153, 1.4596, 0.0187, -1, -1, 1.5133, 0.0223, 1.2302, 0.0108], (90, -40) : ['B', 4, 122.97, 1.84, -1, -1, 114.74, 2.54, -1, -1, 120.25, 1.43, 117.2, 1.63, 122.5, 0.94, 1.3279, 0.0122, 1.4538, 0.0179, -1, -1, 1.515, 0.0205, 1.2327, 0.0113], (90, -30) : ['B', 5, 122.86, 1.62, -1, -1, 114.67, 1.41, -1, -1, 119.59, 1.11, 117.84, 1.37, 122.52, 1.06, 1.3325, 0.0136, 1.444, 0.0181, -1, -1, 1.5159, 0.0129, 1.2354, 0.0145], (90, -20) : ['B', 24, 122.46, 1.46, -1, -1, 115.08, 1.19, -1, -1, 119.27, 1.04, 118.24, 1.26, 122.46, 1.23, 1.3327, 0.0156, 1.4438, 0.0161, -1, -1, 1.5141, 0.0133, 1.2362, 0.0146], (90, -10) : ['B', 75, 122.2, 1.59, -1, -1, 115.21, 1.3, -1, -1, 119.1, 1.09, 118.46, 1.21, 122.42, 1.31, 1.3326, 0.0157, 1.4455, 0.0153, -1, -1, 1.5131, 0.0145, 1.2379, 0.0145], (90, 0) : ['B', 79, 122.05, 1.81, -1, -1, 115.32, 1.38, -1, -1, 119.06, 1.12, 118.48, 1.17, 122.43, 1.27, 1.3313, 0.0153, 1.4463, 0.015, -1, -1, 1.5125, 0.0144, 1.2379, 0.0142], (90, 10) : ['B', 55, 121.85, 1.76, -1, -1, 115.43, 1.41, -1, -1, 119.06, 1.15, 118.46, 1.15, 122.45, 1.17, 1.3298, 0.0142, 1.447, 0.0153, -1, -1, 1.5111, 0.0137, 1.2369, 0.0131], (90, 20) : ['B', 23, 121.51, 1.52, -1, -1, 115.32, 1.48, -1, -1, 119.19, 1.22, 118.39, 1.18, 122.38, 1.19, 1.3298, 0.0133, 1.4481, 0.0147, -1, -1, 1.5101, 0.0136, 1.2363, 0.0126], (90, 30) : ['B', 4, 121.26, 1.42, -1, -1, 115.08, 1.64, -1, -1, 119.46, 1.18, 118.19, 1.15, 122.3, 1.19, 1.3302, 0.0133, 1.4473, 0.0135, -1, -1, 1.51, 0.0131, 1.2366, 0.0127], (90, 150) : ['B', 3, 120.92, 3.09, -1, -1, 112.48, 1.21, -1, -1, 122.24, 0.87, 115.13, 1.05, 122.56, 1.15, 1.324, 0.0149, 1.4545, 0.0154, -1, -1, 1.5149, 0.0108, 1.2307, 0.0126], (90, 160) : ['B', 8, 121.92, 1.72, -1, -1, 112.68, 1.26, -1, -1, 122.29, 0.81, 114.88, 1.2, 122.78, 1.18, 1.3275, 0.0139, 1.4466, 0.0109, -1, -1, 1.5195, 0.0104, 1.2302, 0.0122], (90, 170) : ['B', 9, 122.06, 1.45, -1, -1, 112.81, 1.48, -1, -1, 122.57, 0.92, 114.69, 1.43, 122.68, 1.15, 1.3298, 0.0149, 1.4462, 0.0108, -1, -1, 1.5184, 0.0135, 1.2333, 0.0124], (100, -180) : ['B', 6, 122.21, 1.67, -1, -1, 112.17, 1.4, -1, -1, 122.56, 1.03, 114.36, 1.63, 123.02, 1.33, 1.3289, 0.0157, 1.4501, 0.0119, -1, -1, 1.5165, 0.0137, 1.235, 0.0105], (100, -170) : ['B', 8, 122.0, 1.7, -1, -1, 112.45, 1.55, -1, -1, 122.59, 1.27, 114.38, 1.45, 122.98, 1.11, 1.3265, 0.0157, 1.4487, 0.0149, -1, -1, 1.5151, 0.0126, 1.2346, 0.0116], (100, -160) : ['B', 5, 122.05, 1.57, -1, -1, 112.84, 1.58, -1, -1, 122.43, 1.39, 114.62, 1.26, 122.9, 0.86, 1.3258, 0.0125, 1.4466, 0.0168, -1, -1, 1.5152, 0.0112, 1.2333, 0.0115], (100, -130) : ['B', 3, 121.86, 0.85, -1, -1, 111.45, 1.23, -1, -1, 120.64, 0.88, 116.25, 0.77, 123.08, 0.65, 1.3248, 0.012, 1.453, 0.0101, -1, -1, 1.523, 0.0119, 1.2305, 0.0168], (100, -30) : ['B', 4, 123.31, 1.57, -1, -1, 114.25, 1.3, -1, -1, 119.55, 1.08, 117.76, 1.36, 122.65, 1.04, 1.3341, 0.0143, 1.4421, 0.0183, -1, -1, 1.5164, 0.0131, 1.2363, 0.0148], (100, -20) : ['B', 20, 122.86, 1.46, -1, -1, 114.69, 1.19, -1, -1, 119.27, 1.07, 118.05, 1.34, 122.65, 1.13, 1.3321, 0.017, 1.4436, 0.016, -1, -1, 1.5148, 0.0132, 1.2366, 0.0149], (100, -10) : ['B', 32, 122.51, 1.57, -1, -1, 114.92, 1.3, -1, -1, 119.07, 1.12, 118.31, 1.32, 122.6, 1.19, 1.3319, 0.0166, 1.4462, 0.0142, -1, -1, 1.5136, 0.0139, 1.2374, 0.0144], (100, 0) : ['B', 27, 122.25, 1.64, -1, -1, 115.27, 1.41, -1, -1, 119.01, 1.11, 118.46, 1.22, 122.5, 1.18, 1.3314, 0.0151, 1.4469, 0.0139, -1, -1, 1.5125, 0.0143, 1.2371, 0.0141], (100, 10) : ['B', 21, 122.1, 1.53, -1, -1, 115.64, 1.46, -1, -1, 118.96, 1.08, 118.51, 1.11, 122.5, 1.11, 1.329, 0.0136, 1.4464, 0.0149, -1, -1, 1.5117, 0.0143, 1.2363, 0.0137], (100, 20) : ['B', 5, 122.0, 1.35, -1, -1, 115.72, 1.51, -1, -1, 118.86, 1.14, 118.55, 1.1, 122.55, 1.12, 1.3274, 0.0126, 1.446, 0.0151, -1, -1, 1.5124, 0.015, 1.2363, 0.0136], (100, 30) : ['B', 3, 122.26, 1.34, -1, -1, 115.67, 1.59, -1, -1, 118.98, 1.06, 118.5, 0.99, 122.47, 1.11, 1.3268, 0.0123, 1.4431, 0.0138, -1, -1, 1.5117, 0.0144, 1.2362, 0.0133], (100, 150) : ['B', 5, 121.6, 2.86, -1, -1, 112.18, 1.34, -1, -1, 121.88, 0.78, 115.53, 1.09, 122.47, 0.93, 1.3222, 0.0143, 1.448, 0.0119, -1, -1, 1.5171, 0.013, 1.2364, 0.0118], (100, 160) : ['B', 5, 122.04, 2.18, -1, -1, 112.29, 1.12, -1, -1, 122.23, 0.69, 115.05, 1.26, 122.64, 1.16, 1.3269, 0.0137, 1.4458, 0.0102, -1, -1, 1.5206, 0.0121, 1.2336, 0.0126], (100, 170) : ['B', 6, 122.43, 1.66, -1, -1, 112.33, 1.21, -1, -1, 122.52, 0.79, 114.55, 1.51, 122.87, 1.24, 1.3279, 0.0129, 1.4473, 0.0099, -1, -1, 1.5194, 0.0127, 1.2337, 0.0112], (110, -180) : ['B', 9, 122.65, 1.62, -1, -1, 111.7, 1.28, -1, -1, 122.26, 0.99, 114.32, 1.46, 123.37, 1.23, 1.326, 0.0152, 1.4493, 0.0108, -1, -1, 1.5195, 0.011, 1.2322, 0.0095], (110, -170) : ['B', 8, 122.66, 1.77, -1, -1, 111.76, 1.43, -1, -1, 122.24, 1.08, 114.63, 1.23, 123.1, 1.05, 1.3246, 0.0174, 1.4479, 0.0135, -1, -1, 1.5182, 0.0113, 1.2342, 0.0117], (110, -160) : ['B', 3, 122.62, 1.7, -1, -1, 112.52, 1.37, -1, -1, 122.25, 0.99, 114.85, 0.95, 122.85, 0.95, 1.3245, 0.0141, 1.4451, 0.0154, -1, -1, 1.5158, 0.011, 1.2342, 0.0129], (110, -30) : ['B', 4, 123.44, 1.19, -1, -1, 113.79, 1.17, -1, -1, 119.56, 0.87, 117.63, 1.17, 122.77, 0.94, 1.3356, 0.013, 1.4475, 0.014, -1, -1, 1.5165, 0.0134, 1.2375, 0.0136], (110, -20) : ['B', 7, 123.08, 1.35, -1, -1, 114.37, 1.26, -1, -1, 119.27, 1.01, 118.14, 1.42, 122.56, 1.08, 1.3319, 0.0157, 1.4468, 0.0139, -1, -1, 1.5134, 0.0144, 1.2383, 0.0147], (110, -10) : ['B', 15, 122.69, 1.59, -1, -1, 114.64, 1.4, -1, -1, 119.03, 1.14, 118.53, 1.55, 122.42, 1.14, 1.331, 0.0154, 1.449, 0.0135, -1, -1, 1.5121, 0.0149, 1.2379, 0.0141], (110, 0) : ['B', 11, 122.4, 1.62, -1, -1, 115.0, 1.44, -1, -1, 118.97, 1.11, 118.69, 1.48, 122.33, 1.17, 1.332, 0.0139, 1.4495, 0.0133, -1, -1, 1.5125, 0.0149, 1.2369, 0.013], (110, 10) : ['B', 4, 122.29, 1.42, -1, -1, 115.63, 1.49, -1, -1, 118.95, 1.0, 118.64, 1.24, 122.38, 1.16, 1.3298, 0.0128, 1.4469, 0.0138, -1, -1, 1.5139, 0.0169, 1.2367, 0.0137], (110, 20) : ['B', 3, 122.63, 1.38, -1, -1, 116.01, 1.64, -1, -1, 118.77, 0.94, 118.67, 0.98, 122.51, 1.04, 1.3244, 0.0133, 1.4427, 0.0147, -1, -1, 1.5194, 0.0234, 1.2378, 0.0169], (110, 140) : ['B', 3, 121.88, 2.93, -1, -1, 111.04, 2.24, -1, -1, 121.31, 1.14, 115.77, 1.13, 122.75, 0.99, 1.3221, 0.012, 1.4529, 0.0138, -1, -1, 1.518, 0.012, 1.2375, 0.0106], (110, 150) : ['B', 5, 121.71, 3.1, -1, -1, 111.72, 1.31, -1, -1, 121.77, 0.86, 115.43, 0.98, 122.64, 0.84, 1.3205, 0.0142, 1.4468, 0.0118, -1, -1, 1.5192, 0.014, 1.2386, 0.0116], (110, 160) : ['B', 8, 122.29, 2.29, -1, -1, 111.95, 0.95, -1, -1, 122.22, 0.65, 114.83, 1.19, 122.87, 1.04, 1.3237, 0.0127, 1.4459, 0.0097, -1, -1, 1.5216, 0.0128, 1.2345, 0.0127], (110, 170) : ['B', 9, 122.69, 1.58, -1, -1, 112.04, 1.02, -1, -1, 122.45, 0.72, 114.29, 1.41, 123.21, 1.19, 1.3244, 0.0112, 1.4478, 0.009, -1, -1, 1.52, 0.0112, 1.2316, 0.0107], (120, -180) : ['B', 3, 122.85, 1.47, -1, -1, 111.85, 1.2, -1, -1, 122.13, 0.89, 114.5, 1.16, 123.35, 0.95, 1.3254, 0.0129, 1.4475, 0.0118, -1, -1, 1.5163, 0.0105, 1.2302, 0.009], (120, -170) : ['B', 6, 123.03, 1.83, -1, -1, 111.52, 1.31, -1, -1, 122.01, 0.97, 114.97, 1.17, 123.0, 0.99, 1.3257, 0.017, 1.4482, 0.0137, -1, -1, 1.5142, 0.0127, 1.2348, 0.0107], (120, -150) : ['B', 3, 122.42, 1.36, -1, -1, 111.56, 1.01, -1, -1, 121.05, 1.22, 115.3, 0.82, 123.56, 1.41, 1.334, 0.0112, 1.4475, 0.0113, -1, -1, 1.5198, 0.0137, 1.2371, 0.007], (120, -140) : ['B', 3, 122.63, 1.03, -1, -1, 111.21, 1.04, -1, -1, 120.89, 1.4, 115.64, 0.79, 123.39, 1.43, 1.3347, 0.0075, 1.4497, 0.011, -1, -1, 1.5223, 0.013, 1.2359, 0.0053], (120, -30) : ['B', 4, 123.3, 1.06, -1, -1, 113.58, 1.07, -1, -1, 119.83, 0.85, 117.4, 0.96, 122.71, 0.8, 1.3351, 0.0098, 1.4533, 0.0106, -1, -1, 1.5163, 0.0098, 1.2354, 0.0118], (120, -20) : ['B', 4, 123.08, 1.12, -1, -1, 114.48, 1.19, -1, -1, 119.37, 1.0, 118.37, 1.46, 122.22, 1.12, 1.3304, 0.0124, 1.451, 0.0129, -1, -1, 1.5137, 0.0129, 1.2396, 0.0133], (120, -10) : ['B', 11, 122.63, 1.41, -1, -1, 114.85, 1.35, -1, -1, 119.04, 1.13, 119.12, 1.89, 121.83, 1.43, 1.3293, 0.0126, 1.4522, 0.0141, -1, -1, 1.5135, 0.0152, 1.2402, 0.0129], (120, 0) : ['B', 5, 122.3, 1.59, -1, -1, 114.95, 1.41, -1, -1, 118.86, 1.07, 119.6, 2.08, 121.53, 1.62, 1.33, 0.0119, 1.4534, 0.0147, -1, -1, 1.5149, 0.0162, 1.2392, 0.0109], (120, 130) : ['B', 3, 120.77, 3.53, -1, -1, 110.68, 2.8, -1, -1, 121.98, 1.3, 115.27, 1.2, 122.55, 1.3, 1.3292, 0.0108, 1.4627, 0.0207, -1, -1, 1.5158, 0.0069, 1.2307, 0.0147], (120, 170) : ['B', 8, 122.63, 1.34, -1, -1, 112.08, 1.01, -1, -1, 122.37, 0.73, 114.13, 1.11, 123.48, 1.0, 1.325, 0.0094, 1.4483, 0.0088, -1, -1, 1.5185, 0.0102, 1.2297, 0.0094], (130, -180) : ['B', 3, 122.92, 1.66, -1, -1, 111.63, 1.15, -1, -1, 122.16, 0.82, 114.75, 0.99, 123.06, 0.95, 1.328, 0.0124, 1.4458, 0.0134, -1, -1, 1.5119, 0.0122, 1.2297, 0.0093], (130, -170) : ['B', 4, 123.46, 2.42, -1, -1, 110.97, 1.42, -1, -1, 121.76, 0.87, 115.48, 1.38, 122.7, 1.52, 1.3304, 0.0191, 1.4445, 0.0138, -1, -1, 1.5099, 0.0169, 1.2356, 0.011], (130, -160) : ['B', 3, 123.12, 2.64, -1, -1, 110.6, 1.46, -1, -1, 121.3, 0.98, 115.47, 1.49, 123.16, 1.81, 1.333, 0.02, 1.444, 0.0119, -1, -1, 1.5116, 0.0169, 1.2362, 0.0102], (130, 150) : ['B', 3, 122.01, 1.64, -1, -1, 111.71, 2.89, -1, -1, 121.66, 0.88, 115.62, 0.76, 122.65, 0.98, 1.3278, 0.0131, 1.4528, 0.0107, -1, -1, 1.5156, 0.0136, 1.2334, 0.0088], (130, 170) : ['B', 6, 122.57, 1.39, -1, -1, 111.85, 1.06, -1, -1, 122.33, 0.81, 114.23, 0.88, 123.43, 0.85, 1.3267, 0.0081, 1.4487, 0.01, -1, -1, 1.516, 0.0106, 1.2293, 0.0082], (140, -170) : ['B', 4, 122.82, 2.01, -1, -1, 110.46, 1.43, -1, -1, 121.55, 1.22, 115.41, 1.45, 122.99, 1.73, 1.3254, 0.02, 1.4437, 0.0123, -1, -1, 1.5118, 0.0158, 1.2301, 0.0125], (140, -160) : ['B', 6, 122.66, 2.13, -1, -1, 110.43, 1.35, -1, -1, 121.12, 1.26, 115.46, 1.65, 123.36, 1.85, 1.326, 0.0183, 1.4437, 0.0132, -1, -1, 1.5121, 0.0157, 1.2298, 0.0128], (140, 150) : ['B', 5, 122.54, 1.35, -1, -1, 111.07, 3.03, -1, -1, 121.91, 1.11, 115.74, 0.73, 122.3, 1.43, 1.3239, 0.0141, 1.4525, 0.0095, -1, -1, 1.5158, 0.0135, 1.232, 0.0119], (140, 160) : ['B', 3, 122.64, 1.46, -1, -1, 111.01, 1.86, -1, -1, 122.14, 1.05, 115.34, 0.84, 122.47, 1.32, 1.3213, 0.0124, 1.451, 0.0091, -1, -1, 1.5163, 0.0126, 1.2312, 0.0121], (150, -180) : ['B', 6, 121.56, 1.42, -1, -1, 110.56, 1.36, -1, -1, 121.86, 1.04, 114.52, 1.09, 123.58, 1.06, 1.3206, 0.013, 1.4493, 0.0098, -1, -1, 1.5146, 0.01, 1.2281, 0.0141], (150, -170) : ['B', 5, 121.83, 1.3, -1, -1, 110.38, 1.42, -1, -1, 121.47, 1.15, 114.82, 1.23, 123.67, 1.38, 1.3224, 0.0155, 1.4464, 0.0112, -1, -1, 1.5152, 0.0118, 1.2277, 0.0136], (150, -160) : ['B', 7, 121.97, 1.65, -1, -1, 110.38, 1.28, -1, -1, 121.02, 1.17, 115.0, 1.55, 123.93, 1.59, 1.3233, 0.0153, 1.4467, 0.0149, -1, -1, 1.5157, 0.0131, 1.227, 0.0143], (150, -150) : ['B', 3, 122.07, 2.3, -1, -1, 110.29, 1.28, -1, -1, 120.79, 0.86, 115.05, 1.65, 124.12, 1.54, 1.3193, 0.0164, 1.4489, 0.0185, -1, -1, 1.5199, 0.0126, 1.2296, 0.0122], (150, -140) : ['B', 3, 122.02, 1.93, -1, -1, 110.2, 1.32, -1, -1, 120.66, 0.46, 115.31, 1.28, 124.0, 1.19, 1.3189, 0.0144, 1.446, 0.02, -1, -1, 1.5239, 0.012, 1.2327, 0.0069], (150, 150) : ['B', 3, 122.56, 1.88, -1, -1, 110.66, 2.18, -1, -1, 122.54, 1.52, 115.34, 0.81, 122.04, 2.02, 1.3188, 0.0134, 1.4504, 0.0116, -1, -1, 1.5168, 0.0152, 1.2274, 0.0157], (150, 160) : ['B', 5, 122.27, 1.8, -1, -1, 111.0, 1.48, -1, -1, 122.39, 1.25, 115.11, 0.95, 122.42, 1.65, 1.3199, 0.0126, 1.4493, 0.0108, -1, -1, 1.5132, 0.0127, 1.2295, 0.0144], (150, 170) : ['B', 9, 121.62, 1.55, -1, -1, 110.96, 1.19, -1, -1, 122.05, 1.0, 114.66, 1.1, 123.23, 1.1, 1.321, 0.0112, 1.4504, 0.0101, -1, -1, 1.5127, 0.0097, 1.2293, 0.0141], (160, -180) : ['B', 13, 121.22, 1.44, -1, -1, 110.88, 1.48, -1, -1, 121.83, 1.02, 114.35, 1.22, 123.78, 0.97, 1.3232, 0.0109, 1.4476, 0.0092, -1, -1, 1.5129, 0.0101, 1.2313, 0.0142], (160, -170) : ['B', 10, 121.23, 1.34, -1, -1, 110.63, 1.43, -1, -1, 121.48, 0.99, 114.53, 1.2, 123.96, 0.99, 1.3247, 0.0106, 1.4469, 0.0092, -1, -1, 1.5164, 0.0103, 1.2306, 0.0138], (160, -160) : ['B', 4, 121.12, 1.59, -1, -1, 110.45, 1.3, -1, -1, 121.05, 0.9, 114.77, 1.29, 124.15, 1.12, 1.3268, 0.0111, 1.4506, 0.0123, -1, -1, 1.5192, 0.0126, 1.2292, 0.0139], (160, -150) : ['B', 4, 121.28, 2.26, -1, -1, 110.58, 1.35, -1, -1, 120.91, 0.69, 114.89, 1.36, 124.15, 1.23, 1.3252, 0.0142, 1.4547, 0.0161, -1, -1, 1.5204, 0.0139, 1.2314, 0.013], (160, 160) : ['B', 4, 121.67, 1.81, -1, -1, 111.37, 1.29, -1, -1, 122.15, 1.17, 114.86, 1.01, 122.91, 1.64, 1.3229, 0.012, 1.4476, 0.0112, -1, -1, 1.5086, 0.0121, 1.2324, 0.0139], (160, 170) : ['B', 12, 121.32, 1.58, -1, -1, 111.09, 1.33, -1, -1, 121.96, 1.02, 114.53, 1.18, 123.46, 1.19, 1.3239, 0.0115, 1.4488, 0.0104, -1, -1, 1.5093, 0.0104, 1.2313, 0.0145], (170, -180) : ['B', 13, 120.97, 1.51, -1, -1, 110.75, 1.46, -1, -1, 121.75, 1.02, 114.4, 1.35, 123.81, 1.0, 1.3262, 0.0113, 1.448, 0.0105, -1, -1, 1.5123, 0.011, 1.2352, 0.0141], (170, -170) : ['B', 10, 120.91, 1.38, -1, -1, 110.69, 1.33, -1, -1, 121.35, 1.05, 114.71, 1.5, 123.92, 0.96, 1.3274, 0.0096, 1.4472, 0.0103, -1, -1, 1.5152, 0.01, 1.2333, 0.0138], (170, -160) : ['B', 7, 120.72, 1.33, -1, -1, 110.74, 1.37, -1, -1, 120.97, 1.01, 115.12, 1.55, 123.88, 0.95, 1.3287, 0.0096, 1.4505, 0.011, -1, -1, 1.5157, 0.0121, 1.2322, 0.0131], (170, -150) : ['B', 4, 120.55, 1.58, -1, -1, 111.42, 1.51, -1, -1, 121.04, 0.79, 115.11, 1.21, 123.8, 0.83, 1.3294, 0.0124, 1.4548, 0.0105, -1, -1, 1.5133, 0.0146, 1.2364, 0.0134], (170, 170) : ['B', 8, 121.04, 1.57, -1, -1, 110.63, 1.45, -1, -1, 121.87, 1.02, 114.48, 1.19, 123.61, 1.15, 1.3263, 0.0125, 1.4493, 0.0124, -1, -1, 1.5099, 0.0118, 1.2347, 0.0138], }, "Gly_xpro" : { (-180, -180) : ['I', 44, 121.87, 1.57, -1, -1, 112.34, 2.04, -1, -1, 121.52, 1.43, 116.69, 1.71, 121.77, 1.0, 1.3304, 0.0149, 1.4426, 0.0137, -1, -1, 1.5146, 0.0143, 1.2351, 0.0135], (-80, -180) : ['B', 6, 121.42, 1.44, -1, -1, 112.23, 1.21, -1, -1, 122.38, 1.03, 115.43, 1.17, 122.18, 1.0, 1.3325, 0.0182, 1.4421, 0.0136, -1, -1, 1.5123, 0.0151, 1.2387, 0.0168], (-80, 170) : ['B', 3, 121.64, 1.53, -1, -1, 112.1, 1.23, -1, -1, 122.46, 0.97, 115.52, 1.13, 122.03, 1.14, 1.3283, 0.0207, 1.4443, 0.0154, -1, -1, 1.5111, 0.0133, 1.2412, 0.0176], (-70, -180) : ['B', 3, 121.36, 1.28, -1, -1, 112.0, 1.2, -1, -1, 121.62, 1.05, 115.94, 1.16, 122.42, 0.9, 1.335, 0.0175, 1.4338, 0.0122, -1, -1, 1.5178, 0.0159, 1.2386, 0.0156], (-60, -40) : ['B', 3, 120.88, 0.52, -1, -1, 115.22, 1.27, -1, -1, 119.65, 0.67, 119.27, 0.85, 121.07, 0.36, 1.34, 0.0066, 1.4437, 0.0088, -1, -1, 1.5108, 0.0069, 1.2373, 0.0102], (-50, -40) : ['B', 3, 121.13, 0.73, -1, -1, 115.09, 1.22, -1, -1, 119.69, 0.63, 119.17, 0.79, 121.13, 0.33, 1.3393, 0.0075, 1.4465, 0.0087, -1, -1, 1.5116, 0.0077, 1.2381, 0.0097], }, "IleVal_nonxpro" : { (-180, -180) : ['I', 1822, 121.97, 1.8, 111.23, 1.65, 109.34, 2.08, 111.29, 1.64, 120.78, 1.25, 116.6, 1.45, 122.57, 1.25, 1.3319, 0.0136, 1.459, 0.0125, 1.5401, 0.0136, 1.523, 0.0127, 1.2362, 0.0119], (-170, 160) : ['B', 3, 121.97, 1.0, 109.84, 1.32, 107.7, 1.22, 111.74, 0.94, 120.66, 0.67, 116.32, 0.84, 122.94, 1.05, 1.3318, 0.0056, 1.459, 0.0112, 1.553, 0.0074, 1.5197, 0.0107, 1.236, 0.013], (-160, 140) : ['B', 6, 121.95, 1.53, 111.19, 1.35, 108.06, 1.28, 111.8, 1.54, 120.96, 0.94, 115.8, 1.33, 123.19, 0.96, 1.33, 0.0105, 1.4592, 0.0129, 1.5477, 0.0113, 1.5216, 0.0121, 1.234, 0.0116], (-160, 150) : ['B', 13, 121.96, 1.34, 111.05, 1.47, 107.88, 1.38, 111.8, 1.39, 120.96, 0.84, 116.0, 1.04, 122.97, 0.87, 1.3326, 0.0094, 1.4583, 0.0122, 1.5505, 0.0103, 1.5201, 0.0117, 1.2338, 0.0121], (-160, 160) : ['B', 6, 122.11, 1.12, 110.96, 1.65, 107.75, 1.42, 111.4, 1.41, 121.09, 0.82, 116.16, 0.96, 122.67, 1.04, 1.3327, 0.009, 1.4591, 0.0107, 1.5507, 0.0108, 1.5208, 0.0126, 1.2322, 0.0144], (-150, 130) : ['B', 7, 122.33, 1.6, 111.63, 1.76, 108.27, 1.37, 110.65, 1.76, 120.64, 1.07, 116.29, 1.42, 123.03, 1.15, 1.3301, 0.0121, 1.4606, 0.0122, 1.5427, 0.0136, 1.5218, 0.0128, 1.2347, 0.0102], (-150, 140) : ['B', 19, 122.25, 1.57, 111.36, 1.64, 108.35, 1.32, 111.3, 1.85, 120.9, 1.07, 115.96, 1.43, 123.09, 1.16, 1.33, 0.0121, 1.4596, 0.0125, 1.5445, 0.0138, 1.5217, 0.0126, 1.2344, 0.0111], (-150, 150) : ['B', 20, 122.23, 1.44, 111.62, 1.9, 108.42, 1.43, 111.18, 1.8, 121.19, 1.03, 115.75, 1.28, 123.0, 1.1, 1.3324, 0.012, 1.4579, 0.0117, 1.5476, 0.0146, 1.5215, 0.0121, 1.2339, 0.0115], (-150, 160) : ['B', 9, 122.51, 1.31, 112.0, 2.05, 108.44, 1.55, 110.48, 1.8, 121.45, 1.0, 115.66, 1.22, 122.82, 1.09, 1.3342, 0.0123, 1.4583, 0.0108, 1.5485, 0.0149, 1.522, 0.0123, 1.2328, 0.0125], (-150, 170) : ['B', 4, 123.17, 1.37, 112.06, 1.6, 108.23, 1.43, 110.38, 1.73, 121.49, 1.01, 115.87, 1.29, 122.58, 1.2, 1.3322, 0.013, 1.4587, 0.0122, 1.5461, 0.0141, 1.5244, 0.0106, 1.2328, 0.0135], (-140, -180) : ['B', 4, 123.46, 1.37, 112.32, 1.15, 108.53, 1.22, 110.91, 1.46, 121.44, 1.05, 115.78, 1.3, 122.75, 1.06, 1.331, 0.0146, 1.4557, 0.0148, 1.5435, 0.013, 1.525, 0.009, 1.2338, 0.0127], (-140, 110) : ['B', 4, 122.84, 1.5, 112.34, 1.3, 107.18, 1.73, 110.41, 1.14, 120.22, 0.89, 116.74, 1.01, 122.97, 0.9, 1.3318, 0.0123, 1.4603, 0.0135, 1.5363, 0.0137, 1.5238, 0.0126, 1.2363, 0.0107], (-140, 120) : ['B', 18, 122.7, 1.53, 111.99, 1.48, 107.78, 1.49, 110.12, 1.36, 120.25, 0.99, 116.67, 1.1, 123.03, 1.03, 1.3319, 0.0123, 1.4598, 0.0122, 1.5395, 0.013, 1.5225, 0.012, 1.2361, 0.0103], (-140, 130) : ['B', 51, 122.75, 1.45, 111.58, 1.62, 108.17, 1.46, 110.28, 1.58, 120.43, 1.09, 116.46, 1.2, 123.07, 1.08, 1.3308, 0.0129, 1.4593, 0.0119, 1.542, 0.0131, 1.522, 0.0123, 1.2355, 0.01], (-140, 140) : ['B', 56, 122.71, 1.44, 111.45, 1.64, 108.45, 1.48, 110.71, 1.73, 120.76, 1.1, 116.14, 1.28, 123.05, 1.11, 1.3304, 0.0135, 1.4586, 0.0119, 1.5436, 0.0146, 1.5221, 0.0126, 1.2356, 0.0101], (-140, 150) : ['B', 41, 122.58, 1.48, 111.92, 1.87, 108.81, 1.62, 110.71, 1.79, 121.28, 1.06, 115.66, 1.31, 123.0, 1.14, 1.332, 0.0137, 1.4572, 0.0114, 1.5458, 0.0175, 1.5222, 0.012, 1.2347, 0.0102], (-140, 160) : ['B', 43, 122.69, 1.42, 112.36, 1.85, 108.9, 1.66, 110.3, 1.69, 121.63, 0.99, 115.3, 1.33, 123.02, 1.13, 1.3342, 0.0132, 1.457, 0.0111, 1.5462, 0.0169, 1.5228, 0.0117, 1.2328, 0.0108], (-140, 170) : ['B', 19, 123.03, 1.36, 112.35, 1.49, 108.65, 1.45, 110.52, 1.57, 121.64, 0.98, 115.37, 1.34, 122.95, 1.11, 1.3331, 0.0134, 1.4577, 0.0124, 1.5444, 0.0149, 1.524, 0.0108, 1.2323, 0.0119], (-130, -180) : ['B', 7, 123.27, 1.47, 112.45, 1.12, 108.82, 1.22, 111.34, 1.4, 121.44, 1.14, 115.61, 1.36, 122.92, 1.05, 1.3313, 0.0136, 1.4536, 0.015, 1.5433, 0.0132, 1.5262, 0.0116, 1.2303, 0.0121], (-130, -20) : ['B', 4, 121.53, 1.4, 111.57, 1.54, 113.71, 0.95, 110.63, 0.94, 119.35, 1.1, 119.87, 1.34, 120.72, 2.13, 1.3318, 0.0087, 1.4602, 0.0086, 1.5451, 0.0136, 1.5192, 0.0135, 1.2451, 0.0141], (-130, 0) : ['B', 4, 122.36, 1.16, 112.67, 1.53, 113.2, 0.96, 110.7, 0.99, 119.46, 0.78, 118.71, 1.15, 121.78, 1.03, 1.3346, 0.009, 1.4569, 0.0093, 1.5428, 0.0122, 1.5199, 0.01, 1.232, 0.013], (-130, 90) : ['B', 3, 122.96, 0.95, 112.65, 1.0, 106.42, 1.51, 111.23, 1.01, 121.09, 1.06, 116.53, 0.98, 122.3, 1.0, 1.3313, 0.0128, 1.4637, 0.0113, 1.5322, 0.0108, 1.5268, 0.0085, 1.2352, 0.0112], (-130, 100) : ['B', 4, 123.17, 1.28, 112.35, 1.19, 106.61, 1.78, 111.09, 1.11, 120.51, 1.05, 116.7, 1.1, 122.71, 0.97, 1.3307, 0.0126, 1.461, 0.0144, 1.533, 0.0137, 1.5242, 0.0119, 1.2362, 0.0114], (-130, 110) : ['B', 26, 123.11, 1.38, 112.1, 1.28, 107.24, 1.68, 110.73, 1.19, 120.31, 0.98, 116.61, 1.09, 123.03, 0.97, 1.3306, 0.0122, 1.4597, 0.0144, 1.5355, 0.0136, 1.5229, 0.0131, 1.2374, 0.0113], (-130, 120) : ['B', 80, 122.98, 1.42, 111.82, 1.36, 107.77, 1.48, 110.42, 1.35, 120.27, 1.01, 116.51, 1.07, 123.18, 1.04, 1.3308, 0.0124, 1.459, 0.0128, 1.5385, 0.013, 1.5222, 0.0129, 1.237, 0.0109], (-130, 130) : ['B', 130, 122.99, 1.39, 111.52, 1.46, 108.12, 1.44, 110.33, 1.46, 120.36, 1.06, 116.4, 1.12, 123.2, 1.08, 1.3309, 0.0132, 1.4582, 0.0119, 1.5414, 0.0128, 1.522, 0.0124, 1.2361, 0.0104], (-130, 140) : ['B', 87, 122.94, 1.39, 111.44, 1.64, 108.46, 1.49, 110.5, 1.54, 120.67, 1.12, 116.18, 1.24, 123.1, 1.07, 1.3307, 0.0143, 1.4576, 0.0118, 1.544, 0.0142, 1.5219, 0.0122, 1.2361, 0.0099], (-130, 150) : ['B', 49, 122.69, 1.59, 111.93, 1.85, 108.86, 1.63, 110.69, 1.6, 121.28, 1.16, 115.67, 1.3, 123.0, 1.07, 1.3312, 0.015, 1.4565, 0.0114, 1.5457, 0.017, 1.5217, 0.0119, 1.2351, 0.0099], (-130, 160) : ['B', 53, 122.68, 1.58, 112.44, 1.68, 108.95, 1.65, 110.55, 1.52, 121.67, 1.05, 115.24, 1.3, 123.04, 1.11, 1.3333, 0.0134, 1.4557, 0.0111, 1.545, 0.0169, 1.5228, 0.0119, 1.2329, 0.0108], (-130, 170) : ['B', 29, 122.92, 1.44, 112.52, 1.4, 108.8, 1.46, 110.82, 1.48, 121.67, 1.02, 115.3, 1.34, 123.0, 1.1, 1.3328, 0.0127, 1.4558, 0.0123, 1.5436, 0.015, 1.5242, 0.0122, 1.2314, 0.0117], (-120, -50) : ['B', 5, 123.16, 1.06, 111.64, 0.82, 111.62, 0.79, 111.05, 0.89, 120.8, 0.89, 117.15, 0.78, 121.98, 0.77, 1.3335, 0.0146, 1.4578, 0.009, 1.5454, 0.0145, 1.5243, 0.0106, 1.2351, 0.0131], (-120, -40) : ['B', 4, 122.77, 1.05, 111.9, 1.37, 112.12, 0.84, 110.91, 0.98, 120.34, 0.91, 117.65, 1.1, 121.97, 1.02, 1.3345, 0.0121, 1.455, 0.0106, 1.5441, 0.0156, 1.5228, 0.0096, 1.2363, 0.0123], (-120, -20) : ['B', 8, 121.71, 1.2, 112.12, 1.35, 113.53, 0.98, 110.65, 0.98, 118.98, 1.03, 119.31, 1.15, 121.67, 1.69, 1.3304, 0.011, 1.4564, 0.0095, 1.5432, 0.0124, 1.522, 0.0132, 1.2423, 0.0117], (-120, -10) : ['B', 4, 122.14, 1.11, 112.33, 1.19, 113.47, 1.01, 110.62, 1.08, 118.98, 0.9, 118.94, 1.22, 122.03, 1.28, 1.3308, 0.0101, 1.4586, 0.0091, 1.5442, 0.0119, 1.52, 0.012, 1.2407, 0.0125], (-120, 0) : ['B', 5, 122.72, 1.39, 112.36, 1.3, 113.1, 0.97, 110.93, 1.1, 119.38, 0.87, 118.48, 1.16, 122.06, 0.99, 1.3322, 0.0106, 1.4567, 0.0107, 1.5425, 0.0108, 1.5196, 0.0123, 1.2351, 0.0145], (-120, 10) : ['B', 7, 122.88, 1.76, 112.16, 1.3, 112.43, 0.92, 111.65, 1.22, 119.97, 0.91, 117.84, 1.11, 122.09, 1.09, 1.3331, 0.0122, 1.4553, 0.0104, 1.5416, 0.0108, 1.5231, 0.0127, 1.2312, 0.0151], (-120, 20) : ['B', 8, 122.69, 1.9, 111.94, 1.3, 111.88, 1.06, 112.36, 1.37, 120.42, 1.14, 117.35, 1.5, 122.14, 1.3, 1.331, 0.0131, 1.456, 0.0109, 1.5407, 0.0105, 1.528, 0.0127, 1.2262, 0.0204], (-120, 90) : ['B', 3, 122.93, 1.21, 112.4, 1.17, 106.53, 1.41, 111.59, 1.16, 121.36, 1.57, 116.37, 1.24, 122.2, 1.45, 1.327, 0.0147, 1.4628, 0.0141, 1.5309, 0.0111, 1.5247, 0.0098, 1.2345, 0.0125], (-120, 100) : ['B', 11, 123.1, 1.36, 112.15, 1.21, 106.72, 1.59, 111.32, 1.21, 120.69, 1.3, 116.59, 1.33, 122.66, 1.22, 1.3298, 0.0143, 1.4602, 0.0144, 1.5329, 0.0126, 1.5236, 0.0114, 1.2371, 0.0119], (-120, 110) : ['B', 47, 123.13, 1.34, 111.9, 1.26, 107.28, 1.59, 110.99, 1.3, 120.48, 1.1, 116.48, 1.22, 122.99, 1.07, 1.33, 0.0131, 1.4595, 0.0142, 1.535, 0.0129, 1.5226, 0.013, 1.238, 0.011], (-120, 120) : ['B', 113, 123.1, 1.33, 111.64, 1.3, 107.75, 1.46, 110.77, 1.42, 120.39, 1.04, 116.38, 1.13, 123.2, 1.06, 1.3302, 0.0123, 1.4592, 0.0129, 1.5373, 0.0126, 1.5223, 0.0132, 1.2376, 0.011], (-120, 130) : ['B', 141, 123.14, 1.31, 111.41, 1.38, 108.11, 1.4, 110.63, 1.48, 120.39, 1.05, 116.31, 1.14, 123.26, 1.08, 1.3305, 0.0127, 1.4583, 0.0117, 1.5403, 0.0123, 1.5221, 0.0124, 1.2366, 0.0107], (-120, 140) : ['B', 82, 123.06, 1.38, 111.39, 1.74, 108.48, 1.44, 110.62, 1.49, 120.67, 1.17, 116.11, 1.29, 123.18, 1.08, 1.3305, 0.014, 1.4575, 0.0114, 1.5435, 0.0132, 1.5219, 0.0118, 1.236, 0.0102], (-120, 150) : ['B', 39, 122.67, 1.68, 111.91, 2.07, 108.85, 1.54, 110.82, 1.54, 121.32, 1.32, 115.61, 1.38, 123.03, 1.05, 1.3304, 0.0156, 1.4568, 0.0115, 1.5451, 0.0151, 1.5219, 0.0121, 1.2354, 0.0105], (-120, 160) : ['B', 32, 122.57, 1.65, 112.47, 1.68, 108.99, 1.56, 110.9, 1.44, 121.75, 1.18, 115.23, 1.28, 122.97, 1.07, 1.3316, 0.0139, 1.4556, 0.0115, 1.5433, 0.016, 1.5234, 0.0127, 1.2336, 0.0121], (-120, 170) : ['B', 9, 122.77, 1.39, 112.6, 1.29, 108.96, 1.42, 111.19, 1.37, 121.67, 1.06, 115.31, 1.29, 122.97, 1.05, 1.3313, 0.012, 1.4553, 0.0118, 1.5416, 0.0152, 1.526, 0.0143, 1.2312, 0.0129], (-110, -60) : ['B', 6, 122.97, 0.98, 111.57, 0.99, 111.48, 0.94, 111.71, 0.85, 120.7, 0.85, 117.37, 0.74, 121.85, 0.76, 1.3312, 0.0142, 1.4617, 0.0138, 1.5451, 0.0091, 1.5264, 0.0146, 1.2323, 0.0116], (-110, -50) : ['B', 7, 123.08, 1.01, 111.41, 1.1, 111.56, 0.86, 111.44, 0.95, 120.73, 0.96, 117.23, 1.01, 121.98, 0.89, 1.3294, 0.0144, 1.4574, 0.0128, 1.5455, 0.0109, 1.5249, 0.0128, 1.2316, 0.0115], (-110, -40) : ['B', 5, 122.66, 0.97, 111.82, 1.67, 111.9, 0.81, 111.3, 0.96, 120.3, 0.94, 117.6, 1.29, 122.07, 1.04, 1.3308, 0.0116, 1.454, 0.0119, 1.5444, 0.0125, 1.5237, 0.0101, 1.2329, 0.0102], (-110, -30) : ['B', 4, 121.84, 1.13, 112.75, 2.0, 112.96, 1.0, 111.06, 0.88, 119.29, 0.84, 118.65, 1.07, 122.04, 1.07, 1.3322, 0.0116, 1.4522, 0.0118, 1.5429, 0.0127, 1.5257, 0.0117, 1.2367, 0.0098], (-110, -20) : ['B', 9, 121.85, 1.19, 112.35, 1.38, 113.42, 1.17, 110.88, 1.09, 118.9, 0.88, 118.9, 0.94, 122.17, 1.1, 1.3307, 0.0127, 1.4561, 0.0108, 1.5427, 0.0117, 1.5238, 0.0143, 1.2411, 0.0106], (-110, -10) : ['B', 10, 122.16, 1.26, 112.21, 1.1, 113.43, 1.09, 110.84, 1.25, 118.96, 0.95, 118.75, 1.1, 122.25, 1.01, 1.3321, 0.0119, 1.4596, 0.0109, 1.5434, 0.0109, 1.5197, 0.0147, 1.2424, 0.0123], (-110, 0) : ['B', 5, 122.69, 1.49, 112.26, 1.29, 112.9, 0.96, 111.2, 1.24, 119.35, 1.05, 118.43, 1.18, 122.16, 0.91, 1.3324, 0.0115, 1.458, 0.0129, 1.5403, 0.0115, 1.5173, 0.0149, 1.24, 0.0149], (-110, 10) : ['B', 11, 122.76, 1.57, 112.28, 1.33, 112.17, 0.95, 111.85, 1.27, 119.91, 0.99, 117.97, 1.14, 122.05, 1.05, 1.3316, 0.0116, 1.4568, 0.0129, 1.5374, 0.013, 1.5227, 0.0131, 1.2356, 0.0147], (-110, 20) : ['B', 8, 122.56, 1.58, 112.22, 1.31, 111.77, 1.04, 112.46, 1.33, 120.26, 1.1, 117.54, 1.47, 122.11, 1.3, 1.3295, 0.0122, 1.4559, 0.0141, 1.5373, 0.0124, 1.5283, 0.012, 1.2295, 0.0178], (-110, 100) : ['B', 12, 123.1, 1.4, 111.83, 1.23, 106.85, 1.42, 111.53, 1.3, 120.86, 1.33, 116.45, 1.46, 122.62, 1.4, 1.3286, 0.015, 1.4587, 0.013, 1.5331, 0.0119, 1.5239, 0.0111, 1.2363, 0.012], (-110, 110) : ['B', 41, 123.11, 1.36, 111.67, 1.26, 107.37, 1.48, 111.19, 1.39, 120.66, 1.17, 116.41, 1.43, 122.88, 1.31, 1.3293, 0.0137, 1.4589, 0.0127, 1.535, 0.0124, 1.5229, 0.0127, 1.2374, 0.0108], (-110, 120) : ['B', 107, 123.12, 1.3, 111.46, 1.26, 107.8, 1.45, 110.96, 1.46, 120.53, 1.07, 116.34, 1.28, 123.1, 1.17, 1.33, 0.0125, 1.4592, 0.0124, 1.5367, 0.0121, 1.5226, 0.0128, 1.2375, 0.0109], (-110, 130) : ['B', 109, 123.19, 1.24, 111.25, 1.36, 108.17, 1.4, 110.83, 1.49, 120.48, 1.06, 116.31, 1.18, 123.18, 1.05, 1.3304, 0.0126, 1.4588, 0.012, 1.539, 0.0118, 1.5221, 0.0119, 1.2372, 0.0111], (-110, 140) : ['B', 46, 123.1, 1.29, 111.21, 1.85, 108.53, 1.45, 110.81, 1.52, 120.72, 1.14, 116.1, 1.25, 123.14, 1.02, 1.3303, 0.0142, 1.4582, 0.012, 1.5418, 0.0126, 1.5219, 0.0117, 1.2368, 0.0113], (-110, 150) : ['B', 9, 122.68, 1.5, 111.81, 2.36, 108.89, 1.52, 110.95, 1.61, 121.4, 1.27, 115.58, 1.36, 122.98, 1.04, 1.3298, 0.0157, 1.4574, 0.0122, 1.5439, 0.0139, 1.522, 0.0127, 1.2365, 0.012], (-110, 160) : ['B', 10, 122.45, 1.44, 112.43, 1.84, 109.2, 1.55, 111.19, 1.43, 121.92, 1.17, 115.28, 1.26, 122.76, 1.04, 1.3293, 0.0138, 1.4554, 0.0132, 1.5433, 0.0151, 1.5235, 0.0128, 1.235, 0.0131], (-110, 170) : ['B', 3, 122.48, 1.13, 112.34, 1.14, 109.29, 1.42, 111.7, 1.36, 121.72, 0.96, 115.54, 1.14, 122.69, 0.93, 1.3289, 0.0107, 1.4542, 0.0128, 1.542, 0.0155, 1.5267, 0.0133, 1.2311, 0.0125], (-100, -50) : ['B', 8, 122.63, 1.19, 110.68, 1.41, 111.67, 0.95, 111.8, 1.18, 120.69, 1.05, 117.27, 1.25, 121.99, 1.39, 1.3282, 0.0104, 1.4597, 0.0164, 1.5453, 0.0105, 1.5228, 0.0137, 1.2309, 0.0107], (-100, -40) : ['B', 6, 122.35, 1.18, 110.86, 1.75, 111.81, 0.86, 111.55, 1.15, 120.32, 1.1, 117.47, 1.42, 122.16, 1.58, 1.3293, 0.0094, 1.4564, 0.013, 1.544, 0.0117, 1.5235, 0.0107, 1.2313, 0.0102], (-100, -20) : ['B', 6, 121.55, 1.42, 111.98, 1.73, 113.39, 1.47, 110.95, 1.48, 119.2, 0.96, 118.55, 0.86, 122.23, 0.98, 1.3326, 0.0128, 1.4582, 0.0122, 1.5431, 0.0127, 1.526, 0.0132, 1.2407, 0.0103], (-100, -10) : ['B', 10, 121.77, 1.44, 112.07, 1.52, 113.22, 1.23, 110.94, 1.81, 119.2, 1.06, 118.56, 0.99, 122.2, 1.0, 1.3352, 0.0122, 1.4603, 0.013, 1.5441, 0.0126, 1.5224, 0.0147, 1.242, 0.0113], (-100, 0) : ['B', 6, 122.09, 1.49, 112.08, 1.68, 112.83, 0.99, 111.37, 1.68, 119.54, 1.2, 118.27, 1.13, 122.14, 0.97, 1.3354, 0.0106, 1.458, 0.0137, 1.542, 0.0133, 1.5205, 0.0154, 1.2386, 0.0139], (-100, 10) : ['B', 10, 122.28, 1.42, 112.15, 1.47, 112.29, 0.94, 111.88, 1.37, 119.89, 1.09, 117.95, 1.07, 122.09, 0.9, 1.3332, 0.0107, 1.4578, 0.0135, 1.5369, 0.0138, 1.5251, 0.0129, 1.2347, 0.0145], (-100, 20) : ['B', 5, 122.26, 1.24, 112.39, 1.17, 111.91, 0.89, 112.19, 1.15, 120.14, 1.0, 117.72, 1.08, 122.05, 1.02, 1.3294, 0.0124, 1.4558, 0.0159, 1.536, 0.0124, 1.5302, 0.0112, 1.2302, 0.0157], (-100, 90) : ['B', 5, 122.59, 1.1, 111.89, 1.04, 106.32, 1.61, 112.45, 1.24, 121.64, 1.21, 115.9, 1.33, 122.32, 1.26, 1.3284, 0.0119, 1.4622, 0.0132, 1.5279, 0.0134, 1.5255, 0.01, 1.2323, 0.0152], (-100, 100) : ['B', 9, 122.95, 1.24, 111.6, 1.2, 106.88, 1.52, 111.81, 1.37, 120.97, 1.19, 116.35, 1.45, 122.59, 1.39, 1.329, 0.0129, 1.4588, 0.0122, 1.5312, 0.0116, 1.5249, 0.011, 1.2342, 0.0134], (-100, 110) : ['B', 30, 122.93, 1.31, 111.41, 1.25, 107.51, 1.49, 111.31, 1.4, 120.74, 1.16, 116.46, 1.51, 122.76, 1.47, 1.3286, 0.0131, 1.4586, 0.0119, 1.5347, 0.0118, 1.5236, 0.0126, 1.2358, 0.0112], (-100, 120) : ['B', 67, 122.9, 1.28, 111.21, 1.17, 107.99, 1.46, 110.98, 1.37, 120.59, 1.09, 116.4, 1.36, 122.97, 1.32, 1.3294, 0.0132, 1.4588, 0.0124, 1.5371, 0.0117, 1.5228, 0.0126, 1.2371, 0.011], (-100, 130) : ['B', 74, 122.93, 1.26, 110.99, 1.2, 108.36, 1.43, 110.84, 1.36, 120.57, 1.07, 116.37, 1.22, 123.03, 1.11, 1.3303, 0.0148, 1.4589, 0.0127, 1.5387, 0.0119, 1.522, 0.0121, 1.2377, 0.0117], (-100, 140) : ['B', 29, 122.91, 1.43, 110.86, 1.6, 108.71, 1.49, 110.98, 1.41, 120.84, 1.16, 116.19, 1.32, 122.93, 1.06, 1.3301, 0.0197, 1.4591, 0.0126, 1.5412, 0.0127, 1.5213, 0.0122, 1.2379, 0.0128], (-100, 150) : ['B', 10, 122.64, 1.61, 111.37, 2.12, 108.97, 1.55, 111.31, 1.51, 121.48, 1.27, 115.78, 1.45, 122.69, 1.14, 1.3295, 0.0231, 1.4578, 0.0124, 1.544, 0.0135, 1.5213, 0.0127, 1.2368, 0.0138], (-100, 160) : ['B', 5, 122.34, 1.39, 112.24, 1.94, 109.17, 1.54, 111.38, 1.4, 121.93, 1.12, 115.67, 1.26, 122.36, 1.2, 1.3288, 0.0163, 1.4527, 0.0163, 1.5467, 0.0168, 1.5229, 0.0116, 1.2342, 0.013], (-100, 170) : ['B', 3, 122.27, 1.07, 112.07, 1.14, 109.46, 1.38, 112.03, 1.55, 121.68, 0.79, 116.16, 1.01, 122.12, 0.93, 1.3269, 0.0095, 1.4487, 0.018, 1.5486, 0.0188, 1.5244, 0.0086, 1.2286, 0.0103], (-90, -50) : ['B', 7, 121.65, 1.48, 110.31, 1.6, 111.45, 0.93, 111.92, 1.31, 120.83, 1.22, 117.27, 1.51, 121.84, 1.83, 1.3295, 0.0118, 1.4606, 0.0142, 1.544, 0.0138, 1.5226, 0.0135, 1.2338, 0.0109], (-90, -40) : ['B', 6, 121.34, 1.62, 110.4, 1.85, 111.58, 1.06, 111.94, 1.26, 120.46, 1.11, 117.57, 1.57, 121.91, 1.9, 1.3301, 0.0125, 1.46, 0.0132, 1.5419, 0.0146, 1.5236, 0.0133, 1.2333, 0.0122], (-90, -30) : ['B', 3, 120.82, 1.55, 111.24, 2.04, 112.35, 1.41, 111.65, 1.41, 119.92, 1.05, 117.99, 1.22, 122.04, 1.5, 1.3309, 0.0126, 1.4581, 0.0132, 1.5381, 0.0142, 1.527, 0.0137, 1.2353, 0.0119], (-90, -20) : ['B', 8, 121.02, 1.51, 111.76, 2.12, 113.16, 1.49, 111.02, 2.36, 119.42, 1.12, 118.36, 0.97, 122.18, 1.18, 1.3336, 0.0128, 1.4587, 0.0128, 1.5393, 0.0127, 1.5248, 0.0127, 1.2395, 0.0118], (-90, -10) : ['B', 8, 121.35, 1.58, 111.87, 2.32, 113.07, 1.37, 110.97, 3.18, 119.36, 1.18, 118.48, 1.01, 122.12, 1.16, 1.3368, 0.013, 1.4611, 0.0131, 1.542, 0.0124, 1.5215, 0.0132, 1.241, 0.0119], (-90, 0) : ['B', 8, 121.52, 1.44, 111.81, 2.24, 112.8, 1.15, 111.42, 2.87, 119.48, 1.26, 118.39, 1.04, 122.07, 1.1, 1.3379, 0.0105, 1.4594, 0.0129, 1.5431, 0.0136, 1.5217, 0.0144, 1.2388, 0.0113], (-90, 80) : ['B', 4, 121.65, 0.94, 112.28, 1.0, 106.21, 1.07, 113.22, 1.12, 122.63, 0.87, 115.25, 0.95, 121.96, 0.84, 1.3295, 0.0088, 1.4744, 0.0157, 1.5322, 0.0142, 1.5242, 0.0086, 1.2334, 0.0122], (-90, 90) : ['B', 6, 122.22, 1.15, 112.06, 0.97, 106.55, 1.45, 112.68, 1.14, 121.7, 1.06, 115.81, 1.29, 122.36, 1.11, 1.3316, 0.0096, 1.465, 0.0138, 1.5268, 0.0131, 1.5262, 0.009, 1.2315, 0.0162], (-90, 100) : ['B', 9, 122.48, 1.25, 111.66, 1.14, 107.15, 1.53, 111.88, 1.29, 121.04, 1.17, 116.27, 1.27, 122.62, 1.17, 1.331, 0.0105, 1.4597, 0.0123, 1.5297, 0.0111, 1.5259, 0.0101, 1.232, 0.0145], (-90, 110) : ['B', 30, 122.43, 1.26, 111.31, 1.23, 107.73, 1.56, 111.25, 1.27, 120.75, 1.22, 116.43, 1.24, 122.77, 1.24, 1.3293, 0.0115, 1.4591, 0.0115, 1.5334, 0.0113, 1.525, 0.0117, 1.2337, 0.0117], (-90, 120) : ['B', 50, 122.37, 1.25, 111.0, 1.14, 108.23, 1.53, 110.96, 1.21, 120.65, 1.17, 116.39, 1.17, 122.94, 1.22, 1.3288, 0.0132, 1.459, 0.0119, 1.5363, 0.0117, 1.5237, 0.0123, 1.2359, 0.0109], (-90, 130) : ['B', 54, 122.37, 1.29, 110.72, 1.09, 108.58, 1.44, 110.91, 1.24, 120.71, 1.13, 116.31, 1.2, 122.95, 1.14, 1.3288, 0.0169, 1.4586, 0.0124, 1.5381, 0.0124, 1.5227, 0.0123, 1.237, 0.012], (-90, 140) : ['B', 27, 122.5, 1.6, 110.56, 1.38, 108.87, 1.52, 111.21, 1.37, 121.02, 1.27, 116.11, 1.51, 122.83, 1.16, 1.3277, 0.0253, 1.4585, 0.0121, 1.5407, 0.013, 1.5216, 0.0127, 1.2369, 0.0135], (-90, 150) : ['B', 14, 122.43, 1.81, 110.95, 1.86, 109.12, 1.58, 111.68, 1.49, 121.51, 1.39, 115.83, 1.67, 122.61, 1.25, 1.3273, 0.0297, 1.4581, 0.0112, 1.5435, 0.0131, 1.5218, 0.0128, 1.2356, 0.0135], (-90, 160) : ['B', 3, 121.85, 1.49, 111.91, 1.92, 109.45, 1.39, 111.49, 1.38, 121.8, 1.23, 115.69, 1.32, 122.47, 1.31, 1.329, 0.0208, 1.4552, 0.0138, 1.5427, 0.0162, 1.5239, 0.0111, 1.2336, 0.0131], (-80, -60) : ['B', 5, 120.88, 1.22, 110.64, 1.2, 110.74, 0.91, 111.94, 1.32, 121.15, 1.32, 116.86, 1.14, 121.94, 1.22, 1.3319, 0.0122, 1.4607, 0.0122, 1.5399, 0.012, 1.5238, 0.0121, 1.2365, 0.0097], (-80, -50) : ['B', 12, 120.74, 1.43, 110.52, 1.44, 110.82, 0.97, 112.04, 1.31, 120.96, 1.19, 117.1, 1.24, 121.9, 1.3, 1.3327, 0.0129, 1.4594, 0.0121, 1.5402, 0.013, 1.5234, 0.0127, 1.2363, 0.011], (-80, -40) : ['B', 20, 120.55, 1.6, 110.56, 1.67, 111.0, 1.09, 112.24, 1.34, 120.71, 1.07, 117.42, 1.29, 121.84, 1.32, 1.3333, 0.0131, 1.4592, 0.0123, 1.5395, 0.0137, 1.5236, 0.0139, 1.236, 0.0123], (-80, -30) : ['B', 12, 120.29, 1.72, 110.95, 1.89, 111.44, 1.34, 112.16, 1.63, 120.25, 1.08, 117.89, 1.34, 121.82, 1.37, 1.3335, 0.0124, 1.4589, 0.0134, 1.5381, 0.0137, 1.5246, 0.0159, 1.2365, 0.0135], (-80, -20) : ['B', 12, 120.64, 1.64, 111.5, 2.22, 112.5, 1.39, 111.34, 2.68, 119.58, 1.21, 118.25, 1.33, 122.12, 1.38, 1.3345, 0.0115, 1.4591, 0.0133, 1.5378, 0.0128, 1.523, 0.0142, 1.2374, 0.0132], (-80, -10) : ['B', 14, 121.09, 1.65, 111.75, 2.73, 113.07, 1.36, 110.73, 3.69, 119.43, 1.24, 118.28, 1.25, 122.26, 1.33, 1.3364, 0.0117, 1.462, 0.0117, 1.5403, 0.0115, 1.519, 0.0114, 1.2375, 0.0132], (-80, 0) : ['B', 4, 121.34, 1.57, 111.82, 2.75, 112.98, 1.25, 110.83, 3.71, 119.39, 1.27, 118.4, 1.15, 122.17, 1.23, 1.3377, 0.0101, 1.4623, 0.0106, 1.5422, 0.0113, 1.5184, 0.0113, 1.2381, 0.0118], (-80, 100) : ['B', 6, 122.33, 1.61, 111.9, 1.08, 107.37, 1.42, 111.8, 1.06, 120.89, 1.35, 116.59, 1.44, 122.45, 1.07, 1.3318, 0.0092, 1.4624, 0.0125, 1.5304, 0.0105, 1.5267, 0.0097, 1.232, 0.0133], (-80, 110) : ['B', 14, 122.01, 1.42, 111.39, 1.16, 107.98, 1.51, 111.23, 1.08, 120.76, 1.23, 116.52, 1.13, 122.68, 1.09, 1.3301, 0.01, 1.4601, 0.011, 1.5329, 0.0114, 1.5259, 0.0113, 1.2331, 0.0109], (-80, 120) : ['B', 24, 121.8, 1.4, 110.95, 1.12, 108.54, 1.48, 111.08, 1.17, 120.74, 1.18, 116.4, 1.01, 122.83, 1.12, 1.3293, 0.0117, 1.4596, 0.011, 1.5355, 0.0119, 1.524, 0.0116, 1.2355, 0.0103], (-80, 130) : ['B', 33, 121.66, 1.38, 110.53, 1.09, 108.89, 1.32, 111.15, 1.3, 120.85, 1.14, 116.3, 1.13, 122.81, 1.11, 1.329, 0.0146, 1.459, 0.0119, 1.5372, 0.0125, 1.5228, 0.0114, 1.2369, 0.0115], (-80, 140) : ['B', 18, 121.71, 1.5, 110.26, 1.37, 109.21, 1.36, 111.34, 1.42, 121.11, 1.19, 116.13, 1.42, 122.72, 1.18, 1.3289, 0.0196, 1.4584, 0.012, 1.5394, 0.0127, 1.5221, 0.0116, 1.2372, 0.0129], (-80, 150) : ['B', 8, 121.62, 1.6, 110.49, 1.75, 109.55, 1.38, 111.63, 1.38, 121.54, 1.22, 115.82, 1.52, 122.59, 1.23, 1.3293, 0.0219, 1.4581, 0.0117, 1.542, 0.0126, 1.5229, 0.0116, 1.2364, 0.0133], (-80, 160) : ['B', 5, 120.95, 1.43, 111.38, 1.66, 110.05, 1.09, 111.59, 1.1, 121.98, 1.21, 115.45, 1.18, 122.52, 1.25, 1.332, 0.0173, 1.4571, 0.0135, 1.5394, 0.0138, 1.5259, 0.0104, 1.2339, 0.0143], (-70, -60) : ['B', 5, 120.72, 1.22, 110.65, 1.13, 110.42, 0.94, 111.87, 1.29, 121.18, 1.16, 116.84, 1.09, 121.94, 1.07, 1.3333, 0.0122, 1.461, 0.012, 1.5389, 0.0113, 1.5244, 0.0118, 1.2364, 0.0109], (-70, -50) : ['B', 96, 120.56, 1.28, 110.57, 1.28, 110.53, 0.94, 112.02, 1.31, 121.05, 1.11, 117.02, 1.11, 121.9, 1.04, 1.3338, 0.0126, 1.4601, 0.0119, 1.5394, 0.012, 1.5241, 0.0123, 1.2366, 0.0112], (-70, -40) : ['B', 158, 120.42, 1.42, 110.58, 1.5, 110.72, 1.01, 112.22, 1.38, 120.85, 1.06, 117.28, 1.16, 121.83, 1.03, 1.3343, 0.0126, 1.4596, 0.0121, 1.5396, 0.0129, 1.5237, 0.013, 1.2369, 0.0119], (-70, -30) : ['B', 36, 120.3, 1.64, 110.77, 1.81, 111.09, 1.25, 112.26, 1.62, 120.47, 1.08, 117.69, 1.27, 121.8, 1.13, 1.3349, 0.012, 1.4593, 0.013, 1.5399, 0.0139, 1.523, 0.0146, 1.2372, 0.0129], (-70, -20) : ['B', 22, 120.64, 1.66, 111.05, 2.1, 112.04, 1.4, 111.77, 2.27, 119.85, 1.24, 118.05, 1.4, 122.05, 1.31, 1.3355, 0.0109, 1.4576, 0.0141, 1.5402, 0.0145, 1.5223, 0.015, 1.2365, 0.0135], (-70, -10) : ['B', 14, 121.19, 1.59, 111.23, 2.36, 113.0, 1.3, 111.05, 2.91, 119.53, 1.31, 118.13, 1.37, 122.31, 1.36, 1.3355, 0.0105, 1.4586, 0.0125, 1.5424, 0.0128, 1.5197, 0.0126, 1.2362, 0.0144], (-70, 110) : ['B', 6, 121.63, 1.69, 111.46, 1.07, 108.12, 1.34, 111.35, 1.09, 120.69, 1.26, 116.61, 1.33, 122.64, 1.12, 1.3309, 0.0098, 1.4606, 0.0108, 1.5328, 0.012, 1.5265, 0.0114, 1.234, 0.0095], (-70, 120) : ['B', 10, 121.18, 1.5, 110.82, 1.11, 108.84, 1.32, 111.33, 1.34, 120.95, 1.21, 116.36, 0.97, 122.66, 1.15, 1.3315, 0.0111, 1.4591, 0.0117, 1.5342, 0.0122, 1.5235, 0.011, 1.2366, 0.0099], (-70, 130) : ['B', 29, 120.98, 1.36, 110.31, 1.23, 109.3, 1.25, 111.33, 1.49, 121.04, 1.14, 116.26, 1.05, 122.67, 1.09, 1.3328, 0.012, 1.4579, 0.0124, 1.536, 0.0116, 1.5224, 0.0108, 1.2381, 0.011], (-70, 140) : ['B', 32, 120.91, 1.39, 110.13, 1.56, 109.58, 1.29, 111.26, 1.52, 121.23, 1.07, 116.1, 1.2, 122.61, 1.09, 1.3336, 0.0124, 1.4572, 0.0122, 1.5384, 0.0113, 1.5226, 0.0114, 1.2389, 0.0122], (-70, 150) : ['B', 16, 120.75, 1.46, 110.45, 1.95, 109.8, 1.33, 111.28, 1.38, 121.59, 1.03, 115.77, 1.25, 122.57, 1.07, 1.3339, 0.0129, 1.457, 0.0132, 1.5399, 0.011, 1.5247, 0.0122, 1.2387, 0.0134], (-70, 160) : ['B', 5, 120.34, 1.58, 111.15, 1.92, 110.21, 1.13, 111.45, 1.12, 122.13, 1.11, 115.26, 1.11, 122.54, 1.03, 1.3349, 0.0141, 1.4584, 0.0176, 1.5375, 0.011, 1.5262, 0.0119, 1.237, 0.0136], (-60, -60) : ['B', 11, 120.7, 1.25, 110.62, 1.09, 110.3, 0.97, 111.81, 1.25, 121.29, 1.07, 116.72, 1.1, 121.94, 1.03, 1.3341, 0.0122, 1.462, 0.0118, 1.5389, 0.0111, 1.5243, 0.0118, 1.2365, 0.0111], (-60, -50) : ['B', 273, 120.56, 1.26, 110.55, 1.17, 110.42, 0.96, 111.97, 1.28, 121.17, 1.06, 116.89, 1.11, 121.91, 0.98, 1.3343, 0.0125, 1.4612, 0.0117, 1.5395, 0.0117, 1.5239, 0.0122, 1.2368, 0.0113], (-60, -40) : ['B', 289, 120.46, 1.37, 110.54, 1.36, 110.62, 1.02, 112.14, 1.35, 120.95, 1.04, 117.15, 1.14, 121.87, 0.97, 1.3346, 0.0126, 1.4606, 0.0119, 1.5402, 0.0125, 1.5233, 0.0127, 1.2372, 0.0117], (-60, -30) : ['B', 59, 120.47, 1.58, 110.65, 1.71, 111.05, 1.25, 112.16, 1.55, 120.57, 1.07, 117.53, 1.19, 121.87, 1.01, 1.3352, 0.0121, 1.4601, 0.0126, 1.5416, 0.0145, 1.5219, 0.0138, 1.2373, 0.0123], (-60, -20) : ['B', 18, 120.86, 1.67, 110.78, 1.98, 111.89, 1.44, 111.79, 1.91, 120.03, 1.21, 117.87, 1.25, 122.06, 1.14, 1.3354, 0.011, 1.4577, 0.0141, 1.5431, 0.0166, 1.5212, 0.015, 1.2357, 0.0133], (-60, -10) : ['B', 4, 121.54, 1.64, 110.82, 1.97, 112.76, 1.27, 111.32, 2.1, 119.7, 1.29, 118.04, 1.23, 122.22, 1.24, 1.3343, 0.0109, 1.455, 0.0138, 1.5446, 0.0145, 1.521, 0.0145, 1.2345, 0.0154], (-60, 120) : ['B', 3, 120.77, 1.46, 110.49, 1.15, 108.93, 1.35, 111.69, 1.56, 120.98, 1.23, 116.33, 1.03, 122.66, 1.07, 1.3331, 0.0123, 1.4589, 0.0129, 1.5322, 0.0147, 1.5217, 0.0116, 1.2373, 0.0098], (-60, 130) : ['B', 25, 120.63, 1.33, 110.13, 1.34, 109.37, 1.35, 111.59, 1.63, 121.13, 1.16, 116.15, 1.13, 122.67, 1.02, 1.3346, 0.0122, 1.4576, 0.0127, 1.536, 0.0118, 1.521, 0.0121, 1.2376, 0.0106], (-60, 140) : ['B', 25, 120.5, 1.34, 110.13, 1.68, 109.63, 1.44, 111.32, 1.63, 121.36, 1.1, 115.95, 1.24, 122.63, 1.06, 1.3349, 0.0116, 1.4569, 0.0119, 1.5379, 0.0103, 1.5222, 0.0135, 1.2381, 0.0113], (-60, 150) : ['B', 13, 120.35, 1.39, 110.64, 2.11, 109.78, 1.58, 111.08, 1.47, 121.58, 1.0, 115.7, 1.26, 122.62, 1.03, 1.3349, 0.0114, 1.4556, 0.013, 1.5384, 0.0098, 1.5266, 0.0152, 1.2378, 0.0123], (-60, 160) : ['B', 3, 120.13, 1.58, 111.3, 2.32, 110.09, 1.5, 111.13, 1.27, 121.97, 0.98, 115.28, 1.14, 122.65, 0.88, 1.3354, 0.0127, 1.4565, 0.0182, 1.5369, 0.0099, 1.5286, 0.015, 1.2374, 0.0124], (-50, -60) : ['B', 4, 120.77, 1.31, 110.62, 1.05, 110.23, 1.04, 111.7, 1.28, 121.41, 1.04, 116.58, 1.15, 121.96, 1.08, 1.335, 0.0119, 1.463, 0.0114, 1.5385, 0.0106, 1.5241, 0.0116, 1.2366, 0.0112], (-50, -50) : ['B', 50, 120.6, 1.29, 110.51, 1.11, 110.36, 1.05, 111.88, 1.28, 121.27, 1.04, 116.75, 1.14, 121.94, 1.0, 1.3349, 0.0123, 1.4621, 0.0114, 1.5395, 0.0111, 1.5236, 0.0122, 1.2368, 0.0114], (-50, -40) : ['B', 21, 120.53, 1.41, 110.47, 1.25, 110.62, 1.14, 112.04, 1.31, 121.05, 1.04, 117.03, 1.16, 121.89, 0.98, 1.3351, 0.0126, 1.4614, 0.0117, 1.5407, 0.0121, 1.5227, 0.0128, 1.2373, 0.0118], (-50, -30) : ['B', 10, 120.62, 1.64, 110.54, 1.57, 111.17, 1.38, 112.05, 1.46, 120.64, 1.09, 117.43, 1.16, 121.9, 1.01, 1.3352, 0.0123, 1.4609, 0.0124, 1.5432, 0.0152, 1.5207, 0.0138, 1.2373, 0.0122], (-50, 130) : ['B', 12, 120.69, 1.46, 110.05, 1.32, 109.3, 1.31, 111.71, 1.58, 120.99, 1.26, 116.17, 1.27, 122.79, 0.97, 1.3343, 0.0126, 1.4574, 0.0125, 1.5394, 0.012, 1.5199, 0.0138, 1.2356, 0.0098], (-50, 140) : ['B', 6, 120.49, 1.38, 110.14, 1.61, 109.51, 1.43, 111.51, 1.65, 121.28, 1.17, 115.9, 1.3, 122.75, 1.07, 1.3349, 0.0118, 1.4565, 0.0119, 1.5396, 0.0101, 1.5218, 0.0152, 1.2359, 0.01], }, "IleVal_xpro" : { (-180, -180) : ['I', 81, 122.13, 1.85, 111.21, 1.4, 108.88, 2.16, 111.36, 1.82, 119.95, 1.34, 118.88, 1.54, 121.1, 1.14, 1.3292, 0.0113, 1.4612, 0.0123, 1.5372, 0.0129, 1.5245, 0.0105, 1.2397, 0.0126], (-140, 150) : ['B', 3, 121.68, 1.41, 111.64, 1.07, 109.19, 0.82, 109.33, 0.98, 121.59, 1.16, 116.57, 0.98, 121.69, 0.63, 1.3311, 0.0086, 1.4646, 0.0115, 1.5435, 0.0166, 1.5158, 0.0111, 1.2385, 0.0071], (-140, 160) : ['B', 4, 122.17, 1.55, 111.87, 1.1, 109.01, 1.13, 109.89, 1.08, 121.13, 1.23, 117.0, 0.95, 121.72, 0.7, 1.3292, 0.0086, 1.4624, 0.0091, 1.5418, 0.0144, 1.52, 0.0104, 1.2385, 0.0079], (-130, 120) : ['B', 4, 122.85, 0.87, 112.27, 1.36, 107.92, 2.12, 110.16, 1.01, 119.94, 0.52, 119.42, 0.93, 120.59, 0.98, 1.3338, 0.0106, 1.4545, 0.0077, 1.5391, 0.0075, 1.5238, 0.0083, 1.2345, 0.0103], (-130, 160) : ['B', 6, 121.88, 1.63, 111.67, 0.85, 108.45, 1.2, 110.97, 1.42, 120.95, 1.36, 117.33, 1.01, 121.57, 0.89, 1.329, 0.01, 1.4617, 0.0087, 1.547, 0.011, 1.5222, 0.0083, 1.2414, 0.0105], (-120, 100) : ['B', 3, 123.25, 1.1, 111.36, 1.03, 108.15, 0.99, 111.08, 0.95, 120.88, 0.68, 118.12, 0.81, 120.96, 0.96, 1.3259, 0.0092, 1.4559, 0.0086, 1.5397, 0.009, 1.5239, 0.0109, 1.2315, 0.0101], (-120, 120) : ['B', 4, 123.28, 1.41, 111.86, 1.42, 107.71, 1.58, 110.52, 1.11, 119.98, 0.86, 119.3, 1.14, 120.66, 1.21, 1.328, 0.0106, 1.4564, 0.0087, 1.5382, 0.0088, 1.5247, 0.0091, 1.2344, 0.0111], (-120, 130) : ['B', 3, 123.33, 0.87, 112.37, 1.06, 107.61, 1.19, 110.13, 0.97, 119.51, 0.62, 119.33, 1.1, 121.11, 1.01, 1.3288, 0.0073, 1.4572, 0.009, 1.5398, 0.0077, 1.5222, 0.0071, 1.2323, 0.0089], (-120, 160) : ['B', 4, 122.24, 1.47, 111.83, 0.69, 107.84, 1.11, 111.89, 1.61, 120.9, 1.27, 117.57, 1.01, 121.4, 0.83, 1.3256, 0.0101, 1.4607, 0.0087, 1.5462, 0.0088, 1.5212, 0.0083, 1.2433, 0.0108], (-110, 110) : ['B', 3, 123.34, 1.85, 111.4, 1.33, 107.6, 1.07, 111.18, 1.15, 119.89, 1.09, 119.15, 1.11, 120.92, 0.92, 1.3284, 0.0098, 1.4578, 0.0077, 1.5347, 0.0102, 1.5279, 0.0085, 1.2402, 0.0114], (-110, 120) : ['B', 5, 123.46, 1.6, 111.39, 1.26, 107.73, 1.14, 110.85, 1.15, 119.62, 0.96, 119.23, 1.04, 121.12, 0.93, 1.3257, 0.0095, 1.4599, 0.0093, 1.5376, 0.0121, 1.5252, 0.0088, 1.2382, 0.0113], (-110, 130) : ['B', 3, 123.43, 1.1, 111.61, 1.07, 107.89, 1.09, 110.37, 1.07, 119.38, 0.68, 119.18, 0.97, 121.41, 0.9, 1.324, 0.0086, 1.4617, 0.0101, 1.5413, 0.0124, 1.523, 0.0088, 1.2363, 0.0105], (-100, 110) : ['B', 5, 122.85, 1.14, 111.31, 1.18, 107.55, 0.99, 111.04, 1.18, 119.25, 0.76, 119.33, 0.8, 121.37, 0.63, 1.3299, 0.0084, 1.4601, 0.0076, 1.5342, 0.0106, 1.5275, 0.0081, 1.2423, 0.012], (-100, 120) : ['B', 10, 123.02, 1.04, 111.23, 1.23, 107.77, 1.12, 110.78, 1.15, 119.2, 0.73, 119.3, 0.81, 121.46, 0.78, 1.3267, 0.0091, 1.4606, 0.0091, 1.5363, 0.0119, 1.5252, 0.0081, 1.2406, 0.0122], (-100, 130) : ['B', 6, 123.04, 0.92, 111.21, 1.27, 108.05, 1.18, 110.53, 1.06, 119.19, 0.65, 119.17, 0.83, 121.61, 0.91, 1.3244, 0.0093, 1.4617, 0.0104, 1.5401, 0.0123, 1.5248, 0.0084, 1.239, 0.0119], (-90, 110) : ['B', 9, 122.6, 0.68, 111.2, 1.11, 107.56, 0.91, 110.95, 1.16, 119.12, 0.56, 119.27, 0.76, 121.55, 0.71, 1.3301, 0.0085, 1.4603, 0.0073, 1.534, 0.01, 1.5277, 0.0077, 1.2428, 0.013], (-90, 120) : ['B', 7, 122.59, 0.72, 111.08, 1.26, 107.76, 1.01, 110.71, 1.07, 119.15, 0.59, 119.22, 0.78, 121.57, 0.87, 1.3281, 0.0097, 1.4595, 0.0075, 1.5334, 0.0105, 1.5265, 0.0079, 1.2412, 0.0136], (-80, 130) : ['B', 3, 121.23, 1.38, 110.23, 1.07, 108.63, 0.86, 110.94, 0.93, 119.47, 0.82, 118.89, 1.14, 121.57, 1.15, 1.3256, 0.0119, 1.4647, 0.0102, 1.5259, 0.0155, 1.5266, 0.008, 1.2412, 0.0139], (-70, 130) : ['B', 10, 120.7, 1.74, 110.08, 0.93, 108.95, 0.98, 110.89, 1.08, 119.71, 0.93, 119.15, 1.2, 121.07, 1.1, 1.3261, 0.0123, 1.468, 0.0122, 1.5305, 0.0172, 1.5255, 0.0099, 1.2441, 0.0135], (-70, 140) : ['B', 6, 120.59, 1.77, 109.99, 1.03, 109.02, 0.93, 111.0, 0.98, 119.62, 0.9, 119.16, 1.27, 121.14, 1.08, 1.3267, 0.0127, 1.4683, 0.0105, 1.5307, 0.0148, 1.5237, 0.0093, 1.2446, 0.0134], (-60, -50) : ['B', 6, 120.33, 0.8, 110.45, 0.78, 112.35, 1.2, 114.0, 1.31, 118.69, 0.67, 120.83, 0.61, 120.42, 0.64, 1.3344, 0.0147, 1.463, 0.012, 1.539, 0.0054, 1.5231, 0.0092, 1.242, 0.0086], (-60, -40) : ['B', 5, 120.24, 0.63, 110.5, 0.63, 112.61, 1.45, 114.35, 1.06, 118.85, 0.85, 121.0, 0.83, 120.07, 0.71, 1.3359, 0.0133, 1.4642, 0.0123, 1.5345, 0.0068, 1.5197, 0.0088, 1.2402, 0.0122], (-60, 130) : ['B', 5, 120.11, 1.94, 110.17, 1.11, 108.96, 1.09, 110.68, 1.15, 119.82, 0.96, 119.37, 1.13, 120.75, 1.25, 1.3291, 0.0106, 1.4677, 0.0129, 1.5391, 0.0158, 1.5245, 0.012, 1.2471, 0.0123], (-60, 140) : ['B', 3, 119.72, 2.01, 110.33, 1.23, 108.96, 1.1, 110.88, 0.98, 119.76, 0.88, 119.51, 1.2, 120.69, 1.11, 1.3301, 0.0112, 1.4671, 0.0109, 1.5381, 0.0132, 1.5227, 0.0115, 1.2483, 0.0127], (-50, -50) : ['B', 3, 120.43, 0.96, 110.52, 0.67, 112.67, 1.25, 113.7, 0.95, 118.71, 0.76, 120.83, 0.59, 120.42, 0.64, 1.3335, 0.0165, 1.4626, 0.0118, 1.5368, 0.005, 1.5244, 0.0111, 1.2385, 0.0085], }, "NonPGIV_nonxpro" : { (-180, -180) : ['I', 10921, 121.54, 1.91, 110.49, 1.69, 110.8, 2.13, 110.42, 1.99, 120.51, 1.43, 116.84, 1.71, 122.59, 1.33, 1.3324, 0.014, 1.4574, 0.0129, 1.5302, 0.0169, 1.5232, 0.0134, 1.2353, 0.0126], (-180, 160) : ['B', 3, 122.19, 2.3, 111.69, 1.69, 108.07, 1.59, 110.03, 1.72, 121.06, 1.11, 115.47, 1.42, 123.41, 0.9, 1.3304, 0.0119, 1.457, 0.0141, 1.5324, 0.0201, 1.5217, 0.012, 1.2345, 0.0117], (-180, 170) : ['B', 4, 122.41, 2.09, 111.87, 2.13, 107.73, 1.61, 110.56, 1.88, 121.26, 1.12, 115.43, 1.37, 123.26, 0.94, 1.3299, 0.0124, 1.458, 0.0127, 1.5299, 0.0193, 1.5239, 0.0121, 1.2347, 0.01], (-170, -180) : ['B', 19, 122.45, 1.78, 111.49, 1.76, 107.88, 1.41, 111.78, 1.98, 121.25, 1.09, 115.66, 1.3, 123.04, 1.04, 1.3277, 0.0135, 1.4593, 0.0119, 1.5303, 0.0153, 1.5243, 0.0125, 1.2351, 0.0102], (-170, -170) : ['B', 6, 122.84, 1.81, 111.35, 1.53, 107.73, 1.34, 112.82, 2.17, 120.94, 1.04, 116.26, 1.42, 122.75, 1.16, 1.3254, 0.0141, 1.4609, 0.0129, 1.53, 0.0136, 1.5255, 0.0123, 1.2372, 0.0094], (-170, 140) : ['B', 9, 121.81, 2.16, 110.77, 1.66, 108.46, 1.51, 109.72, 1.61, 120.31, 1.13, 116.08, 1.38, 123.52, 1.1, 1.3311, 0.0123, 1.4559, 0.0113, 1.5349, 0.0158, 1.5205, 0.0131, 1.2334, 0.0135], (-170, 150) : ['B', 15, 121.87, 2.24, 111.24, 1.59, 108.52, 1.52, 109.99, 1.61, 120.75, 1.12, 115.61, 1.41, 123.56, 1.06, 1.3301, 0.0123, 1.4562, 0.0127, 1.5343, 0.0165, 1.5206, 0.013, 1.2345, 0.0129], (-170, 160) : ['B', 40, 121.91, 2.03, 111.56, 1.52, 108.42, 1.54, 110.43, 1.68, 121.1, 1.1, 115.38, 1.4, 123.46, 0.99, 1.3299, 0.0122, 1.4566, 0.0128, 1.5327, 0.0172, 1.5209, 0.0122, 1.2344, 0.0119], (-170, 170) : ['B', 43, 122.09, 1.86, 111.57, 1.68, 108.14, 1.52, 110.95, 1.8, 121.28, 1.07, 115.38, 1.33, 123.29, 1.0, 1.3294, 0.0125, 1.4575, 0.0118, 1.5314, 0.0167, 1.5223, 0.012, 1.2339, 0.0109], (-160, -180) : ['B', 47, 122.1, 1.66, 111.24, 1.58, 108.38, 1.35, 111.91, 2.06, 121.31, 1.07, 115.65, 1.3, 122.99, 1.07, 1.3294, 0.0127, 1.457, 0.012, 1.5316, 0.0156, 1.5237, 0.0123, 1.2341, 0.011], (-160, -170) : ['B', 18, 122.32, 1.76, 110.97, 1.56, 108.24, 1.32, 112.78, 2.18, 121.05, 1.05, 116.18, 1.29, 122.72, 1.15, 1.3284, 0.0123, 1.4579, 0.0142, 1.5326, 0.0135, 1.5252, 0.0125, 1.2357, 0.0096], (-160, -160) : ['B', 4, 121.95, 1.96, 110.51, 1.42, 108.23, 1.38, 113.8, 2.05, 120.56, 0.97, 116.52, 1.17, 122.88, 1.15, 1.3283, 0.0104, 1.4574, 0.0156, 1.5381, 0.0122, 1.5277, 0.0123, 1.2363, 0.0073], (-160, -150) : ['B', 4, 120.81, 1.63, 109.51, 1.02, 108.49, 1.15, 114.87, 1.51, 120.19, 0.72, 116.68, 0.88, 123.11, 0.75, 1.3316, 0.0083, 1.4601, 0.0102, 1.5424, 0.0089, 1.5298, 0.0091, 1.2366, 0.0041], (-160, 20) : ['B', 3, 119.35, 1.68, 110.65, 1.71, 113.21, 1.4, 110.99, 2.3, 118.38, 1.36, 119.65, 1.82, 121.85, 0.93, 1.3381, 0.0179, 1.4666, 0.0087, 1.5324, 0.0196, 1.5242, 0.0088, 1.2349, 0.0075], (-160, 90) : ['B', 3, 121.26, 1.49, 111.74, 1.69, 107.28, 1.75, 111.51, 1.38, 120.63, 1.05, 115.81, 1.15, 123.5, 0.92, 1.3338, 0.0124, 1.4652, 0.0135, 1.5158, 0.0165, 1.5331, 0.0096, 1.231, 0.0095], (-160, 100) : ['B', 8, 121.33, 1.4, 110.86, 1.54, 107.2, 1.7, 111.43, 1.24, 120.09, 1.01, 116.2, 1.24, 123.62, 1.02, 1.3351, 0.0135, 1.4625, 0.0132, 1.5206, 0.0148, 1.5289, 0.0104, 1.2339, 0.0107], (-160, 110) : ['B', 9, 121.4, 1.52, 110.37, 1.46, 107.49, 1.74, 110.94, 1.28, 119.98, 1.17, 116.6, 1.34, 123.36, 1.2, 1.3321, 0.0126, 1.4615, 0.0122, 1.5248, 0.0177, 1.5226, 0.011, 1.2349, 0.0118], (-160, 120) : ['B', 13, 121.58, 1.62, 110.32, 1.65, 107.93, 1.65, 110.34, 1.4, 119.98, 1.22, 116.71, 1.3, 123.26, 1.24, 1.3311, 0.0123, 1.4612, 0.012, 1.5298, 0.0222, 1.5192, 0.0114, 1.2353, 0.0124], (-160, 130) : ['B', 30, 121.64, 1.7, 110.57, 1.69, 108.32, 1.64, 109.89, 1.69, 120.14, 1.22, 116.38, 1.35, 123.42, 1.14, 1.3317, 0.0125, 1.4575, 0.0116, 1.5334, 0.0189, 1.5204, 0.012, 1.2347, 0.0125], (-160, 140) : ['B', 54, 121.69, 1.85, 110.99, 1.77, 108.55, 1.62, 109.86, 1.8, 120.43, 1.18, 116.01, 1.41, 123.48, 1.14, 1.331, 0.0126, 1.4554, 0.0118, 1.5336, 0.0164, 1.5213, 0.0128, 1.2335, 0.013], (-160, 150) : ['B', 72, 121.63, 1.92, 111.39, 1.75, 108.76, 1.58, 110.16, 1.83, 120.89, 1.1, 115.55, 1.42, 123.48, 1.12, 1.3307, 0.0124, 1.4554, 0.0123, 1.5331, 0.0166, 1.5209, 0.0128, 1.2338, 0.0124], (-160, 160) : ['B', 140, 121.62, 1.83, 111.56, 1.55, 108.79, 1.53, 110.62, 1.86, 121.23, 1.07, 115.29, 1.42, 123.42, 1.07, 1.3306, 0.0123, 1.4557, 0.0123, 1.5328, 0.0165, 1.5208, 0.0121, 1.2338, 0.012], (-160, 170) : ['B', 109, 121.8, 1.71, 111.46, 1.54, 108.6, 1.46, 111.17, 1.96, 121.38, 1.06, 115.31, 1.36, 123.26, 1.05, 1.3301, 0.0126, 1.4563, 0.0116, 1.5323, 0.0168, 1.5218, 0.012, 1.2333, 0.0117], (-150, -180) : ['B', 40, 122.11, 1.59, 111.21, 1.67, 108.74, 1.38, 111.95, 2.38, 121.36, 1.06, 115.67, 1.36, 122.92, 1.17, 1.3308, 0.013, 1.4553, 0.0132, 1.5322, 0.0168, 1.5234, 0.0124, 1.2343, 0.012], (-150, -170) : ['B', 11, 122.2, 1.72, 110.76, 1.78, 108.45, 1.26, 113.02, 2.29, 121.14, 1.03, 116.08, 1.29, 122.73, 1.29, 1.3295, 0.0115, 1.4568, 0.0154, 1.5342, 0.0134, 1.5249, 0.0125, 1.2348, 0.0108], (-150, -160) : ['B', 4, 122.08, 1.84, 110.55, 1.62, 108.19, 1.29, 114.1, 2.11, 120.8, 1.05, 116.47, 1.19, 122.68, 1.25, 1.3272, 0.0094, 1.4581, 0.0161, 1.5389, 0.0136, 1.5258, 0.0118, 1.2354, 0.009], (-150, 0) : ['B', 3, 120.7, 1.63, 110.88, 1.88, 114.16, 1.48, 110.37, 1.54, 118.52, 1.1, 119.58, 1.34, 121.85, 1.03, 1.3306, 0.0222, 1.4572, 0.011, 1.5376, 0.0212, 1.5212, 0.0114, 1.2339, 0.0116], (-150, 10) : ['B', 3, 120.17, 1.54, 111.07, 1.99, 113.5, 1.65, 110.45, 2.1, 118.65, 1.07, 119.45, 1.44, 121.84, 1.18, 1.3355, 0.0197, 1.4581, 0.009, 1.5351, 0.0248, 1.5248, 0.0111, 1.2377, 0.0118], (-150, 20) : ['B', 5, 120.23, 1.67, 111.1, 2.17, 112.99, 1.61, 110.14, 2.77, 119.08, 1.05, 118.8, 1.51, 122.05, 1.15, 1.3398, 0.0173, 1.4593, 0.0091, 1.5353, 0.0275, 1.5266, 0.0121, 1.2368, 0.011], (-150, 30) : ['B', 3, 121.08, 1.64, 111.42, 1.75, 112.03, 1.31, 110.46, 2.47, 119.97, 0.94, 117.68, 1.37, 122.3, 1.03, 1.34, 0.0171, 1.4592, 0.0115, 1.5328, 0.0221, 1.5245, 0.0144, 1.2362, 0.0098], (-150, 40) : ['B', 3, 121.53, 1.53, 111.79, 1.2, 110.41, 1.18, 111.24, 1.64, 121.02, 0.9, 116.77, 1.21, 122.18, 0.99, 1.3337, 0.0143, 1.4585, 0.0133, 1.5306, 0.0134, 1.5243, 0.0143, 1.2356, 0.0088], (-150, 50) : ['B', 3, 121.83, 1.48, 111.19, 1.47, 109.83, 1.55, 112.07, 1.54, 121.67, 0.93, 116.49, 1.3, 121.78, 1.4, 1.3289, 0.0117, 1.4583, 0.0141, 1.5287, 0.0102, 1.5273, 0.012, 1.232, 0.0112], (-150, 60) : ['B', 4, 122.62, 1.97, 110.79, 1.73, 109.24, 1.89, 112.44, 1.72, 122.31, 1.31, 116.25, 1.53, 121.35, 2.15, 1.3287, 0.0123, 1.4574, 0.017, 1.5274, 0.0076, 1.5283, 0.0107, 1.2294, 0.0174], (-150, 70) : ['B', 3, 122.95, 2.38, 111.96, 1.75, 108.18, 2.01, 111.86, 1.67, 122.62, 1.87, 115.78, 1.35, 121.5, 2.64, 1.3362, 0.0171, 1.459, 0.0215, 1.5305, 0.0098, 1.5313, 0.0115, 1.2306, 0.0187], (-150, 80) : ['B', 5, 122.2, 2.32, 112.27, 1.77, 107.6, 1.83, 111.7, 1.52, 122.2, 1.64, 115.51, 1.08, 122.22, 1.97, 1.3391, 0.018, 1.4648, 0.0175, 1.5284, 0.0113, 1.5324, 0.0121, 1.2335, 0.0142], (-150, 90) : ['B', 3, 121.87, 1.83, 111.36, 1.82, 107.32, 1.65, 111.7, 1.31, 120.89, 1.27, 115.75, 1.08, 123.28, 1.16, 1.3342, 0.0152, 1.4652, 0.0131, 1.5218, 0.0127, 1.5304, 0.0108, 1.2329, 0.0112], (-150, 100) : ['B', 9, 121.72, 1.54, 110.79, 1.63, 107.23, 1.67, 111.42, 1.31, 120.27, 1.24, 116.26, 1.27, 123.4, 1.13, 1.3336, 0.0142, 1.4627, 0.0127, 1.523, 0.0135, 1.5264, 0.0103, 1.2346, 0.0122], (-150, 110) : ['B', 15, 121.76, 1.51, 110.71, 1.53, 107.61, 1.74, 110.79, 1.39, 120.15, 1.37, 116.55, 1.45, 123.24, 1.32, 1.3315, 0.0132, 1.4611, 0.0119, 1.5269, 0.0165, 1.5218, 0.0108, 1.2347, 0.0126], (-150, 120) : ['B', 21, 121.86, 1.58, 110.59, 1.65, 108.13, 1.72, 110.24, 1.46, 120.11, 1.37, 116.5, 1.44, 123.34, 1.37, 1.3311, 0.0128, 1.4594, 0.012, 1.5308, 0.0183, 1.5198, 0.0112, 1.2347, 0.0118], (-150, 130) : ['B', 58, 121.89, 1.74, 110.71, 1.66, 108.48, 1.8, 109.8, 1.7, 120.21, 1.35, 116.29, 1.45, 123.44, 1.23, 1.3313, 0.013, 1.4569, 0.012, 1.5331, 0.0169, 1.5204, 0.012, 1.2345, 0.0115], (-150, 140) : ['B', 89, 121.94, 1.76, 111.13, 1.81, 108.75, 1.71, 109.68, 1.98, 120.54, 1.23, 115.98, 1.45, 123.41, 1.17, 1.3311, 0.0129, 1.4552, 0.0121, 1.5334, 0.0172, 1.5209, 0.0126, 1.2339, 0.0122], (-150, 150) : ['B', 142, 121.85, 1.77, 111.52, 1.86, 108.99, 1.57, 109.94, 2.13, 120.99, 1.12, 115.61, 1.45, 123.33, 1.13, 1.3312, 0.0125, 1.4547, 0.0125, 1.5337, 0.0178, 1.521, 0.0124, 1.234, 0.0122], (-150, 160) : ['B', 181, 121.75, 1.73, 111.66, 1.67, 109.07, 1.52, 110.45, 2.15, 121.33, 1.08, 115.36, 1.48, 123.25, 1.14, 1.3312, 0.0122, 1.4548, 0.0127, 1.5338, 0.0176, 1.5211, 0.0123, 1.2338, 0.0122], (-150, 170) : ['B', 105, 121.87, 1.64, 111.56, 1.58, 108.96, 1.49, 111.09, 2.27, 121.45, 1.07, 115.38, 1.45, 123.1, 1.15, 1.3309, 0.0128, 1.4549, 0.0125, 1.5329, 0.0182, 1.5218, 0.0124, 1.2336, 0.0125], (-140, -180) : ['B', 29, 122.53, 1.61, 111.31, 1.67, 108.86, 1.41, 111.65, 2.4, 121.4, 1.11, 115.77, 1.52, 122.78, 1.33, 1.3319, 0.0137, 1.4552, 0.0141, 1.5336, 0.0157, 1.5232, 0.0131, 1.2351, 0.0128], (-140, -170) : ['B', 18, 122.39, 1.64, 110.87, 1.8, 108.34, 1.31, 113.19, 2.37, 121.32, 1.18, 116.01, 1.45, 122.61, 1.57, 1.3304, 0.0119, 1.4568, 0.0153, 1.5348, 0.0132, 1.5251, 0.0134, 1.235, 0.0114], (-140, -160) : ['B', 5, 122.23, 1.48, 110.86, 1.79, 108.07, 1.38, 114.41, 2.3, 121.47, 1.33, 116.35, 1.3, 122.11, 1.66, 1.3276, 0.0089, 1.4588, 0.0141, 1.5367, 0.0145, 1.5253, 0.0111, 1.236, 0.0099], (-140, -30) : ['B', 4, 121.63, 1.91, 111.18, 1.58, 114.62, 1.14, 109.28, 1.33, 118.54, 1.26, 119.71, 1.17, 121.67, 1.3, 1.3327, 0.0192, 1.4599, 0.0114, 1.534, 0.0179, 1.5224, 0.012, 1.2351, 0.0102], (-140, -20) : ['B', 6, 121.52, 1.74, 111.15, 1.46, 114.75, 1.26, 109.16, 1.29, 118.47, 1.14, 119.8, 1.34, 121.64, 1.23, 1.3331, 0.0141, 1.4601, 0.0127, 1.5331, 0.016, 1.52, 0.0137, 1.2358, 0.0111], (-140, -10) : ['B', 6, 121.41, 1.83, 111.06, 1.59, 114.64, 1.52, 109.29, 1.51, 118.43, 1.25, 119.58, 1.39, 121.93, 1.06, 1.3334, 0.0151, 1.4572, 0.0142, 1.5353, 0.0164, 1.5201, 0.0137, 1.2346, 0.0119], (-140, 0) : ['B', 10, 121.44, 1.59, 111.01, 1.56, 114.09, 1.55, 109.8, 1.61, 118.79, 1.13, 119.07, 1.23, 122.09, 1.09, 1.3337, 0.0179, 1.4551, 0.0127, 1.5373, 0.0185, 1.5217, 0.0125, 1.2351, 0.0126], (-140, 10) : ['B', 12, 121.18, 1.64, 111.43, 1.88, 113.19, 1.58, 110.35, 1.78, 119.08, 1.03, 118.82, 1.26, 122.04, 1.35, 1.3356, 0.0175, 1.4569, 0.0106, 1.5333, 0.0215, 1.5241, 0.0124, 1.2378, 0.0139], (-140, 20) : ['B', 12, 121.15, 1.85, 111.6, 1.99, 112.54, 1.51, 110.41, 2.17, 119.51, 1.04, 118.26, 1.38, 122.15, 1.36, 1.337, 0.0173, 1.4579, 0.01, 1.5321, 0.0223, 1.5257, 0.0131, 1.2371, 0.0138], (-140, 30) : ['B', 8, 121.81, 1.94, 111.66, 1.56, 111.71, 1.34, 110.75, 1.99, 120.32, 1.02, 117.4, 1.41, 122.21, 1.24, 1.3356, 0.0168, 1.4575, 0.0125, 1.53, 0.0184, 1.524, 0.0147, 1.2361, 0.0126], (-140, 40) : ['B', 11, 122.54, 1.82, 111.65, 1.4, 110.61, 1.25, 111.35, 1.72, 121.2, 1.04, 116.74, 1.42, 121.99, 1.24, 1.3316, 0.0142, 1.4588, 0.0152, 1.5281, 0.0147, 1.5216, 0.0152, 1.2354, 0.0112], (-140, 50) : ['B', 4, 122.62, 1.63, 111.53, 1.93, 110.06, 1.43, 111.97, 1.99, 121.78, 1.12, 116.22, 1.44, 121.92, 1.35, 1.3301, 0.0128, 1.4598, 0.015, 1.5275, 0.0149, 1.5251, 0.014, 1.2316, 0.0101], (-140, 60) : ['B', 3, 122.67, 1.47, 111.36, 2.05, 109.56, 1.84, 112.12, 2.09, 122.32, 1.51, 115.95, 1.39, 121.63, 1.84, 1.3332, 0.0134, 1.4578, 0.0177, 1.5277, 0.0133, 1.5305, 0.0123, 1.2277, 0.0139], (-140, 70) : ['B', 5, 123.04, 1.59, 111.64, 1.53, 108.53, 2.07, 111.74, 1.59, 122.23, 1.94, 115.92, 1.28, 121.74, 2.3, 1.3412, 0.0213, 1.4597, 0.022, 1.5307, 0.0137, 1.5323, 0.0141, 1.2301, 0.0174], (-140, 80) : ['B', 7, 122.92, 1.75, 111.58, 1.62, 107.67, 2.11, 111.95, 1.45, 121.62, 1.77, 115.85, 1.23, 122.44, 1.82, 1.3411, 0.0226, 1.4661, 0.0177, 1.5284, 0.0167, 1.531, 0.0147, 1.2332, 0.0147], (-140, 90) : ['B', 8, 122.76, 1.63, 111.11, 1.88, 107.37, 2.07, 111.82, 1.38, 120.81, 1.61, 116.05, 1.19, 123.06, 1.36, 1.3344, 0.0158, 1.4665, 0.0136, 1.5237, 0.0162, 1.5281, 0.0118, 1.234, 0.0122], (-140, 100) : ['B', 15, 122.47, 1.5, 110.95, 1.73, 107.44, 1.93, 111.23, 1.42, 120.47, 1.35, 116.33, 1.32, 123.14, 1.28, 1.3326, 0.0138, 1.4637, 0.0125, 1.5245, 0.0146, 1.5257, 0.0108, 1.2347, 0.0121], (-140, 110) : ['B', 31, 122.44, 1.45, 110.9, 1.56, 107.8, 1.73, 110.62, 1.46, 120.25, 1.26, 116.57, 1.4, 123.14, 1.3, 1.3317, 0.0133, 1.461, 0.0119, 1.5293, 0.0154, 1.522, 0.0114, 1.235, 0.0119], (-140, 120) : ['B', 58, 122.39, 1.48, 110.77, 1.63, 108.26, 1.66, 110.14, 1.54, 120.2, 1.22, 116.48, 1.39, 123.28, 1.28, 1.3316, 0.0126, 1.4588, 0.0122, 1.5323, 0.0162, 1.5199, 0.0116, 1.2347, 0.0113], (-140, 130) : ['B', 111, 122.33, 1.68, 110.81, 1.68, 108.69, 1.77, 109.65, 1.75, 120.28, 1.23, 116.31, 1.48, 123.36, 1.22, 1.3314, 0.0133, 1.4567, 0.0126, 1.5337, 0.0172, 1.52, 0.012, 1.2345, 0.0111], (-140, 140) : ['B', 136, 122.37, 1.72, 111.13, 1.79, 109.06, 1.7, 109.38, 2.03, 120.6, 1.2, 116.01, 1.51, 123.33, 1.21, 1.3313, 0.0143, 1.4551, 0.0125, 1.5347, 0.0202, 1.5205, 0.0122, 1.2342, 0.0118], (-140, 150) : ['B', 203, 122.29, 1.65, 111.53, 1.86, 109.23, 1.55, 109.56, 2.22, 121.06, 1.16, 115.6, 1.47, 123.27, 1.16, 1.3313, 0.0137, 1.4546, 0.0126, 1.5353, 0.0209, 1.5211, 0.012, 1.2338, 0.0122], (-140, 160) : ['B', 203, 122.21, 1.62, 111.69, 1.74, 109.24, 1.51, 110.07, 2.2, 121.4, 1.13, 115.36, 1.53, 123.17, 1.21, 1.3312, 0.013, 1.4546, 0.0129, 1.5352, 0.019, 1.5216, 0.0124, 1.2335, 0.0124], (-140, 170) : ['B', 93, 122.36, 1.6, 111.62, 1.62, 109.14, 1.49, 110.67, 2.23, 121.51, 1.12, 115.46, 1.57, 122.96, 1.26, 1.3313, 0.0133, 1.4547, 0.0132, 1.5343, 0.0177, 1.522, 0.0127, 1.234, 0.0129], (-130, -180) : ['B', 13, 123.01, 1.78, 111.22, 1.58, 109.18, 1.42, 111.11, 2.1, 121.49, 1.16, 115.71, 1.6, 122.74, 1.38, 1.3305, 0.0139, 1.4556, 0.0144, 1.5344, 0.0145, 1.5245, 0.0135, 1.2348, 0.0136], (-130, -160) : ['B', 4, 122.16, 1.32, 110.88, 2.22, 108.65, 1.85, 114.11, 2.44, 121.98, 1.47, 116.18, 1.15, 121.7, 1.84, 1.3283, 0.0085, 1.4578, 0.0117, 1.5341, 0.0149, 1.5274, 0.0098, 1.2375, 0.0106], (-130, -40) : ['B', 3, 122.15, 2.83, 110.83, 2.36, 113.18, 1.33, 110.23, 1.76, 119.47, 1.34, 118.22, 1.03, 122.25, 1.18, 1.3243, 0.0256, 1.4587, 0.0141, 1.5372, 0.0252, 1.5203, 0.0125, 1.2335, 0.0146], (-130, -20) : ['B', 13, 122.08, 1.53, 111.0, 1.33, 114.56, 1.27, 109.13, 1.56, 118.55, 1.14, 119.26, 1.14, 122.1, 1.06, 1.3326, 0.0152, 1.4571, 0.014, 1.536, 0.0146, 1.5202, 0.0148, 1.2371, 0.0128], (-130, -10) : ['B', 24, 121.98, 1.53, 110.98, 1.32, 114.39, 1.45, 109.27, 1.64, 118.69, 1.15, 119.07, 1.2, 122.19, 1.03, 1.334, 0.0158, 1.4549, 0.015, 1.5365, 0.0146, 1.5209, 0.0138, 1.236, 0.0123], (-130, 0) : ['B', 31, 121.99, 1.56, 110.95, 1.44, 113.89, 1.58, 109.75, 1.72, 119.03, 1.13, 118.7, 1.22, 122.23, 1.09, 1.3341, 0.0163, 1.4541, 0.014, 1.5363, 0.0158, 1.5219, 0.0131, 1.2359, 0.0129], (-130, 10) : ['B', 23, 122.08, 1.59, 111.27, 1.66, 113.02, 1.49, 110.44, 1.68, 119.34, 1.09, 118.39, 1.25, 122.2, 1.26, 1.335, 0.015, 1.4568, 0.0119, 1.5331, 0.0163, 1.5239, 0.0125, 1.2367, 0.0143], (-130, 20) : ['B', 24, 122.14, 1.67, 111.49, 1.66, 112.3, 1.36, 110.85, 1.64, 119.78, 1.16, 117.89, 1.34, 122.26, 1.37, 1.336, 0.0155, 1.4583, 0.0108, 1.5307, 0.0151, 1.5247, 0.0122, 1.2353, 0.0148], (-130, 30) : ['B', 18, 122.5, 1.82, 111.54, 1.45, 111.56, 1.38, 111.18, 1.56, 120.53, 1.18, 117.2, 1.45, 122.19, 1.34, 1.334, 0.0158, 1.4579, 0.0122, 1.5283, 0.0139, 1.5239, 0.0131, 1.2339, 0.0147], (-130, 40) : ['B', 19, 123.13, 1.89, 111.51, 1.48, 110.88, 1.28, 111.45, 1.72, 121.32, 1.16, 116.76, 1.58, 121.83, 1.35, 1.3304, 0.0143, 1.4577, 0.0144, 1.5266, 0.0139, 1.521, 0.0154, 1.2346, 0.0141], (-130, 50) : ['B', 8, 123.34, 1.8, 111.69, 2.25, 110.44, 1.2, 111.77, 2.28, 121.89, 1.29, 116.19, 1.66, 121.83, 1.33, 1.3303, 0.0136, 1.4596, 0.0145, 1.5258, 0.0168, 1.5226, 0.0161, 1.2328, 0.0119], (-130, 60) : ['B', 5, 122.87, 1.44, 111.74, 2.41, 109.54, 1.37, 111.83, 2.33, 121.94, 1.68, 115.71, 1.54, 122.28, 1.3, 1.3333, 0.0136, 1.4611, 0.0151, 1.5277, 0.0182, 1.5299, 0.0144, 1.2304, 0.0115], (-130, 70) : ['B', 6, 123.03, 1.34, 111.23, 1.53, 108.49, 1.65, 111.85, 1.47, 121.35, 1.96, 115.94, 1.33, 122.61, 1.54, 1.3352, 0.0186, 1.4621, 0.0167, 1.5301, 0.022, 1.5314, 0.0146, 1.2325, 0.0144], (-130, 80) : ['B', 8, 123.24, 1.54, 110.9, 1.84, 107.67, 2.09, 112.09, 1.43, 121.03, 1.97, 116.07, 1.3, 122.81, 1.53, 1.3361, 0.0187, 1.4658, 0.0151, 1.5306, 0.0312, 1.5281, 0.016, 1.2331, 0.0136], (-130, 90) : ['B', 16, 123.23, 1.54, 110.82, 1.85, 107.48, 2.29, 111.77, 1.52, 120.69, 1.93, 116.28, 1.39, 122.93, 1.6, 1.3331, 0.013, 1.464, 0.0136, 1.5273, 0.0248, 1.5264, 0.0135, 1.2339, 0.012], (-130, 100) : ['B', 27, 122.95, 1.44, 110.87, 1.63, 107.7, 2.09, 111.17, 1.54, 120.52, 1.39, 116.43, 1.51, 122.99, 1.52, 1.3317, 0.0131, 1.4625, 0.012, 1.5261, 0.017, 1.5258, 0.012, 1.2347, 0.0114], (-130, 110) : ['B', 50, 122.86, 1.42, 110.84, 1.52, 108.02, 1.78, 110.62, 1.51, 120.33, 1.08, 116.51, 1.34, 123.12, 1.32, 1.3317, 0.0135, 1.4601, 0.0117, 1.5295, 0.0157, 1.5224, 0.0118, 1.2354, 0.0113], (-130, 120) : ['B', 119, 122.77, 1.41, 110.77, 1.57, 108.34, 1.64, 110.14, 1.6, 120.24, 1.06, 116.45, 1.23, 123.27, 1.17, 1.3315, 0.0129, 1.4582, 0.0119, 1.5319, 0.0158, 1.5204, 0.0117, 1.2354, 0.0112], (-130, 130) : ['B', 164, 122.74, 1.54, 110.8, 1.73, 108.76, 1.69, 109.7, 1.81, 120.32, 1.11, 116.32, 1.38, 123.31, 1.17, 1.3312, 0.0138, 1.4566, 0.0124, 1.533, 0.019, 1.5205, 0.0121, 1.2352, 0.0114], (-130, 140) : ['B', 185, 122.73, 1.62, 111.0, 1.81, 109.24, 1.67, 109.35, 1.98, 120.66, 1.15, 116.0, 1.5, 123.27, 1.22, 1.331, 0.0155, 1.4553, 0.0125, 1.5345, 0.0247, 1.5209, 0.0124, 1.2347, 0.0122], (-130, 150) : ['B', 204, 122.62, 1.56, 111.37, 1.82, 109.5, 1.58, 109.38, 2.09, 121.11, 1.17, 115.58, 1.48, 123.24, 1.23, 1.331, 0.0151, 1.4544, 0.0127, 1.5358, 0.0253, 1.5215, 0.0121, 1.2341, 0.0126], (-130, 160) : ['B', 154, 122.59, 1.57, 111.55, 1.74, 109.52, 1.55, 109.79, 2.05, 121.44, 1.17, 115.34, 1.56, 123.15, 1.3, 1.3307, 0.0141, 1.4541, 0.0129, 1.5357, 0.0208, 1.5222, 0.0123, 1.2337, 0.0126], (-130, 170) : ['B', 61, 122.82, 1.68, 111.43, 1.59, 109.41, 1.52, 110.3, 1.98, 121.58, 1.16, 115.42, 1.64, 122.94, 1.37, 1.3305, 0.0138, 1.4545, 0.0133, 1.5353, 0.0171, 1.5228, 0.0125, 1.234, 0.0128], (-120, -180) : ['B', 15, 123.32, 1.88, 110.87, 1.51, 109.69, 1.44, 111.22, 2.02, 121.6, 1.21, 115.54, 1.52, 122.81, 1.42, 1.3275, 0.0147, 1.456, 0.015, 1.5317, 0.0145, 1.5262, 0.0137, 1.2335, 0.0147], (-120, -170) : ['B', 4, 123.09, 1.94, 110.65, 1.68, 109.65, 1.56, 112.44, 2.07, 121.46, 1.25, 115.75, 1.34, 122.72, 1.33, 1.3277, 0.0151, 1.4559, 0.014, 1.5306, 0.0148, 1.529, 0.0144, 1.2344, 0.0151], (-120, -120) : ['B', 3, 121.84, 1.42, 111.59, 0.93, 108.34, 1.47, 116.54, 1.46, 119.34, 0.91, 118.57, 0.88, 122.03, 0.73, 1.3371, 0.0129, 1.4584, 0.0063, 1.5189, 0.0189, 1.5252, 0.0042, 1.2274, 0.0078], (-120, -100) : ['B', 4, 121.79, 1.35, 111.22, 1.68, 108.3, 1.56, 115.27, 2.0, 119.77, 0.57, 119.29, 0.48, 120.83, 0.74, 1.3366, 0.012, 1.4529, 0.0118, 1.5327, 0.0146, 1.5196, 0.0048, 1.2389, 0.0126], (-120, -70) : ['B', 4, 121.9, 1.26, 111.21, 2.08, 111.34, 1.49, 112.31, 1.53, 119.4, 1.1, 118.76, 1.29, 121.79, 0.98, 1.3349, 0.0121, 1.461, 0.0097, 1.5297, 0.0124, 1.5232, 0.0082, 1.2332, 0.0126], (-120, -60) : ['B', 9, 122.17, 1.54, 110.63, 1.94, 112.12, 1.34, 111.26, 1.66, 119.61, 1.24, 118.39, 1.38, 121.95, 1.17, 1.333, 0.0134, 1.4589, 0.0115, 1.5343, 0.0155, 1.5222, 0.0093, 1.2353, 0.0124], (-120, -50) : ['B', 13, 122.46, 1.8, 110.44, 1.74, 112.72, 1.28, 110.37, 1.64, 119.81, 1.17, 118.04, 1.32, 122.09, 1.23, 1.3314, 0.014, 1.4574, 0.0117, 1.5371, 0.0176, 1.5194, 0.0101, 1.2369, 0.0136], (-120, -40) : ['B', 8, 122.58, 2.07, 110.51, 1.7, 113.43, 1.26, 109.65, 1.68, 119.64, 1.19, 118.15, 1.39, 122.1, 1.34, 1.3288, 0.0179, 1.4575, 0.0135, 1.5355, 0.0201, 1.5188, 0.0119, 1.2337, 0.0154], (-120, -30) : ['B', 14, 122.42, 1.77, 110.81, 1.48, 114.04, 1.24, 109.15, 1.78, 119.06, 1.25, 118.58, 1.26, 122.25, 1.2, 1.3308, 0.0173, 1.4555, 0.0136, 1.5366, 0.0167, 1.5197, 0.014, 1.2329, 0.0146], (-120, -20) : ['B', 28, 122.24, 1.57, 110.9, 1.33, 114.31, 1.29, 109.02, 1.68, 118.77, 1.11, 118.81, 1.15, 122.34, 1.1, 1.3344, 0.0152, 1.4544, 0.0131, 1.5371, 0.0138, 1.5202, 0.0139, 1.2358, 0.0131], (-120, -10) : ['B', 36, 122.23, 1.57, 110.88, 1.38, 114.12, 1.39, 109.38, 1.68, 118.9, 1.1, 118.79, 1.22, 122.27, 1.16, 1.3337, 0.0161, 1.4538, 0.0142, 1.5369, 0.0141, 1.5209, 0.0134, 1.2364, 0.0128], (-120, 0) : ['B', 48, 122.29, 1.56, 110.8, 1.49, 113.61, 1.5, 109.99, 1.74, 119.18, 1.18, 118.59, 1.28, 122.2, 1.18, 1.3328, 0.0151, 1.4547, 0.0138, 1.5348, 0.0151, 1.5214, 0.0131, 1.2367, 0.0133], (-120, 10) : ['B', 51, 122.37, 1.54, 110.98, 1.65, 112.94, 1.41, 110.64, 1.72, 119.48, 1.18, 118.27, 1.3, 122.19, 1.21, 1.3333, 0.0134, 1.4575, 0.0122, 1.5315, 0.0152, 1.5231, 0.0128, 1.2369, 0.0139], (-120, 20) : ['B', 46, 122.49, 1.57, 111.2, 1.65, 112.41, 1.3, 111.02, 1.62, 119.95, 1.21, 117.76, 1.38, 122.22, 1.3, 1.3344, 0.0139, 1.4583, 0.0114, 1.5297, 0.0139, 1.5245, 0.0129, 1.2351, 0.014], (-120, 30) : ['B', 27, 122.79, 1.63, 111.39, 1.56, 111.87, 1.41, 111.28, 1.58, 120.65, 1.23, 117.06, 1.53, 122.2, 1.34, 1.3329, 0.0156, 1.4576, 0.0119, 1.5279, 0.0134, 1.5252, 0.0127, 1.2326, 0.0143], (-120, 40) : ['B', 15, 123.25, 1.69, 111.43, 1.48, 111.3, 1.43, 111.46, 1.71, 121.34, 1.18, 116.62, 1.65, 121.95, 1.35, 1.3301, 0.0152, 1.4571, 0.0129, 1.5266, 0.0136, 1.5238, 0.014, 1.2329, 0.0149], (-120, 70) : ['B', 4, 123.2, 1.38, 110.6, 1.8, 108.54, 1.41, 111.7, 1.48, 120.96, 1.98, 116.11, 1.3, 122.83, 1.35, 1.328, 0.0125, 1.4612, 0.0147, 1.5362, 0.0346, 1.527, 0.0132, 1.2344, 0.0161], (-120, 80) : ['B', 7, 123.37, 1.64, 110.32, 2.44, 107.71, 1.9, 111.76, 1.47, 121.09, 1.79, 115.97, 1.24, 122.82, 1.3, 1.331, 0.0125, 1.463, 0.0136, 1.5394, 0.0488, 1.5259, 0.0151, 1.2329, 0.0135], (-120, 90) : ['B', 16, 123.33, 1.64, 110.64, 2.02, 107.49, 2.16, 111.51, 1.66, 120.85, 1.67, 116.18, 1.41, 122.87, 1.48, 1.3305, 0.0129, 1.4619, 0.014, 1.5307, 0.0328, 1.5265, 0.0142, 1.2334, 0.0115], (-120, 100) : ['B', 36, 123.13, 1.51, 110.69, 1.65, 107.69, 2.01, 111.23, 1.68, 120.57, 1.26, 116.41, 1.53, 122.96, 1.52, 1.3305, 0.0148, 1.4618, 0.0128, 1.5268, 0.0175, 1.5256, 0.0128, 1.2351, 0.0114], (-120, 110) : ['B', 77, 123.07, 1.46, 110.65, 1.58, 108.02, 1.75, 110.74, 1.61, 120.4, 1.05, 116.44, 1.32, 123.12, 1.32, 1.3313, 0.0144, 1.4599, 0.012, 1.5285, 0.0151, 1.5231, 0.0121, 1.2359, 0.0114], (-120, 120) : ['B', 147, 123.0, 1.41, 110.65, 1.56, 108.41, 1.63, 110.16, 1.66, 120.3, 1.07, 116.39, 1.17, 123.27, 1.16, 1.3309, 0.0132, 1.4579, 0.0119, 1.5305, 0.015, 1.5214, 0.0117, 1.2358, 0.0114], (-120, 130) : ['B', 183, 122.99, 1.41, 110.68, 1.68, 108.9, 1.63, 109.71, 1.83, 120.36, 1.08, 116.29, 1.3, 123.3, 1.19, 1.3305, 0.0134, 1.4564, 0.0121, 1.5317, 0.0182, 1.5213, 0.0119, 1.2356, 0.012], (-120, 140) : ['B', 210, 122.94, 1.5, 110.83, 1.74, 109.4, 1.63, 109.37, 1.91, 120.7, 1.08, 116.01, 1.49, 123.23, 1.3, 1.3302, 0.0144, 1.4553, 0.0123, 1.533, 0.0229, 1.5218, 0.0122, 1.2352, 0.0128], (-120, 150) : ['B', 174, 122.81, 1.57, 111.08, 1.71, 109.72, 1.6, 109.33, 1.97, 121.11, 1.13, 115.63, 1.51, 123.19, 1.3, 1.3302, 0.0145, 1.4541, 0.0123, 1.5344, 0.0233, 1.5225, 0.012, 1.2348, 0.013], (-120, 160) : ['B', 109, 122.81, 1.68, 111.2, 1.62, 109.85, 1.58, 109.66, 1.94, 121.46, 1.17, 115.36, 1.56, 123.11, 1.34, 1.3299, 0.0141, 1.4535, 0.0123, 1.5349, 0.0193, 1.5231, 0.0121, 1.2342, 0.0128], (-120, 170) : ['B', 47, 123.03, 1.79, 111.05, 1.5, 109.81, 1.53, 110.24, 1.88, 121.68, 1.18, 115.32, 1.61, 122.94, 1.43, 1.3289, 0.0137, 1.4543, 0.0131, 1.5345, 0.016, 1.5236, 0.0124, 1.2338, 0.0131], (-110, -180) : ['B', 21, 123.27, 1.85, 110.6, 1.52, 109.95, 1.44, 111.48, 1.91, 121.73, 1.35, 115.46, 1.34, 122.76, 1.44, 1.3282, 0.0162, 1.4546, 0.0136, 1.5304, 0.0152, 1.526, 0.0137, 1.2344, 0.0141], (-110, -170) : ['B', 9, 123.2, 2.05, 110.14, 1.72, 109.96, 1.58, 112.43, 1.91, 121.46, 1.33, 115.9, 1.21, 122.59, 1.35, 1.329, 0.0176, 1.4529, 0.0139, 1.5305, 0.0168, 1.5278, 0.0151, 1.2367, 0.015], (-110, -160) : ['B', 3, 123.16, 2.32, 109.1, 1.77, 109.8, 1.7, 113.37, 1.61, 120.77, 1.06, 116.34, 1.04, 122.84, 1.1, 1.3316, 0.0141, 1.4512, 0.0162, 1.5315, 0.0169, 1.5311, 0.0139, 1.2398, 0.0146], (-110, -150) : ['B', 3, 123.99, 2.08, 108.96, 1.23, 109.29, 1.41, 114.4, 1.25, 119.91, 0.96, 116.93, 0.9, 123.13, 1.07, 1.3316, 0.0102, 1.451, 0.0164, 1.5263, 0.0128, 1.5318, 0.0115, 1.2441, 0.0117], (-110, -130) : ['B', 3, 123.13, 1.07, 109.95, 0.43, 108.75, 0.96, 116.53, 1.47, 118.33, 0.63, 119.95, 1.19, 121.65, 0.83, 1.3245, 0.0097, 1.4603, 0.0082, 1.5228, 0.0155, 1.5306, 0.0054, 1.2321, 0.0039], (-110, -100) : ['B', 5, 121.98, 1.35, 111.04, 1.68, 108.12, 1.59, 115.28, 2.01, 119.55, 0.61, 119.56, 0.58, 120.71, 0.9, 1.3387, 0.0137, 1.453, 0.0126, 1.5341, 0.0124, 1.5186, 0.0053, 1.2452, 0.0159], (-110, -90) : ['B', 3, 121.64, 1.2, 111.15, 1.95, 108.48, 1.65, 114.52, 1.81, 119.68, 0.71, 119.46, 0.61, 120.58, 1.13, 1.3365, 0.0125, 1.4526, 0.0136, 1.5351, 0.0119, 1.5172, 0.0063, 1.2469, 0.0161], (-110, -70) : ['B', 3, 122.44, 1.19, 111.0, 1.99, 111.02, 1.52, 111.65, 1.44, 119.98, 1.21, 118.24, 1.18, 121.76, 1.15, 1.3327, 0.0116, 1.4591, 0.0106, 1.5305, 0.0145, 1.5244, 0.007, 1.2332, 0.0132], (-110, -60) : ['B', 12, 122.56, 1.5, 110.48, 1.98, 112.13, 1.37, 110.83, 1.58, 120.16, 1.49, 117.88, 1.4, 121.92, 1.3, 1.3327, 0.0131, 1.4569, 0.0124, 1.535, 0.0169, 1.5232, 0.0084, 1.2343, 0.013], (-110, -50) : ['B', 16, 122.79, 1.7, 110.34, 1.74, 112.93, 1.33, 110.08, 1.57, 120.07, 1.35, 117.82, 1.46, 122.03, 1.36, 1.3317, 0.0129, 1.4569, 0.0125, 1.5356, 0.0165, 1.5206, 0.0099, 1.2349, 0.0143], (-110, -40) : ['B', 17, 122.79, 1.78, 110.4, 1.45, 113.55, 1.26, 109.34, 1.55, 119.67, 1.15, 118.09, 1.63, 122.13, 1.5, 1.3306, 0.0138, 1.4579, 0.013, 1.5328, 0.016, 1.5191, 0.0122, 1.2329, 0.0153], (-110, -30) : ['B', 34, 122.36, 1.72, 110.59, 1.33, 113.88, 1.23, 109.03, 1.62, 119.24, 1.13, 118.29, 1.47, 122.36, 1.34, 1.3325, 0.0138, 1.4563, 0.0128, 1.5338, 0.0145, 1.5193, 0.0132, 1.2325, 0.0138], (-110, -20) : ['B', 43, 122.11, 1.64, 110.67, 1.39, 113.97, 1.28, 109.07, 1.68, 118.97, 1.07, 118.47, 1.26, 122.48, 1.21, 1.3348, 0.0142, 1.4549, 0.0129, 1.5358, 0.0142, 1.5206, 0.0127, 1.2348, 0.0125], (-110, -10) : ['B', 55, 122.26, 1.59, 110.65, 1.47, 113.72, 1.3, 109.55, 1.68, 119.05, 1.1, 118.55, 1.24, 122.35, 1.23, 1.3334, 0.0149, 1.4546, 0.0137, 1.5359, 0.0153, 1.5213, 0.0129, 1.236, 0.0132], (-110, 0) : ['B', 80, 122.49, 1.55, 110.61, 1.51, 113.3, 1.34, 110.17, 1.69, 119.32, 1.19, 118.4, 1.28, 122.24, 1.21, 1.332, 0.0139, 1.4553, 0.0133, 1.533, 0.016, 1.5215, 0.0131, 1.2357, 0.0139], (-110, 10) : ['B', 101, 122.6, 1.56, 110.73, 1.55, 112.88, 1.29, 110.72, 1.69, 119.59, 1.18, 118.11, 1.27, 122.25, 1.19, 1.3324, 0.0129, 1.4565, 0.0122, 1.53, 0.0154, 1.523, 0.0134, 1.2356, 0.0138], (-110, 20) : ['B', 71, 122.67, 1.59, 110.92, 1.6, 112.59, 1.22, 111.02, 1.61, 119.95, 1.18, 117.71, 1.28, 122.26, 1.23, 1.3336, 0.013, 1.457, 0.0116, 1.5288, 0.014, 1.5247, 0.0135, 1.2351, 0.0132], (-110, 30) : ['B', 30, 122.86, 1.53, 111.17, 1.64, 112.26, 1.32, 111.13, 1.61, 120.55, 1.21, 117.15, 1.44, 122.2, 1.28, 1.333, 0.0142, 1.4572, 0.0116, 1.5275, 0.0135, 1.526, 0.0128, 1.2333, 0.013], (-110, 40) : ['B', 10, 123.17, 1.49, 111.25, 1.46, 111.81, 1.54, 111.23, 1.7, 121.17, 1.24, 116.73, 1.64, 121.97, 1.35, 1.3308, 0.0142, 1.4586, 0.0119, 1.526, 0.0136, 1.5259, 0.0123, 1.2324, 0.0136], (-110, 70) : ['B', 4, 122.79, 1.34, 110.11, 1.57, 109.11, 1.42, 111.72, 1.53, 121.86, 1.39, 115.41, 1.34, 122.65, 1.24, 1.329, 0.0114, 1.459, 0.0161, 1.5346, 0.0303, 1.5261, 0.0097, 1.233, 0.0158], (-110, 80) : ['B', 5, 123.12, 1.52, 110.29, 2.15, 107.73, 1.8, 111.73, 1.55, 121.58, 1.24, 115.68, 1.24, 122.64, 1.06, 1.3304, 0.0117, 1.4611, 0.0141, 1.536, 0.041, 1.5268, 0.0119, 1.2316, 0.0135], (-110, 90) : ['B', 14, 123.23, 1.57, 110.56, 1.86, 107.41, 2.02, 111.41, 1.7, 121.11, 1.23, 115.96, 1.31, 122.84, 1.2, 1.3293, 0.0151, 1.4617, 0.0146, 1.5283, 0.0261, 1.5275, 0.0132, 1.2321, 0.012], (-110, 100) : ['B', 46, 123.14, 1.48, 110.46, 1.69, 107.62, 1.97, 111.22, 1.72, 120.7, 1.14, 116.23, 1.37, 123.01, 1.3, 1.3299, 0.0176, 1.4612, 0.0138, 1.5263, 0.0153, 1.5256, 0.013, 1.2344, 0.0116], (-110, 110) : ['B', 79, 123.11, 1.42, 110.47, 1.66, 107.99, 1.77, 110.79, 1.63, 120.46, 1.07, 116.37, 1.28, 123.13, 1.26, 1.3307, 0.0166, 1.4594, 0.0127, 1.5275, 0.0139, 1.524, 0.0127, 1.2358, 0.0117], (-110, 120) : ['B', 150, 123.05, 1.4, 110.55, 1.57, 108.52, 1.63, 110.19, 1.64, 120.32, 1.1, 116.37, 1.19, 123.27, 1.18, 1.3299, 0.014, 1.4576, 0.0122, 1.529, 0.0138, 1.5227, 0.0123, 1.2359, 0.0119], (-110, 130) : ['B', 230, 123.0, 1.38, 110.57, 1.57, 109.07, 1.61, 109.72, 1.73, 120.38, 1.09, 116.28, 1.26, 123.29, 1.18, 1.3296, 0.0132, 1.4564, 0.0121, 1.5306, 0.0152, 1.5221, 0.012, 1.2357, 0.0121], (-110, 140) : ['B', 194, 122.93, 1.45, 110.69, 1.61, 109.59, 1.61, 109.38, 1.8, 120.71, 1.06, 116.02, 1.42, 123.21, 1.27, 1.3296, 0.0136, 1.4552, 0.0121, 1.5315, 0.0174, 1.5225, 0.0119, 1.2352, 0.0123], (-110, 150) : ['B', 130, 122.87, 1.61, 110.85, 1.6, 109.95, 1.59, 109.37, 1.83, 121.16, 1.13, 115.6, 1.48, 123.16, 1.26, 1.3293, 0.0138, 1.454, 0.0119, 1.5321, 0.0174, 1.5232, 0.0118, 1.2344, 0.0122], (-110, 160) : ['B', 85, 122.92, 1.76, 110.85, 1.54, 110.14, 1.55, 109.71, 1.8, 121.56, 1.21, 115.27, 1.47, 123.1, 1.29, 1.3289, 0.0136, 1.4538, 0.0118, 1.533, 0.016, 1.5233, 0.0119, 1.2341, 0.0128], (-110, 170) : ['B', 39, 123.05, 1.79, 110.7, 1.49, 110.14, 1.47, 110.36, 1.78, 121.78, 1.28, 115.19, 1.48, 122.97, 1.39, 1.3283, 0.0137, 1.4546, 0.0125, 1.5334, 0.0151, 1.5237, 0.0123, 1.2339, 0.0134], (-100, -180) : ['B', 20, 122.64, 1.77, 110.51, 1.61, 110.17, 1.51, 111.6, 2.0, 121.88, 1.3, 115.63, 1.36, 122.43, 1.26, 1.3296, 0.0153, 1.4525, 0.0122, 1.5301, 0.0149, 1.5272, 0.0142, 1.2334, 0.0131], (-100, -170) : ['B', 6, 122.73, 1.92, 110.07, 1.81, 109.94, 1.57, 112.63, 2.16, 121.55, 1.26, 116.25, 1.3, 122.14, 1.28, 1.3286, 0.0171, 1.4517, 0.013, 1.53, 0.0161, 1.5279, 0.0145, 1.235, 0.0138], (-100, -160) : ['B', 3, 122.82, 2.12, 109.18, 1.79, 109.63, 1.49, 113.45, 1.98, 120.89, 1.11, 116.82, 1.1, 122.2, 1.1, 1.3276, 0.0161, 1.4519, 0.0141, 1.5335, 0.017, 1.5314, 0.0132, 1.2365, 0.0135], (-100, -130) : ['B', 3, 123.04, 1.08, 109.69, 0.32, 108.78, 0.82, 117.07, 1.44, 117.94, 0.58, 120.47, 1.03, 121.47, 0.75, 1.3258, 0.0083, 1.4566, 0.0064, 1.5285, 0.0155, 1.5331, 0.0056, 1.2326, 0.0038], (-100, -60) : ['B', 4, 122.42, 1.55, 110.27, 1.79, 111.96, 1.41, 110.88, 1.77, 120.42, 1.48, 117.34, 1.22, 122.19, 1.18, 1.3333, 0.0125, 1.4593, 0.0128, 1.5347, 0.0158, 1.5252, 0.0102, 1.2345, 0.0117], (-100, -50) : ['B', 17, 122.6, 1.88, 110.33, 1.68, 112.68, 1.33, 110.24, 1.67, 120.13, 1.4, 117.6, 1.39, 122.19, 1.31, 1.3324, 0.0129, 1.4578, 0.0127, 1.5334, 0.0158, 1.5236, 0.0116, 1.2344, 0.0135], (-100, -40) : ['B', 29, 122.53, 1.92, 110.42, 1.53, 113.12, 1.25, 109.56, 1.65, 119.78, 1.21, 117.93, 1.55, 122.2, 1.46, 1.3319, 0.0135, 1.4576, 0.0128, 1.5318, 0.0157, 1.5218, 0.0131, 1.2347, 0.014], (-100, -30) : ['B', 48, 122.09, 1.79, 110.47, 1.46, 113.41, 1.22, 109.24, 1.75, 119.41, 1.13, 118.14, 1.56, 122.36, 1.42, 1.3321, 0.0136, 1.4569, 0.0127, 1.5325, 0.0153, 1.5207, 0.0136, 1.2353, 0.0131], (-100, -20) : ['B', 52, 121.92, 1.73, 110.53, 1.47, 113.5, 1.23, 109.29, 1.82, 119.14, 1.1, 118.31, 1.4, 122.49, 1.34, 1.3334, 0.0143, 1.456, 0.0132, 1.5335, 0.0158, 1.5217, 0.0132, 1.2359, 0.0128], (-100, -10) : ['B', 88, 122.26, 1.73, 110.53, 1.49, 113.38, 1.23, 109.65, 1.74, 119.15, 1.14, 118.38, 1.3, 122.42, 1.31, 1.3327, 0.0147, 1.4556, 0.0135, 1.5337, 0.0171, 1.5224, 0.0134, 1.2356, 0.0134], (-100, 0) : ['B', 151, 122.54, 1.65, 110.49, 1.48, 113.17, 1.26, 110.09, 1.67, 119.35, 1.17, 118.27, 1.31, 122.34, 1.25, 1.3313, 0.0143, 1.4556, 0.0132, 1.5319, 0.0174, 1.5221, 0.014, 1.2349, 0.0138], (-100, 10) : ['B', 145, 122.65, 1.6, 110.56, 1.46, 112.92, 1.23, 110.56, 1.69, 119.56, 1.17, 118.06, 1.26, 122.34, 1.2, 1.3317, 0.0134, 1.4555, 0.0126, 1.5297, 0.0164, 1.5229, 0.0148, 1.2351, 0.0134], (-100, 20) : ['B', 71, 122.73, 1.61, 110.7, 1.49, 112.72, 1.14, 110.94, 1.65, 119.78, 1.19, 117.79, 1.22, 122.35, 1.23, 1.3331, 0.0127, 1.4558, 0.0118, 1.529, 0.0146, 1.5244, 0.0148, 1.2357, 0.0128], (-100, 30) : ['B', 17, 122.83, 1.54, 110.91, 1.58, 112.57, 1.13, 111.06, 1.55, 120.15, 1.29, 117.51, 1.32, 122.19, 1.29, 1.3337, 0.0124, 1.4573, 0.011, 1.5282, 0.0137, 1.5249, 0.0138, 1.2358, 0.0134], (-100, 40) : ['B', 6, 122.95, 1.66, 110.79, 1.48, 112.25, 1.36, 111.14, 1.39, 120.65, 1.64, 117.42, 1.89, 121.63, 1.52, 1.3315, 0.0114, 1.4615, 0.0115, 1.5252, 0.0143, 1.5225, 0.0143, 1.2343, 0.0155], (-100, 50) : ['B', 6, 122.62, 1.78, 110.42, 1.37, 111.55, 1.37, 111.4, 1.29, 121.38, 1.76, 116.55, 2.23, 121.89, 1.55, 1.3277, 0.0113, 1.4638, 0.012, 1.5236, 0.0151, 1.5235, 0.0138, 1.2307, 0.0171], (-100, 60) : ['B', 8, 122.24, 1.46, 110.35, 1.15, 110.65, 1.26, 111.74, 1.37, 122.2, 1.57, 115.05, 1.74, 122.67, 1.52, 1.3289, 0.0133, 1.4628, 0.0127, 1.526, 0.0149, 1.528, 0.0111, 1.2314, 0.0187], (-100, 70) : ['B', 5, 122.06, 1.39, 110.35, 1.12, 109.71, 1.41, 112.07, 1.48, 122.51, 1.34, 114.59, 1.48, 122.83, 1.31, 1.331, 0.0133, 1.4617, 0.0144, 1.526, 0.0151, 1.5283, 0.0104, 1.2318, 0.0161], (-100, 80) : ['B', 5, 122.41, 1.41, 110.49, 1.47, 108.24, 1.81, 112.05, 1.52, 122.13, 1.13, 115.25, 1.34, 122.55, 1.13, 1.3333, 0.0133, 1.4621, 0.0138, 1.5261, 0.0176, 1.5265, 0.0111, 1.2311, 0.0141], (-100, 90) : ['B', 18, 122.77, 1.48, 110.53, 1.66, 107.57, 1.94, 111.68, 1.67, 121.39, 1.12, 115.9, 1.36, 122.63, 1.22, 1.3313, 0.0151, 1.4628, 0.0137, 1.5247, 0.0147, 1.5256, 0.0122, 1.2315, 0.0132], (-100, 100) : ['B', 47, 122.85, 1.39, 110.39, 1.65, 107.75, 1.86, 111.31, 1.68, 120.84, 1.08, 116.21, 1.36, 122.87, 1.23, 1.3308, 0.0166, 1.4616, 0.0135, 1.5253, 0.0129, 1.5251, 0.0129, 1.2336, 0.0119], (-100, 110) : ['B', 95, 122.84, 1.3, 110.37, 1.65, 108.2, 1.71, 110.78, 1.6, 120.54, 1.04, 116.36, 1.28, 123.05, 1.19, 1.331, 0.0165, 1.459, 0.0127, 1.5273, 0.013, 1.5248, 0.0128, 1.2354, 0.0119], (-100, 120) : ['B', 150, 122.77, 1.33, 110.42, 1.63, 108.73, 1.63, 110.19, 1.62, 120.36, 1.07, 116.37, 1.23, 123.22, 1.14, 1.33, 0.0146, 1.4572, 0.0123, 1.5287, 0.0134, 1.5238, 0.0123, 1.2359, 0.0122], (-100, 130) : ['B', 185, 122.72, 1.38, 110.43, 1.63, 109.24, 1.63, 109.75, 1.65, 120.43, 1.09, 116.25, 1.23, 123.27, 1.13, 1.3296, 0.0139, 1.4565, 0.0123, 1.5297, 0.0143, 1.5228, 0.0123, 1.2356, 0.0121], (-100, 140) : ['B', 146, 122.65, 1.49, 110.52, 1.65, 109.76, 1.64, 109.48, 1.68, 120.8, 1.11, 115.96, 1.29, 123.19, 1.17, 1.3293, 0.0143, 1.4554, 0.0122, 1.5302, 0.0155, 1.5228, 0.0124, 1.2346, 0.0118], (-100, 150) : ['B', 112, 122.64, 1.7, 110.63, 1.63, 110.17, 1.61, 109.5, 1.69, 121.28, 1.18, 115.55, 1.33, 123.1, 1.15, 1.3288, 0.0144, 1.4543, 0.0117, 1.5304, 0.0158, 1.5237, 0.0125, 1.2337, 0.0117], (-100, 160) : ['B', 67, 122.74, 1.82, 110.56, 1.56, 110.42, 1.55, 109.8, 1.65, 121.66, 1.22, 115.23, 1.3, 123.03, 1.13, 1.3281, 0.0142, 1.4543, 0.0115, 1.5313, 0.0158, 1.5245, 0.0131, 1.2335, 0.0125], (-100, 170) : ['B', 38, 122.67, 1.73, 110.46, 1.55, 110.46, 1.48, 110.45, 1.73, 121.89, 1.27, 115.21, 1.33, 122.84, 1.16, 1.3282, 0.014, 1.4543, 0.0116, 1.5319, 0.0159, 1.5255, 0.0136, 1.2331, 0.013], (-90, -180) : ['B', 28, 122.02, 1.89, 110.49, 1.53, 110.36, 1.55, 111.78, 2.2, 121.82, 1.21, 115.9, 1.56, 122.2, 1.24, 1.3304, 0.0147, 1.4525, 0.0125, 1.5279, 0.0148, 1.5278, 0.0135, 1.2334, 0.0128], (-90, -170) : ['B', 13, 122.12, 1.76, 110.39, 1.59, 109.86, 1.55, 113.15, 2.38, 121.5, 1.25, 116.58, 1.55, 121.83, 1.28, 1.3296, 0.016, 1.4539, 0.0117, 1.5272, 0.0149, 1.5285, 0.0128, 1.2339, 0.0116], (-90, -160) : ['B', 4, 122.15, 1.74, 109.94, 1.44, 109.31, 1.42, 114.16, 2.31, 120.84, 1.33, 117.21, 1.42, 121.78, 1.31, 1.3289, 0.0167, 1.4554, 0.0109, 1.5319, 0.0154, 1.5305, 0.0112, 1.2339, 0.01], (-90, -70) : ['B', 3, 121.71, 1.39, 110.39, 1.54, 110.56, 1.94, 112.0, 1.79, 120.71, 1.1, 116.84, 1.12, 122.38, 1.08, 1.3324, 0.0154, 1.4682, 0.0124, 1.53, 0.0124, 1.5261, 0.0092, 1.2343, 0.0083], (-90, -60) : ['B', 6, 121.81, 1.83, 110.14, 1.56, 111.56, 1.53, 111.03, 1.87, 120.56, 1.21, 117.07, 1.21, 122.32, 1.15, 1.3327, 0.0126, 1.4597, 0.0122, 1.533, 0.0146, 1.5268, 0.0121, 1.235, 0.011], (-90, -50) : ['B', 18, 121.8, 2.16, 110.19, 1.55, 112.04, 1.44, 110.56, 1.83, 120.31, 1.25, 117.32, 1.42, 122.3, 1.35, 1.3325, 0.0137, 1.4576, 0.0127, 1.5317, 0.0162, 1.5252, 0.0129, 1.2349, 0.0123], (-90, -40) : ['B', 39, 121.64, 2.13, 110.26, 1.49, 112.45, 1.39, 110.11, 1.89, 120.0, 1.22, 117.65, 1.55, 122.28, 1.47, 1.3327, 0.0145, 1.4575, 0.0128, 1.5308, 0.0159, 1.5235, 0.0137, 1.2358, 0.0128], (-90, -30) : ['B', 79, 121.52, 1.84, 110.33, 1.5, 112.9, 1.31, 109.67, 2.01, 119.6, 1.17, 117.96, 1.51, 122.36, 1.42, 1.3326, 0.015, 1.457, 0.0129, 1.5311, 0.0156, 1.5215, 0.014, 1.2366, 0.0131], (-90, -20) : ['B', 98, 121.66, 1.76, 110.44, 1.56, 113.23, 1.24, 109.55, 2.03, 119.27, 1.17, 118.21, 1.36, 122.46, 1.37, 1.3328, 0.0155, 1.4561, 0.0133, 1.5318, 0.0165, 1.5216, 0.0137, 1.2364, 0.0132], (-90, -10) : ['B', 182, 122.06, 1.86, 110.46, 1.57, 113.28, 1.22, 109.72, 1.92, 119.18, 1.19, 118.36, 1.33, 122.41, 1.42, 1.3319, 0.0153, 1.4558, 0.0133, 1.5323, 0.0179, 1.5224, 0.0137, 1.2358, 0.0132], (-90, 0) : ['B', 218, 122.38, 1.81, 110.44, 1.53, 113.16, 1.24, 110.01, 1.8, 119.28, 1.21, 118.32, 1.35, 122.37, 1.38, 1.3306, 0.0148, 1.456, 0.0132, 1.5319, 0.0178, 1.5226, 0.0141, 1.2354, 0.0133], (-90, 10) : ['B', 106, 122.56, 1.72, 110.47, 1.45, 113.02, 1.2, 110.37, 1.78, 119.43, 1.21, 118.13, 1.28, 122.39, 1.29, 1.3309, 0.0143, 1.4556, 0.0132, 1.5306, 0.0169, 1.5233, 0.0156, 1.2353, 0.0133], (-90, 20) : ['B', 30, 122.65, 1.66, 110.56, 1.38, 112.93, 1.12, 110.81, 1.73, 119.59, 1.23, 117.96, 1.23, 122.37, 1.28, 1.3328, 0.0136, 1.4553, 0.0125, 1.53, 0.0151, 1.5244, 0.0166, 1.2365, 0.0133], (-90, 30) : ['B', 7, 122.66, 1.63, 110.65, 1.42, 112.97, 1.06, 111.17, 1.53, 119.8, 1.34, 117.92, 1.35, 122.06, 1.34, 1.3349, 0.0139, 1.4577, 0.0112, 1.529, 0.0134, 1.5236, 0.0159, 1.2386, 0.0147], (-90, 40) : ['B', 8, 122.61, 1.94, 110.22, 1.63, 112.72, 1.36, 111.22, 1.23, 120.42, 1.8, 117.65, 1.98, 121.53, 1.6, 1.3313, 0.0132, 1.4624, 0.0131, 1.5248, 0.0136, 1.5209, 0.0165, 1.2346, 0.0159], (-90, 50) : ['B', 11, 122.27, 1.85, 110.25, 1.5, 111.81, 1.44, 111.5, 1.29, 121.53, 1.74, 116.2, 2.01, 122.08, 1.46, 1.3296, 0.012, 1.4627, 0.0131, 1.5237, 0.0131, 1.5258, 0.0136, 1.2302, 0.0156], (-90, 60) : ['B', 26, 122.08, 1.5, 110.45, 1.26, 110.68, 1.39, 111.88, 1.41, 122.38, 1.49, 114.87, 1.55, 122.68, 1.38, 1.3316, 0.0131, 1.4629, 0.0124, 1.5243, 0.013, 1.5301, 0.0114, 1.2307, 0.0162], (-90, 70) : ['B', 36, 122.05, 1.48, 110.53, 1.22, 109.62, 1.5, 112.12, 1.5, 122.63, 1.29, 114.6, 1.3, 122.71, 1.25, 1.3327, 0.0128, 1.4635, 0.013, 1.5233, 0.0127, 1.5295, 0.0111, 1.2324, 0.0136], (-90, 80) : ['B', 23, 122.16, 1.5, 110.57, 1.35, 108.56, 1.74, 112.03, 1.56, 122.37, 1.15, 115.1, 1.26, 122.46, 1.19, 1.334, 0.0129, 1.4631, 0.0131, 1.5236, 0.0133, 1.5262, 0.012, 1.2329, 0.0127], (-90, 90) : ['B', 32, 122.34, 1.6, 110.49, 1.48, 107.98, 1.88, 111.68, 1.68, 121.58, 1.12, 115.89, 1.4, 122.43, 1.3, 1.3322, 0.014, 1.4628, 0.0128, 1.5236, 0.013, 1.5232, 0.0125, 1.2318, 0.0137], (-90, 100) : ['B', 58, 122.41, 1.47, 110.35, 1.49, 107.99, 1.76, 111.3, 1.7, 120.92, 1.04, 116.32, 1.37, 122.68, 1.27, 1.3311, 0.014, 1.4619, 0.0126, 1.5246, 0.0125, 1.5238, 0.0127, 1.2334, 0.0126], (-90, 110) : ['B', 92, 122.42, 1.33, 110.21, 1.59, 108.41, 1.61, 110.81, 1.65, 120.58, 1.07, 116.43, 1.27, 122.93, 1.2, 1.3308, 0.0143, 1.4593, 0.0123, 1.5266, 0.0127, 1.5247, 0.0125, 1.2354, 0.0123], (-90, 120) : ['B', 117, 122.3, 1.35, 110.17, 1.68, 108.96, 1.59, 110.22, 1.67, 120.43, 1.12, 116.39, 1.26, 123.13, 1.15, 1.3302, 0.0141, 1.4573, 0.0123, 1.5282, 0.0135, 1.5242, 0.0122, 1.236, 0.0124], (-90, 130) : ['B', 161, 122.19, 1.41, 110.16, 1.65, 109.46, 1.66, 109.8, 1.64, 120.54, 1.13, 116.2, 1.25, 123.22, 1.14, 1.3303, 0.0142, 1.4563, 0.0129, 1.5293, 0.0143, 1.5233, 0.0124, 1.2353, 0.0122], (-90, 140) : ['B', 135, 122.09, 1.48, 110.23, 1.62, 109.96, 1.68, 109.53, 1.65, 120.92, 1.15, 115.86, 1.24, 123.16, 1.16, 1.33, 0.0145, 1.4554, 0.0133, 1.5297, 0.0148, 1.5228, 0.0128, 1.2344, 0.0122], (-90, 150) : ['B', 98, 122.07, 1.71, 110.41, 1.63, 110.32, 1.59, 109.51, 1.71, 121.36, 1.2, 115.51, 1.24, 123.06, 1.12, 1.329, 0.0143, 1.4543, 0.0127, 1.5297, 0.0155, 1.5236, 0.0133, 1.234, 0.0123], (-90, 160) : ['B', 79, 122.07, 2.01, 110.46, 1.6, 110.52, 1.48, 109.83, 1.75, 121.72, 1.18, 115.27, 1.24, 122.94, 1.12, 1.3283, 0.0144, 1.4538, 0.0121, 1.5294, 0.0164, 1.5256, 0.0142, 1.2333, 0.0128], (-90, 170) : ['B', 63, 122.03, 2.01, 110.42, 1.52, 110.59, 1.45, 110.51, 1.89, 121.89, 1.17, 115.36, 1.37, 122.68, 1.17, 1.3287, 0.0144, 1.4533, 0.0122, 1.5289, 0.0165, 1.5271, 0.0141, 1.2329, 0.0132], (-80, -180) : ['B', 26, 121.66, 1.92, 110.38, 1.38, 110.35, 1.38, 111.71, 2.23, 121.88, 1.13, 115.82, 1.6, 122.23, 1.33, 1.3304, 0.0137, 1.4534, 0.0127, 1.5269, 0.0144, 1.5277, 0.0133, 1.2343, 0.0131], (-80, -170) : ['B', 16, 121.86, 1.65, 110.45, 1.44, 109.79, 1.56, 113.33, 2.26, 121.67, 1.26, 116.5, 1.63, 121.74, 1.31, 1.3298, 0.0142, 1.4562, 0.0114, 1.5262, 0.0144, 1.5282, 0.0134, 1.2341, 0.0107], (-80, -70) : ['B', 3, 120.89, 1.5, 110.1, 1.42, 111.04, 1.55, 111.39, 1.59, 120.89, 1.05, 116.93, 1.26, 122.11, 1.18, 1.3333, 0.0124, 1.463, 0.0108, 1.5323, 0.0128, 1.5263, 0.0107, 1.2348, 0.0103], (-80, -60) : ['B', 13, 120.88, 1.62, 110.07, 1.47, 111.24, 1.29, 110.86, 1.65, 120.8, 1.05, 117.04, 1.24, 122.11, 1.16, 1.3336, 0.013, 1.4592, 0.012, 1.5312, 0.0157, 1.525, 0.0125, 1.2357, 0.0117], (-80, -50) : ['B', 41, 120.71, 1.67, 110.13, 1.48, 111.4, 1.22, 110.79, 1.68, 120.55, 1.07, 117.23, 1.31, 122.17, 1.21, 1.334, 0.0141, 1.4587, 0.0124, 1.5297, 0.0163, 1.5242, 0.0129, 1.2359, 0.0119], (-80, -40) : ['B', 126, 120.58, 1.71, 110.2, 1.49, 111.69, 1.23, 110.7, 1.83, 120.24, 1.11, 117.48, 1.41, 122.23, 1.3, 1.3343, 0.0143, 1.4585, 0.0126, 1.5289, 0.0162, 1.5238, 0.0132, 1.2361, 0.0122], (-80, -30) : ['B', 165, 120.68, 1.7, 110.3, 1.54, 112.23, 1.26, 110.38, 2.04, 119.79, 1.18, 117.82, 1.42, 122.33, 1.34, 1.3344, 0.0146, 1.4579, 0.013, 1.5293, 0.0163, 1.5228, 0.0137, 1.2361, 0.0129], (-80, -20) : ['B', 196, 121.14, 1.75, 110.4, 1.63, 112.89, 1.24, 109.99, 2.09, 119.31, 1.24, 118.17, 1.33, 122.46, 1.38, 1.3341, 0.0149, 1.4568, 0.0133, 1.53, 0.0168, 1.5222, 0.0139, 1.2358, 0.0132], (-80, -10) : ['B', 265, 121.58, 1.95, 110.41, 1.68, 113.18, 1.21, 109.95, 1.99, 119.11, 1.28, 118.41, 1.34, 122.43, 1.46, 1.3332, 0.0149, 1.4565, 0.0131, 1.5305, 0.0175, 1.5224, 0.0137, 1.2358, 0.0131], (-80, 0) : ['B', 129, 121.94, 2.0, 110.42, 1.62, 113.2, 1.21, 110.11, 1.9, 119.12, 1.31, 118.44, 1.41, 122.39, 1.48, 1.3318, 0.0152, 1.4568, 0.0132, 1.5308, 0.0172, 1.5226, 0.0141, 1.2358, 0.0135], (-80, 10) : ['B', 33, 122.31, 2.0, 110.46, 1.54, 113.15, 1.19, 110.36, 1.85, 119.23, 1.54, 118.27, 1.59, 122.42, 1.61, 1.3312, 0.0162, 1.4567, 0.014, 1.5308, 0.0162, 1.5233, 0.018, 1.2358, 0.0147], (-80, 20) : ['B', 3, 122.55, 2.03, 110.57, 1.45, 113.21, 1.15, 110.72, 1.77, 119.36, 1.81, 118.15, 1.8, 122.34, 1.8, 1.3327, 0.0173, 1.4563, 0.0144, 1.5305, 0.0148, 1.5236, 0.0225, 1.2371, 0.0162], (-80, 40) : ['B', 3, 122.31, 1.81, 109.93, 1.82, 113.2, 1.36, 111.22, 1.24, 120.37, 1.56, 117.6, 1.76, 121.72, 1.44, 1.3314, 0.0178, 1.4619, 0.0136, 1.5267, 0.0115, 1.5234, 0.0162, 1.2334, 0.0138], (-80, 60) : ['B', 11, 122.21, 1.48, 110.49, 1.58, 110.7, 1.55, 111.91, 1.52, 122.44, 1.34, 114.9, 1.37, 122.61, 1.32, 1.3335, 0.0125, 1.4622, 0.0123, 1.5231, 0.0121, 1.5311, 0.0112, 1.2307, 0.0124], (-80, 70) : ['B', 23, 122.23, 1.54, 110.6, 1.51, 109.39, 1.59, 112.0, 1.61, 122.64, 1.25, 114.76, 1.14, 122.56, 1.31, 1.334, 0.0125, 1.4632, 0.0129, 1.5223, 0.0132, 1.5298, 0.011, 1.2329, 0.0109], (-80, 80) : ['B', 32, 122.26, 1.6, 110.58, 1.44, 108.52, 1.74, 111.83, 1.6, 122.41, 1.21, 115.14, 1.22, 122.38, 1.32, 1.3336, 0.0127, 1.4629, 0.013, 1.5235, 0.0141, 1.5265, 0.0121, 1.2337, 0.0114], (-80, 90) : ['B', 25, 122.32, 1.76, 110.46, 1.42, 108.17, 1.85, 111.41, 1.65, 121.66, 1.17, 115.84, 1.49, 122.41, 1.38, 1.3313, 0.0141, 1.4624, 0.0128, 1.5238, 0.0137, 1.5235, 0.0135, 1.232, 0.0137], (-80, 100) : ['B', 40, 122.17, 1.62, 110.24, 1.45, 108.23, 1.72, 111.05, 1.69, 120.98, 1.08, 116.37, 1.45, 122.57, 1.34, 1.3307, 0.0137, 1.4615, 0.0127, 1.5244, 0.0127, 1.5233, 0.013, 1.2331, 0.0128], (-80, 110) : ['B', 69, 121.99, 1.49, 109.94, 1.6, 108.67, 1.55, 110.77, 1.67, 120.6, 1.13, 116.54, 1.36, 122.82, 1.3, 1.331, 0.0138, 1.4594, 0.0124, 1.526, 0.0126, 1.524, 0.0126, 1.2354, 0.0122], (-80, 120) : ['B', 97, 121.72, 1.45, 109.87, 1.63, 109.25, 1.53, 110.29, 1.64, 120.49, 1.16, 116.46, 1.35, 123.02, 1.23, 1.3306, 0.0142, 1.4575, 0.0124, 1.5271, 0.0138, 1.5241, 0.013, 1.2359, 0.0121], (-80, 130) : ['B', 157, 121.5, 1.43, 109.95, 1.55, 109.76, 1.59, 109.84, 1.63, 120.69, 1.14, 116.23, 1.3, 123.04, 1.17, 1.3305, 0.0141, 1.4561, 0.0125, 1.5284, 0.0149, 1.5235, 0.0131, 1.2351, 0.0121], (-80, 140) : ['B', 152, 121.42, 1.43, 110.06, 1.51, 110.2, 1.58, 109.53, 1.69, 121.05, 1.14, 115.86, 1.26, 123.01, 1.18, 1.3301, 0.0138, 1.4553, 0.013, 1.5289, 0.0153, 1.523, 0.013, 1.2344, 0.0123], (-80, 150) : ['B', 121, 121.39, 1.66, 110.29, 1.52, 110.48, 1.48, 109.46, 1.84, 121.47, 1.15, 115.49, 1.24, 122.96, 1.13, 1.3295, 0.0136, 1.4542, 0.0131, 1.5291, 0.0158, 1.524, 0.0131, 1.2344, 0.0127], (-80, 160) : ['B', 107, 121.32, 2.1, 110.45, 1.52, 110.55, 1.35, 109.76, 1.99, 121.81, 1.18, 115.27, 1.3, 122.85, 1.14, 1.3296, 0.0137, 1.453, 0.0131, 1.5291, 0.0166, 1.5263, 0.0137, 1.2341, 0.0133], (-80, 170) : ['B', 79, 121.45, 2.14, 110.44, 1.43, 110.53, 1.29, 110.4, 2.07, 121.94, 1.15, 115.35, 1.42, 122.65, 1.23, 1.3299, 0.0138, 1.4527, 0.0131, 1.528, 0.0161, 1.5276, 0.0137, 1.234, 0.0135], (-70, -180) : ['B', 10, 121.29, 1.74, 110.25, 1.36, 110.19, 1.24, 111.3, 2.23, 122.01, 1.05, 115.58, 1.55, 122.36, 1.34, 1.3305, 0.0126, 1.4539, 0.0134, 1.5268, 0.0144, 1.5284, 0.0139, 1.2345, 0.0138], (-70, -170) : ['B', 5, 121.74, 1.58, 110.39, 1.51, 109.6, 1.53, 112.99, 2.1, 121.98, 1.13, 116.17, 1.54, 121.79, 1.24, 1.3282, 0.0126, 1.4564, 0.012, 1.5253, 0.0139, 1.5289, 0.014, 1.2342, 0.0114], (-70, -60) : ['B', 19, 120.63, 1.36, 109.98, 1.45, 111.03, 1.11, 110.95, 1.55, 120.9, 1.03, 117.02, 1.17, 122.03, 1.08, 1.3339, 0.0127, 1.4593, 0.0118, 1.53, 0.0157, 1.5241, 0.0124, 1.2365, 0.0116], (-70, -50) : ['B', 397, 120.44, 1.36, 110.07, 1.45, 111.14, 1.08, 110.9, 1.58, 120.7, 1.03, 117.17, 1.18, 122.09, 1.08, 1.3343, 0.0133, 1.4592, 0.012, 1.5289, 0.0158, 1.5238, 0.0126, 1.2366, 0.0116], (-70, -40) : ['B', 1251, 120.29, 1.42, 110.16, 1.48, 111.36, 1.09, 110.85, 1.7, 120.42, 1.06, 117.39, 1.24, 122.15, 1.14, 1.3348, 0.0136, 1.4591, 0.0123, 1.5283, 0.0159, 1.5235, 0.0129, 1.2366, 0.0119], (-70, -30) : ['B', 631, 120.31, 1.52, 110.28, 1.55, 111.82, 1.16, 110.67, 1.92, 119.97, 1.15, 117.72, 1.31, 122.27, 1.23, 1.3351, 0.0138, 1.4586, 0.0128, 1.5284, 0.0166, 1.5229, 0.0135, 1.2363, 0.0126], (-70, -20) : ['B', 436, 120.72, 1.67, 110.39, 1.66, 112.54, 1.22, 110.31, 2.09, 119.38, 1.23, 118.14, 1.31, 122.43, 1.34, 1.3349, 0.0138, 1.4575, 0.0133, 1.5291, 0.0174, 1.5224, 0.014, 1.2356, 0.0129], (-70, -10) : ['B', 279, 121.18, 1.98, 110.39, 1.75, 113.01, 1.2, 110.17, 2.04, 119.05, 1.3, 118.43, 1.33, 122.46, 1.38, 1.3343, 0.0138, 1.4571, 0.0135, 1.5294, 0.0178, 1.5222, 0.0138, 1.2357, 0.0129], (-70, 0) : ['B', 51, 121.52, 2.34, 110.42, 1.76, 113.19, 1.19, 110.27, 1.94, 118.91, 1.6, 118.59, 1.63, 122.41, 1.6, 1.3333, 0.0156, 1.4576, 0.0142, 1.5295, 0.0169, 1.5217, 0.0172, 1.2362, 0.0147], (-70, 10) : ['B', 5, 122.2, 3.42, 110.67, 2.08, 113.37, 1.38, 110.57, 1.93, 118.58, 3.46, 118.87, 3.45, 122.06, 3.24, 1.3307, 0.0256, 1.4602, 0.0212, 1.5291, 0.0153, 1.5179, 0.0401, 1.2388, 0.025], (-70, 80) : ['B', 4, 122.32, 1.63, 110.42, 1.66, 108.58, 1.82, 111.5, 1.64, 122.36, 1.21, 115.29, 1.18, 122.29, 1.4, 1.3334, 0.0131, 1.4628, 0.0123, 1.5244, 0.0153, 1.5265, 0.0115, 1.2334, 0.0106], (-70, 100) : ['B', 4, 122.07, 1.7, 109.88, 1.58, 108.63, 1.6, 110.88, 1.6, 121.02, 1.15, 116.45, 1.46, 122.48, 1.36, 1.3302, 0.0143, 1.4614, 0.013, 1.5245, 0.0122, 1.5231, 0.013, 1.2328, 0.0121], (-70, 110) : ['B', 17, 121.66, 1.56, 109.6, 1.64, 109.15, 1.44, 110.67, 1.52, 120.62, 1.19, 116.57, 1.39, 122.77, 1.35, 1.3309, 0.0142, 1.4595, 0.0128, 1.5257, 0.0125, 1.5238, 0.0129, 1.2352, 0.0115], (-70, 120) : ['B', 72, 121.24, 1.44, 109.71, 1.54, 109.59, 1.47, 110.26, 1.5, 120.58, 1.16, 116.43, 1.37, 122.96, 1.26, 1.3306, 0.0144, 1.4575, 0.0125, 1.5266, 0.0144, 1.5241, 0.0135, 1.2356, 0.0117], (-70, 130) : ['B', 187, 120.95, 1.4, 109.85, 1.49, 109.96, 1.5, 109.89, 1.6, 120.81, 1.15, 116.21, 1.33, 122.93, 1.23, 1.3305, 0.0137, 1.4564, 0.0122, 1.5279, 0.0158, 1.5237, 0.0133, 1.2349, 0.012], (-70, 140) : ['B', 209, 120.87, 1.42, 109.97, 1.47, 110.28, 1.48, 109.65, 1.71, 121.16, 1.12, 115.88, 1.28, 122.89, 1.22, 1.3301, 0.0132, 1.4557, 0.0122, 1.5284, 0.0166, 1.5236, 0.013, 1.2342, 0.0122], (-70, 150) : ['B', 177, 120.94, 1.57, 110.17, 1.44, 110.5, 1.41, 109.54, 1.84, 121.56, 1.09, 115.51, 1.27, 122.86, 1.18, 1.3299, 0.0131, 1.4548, 0.0127, 1.5287, 0.0166, 1.5248, 0.0132, 1.234, 0.0127], (-70, 160) : ['B', 123, 120.97, 1.82, 110.36, 1.43, 110.53, 1.32, 109.68, 2.05, 121.87, 1.16, 115.27, 1.34, 122.79, 1.14, 1.33, 0.0131, 1.4535, 0.0134, 1.5289, 0.0161, 1.5267, 0.0135, 1.2343, 0.0136], (-70, 170) : ['B', 65, 121.06, 1.88, 110.38, 1.37, 110.41, 1.23, 110.19, 2.18, 121.99, 1.14, 115.29, 1.44, 122.65, 1.22, 1.3304, 0.013, 1.4531, 0.0137, 1.5283, 0.0154, 1.5283, 0.0138, 1.2345, 0.014], (-60, -60) : ['B', 40, 120.65, 1.32, 109.91, 1.46, 110.97, 1.09, 110.96, 1.54, 121.0, 1.05, 116.92, 1.16, 122.03, 1.04, 1.3339, 0.0123, 1.459, 0.0117, 1.5298, 0.0157, 1.5242, 0.0124, 1.2363, 0.0115], (-60, -50) : ['B', 1284, 120.44, 1.3, 110.01, 1.45, 111.07, 1.07, 110.88, 1.57, 120.82, 1.05, 117.07, 1.14, 122.07, 1.03, 1.3344, 0.0127, 1.4593, 0.0119, 1.529, 0.0155, 1.5237, 0.0127, 1.2365, 0.0115], (-60, -40) : ['B', 2245, 120.28, 1.34, 110.12, 1.47, 111.28, 1.09, 110.79, 1.66, 120.55, 1.06, 117.3, 1.16, 122.12, 1.06, 1.3349, 0.0131, 1.4591, 0.0121, 1.5285, 0.0156, 1.5233, 0.013, 1.2367, 0.0117], (-60, -30) : ['B', 718, 120.28, 1.44, 110.22, 1.54, 111.71, 1.15, 110.63, 1.85, 120.1, 1.13, 117.63, 1.25, 122.22, 1.17, 1.3352, 0.0134, 1.4587, 0.0125, 1.5287, 0.0164, 1.5225, 0.0136, 1.2364, 0.0125], (-60, -20) : ['B', 299, 120.6, 1.6, 110.32, 1.7, 112.38, 1.22, 110.32, 2.11, 119.49, 1.21, 118.08, 1.3, 122.39, 1.3, 1.3349, 0.0135, 1.4577, 0.013, 1.5293, 0.0178, 1.5221, 0.0141, 1.2359, 0.0128], (-60, -10) : ['B', 59, 120.99, 1.86, 110.32, 1.82, 112.87, 1.2, 110.21, 2.19, 119.1, 1.26, 118.42, 1.31, 122.43, 1.33, 1.3345, 0.0133, 1.4573, 0.0135, 1.5297, 0.0187, 1.5219, 0.0143, 1.2361, 0.0128], (-60, 120) : ['B', 33, 121.02, 1.48, 109.51, 1.58, 109.96, 1.49, 110.16, 1.44, 120.7, 1.15, 116.24, 1.34, 123.01, 1.33, 1.3305, 0.0145, 1.457, 0.013, 1.528, 0.0155, 1.5229, 0.0142, 1.235, 0.012], (-60, 130) : ['B', 179, 120.82, 1.41, 109.69, 1.53, 110.1, 1.49, 109.9, 1.56, 120.92, 1.14, 116.06, 1.29, 122.95, 1.24, 1.3309, 0.0136, 1.4565, 0.0128, 1.5288, 0.0164, 1.5233, 0.0132, 1.2345, 0.012], (-60, 140) : ['B', 224, 120.71, 1.42, 109.83, 1.51, 110.23, 1.45, 109.72, 1.66, 121.19, 1.1, 115.85, 1.29, 122.87, 1.23, 1.3308, 0.0133, 1.456, 0.0123, 1.5293, 0.0169, 1.5236, 0.0126, 1.2341, 0.0119], (-60, 150) : ['B', 139, 120.75, 1.51, 110.04, 1.47, 110.35, 1.36, 109.62, 1.79, 121.55, 1.06, 115.56, 1.3, 122.81, 1.23, 1.3306, 0.0131, 1.4555, 0.0125, 1.5293, 0.017, 1.5246, 0.0128, 1.234, 0.0124], (-60, 160) : ['B', 61, 120.87, 1.69, 110.26, 1.43, 110.43, 1.31, 109.65, 2.07, 121.87, 1.1, 115.3, 1.33, 122.75, 1.17, 1.3305, 0.0129, 1.4541, 0.0132, 1.5287, 0.0159, 1.5266, 0.0134, 1.2341, 0.014], (-60, 170) : ['B', 21, 120.95, 1.78, 110.29, 1.36, 110.33, 1.29, 110.02, 2.3, 122.03, 1.13, 115.22, 1.43, 122.68, 1.18, 1.3306, 0.0129, 1.4528, 0.0141, 1.5281, 0.015, 1.5289, 0.0141, 1.2334, 0.0157], (-50, -60) : ['B', 13, 120.79, 1.39, 109.82, 1.52, 111.02, 1.22, 110.92, 1.59, 121.07, 1.1, 116.79, 1.28, 122.08, 1.07, 1.3341, 0.012, 1.4586, 0.0116, 1.5303, 0.0158, 1.5245, 0.0128, 1.2359, 0.0116], (-50, -50) : ['B', 233, 120.54, 1.35, 109.94, 1.49, 111.11, 1.2, 110.81, 1.6, 120.9, 1.07, 116.97, 1.2, 122.09, 1.04, 1.3345, 0.0125, 1.4591, 0.012, 1.5296, 0.0156, 1.5238, 0.0132, 1.2362, 0.0115], (-50, -40) : ['B', 254, 120.38, 1.37, 110.06, 1.5, 111.33, 1.21, 110.68, 1.7, 120.63, 1.08, 117.22, 1.17, 122.12, 1.06, 1.335, 0.013, 1.459, 0.0123, 1.5293, 0.0158, 1.523, 0.0135, 1.2365, 0.0118], (-50, -30) : ['B', 74, 120.38, 1.46, 110.14, 1.58, 111.75, 1.28, 110.46, 1.94, 120.2, 1.12, 117.56, 1.22, 122.2, 1.14, 1.3353, 0.0132, 1.4584, 0.0127, 1.5296, 0.0169, 1.522, 0.0139, 1.2364, 0.0124], (-50, -20) : ['B', 8, 120.63, 1.61, 110.18, 1.8, 112.34, 1.3, 110.18, 2.24, 119.61, 1.18, 118.01, 1.3, 122.33, 1.3, 1.335, 0.0135, 1.4576, 0.0129, 1.5304, 0.0185, 1.5216, 0.0145, 1.2363, 0.0128], (-50, 120) : ['B', 12, 121.26, 1.59, 109.28, 1.64, 110.3, 1.5, 110.06, 1.39, 120.8, 1.08, 116.07, 1.37, 123.07, 1.37, 1.3301, 0.0143, 1.4572, 0.0128, 1.5302, 0.0158, 1.5215, 0.014, 1.2346, 0.0126], (-50, 130) : ['B', 82, 121.05, 1.43, 109.48, 1.55, 110.24, 1.47, 109.84, 1.5, 120.96, 1.09, 115.91, 1.29, 123.06, 1.2, 1.3311, 0.0133, 1.4566, 0.0131, 1.5301, 0.0157, 1.5228, 0.0128, 1.234, 0.0122], (-50, 140) : ['B', 90, 120.9, 1.41, 109.69, 1.59, 110.24, 1.41, 109.7, 1.61, 121.15, 1.1, 115.79, 1.34, 122.97, 1.22, 1.3316, 0.0135, 1.4561, 0.0127, 1.5304, 0.0162, 1.5231, 0.0123, 1.2337, 0.0117], (-50, 150) : ['B', 27, 120.82, 1.47, 109.92, 1.6, 110.24, 1.3, 109.64, 1.77, 121.44, 1.08, 115.64, 1.39, 122.82, 1.28, 1.3317, 0.0137, 1.4557, 0.0125, 1.5304, 0.0166, 1.5234, 0.0123, 1.2344, 0.0121], (-40, -60) : ['B', 3, 121.19, 1.59, 109.72, 1.7, 111.37, 1.64, 110.84, 1.66, 121.02, 1.17, 116.69, 1.58, 122.2, 1.21, 1.3344, 0.012, 1.4573, 0.0117, 1.5322, 0.0158, 1.5249, 0.0137, 1.2362, 0.0121], (-40, -50) : ['B', 7, 120.82, 1.5, 109.78, 1.63, 111.37, 1.65, 110.74, 1.66, 120.92, 1.12, 116.91, 1.45, 122.11, 1.15, 1.3345, 0.0127, 1.4585, 0.0123, 1.5308, 0.0159, 1.5238, 0.0144, 1.2356, 0.0118], (-40, 120) : ['B', 5, 121.97, 1.73, 109.19, 1.54, 110.64, 1.48, 109.8, 1.23, 120.88, 0.94, 116.15, 1.34, 122.89, 1.24, 1.33, 0.0137, 1.4563, 0.0124, 1.5308, 0.0169, 1.5215, 0.0124, 1.2353, 0.0126], (-40, 130) : ['B', 9, 121.56, 1.56, 109.34, 1.53, 110.42, 1.46, 109.71, 1.39, 120.95, 1.0, 115.86, 1.29, 123.11, 1.12, 1.331, 0.0129, 1.4567, 0.0131, 1.531, 0.0165, 1.5226, 0.0123, 1.2336, 0.0123], (-40, 140) : ['B', 5, 121.31, 1.49, 109.56, 1.65, 110.35, 1.4, 109.61, 1.58, 121.07, 1.08, 115.73, 1.39, 123.12, 1.2, 1.3323, 0.0137, 1.4566, 0.0132, 1.5316, 0.0166, 1.5224, 0.0126, 1.2334, 0.0119], (40, 50) : ['B', 5, 122.46, 1.41, 111.62, 1.43, 111.3, 1.36, 111.95, 1.5, 122.03, 1.17, 115.33, 1.34, 122.57, 1.25, 1.3299, 0.0129, 1.4597, 0.0154, 1.5271, 0.017, 1.5259, 0.0135, 1.2329, 0.0122], (40, 60) : ['B', 4, 122.82, 1.42, 111.71, 1.52, 111.17, 1.41, 112.06, 1.57, 122.27, 1.16, 114.81, 1.42, 122.86, 1.2, 1.3277, 0.013, 1.4598, 0.0142, 1.5271, 0.0161, 1.5275, 0.0136, 1.2312, 0.0116], (50, -150) : ['B', 3, 121.76, 2.19, 111.08, 2.12, 109.32, 1.84, 115.79, 1.19, 120.83, 1.43, 117.21, 1.44, 121.92, 2.08, 1.3248, 0.0114, 1.4632, 0.013, 1.5175, 0.0208, 1.5298, 0.014, 1.2352, 0.0103], (50, -130) : ['B', 4, 122.89, 1.72, 111.04, 2.5, 108.31, 1.52, 116.54, 1.15, 119.21, 1.59, 119.52, 0.79, 121.23, 1.57, 1.3315, 0.014, 1.4665, 0.0173, 1.522, 0.0186, 1.5292, 0.0093, 1.2388, 0.0096], (50, 20) : ['B', 3, 122.61, 1.56, 112.28, 1.49, 112.47, 1.24, 111.48, 1.59, 120.55, 1.28, 117.24, 1.65, 122.11, 1.89, 1.3324, 0.0141, 1.4617, 0.0148, 1.532, 0.0151, 1.5249, 0.0163, 1.2352, 0.0159], (50, 30) : ['B', 22, 122.08, 1.47, 112.08, 1.51, 111.9, 1.32, 111.66, 1.57, 121.08, 1.25, 116.59, 1.47, 122.23, 1.61, 1.3331, 0.0139, 1.462, 0.0154, 1.5302, 0.0154, 1.5255, 0.0139, 1.2334, 0.0143], (50, 40) : ['B', 69, 122.07, 1.43, 111.84, 1.49, 111.54, 1.36, 111.8, 1.46, 121.54, 1.16, 115.97, 1.27, 122.4, 1.31, 1.3323, 0.014, 1.4612, 0.0152, 1.529, 0.0162, 1.5261, 0.0129, 1.2329, 0.013], (50, 50) : ['B', 61, 122.36, 1.42, 111.7, 1.48, 111.39, 1.38, 111.89, 1.42, 121.84, 1.16, 115.51, 1.3, 122.55, 1.24, 1.3313, 0.0136, 1.4603, 0.0151, 1.529, 0.0158, 1.527, 0.013, 1.233, 0.0128], (50, 60) : ['B', 16, 122.68, 1.47, 111.65, 1.58, 111.24, 1.38, 112.09, 1.54, 122.14, 1.24, 114.92, 1.43, 122.86, 1.23, 1.3302, 0.013, 1.4599, 0.0145, 1.5304, 0.0151, 1.5287, 0.0126, 1.2323, 0.0137], (50, 70) : ['B', 3, 122.78, 1.52, 111.4, 1.75, 111.02, 1.25, 112.3, 1.84, 122.45, 1.3, 114.17, 1.55, 123.32, 1.27, 1.3306, 0.0123, 1.4607, 0.0138, 1.5316, 0.0136, 1.5313, 0.0108, 1.231, 0.0147], (60, -150) : ['B', 3, 121.53, 2.25, 111.15, 2.02, 109.02, 1.68, 115.89, 1.32, 120.71, 1.34, 117.19, 1.5, 122.05, 2.1, 1.3275, 0.0111, 1.4668, 0.0132, 1.5168, 0.0241, 1.5312, 0.0135, 1.238, 0.0102], (60, -140) : ['B', 5, 122.04, 2.11, 111.3, 2.5, 108.0, 1.48, 116.34, 1.4, 119.8, 1.49, 118.73, 1.19, 121.42, 1.92, 1.327, 0.0106, 1.4707, 0.0174, 1.5134, 0.0259, 1.5322, 0.0112, 1.2406, 0.0108], (60, -130) : ['B', 8, 122.66, 1.73, 111.16, 2.8, 108.08, 1.69, 116.63, 1.16, 119.13, 1.65, 119.63, 0.81, 121.2, 1.61, 1.3298, 0.0123, 1.4673, 0.0165, 1.5231, 0.0194, 1.5276, 0.0088, 1.2416, 0.01], (60, -120) : ['B', 3, 123.04, 1.46, 110.71, 2.51, 108.67, 1.67, 117.23, 1.36, 118.65, 1.53, 119.98, 0.85, 121.33, 1.26, 1.3322, 0.0138, 1.4651, 0.0122, 1.5296, 0.0153, 1.5239, 0.0095, 1.2434, 0.0095], (60, 10) : ['B', 7, 123.91, 1.66, 112.78, 1.53, 113.38, 1.17, 111.23, 1.63, 119.78, 1.07, 118.08, 1.31, 122.04, 1.4, 1.3306, 0.014, 1.459, 0.0115, 1.5334, 0.0166, 1.5226, 0.0149, 1.2371, 0.0161], (60, 20) : ['B', 33, 123.05, 1.57, 112.41, 1.55, 112.86, 1.22, 111.36, 1.63, 120.32, 1.18, 117.49, 1.62, 122.09, 1.83, 1.332, 0.014, 1.4599, 0.0139, 1.5324, 0.0156, 1.524, 0.0157, 1.2353, 0.0162], (60, 30) : ['B', 75, 122.4, 1.45, 112.3, 1.52, 112.24, 1.28, 111.51, 1.58, 120.81, 1.24, 116.87, 1.56, 122.21, 1.73, 1.333, 0.0139, 1.4613, 0.0149, 1.5309, 0.0151, 1.5254, 0.014, 1.2335, 0.0144], (60, 40) : ['B', 86, 122.19, 1.41, 112.13, 1.51, 111.74, 1.35, 111.73, 1.42, 121.28, 1.19, 116.21, 1.29, 122.41, 1.34, 1.3328, 0.0145, 1.4619, 0.0146, 1.5297, 0.015, 1.5266, 0.0127, 1.2327, 0.0129], (60, 50) : ['B', 49, 122.34, 1.39, 111.91, 1.52, 111.52, 1.4, 111.86, 1.34, 121.65, 1.17, 115.67, 1.23, 122.58, 1.2, 1.3328, 0.0142, 1.4616, 0.0146, 1.5302, 0.0148, 1.528, 0.0125, 1.2328, 0.013], (60, 60) : ['B', 20, 122.63, 1.44, 111.74, 1.58, 111.28, 1.35, 112.11, 1.46, 122.03, 1.25, 114.98, 1.34, 122.91, 1.19, 1.3326, 0.0129, 1.461, 0.0141, 1.5321, 0.0148, 1.5302, 0.0117, 1.2328, 0.0147], (60, 70) : ['B', 4, 122.93, 1.51, 111.53, 1.66, 110.91, 1.17, 112.27, 1.75, 122.44, 1.32, 114.17, 1.45, 123.33, 1.22, 1.3334, 0.0119, 1.4617, 0.0131, 1.5333, 0.0137, 1.5324, 0.0096, 1.2327, 0.0154], (70, 0) : ['B', 8, 125.02, 1.76, 113.65, 1.47, 113.72, 1.52, 110.65, 1.95, 119.16, 1.33, 118.87, 1.18, 121.87, 1.05, 1.332, 0.0124, 1.4582, 0.0137, 1.535, 0.0137, 1.5221, 0.0151, 1.2372, 0.0195], (70, 10) : ['B', 22, 124.31, 1.67, 113.15, 1.63, 113.56, 1.39, 111.06, 1.89, 119.59, 1.31, 118.3, 1.26, 122.0, 1.25, 1.332, 0.0134, 1.4587, 0.0132, 1.5324, 0.0143, 1.5218, 0.0133, 1.2378, 0.0183], (70, 20) : ['B', 28, 123.47, 1.53, 112.63, 1.61, 113.23, 1.22, 111.26, 1.67, 120.12, 1.15, 117.74, 1.58, 122.03, 1.61, 1.3324, 0.0138, 1.4582, 0.0135, 1.5324, 0.0153, 1.5227, 0.0145, 1.2353, 0.0166], (70, 30) : ['B', 32, 122.74, 1.44, 112.47, 1.52, 112.58, 1.22, 111.39, 1.55, 120.57, 1.2, 117.12, 1.63, 122.2, 1.67, 1.3334, 0.0138, 1.4595, 0.0148, 1.5314, 0.0153, 1.5252, 0.014, 1.233, 0.0145], (70, 40) : ['B', 15, 122.35, 1.46, 112.46, 1.57, 111.92, 1.34, 111.63, 1.36, 120.98, 1.24, 116.45, 1.35, 122.47, 1.32, 1.3334, 0.0143, 1.4616, 0.015, 1.5303, 0.0147, 1.5278, 0.0132, 1.2316, 0.0134], (70, 50) : ['B', 6, 122.36, 1.47, 112.25, 1.6, 111.56, 1.43, 111.82, 1.28, 121.4, 1.19, 115.83, 1.18, 122.67, 1.13, 1.334, 0.0142, 1.4629, 0.0147, 1.5308, 0.0145, 1.5298, 0.013, 1.2316, 0.0136], (80, -10) : ['B', 5, 126.45, 1.77, 114.17, 1.14, 113.28, 1.57, 110.06, 1.44, 119.0, 1.0, 119.38, 1.24, 121.56, 0.95, 1.3309, 0.0135, 1.4561, 0.0123, 1.541, 0.012, 1.5257, 0.0175, 1.2318, 0.0169], (80, 0) : ['B', 8, 125.66, 1.85, 114.27, 1.64, 113.29, 2.0, 110.35, 1.91, 118.94, 1.62, 119.08, 1.35, 121.88, 1.07, 1.3305, 0.0135, 1.4583, 0.0177, 1.5368, 0.0131, 1.5243, 0.015, 1.2378, 0.023], (80, 10) : ['B', 7, 124.82, 1.78, 113.89, 1.93, 113.31, 2.04, 110.76, 2.18, 119.32, 1.87, 118.58, 1.48, 121.97, 1.26, 1.3315, 0.0143, 1.4595, 0.0195, 1.5318, 0.0133, 1.5222, 0.012, 1.2409, 0.0243], (80, 20) : ['B', 4, 123.93, 1.54, 113.1, 1.75, 113.4, 1.47, 111.06, 1.83, 119.96, 1.46, 118.02, 1.74, 121.91, 1.5, 1.3325, 0.0146, 1.4574, 0.0158, 1.532, 0.0142, 1.5218, 0.0129, 1.2359, 0.0188], (90, -10) : ['B', 3, 126.86, 1.57, 114.1, 1.0, 113.51, 1.52, 109.83, 0.99, 119.18, 0.82, 118.88, 1.17, 121.89, 0.98, 1.332, 0.0136, 1.4596, 0.0128, 1.5386, 0.012, 1.5236, 0.0151, 1.2297, 0.0131], (90, 0) : ['B', 3, 126.32, 1.74, 114.45, 1.56, 113.2, 2.08, 110.04, 1.51, 118.92, 1.52, 119.01, 1.38, 122.0, 1.02, 1.3304, 0.0138, 1.4602, 0.0183, 1.5381, 0.0135, 1.5241, 0.0143, 1.2361, 0.0215], }, "NonPGIV_xpro" : { (-180, -180) : ['I', 511, 121.8, 2.44, 110.37, 1.78, 109.81, 2.21, 110.17, 1.97, 120.16, 1.37, 118.44, 1.59, 121.32, 1.15, 1.331, 0.0207, 1.4569, 0.0141, 1.5298, 0.0158, 1.5238, 0.0126, 1.2378, 0.0128], (-170, 160) : ['B', 4, 122.56, 1.58, 111.27, 0.94, 108.13, 0.9, 110.03, 1.37, 120.13, 0.86, 117.62, 1.03, 122.17, 1.05, 1.3266, 0.0105, 1.4562, 0.0098, 1.5375, 0.014, 1.5257, 0.0147, 1.2343, 0.0156], (-160, 140) : ['B', 4, 121.68, 2.38, 110.65, 1.86, 107.95, 2.14, 109.63, 1.47, 119.13, 1.0, 118.95, 1.29, 121.84, 0.78, 1.336, 0.0148, 1.4556, 0.0148, 1.5329, 0.0149, 1.5173, 0.0107, 1.2388, 0.0112], (-160, 150) : ['B', 4, 122.08, 1.83, 110.77, 1.39, 108.11, 1.29, 109.92, 1.36, 119.76, 0.97, 118.33, 1.0, 121.83, 0.78, 1.3317, 0.0121, 1.4562, 0.0104, 1.5358, 0.015, 1.5191, 0.0129, 1.2362, 0.0121], (-160, 160) : ['B', 12, 122.26, 1.6, 111.1, 1.05, 108.22, 0.9, 110.22, 1.32, 120.26, 0.95, 117.96, 0.81, 121.71, 0.91, 1.3292, 0.0116, 1.4556, 0.0104, 1.5374, 0.0147, 1.521, 0.013, 1.2369, 0.013], (-160, 170) : ['B', 3, 122.06, 1.45, 111.29, 1.03, 108.07, 0.89, 110.76, 1.22, 120.56, 0.91, 117.82, 0.78, 121.56, 0.99, 1.328, 0.0113, 1.4565, 0.0094, 1.5384, 0.0138, 1.5207, 0.0119, 1.239, 0.0132], (-150, 70) : ['B', 4, 122.37, 0.93, 110.71, 1.13, 108.76, 1.44, 111.15, 1.24, 121.34, 0.94, 117.43, 0.85, 121.19, 0.73, 1.3343, 0.0122, 1.464, 0.0111, 1.5281, 0.013, 1.5222, 0.0113, 1.2364, 0.0116], (-150, 80) : ['B', 4, 122.28, 0.88, 111.23, 1.27, 108.82, 1.65, 110.87, 1.39, 121.32, 1.0, 117.52, 0.79, 121.12, 0.78, 1.331, 0.0118, 1.4639, 0.0098, 1.5294, 0.0131, 1.5196, 0.0131, 1.2372, 0.0112], (-150, 90) : ['B', 4, 122.0, 1.08, 111.77, 1.43, 108.55, 1.79, 110.81, 1.27, 121.06, 0.97, 117.67, 0.88, 121.23, 0.7, 1.3318, 0.0086, 1.4627, 0.0093, 1.5278, 0.0107, 1.5189, 0.0153, 1.2385, 0.0112], (-150, 100) : ['B', 4, 122.26, 1.1, 111.78, 1.71, 108.12, 1.97, 110.98, 1.18, 120.63, 1.05, 118.05, 0.95, 121.27, 0.6, 1.3315, 0.0056, 1.4627, 0.0088, 1.5263, 0.0093, 1.5215, 0.0152, 1.241, 0.0105], (-150, 130) : ['B', 3, 122.13, 2.52, 111.11, 2.74, 107.32, 3.39, 109.65, 1.3, 119.22, 1.02, 118.56, 1.31, 122.16, 1.18, 1.3346, 0.0141, 1.4515, 0.0273, 1.5292, 0.0166, 1.5227, 0.0119, 1.2416, 0.0142], (-150, 140) : ['B', 6, 122.31, 2.45, 111.25, 2.24, 107.84, 2.84, 109.45, 1.45, 119.5, 1.06, 118.36, 1.35, 122.06, 1.02, 1.3345, 0.0142, 1.453, 0.0223, 1.5321, 0.0169, 1.5205, 0.0116, 1.2398, 0.0124], (-150, 150) : ['B', 8, 122.45, 2.03, 111.17, 1.7, 108.23, 1.62, 109.55, 1.57, 119.91, 1.02, 118.16, 1.08, 121.85, 0.7, 1.3305, 0.012, 1.4551, 0.0125, 1.5361, 0.0148, 1.519, 0.0116, 1.2369, 0.0107], (-150, 160) : ['B', 7, 122.38, 1.73, 111.25, 1.41, 108.25, 1.16, 109.97, 1.55, 120.34, 0.92, 117.95, 0.77, 121.65, 0.73, 1.328, 0.0114, 1.4547, 0.0096, 1.5347, 0.0136, 1.519, 0.0109, 1.2368, 0.0103], (-150, 170) : ['B', 3, 122.07, 1.44, 111.35, 1.27, 108.14, 1.15, 110.37, 1.37, 120.71, 0.87, 117.68, 0.71, 121.54, 0.85, 1.3266, 0.0119, 1.4555, 0.0087, 1.5332, 0.0132, 1.5176, 0.0096, 1.2375, 0.0096], (-140, 60) : ['B', 4, 122.59, 1.11, 110.74, 1.4, 109.3, 1.49, 111.41, 1.38, 121.29, 1.02, 117.47, 0.99, 121.2, 0.84, 1.333, 0.0137, 1.4643, 0.0103, 1.5284, 0.0117, 1.5241, 0.0121, 1.2341, 0.0113], (-140, 70) : ['B', 17, 122.85, 1.1, 110.79, 1.3, 108.75, 1.7, 111.27, 1.47, 121.28, 1.1, 117.44, 0.92, 121.23, 0.81, 1.3315, 0.0133, 1.464, 0.0107, 1.5303, 0.0122, 1.5218, 0.0126, 1.2365, 0.0115], (-140, 80) : ['B', 15, 122.74, 1.06, 111.09, 1.24, 108.71, 2.02, 111.15, 1.65, 121.22, 1.16, 117.57, 0.87, 121.17, 0.85, 1.331, 0.0139, 1.4635, 0.0109, 1.5308, 0.0133, 1.5203, 0.0125, 1.2372, 0.0111], (-140, 90) : ['B', 6, 122.42, 1.23, 111.4, 1.31, 108.81, 2.23, 111.02, 1.53, 121.0, 1.13, 117.69, 0.95, 121.27, 0.8, 1.3323, 0.0114, 1.4618, 0.0106, 1.5292, 0.012, 1.521, 0.0123, 1.2379, 0.0108], (-140, 100) : ['B', 6, 122.52, 1.16, 111.39, 1.7, 108.64, 2.18, 111.01, 1.38, 120.34, 1.14, 118.14, 0.98, 121.44, 0.83, 1.3317, 0.0075, 1.4618, 0.0093, 1.5266, 0.0105, 1.5235, 0.0122, 1.242, 0.0097], (-140, 130) : ['B', 6, 122.4, 1.98, 110.48, 2.94, 107.37, 2.96, 110.16, 1.33, 119.72, 0.91, 118.39, 1.28, 121.79, 1.18, 1.335, 0.0143, 1.4549, 0.024, 1.5315, 0.0167, 1.5251, 0.0107, 1.245, 0.0153], (-140, 140) : ['B', 8, 122.67, 2.19, 110.95, 2.25, 108.4, 2.52, 109.2, 1.5, 120.03, 1.08, 117.94, 1.37, 121.94, 1.05, 1.3332, 0.0139, 1.4536, 0.0209, 1.5352, 0.0163, 1.5224, 0.0106, 1.2403, 0.0129], (-140, 150) : ['B', 16, 122.9, 2.07, 111.19, 1.8, 108.82, 1.69, 108.91, 1.65, 120.28, 1.03, 117.75, 1.17, 121.88, 0.71, 1.3288, 0.0121, 1.4538, 0.013, 1.5372, 0.0138, 1.5203, 0.0102, 1.237, 0.0105], (-140, 160) : ['B', 11, 123.11, 1.79, 111.18, 1.8, 108.55, 1.56, 109.32, 1.71, 120.5, 0.92, 117.71, 0.92, 121.71, 0.64, 1.3256, 0.0112, 1.4533, 0.0092, 1.5349, 0.0121, 1.5193, 0.0095, 1.2359, 0.0089], (-130, 50) : ['B', 5, 122.28, 1.02, 110.75, 1.72, 110.73, 1.55, 111.11, 1.28, 121.07, 0.96, 117.84, 0.97, 121.05, 0.88, 1.3356, 0.0153, 1.4647, 0.0105, 1.5251, 0.0124, 1.5272, 0.0111, 1.2311, 0.01], (-130, 60) : ['B', 13, 122.89, 1.12, 110.75, 1.57, 109.79, 1.6, 111.21, 1.31, 121.15, 1.16, 117.64, 1.06, 121.17, 0.93, 1.331, 0.0135, 1.4636, 0.0105, 1.5276, 0.0114, 1.5241, 0.0123, 1.2346, 0.0116], (-130, 70) : ['B', 26, 123.15, 1.21, 110.99, 1.58, 108.94, 1.76, 111.14, 1.56, 121.02, 1.28, 117.59, 1.03, 121.34, 0.89, 1.3311, 0.0135, 1.4626, 0.0111, 1.5293, 0.0113, 1.5232, 0.0124, 1.237, 0.0117], (-130, 80) : ['B', 18, 123.16, 1.23, 111.21, 1.47, 108.39, 2.1, 111.29, 1.92, 120.83, 1.35, 117.75, 0.99, 121.37, 0.9, 1.332, 0.0148, 1.4627, 0.0121, 1.5295, 0.0132, 1.5224, 0.0116, 1.2387, 0.0117], (-130, 90) : ['B', 8, 122.98, 1.37, 111.2, 1.41, 108.4, 2.37, 111.2, 1.81, 120.74, 1.26, 117.89, 1.02, 121.32, 0.91, 1.3324, 0.0132, 1.4621, 0.0115, 1.5274, 0.014, 1.5221, 0.0105, 1.239, 0.0117], (-130, 100) : ['B', 3, 122.74, 1.36, 111.03, 1.76, 108.74, 2.22, 110.71, 1.53, 120.08, 1.14, 118.34, 1.03, 121.47, 1.16, 1.3306, 0.0098, 1.462, 0.01, 1.5241, 0.014, 1.5228, 0.0114, 1.2438, 0.0093], (-130, 110) : ['B', 5, 122.64, 1.25, 110.61, 1.94, 108.73, 2.16, 110.55, 1.66, 119.49, 1.03, 118.9, 1.07, 121.47, 1.39, 1.3279, 0.0096, 1.4621, 0.0105, 1.5264, 0.012, 1.5217, 0.0117, 1.2488, 0.0085], (-130, 120) : ['B', 5, 122.56, 1.34, 110.5, 2.04, 107.91, 2.05, 110.62, 1.57, 119.59, 0.78, 119.06, 1.05, 121.23, 1.13, 1.3315, 0.0105, 1.4598, 0.0129, 1.5309, 0.0146, 1.5223, 0.0084, 1.2485, 0.0126], (-130, 130) : ['B', 5, 122.48, 1.77, 110.27, 2.2, 108.45, 1.93, 110.02, 1.5, 119.86, 0.96, 118.63, 1.21, 121.38, 0.96, 1.3324, 0.014, 1.4546, 0.0161, 1.5351, 0.02, 1.524, 0.0081, 1.2437, 0.0141], (-130, 140) : ['B', 11, 122.36, 2.42, 110.42, 1.9, 109.48, 1.75, 109.15, 1.6, 120.23, 1.21, 117.93, 1.42, 121.72, 0.98, 1.3318, 0.0146, 1.4526, 0.015, 1.5361, 0.0183, 1.5223, 0.0091, 1.2373, 0.0138], (-130, 150) : ['B', 14, 122.74, 2.44, 110.72, 1.76, 109.58, 1.63, 108.87, 1.55, 120.46, 1.13, 117.62, 1.32, 121.8, 0.86, 1.3288, 0.0135, 1.4527, 0.0118, 1.5359, 0.0146, 1.5204, 0.0099, 1.2353, 0.0129], (-130, 160) : ['B', 11, 123.65, 1.88, 110.63, 1.85, 109.09, 1.74, 109.22, 1.52, 120.64, 0.99, 117.67, 1.08, 121.55, 0.78, 1.325, 0.0125, 1.4531, 0.0083, 1.5361, 0.0123, 1.519, 0.0101, 1.2359, 0.0101], (-130, 170) : ['B', 4, 123.96, 1.44, 110.09, 1.81, 109.06, 1.78, 109.56, 1.51, 120.94, 1.01, 117.59, 0.99, 121.32, 0.85, 1.325, 0.0124, 1.4551, 0.007, 1.5378, 0.0129, 1.5166, 0.0102, 1.2353, 0.0082], (-120, 60) : ['B', 4, 123.21, 1.19, 110.9, 1.73, 110.02, 1.78, 110.96, 1.33, 120.87, 1.24, 117.78, 1.06, 121.31, 0.99, 1.3316, 0.0122, 1.4619, 0.0099, 1.5264, 0.0109, 1.5255, 0.0115, 1.2368, 0.0111], (-120, 70) : ['B', 14, 123.34, 1.29, 111.24, 1.83, 108.97, 1.82, 110.87, 1.58, 120.8, 1.32, 117.73, 1.04, 121.42, 0.91, 1.3336, 0.0127, 1.4611, 0.0107, 1.5275, 0.0107, 1.5254, 0.0112, 1.2387, 0.0108], (-120, 80) : ['B', 10, 123.46, 1.35, 111.3, 1.66, 108.21, 2.0, 111.12, 1.86, 120.64, 1.37, 117.95, 1.04, 121.36, 0.91, 1.3351, 0.014, 1.4615, 0.0119, 1.5279, 0.0127, 1.5246, 0.0104, 1.2406, 0.0115], (-120, 90) : ['B', 7, 123.3, 1.44, 110.88, 1.54, 108.27, 2.25, 110.97, 1.58, 120.54, 1.21, 118.36, 1.11, 121.04, 0.98, 1.3339, 0.0126, 1.4625, 0.0107, 1.5276, 0.0141, 1.5229, 0.01, 1.2414, 0.0123], (-120, 100) : ['B', 7, 122.66, 1.43, 110.43, 1.7, 108.93, 2.22, 110.34, 1.3, 120.09, 0.98, 118.8, 1.21, 121.02, 1.13, 1.3302, 0.0121, 1.4633, 0.0108, 1.5279, 0.0136, 1.5216, 0.0123, 1.2443, 0.01], (-120, 110) : ['B', 7, 122.42, 1.52, 110.17, 1.86, 109.11, 2.13, 110.13, 1.4, 119.62, 0.94, 119.18, 1.5, 121.12, 1.33, 1.3273, 0.0132, 1.4627, 0.0122, 1.5287, 0.0126, 1.521, 0.0132, 1.2461, 0.0092], (-120, 120) : ['B', 5, 122.65, 1.66, 110.27, 1.88, 108.85, 1.88, 110.13, 1.34, 119.55, 0.96, 119.28, 1.61, 121.1, 1.23, 1.3306, 0.0124, 1.4577, 0.014, 1.531, 0.0179, 1.5222, 0.0108, 1.2435, 0.011], (-120, 130) : ['B', 4, 122.7, 1.98, 110.23, 1.77, 109.4, 1.6, 109.42, 1.35, 119.69, 1.02, 118.81, 1.29, 121.39, 0.89, 1.3308, 0.0136, 1.4509, 0.017, 1.5384, 0.0255, 1.5227, 0.0106, 1.2395, 0.0116], (-120, 140) : ['B', 8, 122.21, 2.87, 110.49, 1.9, 110.14, 1.51, 108.88, 1.5, 120.04, 1.2, 118.16, 1.34, 121.66, 0.94, 1.3325, 0.0159, 1.4508, 0.0169, 1.5365, 0.0207, 1.5238, 0.0118, 1.2359, 0.0127], (-120, 150) : ['B', 5, 122.38, 2.9, 110.7, 2.02, 110.1, 1.53, 108.84, 1.51, 120.41, 1.19, 117.88, 1.36, 121.57, 0.97, 1.3312, 0.0159, 1.4521, 0.0154, 1.5342, 0.0141, 1.5242, 0.0127, 1.2352, 0.013], (-120, 160) : ['B', 8, 123.56, 1.98, 110.39, 1.79, 109.82, 1.68, 109.08, 1.53, 120.66, 1.03, 117.84, 1.16, 121.35, 0.85, 1.3268, 0.0139, 1.4522, 0.0111, 1.5358, 0.0125, 1.5227, 0.0125, 1.2369, 0.0103], (-110, 90) : ['B', 6, 123.08, 1.72, 110.38, 1.67, 108.66, 2.16, 110.65, 1.04, 120.38, 1.03, 118.87, 1.06, 120.68, 1.09, 1.3341, 0.0132, 1.4604, 0.0104, 1.5309, 0.0122, 1.5232, 0.0122, 1.2401, 0.0124], (-110, 100) : ['B', 7, 122.35, 1.8, 110.12, 1.61, 109.01, 2.07, 110.33, 1.02, 119.99, 0.87, 119.12, 1.18, 120.83, 1.06, 1.3323, 0.015, 1.4597, 0.011, 1.5317, 0.0126, 1.5228, 0.0131, 1.2411, 0.0114], (-110, 110) : ['B', 7, 122.06, 1.78, 110.05, 1.7, 109.1, 1.91, 110.17, 1.11, 119.59, 0.92, 119.25, 1.6, 121.12, 1.14, 1.3303, 0.0158, 1.4583, 0.0125, 1.5297, 0.0138, 1.5215, 0.0122, 1.2415, 0.0116], (-110, 120) : ['B', 6, 122.28, 1.77, 110.05, 1.79, 109.15, 1.67, 110.15, 1.15, 119.54, 1.26, 119.14, 2.03, 121.29, 1.24, 1.3321, 0.0144, 1.4558, 0.0158, 1.5281, 0.0168, 1.52, 0.0118, 1.2403, 0.0114], (-110, 130) : ['B', 4, 122.31, 2.34, 109.94, 1.7, 109.64, 1.56, 109.47, 1.18, 119.67, 1.24, 118.67, 1.79, 121.6, 1.18, 1.3318, 0.0192, 1.4535, 0.0174, 1.5333, 0.0199, 1.5191, 0.0128, 1.2385, 0.0114], (-110, 140) : ['B', 9, 121.95, 3.74, 110.45, 2.07, 110.32, 1.51, 108.76, 1.37, 120.05, 1.15, 118.12, 1.58, 121.7, 1.29, 1.3346, 0.0304, 1.4527, 0.0179, 1.5336, 0.0157, 1.5238, 0.014, 1.2362, 0.0125], (-110, 150) : ['B', 12, 122.15, 3.47, 110.56, 2.27, 110.4, 1.43, 108.63, 1.54, 120.54, 1.23, 117.93, 1.49, 121.39, 1.18, 1.3326, 0.0274, 1.4524, 0.018, 1.5335, 0.013, 1.5258, 0.0143, 1.2351, 0.0121], (-110, 160) : ['B', 12, 123.15, 2.23, 110.1, 1.88, 110.5, 1.52, 108.91, 1.53, 120.87, 1.11, 117.8, 1.26, 121.2, 0.9, 1.3267, 0.0171, 1.4524, 0.015, 1.5348, 0.0142, 1.5229, 0.0142, 1.2357, 0.01], (-110, 170) : ['B', 4, 124.01, 1.84, 109.82, 1.44, 110.58, 1.56, 109.48, 1.46, 121.08, 0.89, 117.67, 1.09, 121.14, 0.72, 1.3237, 0.0138, 1.4515, 0.013, 1.533, 0.0149, 1.522, 0.0157, 1.2356, 0.0081], (-100, 100) : ['B', 8, 122.17, 2.19, 110.11, 1.5, 108.59, 1.96, 110.44, 0.9, 119.71, 0.81, 119.38, 1.1, 120.85, 1.01, 1.3344, 0.0172, 1.4556, 0.0113, 1.5313, 0.0136, 1.5229, 0.0155, 1.2405, 0.0129], (-100, 110) : ['B', 11, 121.76, 1.74, 110.07, 1.47, 108.69, 1.8, 110.17, 0.99, 119.36, 0.84, 119.4, 1.32, 121.19, 0.94, 1.333, 0.0169, 1.4544, 0.0121, 1.5275, 0.015, 1.5201, 0.0122, 1.2407, 0.0133], (-100, 120) : ['B', 8, 121.83, 1.56, 110.01, 1.46, 109.04, 1.52, 109.85, 1.14, 119.32, 1.12, 119.28, 1.69, 121.36, 1.11, 1.3333, 0.0161, 1.455, 0.016, 1.5244, 0.0155, 1.5186, 0.0115, 1.2414, 0.0129], (-100, 130) : ['B', 5, 121.59, 3.54, 109.9, 1.54, 109.62, 1.45, 109.31, 1.23, 119.61, 1.12, 118.75, 1.99, 121.59, 1.64, 1.335, 0.0359, 1.4577, 0.0169, 1.5263, 0.0151, 1.519, 0.0138, 1.2399, 0.0141], (-100, 140) : ['B', 4, 120.71, 6.53, 110.11, 1.65, 110.31, 1.38, 108.68, 1.39, 120.19, 0.93, 117.84, 2.44, 121.87, 2.39, 1.3448, 0.0663, 1.4558, 0.0155, 1.5294, 0.0137, 1.5233, 0.0138, 1.2364, 0.0156], (-100, 150) : ['B', 10, 121.41, 5.58, 110.1, 1.66, 110.39, 1.3, 108.61, 1.53, 120.63, 1.03, 117.66, 2.07, 121.59, 1.99, 1.3394, 0.0557, 1.4529, 0.0164, 1.5318, 0.015, 1.5244, 0.0128, 1.2349, 0.0134], (-100, 160) : ['B', 12, 122.71, 3.03, 109.88, 1.42, 110.4, 1.31, 109.09, 1.51, 120.97, 1.05, 117.69, 1.42, 121.21, 1.21, 1.327, 0.0286, 1.4526, 0.0151, 1.5323, 0.0158, 1.5206, 0.0137, 1.2346, 0.0112], (-100, 170) : ['B', 5, 123.55, 1.87, 109.72, 1.14, 110.31, 1.2, 109.96, 1.5, 121.27, 1.04, 117.63, 1.13, 120.99, 0.95, 1.3226, 0.0164, 1.453, 0.0125, 1.5296, 0.0157, 1.5192, 0.0146, 1.2342, 0.0104], (-90, 110) : ['B', 4, 121.74, 1.32, 110.17, 1.27, 108.47, 1.79, 110.08, 1.15, 119.29, 0.65, 119.42, 1.04, 121.23, 0.81, 1.3333, 0.015, 1.4563, 0.012, 1.5223, 0.0171, 1.5226, 0.0117, 1.2409, 0.0128], (-90, 120) : ['B', 8, 121.61, 1.39, 110.23, 1.31, 109.24, 1.39, 109.38, 1.44, 119.32, 0.74, 119.28, 1.1, 121.35, 0.92, 1.3313, 0.0163, 1.4566, 0.0147, 1.5194, 0.0173, 1.5222, 0.0114, 1.2385, 0.0127], (-90, 130) : ['B', 10, 121.27, 3.4, 110.32, 1.48, 109.72, 1.25, 109.08, 1.49, 119.66, 0.82, 118.75, 1.49, 121.54, 1.45, 1.3318, 0.036, 1.4593, 0.0156, 1.5225, 0.0175, 1.5238, 0.0133, 1.2368, 0.0135], (-90, 140) : ['B', 9, 120.3, 6.38, 110.29, 1.35, 110.07, 1.26, 108.87, 1.41, 120.19, 0.84, 117.79, 2.25, 121.93, 2.3, 1.3429, 0.0659, 1.4577, 0.0148, 1.5258, 0.0173, 1.5267, 0.0131, 1.2348, 0.0145], (-90, 150) : ['B', 12, 120.81, 5.77, 110.03, 1.21, 110.29, 1.38, 108.86, 1.44, 120.6, 0.9, 117.51, 2.04, 121.77, 2.04, 1.3403, 0.0587, 1.4541, 0.0144, 1.5262, 0.0173, 1.5257, 0.0125, 1.2354, 0.0137], (-90, 160) : ['B', 10, 121.98, 3.11, 109.74, 1.16, 110.36, 1.34, 109.37, 1.59, 120.96, 1.09, 117.57, 1.39, 121.34, 1.3, 1.3287, 0.0303, 1.4532, 0.0132, 1.5268, 0.0161, 1.5216, 0.0129, 1.2349, 0.0137], (-90, 170) : ['B', 8, 122.48, 1.62, 109.49, 1.13, 110.13, 1.15, 110.47, 1.77, 121.46, 1.47, 117.47, 1.16, 120.96, 1.39, 1.3251, 0.0158, 1.4554, 0.0117, 1.526, 0.015, 1.5191, 0.0122, 1.2334, 0.0148], (-80, -180) : ['B', 3, 122.29, 1.48, 109.59, 1.21, 109.41, 1.53, 111.89, 2.35, 121.67, 1.79, 117.69, 0.93, 120.56, 1.79, 1.3258, 0.015, 1.4566, 0.0139, 1.5259, 0.0124, 1.5247, 0.0123, 1.2347, 0.0154], (-80, 120) : ['B', 10, 121.2, 1.4, 109.9, 1.56, 109.42, 1.48, 109.51, 1.6, 119.46, 0.77, 119.19, 0.95, 121.31, 0.85, 1.3276, 0.0167, 1.4574, 0.0159, 1.5233, 0.0183, 1.5238, 0.0108, 1.2363, 0.0122], (-80, 130) : ['B', 15, 120.94, 1.9, 110.01, 1.63, 109.65, 1.26, 109.41, 1.62, 119.76, 0.89, 118.75, 0.97, 121.42, 1.06, 1.327, 0.0231, 1.4583, 0.016, 1.5261, 0.0198, 1.525, 0.0114, 1.2351, 0.0128], (-80, 140) : ['B', 14, 120.69, 2.95, 110.14, 1.41, 109.93, 1.24, 109.26, 1.47, 120.23, 1.02, 118.03, 1.19, 121.64, 1.36, 1.3308, 0.0312, 1.4562, 0.0153, 1.5274, 0.0196, 1.5281, 0.0118, 1.2339, 0.0129], (-80, 150) : ['B', 22, 120.97, 2.84, 110.04, 1.35, 110.24, 1.46, 109.11, 1.5, 120.64, 1.03, 117.6, 1.2, 121.64, 1.27, 1.331, 0.0283, 1.4528, 0.0144, 1.5249, 0.017, 1.5278, 0.0126, 1.234, 0.0126], (-80, 160) : ['B', 18, 121.48, 2.04, 109.78, 1.38, 110.39, 1.5, 109.45, 1.81, 120.88, 1.12, 117.48, 1.15, 121.53, 1.12, 1.3288, 0.0186, 1.4519, 0.0146, 1.5251, 0.0152, 1.525, 0.0134, 1.2336, 0.0131], (-80, 170) : ['B', 11, 121.92, 1.6, 109.55, 1.3, 110.07, 1.46, 110.5, 2.08, 121.27, 1.44, 117.51, 1.13, 121.12, 1.42, 1.3278, 0.0145, 1.454, 0.0147, 1.5262, 0.0136, 1.5226, 0.0128, 1.2327, 0.0141], (-70, -60) : ['B', 4, 119.83, 1.11, 110.39, 0.95, 112.17, 1.36, 113.57, 1.57, 119.13, 0.92, 120.58, 0.74, 120.27, 0.69, 1.3405, 0.0165, 1.4632, 0.0069, 1.5294, 0.0126, 1.5212, 0.0108, 1.2439, 0.0091], (-70, -50) : ['B', 6, 119.78, 1.24, 110.42, 1.18, 112.35, 1.34, 113.04, 1.63, 118.79, 0.96, 120.81, 0.86, 120.38, 0.79, 1.3371, 0.0161, 1.4619, 0.0085, 1.5305, 0.013, 1.5208, 0.0114, 1.2439, 0.01], (-70, 110) : ['B', 3, 121.63, 2.17, 109.37, 1.87, 109.6, 2.01, 109.85, 1.61, 119.24, 0.97, 119.51, 1.14, 121.2, 0.9, 1.324, 0.0154, 1.4572, 0.017, 1.5279, 0.0203, 1.5228, 0.0126, 1.2384, 0.0121], (-70, 120) : ['B', 16, 121.17, 1.62, 109.44, 1.91, 109.44, 1.81, 109.82, 1.65, 119.49, 0.99, 119.27, 1.13, 121.18, 0.93, 1.3252, 0.0177, 1.4585, 0.0176, 1.5259, 0.0197, 1.5231, 0.0119, 1.2382, 0.0128], (-70, 130) : ['B', 15, 120.67, 1.34, 109.68, 1.83, 109.5, 1.47, 109.67, 1.65, 119.8, 1.0, 118.85, 0.95, 121.28, 1.0, 1.3262, 0.0184, 1.4575, 0.0164, 1.5272, 0.0189, 1.5249, 0.0113, 1.2368, 0.0136], (-70, 140) : ['B', 26, 120.49, 1.42, 110.02, 1.58, 109.83, 1.27, 109.42, 1.57, 120.25, 1.08, 118.23, 0.92, 121.43, 1.12, 1.3287, 0.016, 1.4543, 0.0145, 1.5283, 0.0175, 1.5275, 0.0108, 1.2352, 0.0135], (-70, 150) : ['B', 32, 120.68, 1.52, 110.11, 1.46, 110.08, 1.38, 109.27, 1.61, 120.7, 1.09, 117.67, 1.01, 121.53, 1.1, 1.33, 0.0147, 1.4521, 0.0141, 1.526, 0.0159, 1.5284, 0.0118, 1.234, 0.0127], (-70, 160) : ['B', 17, 121.03, 1.6, 110.05, 1.44, 110.2, 1.44, 109.51, 1.85, 120.87, 1.1, 117.44, 1.13, 121.6, 1.06, 1.3307, 0.0148, 1.4508, 0.016, 1.5262, 0.0153, 1.5268, 0.0132, 1.2333, 0.0126], (-70, 170) : ['B', 7, 121.57, 1.62, 110.04, 1.33, 109.87, 1.62, 110.31, 2.06, 121.01, 1.18, 117.6, 1.18, 121.31, 1.17, 1.3315, 0.0154, 1.4507, 0.0178, 1.5275, 0.014, 1.5251, 0.0138, 1.233, 0.0128], (-60, -60) : ['B', 3, 120.44, 1.3, 110.11, 1.44, 112.55, 1.35, 113.49, 1.82, 119.08, 0.95, 120.52, 0.83, 120.38, 0.79, 1.3352, 0.0149, 1.4621, 0.0077, 1.5301, 0.0126, 1.5212, 0.0111, 1.2436, 0.0094], (-60, -50) : ['B', 19, 120.26, 1.34, 110.3, 1.49, 112.75, 1.36, 112.76, 1.86, 118.73, 0.98, 120.77, 0.97, 120.48, 0.89, 1.3324, 0.015, 1.4611, 0.0092, 1.5313, 0.0133, 1.5203, 0.0123, 1.2435, 0.01], (-60, -40) : ['B', 27, 120.09, 1.25, 110.43, 1.55, 113.16, 1.42, 112.05, 1.91, 118.34, 0.97, 120.93, 1.06, 120.71, 0.94, 1.3319, 0.0133, 1.4592, 0.0104, 1.5332, 0.0139, 1.5218, 0.0126, 1.2436, 0.0098], (-60, -30) : ['B', 4, 120.06, 1.19, 110.39, 1.61, 113.57, 1.38, 111.64, 1.86, 117.98, 0.97, 121.08, 1.08, 120.92, 0.98, 1.332, 0.0109, 1.4569, 0.0113, 1.5354, 0.0149, 1.5246, 0.0119, 1.2433, 0.0095], (-60, 120) : ['B', 11, 121.35, 1.73, 109.45, 2.07, 109.58, 1.75, 109.69, 1.64, 119.51, 0.98, 119.12, 1.05, 121.31, 0.87, 1.3262, 0.0166, 1.4556, 0.0157, 1.5266, 0.0179, 1.5248, 0.0129, 1.2407, 0.0133], (-60, 130) : ['B', 36, 120.65, 1.36, 109.73, 1.79, 109.48, 1.44, 109.62, 1.57, 119.75, 0.94, 118.87, 0.9, 121.3, 0.89, 1.3272, 0.0161, 1.4551, 0.0139, 1.5282, 0.0157, 1.5261, 0.0114, 1.2391, 0.0129], (-60, 140) : ['B', 31, 120.39, 1.39, 109.98, 1.57, 109.64, 1.27, 109.52, 1.58, 120.17, 1.04, 118.45, 0.96, 121.3, 1.03, 1.328, 0.0144, 1.454, 0.0129, 1.5296, 0.0146, 1.5272, 0.0102, 1.2371, 0.0129], (-60, 150) : ['B', 24, 120.6, 1.53, 110.03, 1.51, 109.84, 1.39, 109.46, 1.64, 120.69, 1.13, 117.79, 1.08, 121.43, 1.12, 1.3303, 0.0137, 1.4527, 0.0137, 1.5273, 0.0152, 1.5285, 0.0111, 1.2349, 0.0128], (-60, 160) : ['B', 8, 120.86, 1.6, 110.03, 1.45, 110.01, 1.45, 109.61, 1.78, 120.87, 1.16, 117.38, 1.18, 121.66, 1.14, 1.3335, 0.0161, 1.4517, 0.0161, 1.5276, 0.0162, 1.5273, 0.0125, 1.2337, 0.0129], (-50, -50) : ['B', 12, 120.97, 1.48, 110.08, 1.89, 113.25, 1.3, 112.38, 2.17, 118.63, 0.92, 120.79, 0.97, 120.55, 0.95, 1.3318, 0.0138, 1.4616, 0.0095, 1.5343, 0.0118, 1.5214, 0.0117, 1.2414, 0.0098], (-50, -40) : ['B', 16, 120.58, 1.32, 110.34, 1.74, 113.45, 1.39, 111.8, 2.08, 118.33, 0.92, 120.95, 1.09, 120.7, 0.99, 1.3304, 0.0128, 1.4594, 0.0104, 1.535, 0.0132, 1.5216, 0.0129, 1.2428, 0.0099], (-50, 120) : ['B', 3, 121.69, 1.82, 109.28, 2.04, 109.71, 1.42, 109.6, 1.51, 119.59, 0.87, 118.87, 0.95, 121.47, 0.78, 1.3281, 0.016, 1.4531, 0.013, 1.5268, 0.0155, 1.5282, 0.0124, 1.2405, 0.0134], (-50, 130) : ['B', 8, 120.83, 1.43, 109.57, 1.72, 109.57, 1.23, 109.5, 1.53, 119.71, 0.84, 118.83, 0.87, 121.38, 0.82, 1.3275, 0.0154, 1.4534, 0.0116, 1.5296, 0.0143, 1.528, 0.0113, 1.2393, 0.0123], (-50, 140) : ['B', 5, 120.51, 1.45, 109.75, 1.47, 109.6, 1.15, 109.56, 1.64, 120.02, 0.97, 118.63, 0.99, 121.27, 0.97, 1.3265, 0.0153, 1.4539, 0.0114, 1.5313, 0.0137, 1.5279, 0.0101, 1.2382, 0.0119], (-40, -50) : ['B', 4, 121.62, 1.57, 109.9, 2.28, 113.77, 1.32, 111.77, 2.5, 118.44, 0.94, 121.01, 0.95, 120.51, 0.93, 1.3343, 0.0126, 1.4645, 0.0114, 1.536, 0.0091, 1.5233, 0.01, 1.2381, 0.0095], (40, 60) : ['B', 4, 124.21, 1.21, 111.66, 1.11, 111.53, 2.18, 111.2, 0.71, 120.26, 0.8, 118.09, 0.83, 121.53, 0.46, 1.3312, 0.0118, 1.4602, 0.0071, 1.5247, 0.0083, 1.5341, 0.0095, 1.2344, 0.005], (50, 50) : ['B', 3, 123.1, 0.96, 111.7, 1.61, 112.4, 2.07, 110.71, 0.94, 120.47, 0.69, 118.16, 0.7, 121.25, 0.22, 1.3301, 0.0139, 1.4566, 0.0091, 1.5221, 0.0089, 1.5321, 0.0065, 1.233, 0.0048], (50, 60) : ['B', 4, 122.83, 1.08, 111.51, 1.43, 112.23, 2.2, 111.0, 0.87, 120.48, 0.77, 118.09, 0.82, 121.32, 0.27, 1.3288, 0.0112, 1.4577, 0.0074, 1.5223, 0.007, 1.5312, 0.0074, 1.2349, 0.0047], }, "Pro_nonxpro" : { (-180, -180) : ['I', 639, 119.84, 1.25, 103.25, 1.05, 112.47, 2.06, 111.56, 1.65, 120.6, 1.82, 116.7, 2.07, 122.64, 1.35, 1.3339, 0.0234, 1.4687, 0.0128, 1.5332, 0.0142, 1.5195, 0.0142, 1.2351, 0.013], (-100, 0) : ['B', 7, 121.04, 1.21, 101.88, 1.01, 114.98, 1.46, 109.89, 1.23, 118.38, 1.13, 118.86, 1.56, 122.74, 1.56, 1.3322, 0.0082, 1.4728, 0.0085, 1.5334, 0.014, 1.5236, 0.0106, 1.2357, 0.0136], (-100, 10) : ['B', 7, 120.94, 1.14, 101.83, 0.84, 114.68, 1.28, 109.92, 1.1, 118.29, 0.96, 118.87, 1.37, 122.83, 1.55, 1.3331, 0.0078, 1.474, 0.0074, 1.5329, 0.0113, 1.5249, 0.0111, 1.2358, 0.0133], (-90, -10) : ['B', 5, 120.47, 1.07, 102.76, 1.12, 114.75, 1.7, 110.49, 1.57, 118.78, 1.4, 118.6, 1.68, 122.55, 1.39, 1.3359, 0.0098, 1.467, 0.0117, 1.5368, 0.0187, 1.5193, 0.0127, 1.239, 0.0122], (-90, 0) : ['B', 7, 120.89, 1.21, 102.33, 1.18, 114.8, 1.42, 110.27, 1.29, 118.81, 1.3, 118.63, 1.73, 122.52, 1.6, 1.3324, 0.0089, 1.4681, 0.011, 1.5356, 0.0169, 1.5207, 0.011, 1.2362, 0.012], (-90, 10) : ['B', 6, 121.0, 1.16, 102.17, 1.05, 114.92, 1.19, 110.0, 1.12, 118.68, 1.14, 118.81, 1.61, 122.47, 1.62, 1.3315, 0.0079, 1.4701, 0.0101, 1.535, 0.0137, 1.5221, 0.0098, 1.2346, 0.0111], (-90, 50) : ['B', 3, 121.65, 1.01, 102.81, 0.67, 113.12, 1.65, 112.1, 1.59, 121.38, 0.77, 116.45, 0.85, 122.11, 1.33, 1.3401, 0.0276, 1.4676, 0.0079, 1.5313, 0.0062, 1.5272, 0.0135, 1.2361, 0.0147], (-90, 60) : ['B', 3, 120.96, 1.41, 102.28, 0.75, 112.26, 1.44, 112.64, 1.43, 121.77, 1.14, 115.95, 1.12, 122.26, 1.2, 1.3553, 0.0815, 1.474, 0.0133, 1.5329, 0.0104, 1.5283, 0.0091, 1.2356, 0.0176], (-90, 70) : ['B', 3, 120.56, 2.23, 102.36, 0.78, 112.36, 2.06, 112.97, 1.43, 122.57, 1.56, 115.65, 1.56, 121.75, 1.76, 1.3796, 0.1343, 1.4803, 0.0171, 1.5309, 0.0122, 1.5261, 0.0085, 1.2389, 0.02], (-90, 80) : ['B', 3, 120.89, 2.25, 102.73, 0.73, 113.27, 3.02, 112.06, 1.67, 123.07, 1.38, 115.35, 1.61, 121.52, 1.84, 1.3734, 0.1298, 1.4811, 0.0185, 1.5297, 0.0099, 1.529, 0.0108, 1.2329, 0.0189], (-90, 140) : ['B', 3, 120.25, 1.35, 102.67, 1.09, 111.69, 1.97, 110.25, 1.59, 121.98, 1.23, 115.14, 1.38, 122.78, 1.4, 1.333, 0.012, 1.4672, 0.0113, 1.5351, 0.0112, 1.5204, 0.0108, 1.2328, 0.0099], (-90, 150) : ['B', 5, 120.51, 1.26, 102.72, 1.06, 112.01, 1.84, 110.21, 1.57, 122.19, 1.26, 114.66, 1.34, 123.05, 1.34, 1.3302, 0.0123, 1.4648, 0.0111, 1.5358, 0.0113, 1.5198, 0.0106, 1.2323, 0.0109], (-90, 160) : ['B', 3, 120.66, 1.09, 102.85, 1.13, 111.77, 1.67, 110.17, 1.45, 122.13, 1.23, 114.58, 1.16, 123.21, 1.21, 1.3295, 0.0122, 1.4641, 0.0101, 1.5362, 0.0135, 1.5229, 0.0103, 1.2327, 0.0123], (-90, 170) : ['B', 4, 120.85, 1.08, 102.72, 1.16, 111.03, 1.78, 110.2, 1.46, 121.96, 1.23, 114.74, 1.03, 123.23, 1.11, 1.328, 0.0125, 1.4635, 0.0093, 1.5354, 0.016, 1.5254, 0.0097, 1.2324, 0.0125], (-80, -180) : ['B', 7, 120.98, 1.07, 102.86, 1.23, 110.4, 1.61, 110.96, 1.66, 121.9, 1.47, 115.12, 1.25, 122.89, 1.25, 1.3262, 0.0144, 1.4652, 0.0117, 1.5306, 0.0167, 1.5257, 0.0113, 1.2295, 0.0156], (-80, -20) : ['B', 11, 119.64, 1.01, 103.46, 0.93, 114.18, 1.39, 111.31, 1.61, 118.86, 1.33, 118.67, 1.46, 122.38, 1.39, 1.3371, 0.0124, 1.47, 0.0134, 1.5348, 0.0164, 1.5169, 0.0154, 1.2385, 0.0122], (-80, -10) : ['B', 23, 120.04, 1.08, 103.2, 0.95, 114.27, 1.35, 111.04, 1.51, 118.9, 1.26, 118.68, 1.5, 122.37, 1.37, 1.3365, 0.0106, 1.4691, 0.0125, 1.5341, 0.0179, 1.5183, 0.0152, 1.2388, 0.0127], (-80, 0) : ['B', 14, 120.45, 1.11, 102.88, 1.09, 114.35, 1.25, 110.88, 1.41, 118.98, 1.22, 118.62, 1.64, 122.36, 1.64, 1.335, 0.0094, 1.4673, 0.0117, 1.5352, 0.0173, 1.5194, 0.013, 1.2362, 0.0123], (-80, 10) : ['B', 3, 120.83, 1.02, 102.6, 1.17, 114.68, 1.04, 110.52, 1.36, 118.92, 1.14, 118.69, 1.7, 122.33, 1.84, 1.3336, 0.0084, 1.4663, 0.0113, 1.5365, 0.0139, 1.5204, 0.0095, 1.234, 0.01], (-80, 50) : ['B', 3, 121.91, 1.35, 102.79, 0.66, 113.7, 1.76, 112.04, 1.43, 121.31, 0.74, 116.2, 0.8, 122.44, 1.28, 1.3392, 0.034, 1.4687, 0.0074, 1.5315, 0.0071, 1.5276, 0.012, 1.2322, 0.0143], (-80, 60) : ['B', 4, 120.88, 1.72, 102.25, 0.7, 112.48, 1.35, 112.89, 1.31, 121.97, 1.22, 115.89, 1.12, 122.12, 1.42, 1.3635, 0.1005, 1.4742, 0.0124, 1.5342, 0.0117, 1.5258, 0.0098, 1.2343, 0.0173], (-80, 70) : ['B', 7, 120.25, 2.57, 102.35, 0.71, 112.33, 1.87, 113.09, 1.36, 122.82, 1.65, 115.59, 1.5, 121.58, 2.04, 1.3988, 0.158, 1.479, 0.0156, 1.5323, 0.0126, 1.5242, 0.0092, 1.236, 0.0201], (-80, 80) : ['B', 5, 120.53, 2.52, 102.65, 0.68, 112.92, 2.73, 112.27, 1.56, 123.16, 1.49, 115.35, 1.54, 121.45, 2.05, 1.3904, 0.1512, 1.4794, 0.0171, 1.5303, 0.0103, 1.5271, 0.0107, 1.231, 0.0197], (-80, 110) : ['B', 4, 120.79, 1.3, 102.92, 0.56, 110.74, 1.66, 111.87, 0.84, 121.11, 1.08, 116.09, 0.92, 122.73, 0.71, 1.3342, 0.0065, 1.4696, 0.0101, 1.5356, 0.0105, 1.5206, 0.0093, 1.235, 0.0079], (-80, 120) : ['B', 5, 120.46, 1.47, 103.23, 0.67, 110.21, 1.64, 111.4, 0.91, 120.85, 1.24, 116.16, 1.22, 122.93, 0.97, 1.335, 0.0087, 1.4715, 0.0117, 1.5337, 0.0121, 1.522, 0.0094, 1.2329, 0.0096], (-80, 130) : ['B', 8, 120.13, 1.13, 103.36, 0.83, 110.55, 1.63, 111.11, 1.17, 120.97, 1.17, 115.93, 1.26, 123.03, 1.13, 1.3339, 0.0111, 1.4701, 0.0123, 1.5333, 0.0126, 1.5227, 0.011, 1.2333, 0.0106], (-80, 140) : ['B', 12, 119.99, 1.08, 103.19, 0.95, 111.32, 1.71, 110.85, 1.41, 121.48, 1.2, 115.37, 1.32, 123.06, 1.26, 1.3314, 0.0128, 1.4669, 0.0119, 1.5338, 0.0128, 1.5202, 0.0126, 1.2337, 0.0108], (-80, 150) : ['B', 27, 120.14, 1.06, 103.15, 0.97, 111.68, 1.67, 110.63, 1.43, 121.86, 1.22, 114.91, 1.29, 123.13, 1.26, 1.3294, 0.0125, 1.4647, 0.0115, 1.5335, 0.0123, 1.5196, 0.0124, 1.2332, 0.0112], (-80, 160) : ['B', 28, 120.31, 0.98, 103.23, 1.13, 111.57, 1.52, 110.6, 1.38, 122.12, 1.24, 114.65, 1.27, 123.14, 1.22, 1.3287, 0.012, 1.4646, 0.0112, 1.5328, 0.0135, 1.5216, 0.0118, 1.2323, 0.012], (-80, 170) : ['B', 16, 120.52, 0.99, 103.15, 1.29, 111.13, 1.49, 110.75, 1.48, 122.15, 1.32, 114.72, 1.27, 123.04, 1.2, 1.3283, 0.0126, 1.4651, 0.011, 1.5322, 0.0158, 1.5237, 0.0111, 1.2315, 0.0131], (-70, -40) : ['B', 9, 118.85, 1.09, 103.44, 1.12, 113.4, 1.34, 112.55, 1.5, 119.74, 1.45, 117.98, 1.43, 122.23, 1.25, 1.336, 0.012, 1.4713, 0.0129, 1.5341, 0.0144, 1.5163, 0.0142, 1.2374, 0.012], (-70, -30) : ['B', 34, 119.19, 1.06, 103.52, 1.06, 113.57, 1.31, 112.11, 1.46, 119.34, 1.47, 118.34, 1.41, 122.27, 1.35, 1.3356, 0.0123, 1.47, 0.0133, 1.534, 0.014, 1.5166, 0.0154, 1.2372, 0.0116], (-70, -20) : ['B', 56, 119.56, 1.01, 103.51, 0.96, 113.86, 1.25, 111.68, 1.46, 119.0, 1.4, 118.64, 1.4, 122.3, 1.36, 1.3359, 0.0125, 1.4705, 0.0137, 1.5335, 0.0149, 1.5166, 0.017, 1.2373, 0.0128], (-70, -10) : ['B', 37, 119.87, 1.04, 103.41, 0.94, 114.03, 1.23, 111.44, 1.51, 118.86, 1.38, 118.75, 1.43, 122.35, 1.4, 1.3365, 0.0111, 1.4707, 0.0132, 1.5328, 0.0161, 1.5179, 0.0175, 1.238, 0.0137], (-70, 0) : ['B', 6, 120.12, 1.11, 103.19, 1.0, 114.2, 1.2, 111.21, 1.71, 118.99, 1.32, 118.82, 1.56, 122.17, 1.67, 1.3366, 0.0098, 1.4696, 0.0122, 1.5347, 0.0172, 1.5187, 0.0155, 1.2365, 0.0136], (-70, 120) : ['B', 7, 120.23, 1.23, 103.3, 0.8, 110.5, 1.57, 111.56, 1.09, 120.92, 1.17, 116.01, 1.27, 123.03, 1.06, 1.3335, 0.0101, 1.4716, 0.0121, 1.533, 0.0128, 1.5217, 0.0099, 1.2328, 0.0116], (-70, 130) : ['B', 22, 119.9, 1.05, 103.36, 0.88, 110.8, 1.51, 111.46, 1.21, 121.03, 1.14, 115.81, 1.22, 123.1, 1.12, 1.3327, 0.0117, 1.4693, 0.0122, 1.5328, 0.0131, 1.5218, 0.0116, 1.233, 0.0113], (-70, 140) : ['B', 44, 119.76, 1.0, 103.34, 0.93, 111.19, 1.57, 111.21, 1.33, 121.31, 1.2, 115.5, 1.27, 123.1, 1.2, 1.3316, 0.0132, 1.467, 0.0121, 1.5326, 0.0134, 1.5202, 0.0133, 1.2333, 0.011], (-70, 150) : ['B', 73, 119.85, 1.01, 103.33, 0.93, 111.38, 1.59, 110.98, 1.31, 121.67, 1.22, 115.16, 1.28, 123.06, 1.23, 1.3305, 0.0131, 1.4656, 0.0119, 1.5325, 0.0135, 1.5196, 0.0131, 1.2335, 0.0114], (-70, 160) : ['B', 56, 120.03, 0.99, 103.38, 1.05, 111.41, 1.5, 110.95, 1.31, 122.08, 1.28, 114.82, 1.35, 123.0, 1.22, 1.33, 0.0122, 1.4654, 0.0119, 1.5319, 0.014, 1.5206, 0.0125, 1.233, 0.0118], (-70, 170) : ['B', 15, 120.21, 0.96, 103.42, 1.32, 111.22, 1.4, 111.22, 1.51, 122.31, 1.41, 114.75, 1.45, 122.86, 1.24, 1.33, 0.0125, 1.4665, 0.0121, 1.5306, 0.0149, 1.5213, 0.012, 1.2325, 0.0127], (-60, -50) : ['B', 13, 118.97, 1.04, 103.23, 1.07, 113.47, 1.43, 113.06, 1.59, 120.03, 1.45, 117.75, 1.5, 122.17, 1.13, 1.3352, 0.013, 1.4733, 0.0132, 1.5336, 0.0162, 1.5182, 0.0137, 1.238, 0.0136], (-60, -40) : ['B', 78, 119.05, 1.11, 103.33, 1.1, 113.53, 1.39, 112.62, 1.65, 119.86, 1.56, 117.87, 1.56, 122.23, 1.2, 1.3354, 0.0136, 1.4717, 0.0132, 1.5339, 0.0149, 1.5171, 0.0146, 1.2374, 0.0126], (-60, -30) : ['B', 97, 119.28, 1.1, 103.39, 1.08, 113.65, 1.35, 112.21, 1.56, 119.55, 1.52, 118.19, 1.47, 122.22, 1.29, 1.3346, 0.0128, 1.4707, 0.0132, 1.5339, 0.014, 1.5163, 0.0161, 1.2375, 0.0124], (-60, -20) : ['B', 63, 119.56, 1.02, 103.48, 1.0, 113.84, 1.3, 111.85, 1.42, 119.18, 1.43, 118.53, 1.37, 122.24, 1.34, 1.3346, 0.0119, 1.4708, 0.0132, 1.5337, 0.014, 1.5161, 0.0175, 1.2373, 0.0132], (-60, -10) : ['B', 11, 119.82, 0.98, 103.52, 0.95, 113.98, 1.29, 111.62, 1.46, 118.89, 1.51, 118.71, 1.36, 122.37, 1.43, 1.3358, 0.0108, 1.4712, 0.0128, 1.5335, 0.0146, 1.5176, 0.0185, 1.2378, 0.0142], (-60, 120) : ['B', 7, 119.98, 1.16, 103.17, 0.89, 110.95, 1.62, 111.71, 1.3, 121.27, 1.05, 115.71, 1.19, 122.98, 1.09, 1.332, 0.0112, 1.4706, 0.0127, 1.5324, 0.0134, 1.5205, 0.0109, 1.2333, 0.0134], (-60, 130) : ['B', 43, 119.83, 1.08, 103.27, 0.9, 111.03, 1.54, 111.64, 1.26, 121.23, 1.07, 115.7, 1.21, 123.01, 1.15, 1.3312, 0.012, 1.468, 0.012, 1.5323, 0.0133, 1.5215, 0.0119, 1.2331, 0.0123], (-60, 140) : ['B', 84, 119.76, 1.03, 103.31, 0.89, 111.14, 1.56, 111.46, 1.29, 121.34, 1.14, 115.56, 1.27, 123.03, 1.21, 1.3316, 0.013, 1.4668, 0.0121, 1.5321, 0.0134, 1.5211, 0.0127, 1.2328, 0.0116], (-60, 150) : ['B', 80, 119.78, 1.03, 103.35, 0.87, 111.21, 1.59, 111.23, 1.28, 121.56, 1.16, 115.33, 1.28, 123.01, 1.24, 1.3319, 0.0134, 1.4661, 0.0124, 1.5324, 0.0139, 1.5207, 0.0124, 1.233, 0.0119], (-60, 160) : ['B', 30, 119.92, 1.07, 103.39, 0.94, 111.34, 1.55, 111.12, 1.29, 121.95, 1.25, 115.04, 1.35, 122.91, 1.21, 1.3317, 0.0126, 1.4657, 0.0121, 1.5328, 0.0147, 1.5212, 0.0119, 1.233, 0.0121], (-60, 170) : ['B', 4, 120.11, 1.12, 103.45, 1.21, 111.33, 1.43, 111.4, 1.54, 122.31, 1.44, 114.89, 1.49, 122.71, 1.2, 1.3313, 0.0121, 1.4669, 0.0124, 1.5315, 0.0148, 1.5208, 0.012, 1.2329, 0.0124], (-50, -50) : ['B', 13, 119.24, 1.04, 103.15, 1.09, 113.78, 1.62, 113.2, 1.69, 120.05, 1.58, 117.74, 1.53, 122.18, 1.08, 1.335, 0.0138, 1.4726, 0.0133, 1.5332, 0.0159, 1.5189, 0.0146, 1.2376, 0.0135], (-50, -40) : ['B', 38, 119.32, 1.14, 103.26, 1.14, 113.75, 1.49, 112.64, 1.74, 119.84, 1.69, 117.89, 1.64, 122.24, 1.15, 1.3342, 0.0151, 1.4716, 0.0134, 1.5336, 0.0152, 1.5182, 0.0151, 1.2372, 0.0129], (-50, -30) : ['B', 19, 119.47, 1.16, 103.3, 1.12, 113.81, 1.45, 112.26, 1.67, 119.64, 1.58, 118.15, 1.58, 122.17, 1.21, 1.3332, 0.0144, 1.4708, 0.0132, 1.5336, 0.0143, 1.5164, 0.0172, 1.238, 0.0133], (-50, 130) : ['B', 21, 119.93, 1.07, 103.19, 0.9, 111.26, 1.63, 111.64, 1.27, 121.32, 1.09, 115.78, 1.24, 122.85, 1.22, 1.3302, 0.0119, 1.4669, 0.0117, 1.5316, 0.0136, 1.5211, 0.0121, 1.2333, 0.0139], (-50, 140) : ['B', 45, 119.9, 1.02, 103.25, 0.88, 111.15, 1.58, 111.56, 1.27, 121.36, 1.13, 115.67, 1.3, 122.89, 1.27, 1.3311, 0.0127, 1.4663, 0.0117, 1.5317, 0.0129, 1.5219, 0.0119, 1.2329, 0.0124], (-50, 150) : ['B', 24, 119.89, 1.02, 103.32, 0.84, 111.11, 1.59, 111.39, 1.28, 121.43, 1.12, 115.48, 1.32, 122.99, 1.27, 1.3317, 0.0133, 1.4661, 0.0123, 1.5325, 0.013, 1.5222, 0.0115, 1.2328, 0.0123], }, "Pro_xpro" : { (-180, -180) : ['I', 12, 120.38, 1.03, 103.08, 0.97, 110.7, 1.22, 110.92, 1.22, 120.56, 1.45, 117.93, 1.2, 121.46, 1.18, 1.3292, 0.0118, 1.4649, 0.0203, 1.5357, 0.0137, 1.5171, 0.0093, 1.2404, 0.0112], (-70, 150) : ['B', 4, 119.66, 0.72, 103.22, 0.52, 110.58, 1.07, 111.17, 0.94, 120.73, 0.79, 118.06, 0.83, 121.15, 0.47, 1.3346, 0.0115, 1.4594, 0.014, 1.5393, 0.0093, 1.517, 0.0067, 1.2432, 0.0085], (-60, 150) : ['B', 4, 119.66, 0.73, 103.19, 0.56, 110.47, 0.96, 111.39, 0.94, 120.9, 0.72, 117.73, 0.9, 121.31, 0.46, 1.3313, 0.0087, 1.457, 0.0131, 1.5349, 0.0093, 1.5143, 0.0055, 1.2456, 0.0085], }, } Gly_nonxpro = cdl_database["Gly_nonxpro"] Gly_nonxpro[(-180, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-180, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-170, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-160, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-150, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-140, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-130, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-120, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-110, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-100, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-90, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-80, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-70, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-60, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-50, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-40, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-30, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-20, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(-10, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(0, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(10, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(20, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(30, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(40, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(50, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(60, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(70, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(80, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(90, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(100, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(110, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(120, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(130, 160)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -180)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(140, 170)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(150, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(160, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, -10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 0)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 10)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 20)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 30)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 40)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 50)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 60)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 70)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 80)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 90)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 100)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 110)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 120)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 130)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 140)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 150)]=Gly_nonxpro[(-180, -150)] Gly_nonxpro[(170, 160)]=Gly_nonxpro[(-180, -150)] Gly_xpro = cdl_database["Gly_xpro"] Gly_xpro[(-180, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-180, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-170, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-160, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-150, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-140, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-130, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-120, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-110, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-100, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-90, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-80, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-70, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-60, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-50, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-40, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-30, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-20, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(-10, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(0, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(10, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(20, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(30, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(40, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(50, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(60, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(70, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(80, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(90, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(100, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(110, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(120, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(130, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(140, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(150, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(160, 170)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -180)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -170)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -160)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -150)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -140)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -130)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -120)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -110)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -100)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -90)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -80)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -70)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -60)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -50)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -40)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -30)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -20)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, -10)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 0)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 10)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 20)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 30)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 40)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 50)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 60)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 70)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 80)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 90)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 100)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 110)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 120)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 130)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 140)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 150)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 160)]=Gly_xpro[(-180, -180)] Gly_xpro[(170, 170)]=Gly_xpro[(-180, -180)] IleVal_nonxpro = cdl_database["IleVal_nonxpro"] IleVal_nonxpro[(-180, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-180, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-170, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-160, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-150, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-140, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-130, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-120, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-110, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-100, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-90, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-80, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-70, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-60, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-50, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-40, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-30, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-20, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(-10, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(0, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(10, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(20, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(30, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(40, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(50, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(60, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(70, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(80, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(90, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(100, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(110, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(120, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(130, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(140, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(150, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(160, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -180)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -170)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, -10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 0)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 10)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 20)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 30)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 40)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 50)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 60)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 70)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 80)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 90)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 100)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 110)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 120)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 130)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 140)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 150)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 160)]=IleVal_nonxpro[(-180, -180)] IleVal_nonxpro[(170, 170)]=IleVal_nonxpro[(-180, -180)] IleVal_xpro = cdl_database["IleVal_xpro"] IleVal_xpro[(-180, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-180, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-170, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-160, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-150, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-140, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-130, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-120, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-110, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-100, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-90, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-80, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-70, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-60, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-50, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-40, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-30, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-20, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(-10, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(0, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(10, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(20, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(30, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(40, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(50, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(60, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(70, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(80, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(90, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(100, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(110, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(120, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(130, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(140, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(150, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(160, 170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -180)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -170)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, -10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 0)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 10)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 20)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 30)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 40)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 50)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 60)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 70)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 80)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 90)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 100)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 110)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 120)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 130)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 140)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 150)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 160)]=IleVal_xpro[(-180, -180)] IleVal_xpro[(170, 170)]=IleVal_xpro[(-180, -180)] NonPGIV_nonxpro = cdl_database["NonPGIV_nonxpro"] NonPGIV_nonxpro[(-180, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-180, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-170, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-160, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-150, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-140, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-130, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-120, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-110, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-110, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-110, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-110, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-110, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-110, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-100, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-90, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-80, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-70, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-60, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-50, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-40, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-30, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-20, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(-10, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(0, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(10, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(20, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(30, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(40, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(50, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(60, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(70, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(80, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(90, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(100, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(110, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(120, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(130, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(140, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(150, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(160, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -180)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, -10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 0)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 10)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 20)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 30)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 40)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 50)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 60)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 70)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 80)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 90)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 100)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 110)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 120)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 130)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 140)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 150)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 160)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_nonxpro[(170, 170)]=NonPGIV_nonxpro[(-180, -180)] NonPGIV_xpro = cdl_database["NonPGIV_xpro"] NonPGIV_xpro[(-180, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-180, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-170, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-160, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-150, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-140, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-130, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-120, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-110, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-100, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-90, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-80, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-70, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-60, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-50, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-40, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-30, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-20, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(-10, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(0, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(10, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(20, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(30, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(40, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(50, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(60, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(70, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(80, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(90, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(100, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(110, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(120, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(130, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(140, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(150, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(160, 170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -180)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -170)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, -10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 0)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 10)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 20)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 30)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 40)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 50)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 60)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 70)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 80)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 90)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 100)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 110)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 120)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 130)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 140)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 150)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 160)]=NonPGIV_xpro[(-180, -180)] NonPGIV_xpro[(170, 170)]=NonPGIV_xpro[(-180, -180)] Pro_nonxpro = cdl_database["Pro_nonxpro"] Pro_nonxpro[(-180, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-180, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-170, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-160, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-150, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-140, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-130, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-120, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-110, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-100, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-90, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-80, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-70, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-60, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-50, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-40, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-30, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-20, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(-10, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(0, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(10, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(20, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(30, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(40, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(50, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(60, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(70, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(80, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(90, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(100, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(110, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(120, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(130, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(140, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(150, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(160, 170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -180)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -170)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, -10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 0)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 10)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 20)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 30)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 40)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 50)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 60)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 70)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 80)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 90)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 100)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 110)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 120)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 130)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 140)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 150)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 160)]=Pro_nonxpro[(-180, -180)] Pro_nonxpro[(170, 170)]=Pro_nonxpro[(-180, -180)] Pro_xpro = cdl_database["Pro_xpro"] Pro_xpro[(-180, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-180, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-170, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-160, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-150, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-140, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-130, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-120, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-110, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-100, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-90, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-80, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-70, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-60, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-50, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-40, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-30, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-20, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(-10, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(0, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(10, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(20, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(30, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(40, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(50, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(60, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(70, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(80, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(90, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(100, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(110, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(120, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(130, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(140, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(150, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(160, 170)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -180)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -170)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -160)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -150)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -140)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -130)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -120)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -110)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -100)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -90)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -80)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -70)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -60)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -50)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -40)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -30)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -20)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, -10)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 0)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 10)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 20)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 30)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 40)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 50)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 60)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 70)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 80)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 90)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 100)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 110)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 120)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 130)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 140)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 150)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 160)]=Pro_xpro[(-180, -180)] Pro_xpro[(170, 170)]=Pro_xpro[(-180, -180)] # # adjustments due to too large esd # Pro_nonxpro[(-90, 60)][16]=1.333900 # mCN Pro_nonxpro[(-90, 60)][17]=0.023400 # sCN Pro_nonxpro[(-90, 70)][16]=1.333900 # mCN Pro_nonxpro[(-90, 70)][17]=0.023400 # sCN Pro_nonxpro[(-90, 80)][16]=1.333900 # mCN Pro_nonxpro[(-90, 80)][17]=0.023400 # sCN Pro_nonxpro[(-80, 60)][16]=1.333900 # mCN Pro_nonxpro[(-80, 60)][17]=0.023400 # sCN Pro_nonxpro[(-80, 70)][16]=1.333900 # mCN Pro_nonxpro[(-80, 70)][17]=0.023400 # sCN Pro_nonxpro[(-80, 80)][16]=1.333900 # mCN Pro_nonxpro[(-80, 80)][17]=0.023400 # sCN Pro_nonxpro[(-80, 110)][16]=1.333900 # mCN Pro_nonxpro[(-80, 110)][17]=0.023400 # sCN Gly_nonxpro[(-100, -90)][10]=120.570000 # mACO Gly_nonxpro[(-100, -90)][11]=1.740000 # sACO Gly_nonxpro[(-100, -90)][12]=116.690000 # mACN Gly_nonxpro[(-100, -90)][13]=2.040000 # sACN Gly_nonxpro[(150, -140)][10]=120.570000 # mACO Gly_nonxpro[(150, -140)][11]=1.740000 # sACO NonPGIV_xpro[(-150, 100)][16]=1.331000 # mCN NonPGIV_xpro[(-150, 100)][17]=0.020700 # sCN NonPGIV_xpro[(-100, 140)][16]=1.331000 # mCN NonPGIV_xpro[(-100, 140)][17]=0.020700 # sCN NonPGIV_xpro[(-90, 140)][16]=1.331000 # mCN NonPGIV_xpro[(-90, 140)][17]=0.020700 # sCN NonPGIV_xpro[(50, 50)][14]=121.320000 # mOCN NonPGIV_xpro[(50, 50)][15]=1.150000 # sOCN NonPGIV_xpro[(50, 60)][14]=121.320000 # mOCN NonPGIV_xpro[(50, 60)][15]=1.150000 # sOCN NonPGIV_nonxpro[(-160, -150)][24]=1.235300 # mCO NonPGIV_nonxpro[(-160, -150)][25]=0.012600 # sCO NonPGIV_nonxpro[(-120, -120)][22]=1.523200 # mAC NonPGIV_nonxpro[(-120, -120)][23]=0.013400 # sAC NonPGIV_nonxpro[(-120, -100)][12]=116.840000 # mACN NonPGIV_nonxpro[(-120, -100)][13]=1.710000 # sACN NonPGIV_nonxpro[(-110, -130)][4]=110.490000 # mNAB NonPGIV_nonxpro[(-110, -130)][5]=1.690000 # sNAB NonPGIV_nonxpro[(-110, -130)][24]=1.235300 # mCO NonPGIV_nonxpro[(-110, -130)][25]=0.012600 # sCO NonPGIV_nonxpro[(-100, -130)][4]=110.490000 # mNAB NonPGIV_nonxpro[(-100, -130)][5]=1.690000 # sNAB NonPGIV_nonxpro[(-100, -130)][24]=1.235300 # mCO NonPGIV_nonxpro[(-100, -130)][25]=0.012600 # sCO Gly_xpro[(-60, -40)][2]=121.870000 # mCNA Gly_xpro[(-60, -40)][3]=1.570000 # sCNA Gly_xpro[(-50, -40)][14]=121.770000 # mOCN Gly_xpro[(-50, -40)][15]=1.000000 # sOCN class custom_cdl_dict(dict): def __init__(self): self.version=None O = custom_cdl_dict() for k,v in zip(cdl_database.keys(), cdl_database.values()): O[k]=v cdl_database=O cdl_database.version=version def run(args): assert len(args) == 0 print cdl_database["Pro_nonxpro"][(-180,-180)] for res_group_type in cdl_database: print res_group_type, len(cdl_database[res_group_type]) if (__name__ == "__main__"): import sys run(args=sys.argv[1:])
1.640625
2
parlaseje/models.py
VesterDe/parlalize
1
12775084
# -*- coding: utf-8 -*- from django.db import models from django.utils.translation import ugettext_lazy as _ from jsonfield import JSONField from behaviors.models import Timestampable, Versionable from parlalize.settings import API_OUT_DATE_FORMAT from datetime import datetime class PopoloDateTimeField(models.DateTimeField): """Converting datetime to popolo.""" def get_popolo_value(self, value): return str(datetime.strftime(value, '%Y-%m-%d')) class Session(Timestampable, models.Model): """Model of all sessions that happened in parliament, copied from parladata.""" name = models.CharField(_('name'), blank=True, null=True, max_length=128, help_text=_('Session name')) date = PopoloDateTimeField(_('date of session'), blank=True, null=True, help_text=_('date of session')) id_parladata = models.IntegerField(_('parladata id'), blank=True, null=True, help_text=_('id parladata')) mandate = models.CharField(_('mandate name'), blank=True, null=True, max_length=128, help_text=_('Mandate name')) start_time = PopoloDateTimeField(_('start time of session'), blank=True, null=True, help_text='Start time') end_time = PopoloDateTimeField(_('end time of session'), blank=True, null=True, help_text='End time') organization = models.ForeignKey('parlaskupine.Organization', blank=True, null=True, related_name='session', help_text='The organization in session') organizations = models.ManyToManyField('parlaskupine.Organization', related_name='sessions', help_text='The organizations in session') classification = models.CharField(_('classification'), max_length=128, blank=True, null=True, help_text='Session classification') actived = models.CharField(_('actived'), null=True, blank=True, max_length=128, help_text=_('Yes if PG is actived or no if it is not')) classification = models.CharField(_('classification'), max_length=128, blank=True, null=True, help_text=_('An organization category, e.g. committee')) gov_id = models.TextField(blank=True, null=True, help_text='Gov website ID.') in_review = models.BooleanField(default=False, help_text='Is session in review?') def __str__(self): return self.name def getSessionDataMultipleOrgs(self): orgs_data = [org.getOrganizationData() for org in self.organizations.all()] return {'name': self.name, 'date': self.start_time.strftime(API_OUT_DATE_FORMAT), 'date_ts': self.start_time, 'id': self.id_parladata, 'orgs': orgs_data, 'in_review': self.in_review} def getSessionData(self): orgs_data = [org.getOrganizationData() for org in self.organizations.all()] return {'name': self.name, 'date': self.start_time.strftime(API_OUT_DATE_FORMAT), 'date_ts': self.start_time, 'id': self.id_parladata, 'org': self.organization.getOrganizationData(), 'orgs': orgs_data, 'in_review': self.in_review} class Activity(Timestampable, models.Model): """All activities of MP.""" id_parladata = models.IntegerField(_('parladata id'), blank=True, null=True, help_text=_('id parladata')) session = models.ForeignKey('Session', blank=True, null=True, related_name="%(app_label)s_%(class)s_related", help_text=_('Session ')) person = models.ForeignKey('parlaposlanci.Person', blank=True, null=True, help_text=_('MP')) start_time = PopoloDateTimeField(blank=True, null=True, help_text='Start time') end_time = PopoloDateTimeField(blank=True, null=True, help_text='End time') def get_child(self): if Speech.objects.filter(activity_ptr=self.id): return Speech.objects.get(activity_ptr=self.id) elif Ballot.objects.filter(activity_ptr=self.id): return Ballot.objects.get(activity_ptr=self.id) else: return Question.objects.get(activity_ptr=self.id) class Speech(Versionable, Activity): """Model of all speeches in parlament.""" content = models.TextField(blank=True, null=True, help_text='Words spoken') order = models.IntegerField(blank=True, null=True, help_text='Order of speech') organization = models.ForeignKey('parlaskupine.Organization', blank=True, null=True, help_text='Organization') def __init__(self, *args, **kwargs): super(Activity, self).__init__(*args, **kwargs) @staticmethod def getValidSpeeches(date_): return Speech.objects.filter(valid_from__lt=date_, valid_to__gt=date_) class Question(Activity): """Model of MP questions to the government.""" content_link = models.URLField(help_text='Words spoken', max_length=350, blank=True, null=True) title = models.TextField(blank=True, null=True, help_text='Words spoken') recipient_persons = models.ManyToManyField('parlaposlanci.Person', blank=True, null=True, help_text='Recipient persons (if it\'s a person).', related_name='questions') recipient_organizations = models.ManyToManyField('parlaskupine.Organization', blank=True, null=True, help_text='Recipient organizations (if it\'s an organization).', related_name='questions_org') recipient_text = models.TextField(blank=True, null=True, help_text='Recipient name as written on dz-rs.si') def getQuestionData(self): # fix import issue from parlalize.utils import getMinistryData persons = [] orgs = [] for person in self.recipient_persons.all(): persons.append(getMinistryData(person.id_parladata, self.start_time.strftime(API_DATE_FORMAT))) for org in self.recipient_organizations.all(): orgs.append(org.getOrganizationData()) return {'title': self.title, 'recipient_text': self.recipient_text, 'recipient_persons': persons, 'recipient_orgs': orgs, 'url': self.content_link, 'id': self.id_parladata} class Ballot(Activity): """Model of all ballots""" vote = models.ForeignKey('Vote', blank=True, null=True, related_name='vote', help_text=_('Vote')) option = models.CharField(max_length=128, blank=True, null=True, help_text='Yes, no, abstain') org_voter = models.ForeignKey('parlaskupine.Organization', blank=True, null=True, related_name='OrganizationVoter', help_text=_('Organization voter')) def __init__(self, *args, **kwargs): super(Activity, self).__init__(*args, **kwargs) class Vote(Timestampable, models.Model): """Model of all votes that happend on specific sessions, with number of votes for, against, abstain and not present. """ created_for = models.DateField(_('date of vote'), blank=True, null=True, help_text=_('date of vote')) session = models.ForeignKey('Session', blank=True, null=True, related_name='in_session', help_text=_('Session ')) motion = models.TextField(blank=True, null=True, help_text='The motion for which the vote took place') tags = JSONField(blank=True, null=True) votes_for = models.IntegerField(blank=True, null=True, help_text='Number of votes for') against = models.IntegerField(blank=True, null=True, help_text='Number votes againt') abstain = models.IntegerField(blank=True, null=True, help_text='Number votes abstain') not_present = models.IntegerField(blank=True, null=True, help_text='Number of MPs that warent on the session') result = models.NullBooleanField(blank=True, null=True, default=False, help_text='The result of the vote') id_parladata = models.IntegerField(_('parladata id'), blank=True, null=True, help_text=_('id parladata')) document_url = JSONField(blank=True, null=True) start_time = PopoloDateTimeField(blank=True, null=True, help_text='Start time') is_outlier = models.NullBooleanField(default=False, help_text='is outlier') has_outlier_voters = models.NullBooleanField(default=False, help_text='has outlier voters') intra_disunion = models.FloatField(default=0.0, help_text='intra disunion for all members') class VoteDetailed(Timestampable, models.Model): """Model of votes with data, how each MP and PG voted.""" motion = models.TextField(blank=True, null=True, help_text='The motion for which the vote took place') session = models.ForeignKey('Session', blank=True, null=True, related_name='in_session_for_VG', help_text=_('Session ')) vote = models.ForeignKey('Vote', blank=True, null=True, related_name='vote_of_graph', help_text=_('Vote')) created_for = models.DateField(_('date of vote'), blank=True, null=True, help_text=_('date of vote')) votes_for = models.IntegerField(blank=True, null=True, help_text='Number of votes for') against = models.IntegerField(blank=True, null=True, help_text='Number votes againt') abstain = models.IntegerField(blank=True, null=True, help_text='Number votes abstain') not_present = models.IntegerField(blank=True, null=True, help_text='Number of MPs that warent on the session') result = models.NullBooleanField(blank=True, null=True, default=False, help_text='The result of the vote') pgs_yes = JSONField(blank=True, null=True) pgs_no = JSONField(blank=True, null=True) pgs_np = JSONField(blank=True, null=True) pgs_kvor = JSONField(blank=True, null=True) mp_yes = JSONField(blank=True, null=True) mp_no = JSONField(blank=True, null=True) mp_np = JSONField(blank=True, null=True) mp_kvor = JSONField(blank=True, null=True) class Vote_analysis(Timestampable, models.Model): session = models.ForeignKey('Session', blank=True, null=True, related_name='in_session_for_VA', help_text=_('Session ')) vote = models.ForeignKey('Vote', blank=True, null=True, related_name='analysis', help_text=_('Vote')) created_for = models.DateField(_('date of vote'), blank=True, null=True, help_text=_('date of vote')) votes_for = models.IntegerField(blank=True, null=True, help_text='Number of votes for') against = models.IntegerField(blank=True, null=True, help_text='Number votes againt') abstain = models.IntegerField(blank=True, null=True, help_text='Number votes abstain') not_present = models.IntegerField(blank=True, null=True, help_text='Number of MPs that warent on the session') pgs_data = JSONField(blank=True, null=True) mp_yes = JSONField(blank=True, null=True) mp_no = JSONField(blank=True, null=True) mp_np = JSONField(blank=True, null=True) mp_kvor = JSONField(blank=True, null=True) coal_opts = JSONField(blank=True, null=True) oppo_opts = JSONField(blank=True, null=True) class AbsentMPs(Timestampable, models.Model): """Model for analysis absent MPs on session.""" session = models.ForeignKey('Session', blank=True, null=True, related_name='session_absent', help_text=_('Session ')) absentMPs = JSONField(blank=True, null=True) created_for = models.DateField(_('date of vote'), blank=True, null=True, help_text=_('date of vote')) class Quote(Timestampable, models.Model): """Model for quoted text from speeches.""" quoted_text = models.TextField(_('quoted text'), blank=True, null=True, help_text=_('text quoted in a speech')) speech = models.ForeignKey('Speech', help_text=_('the speech that is being quoted')) first_char = models.IntegerField(blank=True, null=True, help_text=_('index of first character of quote string')) last_char = models.IntegerField(blank=True, null=True, help_text=_('index of last character of quote string')) class PresenceOfPG(Timestampable, models.Model): """Model for analysis presence of PG on session.""" session = models.ForeignKey('Session', blank=True, null=True, related_name='session_presence', help_text=_('Session ')) presence = JSONField(blank=True, null=True) created_for = models.DateField(_('date of activity'), blank=True, null=True, help_text=_('date of analize')) class Tfidf(Timestampable, models.Model): """Model for analysis TFIDF.""" session = models.ForeignKey('Session', blank=True, null=True, related_name='tfidf', help_text=_('Session ')) created_for = models.DateField(_('date of activity'), blank=True, null=True, help_text=_('date of analize')) is_visible = models.BooleanField(_('is visible'), default=True) data = JSONField(blank=True, null=True) def __str__(self): return unicode(self.session.name) + " --> " + unicode(self.session.organization.name) class Tag(models.Model): """All tags of votes.""" id_parladata = models.IntegerField(_('parladata id'), blank=True, null=True, help_text=_('id parladata')) name = models.TextField(blank=True, null=True, help_text=_('tag name'))
2.109375
2
model/dnn.py
msamribeiro/deep-cca
27
12775085
<reponame>msamribeiro/deep-cca #!/usr/bin/env python # -*- coding: utf-8 -*- """ Parallel network and feedforward network. Author: <NAME> Date: 2017 """ import numpy import theano import theano.tensor as T from cca_layer import CCA from layers import HiddenLayer, ConvPoolLayer class DNN(object): def __init__(self, rng, in_x, in_size, architecture, activation=T.tanh): ''' Single feedforward Deep Neural Network ''' self.layers = [] self.params = [] self.n_layers = len(architecture) assert self.n_layers > 0 self.x = in_x for i in xrange(self.n_layers): if i == 0: input_size = in_size else: input_size = architecture[i-1] if i == 0: layer_input = self.x else: layer_input = self.layers[-1].output hidden_layer = HiddenLayer(rng=rng, input=layer_input, n_in=input_size, n_out=architecture[i], activation=activation) self.layers.append(hidden_layer) self.params.extend(hidden_layer.params) self.output = self.layers[-1].output class ParallelDNN(object): def __init__(self, config, data): ''' Parallel DNN with CCA objective function ''' index = T.lscalar() # index to a [mini]batch x1 = T.matrix("x1", dtype=theano.config.floatX) # view1 of the data x2 = T.matrix("x2", dtype=theano.config.floatX) # view2 of the data rng = numpy.random.RandomState(1234) # parallel networks dnn1 = DNN(rng, x1, config.x1_dim, config.architecture1) dnn2 = DNN(rng, x2, config.x2_dim, config.architecture2) # CCA objective function cca = CCA(config) cost, mean = cca.cca(dnn1.output, dnn2.output) params = dnn1.params + dnn2.params gparams = [T.grad(cost, param) for param in params] updates = [ (param, param - config.learning_rate * gparam) for param, gparam in zip(params, gparams) ] train_set_x1, train_set_x2 = data[0] valid_set_x1, valid_set_x2 = data[1] test_set_x1, test_set_x2 = data[2] self.train = theano.function( inputs=[index], outputs=[cost, mean], updates=updates, givens={ x1: train_set_x1[index * config.batch_size: (index + 1) * config.batch_size], x2: train_set_x2[index * config.batch_size: (index + 1) * config.batch_size] } ) self.valid = theano.function( inputs=[index], outputs=[cost, mean], givens={ x1: valid_set_x1[index * config.batch_size:(index + 1) * config.batch_size], x2: valid_set_x2[index * config.batch_size:(index + 1) * config.batch_size] } ) self.test = theano.function( inputs=[index], outputs=[cost, mean], givens={ x1: test_set_x1[index * config.batch_size:(index + 1) * config.batch_size], x2: test_set_x2[index * config.batch_size:(index + 1) * config.batch_size] } )
3
3
Registration/ImageRegistration.py
yuzhounaut/SpaceM
8
12775086
<gh_stars>1-10 from skimage import transform as tf from skimage import filters from skimage import exposure from scipy import ndimage from scipy.optimize import basinhopping from scipy import spatial import os, gc, glob, spaceM import numpy as np import matplotlib.pyplot as plt import tifffile as tiff import spaceM.ImageFileManipulation.FIJIcalls as fc import spaceM.Pipeline as sp # MFA = sp.getPath('MF') + 'Analysis/' def penMarksFeatures(MF, prefix='', input=[], whole_image=True, output=[]): """Obtain coordinates of the pixels at the edge of the penmarks from the tile frames in both pre- and post-MALDI microscopy datasets using matlab implementation of the SURF algorithm. Args: MF (str): path to Main Folder. prefix (str): either 'pre' or 'post' for pre- or post-MALDI dataset, respectively. whole_image (bool): whether or not perform the fiducial detection on the stitched image. If False, performs on the tiled images, uses less RAM but much slower. """ def fiducialFinder(im_p): # prefix= 'post' # im_p = MF + 'Analysis/StitchedMicroscopy/' + prefix + 'MALDI_FLR/' + 'img_t1_z1_c1' # im_p = 'E:\Experiments\TNFa_2.3_SELECTED\Analysis\StitchedMicroscopy\preMALDI_FLR\img_XY030.tif' im = tiff.imread(im_p) if len(np.shape(im)) > 2: im = im[0,:,:] # im = np.log2(im+1) val = filters.threshold_otsu(im, nbins=65536) val = np.mean(im) - np.std(im)/2 hist, bins_center = exposure.histogram(im) plt.plot(bins_center, hist, lw=2) plt.axvline(val, color='k', ls='--', label='Threshold') plt.yscale('log') plt.xlabel('Pixel intensities') plt.ylabel('Log10(counts)') # plt.title('Mean- std/2') plt.legend() plt.savefig(MF + 'Analysis/Fiducials/' + prefix + '_histogram.png') plt.close('all') BW = np.zeros(np.shape(im)) BW[im < val] = 1 BW[im < 100] = 0 im = [] # opening struct2 = ndimage.generate_binary_structure(2,1) iteration = 10 rec_o1 = ndimage.binary_erosion(BW, structure=struct2, iterations=iteration).astype(BW.dtype) BW = [] rec_o2 = ndimage.binary_dilation(rec_o1, structure=struct2, iterations=iteration).astype(rec_o1.dtype) rec_o1 = [] rec_c1 = ndimage.binary_dilation(rec_o2, structure=struct2, iterations=iteration).astype(rec_o2.dtype) rec_o2 = [] rec_c2 = ndimage.binary_dilation(rec_c1, structure=struct2, iterations=iteration).astype(rec_c1.dtype) gc.collect() edge = filters.sobel(rec_c2) rec_o2 = [] # plt.imshow(edge) x,y = np.where(edge > 0) return x,y folder = MF + 'Analysis/StitchedMicroscopy/' + prefix + 'MALDI_FLR/' if whole_image: if prefix == 'pre': X,Y = fiducialFinder(im_p=folder + 'img_t1_z1_c0') if prefix == 'post': X,Y = fiducialFinder(im_p=folder + 'img_t1_z1_c0') # if prefix == 'timelapse': # os.chdir(MF + 'Input/Timelapse/BF/') # X,Y = fiducialFinder(im_p= MF + 'Input/Timelapse/BF/{}'.format( # glob.glob(r'T*')[np.argsort([int(s[1:]) for s in glob.glob(r'T*')])[-1]])) if type(input) == str: X, Y = fiducialFinder(im_p=input) else: [picXcoord, picYcoord] = fc.readTileConfReg(folder) X = [] Y = [] for item in os.listdir(folder): if item.endswith('.tif'): x_coord, y_coord = fiducialFinder(folder + item) picInd = int(item[len(item) - 7:len(item) - 4]) for i in range(len(x_coord)): if x_coord[i] < (1608 - 1608*0.1) and y_coord[i] < (1608 - 1608*0.1): xScaled = x_coord[i] + picXcoord[picInd - 1] yScaled = y_coord[i] + picYcoord[picInd - 1] X = np.append(X, xScaled) Y = np.append(Y, yScaled) print(item) if type(output) == str: np.save(output, [X, Y]) else: np.save(MF + 'Analysis/Fiducials/' + prefix + 'XYpenmarks.npy', [X, Y]) plt.figure() plt.scatter(X, Y, 1) plt.xlabel('X dimension', fontsize=20) plt.ylabel('Y dimension', fontsize=20) plt.title('Fiducials detection ' + prefix +'MALDI', fontsize=25) plt.axis('equal') plt.savefig(MF + 'Analysis/Fiducials/' + prefix + 'CHECK.png', dpi = 500) plt.close('all') def transform(postX, postY, transX, transY, rot): """Coordinate transform function. Args: postX (list): X coordinates to transform (1D). postY (list): Y coordinates to transform (1D). transX (float): Translation value in X dimension. transY (float): Translation value in Y dimension. rot (float): Rotation value in degree. Returns: transformed (list): Transformed coordinates (2D). """ tform = tf.SimilarityTransform(scale=1, rotation=rot, translation=(transX, transY)) transformed = tf.matrix_transform(np.transpose([postX, postY]), tform.params) return transformed def fiducialsAlignment(MF, src, dst): """Define the coordinate transform parameters leading to the optimal overlap between the pre and post-MALDI fiducials. Args: MFA (str): path to Main Folder Analysis. """ def get_distance(x_spots,y_spots,xe,ye,n_neighbor): """Measure the euclidean distance between each point of an array to its n nearest neighbor in a second array using kd-tree algorithm. Args: x_spots (list): X coordinates of the array to query (1D). y_spots (list): Y coordinates of the array to query (1D). xe (list): X coordinates of the array to index (1D). ye (list): Y coordinates of the array to index(1D). n_neighbor (int): The number of nearest neighbor to consider. Returns: distances (list): Distances of the indexed points n nearest queried neighbors (2D). """ data = list(zip(xe.ravel(), ye.ravel())) tree = spatial.KDTree(data) return tree.query(list(zip(x_spots.ravel(), y_spots.ravel())),n_neighbor) def err_func(params, preX, preY, postX, postY): """Error function passed in the optimizer. Transforms coordinates of target frame and returns the mean nearest neighbor distance to the 1st frame fiducials. Args: params (list): Array of coordinate transformation function: [Translation in X(float), Translation in Y(float), rotation(float)] (1D). preX (list): X coordinates of the 1st frame fiducials (1D). preY (list): Y coordinates of the 1st frame fiducials (1D). postX (list): X coordinates of the target frame fiducials (1D). postY (list): Y coordinates of the target frame fiducials (1D). Returns: mean_distances (): Mean N nearest neighbor distance to the 1st frame fiducials. """ transX, transY, rot = params transformed = transform(postX, postY, transX, transY, rot) distances = np.array(get_distance(transformed[:, 0], transformed[:, 1], preX, preY, 1)[0]) return np.mean(distances) preX, preY = np.load(dst) postX, postY = np.load(src) n_features = 2000 post_den = int(np.round(np.shape(postX)[0] / n_features)) postX_redu = postX[::post_den]#reduces optimizer computation time #TODO --> need to evaluate impact on alignment precision postY_redu = postY[::post_den] # print('post features length = {}'.format(np.shape(postX_redu))) pre_den = int(np.round(np.shape(preX)[0] / n_features)) preX_redu = preX[::pre_den] preY_redu = preY[::pre_den] # print('pre features length = {}'.format(np.shape(preX_redu))) minF = basinhopping(err_func, x0=(0, 0, 0 ), niter=1, T=1.0, stepsize=10, minimizer_kwargs={'args': ((preX_redu, preY_redu, postX_redu, postY_redu))}, take_step=None, accept_test=None, callback=None, interval=50, disp=True, niter_success=1) # print(minF) # #Case of 180deg rotation: # deg = 180 # rad = -deg / 180. * np.pi # transformed = transform(postX_redu, postY_redu, 0, 0, rad) # # minF_rot = basinhopping(err_func, x0=((np.mean(postX) - np.mean(transformed[:, 0])), (np.mean(postY) - np.mean(transformed[:, 1])), rad), # niter=1, T=1.0, stepsize=10, # minimizer_kwargs={'args': ((preX_redu, preY_redu, postX_redu, postY_redu))}, # take_step=None, accept_test=None, callback=None, interval=50, disp=True, # niter_success=1) # print(minF_rot) # if minF.fun < minF_rot.fun: transX = minF.x[0] transY = minF.x[1] rot = minF.x[2] # scale = minF.x[3] # print('rot = 0 deg') # else: # transX = minF_rot.x[0] # transY = minF_rot.x[1] # rot = minF_rot.x[2] # # scale = minF.x[3] # print('rot = 180 deg') if dst == MF + 'Analysis/Fiducials/timelapseXYpenmarks.npy': np.save(MF + 'Analysis//Fiducials/optimized_params_timelapse.npy', [transX, transY, rot]) else: np.save(MF + 'Analysis//Fiducials/optimized_params.npy', [transX, transY, rot]) transformed = transform(postX, postY, transX, transY, rot) plt.figure() plt.scatter(transformed[:, 0], transformed[:, 1],1) plt.scatter(preX, preY, 1, 'r') plt.axis('equal') plt.savefig(MF + 'Analysis//Fiducials/surfRegResults.png', dpi = 500) plt.close('all') def TransformMarks(MF, dst=''): """Transform the ablation mark coordinates from the post-MALDI dataset using the geometric transform parameters defined in SURF_Alignment() function to estimate their position in the pre-MALDI dataset. Args: MFA (str): path to Main Folder Analysis. """ MFA = MF+'Analysis/' xe_clean2, ye_clean2 = np.load(MFA + '/gridFit/xye_clean2.npy', allow_pickle=True) x_spots, y_spots = np.load(MFA + '/gridFit/xye_grid.npy', allow_pickle=True) if dst == 'timelapse': transX, transY, rot = np.load(MFA + '/Fiducials/optimized_params_timelapse.npy', allow_pickle=True) else: transX, transY, rot = np.load(MFA + '/Fiducials/optimized_params.npy', allow_pickle=True) xye_tf = transform(xe_clean2, ye_clean2, transX, transY, rot) X = xye_tf[:, 0] Y = xye_tf[:, 1] np.save(MFA + '/Fiducials/{}transformedMarks.npy'.format(dst), [X, Y]) xyg_tf = transform(x_spots.ravel(), y_spots.ravel(), transX, transY, rot) Xg = xyg_tf[:, 0] Yg = xyg_tf[:, 1] np.save(MFA + '/Fiducials/{}transformedGrid.npy'.format(dst), [Xg, Yg]) if os.path.exists(MFA + 'gridFit/marksMask.npy'): marksMask = np.load(MFA + 'gridFit/marksMask.npy', allow_pickle=True) tfMarksMask = [] for i in range(np.shape(marksMask)[0]): if np.shape(marksMask[i][0].T)[0] > 1: tfMask = transform(marksMask[i][0].T, marksMask[i][1].T, transX, transY, rot) tfMarksMask.append([tfMask[:, 0], tfMask[:, 1]]) else: tfMarksMask.append([[], []]) print('empty') np.save(MFA + '/Fiducials/{}transformedMarksMask.npy'.format(dst), tfMarksMask) tfMarksMask = np.array(tfMarksMask) if dst == 'timelapse': penmarks = np.load(MFA + 'Fiducials/{}XYpenmarks.npy'.format(dst), allow_pickle=True) else: penmarks = np.load(MFA + 'Fiducials/preXYpenmarks.npy', allow_pickle=True) plt.figure(figsize=[50,25]) plt.scatter(penmarks[0,:], penmarks[1,:], 1, c='k') plt.axis('equal') for i in range(np.shape(tfMarksMask)[0]): if np.shape(tfMarksMask[i][0])[0] > 1: plt.scatter(tfMarksMask[i][0], tfMarksMask[i][1], 1, 'r') plt.scatter(X, Y, 1, c='g') plt.savefig(MFA + '/Fiducials/{}registration_result.png'.format(dst), dpi=100) plt.close('all')
2.28125
2
cc_modes/mm_tribute.py
epthegeek/cactuscanyon
10
12775087
## ____ _ ____ ## / ___|__ _ ___| |_ _ _ ___ / ___|__ _ _ __ _ _ ___ _ __ ## | | / _` |/ __| __| | | / __| | | / _` | '_ \| | | |/ _ \| '_ \ ## | |__| (_| | (__| |_| |_| \__ \ | |__| (_| | | | | |_| | (_) | | | | ## \____\__,_|\___|\__|\__,_|___/ \____\__,_|_| |_|\__, |\___/|_| |_| ## |___/ ## ___ ___ _ _ _____ ___ _ _ _ _ ___ ___ ## / __/ _ \| \| |_ _|_ _| \| | | | | __| \ ## | (_| (_) | .` | | | | || .` | |_| | _|| |) | ## \___\___/|_|\_| |_| |___|_|\_|\___/|___|___/ ## ## A P-ROC Project by <NAME>, Copyright 2012-2013 ## Built on the PyProcGame Framework from <NAME> and <NAME> ## Original Cactus Canyon software by <NAME> ## ## ## The Medieval Madness Tribute ## from procgame import dmd,game import ep import random class MM_Tribute(ep.EP_Mode): """This is Just a Tribute """ def __init__(self,game,priority): super(MM_Tribute, self).__init__(game,priority) self.myID = "MM Tribute" self.halted = False self.running = False self.hitsToWin = 3 self.won = False self.tauntTimer = 8 script = [] # set up the pause text layer textString = "< TROLLS PAUSED >" textLayer = ep.EP_TextLayer(128/2, 24, self.game.assets.font_6px_az_inverse, "center", opaque=False).set_text(textString,color=ep.GREEN) script.append({'seconds':0.3,'layer':textLayer}) # set up the alternating blank layer blank = dmd.FrameLayer(opaque=False, frame=self.game.assets.dmd_blank.frames[0]) blank.composite_op = "blacksrc" script.append({'seconds':0.3,'layer':blank}) # make a script layer with the two self.pauseView = dmd.ScriptedLayer(128,32,script) self.pauseView.composite_op = "blacksrc" self.leftTaunts = [self.game.assets.quote_mmLT1, self.game.assets.quote_mmLT2, self.game.assets.quote_mmLT3, self.game.assets.quote_mmLT4, self.game.assets.quote_mmLT5, self.game.assets.quote_mmLT6] self.rightTaunts = [self.game.assets.quote_mmRT1, self.game.assets.quote_mmRT2, self.game.assets.quote_mmRT3, self.game.assets.quote_mmRT4, self.game.assets.quote_mmRT5, self.game.assets.quote_mmRT6] self.leftSoloTaunts = [self.game.assets.quote_mmLTS1, self.game.assets.quote_mmLTS2, self.game.assets.quote_mmLTS3, self.game.assets.quote_mmLTS4, self.game.assets.quote_mmLTS5, self.game.assets.quote_mmLTS6] self.rightSoloTaunts = [self.game.assets.quote_mmRTS1, self.game.assets.quote_mmRTS2, self.game.assets.quote_mmRTS3, self.game.assets.quote_mmRTS4, self.game.assets.quote_mmRTS5, self.game.assets.quote_mmRTS6] def mode_started(self): self.tauntChoices = [0,1,2,3,4,5] self.tauntTimer = 8 # overall mode timer self.modeTimer = 30 self.timeLayer = ep.EP_TextLayer(64,22,self.game.assets.font_9px_az,"center",opaque=True).set_text(str(self.modeTimer),color=ep.GREEN) # fire up the switch block if it's not already loaded self.game.switch_blocker('add',self.myID) # unload the launcher self.game.tribute_launcher.unload() # first hit is 250, but it adds the bump first in the routine self.value = 175000 self.running = True self.halted = False self.won = False # total left troll hits self.leftHitsSoFar = 0 # total right troll hits self.rightHitsSoFar = 0 # score for the mode self.totalPoints = 0 # set up the text layers self.titleLine = ep.EP_TextLayer(64,2,self.game.assets.font_5px_AZ,"center",opaque=False) self.update_titleLine() self.scoreLayer = ep.EP_TextLayer(64,10,self.game.assets.font_5px_AZ,"center",opaque=False) self.intro() def ball_drained(self): # if we get to zero balls while running, finish if self.game.trough.num_balls_in_play == 0 and self.running: self.finish_trolls() def halt_test(self): if not self.halted: self.halt_trolls() # if the mode is already halted, cancel any pending resume delay else: self.cancel_delayed("Resume") # halt switches # bonus lanes pause save polly def sw_leftBonusLane_active(self,sw): self.halt_test() def sw_rightBonusLane_active(self,sw): self.halt_test() # bumpers pause quickdraw def sw_leftJetBumper_active(self,sw): self.halt_test() def sw_rightJetBumper_active(self,sw): self.halt_test() def sw_bottomJetBumper_active(self,sw): self.halt_test() # so does the mine and both pass the 'advanced' flag to avoid moo sounds def sw_minePopper_active_for_350ms(self,sw): #print "Trolls It Mine Popper Register" self.halt_test() def sw_saloonPopper_active_for_250ms(self,sw): #print "Trolls It Saloon Popper Register" self.halt_test() def sw_saloonPopper_inactive(self,sw): if self.running and self.halted: self.halted = False self.delay("Resume",delay=1,handler=self.resume_trolls) # resume when exit def sw_jetBumpersExit_active(self,sw): if self.running and self.halted: # kill the halt flag self.halted = False self.delay("Resume",delay=1,handler=self.resume_trolls) def intro(self,step=1): if step == 1: self.stop_music() self.delay(delay=0.5,handler=self.game.base.play_quote,param=self.game.assets.quote_mmTrolls) introWait = self.game.sound.play(self.game.assets.sfx_mmIntro) self.delay(delay=introWait,handler=self.game.music_on,param=self.game.assets.music_trolls) border = dmd.FrameLayer(opaque = True, frame=self.game.assets.dmd_singlePixelBorder.frames[0]) titleLine = ep.EP_TextLayer(64,2,self.game.assets.font_9px_az,"center",False).set_text("TROLLS!",color=ep.GREEN) infoLine1 = ep.EP_TextLayer(64,14,self.game.assets.font_5px_AZ,"center",False).set_text("SHOOT EACH TROLL " + str(self.hitsToWin) + " TIMES") infoLine2 = ep.EP_TextLayer(64,20,self.game.assets.font_5px_AZ,"center",False).set_text("TO FINISH") combined = dmd.GroupedLayer(128,32,[border,titleLine,infoLine1,infoLine2]) self.layer = combined self.delay(delay=2,handler=self.intro,param=2) if step == 2: startFrame = dmd.FrameLayer(opaque = True, frame=self.game.assets.dmd_mmTrollsIntro.frames[0]) transition = ep.EP_Transition(self,self.layer,startFrame,ep.EP_Transition.TYPE_PUSH,ep.EP_Transition.PARAM_NORTH) self.delay(delay=1.5,handler=self.intro,param=3) if step == 3: anim = self.game.assets.dmd_mmTrollsIntro myWait = len(anim.frames) / 10.0 animLayer = ep.EP_AnimatedLayer(anim) animLayer.hold = True animLayer.frame_time = 6 animLayer.repeat = False animLayer.opaque = True # sounds ? animLayer.add_frame_listener(1,self.game.sound.play,param=self.game.assets.sfx_lightning1) animLayer.add_frame_listener(13,self.game.sound.play,param=self.game.assets.sfx_lightning1) # trolls raising animLayer.add_frame_listener(10,self.game.bad_guys.target_up,param=1) animLayer.add_frame_listener(21,self.game.bad_guys.target_up,param=2) # first taunt animLayer.add_frame_listener(25,self.taunt) self.layer = animLayer self.delay(delay = myWait,handler=self.get_going) def get_going(self): self.game.ball_search.enable() # release the ball if self.game.tribute_launcher.shot == 3: self.game.mountain.eject() else: self.game.coils.leftGunFightPost.disable() # start the timer self.modeTimer += 1 self.time_trolls() # start the score updater self.score_update() # start the display self.display_trolls(mode="idle",troll="both") def display_trolls(self,troll="both",mode="idle"): self.cancel_delayed("Display") if troll == "left": self.cancel_delayed("Left Display") elif troll == "right": self.cancel_delayed("Right Display") if mode == "idle": if troll == "left" or troll == "both": anim = self.game.assets.dmd_mmTrollIdleLeft self.leftTrollLayer = dmd.AnimatedLayer(frames=anim.frames,hold=False,opaque=False,repeat=True,frame_time=6) myWait = 0 if troll == "right" or troll == "both": anim = self.game.assets.dmd_mmTrollIdleRight self.rightTrollLayer = dmd.AnimatedLayer(frames=anim.frames,hold=False,opaque=False,repeat=True,frame_time=6) myWait = 0 elif mode == "hit": if troll == "left": anim = self.game.assets.dmd_mmTrollHitLeft myWait = len(anim.frames) / 10.0 self.leftTrollLayer = dmd.AnimatedLayer(frames=anim.frames,hold=True,opaque=False,repeat=False,frame_time=6) if troll == "right": anim = self.game.assets.dmd_mmTrollHitRight myWait = len(anim.frames) / 10.0 self.rightTrollLayer = dmd.AnimatedLayer(frames=anim.frames,hold=True,opaque=False,repeat=False,frame_time=6) elif mode == "dead": if troll == "left": anim = self.game.assets.dmd_mmTrollDeadLeft myWait = len(anim.frames) / 10.0 self.leftTrollLayer = dmd.AnimatedLayer(frames=anim.frames,hold=True,opaque=False,repeat=False,frame_time=6) if troll == "right": anim = self.game.assets.dmd_mmTrollDeadRight myWait = len(anim.frames) / 10.0 self.rightTrollLayer = dmd.AnimatedLayer(frames=anim.frames,hold=True,opaque=False,repeat=False,frame_time=6) else: # if we didn't get a cue to change trolls, don't mess with them myWait = 0 # build the layer self.leftTrollLayer.composite_op = "blacksrc" self.rightTrollLayer.composite_op = "blacksrc" combined = dmd.GroupedLayer(128,32,[self.timeLayer,self.titleLine,self.scoreLayer,self.leftTrollLayer,self.rightTrollLayer]) self.layer = combined # set the delay for fixing it after a hit or a miss if mode == "hit": #print "It's a hit - setting loop back to idle" # if a troll got hit loop back to that one to set it to idle after the animation finishes if troll == "left": self.delay("Left Display",delay=myWait,handler=self.reset_troll,param="left") if troll == "right": self.delay("Right Display",delay=myWait,handler=self.reset_troll,param="right") if mode == "dead": if self.won: # if both trolls are dead, go to the finish self.delay(delay=myWait,handler=self.finish_trolls) def reset_troll(self,side): # set the display back self.display_trolls(side) # put the target back up if side == "left": target = 1 else: target = 2 #print "Resetting Troll on target " + str(target) self.game.bad_guys.target_up(target) def hit_troll(self,target): # score the points self.game.score(self.value) # add to the total self.totalPoints += self.value # play the smack sound self.game.sound.play(self.game.assets.sfx_mmTrollSmack) # delay the taunt timer if self.tauntTimer <= 2: self.tauntTimer += 3 if target == 1: # register the hit self.leftHitsSoFar += 1 if self.leftHitsSoFar >= self.hitsToWin: # troll is dead if self.rightHitsSoFar >= self.hitsToWin: # both dead? Winner! self.win() # then display the troll dying self.display_trolls(mode="dead",troll="left") # play the death sound self.game.sound.play(self.game.assets.quote_mmLeftDeath) # if the other troll isn't dead yet, he comments if not self.won: self.delay(delay=0.5,handler=self.game.base.play_quote,param=self.game.assets.quote_mmRightAlone) # if troll is not dead, just hit it else: self.display_trolls(mode="hit",troll="left") # and play the pain sound self.game.sound.play(self.game.assets.quote_mmLeftPain) # other target is 2 else: self.rightHitsSoFar += 1 if self.rightHitsSoFar >= self.hitsToWin: # troll is dead if self.leftHitsSoFar >= self.hitsToWin: # both dead? Winner! self.win() # then display the troll dying self.display_trolls(mode="dead",troll="right") # play the death sound self.game.sound.play(self.game.assets.quote_mmRightDeath) # if the other troll isn't dead yet, he comments if not self.won: self.delay(delay=0.5,handler=self.game.base.play_quote,param=self.game.assets.quote_mmLeftAlone) else: self.display_trolls(mode="hit",troll="right") # and play the pain sound self.game.sound.play(self.game.assets.quote_mmRightPain) # update the title line self.update_titleLine() def win(self): self.won = True self.cancel_delayed("Mode Timer") self.cancel_delayed("Taunt Timer") def score_update(self): # update the score line total every half second p = self.game.current_player() scoreString = ep.format_score(p.score) self.scoreLayer.set_text(scoreString,color=ep.GREEN) self.delay("Score Update",delay=0.5,handler=self.score_update) def update_titleLine(self): left = self.hitsToWin - self.leftHitsSoFar right = self.hitsToWin - self.rightHitsSoFar self.titleLine.set_text(str(left) + " - TROLLS! - " + str(right),color=ep.BROWN) def time_trolls(self): self.modeTimer -= 1 # if we get to zero, end the mode if self.modeTimer < 0: self.finish_trolls() # otherwise update the timer layers and loop back else: if self.modeTimer > 9: color = ep.GREEN elif self.modeTimer > 4: color = ep.YELLOW else: color = ep.RED self.timeLayer.set_text(str(self.modeTimer),color=color) self.delay("Mode Timer",delay=1,handler=self.time_trolls) def halt_trolls(self): if self.modeTimer <= 0: return #print "HALTING TROLLS IN BUMPERS/MINE" self.cancel_delayed("Resume") # cancel delays self.cancel_delayed("Mode Timer") # do the halted delay self.layer = self.pauseView # set the flag self.halted = True def resume_trolls(self): # turn the timer back on self.time_trolls() # turn the display back on if self.leftHitsSoFar == self.hitsToWin: self.display_trolls(mode="idle",troll="right") elif self.rightHitsSoFar == self.hitsToWin: self.display_trolls(mode="idle",troll="left") else: self.display_trolls(mode="idle",troll="both") def taunt(self): # cancel any existing timer and taunt calls self.cancel_delayed("Taunt Timer") self.cancel_delayed("Taunt Call") # pick a taunt index = random.choice(self.tauntChoices) # remove that from the list self.tauntChoices.remove(index) # make sure it's not now empty if len(self.tauntChoices) == 0: self.tauntChoices = [0,1,2,3,4,5] # if they're both alive - double taunt if self.leftHitsSoFar < self.hitsToWin and self.rightHitsSoFar < self.hitsToWin: # play the left taunt myWait = self.game.base.priority_quote(self.leftTaunts[index]) # then delay the second self.delay("Taunt Call",delay=myWait+0.5,handler=self.game.base.play_quote,param=self.rightTaunts[index]) # if one of them is already dead - play a single taunt else: if self.leftHitsSoFar < self.hitsToWin: # play a left taunt self.game.base.play_quote(self.leftSoloTaunts[index]) else: self.game.base.play_quote(self.rightSoloTaunts[index]) # set the timer for the next one self.tauntTimer = 8 # then start the timer self.taunt_timer() def taunt_timer(self): # loop for calling the troll taunting self.tauntTimer -= 1 if self.tauntTimer <= 0: self.taunt() else: self.delay("Taunt Timer", delay = 1, handler=self.taunt_timer) def finish_trolls(self): # kill the delays self.wipe_delays() # drop the targets self.game.bad_guys.drop_targets() border = dmd.FrameLayer(opaque=True, frame=self.game.assets.dmd_mmTrollFinalFrame.frames[0]) textLayer1 = ep.EP_TextLayer(64,8,self.game.assets.font_5px_AZ,"center",opaque=False) if self.won: textLayer1.set_text("TROLLS DESTROYED",color=ep.DARK_GREEN) # add some extra points if won - to make it a cool 1.5 million self.game.score(450000) self.totalPoints += 450000 else: textLayer1.set_text("TROLLS ESCAPED",color=ep.DARK_GREEN) textLayer2 = ep.EP_TextLayer(64,14,self.game.assets.font_9px_az,"center",opaque=False).set_text(str(ep.format_score(self.totalPoints)),color=ep.GREEN) combined = dmd.GroupedLayer(128,32,[border,textLayer1,textLayer2]) self.layer = combined # play a final quote ? if self.won: self.delay(delay=1,handler=self.game.base.priority_quote,param=self.game.assets.quote_mmFatality) elif self.leftHitsSoFar == 0 and self.rightHitsSoFar == 0: self.game.base.priority_quote(self.game.assets.quote_mmYouSuck) else: self.game.sound.play(self.game.assets.sfx_cheers) myWait = 2 self.delay(delay=myWait,handler=self.done) def done(self): self.running = False # turn the level 5 stack flag back off self.game.stack_level(5,False) # set the music back to the main loop self.music_on(self.game.assets.music_mainTheme,mySlice=5) # remove the switch blocker self.game.switch_blocker('remove',self.myID) # then unload self.unload()
2.421875
2
AlgorithmTest/PROGRAMMERS_PYTHON/Lv1/Prog_64061.py
bluesky0960/AlgorithmTest
0
12775088
<reponame>bluesky0960/AlgorithmTest #https://programmers.co.kr/learn/courses/30/lessons/64061 # 크레인 인형뽑기 def solution(board, moves): answer = 0 size = len(board[0]) a = [] for m in moves: for i in range(size): if board[i][m-1] != 0: a.append(board[i][m-1]) board[i][m-1] = 0 break if len(a) == 1 or len(a) == 0: continue else: if a[-1] == a[-2]: a.pop() a.pop() answer+=2 print(a) return answer
3.421875
3
Sea/adapter/materials/ViewProviderMaterial.py
FRidh/Sea
2
12775089
<reponame>FRidh/Sea<filename>Sea/adapter/materials/ViewProviderMaterial.py<gh_stars>1-10 from ..base import ViewProviderBase class ViewProviderMaterial(ViewProviderBase): pass
1.203125
1
tests/Serial/test_multi-planet_serial.py
VirtualPlanetaryLaboratory/multiplanet
0
12775090
import subprocess import numpy as np import os import pathlib import multiprocessing as mp import sys def test_mp_serial(): #gets current path path = pathlib.Path(__file__).parents[0].absolute() sys.path.insert(1, str(path.parents[0])) if not (path / "MP_Serial").exists(): subprocess.check_output(["vspace", "vspace.in"], cwd=path) # Run multi-planet if not (path / ".MP_Serial").exists(): subprocess.check_output(["multiplanet", "vspace.in", "-c", "1"], cwd=path) folders = sorted([f.path for f in os.scandir(path / "MP_Serial") if f.is_dir()]) for i in range(len(folders)): os.chdir(folders[i]) assert os.path.isfile('earth.earth.forward') == True os.chdir('../') if __name__ == "__main__": test_mp_serial()
2.40625
2
nagare/services/create_root.py
nagareproject/core
40
12775091
<filename>nagare/services/create_root.py # -- # Copyright (c) 2008-2021 Net-ng. # All rights reserved. # # This software is licensed under the BSD License, as described in # the file LICENSE.txt, which you should have received as part of # this distribution. # -- from nagare.services import plugin class RootService(plugin.Plugin): LOAD_PRIORITY = 109 def create_root(self, app, **params): root = app.create_root() # Initialize the objects graph from the URL args = app.create_dispatch_args(root=root, **params) app.route(args) return root def handle_request(self, chain, session, **params): if session: root = session['nagare.root'] else: root = session['nagare.root'] = self.create_root(**params) return chain.next(session=session, root=root, **params)
2.25
2
install.py
nikolhm/Pokus
1
12775092
import platform import os import sys def install(package): print("""Colorama er ikke installert. Du trenger Colorama for å spille Pokus med farger. For å spille må du installere Colorama og starte spillet på nytt.""") if input("Vil du installere colorama nå?\n> ").lower() in {"ja", "j"}: osys = platform.system() if osys == "Linux" or osys == "Darwin": os.system("pip3 install --user colorama") os.system("clear") else: os.system("pip install --user colorama") os.system("cls") sys.exit("Du må starte spillet på nytt nå.")
2.984375
3
ganimides_server/ganimides_database/xxx.py
leandrou-technology-forward/api_server
0
12775093
def dbapi_subscription(dbsession, action, input_dict, action_filter={}, caller_area={}): _api_name = "dbapi_subscription" _api_entity = 'SUBSCRIPTION' _api_action = action _api_msgID = set_msgID(_api_name, _api_action, _api_entity) _process_identity_kwargs = {'type': 'api', 'module': module_id, 'name': _api_name, 'action': _api_action, 'entity': _api_entity, 'msgID': _api_msgID,} _process_adapters_kwargs = {'dbsession': dbsession} _process_log_kwargs = {'indent_method': 'AUTO', 'indent_level':None} _process_debug_level = get_debug_level(caller_area.get('debug_level'), **_process_identity_kwargs, **_process_adapters_kwargs) _process_debug_files = get_debug_files(_process_debug_level, **_process_identity_kwargs, **_process_adapters_kwargs) _process_debug_kwargs={'debug_level':_process_debug_level,'debug_files':_process_debug_files} _process_signature = build_process_signature(**_process_identity_kwargs, **_process_adapters_kwargs, **_process_debug_kwargs, **_process_log_kwargs) _process_call_area = build_process_call_area(_process_signature, caller_area) log_process_start(_api_msgID,**_process_call_area) log_process_input('', 'input_dict', input_dict,**_process_call_area) log_process_input('', 'action_filter', action_filter,**_process_call_area) log_process_input('', 'caller_area', caller_area,**_process_call_area) input_dict.update({'client_type': 'subscriber'}) if action.upper() in ('REGISTER','ADD','REFRESH'): action='REFRESH' action_result = dbsession.table_action(dbmodel.CLIENT, action, input_dict, action_filter, auto_commit=True, caller_area=_process_call_area) api_result = action_result thismsg=action_result.get('api_message') api_result.update({'api_action': _api_action, 'api_name': _api_name}) if not api_result.get('api_status') == 'success': # msg = f"subscription not registered" # api_result.update({'api_message':msg}) log_process_finish(_api_msgID, api_result, **_process_call_area) return api_result client = api_result.get('api_data') client_id = client.get('client_id') input_dict.update({'client_id': client_id}) elif action.upper() in ('CONFIRM', 'ACTIVATE', 'DEACTIVATE', 'DELETE'): subscription_dict = dbsession.get(dbmodel.SUBSCRIPTION, input_dict, 'DICT', caller_area=_process_call_area) if not subscription_dict: msg = f'subscription not found' action_status='error' api_result = {'api_status': action_status, 'api_message': msg, 'api_data': input_dict, 'api_action': _api_action.upper(), 'api_name': _api_name} log_process_finish(_api_msgID, api_result, **_process_call_area) return api_result client_dict=dbsession.get(dbmodel.CLIENT, subscription_dict,'DICT', caller_area=_process_call_area) if not client_dict: msg = f'client not found' action_status='error' api_result = {'api_status': action_status, 'api_message': msg, 'api_data': subscription_dict, 'api_action': _api_action.upper(), 'api_name': _api_name} log_process_finish(_api_msgID, api_result, **_process_call_area) return api_result #action='CONFIRM' action_result = dbsession.table_action(dbmodel.CLIENT, action, input_dict, action_filter, auto_commit=True, caller_area=_process_call_area) api_result = action_result api_result.update({'api_action': _api_action, 'api_name': _api_name}) thismsg=action_result.get('api_message') if not api_result.get('api_status') == 'success': # msg = f'client confirmation failed' # api_result.update({'api_message':msg}) log_process_finish(_api_msgID, api_result, **_process_call_area) return api_result subscription_dict = dbsession.get(dbmodel.SUBSCRIPTION, subscription_dict, 'DICT', caller_area=_process_call_area) status=subscription_dict.get('status') client_id=subscription_dict.get('client_id') # if not subscription_dict.get('status') == 'Active': # msg = f"service provider not confirmed. status={status}" # action_status='error' # api_result = {'api_status': action_status, 'api_message': msg, 'api_data': subscription_dict, 'messages': messages, 'rows_added': rows_added, 'rows_updated': rows_updated, 'api_action': _api_action.upper(), 'api_name': _api_name} # log_process_finish(_api_msgID, api_result, **_process_call_area) # return api_result input_dict.update({'status': status}) input_dict.update({'client_id': client_id}) action_result = dbsession.table_action(dbmodel.SUBSCRIPTION, action, input_dict, action_filter, auto_commit=True, caller_area=_process_call_area) api_result = action_result thismsg=thismsg.replace('CLIENT',_api_entity) api_result.update({'api_action': _api_action, 'api_name': _api_name,'api_message':thismsg}) log_process_finish(_api_msgID, api_result, **_process_call_area) return api_result
1.859375
2
Code/Base_Models_and_MLR.py
IshanKuchroo/SuperStore_Sales_Forecast
0
12775094
from scipy import stats from PreProcessing import * ################################################################# # ------------------ Base Methods ------------------ # ################################################################ col = 'Sales' method = ['Average', 'Naive', 'Drift', 'SES'] def base_methods(train, test): for i in range(len(method)): if method[i] == 'Average': h_step_forecast, residual_err, forecast_err = avg_forecast_method(train, test) elif method[i] == 'Naive': h_step_forecast, residual_err, forecast_err = naive_forecast_method(train, test) elif method[i] == 'Drift': h_step_forecast, residual_err, forecast_err = drift_forecast_method(train, test) else: h_step_forecast, residual_err, forecast_err = ses_forecast_method(train, test, train[0], 0.5) squared_train_err = [number ** 2 for number in residual_err] squared_test_err = [number ** 2 for number in forecast_err] lst = ["{0:.2f}".format(np.sum(squared_test_err) / len(squared_test_err)) , "{0:.2f}".format(np.sum(squared_train_err) / len(squared_train_err)) , "{0:.2f}".format(np.var(residual_err)) , "{0:.2f}".format(np.var(forecast_err)) , "{0:.2f}".format(q_value(residual_err, 15)) , "{0:.2f}".format(np.var(residual_err) / np.var(forecast_err)) ] # final_df = pd.DataFrame() if i == 0: final_df = pd.DataFrame(lst, columns=['Average'], index=['MSE_Fcast', 'MSE_Residual', 'Var_Pred', 'Var_Fcast', 'QValue_Residual' , 'Variance_Ratio']) else: final_df[method[i]] = lst y_axis, x_axis = auto_corr_func_lags(forecast_err, 20) span = 1.96 / np.sqrt(len(forecast_err)) plt.axhspan(-1 * span, span, alpha=0.2, color='blue') plt.stem(x_axis, y_axis) plt.legend() plt.xlabel("Lags") plt.ylabel("ACF") plt.title(f"{method[i]} Forecast ACF Plot") plt.grid() plt.show() plt.figure() plt.plot(train, label='Training dataset') plt.plot([None for i in train] + [x for x in test], label='Testing dataset') plt.plot([None for i in train] + [x for x in h_step_forecast], label=f'{method[i]} method h-step prediction') plt.legend() plt.xlabel('Sample set') plt.ylabel('Sales') plt.title(f"{method[i]} Method Forecasting") plt.grid() plt.show() return final_df final_df = base_methods(X_train[col], X_test[col]) ################################################################# # ------------------ Holt-Winters Method ------------------ # ################################################################ holtt = ets.ExponentialSmoothing(X_train[col], trend='add', damped_trend=False, seasonal='add', seasonal_periods=7).fit() # holtt = ets.ExponentialSmoothing(X_train['Sales'], trend='add', damped_trend=False, seasonal=None).fit(optimized=True) # holtt = ets.Holt(X_train['Sales'], damped_trend=False).fit(optimized=True) holtf = holtt.forecast(steps=len(X_test[col])) pred_train_holtf = holtt.predict(start=0, end=(len(X_train[col]) - 1)) holtf = pd.DataFrame(holtf, columns=['Forecast']).set_index(X_test.index) pred_train_holtf = pd.DataFrame(pred_train_holtf, columns=['Residual']).set_index(X_train.index) forecast_err_hw = [] residual_err_hw = [] for i in range(np.min(X_test.index), np.max(X_test.index)): forecast_err_hw.append(X_test[col][i] - holtf['Forecast'][i]) for j in range(len(X_train)): residual_err_hw.append(X_train[col][j] - pred_train_holtf['Residual'][j]) squared_train_err = [number ** 2 for number in residual_err_hw] squared_test_err = [number ** 2 for number in forecast_err_hw] lst = ["{0:.2f}".format(np.sum(squared_test_err) / len(squared_test_err)) , "{0:.2f}".format(np.sum(squared_train_err) / len(squared_train_err)) , "{0:.2f}".format(np.var(residual_err_hw)) , "{0:.2f}".format(np.var(forecast_err_hw)) , "{0:.2f}".format(q_value(residual_err_hw, 15)) , "{0:.2f}".format(np.var(residual_err_hw) / np.var(forecast_err_hw))] final_df['Holt-Winter'] = lst y_axis, x_axis = auto_corr_func_lags(forecast_err_hw, 20) span = 1.96 / np.sqrt(len(forecast_err_hw)) plt.axhspan(-1 * span, span, alpha=0.2, color='blue') plt.stem(x_axis, y_axis) plt.legend() plt.xlabel("Lags") plt.ylabel("ACF") plt.title("Holt-Winter Forecast ACF Plot") plt.grid() plt.show() plt.figure() plt.plot(X_train['Order Date'], X_train[col], label='Training dataset') plt.plot(X_test['Order Date'], X_test[col], label='Testing dataset') plt.plot(X_test['Order Date'], holtf, label='Holt-Winter h-step prediction') plt.legend() plt.xlabel('Date') plt.ylabel('Sales') plt.title("Holt-Winter Method Forecasting") # plt.xticks(X_train['Month'][::20]) plt.grid() plt.show() ####################################################################### # ------------------ Multiple Linear Regression ------------------ # ###################################################################### # Label encoding on categorical variables def mapping(xx): dict = {} count = -1 for x in xx: dict[x] = count + 1 count = count + 1 return dict for i in ['City', 'State', 'Sub-Category', 'Ship Mode', 'Region', 'Segment', 'Category']: unique_tag = df_2[i].value_counts().keys().values dict_mapping = mapping(unique_tag) df_2[i] = df_2[i].map(lambda x: dict_mapping[x] if x in dict_mapping.keys() else -1) df_2['norm_Sales'] = np.log(df_2['Sales']) X = df_2[['Quantity', 'Discount', 'Profit']] Y = df_2[['norm_Sales']] ####################################################################### # ------------------ SVD and Condition Number ------------------ # ###################################################################### s, d, v = np.linalg.svd(X, full_matrices=True) print(f"Singular value of dataframe are {d}") print(f"Condition number for dataframe is {LA.cond(X)}") # X = sm.add_constant(X) X_train, X_test, y_train, y_test = train_test_split(X, Y, shuffle=False, test_size=0.20) model = sm.OLS(y_train, X_train).fit() print(model.summary()) ####################################################################### # ------------------ Multiple Linear Regression ------------------ # ###################################################################### ######################################################################################### # ------------------ Feature selection - Backward stepwise regression ------------------ # ######################################################################################## X_train.drop(['Discount'], axis=1, inplace=True) model = sm.OLS(y_train, X_train).fit() print(model.summary()) # X_train.drop(['Quantity'], axis=1, inplace=True) # model = sm.OLS(y_train, X_train).fit() # print(model.summary()) print("t-test p-values for all features: \n", model.pvalues) print("#" * 100) print("F-test for final model: \n", model.f_pvalue) # stats.probplot(model.resid, dist="norm", plot= plt) # plt.title("OLS Model Residuals Q-Q Plot") col = ['Discount'] for i in col: X_test.drop(i, axis=1, inplace=True) prediction = model.predict(X_train) prediction = pd.DataFrame(prediction, columns=['Residual']).set_index(X_train.index) forecast = model.predict(X_test) forecast = pd.DataFrame(forecast, columns=['forecast']).set_index(X_test.index) plt.figure() plt.plot(y_train, label='Training Data') plt.plot(y_test, label="Testing Data") plt.plot(forecast['forecast'], label="MLR h-step Prediction") plt.xlabel("Sample Space") plt.ylabel("Sales") plt.legend() plt.title("Sales Dataset Predictions - Multiple Linear Regression") plt.grid() plt.tight_layout() plt.show() pred_error = np.subtract(y_train, np.asarray(prediction)) pred_error = pred_error.reset_index() pred_error.drop('index', axis=1, inplace=True) y_axis, x_axis = auto_corr_func_lags(pred_error['norm_Sales'], 20) span = 1.96 / np.sqrt(len(pred_error['norm_Sales'])) plt.axhspan(-1 * span, span, alpha=0.2, color='blue') plt.stem(x_axis, y_axis) plt.xlabel("Lags") plt.ylabel("ACF") plt.title("Residual Error ACF Plot - Multiple Linear Regression") plt.grid() plt.show() forecast_error = np.subtract(y_test, np.asarray(forecast)) forecast_error = forecast_error.reset_index() forecast_error.drop('index', axis=1, inplace=True) Q = sm.stats.acorr_ljungbox(pred_error['norm_Sales'], lags=[20], boxpierce=True, return_df=True)['bp_stat'].values[0] lst = [np.round(np.sum(np.square(forecast_error['norm_Sales'])) / len(forecast_error), 2) , np.round(np.sum(np.square(pred_error['norm_Sales'])) / len(pred_error), 2) , np.round(np.var(pred_error['norm_Sales']), 2) , np.round(np.var(forecast_error['norm_Sales']), 2) , np.round(Q, 2) , np.round(np.var(pred_error['norm_Sales']) / np.var(forecast_error['norm_Sales']), 2)] final_df['OLS_Model'] = lst print(final_df.to_string()) # # K = len(X_train.columns) # number of columns for prediction # # T = len(y_train) # # var_pred = np.sqrt(np.sum(np.square(pred_error)) / (T - K - 1)) # # print("Variance of residual error: ", var_pred[0]) # # # Variance of forecast error # # T = len(y_test) # # var_fore = np.sqrt(np.sum(np.square(forecast_error)) / (T - K - 1)) # # print("Variance of forecast error: ", var_fore[0])
2.734375
3
train/blocks.py
shi510/ffem-anti-spoofing
0
12775095
import tensorflow as tf def attach_GNAP(x : tf.Tensor): out = x norm = tf.norm(out, ord=2, axis=3, keepdims=True) norm = tf.math.maximum(norm, 1e-12) mean = tf.math.reduce_mean(norm) out = tf.keras.layers.BatchNormalization(scale=False)(out) out = tf.math.divide(out, norm) out = tf.multiply(out, mean) out = tf.keras.layers.GlobalAveragePooling2D()(out) out = tf.keras.layers.BatchNormalization(scale=False)(out) return out def attach_l2_norm_features(x : tf.Tensor, scale=30): x = tf.math.l2_normalize(x, axis=1) x = tf.multiply(x, scale) return x def attach_embedding_projection(x : tf.Tensor, embedding_dim : int): out = x out = tf.keras.layers.Dense(embedding_dim, use_bias=False, kernel_regularizer=tf.keras.regularizers.l2(5e-4))(out) out = tf.keras.layers.BatchNormalization(name='embeddings')(out) return out
2.484375
2
app.py
marcelgiglio/multiplicative-persistence
0
12775096
def recursiveCalc(n, counter=0, steps=''): if n<10: steps += 'Total Steps: ' + str(counter) + '.' return steps, counter counter+=1 result = calc(n) steps += str(result)+', ' return recursiveCalc(result, counter, steps) def calc(n): result = 1 while (n>0): mod = n % 10 result *= mod n -= mod n /= 10 return result def printNumber(n, steps): print (str(n) + ': ' + steps) max = -1 bestNumbers = [] for i in range(1000000): result = recursiveCalc(i) if(result[1] > max): max = result[1] printNumber(i, result[0]) bestNumbers.append(i) print (bestNumbers)
3.703125
4
deploy/virenv/lib/python2.7/site-packages/haystack/mappings/rek.py
wangvictor2012/liuwei
0
12775097
# -*- coding: utf-8 -*- """ rekall backed memory_handler. - rekallProcessMapping: a wrapper around rekall addresspace - rekallProcessMapper: the memory_handler builder. """ import os import sys import logging import struct from functools import partial from haystack.mappings import base from haystack.abc import interfaces from haystack import target log = logging.getLogger('rekall') class RekallProcessMappingA(base.AMemoryMapping): """Process memory mapping using rekall. """ def __init__(self, address_space, start, end, permissions='r--', offset=0, major_device=0, minor_device=0, inode=0, pathname=''): base.AMemoryMapping.__init__( self, start, end, permissions, offset, major_device, minor_device, inode, pathname) self._backend = address_space def read_word(self, addr): ws = self._target_platform.get_word_size() data = self._backend.read(addr, ws) if ws == 4: return struct.unpack('I', data)[0] elif ws == 8: return struct.unpack('Q', data)[0] def read_bytes(self, addr, size): return self._backend.read(addr, size) def read_struct(self, addr, struct): size = self._target_platform.get_target_ctypes().sizeof(struct) instance = struct.from_buffer_copy(self._backend.read(addr, size)) instance._orig_address_ = addr return instance def read_array(self, addr, basetype, count): size = self._target_platform.get_target_ctypes().sizeof(basetype * count) array = (basetype *count).from_buffer_copy(self._backend.read(addr, size)) return array def reset(self): pass class RekallProcessMapper(interfaces.IMemoryLoader): def __init__(self, imgname, pid): log.debug("RekallProcessMapper %s %p",imgname, pid) self.pid = pid self.imgname = imgname self._memory_handler = None self._init_rekall() def _init_rekall(self): from rekall import session from rekall import plugins s = session.Session( filename = self.imgname, autodetect=["rsds"], logger=logging.getLogger(), profile_path=[ "http://profiles.rekall-forensic.com" ]) self.session = s task_plugin = s.plugins.pslist(pid=self.pid) maps = [] # print type(task) for task in task_plugin.filter_processes(): # we need the file address space reader address_space = task.get_process_address_space() # then we look at vad for vad in task.VadRoot.traverse(): # print type(vad) if vad is None: continue offset = vad.obj_offset start = vad.Start end = vad.End tag = vad.Tag flags = str(vad.u.VadFlags) perms = PERMS_PROTECTION[vad.u.VadFlags.Protection.v() & 7] pathname = '' if vad.u.VadFlags.PrivateMemory == 1 or not vad.ControlArea: pathname = '' else: try: file_obj = vad.ControlArea.FilePointer if file_obj: pathname = file_obj.FileName or "Pagefile-backed section" except AttributeError: pass pmap = RekallProcessMappingA( address_space, start, end, permissions=perms, pathname=pathname) maps.append(pmap) # get the platform meta = s.profile._metadata if meta['os'] == "windows": os = '' if meta['major'] == 5.0: os = 'winxp' elif meta['major'] == 7.0: os = 'win7' # if meta['arch'] == u'I386': self._target = target.TargetPlatform.make_target_win_32(os) else: self._target = target.TargetPlatform.make_target_win_64(os) else: if meta['arch'] == u'I386': self._target = target.TargetPlatform.make_target_linux_32() else: self._target = target.TargetPlatform.make_target_linux_64() memory_handler = base.MemoryHandler(maps, self._target, self.imgname) self._memory_handler = memory_handler def make_memory_handler(self): return self._memory_handler PERMS_PROTECTION = dict(enumerate([ '---', # 'PAGE_NOACCESS', 'r--', # 'PAGE_READONLY', '--x', # 'PAGE_EXECUTE', 'r-x', # 'PAGE_EXECUTE_READ', 'rw-', # 'PAGE_READWRITE', 'rc-', # 'PAGE_WRITECOPY', 'rwx', # 'PAGE_EXECUTE_READWRITE', 'rcx', # 'PAGE_EXECUTE_WRITECOPY', ])) # RekallProcessMapper('/home/other/outputs/vol/zeus.vmem', 856) # RekallProcessMapper('~/outputs/vol/victoria-v8.kcore.img', 1) def rekall_dump_to_haystack(filename, pid, output_folder_name): # rek.py -f vol/zeus.vmem vaddump -p 856 --dump-dir vol/zeus.vmem.856.dump/ > vol/zeus.vmem.856.dump/mappings.vol # rek2map.py vol/zeus.vmem.856.dump/mappings.vol > vol/zeus.vmem.856.dump/mappings # vaddummp log.debug("rekall_dump_to_haystack %s %p", filename, pid) if not os.access(output_folder_name, os.F_OK): os.mkdir(output_folder_name) from rekall import session from rekall import plugins from rekall.ui import json_renderer s = session.Session( filename = filename, autodetect=["rsds"], logger=logging.getLogger(), profile_path=[ "http://profiles.rekall-forensic.com" ]) task_plugin = s.plugins.vaddump(pid=pid, dump_dir=output_folder_name) # get a renderer. renderer = json_renderer.JsonRenderer() task_plugin.render(renderer) print renderer maps = [] # FIXME get stdout in here. with open(filename,'r') as fin: entries = fin.readlines() i_start = entries[0].index('Start') i_end = entries[0].index('End') i_path = entries[0].index('Result') fmt = b'0x%08x' if i_end - i_start > 12: fmt = b'0x%016x' for i, line in enumerate(entries[2:]): start = int(line[i_start:i_end].strip(), 16) end = int(line[i_end:i_path].strip(), 16) + 1 path = line[i_path:].strip() o_path = "%s-%s" % (fmt % start, fmt % end) # rename file try: os.rename(path, o_path) except OSError, e: sys.stderr.write('File rename error\n') # offset is unknown. print '%s %s r-xp %s 00:00 %d [vol_mapping_%03d]' % (fmt % start, fmt % end, fmt % 0, 0, i) pass
2.28125
2
accountifie/common/apiv1/__init__.py
imcallister/accountifie
4
12775098
<gh_stars>1-10 from .server_info import *
1.28125
1
tests/test_lorwrapper.py
Victoraq/Riot-API-Wrapper
0
12775099
from riotwrapper.lor import LoRWrapper from riotwrapper.const.lor_const import REGION_URL import pytest import re @pytest.fixture def environment(): import os api_key = os.environ.get('API_KEY') account_id = os.environ.get('ACCOUNT_ID') env = { 'api_key': api_key, 'account_id': account_id } return env @pytest.fixture def wrapper(environment): wrapper = LoRWrapper(environment['api_key'], region="AMERICAS") return wrapper class TestLoRWrapper: def test_wrong_region(self): """Tests the exception raised after try to initialize the wrapper with a not available region""" region = "WRONG" with pytest.raises(Exception) as region_info: _ = LoRWrapper("key", region=region) assert f"{region} is not available" in str(region_info.value) assert ', '.join(list(REGION_URL.keys())) in str(region_info.value) def test_platform_data(self, wrapper): """Tests an API call to get platform data.""" response = wrapper.platform_data() assert isinstance(response, dict) assert "id" in response.keys() assert "maintenances" in response.keys() assert "incidents" in response.keys() def test_leaderboard(self, wrapper): """Tests an API call to get the leaderboard.""" response = wrapper.leaderboard() assert isinstance(response, dict) assert "players" in response.keys() assert isinstance(response["players"], list) assert len(response["players"]) > 0 assert "name" in response["players"][0].keys() def test_match_ids(self, wrapper, environment): """Tests an API call to get the match id list by user.""" account_id = environment['account_id'] response = wrapper.match_ids(account_id) pattern = re.compile(r'^(\w+\-\w+\-\w+\-\w+\-\w+)$') assert isinstance(response, list) assert pattern.match(response[0]) def test_match_by_id(self, wrapper, environment): """Tests and API call to get a match by id.""" account_id = environment['account_id'] match_list = wrapper.match_ids(account_id) match_id = match_list[0] response = wrapper.match_by_id(match_id) assert isinstance(response, dict) assert "metadata" in response.keys() assert "info" in response.keys()
2.53125
3
django_magnificent_messages/constants.py
NoNameItem/django-magnificent-messages
0
12775100
""" Constants and defaults values """ import datetime import django SECONDARY = 10 PRIMARY = 20 INFO = 30 SUCCESS = 40 WARNING = 50 ERROR = 60 DEFAULT_TAGS = { SECONDARY: 'secondary', PRIMARY: 'primary', INFO: 'info', SUCCESS: 'success', WARNING: 'warning', ERROR: 'danger', } DEFAULT_LEVELS = { 'SECONDARY': SECONDARY, 'PRIMARY': PRIMARY, 'INFO': INFO, 'SUCCESS': SUCCESS, 'WARNING': WARNING, 'ERROR': ERROR, } MESSAGE_FILES_UPLOAD_TO = "django_magnificent_messages/message_files" MESSAGE_DB_MODEL = "django_magnificent_messages.Message" DEFAULT_NOTIFICATION_STORAGE = "django_magnificent_messages.storage.notification_storage.session.SessionStorage" DEFAULT_MESSAGE_STORAGE = "django_magnificent_messages.storage.message_storage.db.DatabaseStorage" MIN_DATETIME = django.utils.timezone.make_aware(datetime.datetime(1900, 1, 1))
2.0625
2
setup.py
Colin-b/pyconfigparser
4
12775101
<filename>setup.py import os from setuptools import setup, find_packages this_dir = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(this_dir, 'README.md'), 'r') as f: long_description = f.read() setup(name='pyconfigparser', version='0.1', author='<NAME>', maintainer='<NAME>', url='https://github.com/Colin-b/pyconfigparser', description='Helper to parse configuration files.', long_description=long_description, download_url='https://github.com/Colin-b/pyconfigparser', classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers" "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Operating System :: Microsoft :: Windows :: Windows 7" ], keywords=[ 'configuration' ], packages=find_packages(), install_requires=[ ], platforms=[ 'Windows' ] )
1.742188
2
test/EN.py
miaopei/deep_landmark
327
12775102
<reponame>miaopei/deep_landmark #!/usr/bin/env python2.7 # coding: utf-8 """ This file use Caffe model to predict landmarks and evaluate the mean error. """ import os, sys import time import cv2 import numpy as np from numpy.linalg import norm from common import getDataFromTxt, logger, processImage, getCNNs TXT = 'dataset/train/testImageList.txt' template = '''################## Summary ##################### Test Number: %d Time Consume: %.03f s FPS: %.03f LEVEL - %d Mean Error: Left Eye = %f Right Eye = %f Nose = %f Failure: Left Eye = %f Right Eye = %f Nose = %f ''' def evaluateError(landmarkGt, landmarkP, bbox): e = np.zeros(3) for i in range(3): e[i] = norm(landmarkGt[i] - landmarkP[i]) e = e / bbox.w print 'landmarkGt' print landmarkGt print 'landmarkP' print landmarkP print 'error', e return e def EN(img, bbox): """ LEVEL-1, EN img: gray image bbox: bounding box of face """ bbox = bbox.expand(0.05) face = img[bbox.top:bbox.bottom+1,bbox.left:bbox.right+1] face = cv2.resize(face, (39, 39)).reshape((1, 1, 39, 39)) face = processImage(face) F, EN, NM = getCNNs(level=1) # TODO more flexible load needed. landmark = EN.forward(face[:, :, :31, :]) return landmark def E(): data = getDataFromTxt(TXT) error = np.zeros((len(data), 3)) for i in range(len(data)): imgPath, bbox, landmarkGt = data[i] landmarkGt = landmarkGt[:3, :] img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE) assert(img is not None) logger("process %s" % imgPath) landmarkP = EN(img, bbox) # real landmark landmarkP = bbox.reprojectLandmark(landmarkP) landmarkGt = bbox.reprojectLandmark(landmarkGt) error[i] = evaluateError(landmarkGt, landmarkP, bbox) return error if __name__ == '__main__': t = time.clock() error = E() t = time.clock() - t N = len(error) fps = N / t errorMean = error.mean(0) # failure failure = np.zeros(3) threshold = 0.05 for i in range(3): failure[i] = float(sum(error[:, i] > threshold)) / N # log string s = template % (N, t, fps, 1, errorMean[0], errorMean[1], errorMean[2], \ failure[0], failure[1], failure[2]) print s logfile = 'log/1_EN_test.log' with open(logfile, 'w') as fd: fd.write(s)
2.640625
3
GroupmeChatbot/bot.py
dgisolfi/marty-gruopme-chatbot
0
12775103
#!/usr/bin/python3 # 2019-05-29 import re import requests from chatterbot import ChatBot from chatterbot.trainers import ChatterBotCorpusTrainer class Bot: def __init__(self, name, bot_id, group_id, api_token): self.name = name self.bot_id = bot_id self.group_id = group_id self.api_token = api_token self.api_base_url = 'https://api.groupme.com/v3' self.api_session = requests.session() # Create a instnce of a chatterbot and tell the bot where to find data self.chatbot = ChatBot(self.name) trainer = ChatterBotCorpusTrainer(self.chatbot) trainer.train( 'chatterbot.corpus.english' ) def sendMessage(self, msg): '''Send a message from the bot to its assigned group. Args: msg (str): message to be sent to group Returns: request response ''' # set parameters for post request params = { 'bot_id': self.bot_id, 'text': msg } # send the request to the api and get the results in the response var response = self.api_session.post( f'{self.api_base_url}/bots/post', params=params ) return response def getMessages(self): '''Get all messages for the bot's group chat. Args: none Returns: request response ''' # authenticate the request with the api token params = { 'token': self.api_token } # get the messages for the bot's group response = self.api_session.post( f'{self.api_base_url}/groups/{self.group_id}/messages', params=params ) return response def checkForMention(self, msg): '''Checks the recent messages of the bots group for instances of its name Args: msg (str): message sent in group chat Returns: boolean: a value denoting if the bot was mentioned or not ''' return re.match(r'.*@'+self.name+r'.*', msg) def removeMention(self, msg): '''Checks the recent messages of the bots group for instances of its name Args: msg (str): message sent in group chat Returns: msg (str): a messaged with the '@<bot_name>' removed ''' return re.sub(f'@{self.name}', '', msg) def getResponse(self, msg): '''Given a message the appropriate response is returned. Args: msg (str): a message to respond to Returns: response (str): the bot's response to the message ''' # makes a call to the chatterbot package for a response response = self.chatbot.get_response(msg) return response
3.03125
3
eggs/boto-2.5.2-py2.7.egg/boto/cloudsearch/document.py
bopopescu/phyG
3
12775104
# Copyright (c) 2012 <NAME> http://garnaat.org/ # Copyright (c) 2012 Amazon.com, Inc. or its affiliates. # All Rights Reserved # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # try: import simplejson as json except ImportError: import json import boto.exception import requests import boto class SearchServiceException(Exception): pass class CommitMismatchError(Exception): pass class DocumentServiceConnection(object): def __init__(self, domain=None, endpoint=None): self.domain = domain self.endpoint = endpoint if not self.endpoint: self.endpoint = domain.doc_service_endpoint self.documents_batch = [] self._sdf = None def add(self, _id, version, fields, lang='en'): d = {'type': 'add', 'id': _id, 'version': version, 'lang': lang, 'fields': fields} self.documents_batch.append(d) def delete(self, _id, version): d = {'type': 'delete', 'id': _id, 'version': version} self.documents_batch.append(d) def get_sdf(self): return self._sdf if self._sdf else json.dumps(self.documents_batch) def clear_sdf(self): self._sdf = None self.documents_batch = [] def add_sdf_from_s3(self, key_obj): """@todo (lucas) would be nice if this could just take an s3://uri...""" self._sdf = key_obj.get_contents_as_string() def commit(self): sdf = self.get_sdf() if ': null' in sdf: boto.log.error('null value in sdf detected. This will probably raise ' '500 error.') index = sdf.index(': null') boto.log.error(sdf[index - 100:index + 100]) url = "http://%s/2011-02-01/documents/batch" % (self.endpoint) request_config = { 'pool_connections': 20, 'keep_alive': True, 'max_retries': 5, 'pool_maxsize': 50 } r = requests.post(url, data=sdf, config=request_config, headers={'Content-Type': 'application/json'}) return CommitResponse(r, self, sdf) class CommitResponse(object): """Wrapper for response to Cloudsearch document batch commit. :type response: :class:`requests.models.Response` :param response: Response from Cloudsearch /documents/batch API :type doc_service: :class:`exfm.cloudsearch.DocumentServiceConnection` :param doc_service: Object containing the documents posted and methods to retry :raises: :class:`boto.exception.BotoServerError` :raises: :class:`exfm.cloudsearch.SearchServiceException` """ def __init__(self, response, doc_service, sdf): self.response = response self.doc_service = doc_service self.sdf = sdf try: self.content = json.loads(response.content) except: boto.log.error('Error indexing documents.\nResponse Content:\n{}\n\n' 'SDF:\n{}'.format(response.content, self.sdf)) raise boto.exception.BotoServerError(self.response.status_code, '', body=response.content) self.status = self.content['status'] if self.status == 'error': self.errors = [e.get('message') for e in self.content.get('errors', [])] else: self.errors = [] self.adds = self.content['adds'] self.deletes = self.content['deletes'] self._check_num_ops('add', self.adds) self._check_num_ops('delete', self.deletes) def _check_num_ops(self, type_, response_num): """Raise exception if number of ops in response doesn't match commit :type type_: str :param type_: Type of commit operation: 'add' or 'delete' :type response_num: int :param response_num: Number of adds or deletes in the response. :raises: :class:`exfm.cloudsearch.SearchServiceException` """ commit_num = len([d for d in self.doc_service.documents_batch if d['type'] == type_]) if response_num != commit_num: raise CommitMismatchError( 'Incorrect number of {}s returned. Commit: {} Respose: {}'\ .format(type_, commit_num, response_num))
1.828125
2
demo_project/urls.py
zmcddn/DRF-demo-user-creditcard
0
12775105
from django.contrib import admin from django.urls import path, re_path, include, reverse_lazy from rest_framework.routers import DefaultRouter from users.views import LoginViewCustom from accounts.views import CardSerializerViewSet router = DefaultRouter() router.register(r'card', CardSerializerViewSet) urlpatterns = [ path("", include(router.urls)), path("admin/", admin.site.urls), path("api/auth/", include("rest_auth.urls")), path("api/auth/registration/", include("rest_auth.registration.urls")), path("api/auth/login/", LoginViewCustom.as_view(), name="rest_login"), ]
1.8125
2
PythonLearn/opencv/synthesis.py
OKKyu/PythonLearn
0
12775106
#!python3 # -*- coding:utf-8 -*- # 『Pythonで始めるOpenCV4プログラミング』 # 北山尚洋 import cv2 import sys, traceback import numpy as np def add(imgName1, imgName2): try: img1 = cv2.imread(imgName1) img2 = cv2.imread(imgName2) if img1 is None or img2 is None: print("no file reading...") sys.exit(1) #caution! #src file size have to same size each img1 and img2. and same type. img1 = cv2.resize(img1, (500,500)) img2 = cv2.resize(img2, (500,500)) cv2.imshow('image1', img1) cv2.imshow('image2', img2) dst = cv2.add(img1, img2) cv2.imshow('synthesize', dst) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as ex: print("Error:", sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.format_tb(sys.exc_info()[2])) finally: pass def addScolor(imgName1): try: img1 = cv2.imread(imgName1) if img1 is None: print("no file reading...") sys.exit(1) cv2.imshow("img1",img1) height = img1.shape[0] width = img1.shape[1] blue = np.zeros((height, width, 3), np.uint8) blue[:,:] = [128, 0, 0] dst = cv2.add(img1, blue) cv2.imshow("after", dst) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as ex: print("Error:", sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.format_tb(sys.exc_info()[2])) finally: pass def addMask(imgName1, imgName2): try: img1 = cv2.imread(imgName1) img2 = cv2.imread(imgName2) if img1 is None or img2 is None: print("no file reading...") sys.exit(1) #caution! #src file size have to same size each img1 and img2. and same type. img1 = cv2.resize(img1, (500,500)) img2 = cv2.resize(img2, (500,500)) cv2.imshow('image1', img1) cv2.imshow('image2', img2) #create mask height = img1.shape[0] width = img1.shape[1] img_mask = np.zeros((height, width), np.uint8) img_mask[ height//4:height*3//4, width//4:width*3//4 ] = [255] #add two image with mask. dst = cv2.add(img1, img2, mask = img_mask) cv2.imshow('dst1', dst) #add two image with mask. dst = cv2.add(img1, img2, mask = img_mask) cv2.imshow('dst1', dst) cv2.waitKey(0) cv2.destroyAllWindows() except Exception as ex: print("Error:", sys.exc_info()[0]) print(sys.exc_info()[1]) print(traceback.format_tb(sys.exc_info()[2])) finally: pass #add(sys.argv[1], sys.argv[2]) #addScolor(sys.argv[1]) addMask(sys.argv[1], sys.argv[2])
3.078125
3
zipline/currency.py
chalant/pluto
1
12775107
<reponame>chalant/pluto from functools import partial, total_ordering from iso4217 import Currency as ISO4217Currency import numpy as np _ALL_CURRENCIES = {} def strs_to_sids(strs, category_num): """TODO: Improve this. """ out = np.full(len(strs), category_num << 50, dtype='i8') casted_buffer = np.ndarray( shape=out.shape, dtype='S6', buffer=out, strides=out.strides, ) casted_buffer[:] = np.array(strs, dtype='S6') return out def str_to_sid(str_, category_num): return strs_to_sids([str_], category_num)[0] iso_currency_to_sid = partial(str_to_sid, category_num=3) @total_ordering class Currency(object): """A currency identifier, as defined by ISO-4217. Parameters ---------- code : str ISO-4217 code for the currency. Attributes ---------- code : str ISO-4217 currency code for the currency, e.g., 'USD'. name : str Plain english name for the currency, e.g., 'US Dollar'. """ def __new__(cls, code): try: return _ALL_CURRENCIES[code] except KeyError: try: iso_currency = ISO4217Currency(code) except ValueError: raise ValueError( "{!r} is not a valid currency code.".format(code) ) obj = _ALL_CURRENCIES[code] = super(Currency, cls).__new__(cls) obj._currency = iso_currency obj._sid = iso_currency_to_sid(iso_currency.value) return obj @property def code(self): """ISO-4217 currency code for the currency. Returns ------- code : str """ return self._currency.value @property def name(self): """Plain english name for the currency. Returns ------- name : str """ return self._currency.currency_name @property def sid(self): """Unique integer identifier for this currency. """ return self._sid def __eq__(self, other): if type(self) != type(other): return NotImplemented return self.code == other.code def __hash__(self): return hash(self.code) def __lt__(self, other): return self.code < other.code def __repr__(self): return "{}({!r})".format( type(self).__name__, self.code )
2.65625
3
entity.py
Alberdi/rogueforce
0
12775108
import libtcodpy as libtcod import cmath as math NEUTRAL_SIDE = 555 class Entity(object): def __init__(self, battleground, side=NEUTRAL_SIDE, x=-1, y=-1, char=' ', color=libtcod.white): self.bg = battleground self.x = x self.y = y self.side = side self.char = char self.original_char = char self.color = color self.original_color = color self.bg.tiles[(x, y)].entity = self self.default_next_action = 5 self.next_action = self.default_next_action self.pushed = False self.alive = True self.statuses = [] self.path = [] self.attack_effect = None self.attack_type = "physical" self.kills = 0 self.owner = None def can_be_attacked(self): return False def can_be_pushed(self, dx, dy): next_tile = self.bg.tiles[(self.x+dx, self.y+dy)] return next_tile.is_passable(self) and (next_tile.entity is None or next_tile.entity.can_be_pushed(dx, dy)) def can_move(self, dx, dy): next_tile = self.bg.tiles[(self.x+dx, self.y+dy)] if not next_tile.is_passable(self): return False if next_tile.entity is None: return True if not next_tile.entity.is_ally(self): return False return next_tile.entity.can_be_pushed(dx, dy) def change_battleground(self, bg, x, y): self.bg.tiles[(self.x, self.y)].entity = None self.bg = bg (self.x, self.y) = (x, y) self.bg.tiles[(self.x, self.y)].entity = self def clone(self, x, y): if self.bg.is_inside(x, y) and self.bg.tiles[(x, y)].entity is None and self.bg.tiles[(x, y)].is_passable(self): return self.__class__(self.bg, self.side, x, y, self.char, self.original_color) return None def die(self): self.bg.tiles[(self.x, self.y)].entity = None self.alive = False def get_char(self, x, y): return self.char def get_passable_neighbours(self): neighbours = [(self.x+i, self.y+j) for i in range(-1,2) for j in range(-1,2)] return filter(lambda t: self.bg.tiles[t].passable and t != (self.x, self.y), neighbours) def get_pushed(self, dx, dy): self.pushed = False self.move(dx, dy) self.pushed = True def is_ally(self, entity): return self.side == entity.side def move(self, dx, dy): if self.pushed: self.pushed = False return False (dx,dy) = (int(dx), int(dy)) next_tile = self.bg.tiles[(self.x+dx, self.y+dy)] if self.can_move(dx, dy): if next_tile.entity is not None: next_tile.entity.get_pushed(dx, dy) self.bg.tiles[(self.x, self.y)].entity = None next_tile.entity = self self.x += dx self.y += dy return True return False def move_path(self): if self.path: next_tile = self.path.pop(0) if self.move(next_tile.x - self.x, next_tile.y - self.y): return True else: self.path.insert(0, next_tile) return False def register_kill(self, killed): self.kills += 1 if self.owner: self.owner.kills += 1 def reset_action(self): self.next_action = self.default_next_action def teleport(self, x, y): if self.bg.tiles[(x, y)].entity is None and self.bg.tiles[(x, y)].is_passable(self): self.bg.tiles[(x, y)].entity = self self.bg.tiles[(self.x, self.y)].entity = None (self.x, self.y) = (x, y) return True return False def update(self): for s in self.statuses: s.update() class BigEntity(Entity): def __init__(self, battleground, side, x, y, chars=["a", "b", "c", "d"], colors=[libtcod.white]*4): super(BigEntity, self).__init__(battleground, side, x, y, chars[0], colors[0]) self.chars = chars self.colors = colors self.length = int(math.sqrt(len(self.chars)).real) self.update_body() def can_be_pushed(self, dx, dy): return False def can_move(self, dx, dy): for (x,y) in [(self.x+dx+x,self.y+dy+y) for x in range (0, self.length) for y in range (0, self.length)]: next_tile = self.bg.tiles[(x, y)] if not next_tile.is_passable(self): return False if next_tile.entity is None: continue if not next_tile.entity.is_ally(self): return False if next_tile.entity is self: continue if not next_tile.entity.can_be_pushed(dx, dy): return False return True def clear_body(self): for i in range(self.length): for j in range(self.length): self.bg.tiles[(self.x+i, self.y+j)].entity = None def die(self): self.clear_body() self.alive = False def get_char(self, dx, dy): self.color = self.colors[self.length*dx+dy] return self.chars[self.length*dx+dy] def move(self, dx, dy): if self.pushed: self.pushed = False return next_tile = self.bg.tiles[(self.x+dx, self.y+dy)] if self.can_move(dx, dy): if next_tile.entity is not None and next_tile.entity is not self: next_tile.entity.get_pushed(dx, dy) self.clear_body() next_tile.entity = self self.x += dx self.y += dy self.update_body() def update_body(self): for i in range(self.length): for j in range(self.length): self.bg.tiles[(self.x+i, self.y+j)].entity = self class Fortress(BigEntity): def __init__(self, battleground, side=NEUTRAL_SIDE, x=-1, y=-1, chars=[':']*4, colors=[libtcod.white]*4, requisition_production=1): super(Fortress, self).__init__(battleground, side, x, y, chars, colors) self.capacity = len(chars) self.connected_fortresses = [] self.guests = [] self.name = "Fortress" self.requisition_production = requisition_production def can_be_attacked(self): return True def can_host(self, entity): return self.side == entity.side or self.side == NEUTRAL_SIDE def can_move(self, dx, dy): return False def get_connections(self): # Gather all tiles inside and surrounding the fortress starting_tiles = [(self.x+i, self.y+j) for i in range(-1,3) for j in range(-1,3)] # Remove those inside it checked = [(self.x+i, self.y+j) for i in range(0,2) for j in range(0,2)] starting_tiles = filter(lambda t: self.bg.tiles[t].passable and t not in checked, starting_tiles) # Try every reachable tile from the fortress and save the connections for starting in starting_tiles: tiles = [starting] while tiles: (x, y) = tiles.pop() checked.append((x, y)) for t in [(x+i, y+j) for i in range(-1,2) for j in range(-1,2)]: entity = self.bg.tiles[t].entity if entity in self.bg.fortresses and entity is not self and entity not in self.connected_fortresses: self.connected_fortresses.append((entity, starting)) if self.bg.tiles[t].passable and t not in checked: tiles.append(t) def host(self, entity): if not self.can_host(entity) or len(self.guests) >= self.capacity: return if not self.guests: self.side = entity.side self.bg.tiles[(entity.x, entity.y)].entity = None (entity.x, entity.y) = (self.x, self.y) self.bg.generals.remove(entity) self.chars[len(self.guests)] = entity.char self.colors[len(self.guests)] = entity.color self.guests.append(entity) self.update_body() def refresh_chars(self): self.chars = [':']*len(self.chars) self.colors = [libtcod.white]*len(self.colors) for i in range(len(self.guests)): self.chars[i] = self.guests[i].char self.colors[i] = self.guests[i].color def unhost(self, entity): self.guests.remove(entity) self.bg.generals.append(entity) self.refresh_chars() if not self.guests: self.side = NEUTRAL_SIDE class Mine(Entity): def __init__(self, battleground, x=-1, y=-1, power=50): super(Mine, self).__init__(battleground, NEUTRAL_SIDE, x, y, 'X', libtcod.red) self.power = power def can_be_attacked(self): return True def clone(self, x, y): if self.bg.is_inside(x, y) and self.bg.tiles[(x, y)].entity is None and self.bg.tiles[(x, y)].is_passable(self): return self.__class__(self.bg, x, y, self.power) return None def get_attacked(self, attacker): if attacker.can_be_attacked(): attacker.get_attacked(self) self.die()
2.65625
3
pgxnclient/tar.py
ankane/pgxnclient
0
12775109
""" pgxnclient -- tar file utilities """ # Copyright (C) 2011-2020 <NAME> # This file is part of the PGXN client import os import tarfile from pgxnclient.i18n import _ from pgxnclient.errors import PgxnClientException from pgxnclient.archive import Archive import logging logger = logging.getLogger('pgxnclient.tar') class TarArchive(Archive): """Handle .tar archives""" _file = None def can_open(self): return tarfile.is_tarfile(self.filename) def open(self): assert not self._file, "archive already open" try: self._file = tarfile.open(self.filename, 'r') except Exception as e: raise PgxnClientException( _("cannot open archive '%s': %s") % (self.filename, e) ) def close(self): if self._file is not None: self._file.close() self._file = None def list_files(self): assert self._file, "archive not open" return self._file.getnames() def read(self, fn): assert self._file, "archive not open" return self._file.extractfile(fn).read() def unpack(self, destdir): tarname = self.filename logger.info(_("unpacking: %s"), tarname) destdir = os.path.abspath(destdir) self.open() try: for fn in self.list_files(): fname = os.path.abspath(os.path.join(destdir, fn)) if not fname.startswith(destdir): raise PgxnClientException( _("archive file '%s' trying to escape!") % fname ) self._file.extractall(path=destdir) finally: self.close() return self._find_work_directory(destdir) def unpack(filename, destdir): return TarArchive(filename).unpack(destdir)
2.40625
2
bids/convert_log_to_events.py
Charestlab/caos
0
12775110
<filename>bids/convert_log_to_events.py """ Function to convert psychopy log to BIDS events file. See BIDS spec: https://bids-specification.readthedocs.io/en/latest/04-modality-specific-files/05-task-events.html https://bids-specification.readthedocs.io/en/latest/04-modality-specific-files/07-behavioral-experiments.html """ import pandas, mne from numpy.testing import assert_array_equal def check_row_valid(row): if row.ptype in ['INFO', 'WARNING']: return False messages = ['unnamed MovieStim', 'Created window', 'mouseVisible'] for message in messages: if message in row.desc: return False return True def trial_type(row): if 'Keypr' in row.desc: return 'response' elif 'nback' in row.desc: return 'nback' else: return row.desc.split(',')[2] def duration(row): if row.trial_type == 'response': return 0.0 else: return 3.0 def value(row): if row.trial_type == 'response': return 0 else: return int(row.desc.split(',')[0]) def stim_name(row): if row.trial_type == 'response': return '' else: return row.desc.split(',')[1] def convert_log_to_events(in_fpath, out_fpath): """BIDS events tsv from psychopy log """ df = pandas.read_csv( in_fpath, delimiter='\t', names=['onset', 'ptype', 'desc'], converters={'ptype': str.strip} ) valid_rows = df.apply(check_row_valid, axis=1) df = df[valid_rows] df['trial_type'] = df.apply(trial_type, axis=1) df['duration'] = df.apply(duration, axis=1) df['value'] = df.apply(value, axis=1) df['stim_name'] = df.apply(stim_name, axis=1) df = df.drop(['ptype', 'desc'], axis=1) first_onset = df.iloc[0].onset df.onset -= first_onset # check if this behavior matches up with the corresponding eeg file eeg_path = out_fpath.replace('_events.tsv', '_eeg.edf') raw = mne.io.read_raw_edf(eeg_path, verbose='error') events = mne.find_events(raw, verbose='error') ## index only events that have triggers in eeg stimulus_events = df.trial_type != 'response' ## check if number of relevant events matches assert events.shape[0] == stimulus_events.sum() ## check if event values match assert_array_equal(events[:, 2], df[stimulus_events].value) ## onset should be relative to first sample df.onset += events[0, 0] / raw.info['sfreq'] # add sample column df['sample'] = None df.loc[stimulus_events, 'sample'] = events[:, 0] df.to_csv(out_fpath, sep='\t', index=False, float_format='%.8f') return df
2.703125
3
tests/core/test_proxy.py
joewilliams/dd-agent
11
12775111
<gh_stars>10-100 # stdlib from unittest import TestCase # 3p from requests.utils import get_environ_proxies # project from utils.proxy import set_no_proxy_settings class TestProxy(TestCase): def test_no_proxy(self): """ Starting with Agent 5.0.0, there should always be a local forwarder running and all payloads should go through it. So we should make sure that we pass the no_proxy environment variable that will be used by requests (See: https://github.com/kennethreitz/requests/pull/945 ) """ from os import environ as env env["http_proxy"] = "http://localhost:3128" env["https_proxy"] = env["http_proxy"] env["HTTP_PROXY"] = env["http_proxy"] env["HTTPS_PROXY"] = env["http_proxy"] set_no_proxy_settings() self.assertTrue("no_proxy" in env) self.assertEquals(env["no_proxy"], "127.0.0.1,localhost,169.254.169.254") self.assertEquals({}, get_environ_proxies( "http://localhost:17123/api/v1/series")) expected_proxies = { 'http': 'http://localhost:3128', 'https': 'http://localhost:3128', 'no': '127.0.0.1,localhost,169.254.169.254' } environ_proxies = get_environ_proxies("https://www.google.com") self.assertEquals(expected_proxies, environ_proxies, (expected_proxies, environ_proxies)) # Clear the env variables set env.pop("http_proxy", None) env.pop("https_proxy", None) env.pop("HTTP_PROXY", None) env.pop("HTTPS_PROXY", None)
2.75
3
easy/110.Balanced_Binary_Tree.py
Leesoar/leetcode
2
12775112
<filename>easy/110.Balanced_Binary_Tree.py #!/usr/bin/env python # -*- coding: utf-8 -*- ''' Question: Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary tree is defined as: a binary tree in which the depth of the two subtrees of every node never differ by more than 1. Example 1: Given the following tree [3,9,20,null,null,15,7]: 3 / \ 9 20 / \ 15 7 Return true. Example 2: Given the following tree [1,2,2,3,3,null,null,4,4]: 1 / \ 2 2 / \ 3 3 / \ 4 4 Return false. ''' # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def isBalanced(self, root): """ :type root: TreeNode :rtype: bool """ def check(root): if root is None: return 0 left = check(root.left) #左子树的深度 right = check(root.right) #右子树的深度 if left == -1 or right == -1 or abs(left - right) > 1: return -1 #如果左子树严重倾斜,left == -1可以大大节省递归时间 return 1 + max(left, right) return check(root) != -1
4.3125
4
about.py
sjtrny/toomanyguns
1
12775113
<filename>about.py from common import MarkdownApp import flask class About(MarkdownApp): title = "About" breadcrumbs = None markdown = """ ## About ---- This website shows ownership of firearms in NSW by postcode. This information has been made public thanks to the NSW Greens through a FOI request to NSW Police. ## FAQ ---- ##### Doesn't toomanyguns.org already exist? Yes, but it could be better. It's 2019 and they don't even [use HTTPS](https://doesmysiteneedhttps.com/)! So we built our own. ##### This doesn't work on my computer/browser? It's best viewed on a modern browser such as Safari or Chrome with graphics acceleration enabled. ##### How did you make this? This website is built on [Dash for Python](https://github.com/plotly/dash) by Plotly. You can find the code on [Github](https://github.com/sjtrny/toomanyguns) ##### Who made this? I did, you can find more details on my website [sjtrny.com](https://sjtrny.com) ## Data ---- ##### Postcode Information Sourced from [https://www.matthewproctor.com/australian_postcodes](https://www.matthewproctor.com/australian_postcodes) ##### Postal Area Geography Data This information is available from the ABS under the listing [1270.0.55.003 - Australian Statistical Geography Standard (ASGS): Volume 3 - Non ABS Structures, July 2016](https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/1270.0.55.003July%202016?OpenDocument) The specific file used is titled "Postal Areas ASGS Ed 2016 Digital Boundaries in ESRI Shapefile Format" ##### Firearms Data We did our best to scrape [http://toomanyguns.org](http://toomanyguns.org). Don't worry, you don't need to scrape it yourself, [click here to download it](downloads/firearms_2019.csv). """ def postlayout_setup(self): @self.server.route( f"{self.config.url_base_pathname}downloads/firearms_2019.csv", endpoint=f"{self.config.url_base_pathname}:serve_file", ) def serve_file(): return flask.send_file( "data_generated/firearms_2019.csv", as_attachment=True )
3.03125
3
mininet/exabgp-vip/topo.py
ljjjustin/stack-vagrants
1
12775114
#!/usr/bin/python from mininet.topo import Topo from mininet.net import Mininet from mininet.node import Node from mininet.log import setLogLevel, info from mininet.cli import CLI import time import os workdir = os.path.dirname(os.path.realpath(__file__)) class LinuxRouter( Node ): "A Node with IP forwarding enabled." def config( self, **params ): super( LinuxRouter, self).config( **params ) # Enable forwarding on the router self.cmd( 'sysctl net.ipv4.ip_forward=1' ) def terminate( self ): self.cmd( 'sysctl net.ipv4.ip_forward=0' ) super( LinuxRouter, self ).terminate() class NetworkTopo( Topo ): "A LinuxRouter connecting three IP subnets" def build( self, **_opts ): defaultIP1 = '10.0.3.10/24' # IP address for r1-eth1 defaultIP2 = '10.0.3.20/24' router1 = self.addNode( 'r1', cls=LinuxRouter, ip=defaultIP1 ) # cls = class router2 = self.addNode( 'r2', cls=LinuxRouter, ip=defaultIP2 ) self.addLink(router1,router2,intfName1='r1-r2',intfName2='r2-r1') h1 = self.addHost( 'h1', ip='192.168.1.10/24', defaultRoute='via 192.168.1.1') # define gateway h2 = self.addHost( 'h2', ip='192.168.2.10/24', defaultRoute='via 192.168.2.1') # h1-eth0 <-> r1-eth2, r1-eth2 = 10.0.1.10/24 self.addLink(h1,router1,intfName2='r1-h1',params2={ 'ip': '192.168.1.1/24' }) # h2-eth0 <-> r2-eth2, r2-eth2 = 10.0.2.20/24 self.addLink(h2,router2,intfName2='r2-h2',params2={ 'ip': '192.168.2.1/24' }) lb1 = self.addHost( 'lb1', ip='192.168.10.10/24', defaultRoute='via 192.168.10.1') lb2 = self.addHost( 'lb2', ip='192.168.20.10/24', defaultRoute='via 192.168.20.1') self.addLink(lb1,router1,intfName1='eth0',intfName2='r1-lb1',params2={ 'ip': '192.168.10.1/24' }) self.addLink(lb2,router2,intfName1='eth0',intfName2='r2-lb2',params2={ 'ip': '192.168.20.1/24' }) def run(): "Test linux router" topo = NetworkTopo() net = Mininet(controller = None, topo=topo ) # no controller net.start() info( '*** Routing Table on Router:\n' ) r1=net.getNodeByName('r1') r2=net.getNodeByName('r2') info('starting zebra and bgpd service:\n') dirs = {"workdir": workdir} r1.cmd('/usr/sbin/zebra -f %(workdir)s/r1zebra.conf -d -z %(workdir)s/r1zebra.api -i %(workdir)s/r1zebra.pid' % dirs) time.sleep(2) # time for zebra to create api socket r2.cmd('/usr/sbin/zebra -f %(workdir)s/r2zebra.conf -d -z %(workdir)s/r2zebra.api -i %(workdir)s/r2zebra.pid' % dirs) time.sleep(2) # time for zebra to create api socket r1.cmd('/usr/sbin/bgpd -f %(workdir)s/r1bgpd.conf -d -z %(workdir)s/r1zebra.api -i %(workdir)s/r1bgpd.pid' % dirs) r2.cmd('/usr/sbin/bgpd -f %(workdir)s/r2bgpd.conf -d -z %(workdir)s/r2zebra.api -i %(workdir)s/r2bgpd.pid' % dirs) lb1=net.getNodeByName('lb1') lb2=net.getNodeByName('lb2') lb1.cmd('/usr/sbin/keepalived -n -R -f %(workdir)s/keep1.conf &' % dirs) lb2.cmd('/usr/sbin/keepalived -n -R -f %(workdir)s/keep2.conf &' % dirs) lb1.cmd('/usr/sbin/exabgp --env %(workdir)s/exabgp1.env %(workdir)s/exabgp1.conf &' % dirs) lb2.cmd('/usr/sbin/exabgp --env %(workdir)s/exabgp2.env %(workdir)s/exabgp2.conf &' % dirs) CLI( net ) net.stop() os.system("killall -9 bgpd zebra keepalived exabgp") os.system("rm -f *api*") os.system("rm -f *pid*") if __name__ == '__main__': setLogLevel( 'info' ) run()
2.390625
2
lab8-Mid-Course/code/app.py
MadCreeper/SJTU_ICE2602
0
12775115
<reponame>MadCreeper/SJTU_ICE2602<filename>lab8-Mid-Course/code/app.py # SJTU EE208 from flask import Flask, redirect, render_template, request, url_for app = Flask(__name__) @app.route('/form', methods=['POST', 'GET']) def bio_data_form(): if request.method == "POST": username = request.form['username'] age = request.form['age'] email = request.form['email'] hobbies = request.form['hobbies'] return redirect(url_for('showbio', username=username, age=age, email=email, hobbies=hobbies)) return render_template("bio_form.html") @app.route('/showbio', methods=['GET']) def showbio(): """ username = request.args.get('username') age = request.args.get('age') email = request.args.get('email') hobbies = request.args.get('hobbies') """ username = "excited" age = "114514" email = "<EMAIL>" hobbies = "?" return render_template("show_bio.html", username=username, age=age, email=email, hobbies=hobbies) if __name__ == '__main__': app.run(debug=True, port=8080)
2.953125
3
mistral/scheduler/scheduler_server.py
soda-research/mistral
205
12775116
<reponame>soda-research/mistral # Copyright 2018 - Nokia Networks. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg from oslo_log import log as logging from mistral.rpc import base as rpc from mistral.service import base as service_base LOG = logging.getLogger(__name__) CONF = cfg.CONF class SchedulerServer(service_base.MistralService): """Scheduler server. Manages scheduler life-cycle and gets registered as an RPC endpoint to process scheduler specific calls. """ def __init__(self, scheduler, setup_profiler=True): super(SchedulerServer, self).__init__( 'scheduler_group', setup_profiler ) self.scheduler = scheduler self._rpc_server = None def start(self): super(SchedulerServer, self).start() self._rpc_server = rpc.get_rpc_server_driver()(cfg.CONF.engine) self._rpc_server.register_endpoint(self) self._rpc_server.run() self._notify_started('Scheduler server started.') def stop(self, graceful=False): super(SchedulerServer, self).stop() if self._rpc_server: self._rpc_server.stop(graceful) def schedule(self, rpc_ctx, job): """Receives requests over RPC to schedule delayed calls. :param rpc_ctx: RPC request context. :param job: Scheduler job. """ LOG.info("Received RPC request 'schedule'[job=%s]", job) return self.scheduler.schedule(job, allow_redistribute=False)
1.882813
2
quant/example/ex_binance.py
doubleDragon/QuantBot
7
12775117
<filename>quant/example/ex_binance.py<gh_stars>1-10 #!/usr/bin/env python # -*- coding: UTF-8 -*- from __future__ import print_function from quant.brokers.broker_factory import create_brokers pair_code = 'Binance_ZRX_ETH' '''test broker''' brokers = create_brokers([pair_code]) broker = brokers[pair_code] '''sell order''' # amount = 10 # price = 0.0019 # order_id = broker.sell_limit(amount=amount, price=price) # if order_id: # print('sell order success, id = %s' % order_id) # else: # print('sell order failed') '''buy order''' '''get order 5863126''' # order = broker.get_order(order_id=5863126) # if order: # print('get order success, %s' % order) # else: # print('get order failed') '''cancel order 5957505''' # order_id = 5957505 # res = broker.cancel_order(order_id=order_id) # if res: # print('cancel order: % success' % order_id) # else: # print('cancel order: % failed' % order_id)
2.34375
2
src/krpsim/parsing.py
arlaine4/Krp
1
12775118
import sys from src.krpsim.utils import split_need_result_delay, build_process_dic class Parser: """ Parsing Class, heart of the parsing is here. -> stocks is a list of Stock class instances -> content is a list of Process class instances -> optimize is a list of Optimize class instances -> delay corresponds to the maximal delay given as a parameter """ def __init__(self, options): self.path, self.delay = options.input_path, options.delay self.stocks = {} self.content = {} self.optimize = [] self.verbose = options.verbose self.fd = open(self.path, 'r+') def main_parsing(self): """ Main parsing loop, the goal here is to iterate over the fd content, and to parse every line we encounter to determine its type """ curr_line = None for line in self.fd: if line[0] == '#': print("Found a comment") if self.verbose == 1 or self.verbose == 3 else 0 continue elif len(line) == 1 and line[0] == '\n': print("Skipping empty line") if self.verbose == 1 or self.verbose == 3 else 0 continue else: curr_line = self.parse_line(line) self.fill_parser_lists(curr_line) print(curr_line) if self.verbose == 1 or self.verbose == 3 else 0 self.fd = self.fd.close() def fill_parser_lists(self, line): """ Comparing the line type after parse_line, we compare class instances with the base classes """ if type(line) is Process: self.content[line.name] = line elif type(line) is Optimize: self.optimize.append(line) elif type(line) is Stock: self.stocks[line.name] = line def verify_parsing_content(self): """ Afterward check method for the parsing content """ if not self.optimize: sys.exit("Missing optimize content.") elif not self.stocks: sys.exit("Missing initial stocks.") elif not self.content: sys.exit("No process detected inside {}, please provide at least one".format(self.path)) #Check if what need to be optimized is indeed inside at least one process and is accesible #like if the process never gets called because of stocks that can never be filled, then #the optimize values are not valid. def parse_line(self, line): """ Method used to parse a line and extract the corresponding elem tmp -> Used for splitting the line and removing some junk from the list res -> Class instance, either Stock, Process or Optimize every instance is filled with the corresponding params """ tmp = None res = None line = line.replace('\n', '') tmp = [i for i in line.split(':')] tmp.pop(tmp.index('')) if '' in tmp else tmp # Parsing for stock elem if '(' not in line: if tmp[0].isalpha() and tmp[1].isdecimal() or\ tmp[0].replace('_', '').isalpha() and tmp[1].isdecimal(): res = Stock(tmp[0], int(tmp[1])) else: res = 'Error' # Parsing for optimize elem elif 'optimize:' in line: if tmp[-1].isdigit(): sys.exit("You can't specify a delay for an optimize element, error with \033[4m{}\033[0m" .format(line)) tmp = str(tmp[1]).replace('(', '').replace(')', '') res = Optimize(tmp.split(';')) # Parsing for process elem elif tmp[-1].isdigit(): tmp = [i.replace(')', '') for i in line.split('(')] name, need, result, delay = split_need_result_delay(tmp, line) res = Process(name, build_process_dic(need), build_process_dic(result), delay) # Invalid elem elif not tmp[-1].isdigit(): sys.exit("Error with \033[4m{}\033[0m, invalid element.".format(line)) return res class Stock: """ Stock elem associated Class -> name is obviously the stock name -> qty is the quantity available for this stock """ def __init__(self, name, qty): self.name = name self.qty = qty def __str__(self): return '\033[1mStock\033[0m -> \033[38;5;155m{}\033[0m : {}'.format(self.name, self.qty) def __eq__(self, other): return self.name == other.name and self.qty == other.qty class Process: """ Process elem associated Class -> name is obviously the process name -> need is a list of stocks (name & qty) needed to run this process -> result is a list of resulting stocks after running the process -> delay is the delay needed to run the process """ def __init__(self, name, need, result, delay): self.name = name self.need = need self.result = result self.delay = delay def __str__(self): return '\033[38;5;74m{}\033[0m - \033[1mneeds\033[0m : {} -> \033[1mresult\033[0m : {} - \033[1mdelay\033[0m : {}'\ .format(self.name, self.need, self.result, self.delay) def __eq__(self, other): return self.name == other.name and \ self.delay == other.delay and \ self.need == other.need and \ self.result == other.result class Optimize: """ Optimize elem associated Class -> opti_elems is a list of name associated with what is to optimize, like client and time """ def __init__(self, elems): self.opti_elems = [i for i in elems] def __str__(self): return '\033[1mOptimize\033[0m -> \033[38;5;218m{}\033[0m'.format(str(self.opti_elems).replace('[', '').replace(']', '')) def __eq__(self, other): return self.opti_elems == other.opti_elems
3.015625
3
templatetags/myfilters.py
RoGryza/blog
0
12775119
<filename>templatetags/myfilters.py from statik.templatetags import register @register.filter(name='localized_date') def localized_date(value, lang): months = lang.months.split(',') month = months[value.month - 1] fmt = str(lang.date_format).replace('%b', month) return value.strftime(fmt)
2.46875
2
project_code/topology_getter/tools.py
statnett/relevant_assets
1
12775120
import datetime import pickle from enum import Enum from decorator import decorator def time_this(fn): """ This decorator time the input function :func:`fn` """ def timed_fn(fn, *args, **kwargs): time1 = datetime.datetime.now() result = fn(*args, **kwargs) calc_time = datetime.datetime.now() - time1 print('%s execution time: %s.' % (fn.__name__, str(calc_time))) return result return decorator(timed_fn, fn) class RaspEnum(Enum): def __str__(self): return self.value[1] def get_index(self): return self.value[0] @classmethod def get_enum(cls, index): e = [e.value for e in cls if e.value[0] == index][0] return cls.__new__(cls, e) @classmethod def enum_from_string(cls, index): e = [e.value for e in cls if e.value[1] == index][0] return cls.__new__(cls, e) @classmethod def enum_from_name_string(cls, name): e = [e.value for e in cls if e.name == name][0] return cls.__new__(cls, e) def __ge__(self, other): if self.__class__ is other.__class__: return self.value[0] >= other.value[0] return NotImplemented def __gt__(self, other): if self.__class__ is other.__class__: return self.value[0] > other.value[0] return NotImplemented def __le__(self, other): if self.__class__ is other.__class__: return self.value[0] <= other.value[0] return NotImplemented def __lt__(self, other): if self.__class__ is other.__class__: return self.value[0] < other.value[0] return NotImplemented def write_to_pickle(file_name, data, file_path=r'c:\temp'): with open(file_path + '\\' + file_name, 'wb') as f: pickle.dump(data, f, protocol=2) def read_data(file_name, file_path=r'c:\temp'): with open(file_path + '\\' + file_name, 'rb') as f: data = pickle.load(f) return data
3.21875
3
src/flowket/machines/simple_conv_net_autoregressive_1D.py
vigsterkr/FlowKet
21
12775121
from .abstract_machine import AutoNormalizedAutoregressiveMachine from ..deepar.layers import ToFloat32, DownShiftLayer, ExpandInputDim, WeightNormalization from ..layers import VectorToComplexNumber from tensorflow.keras.layers import Activation, Conv1D, ZeroPadding1D, Activation, Add def causal_conv_1d(x, filters, kernel_size, weights_normalization, dilation_rate=1, activation=None, skip_connection=None): padding = kernel_size + (kernel_size - 1) * (dilation_rate - 1) - 1 if padding > 0: x = ZeroPadding1D(padding=(padding, 0))(x) conv_layer = Conv1D(filters=filters, kernel_size=kernel_size, strides=1, dilation_rate=dilation_rate) if weights_normalization: conv_layer = WeightNormalization(conv_layer) x = conv_layer(x) if skip_connection is not None: x = Add()([x, skip_connection]) if activation is not None: x = Activation(activation)(x) return x class SimpleConvNetAutoregressive1D(AutoNormalizedAutoregressiveMachine): """docstring for ConvNetAutoregressive1D""" def __init__(self, keras_input_layer, depth, num_of_channels, kernel_size=3, use_dilation=True, add_skip_connections=False, max_dilation_rate=None, activation='relu', weights_normalization=True, should_expand_input_dim=True, **kwargs): self.depth = depth self.num_of_channels = num_of_channels self.kernel_size = kernel_size self.use_dilation = use_dilation self.add_skip_connections = add_skip_connections self.max_dilation_rate = max_dilation_rate self.activation = activation self.weights_normalization = weights_normalization self.should_expand_input_dim = should_expand_input_dim self._build_unnormalized_conditional_log_wave_function(keras_input_layer) super(SimpleConvNetAutoregressive1D, self).__init__(keras_input_layer, **kwargs) @property def unnormalized_conditional_log_wave_function(self): return self._unnormalized_conditional_log_wave_function def _build_unnormalized_conditional_log_wave_function(self, keras_input_layer): dilation_rate = 1 x = keras_input_layer if self.should_expand_input_dim: x = ExpandInputDim()(x) x = ToFloat32()(x) for i in range(self.depth - 2): skip_connection = x if self.add_skip_connections and i > 0 else None x = causal_conv_1d(x, filters=self.num_of_channels, kernel_size=self.kernel_size, activation=self.activation, weights_normalization=self.weights_normalization, dilation_rate=dilation_rate, skip_connection=skip_connection) if self.use_dilation: if self.max_dilation_rate is not None and dilation_rate < self.max_dilation_rate: dilation_rate *= 2 x = DownShiftLayer()(x) x = causal_conv_1d(x, filters=4, kernel_size=1, weights_normalization=self.weights_normalization) self._unnormalized_conditional_log_wave_function = VectorToComplexNumber()(x)
2.4375
2
fb4_example/bootstrap_flask/exampleapp.py
tholzheim/pyFlaskBootstrap4
0
12775122
<filename>fb4_example/bootstrap_flask/exampleapp.py # -*- coding: utf-8 -*- import uuid from fb4.app import AppWrap from fb4.login_bp import LoginForm from fb4.sqldb import db from fb4.login_bp import LoginBluePrint from fb4.sse_bp import SSE_BluePrint from fb4.widgets import Link, Icon, Image, Menu, MenuItem, DropDownMenu, LodTable, DropZoneField, ButtonField from flask import redirect,render_template, request, flash, Markup, url_for, abort from flask_wtf import FlaskForm, CSRFProtect from wtforms import BooleanField, DateField, DateTimeField, FieldList, FileField, \ FloatField, FormField, IntegerField, MultipleFileField, RadioField, SelectField, SelectMultipleField, \ StringField, SubmitField, TextAreaField, PasswordField from wtforms.validators import DataRequired, Length from sqlalchemy import Column import sqlalchemy.types as types from datetime import datetime, timedelta import json import os import http.client import re import time from sqlalchemy.ext.hybrid import hybrid_property from werkzeug.utils import secure_filename class ExampleForm(FlaskForm): """An example form that contains all the supported bootstrap style form fields.""" date = DateField(description="We'll never share your email with anyone else.") # add help text with `description` datetime = DateTimeField(render_kw={'placeholder': 'this is placeholder'}) # add HTML attribute with `render_kw` image = FileField(render_kw={'class': 'my-class'}) # add your class option = RadioField(choices=[('dog', 'Dog'), ('cat', 'Cat'), ('bird', 'Bird'), ('alien', 'Alien')]) select = SelectField(choices=[('dog', 'Dog'), ('cat', 'Cat'), ('bird', 'Bird'), ('alien', 'Alien')]) selectmulti = SelectMultipleField(choices=[('dog', 'Dog'), ('cat', 'Cat'), ('bird', 'Bird'), ('alien', 'Alien')]) bio = TextAreaField() title = StringField() secret = PasswordField() remember = BooleanField('Remember me') submit = SubmitField() class ButtonForm(FlaskForm): username = StringField('Username', validators=[DataRequired(), Length(1, 20)]) submit = SubmitField() delete = SubmitField() cancel = SubmitField() class TelephoneForm(FlaskForm): country_code = IntegerField('Country Code') area_code = IntegerField('Area Code/Exchange') number = StringField('Number') class IMForm(FlaskForm): protocol = SelectField(choices=[('aim', 'AIM'), ('msn', 'MSN')]) username = StringField() class ContactForm(FlaskForm): first_name = StringField() last_name = StringField() mobile_phone = FormField(TelephoneForm) office_phone = FormField(TelephoneForm) emails = FieldList(StringField("Email"), min_entries=3) im_accounts = FieldList(FormField(IMForm), min_entries=2) class PingForm(FlaskForm): host=SelectField(choices=[('facebook','www.facebook.com'), ('google','www.google.com'), ('IBM','www.ibm.com'), ('twitter','www.twitter.com'), ], #https://stackoverflow.com/a/38157356/1497139 render_kw={"onchange":"this.form.submit()"} ) pingState=StringField('ping state') class IconSearchForm(FlaskForm): search=StringField('search', render_kw={"onchange":"this.form.submit()"}) perPage=SelectField(choices=[('twenty','20'), ('fifty','50'), ('hundred','100'), ('twohundred','200'), ('all','all'), ], #https://stackoverflow.com/a/38157356/1497139 render_kw={"onchange":"this.form.submit()"} ) class UploadForm(FlaskForm): ''' upload form example ''' file = MultipleFileField('File(s) to Upload') submit = SubmitField() class DropZoneWidgetForm(FlaskForm): dropzone = DropZoneField(id="TestDropZone") fileName=StringField() submit = ButtonField( ) class ExampleApp(AppWrap): ''' flask app wrapped in class ''' def __init__(self): ''' Constructor ''' scriptdir = os.path.dirname(os.path.abspath(__file__)) template_folder=scriptdir + '/templates' super().__init__(template_folder=template_folder) self.app.secret_key = 'dev' self.app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///:memory:' # set default button style and size, will be overwritten by macro parameters self.app.config['BOOTSTRAP_BTN_STYLE'] = 'primary' self.app.config['BOOTSTRAP_BTN_SIZE'] = 'sm' # app.config['BOOTSTRAP_BOOTSWATCH_THEME'] = 'lumen' # uncomment this line to test bootswatch theme db.init_app(self.app) self.db=db self.csrf = CSRFProtect(self.app) self.loginBluePrint=LoginBluePrint(self.app,'login') self.loginBluePrint.hint="'try user: scott, password: <PASSWORD>'" self.sseBluePrint=SSE_BluePrint(self.app,'sse') app=self.app # # setup global handlers # @app.before_first_request def before_first_request_func(): self.initDB() # # setup the RESTFUL routes for this application # @app.route('/') def index(): return self.home() @app.route('/form', methods=['GET', 'POST']) def test_form(): return self.form() @app.route('/upload', methods=['GET', 'POST']) def test_upload(): return self.upload() @app.route('/nav', methods=['GET', 'POST']) def test_nav(): return self.nav() @app.route('/pagination', methods=['GET', 'POST']) def test_pagination(): return self.pagination() @app.route('/static', methods=['GET', 'POST']) def test_static(): return self.static() @app.route('/startsse1', methods=['POST']) def test_startSSE1(): return self.startSSE1() @app.route('/flash', methods=['GET', 'POST']) def test_flash(): return self.flash() @app.route('/datatable') def test_datatable(): return self.datatable() @app.route('/table') def test_table(): return self.table() @app.route('/table/<message_id>/view') def view_message(message_id): return self.message_view(message_id) @app.route('/table/<message_id>/edit') def edit_message(message_id): return self.message_edit(message_id) @app.route('/table/<message_id>/delete', methods=['POST']) def delete_message(message_id): return self.message_delete(message_id) @app.route('/icon') def test_icon(): return self.icon() @app.route('/widgets', methods=['GET', 'POST']) def test_widgets(): return self.widgets() @app.route('/ping',methods=['GET', 'POST']) def test_ping(): return self.ping() @app.route('/events') def test_events(): return self.eventExample() @app.route('/eventfeed') def test_eventFeed(): return self.eventFeed() @app.route('/progressfeed') def test_progressFeed(): return self.progressFeed() def initDB(self,limit=20): ''' initialize the database ''' self.db.drop_all() self.db.create_all() self.initUsers() self.initMessages(limit) self.initIcons() def initUsers(self): self.loginBluePrint.addUser(self.db,"scott","tiger2021",userid=100) def initMessages(self,limit=20): ''' create an initial set of message with the given limit Args: limit(int): the number of messages to create ''' for i in range(limit): m = Message( text='Test message {}'.format(i+1), author='Author {}'.format(i+1), category='Category {}'.format(i+1), create_time=4321*(i+1) ) if i % 4: m.draft = True self.db.session.add(m) self.db.session.commit() def initIcons(self): ''' initialize the icons ''' iconNames=Icon.getBootstrapIconsNames() for index,iconName in enumerate(iconNames): bootstrapIcon=BootstrapIcon(id=iconName,index=index+1) self.db.session.add(bootstrapIcon) self.db.session.commit() def getDisplayIcons(self,icons): displayIcons=[] for icon in icons: displayIcons.append("%04d%s%s" % (icon.index,icon.icon,icon.link)) return displayIcons def pagePing(self,host, path="/"): """ This function retrieves the status code of a website by requesting HEAD data from the host. This means that it only requests the headers. If the host cannot be reached or something else goes wrong, it returns False. see https://stackoverflow.com/a/1949507/1497139 """ startTime=time.time() try: conn = http.client.HTTPConnection(host) conn.request("HEAD", path) if re.match("^[23]\d\d$", str(conn.getresponse().status)): state=True except Exception: state=False elapsed=time.time()-startTime return state,elapsed def getTimeEvent(self): ''' get the next time stamp ''' time.sleep(1.0) s=datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S') return s def progressFeed(self): ''' feed progress info as json ''' self.pc=0 def progress(): time.sleep(0.5) self.pc=(self.pc+5) % 100 pcdict={"progress":self.pc} return json.dumps(pcdict) sse=self.sseBluePrint return sse.streamFunc(progress) def eventFeed(self): ''' create a Server Sent Event Feed ''' sse=self.sseBluePrint # stream from the given function return sse.streamFunc(self.getTimeEvent) def startSSE1(self): ''' start a Server Sent Event Feed ''' if "channel" in request.form and "ssechannel" in request.form: channel=request.form["channel"] ssechannel=request.form["ssechannel"] #pubsub=PubSub.forChannel(ssechannel) sse=self.sseBluePrint now=datetime.now() limit=15 self.debug=True # 0.5 secs per Job timePerJob=1 for i in range(limit): run_date=now+timedelta(seconds=timePerJob*i) print("scheduling job %d for %s" % (i,run_date.isoformat())) sse.scheduler.add_job(sse.publish, 'date',run_date=run_date,kwargs={"channel":ssechannel,"message":"message %d" %(i+1),"debug":self.debug}) return "%s started" % channel else: abort(501) def eventExample(self): gen = ({"id": i, "data": str(uuid.uuid1())} for i in range(150)) generator = self.sseBluePrint.streamDictGenerator(gen, slowdown=1) return render_template("event.html", dictStreamdemo=generator) def flash(self): flash('A simple default alert—check it out!') flash('A simple primary alert—check it out!', 'primary') flash('A simple secondary alert—check it out!', 'secondary') flash('A simple success alert—check it out!', 'success') flash('A simple danger alert—check it out!', 'danger') flash('A simple warning alert—check it out!', 'warning') flash('A simple info alert—check it out!', 'info') flash('A simple light alert—check it out!', 'light') flash('A simple dark alert—check it out!', 'dark') flash(Markup('A simple success alert with <a href="#" class="alert-link">an example link</a>. Give it a click if you like.'), 'success') return render_template('flash.html') def form(self): form = LoginForm() return render_template('form.html', form=form, telephone_form=TelephoneForm(), contact_form=ContactForm(), im_form=IMForm(), button_form=ButtonForm(), example_form=ExampleForm()) def upload(self): ''' handle the uploading ''' upload_form= UploadForm() dropzone_form=DropZoneWidgetForm() filenames="" delim="" if upload_form.validate_on_submit(): for file in upload_form.file.data: file_filename = secure_filename(file.filename) if file_filename == "": file_filename="Test" filePath=f'/tmp/{file_filename}' with open(filePath, 'wb') as f: f.write(file.read()) size=os.path.getsize(filePath) filenames=f"{filenames}{delim}{file_filename}({size})" delim="<br/>" if filenames: flash(Markup(filenames), 'info') filenames="" if dropzone_form.validate_on_submit(): for file in dropzone_form.dropzone.data: file_filename = secure_filename(file.filename) if file_filename == "": file_filename="Test" filePath=f'/tmp/{file_filename}' with open(filePath, 'wb') as f: f.write(file.read()) size=os.path.getsize(filePath) filenames=f"{filenames}{delim}{file_filename}({size})" delim="<br/>" flash(f"File {file_filename} stored under {dropzone_form.fileName.data}") return render_template('upload.html',upload_form=upload_form,dropzone_form=dropzone_form) def getMenu(self): menu=Menu() for menuLink in self.getMenuLinks(): menu.addItem(MenuItem(menuLink.url,menuLink.title)) return menu def getMenuLinks(self): links=[ Link( url_for('test_form'),"Form"), Link( url_for('test_upload'),"Upload"), Link( url_for('test_nav'),"Nav"), Link( url_for('test_pagination'),"Pagination"), Link( url_for('test_ping'),"Ping"), Link( url_for('test_events'),"Events"), Link( url_for('test_static'),"Static"), Link( url_for('test_flash'),"Flash Messages"), Link( url_for('test_table'),"Table"), Link( url_for('test_datatable'),"DataTable"), Link( url_for('test_icon'),"Icon"), Link( url_for('test_widgets'),"Widgets") ] return links def home(self): menuLinks=self.getMenuLinks() return render_template('index.html',menuLinks=menuLinks) def icon(self): return render_template('icon.html') def message_delete(self,message_id): message = Message.query.get(message_id) if message: db.session.delete(message) db.session.commit() return f'Message {message_id} has been deleted. Return to <a href="/table">table</a>.' return f'Message {message_id} did not exist and could therefore not be deleted. Return to <a href="/table">table</a>.' def message_edit(self,message_id): message = Message.query.get(message_id) if message: message.draft = not message.draft db.session.commit() return f'Message {message_id} has been edited by toggling draft status. Return to <a href="/table">table</a>.' return f'Message {message_id} did not exist and could therefore not be edited. Return to <a href="/table">table</a>.' def message_view(self,message_id): message = Message.query.get(message_id) if message: return f'Viewing {message_id} with text "{message.text}". Return to <a href="/table">table</a>.' return f'Could not view message {message_id} as it does not exist. Return to <a href="/table">table</a>.' def nav(self): return render_template('nav.html') def pagination(self): ''' pagination example Returns: rendered html for pagination ''' search_form=IconSearchForm() perPageChoice=search_form.perPage.data if perPageChoice is None: perPageChoice="twenty" choices=dict(search_form.perPage.choices) perPageSelection=choices[perPageChoice] search_form.perPage.data=perPageChoice if perPageChoice=="all": per_page=2000 else: per_page=int(perPageSelection) pagination=None icons=None if search_form.validate_on_submit() and search_form.search.data: search="%{}%".format(search_form.search.data) print("searching %s: " % search) icons = BootstrapIcon.query.filter(BootstrapIcon.id.like(search)).all() if icons is None: page = request.args.get('page', 1, type=int) pagination = BootstrapIcon.query.paginate(page, per_page=per_page) icons = pagination.items displayIcons=self.getDisplayIcons(icons) return render_template('pagination.html', form=search_form,pagination=pagination, icons=displayIcons) def ping(self): ''' ping test ''' ping_form=PingForm() if ping_form.validate_on_submit(): choices=dict(ping_form.host.choices) host=choices[ping_form.host.data] state,pingTime=self.pagePing(host) pingState="%s %5.0f ms" % ("✅" if state else "❌",pingTime*1000) ping_form.pingState.data=pingState pass else: ping_form.pingState="" return render_template('ping.html',ping_form=ping_form) def static(self): ''' test static content ''' return render_template('static.html') def datatable(self): ''' test data table ''' icons=BootstrapIcon.query.all() dictList=[] for icon in icons: dictList.append(icon.asDict()) return render_template('datatable.html',listOfDicts=dictList) def table(self): ''' test table ''' page = request.args.get('page', 1, type=int) pagination = Message.query.paginate(page, per_page=10) messages = pagination.items titles = [('id', '#'), ('text', 'Message'), ('author', 'Author'), ('category', 'Category'), ('draft', 'Draft'), ('create_time', 'Create Time')] return render_template('table.html', messages=messages, titles=titles) def widgets(self): ''' test widgets ''' dropDownMenu=DropDownMenu("Links") dropDownMenu.addItem(Link("http://www.bitplan.com","BITPlan Website")) dropDownMenu.addItem(Link("https://bootstrap-flask.readthedocs.io/","Docs")) dropDownMenu.addItem(Link("https://github.com/WolfgangFahl/pyFlaskBootstrap4","github")) dropDownMenu.addItem(Link("https://getbootstrap.com/","bootstrap")) menu=Menu() menu.addItem(MenuItem("http://wiki.bitplan.com","BITPlan Wiki",True)) menu.addItem(MenuItem("https://bootstrap-flask.readthedocs.io/","Docs")) menu.addItem(MenuItem("https://github.com/WolfgangFahl/pyFlaskBootstrap4","github",)) menu.addItem(dropDownMenu) lodDataGenerator=lambda n: [{'text':f'Text messaage {i}', 'author': f"Author {i}", "Category":f"Category {i}", "create time":datetime.now()+timedelta(days=i)} for i in range(n)] lodTable=LodTable(lodDataGenerator(5)) lodDataTable=LodTable(lodDataGenerator(500), isDatatable=True) widgetList=[ [ Link("https://github.com/WolfgangFahl/pyFlaskBootstrap4","pyFlaskBootstrap4","Extended Flask + Bootstrap4 Library"), Link("http://wiki.bitplan.com/index.php/PyFlaskBootstrap4","Wiki","pyFlaskBootstrap4 wiki"), Link("https://github.com/greyli/bootstrap-flask","bootstrap-flask","Flask + Bootstrap4 Library by <NAME>"), Link("https://palletsprojects.com/p/flask/","flask","web application framework"), Link("https://getbootstrap.com/","bootstrap","Open source web toolkit") ], [ Image("https://upload.wikimedia.org/wikipedia/commons/thumb/3/35/Tux.svg/299px-Tux.svg.png",alt="Tux",height=150,title='Tux - the Linux kernel penguin mascot'), Image("https://upload.wikimedia.org/wikipedia/commons/thumb/e/e9/Eiffel_Tower_Paris.jpg/180px-Eiffel_Tower_Paris.jpg",alt="Eiffel Tower",height=150,title='Eiffel Tower, Paris'), Image("https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/Croce-Mozart-Detail.jpg/185px-Croce-Mozart-Detail.jpg",alt="Mozart",height=150,title='Wolfgang Amadeus Mozart'), Image("https://upload.wikimedia.org/wikipedia/commons/thumb/7/78/The_Blue_Marble.jpg/240px-The_Blue_Marble.jpg",alt="Earth",width=150,title='Earth as seen from Apollo 17 mission') ], [ Icon("award"),Icon("battery"),Icon("book"),Icon("heart"), Icon("calculator",size=48),Icon("person",size=48,color='red'), Icon("wifi",size=64),Icon("wrench",size=64) ], [ menu ], [ dropDownMenu ], [ lodTable, lodDataTable ] ] return render_template('widgets.html',widgetList=widgetList) # initialization of flask globals # we can't help that these are needed and can't be wrapped # since db.Model needs to be global the Message class is defined here class Message(db.Model): id = Column(types.Integer, primary_key=True) text = Column(types.Text, nullable=False) author = Column(types.String(100), nullable=False) category = Column(types.String(100), nullable=False) draft = Column(types.Boolean, default=False, nullable=False) create_time = Column(types.Integer, nullable=False, unique=True) # wget https://raw.githubusercontent.com/twbs/icons/main/bootstrap-icons.svg # xq .svg bootstrap-icons.svg | grep -v http | sed 's/@//' | jq .symbol[].id | cut -d'"' -f2 | awk ' { if ( length > x ) { x = length; y = $0 } }END{ print y; print x }' # file-earmark-spreadsheet-fill # 29 class BootstrapIcon(db.Model): id=Column(types.String(30), primary_key=True) index=Column(types.Integer) @hybrid_property def url(self): myUrl="https://icons.getbootstrap.com/icons/%s/" % self.id return myUrl @hybrid_property def link(self): myLink=Link(self.url,self.id) return myLink @hybrid_property def icon(self): myIcon=Icon(self.id) myIcon.userdata['#']=self.index return myIcon def asDict(self): myDict={ 'link': self.link, 'icon': self.icon } return myDict # # Command line entry point # if __name__ == '__main__': ea=ExampleApp() parser=ea.getParser("Flask + Bootstrap4 demo application for bootstrap-flask") args=parser.parse_args() # allow remote debugging if specified so on command line ea.optionalDebug(args) ea.run(args)
2.25
2
docs/load_accessions.py
detrout/htsworkflow
0
12775123
<reponame>detrout/htsworkflow<gh_stars>0 """We have many accessions for our libraries, our data isn't really part of the htsworkflow project so it seemed unnecessary to put it in the normal migrations """ from datetime import datetime import os import socket os.environ.setdefault( "DJANGO_SETTINGS_MODULE", "htsworkflow.settings.{}".format(socket.gethostname())) import django django.setup() from samples.models import ( AccessionAgency, Library, LibraryAccession ) def load_encode3_accessions(): data = [ ('02973', 'ENCLB661EBH', '2013-12-31T01:24:29.450163+0000'), ('10007', 'ENCLB372ZZZ', '2013-09-13T13:31:00.667863-0800'), ('10065', 'ENCLB350ZZZ', '2013-09-13T13:31:00.711427-0800'), ('10135', 'ENCLB371ZZZ', '2013-09-13T13:31:00.800862-0800'), ('10150', 'ENCLB375ZZZ', '2013-09-13T13:31:00.845686-0800'), ('10158', 'ENCLB349ZZZ', '2013-09-13T13:31:00.888358-0800'), ('10296', 'ENCLB326ZZZ', '2013-09-13T13:31:01.050362-0800'), ('10330', 'ENCLB316ZZZ', '2013-09-13T13:31:01.094821-0800'), ('10331', 'ENCLB312ZZZ', '2013-09-13T13:31:01.138188-0800'), ('10333', 'ENCLB348ZZZ', '2013-09-13T13:31:01.182426-0800'), ('10335', 'ENCLB325ZZZ', '2013-09-13T13:31:01.226356-0800'), ('10409', 'ENCLB335ZZZ', '2013-09-13T13:31:01.268879-0800'), ('10409', 'ENCLB373ZZZ', '2013-09-13T13:31:03.237846-0800'), ('10481', 'ENCLB328ZZZ', '2013-09-13T13:31:01.312917-0800'), ('10502', 'ENCLB322ZZZ', '2013-09-13T13:31:01.357314-0800'), ('10506', 'ENCLB354ZZZ', '2013-09-13T13:31:01.402055-0800'), ('10515', 'ENCLB150CGC', '2013-12-31T01:24:31.329052+0000'), ('10516', 'ENCLB858EYY', '2014-02-11T04:54:55.778298+0000'), ('10517', 'ENCLB296STQ', '2013-12-31T01:24:31.650260+0000'), ('10536', 'ENCLB317ZZZ', '2013-09-13T13:31:01.484966-0800'), ('10565', 'ENCLB700LMU', '2013-12-31T01:24:31.490950+0000'), ('10567', 'ENCLB912OTZ', '2013-12-31T01:24:31.813954+0000'), ('10599', 'ENCLB329ZZZ', '2013-09-13T13:31:01.589610-0800'), ('10703', 'ENCLB347ZZZ', '2013-09-13T13:31:01.634288-0800'), ('10704', 'ENCLB353ZZZ', '2013-09-13T13:31:01.678096-0800'), ('10874', 'ENCLB211VHB', '2013-12-31T00:56:50.185938+0000'), ('10876', 'ENCLB827ADT', '2014-02-11T04:54:56.056039+0000'), ('10878', 'ENCLB596OCH', '2013-12-31T01:24:32.312287+0000'), ('10879', 'ENCLB285RFV', '2013-12-31T01:24:32.481428+0000'), ('10881', 'ENCLB928ZOL', '2013-12-31T01:24:31.988425+0000'), ('10882', 'ENCLB070EUV', '2013-12-31T01:24:32.157600+0000'), ('10883', 'ENCLB553XIA', '2013-12-31T00:56:50.961345+0000'), ('10884', 'ENCLB439WFS', '2013-12-31T01:24:32.695166+0000'), ('10885', 'ENCLB369MMK', '2013-12-31T00:56:51.214725+0000'), ('10947', 'ENCLB184USD', '2014-02-11T04:54:52.964669+0000'), ('10985', 'ENCLB359ZZZ', '2013-09-13T13:31:02.337847-0800'), ('10986', 'ENCLB356ZZZ', '2013-09-13T13:31:02.556929-0800'), ('11007', 'ENCLB866SQE', '2014-02-11T04:54:52.164787+0000'), ('11008', 'ENCLB424IFK', '2014-02-11T04:54:51.864439+0000'), ('11009', 'ENCLB205QXO', '2015-01-15T19:40:15.525219+0000'), ('11010', 'ENCLB529ELW', '2014-02-11T04:54:51.647823+0000'), ('11011', 'ENCLB732DFW', '2014-02-11T04:54:51.042384+0000'), ('11038', 'ENCLB857ING', '2013-12-31T01:24:29.125690+0000'), ('11039', 'ENCLB637FKG', '2013-12-31T01:24:29.779715+0000'), ('11154', 'ENCLB358ZZZ', '2013-09-13T13:31:02.792781-0800'), ('11155', 'ENCLB357ZZZ', '2013-09-13T13:31:02.954320-0800'), ('11204', 'ENCLB625YJM', '2014-02-11T04:54:55.290109+0000'), ('11206', 'ENCLB043WCL', '2014-02-11T04:54:53.934271+0000'), ('11207', 'ENCLB540GQH', '2014-02-11T04:54:54.151840+0000'), ('11208', 'ENCLB267LXR', '2014-02-11T04:54:54.367250+0000'), ('11209', 'ENCLB334AQY', '2014-02-11T04:54:54.659774+0000'), ('11210', 'ENCLB267HUY', '2014-02-11T04:54:54.901232+0000'), ('11286', 'ENCLB227WEO', '2013-12-31T00:56:50.365755+0000'), ('11288', 'ENCLB764TBI', '2013-12-31T00:56:50.539923+0000'), ('11289', 'ENCLB221REA', '2013-12-31T00:56:50.771930+0000'), ('11565', 'ENCLB332ZZZ', '2013-09-13T13:31:03.112170-0800'), ('11581', 'ENCLB794RXE', '2013-12-31T01:24:31.159562+0000'), ('11582', 'ENCLB445LWQ', '2013-12-31T01:24:30.715684+0000'), ('11584', 'ENCLB866FVU', '2013-12-31T01:24:30.539689+0000'), ('11585', 'ENCLB415HFJ', '2013-12-31T01:24:30.323719+0000'), ('11586', 'ENCLB170HBR', '2013-12-31T01:24:32.842478+0000'), ('11587', 'ENCLB271DFX', '2013-12-31T00:56:49.784310+0000'), ('11588', 'ENCLB224GWZ', '2013-12-31T00:56:50.002023+0000'), ('11612', 'ENCLB370ZZZ', '2013-09-13T13:31:03.835164-0800'), ('11612', 'ENCLB370ZZZ', '2013-09-13T13:31:03.835164-0800'), ('11621', 'ENCLB282WJS', '2013-12-31T00:56:49.527454+0000'), ('11622', 'ENCLB379BUZ', '2013-12-31T00:56:49.274381+0000'), ('11638', 'ENCLB507FSU', '2015-03-12T23:49:04.901543+0000'), ('11644', 'ENCLB341ZZZ', '2013-09-13T13:31:04.092318-0800'), ('11653', 'ENCLB344ZZZ', '2013-09-13T13:31:04.212140-0800'), ('11669', 'ENCLB321ZZZ', '2013-09-13T13:31:04.327003-0800'), ('11670', 'ENCLB715BMJ', '2015-03-12T23:18:09.561375+0000'), ('11682', 'ENCLB331ZZZ', '2013-09-13T13:31:04.445816-0800'), ('11697', 'ENCLB314ZZZ', '2013-09-13T13:31:04.621147-0800'), ('11718', 'ENCLB327ZZZ', '2013-09-13T13:31:04.713973-0800'), ('11719', 'ENCLB330ZZZ', '2013-09-13T13:31:04.755910-0800'), ('11719', 'ENCLB373ZZZ', '2013-09-13T13:31:03.237846-0800'), ('11832', 'ENCLB318ZZZ', '2013-09-13T13:31:04.798657-0800'), ('11847', 'ENCLB345ZZZ', '2013-09-13T13:31:04.842142-0800'), ('11905', 'ENCLB320ZZZ', '2013-09-13T13:31:04.885807-0800'), ('11906', 'ENCLB315ZZZ', '2013-09-13T13:31:04.927936-0800'), ('11907', 'ENCLB313ZZZ', '2013-09-13T13:31:04.970793-0800'), ('11923', 'ENCLB346ZZZ', '2013-09-13T13:31:05.014078-0800'), ('11924', 'ENCLB343ZZZ', '2013-09-13T13:31:05.057237-0800'), ('11926', 'ENCLB342ZZZ', '2013-09-13T13:31:05.098878-0800'), ('11927', 'ENCLB351ZZZ', '2013-09-13T13:31:05.142104-0800'), ('11942', 'ENCLB340ZZZ', '2013-09-13T13:31:05.185199-0800'), ('11942', 'ENCLB374ZZZ', '2013-09-13T13:31:00.932762-0800'), ('11956', 'ENCLB323ZZZ', '2013-09-13T13:31:05.229141-0800'), ('11957', 'ENCLB319ZZZ', '2013-09-13T13:31:05.271096-0800'), ('12096', 'ENCLB330KCB', '2013-12-31T01:24:29.929490+0000'), ('12097', 'ENCLB308ZDI', '2013-12-31T01:24:30.117992+0000'), ('12098', 'ENCLB849ZXB', '2013-12-31T01:24:30.951897+0000'), ('12517', 'ENCLB482LEX', '2014-04-17T22:46:52.690510+0000'), ('12518', 'ENCLB898RJN', '2014-04-17T22:46:52.789971+0000'), ('13024', 'ENCLB386HBI', '2014-04-17T22:46:51.828778+0000'), ('13025', 'ENCLB976CMA', '2014-04-17T22:46:51.909420+0000'), ('13262', 'ENCLB164LQL', '2014-04-17T22:46:51.996269+0000'), ('13263', 'ENCLB621DLJ', '2014-04-17T22:46:52.081511+0000'), ('13274', 'ENCLB036MBQ', '2014-04-17T22:46:52.331729+0000'), ('13275', 'ENCLB284CYK', '2014-04-17T22:46:52.424102+0000'), ('13280', 'ENCLB187EEQ', '2014-04-17T22:46:56.606142+0000'), ('13281', 'ENCLB146LAW', '2014-04-17T22:46:56.763676+0000'), ('13282', 'ENCLB267CXI', '2014-04-17T22:46:57.686887+0000'), ('13283', 'ENCLB198OUV', '2014-04-17T22:46:57.765163+0000'), ('13284', 'ENCLB319PGU', '2014-04-17T22:46:57.859868+0000'), ('13285', 'ENCLB391GZT', '2014-04-17T22:46:57.942156+0000'), ('13286', 'ENCLB714NCU', '2014-04-17T22:46:58.029639+0000'), ('13287', 'ENCLB868NQU', '2014-04-17T22:46:58.123540+0000'), ('13288', 'ENCLB264YKE', '2014-04-17T22:46:58.206637+0000'), ('13289', 'ENCLB206JYT', '2014-04-17T22:46:58.292642+0000'), ('13290', 'ENCLB476CZO', '2014-04-17T22:46:58.374543+0000'), ('13291', 'ENCLB402YMB', '2014-04-17T22:46:58.456242+0000'), ('13292', 'ENCLB211FCW', '2014-04-17T22:46:56.889940+0000'), ('13294', 'ENCLB283IJI', '2014-04-17T22:46:57.082795+0000'), ('13295', 'ENCLB720ZUM', '2014-04-17T22:46:57.198472+0000'), ('13296', 'ENCLB108EAP', '2014-04-17T22:46:57.341596+0000'), ('13297', 'ENCLB882HPA', '2014-04-17T22:46:57.428995+0000'), ('13298', 'ENCLB804XTY', '2014-04-17T22:46:57.507323+0000'), ('13299', 'ENCLB242XIT', '2014-04-17T22:46:57.604855+0000'), ('13300', 'ENCLB550GYC', '2014-04-17T22:46:52.512366+0000'), ('13301', 'ENCLB576ZGP', '2014-04-17T22:46:52.601612+0000'), ('13347', 'ENCLB928LID', '2014-04-17T22:46:52.162858+0000'), ('13349', 'ENCLB532KHK', '2014-04-17T22:46:52.248810+0000'), ('13413', 'ENCLB510UJB', '2014-12-16T00:45:13.360830+0000'), ('13414', 'ENCLB414SJG', '2014-12-16T00:45:13.800356+0000'), ('13415', 'ENCLB569DAO', '2014-12-16T00:45:14.213313+0000'), ('13416', 'ENCLB193ILA', '2014-12-16T00:45:14.431853+0000'), ('13417', 'ENCLB578MIX', '2014-12-16T00:45:14.860425+0000'), ('13418', 'ENCLB322YDP', '2014-12-16T00:45:15.320136+0000'), ('13419', 'ENCLB921XPI', '2014-12-16T00:45:16.561156+0000'), ('13420', 'ENCLB133ICO', '2014-12-16T00:45:16.784349+0000'), ('13421', 'ENCLB541QCS', '2014-12-16T00:45:17.049659+0000'), ('13422', 'ENCLB711HMD', '2014-12-16T00:45:17.306141+0000'), ('13423', 'ENCLB036AMX', '2014-12-16T00:45:17.587710+0000'), ('13424', 'ENCLB641AYP', '2014-12-16T00:45:18.075095+0000'), ('13425', 'ENCLB042QFS', '2014-12-16T00:45:18.620202+0000'), ('13426', 'ENCLB507MOC', '2014-12-16T00:45:19.791431+0000'), ('13427', 'ENCLB442ZCO', '2014-12-16T00:45:20.402307+0000'), ('13428', 'ENCLB714KUY', '2014-12-16T00:45:20.848934+0000'), ('13429', 'ENCLB243CVS', '2014-12-16T00:45:21.329370+0000'), ('13430', 'ENCLB204EWE', '2014-12-16T00:45:22.235057+0000'), ('13431', 'ENCLB751POF', '2014-12-16T00:45:23.092374+0000'), ('13432', 'ENCLB729FQY', '2014-12-16T00:45:23.458123+0000'), ('13433', 'ENCLB988OPM', '2014-12-16T00:45:23.707750+0000'), ('13435', 'ENCLB981WTU', '2014-12-16T00:45:24.273572+0000'), ('13436', 'ENCLB364NZB', '2014-12-16T00:45:25.243385+0000'), ('13437', 'ENCLB461BIJ', '2014-12-16T00:45:25.696471+0000'), ('13438', 'ENCLB580JUS', '2014-12-16T00:45:26.678862+0000'), ('13439', 'ENCLB318YQB', '2014-12-16T00:45:27.109024+0000'), ('13440', 'ENCLB407NSA', '2014-12-16T00:45:27.519366+0000'), ('13619', 'ENCLB901PGF', '2014-04-17T22:46:51.257931+0000'), ('13620', 'ENCLB392ZIG', '2014-04-17T22:46:51.468689+0000'), ('13622', 'ENCLB426EUN', '2014-04-17T22:46:51.379932+0000'), ('13623', 'ENCLB036TZY', '2014-04-17T22:46:51.581073+0000'), ('13625', 'ENCLB331AUZ', '2014-04-17T22:46:52.874393+0000'), ('13626', 'ENCLB327MTR', '2014-04-17T22:46:52.954204+0000'), ('13627', 'ENCLB228BIT', '2014-04-17T22:46:53.033480+0000'), ('13628', 'ENCLB641KNK', '2014-04-17T22:46:53.114120+0000'), ('13629', 'ENCLB403JBC', '2014-04-17T22:46:53.192762+0000'), ('13630', 'ENCLB804XKW', '2014-04-17T22:46:53.273136+0000'), ('13631', 'ENCLB087SVF', '2014-04-17T22:46:53.371845+0000'), ('13632', 'ENCLB747ZHK', '2014-04-17T22:46:53.457184+0000'), ('13633', 'ENCLB710XHU', '2014-04-17T22:46:53.538836+0000'), ('13634', 'ENCLB211OUD', '2014-04-17T22:46:53.615476+0000'), ('13635', 'ENCLB222MSP', '2014-04-17T22:46:53.715943+0000'), ('13636', 'ENCLB619TYA', '2014-04-17T22:46:53.884920+0000'), ('13637', 'ENCLB350NUB', '2014-04-17T22:46:53.980565+0000'), ('13638', 'ENCLB257OVB', '2014-04-17T22:46:54.073274+0000'), ('13639', 'ENCLB218HBM', '2014-04-17T22:46:54.155566+0000'), ('13640', 'ENCLB617JJG', '2014-04-17T22:46:54.244908+0000'), ('13641', 'ENCLB876ZIU', '2014-04-17T22:46:54.340786+0000'), ('13642', 'ENCLB552DLJ', '2014-04-17T22:46:54.430325+0000'), ('13643', 'ENCLB509KSM', '2014-04-17T22:46:54.529638+0000'), ('13644', 'ENCLB632SOL', '2014-04-17T22:46:54.617599+0000'), ('13645', 'ENCLB678KFT', '2014-04-17T22:46:54.699948+0000'), ('13646', 'ENCLB432EQY', '2014-04-17T22:46:54.778444+0000'), ('13647', 'ENCLB546SWD', '2014-04-17T22:46:54.858448+0000'), ('13648', 'ENCLB151CUN', '2014-04-17T22:46:54.937278+0000'), ('13649', 'ENCLB340FFP', '2014-04-17T22:46:55.022324+0000'), ('13650', 'ENCLB205HHN', '2014-04-17T22:46:55.098461+0000'), ('13651', 'ENCLB452IVF', '2014-04-17T22:46:55.184097+0000'), ('13652', 'ENCLB294BYK', '2014-04-17T22:46:55.262903+0000'), ('13653', 'ENCLB078UJF', '2014-04-17T22:46:55.341750+0000'), ('13654', 'ENCLB614VPZ', '2014-04-17T22:46:55.416400+0000'), ('13655', 'ENCLB611KGC', '2014-04-17T22:46:55.540595+0000'), ('13656', 'ENCLB462FVS', '2014-04-17T22:46:55.622867+0000'), ('13657', 'ENCLB562SNL', '2014-04-17T22:46:55.701402+0000'), ('13658', 'ENCLB147KNI', '2014-04-17T22:46:55.786033+0000'), ('13659', 'ENCLB904FTO', '2014-04-17T22:46:55.881860+0000'), ('13660', 'ENCLB857XKO', '2014-04-17T22:46:55.967510+0000'), ('13661', 'ENCLB720FXC', '2014-04-17T22:46:56.045285+0000'), ('13662', 'ENCLB632CVX', '2014-04-17T22:46:56.126475+0000'), ('13663', 'ENCLB229ENW', '2014-04-17T22:46:56.202064+0000'), ('13664', 'ENCLB912XSU', '2014-04-17T22:46:56.461112+0000'), ('13665', 'ENCLB915IHV', '2014-04-17T22:46:51.664093+0000'), ('13666', 'ENCLB204VYG', '2014-04-17T22:46:51.747073+0000'), ('13711', 'ENCLB043ZZZ', '2013-09-13T13:31:21.704089-0800'), ('13712', 'ENCLB044ZZZ', '2013-09-13T13:31:21.995955-0800'), ('13713', 'ENCLB045ZZZ', '2013-09-13T13:31:21.121478-0800'), ('13714', 'ENCLB046ZZZ', '2013-09-13T13:31:19.986238-0800'), ('13715', 'ENCLB061ZZZ', '2013-09-13T13:31:26.233894-0800'), ('13716', 'ENCLB062ZZZ', '2013-09-13T13:31:21.394322-0800'), ('13717', 'ENCLB063ZZZ', '2013-09-13T13:31:22.543146-0800'), ('13718', 'ENCLB064ZZZ', '2013-09-13T13:31:26.615177-0800'), ('14485', 'ENCLB463KOX', '2014-07-30T22:13:29.658606+0000'), ('14486', 'ENCLB941VYE', '2014-07-30T22:13:30.865419+0000'), ('14487', 'ENCLB237OAE', '2014-07-30T22:13:32.006665+0000'), ('14488', 'ENCLB171NYD', '2014-07-30T22:13:32.876751+0000'), ('14495', 'ENCLB719BQO', '2014-07-30T22:13:34.234738+0000'), ('14499', 'ENCLB356IIP', '2014-07-30T22:13:35.356726+0000'), ('14501', 'ENCLB304LFK', '2014-07-30T22:13:36.682522+0000'), ('14626', 'ENCLB766UOB', '2014-07-30T22:13:37.751613+0000'), ('14627', 'ENCLB238LIR', '2014-07-30T22:13:38.488612+0000'), ('14628', 'ENCLB652HKH', '2014-07-30T22:13:39.079002+0000'), ('14629', 'ENCLB181TCJ', '2014-07-30T22:13:39.612566+0000'), ('14630', 'ENCLB669AEL', '2014-07-30T22:13:40.373455+0000'), ('14631', 'ENCLB765HDK', '2014-07-30T22:13:41.017277+0000'), ('14632', 'ENCLB348BMH', '2014-07-30T22:13:41.597441+0000'), ('14633', 'ENCLB791CRT', '2014-07-30T22:13:42.145408+0000'), ('14634', 'ENCLB096HAH', '2014-07-30T22:13:42.871555+0000'), ('14635', 'ENCLB005HHX', '2014-07-30T22:13:43.673544+0000'), ('14636', 'ENCLB185MNU', '2014-07-30T22:13:44.242558+0000'), ('14653', 'ENCLB917PKP', '2014-07-22T21:16:09.466969+0000'), ('14654', 'ENCLB026BHP', '2014-07-22T21:16:36.206892+0000'), ('14655', 'ENCLB449LBZ', '2014-07-22T21:17:23.464962+0000'), ('14656', 'ENCLB905LVV', '2014-07-22T21:18:02.970100+0000'), ('15007', 'ENCLB835LVO', '2014-10-23T21:25:29.431984+0000'), ('15008', 'ENCLB471QMM', '2014-10-23T21:25:30.115849+0000'), ('15009', 'ENCLB659UFY', '2014-10-23T21:25:30.756915+0000'), ('15010', 'ENCLB426JKF', '2014-10-23T21:25:31.349525+0000'), ('15011', 'ENCLB454ZUS', '2014-10-23T21:25:32.065385+0000'), ('15012', 'ENCLB061TDP', '2014-10-23T21:25:32.733245+0000'), ('15013', 'ENCLB331VAA', '2014-10-23T21:25:33.732239+0000'), ('15014', 'ENCLB761PCA', '2014-10-23T21:25:34.879860+0000'), ('15015', 'ENCLB601XLL', '2014-10-23T21:25:35.898934+0000'), ('15016', 'ENCLB347FRI', '2014-10-23T21:25:36.765768+0000'), ('15017', 'ENCLB055KYV', '2014-10-23T21:25:37.604795+0000'), ('15018', 'ENCLB357KYA', '2014-10-23T21:25:38.564710+0000'), ('15019', 'ENCLB495FUZ', '2014-10-23T21:25:39.571864+0000'), ('15020', 'ENCLB979DZW', '2014-10-23T21:25:40.266492+0000'), ('15021', 'ENCLB162EJJ', '2014-10-23T21:25:41.173920+0000'), ('15022', 'ENCLB627LDZ', '2014-10-23T21:25:42.094283+0000'), ('15072', 'ENCLB336GOL', '2014-12-10T23:00:17.177956+0000'), ('15073', 'ENCLB964APA', '2014-12-10T23:00:17.550508+0000'), ('15074', 'ENCLB000EUQ', '2014-12-10T23:00:17.847597+0000'), ('15075', 'ENCLB597GRF', '2014-12-10T23:00:18.331925+0000'), ('15076', 'ENCLB989QNS', '2014-12-10T23:00:18.850689+0000'), ('15077', 'ENCLB567WFL', '2014-12-10T23:00:19.145366+0000'), ('15078', 'ENCLB254AMJ', '2014-12-10T23:00:19.420436+0000'), ('15079', 'ENCLB015WCJ', '2014-12-10T23:00:19.713321+0000'), ('15080', 'ENCLB200EFP', '2014-12-10T23:00:20.013418+0000'), ('15081', 'ENCLB278MMD', '2014-12-10T23:00:20.516203+0000'), ('15082', 'ENCLB819PZM', '2014-12-10T23:00:21.265192+0000'), ('15083', 'ENCLB220DVX', '2014-12-10T23:00:21.537679+0000'), ('15084', 'ENCLB906TKN', '2014-12-10T23:00:21.824807+0000'), ('15085', 'ENCLB949YQN', '2014-12-10T23:00:22.369090+0000'), ('15086', 'ENCLB584VFZ', '2014-12-10T23:00:23.080355+0000'), ('15087', 'ENCLB931ORG', '2014-12-10T23:00:23.626841+0000'), ('15088', 'ENCLB409LKR', '2014-12-10T23:00:24.173237+0000'), ('15089', 'ENCLB595PNG', '2014-12-10T23:00:24.554339+0000'), ('15090', 'ENCLB156EMG', '2014-12-10T23:00:25.382334+0000'), ('15091', 'ENCLB030NEC', '2014-12-10T23:00:26.743561+0000'), ('15092', 'ENCLB377PCX', '2014-12-10T23:00:28.034636+0000'), ('15093', 'ENCLB214UZM', '2014-12-10T23:00:28.526626+0000'), ('15094', 'ENCLB813BQB', '2014-12-10T23:00:29.029220+0000'), ('15095', 'ENCLB949WIO', '2014-12-10T23:00:29.343030+0000'), ('15241', 'ENCLB604HVJ', '2014-12-15T23:31:51.819207+0000'), ('15242', 'ENCLB357UPR', '2014-12-16T01:03:11.301778+0000'), ('15243', 'ENCLB521CXU', '2014-12-16T01:03:12.409916+0000'), ('15244', 'ENCLB969JPS', '2014-12-16T01:03:12.638218+0000'), ('15245', 'ENCLB893OOW', '2014-12-16T01:03:12.851385+0000'), ('15246', 'ENCLB730HDZ', '2014-12-16T01:03:13.532201+0000'), ('15247', 'ENCLB229LFR', '2014-12-16T01:03:13.888442+0000'), ('15248', 'ENCLB700NFV', '2014-12-16T01:03:14.123376+0000'), ('15256', 'ENCLB253LOZ', '2014-12-16T01:15:42.800855+0000'), ('15257', 'ENCLB857GUO', '2014-12-16T01:15:43.062548+0000'), ('15258', 'ENCLB891HIS', '2014-12-16T01:15:44.686534+0000'), ('15259', 'ENCLB587ZYP', '2014-12-16T01:15:45.407813+0000'), ('15260', 'ENCLB183ZSO', '2014-12-16T01:15:46.051548+0000'), ('15261', 'ENCLB809LQF', '2014-12-16T01:15:46.336850+0000'), ('15262', 'ENCLB112DAD', '2014-12-16T01:15:47.111994+0000'), ('15263', 'ENCLB417MEI', '2014-12-16T01:15:47.354094+0000'), ('15264', 'ENCLB035MJZ', '2014-12-16T01:15:47.581360+0000'), ('15265', 'ENCLB663WPK', '2014-12-16T01:15:47.823408+0000'), ('15266', 'ENCLB640QPM', '2014-12-16T01:15:48.094692+0000'), ('15267', 'ENCLB708TZF', '2014-12-16T01:15:48.518860+0000'), ('15268', 'ENCLB678FAD', '2014-12-16T01:15:49.637634+0000'), ('15269', 'ENCLB284YTS', '2014-12-16T01:15:50.317441+0000'), ('15270', 'ENCLB108LLJ', '2014-12-16T01:15:50.793306+0000'), ('15271', 'ENCLB518MNF', '2014-12-16T01:15:51.255098+0000'), ('15288', 'ENCLB435TVJ', '2014-12-16T01:15:53.184310+0000'), ('15289', 'ENCLB337IRK', '2014-12-16T01:15:54.829508+0000'), ('15290', 'ENCLB863GTU', '2014-12-16T01:15:56.220924+0000'), ('15291', 'ENCLB033OYZ', '2014-12-16T01:15:56.821935+0000'), ('15292', 'ENCLB577KCS', '2014-12-16T01:15:57.362521+0000'), ('15293', 'ENCLB950QWJ', '2014-12-16T01:15:58.109787+0000'), ('15294', 'ENCLB219UWV', '2014-12-16T01:15:58.782565+0000'), ('15295', 'ENCLB196QXY', '2014-12-16T01:15:59.455275+0000'), ('15296', 'ENCLB430RUN', '2014-12-16T01:16:00.122073+0000'), ('15297', 'ENCLB384GBY', '2014-12-16T01:16:00.929045+0000'), ('15298', 'ENCLB030QYZ', '2014-12-16T01:16:01.373251+0000'), ('15299', 'ENCLB721WMG', '2014-12-16T01:16:01.597127+0000'), ('15300', 'ENCLB359XUW', '2014-12-16T01:16:01.825260+0000'), ('15301', 'ENCLB807MQE', '2014-12-16T01:16:02.132204+0000'), ('15302', 'ENCLB462UWC', '2014-12-16T01:16:03.048372+0000'), ('15303', 'ENCLB296VEF', '2014-12-16T01:16:03.815641+0000'), ('15475', 'ENCLB266LCY', '2015-03-27T22:01:32.864613+0000'), ('15476', 'ENCLB055JUC', '2015-03-27T22:01:33.316038+0000'), ('15477', 'ENCLB080NNG', '2015-03-27T22:01:33.809928+0000'), ('15478', 'ENCLB180OTB', '2015-03-27T22:01:34.281900+0000'), ('15479', 'ENCLB274VUA', '2015-03-27T22:01:34.760956+0000'), ('15480', 'ENCLB441AFS', '2015-03-27T22:01:35.242213+0000'), ('15481', 'ENCLB790ZKD', '2015-03-27T22:01:35.693423+0000'), ('15482', 'ENCLB319NLX', '2015-03-27T22:01:36.114223+0000'), ('15483', 'ENCLB074REG', '2015-03-27T22:01:36.679913+0000'), ('15484', 'ENCLB415KPR', '2015-03-27T22:01:37.266549+0000'), ('15485', 'ENCLB658ICO', '2015-03-27T22:01:37.835601+0000'), ('15486', 'ENCLB741KQB', '2015-03-27T22:01:38.396352+0000'), ('15487', 'ENCLB810TRL', '2015-03-27T22:01:38.910449+0000'), ('15488', 'ENCLB544VIE', '2015-03-27T22:01:39.534590+0000'), ('15489', 'ENCLB370ZFK', '2015-03-27T22:01:40.115768+0000'), ('15490', 'ENCLB273BPC', '2015-03-27T22:01:40.746450+0000'), ('15491', 'ENCLB847UDV', '2015-03-27T22:01:41.366532+0000'), ('15492', 'ENCLB704CYQ', '2015-03-27T22:01:41.934480+0000'), ('15493', 'ENCLB318WHF', '2015-03-27T22:01:42.583021+0000'), ('15494', 'ENCLB590UZK', '2015-03-27T22:01:43.220918+0000'), ('15495', 'ENCLB260QNG', '2015-03-27T22:01:43.823840+0000'), ('15496', 'ENCLB817LXB', '2015-03-27T22:01:44.356874+0000'), ('15497', 'ENCLB169SNA', '2015-03-27T22:01:44.903888+0000'), ('15498', 'ENCLB459OYG', '2015-03-27T22:01:45.457150+0000'), ('15499', 'ENCLB217DSV', '2015-03-27T22:01:46.051760+0000'), ('15500', 'ENCLB159SLV', '2015-03-27T22:01:46.609807+0000'), ('15501', 'ENCLB022VFG', '2015-03-27T22:01:47.188586+0000'), ('15502', 'ENCLB416HZP', '2015-03-27T22:01:47.742894+0000'), ('15503', 'ENCLB556YSG', '2015-03-27T22:01:48.360245+0000'), ('15504', 'ENCLB803HJK', '2015-03-27T22:01:48.918921+0000'), ('SL2970', 'ENCLB871LCB', '2013-12-31T01:24:29.617351+0000'), ('SL2971', 'ENCLB503AOQ', '2013-12-31T01:24:29.290708+0000'), ] encode = AccessionAgency.objects.get(name="ENCODE3") for jumpgate_id, accession, created in data: jumpgate_id = { 'SL2970': '02970', 'SL2971': '02971', 'SL2972': '02972', }.get(jumpgate_id, jumpgate_id) jumpgate = Library.objects.get(pk=jumpgate_id) date_created = datetime.strptime(created, '%Y-%m-%dT%H:%M:%S.%f%z') o = LibraryAccession(agency=encode, library=jumpgate, accession=accession, created=date_created,) o.save() def main(): print('loading encode3 accessions') load_encode3_accessions() if __name__ == '__main__': main()
1.890625
2
physionet-django/user/management/commands/loaddemo.py
T-CAIREM/physionet-build
0
12775124
""" Command to: - load all fixtures named 'demo-*.*' - create copy the demo media files This should only be called in a clean database, such as after `resetdb` is run. This should generally only be used in development environments. """ import os import shutil from django.conf import settings from django.core.management import call_command from django.core.management.base import BaseCommand from physionet.utility import get_project_apps from lightwave.views import DBCAL_FILE, ORIGINAL_DBCAL_FILE class Command(BaseCommand): def handle(self, *args, **options): # If not in development, prompt warning messages twice if 'development' not in os.environ['DJANGO_SETTINGS_MODULE']: warning_messages = ['You are NOT in the development environment. Are you sure you want to insert demo data? [y/n]', 'The demo data will be mixed with existing data. Are you sure? [y/n]', 'Final warning. Are you ABSOLUTELY SURE? [y/n]'] for i in range(3): choice = input(warning_messages[i]).lower() if choice != 'y': sys.exit('Exiting from load. No actions applied.') print('Continuing loading demo data') # Load licences and software languages site_data_fixtures = os.path.join(settings.BASE_DIR, 'project', 'fixtures', 'site-data.json') call_command('loaddata', site_data_fixtures, verbosity=1) # Load fixtures for default project types project_types_fixtures = os.path.join(settings.BASE_DIR, 'project', 'fixtures', 'project-types.json') call_command('loaddata', project_types_fixtures, verbosity=1) # Load fixtures for default sites site_fixtures = os.path.join(settings.BASE_DIR, 'physionet', 'fixtures', 'sites.json') call_command('loaddata', site_fixtures, verbosity=1) # Load other app fixtures project_apps = get_project_apps() demo_fixtures = find_demo_fixtures(project_apps) call_command('loaddata', *demo_fixtures, verbosity=1) # Copy the demo media and static content copy_demo_media() copy_demo_static() print('Copied demo media and static files.') # Make symlink of wfdbcal for lightwave if os.path.exists(ORIGINAL_DBCAL_FILE): os.symlink(ORIGINAL_DBCAL_FILE, DBCAL_FILE) def find_demo_fixtures(project_apps): """ Find non-empty demo fixtures """ demo_fixtures = [] for app in project_apps: fixture = 'demo-{}'.format(app) file_name = os.path.join(settings.BASE_DIR, app, 'fixtures', '{}.json'.format(fixture)) if os.path.exists(file_name) and open(file_name).read(4) != '[\n]\n': demo_fixtures.append(fixture) return demo_fixtures def copy_demo_media(): """ Copy the demo media files into the media root. Copy all items from within the immediate subfolders of the demo media root. """ demo_media_root = os.path.join(settings.DEMO_FILE_ROOT, 'media') for subdir in os.listdir(demo_media_root): demo_subdir = os.path.join(demo_media_root, subdir) target_subdir = os.path.join(settings.MEDIA_ROOT, subdir) for item in [i for i in os.listdir(demo_subdir) if i != '.gitkeep']: shutil.copytree(os.path.join(demo_subdir, item), os.path.join(target_subdir, item)) # Published project files should have been made read-only at # the time of publication ppdir = os.path.join(settings.MEDIA_ROOT, 'published-projects') for dirpath, subdirs, files in os.walk(ppdir): if dirpath != ppdir: for f in files: os.chmod(os.path.join(dirpath, f), 0o444) for d in subdirs: os.chmod(os.path.join(dirpath, d), 0o555) def copy_demo_static(): """ Copy the demo static files into the effective static root. """ demo_static_root = os.path.join(settings.DEMO_FILE_ROOT, 'static') # Either the actual static root if defined, or the staticfiles_dirs effective_static_root = settings.STATIC_ROOT if settings.STATIC_ROOT else settings.STATICFILES_DIRS[0] for subdir in os.listdir(demo_static_root): demo_subdir = os.path.join(demo_static_root, subdir) target_subdir = os.path.join(effective_static_root, subdir) for item in [i for i in os.listdir(demo_subdir) if i != '.gitkeep']: shutil.copytree(os.path.join(demo_subdir, item), os.path.join(target_subdir, item)) # Published project files should have been made read-only at # the time of publication ppdir = os.path.join(effective_static_root, 'published-projects') for dirpath, subdirs, files in os.walk(ppdir): if dirpath != ppdir: for f in files: os.chmod(os.path.join(dirpath, f), 0o444) for d in subdirs: os.chmod(os.path.join(dirpath, d), 0o555)
2.21875
2
common/replace-placeholders.py
dutradda/devtools
1
12775125
#!/usr/bin/env python3 import argparse import re def main(args): with open(args.source) as file: content = file.read() for pattern, filename in re.findall(r'(\{!(.*)!\})', content): with open(filename) as file: match_content = file.read() dest_content = re.sub(pattern, match_content, content) with open(args.dest, mode='w') as file: file.write(dest_content) with open(args.dest) as file: content = file.read() if __name__ == '__main__': parser = argparse.ArgumentParser( description="Replace placeholders with it's file contents" ) parser.add_argument( 'source', metavar='SOURCE', type=str, help='File to parse' ) parser.add_argument( 'dest', metavar='DEST', type=str, help='destination file' ) args = parser.parse_args() main(args)
3.328125
3
python/codingame/practice/community/the_greatest_number_python2.py
TGITS/programming-workouts
0
12775126
import sys import math # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. # Write an action using print # To debug: print >> sys.stderr, "Debug messages..." n = int(raw_input()) dot = False minus = False numbers = [] characters = raw_input() print >> sys.stderr, "characters : {}".format(characters) for c in characters.split(' '): if c == '.': #Est-ce que le caractere lu est un '.' dot = True elif c == '-': #Is this a - minus sign minus = True else : #Is this a number numbers.append(int(c)) print >> sys.stderr, "numbers : {}".format(",".join(map(str,numbers))) greatest = "" number_of_zeros=numbers.count(0) print >> sys.stderr, "number_of_zeros : {}".format(number_of_zeros) if number_of_zeros == len(numbers): greatest = "0" else : if minus: # On cherche a faire le nombre le plus petit possible en valeur absolue numbers.sort() greatest += '-' del numbers[0:number_of_zeros] if number_of_zeros > 0 and dot: greatest += '0' number_of_zeros -= 1 else: greatest += str(numbers[0]) del numbers[0:1] if dot: greatest += '.' if number_of_zeros > 0: greatest += '0' * number_of_zeros for n in numbers: greatest += str(n) else: #On cherche a faire le nombre le plus grand possible numbers.sort(reverse=True) if number_of_zeros > 0: del numbers[-number_of_zeros:] #qu'il y ait un '.' ou pas, s'il y des zeros, on fait un nombre sans partie decimale for i in range(len(numbers)): greatest += str(numbers[i]) if dot: if number_of_zeros > 1: greatest += '0' * (number_of_zeros - 1) else: greatest += '0' * number_of_zeros print >> sys.stderr, "greatest : {}".format(greatest) else: if dot: for i in range(len(numbers)-1): greatest += str(numbers[i]) greatest += '.' + str(numbers[len(numbers)-1]) print >> sys.stderr, "greatest : {}".format(greatest) else: for i in range(len(numbers)): greatest += str(numbers[i]) print >> sys.stderr, "greatest : {}".format(greatest) print(greatest)
3.796875
4
tests/testapp/urls.py
niteshsinha17/openwisp-users
0
12775127
from django.urls import path from . import views urlpatterns = [ path('member_view', views.api_member_view, name='test_api_member_view'), path('manager_view', views.api_manager_view, name='test_api_manager_view'), path('owner_view', views.api_owner_view, name='test_api_owner_view'), path('base_org_view', views.base_org_view, name='test_base_org_permission_view'), path('org_field_view', views.org_field_view, name='test_organization_field_view'), path('error_field_view', views.error_field_view, name='test_error_field_view'), ]
1.71875
2
predict_helper.py
Emad2018/aipnd-project
0
12775128
import time import numpy as np import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets, models from collections import OrderedDict from PIL import Image import matplotlib.pyplot as plt import json import argparse def load_checkpoint(checkpoint_path, model): checkpoint = torch.load(checkpoint_path) if(model == "vgg"): nhu = checkpoint['nhu'] model = models.vgg11(pretrained=True) for param in model.parameters(): param.requires_grad = False classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(25088, nhu)), ('relu', nn.ReLU()), ('fc2', nn.Linear(nhu, 102)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] elif(model == "densenet"): nhu = checkpoint['nhu'] model = models.densenet121(pretrained=True) for param in model.parameters(): param.requires_grad = False classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(1024, nhu)), ('relu', nn.ReLU()), ('fc2', nn.Linear(nhu, 102)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier model.load_state_dict(checkpoint['state_dict']) model.class_to_idx = checkpoint['class_to_idx'] return model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' pil_image = Image.open(image) pil_image = pil_image.resize((256, 256)) width, height = pil_image.size # Get dimensions left = (width - 224)/2 top = (height - 224)/2 right = (width + 224)/2 bottom = (height + 224)/2 pil_image = pil_image.crop((left, top, right, bottom)) pil_image = pil_image.convert('RGB') np_image = np.array(pil_image)/255 mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) np_image = (np_image-mean)/std np_image = np_image.transpose((2, 0, 1)) return torch.from_numpy(np_image) def predict(image_path, model, device="cpu", topk=5): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' print(device) output_image = process_image(image_path).to(device) image = torch.zeros([64, 3, 224, 224], dtype=torch.float64).to(device) image += output_image.to(device) model.to(device) model.eval() torch.no_grad() logps = model.forward(image.float()) ps = torch.exp(logps) probability, index = torch.topk(ps, topk, dim=1) return probability.to(device), index.to(device) def get_input_args(): """ Retrieves and parses the 3 command line arguments provided by the user when they run the program from a terminal window. This function uses Python's argparse module to created and defined these 3 command line arguments. If the user fails to provide some or all of the 3 arguments, then the default values are used for the missing arguments. Command Line Arguments: 1. Image Folder as --dir with default value 'flowers' 2. CNN Model Architecture as --arch with default value 'vgg' 3. GPU as --GPU with default value 'cpu' This function returns these arguments as an ArgumentParser object. Parameters: None - simply using argparse module to create & store command line arguments Returns: parse_args() -data structure that stores the command line arguments object """ # Replace None with parser.parse_args() parsed argument collection that # you created with this function # Creates Argument Parser object named parser parser = argparse.ArgumentParser() # Argument 1: that's a path to a folder parser.add_argument('input', type=str, help='path to the image') parser.add_argument('ckpdir', type=str, help='path to the folder of check point') parser.add_argument('--arch', type=str, default='vgg', help='The Network architecture') parser.add_argument('--gpu', type=bool, default=False, help='gpu enable') parser.add_argument('--topk', type=float, default=5, help='topk') parser.add_argument('--category_names', type=str, default='cat_to_name.json', help='directory of jason file') # Assigns variable in_args to parse_args() in_args = parser.parse_args() return in_args
2.453125
2
main.py
larabetul/blm2010
0
12775129
# Ad Soyad: <NAME> No: 180401041 #import numpy.matlib #Matrislerde kullanılabilir from matrix_operations import matrix_transpose # gerekli matris işlemleri için fonksiyonların dahil edilmesi. # D=A^T --> D= np.transpose(A) --> transpose kullanımı from matrix_operations import matrix_multiplication # C=AxB(AB=C) --> C=np.dot(A,B) --> matrislerde çarpma işlemi from matrix_operations import matrix_inverse # D=A^-1 --> D= np.linalg.inv --> matrisin tersinin alınması için.. from copy import copy #ilk veriyi kaybetmeden kopyası üzerinde işlem yapmak için kullanılır.. from __init__ import __data_file__ #veri girişi için kullandım , init=initialization(başlatma) ile daha kolay bir görünüm elde ettik.. from __init__ import __output_file__ #veri çıkışı için kullandım import numpy as np # numpy artık np değişkeniyle ifade ediliyor.. import sys #dir(sys) sys.argv komutu, programın ismi ile birlikte, bu programa parametre olarak verilen değerleri de bir liste halinde saklıyor. import os #gerek yok silinebilir # import sys sayesinde %d,%s gibi C diline ait göstergelerle sayısal ifadelerimiz daha da kolaylaştı ''' sys kullanımı ....--> en aşağıda arguments=sys.argv.. def çık(): print('Çıkılıyor...') sys.exit() # programı kapanmaya zorlamak için kullanılabilir. if len(sys.argv) < 2: #eğer parametre veya verilerde istenilenden fazlası veya azı varsa kullanılabilir print('Gerekli parametreleri girmediniz!') çık() elif len(sys.argv) > 2: #sys.argv kullandığım parametreleri liste halinde tutar print('Çok fazla parametre girdiniz!') çık() elif sys.argv[1] in ['-v', '-V']: print('Program sürümü: 0.8') else: mesaj = 'Girdiğiniz parametre ({}) anlaşılamadı!' print(mesaj.format(sys.argv[1])) çık() ---> BU ŞEKİLDE YETERLİ DEĞİL DETAYLANMASI LAZIM.. ''' ''' class BColors: ENDC = '\033[0m'-->kullanılır BOLD = '\033[1m'-->?? UNDERLINE = '\033[4m'-->?? INACTIVE = '\033[90m' FAIL = '\033[91m'-->kullanılır OKGREEN = '\033[92m' WARNING = '\033[93m'-->kullanılır OKBLUE = '\033[94m' HEADER = '\033[95m' COMMENT = '\033[96m' BLOCK = '\033[97m' CODE = '\033[98m' ''' class term_renkleri: WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' #BOLD = '\033[1m' #UNDERLINE = '\033[4m' #COMMENT = '\033[96m' class process:#süreç def __init__(self, veri_içerik: list): # init yapıcı(constructor) fonksiyondur , self parametresi zorunludur. """ Bu sınıf tüm ana işlemleri yürütür : param veri_içerik: Bir veri listesi """ self.veri_ = veri_içerik self.first_var = 0 #ilk varyasyon = 0 , başlangıc self.last_var = len(self.veri_) #son varyasyon =len(self.veri) self.grade_regression_result = None # regresyon iki ya da daha fazla değişken arasındaki değişimleri ölçmeye yarar.(Grafikler ile görselleşmesi sonucunda da anlaşılırlığı yükselir.) self.results = list() #sonuçları listeye atacağız aşağıdaki işlemlerle self.error_results = list() #hata sonuçları için yine bir boş liste kullanımı yapıldı.(for error results..) def set_data_range(self, first=0, last=0, all_=False): """ Regresyon için veri aralığını ayarlama : param first: Verilerin ilk dizini : param last: Son dizin veri verileri : param all_: Tüm verileri seç : dönüş: Yok(None) """ if all_:#if dene self.first_var = 0 self.last_var = len(self.veri_) else: self.first_var = first #ilk varyasyon ilk son v.. son self.last_var = last print( term_renkleri.WARNING + "Veri aralığının %d dan %d a kadar ayarlanması!" % (self.first_var, self.last_var) + term_renkleri.ENDC) # veri aralığının 0 dan 59 a ayarlaması gibi def regression_for_grade(self, derece=0, no_print=False):#sınıf için regresyon # çözüme(solution) ulaşmam için : # X * çözümler = Y # çözümler = (X_t * X)^-1 * X_t * Y solution_matrix = np.zeros(shape=(derece + 1, 1), dtype=float)#çözelti matrix x_matrix = np.zeros(shape=((self.last_var - self.first_var), derece + 1), dtype=float) y_matrix = np.zeros(shape=((self.last_var - self.first_var), 1), dtype=float) # Prepair matrixs matris hazırlanışı y_index = 0 for i in range(0, (self.last_var - self.first_var)): for j in range(0, x_matrix.shape[1]): x_matrix[i][j] = pow(float(self.veri_[i + self.first_var]), j) y_matrix[i][0] = float(y_index) y_index += 1 x_trans_matrix = matrix_transpose(x_matrix) #transpozunun alınması multi_matrix = matrix_multiplication(x_trans_matrix, x_matrix)#matris ile transpozunun alınması tersini alma işlemi inversed_matrix = matrix_inverse(multi_matrix)#matrisin tersinin alınması multi_two_matrix = matrix_multiplication(x_trans_matrix, y_matrix) multi_three_matrix = matrix_multiplication(inversed_matrix, multi_two_matrix) solution_matrix = multi_three_matrix self.grade_regression_result = copy(solution_matrix) self.results.append(self.grade_regression_result) #regresyon sonuçları listemize atıldı.. 1 to_printed = "" to_printed += str(derece) + ". derece regresyon sonuçlarım : \n" to_printed += str(self.grade_regression_result[0]) for i in range(1, derece + 1): to_printed += " + " + str(self.grade_regression_result[i]) + "X" to_printed += "^^" + str(i) to_printed += " = Y" if not no_print: print(to_printed) def calculate_most_usefull(self): #en yararlı olanı hesapla for i in range(len(self.results)): avarage = 0.0 y_index = 0 for x_data in self.veri_: X = float(x_data) Y = y_index y_index += 1 total = 0.0 for j in self.results[i]: total += float(j) * pow(X, j) E = total - Y avarage += E avarage /= len(self.veri_) self.error_results.append(avarage) for i in range(len(self.error_results)): if self.error_results[i] < 0: self.error_results[i] *= -1 the_lowest_error = self.error_results[0] the_lowest_error_index = 0 for i in range(len(self.error_results)): if self.error_results[i] < the_lowest_error: the_lowest_error = self.error_results[i] the_lowest_error_index = i print("Polinom bölgesindeki en düşük hata (aralıklar karşılaştırıldı): %d .derece regresyon ile E=%s" % ((the_lowest_error_index + 1), the_lowest_error)) def veri_uzunluk(self): #verileri almak için fonksiyon return len(self.veri_) def kill_vars(self): #ölüm varyasyonu self.grade_regression_result = None self.results = list() self.error_results = list() def write_to_file(self, the_dir): #dosyaya yazma işlemi with open(the_dir + "/%s" % __output_file__, "w") as fh: to_printed = "" for i in range(len(self.results)): to_printed += str(i + 1) + " Reggression\t" for j in range(len(self.results[i])): to_printed += str(self.results[i][j]) + "X^^" + str(j) + "\t" to_printed += "\n" fh.write(to_printed) print(term_renkleri.WARNING + "%s file generated!" % __output_file__ + term_renkleri.ENDC) def main(): if arguman: # argüman(args)=sys.argv ataması ile ana listede parametre tutmayı tercih ettim. print(term_renkleri.WARNING + "Argüman işleyici yok!" + term_renkleri.ENDC) # Aslında buna gerek yok ,çünkü dosyam zaten var yeni_veri = None working_directory = os.getcwd() try: #try exception yapısı bak, hata mesajı vermek için with open(working_directory + "/%s" % __data_file__, "r") as fh: string_format = fh.read() a = string_format.splitlines() # If last line of file is not /n son dosya satırı değilse for i in range(len(a)): if a[i] == "": a.pop(len(a)-1) yeni_veri = copy(a) #copy ile ana liste elemanları korundu.. except FileNotFoundError: #dosya bulunamadı hatası buna da gerek yok aslında raise Exception("Dosya bulunamadı! %s file" % __data_file__) if not yeni_veri: #dosya var ama veri yoksa verilecek mesaj raise Exception("Dosya bulundu ancak okuma başarısız oldu. ") print(term_renkleri.WARNING + "Dosya açıldı ve başarıyla okundu" + term_renkleri.ENDC) #başarılı dosyaaçılması ve veriokunması durumu print(term_renkleri.WARNING + "İlk soru başlangıç:" + term_renkleri.ENDC) new_process = process(yeni_veri) new_process.set_data_range(all_=True) new_process.regression_for_grade(derece=1) new_process.regression_for_grade(derece=2) new_process.regression_for_grade(derece=3) new_process.regression_for_grade(derece=4) new_process.regression_for_grade(derece=5) new_process.regression_for_grade(derece=6) #new_process.regressionn_for_grade(grade=7) new_process.write_to_file(working_directory) print(term_renkleri.WARNING + "İLK SORUNUN BAŞARIYLA SONLANMASI. \t" + term_renkleri.ENDC)#ilk soru bitti ikinci soru işleniyor print(term_renkleri.WARNING + "Burası ikincinin başlangıc noktası:" + term_renkleri.ENDC) new_process.calculate_most_usefull() print(term_renkleri.WARNING + "İKİNCİ SORUNUN BAŞARILA SONLANMASI. \t" + term_renkleri.ENDC)#ikinci soru bitti üçüncü soru işleniyor print(term_renkleri.WARNING + "Burası üçüncünün başlangıç noktası :" + term_renkleri.ENDC) print(term_renkleri.FAIL + "Taşma durumuna dikkat edilmeli !!" + term_renkleri.ENDC)# taşmaya dikkat et for i in range(int(new_process.veri_uzunluk() / 10) + 1): first = i * 10 last = i * 10 + 10 #last > first if i >= int(new_process.veri_uzunluk() / 10): last = new_process.veri_uzunluk() new_process.kill_vars() new_process.set_data_range(first, last)# ilk ,son karşılaştırma için olabilir?? new_process.regression_for_grade(derece=1, no_print=True) new_process.regression_for_grade(derece=2, no_print=True) new_process.regression_for_grade(derece=3, no_print=True) new_process.regression_for_grade(derece=4, no_print=True) new_process.regression_for_grade(derece=5, no_print=True) new_process.regression_for_grade(derece=6, no_print=True) new_process.calculate_most_usefull() if __name__ == '__main__': arguman = sys.argv[1:] main()
2.71875
3
codeforce_round_647/johnnt_and_ancient_computer.py
NamanMathur77/programming_questions
0
12775130
def ifPossible(a): while a%2==0: a/=2 return a test=int(input()) while test: a,b = input().split() a=int(a) b=int(b) if a>b: n=b b=a a=n num=ifPossible(b) ans=0 if num!=ifPossible(a): print("-1") else: b/=a while b>=8: b/=8 ans+=1 if b>1: ans+=1 print(ans) test-=1
3.578125
4
migen/fomu.py
Freax13/fomu-workshop
127
12775131
<filename>migen/fomu.py """ Fomu board definitions (mapping of I/O pins, clock, etc.) """ from migen import * from migen.build.generic_platform import * from migen.build.lattice import LatticePlatform class FomuPvtPlatform(LatticePlatform): """ Based on https://github.com/litex-hub/litex-boards/blob/master/litex_boards/partner/platforms/fomu_pvt.py """ _io = [ ('clk48', 0, Pins('F4'), IOStandard('LVCMOS33')), ('user_led_n', 0, Pins('A5'), IOStandard('LVCMOS33')), ('rgb_led', 0, Subsignal('r', Pins('C5')), Subsignal('g', Pins('B5')), Subsignal('b', Pins('A5')), IOStandard('LVCMOS33')), ('user_touch_n', 0, Pins('E4'), IOStandard('LVCMOS33')), ('user_touch_n', 1, Pins('D5'), IOStandard('LVCMOS33')), ('user_touch_n', 2, Pins('E5'), IOStandard('LVCMOS33')), ('user_touch_n', 3, Pins('F5'), IOStandard('LVCMOS33')), ('usb', 0, Subsignal('d_p', Pins('A1')), Subsignal('d_n', Pins('A2')), Subsignal('pullup', Pins('A4')), IOStandard('LVCMOS33')) ] _connectors = [ ('touch_pins', 'E4 D5 E5 F5') ] default_clk_name = 'clk48' default_clk_period = 1e9 / 48e6 def __init__(self): LatticePlatform.__init__(self, 'ice40-up5k-uwg30', self._io, self._connectors, toolchain='icestorm') def create_programmer(self): return IceStormProgrammer() class FomuHackerPlatform(LatticePlatform): """ Based on https://github.com/litex-hub/litex-boards/blob/master/litex_boards/partner/platforms/fomu_hacker.py """ _io = [ ('clk48', 0, Pins('F5'), IOStandard('LVCMOS33')), ('user_led_n', 0, Pins('A5'), IOStandard('LVCMOS33')), ('rgb_led', 0, Subsignal('r', Pins('C5')), Subsignal('g', Pins('B5')), Subsignal('b', Pins('A5')), IOStandard('LVCMOS33')), ('user_touch_n', 0, Pins('F4'), IOStandard('LVCMOS33')), ('user_touch_n', 1, Pins('E5'), IOStandard('LVCMOS33')), ('user_touch_n', 2, Pins('E4'), IOStandard('LVCMOS33')), ('user_touch_n', 3, Pins('F2'), IOStandard('LVCMOS33')), ('usb', 0, Subsignal('d_p', Pins('A4')), Subsignal('d_n', Pins('A2')), Subsignal('pullup', Pins('D5')), IOStandard('LVCMOS33')) ] _connectors = [ ('touch_pins', 'F4 E5 E4 F2') ] default_clk_name = 'clk48' default_clk_period = 1e9 / 48e6 def __init__(self): LatticePlatform.__init__(self, 'ice40-up5k-uwg30', self._io, self._connectors, toolchain='icestorm') def create_programmer(self): return IceStormProgrammer() class FomuEvt2Platform(LatticePlatform): """ Based on https://github.com/litex-hub/litex-boards/blob/master/litex_boards/partner/platforms/fomu_evt.py """ _io = [ ('clk48', 0, Pins('44'), IOStandard('LVCMOS33')), ('user_led_n', 0, Pins('41'), IOStandard('LVCMOS33')), ('rgb_led', 0, Subsignal('r', Pins('40')), Subsignal('g', Pins('39')), Subsignal('b', Pins('41')), IOStandard('LVCMOS33')), ('user_touch_n', 0, Pins('48'), IOStandard('LVCMOS33')), ('user_touch_n', 1, Pins('47'), IOStandard('LVCMOS33')), ('user_touch_n', 2, Pins('46'), IOStandard('LVCMOS33')), ('user_touch_n', 3, Pins('45'), IOStandard('LVCMOS33')), ('usb', 0, Subsignal('d_p', Pins('34')), Subsignal('d_n', Pins('37')), Subsignal('pullup', Pins('35')), Subsignal('pulldown', Pins('36')), IOStandard('LVCMOS33')) ] _connectors = [ ('touch_pins', '48 47 46 45') ] default_clk_name = 'clk48' default_clk_period = 1e9 / 48e6 def __init__(self): LatticePlatform.__init__(self, 'ice40-up5k-sg48', self._io, self._connectors, toolchain='icestorm') def create_programmer(self): return IceStormProgrammer() FomuEvt3Platform = FomuEvt2Platform
2.09375
2
htdocs/plotting/auto/scripts100/p141.py
trentford/iem
0
12775132
"""yieldfx plot""" import calendar from collections import OrderedDict import datetime import pandas as pd from pyiem.meteorology import gdd from pyiem.plot.use_agg import plt from pyiem.datatypes import temperature, distance from pyiem.util import get_autoplot_context STATIONS = OrderedDict([ ('ames', 'Central (Ames)'), ('cobs', 'Central (COBS)'), ('crawfordsville', 'Southeast (Crawfordsville)'), ('kanawha', 'Northern (Kanawha)'), ('lewis', 'Southwest (Lewis)'), ('mcnay', 'Southern (Chariton/McNay)'), ('muscatine', 'Southeast (Muscatine)'), ('nashua', 'Northeast (Nashua)'), ('sutherland', 'Northwest (Sutherland)')]) PLOTS = OrderedDict([ ('gdd', 'Growing Degree Days [F]'), ('rain', 'Precipitation [in]'), ('maxt', 'Daily Maximum Temperature [F]'), ('mint', 'Daily Minimum Temperature [F]'), ]) def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc['data'] = True desc['description'] = """ """ desc['arguments'] = [ dict(type='select', name='location', default='ames', label='Select Location:', options=STATIONS), dict(type='select', name='ptype', default='gdd', label='Select Plot Type:', options=PLOTS), dict(type='text', name='sdate', default='mar15', label='Start Date:') ] return desc def load(dirname, location, sdate): """ Read a file please """ data = [] idx = [] mindoy = int(sdate.strftime("%j")) for line in open("%s/%s.met" % (dirname, location)): line = line.strip() if not line.startswith('19') and not line.startswith('20'): continue tokens = line.split() if int(tokens[1]) < mindoy: continue data.append(tokens) ts = (datetime.date(int(tokens[0]), 1, 1) + datetime.timedelta(days=int(tokens[1])-1)) idx.append(ts) if len(data[0]) < 10: cols = ['year', 'doy', 'radn', 'maxt', 'mint', 'rain'] else: cols = ['year', 'doy', 'radn', 'maxt', 'mint', 'rain', 'gdd', 'st4', 'st12', 'st24', 'st50', 'sm12', 'sm24', 'sm50'] df = pd.DataFrame(data, index=idx, columns=cols) for col in cols: df[col] = pd.to_numeric(df[col], errors='coerce') if len(data[0]) < 10: df['gdd'] = gdd(temperature(df['maxt'].values, 'C'), temperature(df['mint'].values, 'C')) df['gddcum'] = df.groupby(['year'])['gdd'].apply(lambda x: x.cumsum()) df['raincum'] = distance( df.groupby(['year'])['rain'].apply(lambda x: x.cumsum()), 'MM').value('IN') return df def plotter(fdict): """ Go """ ctx = get_autoplot_context(fdict, get_description()) location = ctx['location'] ptype = ctx['ptype'] sdate = datetime.datetime.strptime(ctx['sdate'], '%b%d') df = load("/mesonet/share/pickup/yieldfx", location, sdate) cdf = load("/opt/iem/scripts/yieldfx/baseline", location, sdate) today = datetime.date.today() thisyear = df[df['year'] == today.year].copy() thisyear.reset_index(inplace=True) thisyear.set_index('doy', inplace=True) # Drop extra day from cdf during non-leap year if today.year % 4 != 0: cdf = cdf[cdf['doy'] < 366] df = df[df['doy'] < 366] # Create a specialized result dataframe for CSV, Excel output options resdf = pd.DataFrame(index=thisyear.index) resdf.index.name = 'date' resdf['doy'] = thisyear.index.values resdf.reset_index(inplace=True) resdf.set_index('doy', inplace=True) # write current year data back to resdf for _v, _u in zip(['gddcum', 'raincum'], ['F', 'in']): resdf["%s[%s]" % (_v, _u)] = thisyear[_v] for _v in ['mint', 'maxt']: resdf["%s[F]" % (_v)] = temperature(thisyear[_v].values, 'C').value('F') resdf['rain[in]'] = distance(thisyear['rain'], 'MM').value('IN') for _ptype, unit in zip(['gdd', 'rain'], ['F', 'in']): resdf[_ptype+'cum_climo[%s]' % (unit, ) ] = cdf.groupby('doy')[_ptype+'cum'].mean() resdf[_ptype+'cum_min[%s]' % (unit, ) ] = df.groupby('doy')[_ptype+'cum'].min() resdf[_ptype+'cum_max[%s]' % (unit, ) ] = df.groupby('doy')[_ptype+'cum'].max() for _ptype in ['maxt', 'mint']: resdf[_ptype+'_climo[F]'] = temperature( cdf.groupby('doy')[_ptype].mean().values, 'C').value('F') resdf[_ptype+'_min[F]'] = temperature( df.groupby('doy')[_ptype].min().values, 'C').value('F') resdf[_ptype+'_max[F]'] = temperature( df.groupby('doy')[_ptype].max().values, 'C').value('F') (fig, ax) = plt.subplots(1, 1, figsize=(8, 6)) if ptype in ['gdd', 'rain']: ax.plot(thisyear.index.values, thisyear[ptype+'cum'], zorder=4, color='b', lw=2, label='%s Obs + CFS Forecast' % (today.year,)) climo = cdf.groupby('doy')[ptype+'cum'].mean() ax.plot(climo.index.values, climo.values, lw=2, color='k', label="Climatology", zorder=3) xrng = df.groupby('doy')[ptype+'cum'].max() nrng = df.groupby('doy')[ptype+'cum'].min() ax.fill_between(xrng.index.values, nrng.values, xrng.values, color='tan', label="Range", zorder=2) else: ax.plot(thisyear.index.values, temperature(thisyear[ptype], 'C').value('F'), zorder=4, color='b', lw=2, label='%s Obs + CFS Forecast' % (today.year,)) climo = cdf.groupby('doy')[ptype].mean() ax.plot(climo.index.values, temperature(climo.values, 'C').value('F'), lw=2, color='k', label='Climatology', zorder=3) xrng = df.groupby('doy')[ptype].max() nrng = df.groupby('doy')[ptype].min() ax.fill_between(xrng.index.values, temperature(nrng.values, 'C').value('F'), temperature(xrng.values, 'C').value('F'), color='tan', label="Range", zorder=2) ax.set_title("%s %s" % (STATIONS[location], PLOTS[ptype])) ax.set_ylabel(PLOTS[ptype]) ax.legend(loc=(0.03, -0.16), ncol=3, fontsize=12) ax.set_xticks((1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 365)) ax.set_xticklabels(calendar.month_abbr[1:]) ax.grid(True) ax.set_xlim(int(sdate.strftime("%j")), int(datetime.date(today.year, 12, 1).strftime("%j"))) pos = ax.get_position() ax.set_position([pos.x0, pos.y0 + 0.05, pos.width, pos.height * 0.95]) return fig, resdf if __name__ == '__main__': plotter(dict())
2.75
3
0x0B-python-input_output/13-student.py
johncoleman83/bootcampschool-higher_level_programming
0
12775133
#!/usr/bin/python3 class Student(): """Student class with name and age""" def __init__(self, first_name, last_name, age): """initializes new instance of Student""" self.first_name = first_name self.last_name = last_name self.age = age def to_json(self, attrs=None): """returns dict attributes of Student""" if attrs is None: obj_dict = self.__dict__ return obj_dict else: o_D = self.__dict__ D = dict(([k, v] for k, v in o_D.items() if k in attrs)) return D def reload_from_json(self, json): """reloads Student instance from input dictionary""" for k, v in json.items(): setattr(self, k, v)
3.859375
4
TML/src/utils/load_data.py
Pepijnnn/MasterThesis
0
12775134
<gh_stars>0 import numpy as np import sklearn.datasets as datasets from sklearn.model_selection import train_test_split from sklearn import preprocessing import string from scipy.io import arff import cv2 import torch from torchvision import transforms from torch.utils.data import DataLoader, Dataset, TensorDataset import pandas as pd from sklearn.utils import Bunch from .args import args from PIL import ImageFont, ImageDraw, Image # temp from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.metrics import hamming_loss, average_precision_score, precision_score # ----- Data to Image Transformer ----- # FONT_HERSHEY_PLAIN, def data2img(arr, font_size=50, resolution=(256, 256), font=cv2.FONT_HERSHEY_SIMPLEX): # SIMPLEX """ Structured Tabular Data to Image with cv2 NOTE currently supports only iris, wine and womanshealth dataset """ x, y = resolution if args.dataset=='mltoy': n_colums, n_features = 17, len(arr) elif args.dataset =="yeast14c": n_colums, n_features = 4, len(arr) else: n_colums, n_features = 2, len(arr) n_lines = n_features % n_colums + int(n_features / n_colums) frame = np.ones((*resolution, 3), np.uint8)*0 k = 0 # ----- iris ----- if args.dataset=='iris': for i in range(n_colums): for j in range(n_lines): try: cv2.putText( frame, str(arr[k]), (30+i*(x//n_colums), 5+(j+1)*(y//(n_lines+1))), fontFace=font, fontScale=1, color=(255, 255, 255), thickness=2) k += 1 except IndexError: break # ----- wine ----- elif args.dataset=='wine': for i in range(n_colums): for j in range(n_lines): try: cv2.putText( frame, str(arr[k]), (30+i*(x//n_colums), 5+(j+1)*(y//(n_lines+1))), fontFace=font, fontScale=0.6, color=(255, 255, 255), thickness=1) k += 1 except IndexError: break # ----- toy ----- elif args.dataset=='mltoy': for i in range(n_colums): for j in range(n_lines): try: cv2.putText( frame, str(arr[k]), (5+i*(x//n_colums), 5+(j+1)*(y//(n_lines+1))), fontFace=font, fontScale=0.5, color=(255, 255, 255), thickness=1) k += 1 except IndexError: break # ----- toy ----- elif args.dataset=='yeast14c': # font = ImageFont.truetype("src/utils/arial-unicode-ms.ttf", 28, encoding="unic") # font = cv2.FONT_ITALIC n_lines-=5 #extra for i in range(n_colums): for j in range(n_lines): try: cv2.putText( frame, str(arr[k]), (5+i*(x//n_colums), 5+(j+1)*(y//(n_lines+1))), fontFace=font, fontScale=0.32, color=(255, 255, 255), thickness=1) k += 1 except IndexError: break # font 0.3 lines 5 SIMPLEX round 5 return np.array(frame, np.uint8) # ----- Dataset ----- class CustomTensorDataset(Dataset): def __init__(self, data, transform=None, make_img=True): self.data = data self.transform = transform self.make_img = make_img self.le = preprocessing.LabelEncoder() self.le.fit(list(string.ascii_lowercase)+list(string.ascii_uppercase)) def __len__(self): return len(self.data[0]) def __getitem__(self, index): try: x = self.data[0].loc[index] except: x = self.data[0][index] if self.make_img: img = data2img(x) else: # print(x) # try: # x[43:] = self.le.transform(x[43:]) # x[2] = self.le.transform([x[2]])[0] # except: # pass img = np.array([x]).astype(dtype = 'float32') x = torch.from_numpy(img) if self.transform and self.make_img == True: x = self.transform(img) try: y = self.data[1].loc[index] except: y = self.data[1][index] # y = self.data[1].loc[index] # print(y) return x, y from sklearn.multioutput import MultiOutputClassifier from sklearn.preprocessing import MultiLabelBinarizer from sklearn.multiclass import OneVsRestClassifier def classical_predictors(x_train, y_train, x_val, y_val): # xgboost predictions xgboost_est = XGBClassifier(eval_metric='map',objective='binary:logistic',n_jobs=-1, max_depth=4, use_label_encoder=False) clf = OneVsRestClassifier(xgboost_est) print(x_train.shape, y_train.shape) clf.fit(x_train,y_train) print("xgboost results:") print("Hamming Loss: ",hamming_loss(y_val,clf.predict(x_val))) print("avg precsion: ",average_precision_score(y_val,clf.predict(x_val))) print("precision mi: ",precision_score(y_val,clf.predict(x_val),average='micro')) # randomforest predictions clf = RandomForestClassifier(max_depth=4, random_state=0) clf.fit(x_train, y_train) print("\nRandom Forest results:") print("Hamming Loss: ",hamming_loss(y_val,clf.predict(x_val))) print("avg precsion: ",average_precision_score(y_val,clf.predict(x_val))) print("precision mi: ",precision_score(y_val,clf.predict(x_val),average='micro')) exit() # ----- Load Data Pipeline ----- import os def load_data(dataset=args.dataset, batch_size=args.batch_size, val_size=args.val_size, test_size=args.test_size, device='cpu'): # load dataset if dataset=='iris': data = datasets.load_iris() elif dataset=='wine': data = datasets.load_wine() elif dataset=='mltoy': xtrain = pd.read_csv("src/utils/ml/X_train_RE.csv") xtrain.reset_index(inplace=True) xtrain = xtrain[:int(len(xtrain)/50)] xtrain = xtrain.to_numpy() ytrain = pd.read_csv("src/utils/ml/y_train_RE.csv") ytrain = ytrain.drop(ytrain.columns[[0]], axis=1) ytrain.reset_index(inplace=True) ytrain = ytrain[:int(len(ytrain)/50)] ytrain = ytrain.to_numpy() ytrain = ytrain[..., 1:] # remove first index element from each row data = Bunch(data=xtrain, target=ytrain) elif dataset == "yeast14c": data = pd.read_csv("src/utils/ml/yeast_14class.csv") xtrain = data.iloc[:, :len(list(data))-14] xtrain = xtrain.to_numpy().round(8) # print(xtrain.shape) ytrain = data.iloc[:, len(list(data))-14:] ytrain = ytrain.to_numpy() data = Bunch(data=xtrain, target=ytrain) elif dataset == "yeast14c_m": train_df = arff.loadarff('src/utils/ml/mulan_yeast/yeast-train.arff') train_df = pd.DataFrame(train_df[0]) # train_df.reset_index(inplace=True) x_train = train_df.iloc[:, :len(list(train_df))-14] x_train = x_train.to_numpy().round(8) y_train = train_df.iloc[:, len(list(train_df))-14:].to_numpy().astype(str).astype(int) test_df = arff.loadarff('src/utils/ml/mulan_yeast/yeast-test.arff') test_df = pd.DataFrame(test_df[0]) # test_df.reset_index(inplace=True) x_test = test_df.iloc[:, :len(list(test_df))-14] x_test = x_test.to_numpy().round(8) y_test = test_df.iloc[:, len(list(test_df))-14:].to_numpy().astype(str).astype(int) if dataset != "yeast14c_m": # Split dataset -- Cross Vaidation x_train, x_test, y_train, y_test \ = train_test_split(data.data, data.target, test_size=test_size, random_state=1) x_train, x_val, y_train, y_val \ = train_test_split(x_train, y_train, test_size=val_size, random_state=1) # Dataset and Dataloader settings kwargs = {} if args.device=='cpu' else {'num_workers': 2, 'pin_memory': True} loader_kwargs = {'batch_size':batch_size, **kwargs} transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # classical_predictors(x_train, y_train, x_val, y_val) make_img = False if args.model == 'no_img' else True # Build Dataset train_data = CustomTensorDataset(data=(x_train, y_train), transform=transform, make_img=make_img) val_data = CustomTensorDataset(data=(x_val, y_val), transform=transform, make_img=make_img) test_data = CustomTensorDataset(data=(x_test, y_test), transform=transform, make_img=make_img) # Build Dataloader train_loader = DataLoader(train_data, shuffle=True, **loader_kwargs) val_loader = DataLoader(val_data, shuffle=True, **loader_kwargs) test_loader = DataLoader(test_data, shuffle=False, **loader_kwargs) # 3, 256, 256 #return train_data, val_data, test_data return train_loader, val_loader, test_loader if __name__ == "__main__": pass
2.359375
2
routes/friends.py
Prouser123/xbl-web-api
16
12775135
from quart import jsonify from providers.BlueprintProvider import BlueprintProvider class Friends(BlueprintProvider): def __craftSummary(self, data): return jsonify( { "following": data.target_following_count, "followers": data.target_follower_count, } ) def routes(self): @self.xbl_decorator.cachedRoute("/summary/xuid/<int:xuid>") async def xuid(xuid): return self.__craftSummary( await self.xbl_client.people.get_friends_summary_by_xuid(xuid) ) @self.xbl_decorator.cachedRoute("/summary/gamertag/<gamertag>") async def gamertag(gamertag): return self.__craftSummary( await self.xbl_client.people.get_friends_summary_by_gamertag(gamertag) )
2.4375
2
api/tests/integration/tests/deco/deco_iter.py
f1nzer/Indigo
0
12775136
<filename>api/tests/integration/tests/deco/deco_iter.py import sys sys.path.append("../../common") from env_indigo import * # # Prepare a molecule for printing out # def prepareStructure(mol): for atom in mol.iterateAtoms(): atom.setXYZ(0, 0, 0) for rg in mol.iterateRGroups(): if rg.iterateRGroupFragments().hasNext(): rg_next = rg.iterateRGroupFragments().next() for atom in rg_next.iterateAtoms(): atom.setXYZ(0, 0, 0) indigo = Indigo() indigo.setOption("molfile-saving-skip-date", True) def printMolfile(mol): smiles = mol.canonicalSmiles() print("Smiles: " + smiles) for format in ["2000", "3000", "auto"]: print("Format: " + format) indigo.setOption("molfile-saving-mode", format) molfile = mol.molfile() print(molfile) # Check correctness by loading molfile and saving into smiles sm2 = indigo.loadMolecule(molfile).canonicalSmiles() if smiles != sm2: sys.stderr.write( "Error: smiles are different\n %s\n %s\n" % (smiles, sm2) ) indigo.setOption("molfile-saving-mode", "auto") def printQMolfile(qmol): smiles = qmol.smiles() print("Smiles: " + smiles) for format in ["2000", "3000", "auto"]: print("Format: " + format) indigo.setOption("molfile-saving-mode", format) molfile = qmol.molfile() print(molfile) indigo.setOption("molfile-saving-mode", "auto") def printRGroups(mol): print("separate RGroups: ") for rg in mol.iterateRGroups(): print("RGROUP # %d" % (rg.index())) if rg.iterateRGroupFragments().hasNext(): print(rg.iterateRGroupFragments().next().molfile()) else: print("NO FRAGMENT") def testDeco(scaf, structures): scaffold = indigo.loadQueryMolecule(scaf) deco = indigo.createDecomposer(scaffold) for smiles in structures: str = indigo.loadMolecule(smiles) item = deco.decomposeMolecule(str) print( "highlighted structure: " + item.decomposedMoleculeHighlighted().smiles() ) print( "molecule scaffold: " + item.decomposedMoleculeScaffold().smiles() ) print("molecule with rgroups: ") mol = item.decomposedMoleculeWithRGroups() prepareStructure(mol) printMolfile(mol) printRGroups(mol) full_scaf = deco.decomposedMoleculeScaffold() prepareStructure(full_scaf) print("full scaffold: ") printQMolfile(full_scaf) def testDecoIterate(scaffold, structures): deco = indigo.createDecomposer(scaffold) for smiles in structures: str = indigo.loadMolecule(smiles) item = deco.decomposeMolecule(str) match_idx = 1 for q_match in item.iterateDecompositions(): print("MATCH # %d" % match_idx) print( "highlighted structure: " + q_match.decomposedMoleculeHighlighted().smiles() ) print( "molecule scaffold: " + q_match.decomposedMoleculeScaffold().smiles() ) print("molecule with rgroups: ") mol = q_match.decomposedMoleculeWithRGroups() prepareStructure(mol) printMolfile(mol) printRGroups(mol) deco.addDecomposition(q_match) match_idx += 1 full_scaf = deco.decomposedMoleculeScaffold() prepareStructure(full_scaf) print("full scaffold: ") printQMolfile(full_scaf) def testDecoIterateSmile(scaf, structures): scaffold = indigo.loadQueryMolecule(scaf) testDecoIterate(scaffold, structures) def testDecoIterateFile(scaf, structures): scaffold = indigo.loadQueryMoleculeFromFile(scaf) testDecoIterate(scaffold, structures) print( "should decompose molecules with iteration api*************************************************************************" ) testDeco( "C1=CC=CC=C1", [ "COCC1=C(N=CC2=C1C1=C(OC3=CC=C(Cl)C=C3)C=CC=C1N2)C(=O)OC(C)C", "COCC1=CN=C(C(=O)OC(C)C)C2=C1C1=CC=C(OC3=CC=C(Cl)C=C3)C=C1N2", ], ) print( "should have only one match for simple molecule*************************************************************************" ) testDecoIterateSmile("C1CCCCC1", ["OC1CCCCC1"]) print( "should have only two matches for simple molecule*************************************************************************" ) testDecoIterateSmile("C1CCCCC1", ["OC1(N)CCCCC1"]) print( "should add all match to full scaffold*************************************************************************" ) testDecoIterateSmile("C1CCCCC1", ["NC1CCC(CC1O)C1CCC(N)C(N)C1N"]) print( "should add all matches to full scaffold within decomposition*************************************************************************" ) testDecoIterateSmile("C1CCCCC1", ["NC1CCC(CC1O)C1CCCCC1N"]) print( "should save only one rsite*************************************************************************" ) testDecoIterateSmile("C1CCCCC1", ["NC1CCCCC1", "C1CC(O)CCC1"]) print( "user defined scaffold should have only two matches for simple molecule*************************************************************************" ) testDecoIterateFile( joinPathPy("molecules/deco_user_def1.mol", __file__), ["NC1CCCC(O)C1"] ) print( "user defined scaffold should have only 4 matches for molecule*************************************************************************" ) testDecoIterateFile( joinPathPy("molecules/deco_user_def1.mol", __file__), ["NC1CCCC(C1)C1CCCC(O)C1"], ) print( "user defined scaffold should have no matches for molecule with connected atoms*************************************************************************" ) testDecoIterateFile( joinPathPy("molecules/deco_user_def1.mol", __file__), ["CC1CCC(O)CC1C"] ) print( "should save attachment points bond orders*************************************************************************" ) indigo.setOption("deco-save-ap-bond-orders", True) testDecoIterateSmile("C1CCCCC1", ["OC1(N)CCCCC1", "O=C1CCCCC1"]) indigo.setOption("deco-save-ap-bond-orders", False)
2.234375
2
task_manager.py
technetbytes/Nested-Object-Serialization
0
12775137
from task import Task from tasks import Tasks from status import Status import redis import datetime import json from json_extension import check_update_list from converter import datetime_converter class TaskManager: _redis = None _task_management_key = None def __redis(): server = "localhost" port = 6379 db = 0 TaskManager._redis = redis.Redis(server, port, db) TaskManager._task_management_key = "object-serial" @staticmethod def __find_task_object(json_object, name): for dict in json_object: x = json.loads(dict) if x['task_id'] == name: return x @staticmethod def __find_task(json_object, name): task = [obj for obj in json_object if obj['task_id']==name] if len(task) > 1 and task is not None: return task[0] return None @staticmethod def clear_task_tasks_obj_as_dict(): # check and then create redis server object if TaskManager._redis is None: TaskManager.__redis() TaskManager._redis.delete(TaskManager._task_management_key) def get_task_management(): # check and then create redis server object if TaskManager._redis is None: TaskManager.__redis() tasks_data_as_bytes = TaskManager._redis.get(TaskManager._task_management_key) if tasks_data_as_bytes is not None: tasks_data_as_str = tasks_data_as_bytes.decode("utf-8") tasks_obj_as_dict = json.loads(tasks_data_as_str) return tasks_obj_as_dict else: return None @staticmethod def __update_json_object(tasks_obj_as_dict, replace_obj): for task in tasks_obj_as_dict: if json.loads(task)['task_id'] == replace_obj['task_id']: task = json.dumps(replace_obj) break return tasks_obj_as_dict @staticmethod def update_task_management_ext(event, name, status, id): tasks_obj_as_dict = TaskManager.get_task_management() if tasks_obj_as_dict is not None: for element in tasks_obj_as_dict: #print("@@@@@",tasks_obj_as_dict[element]) for elt in tasks_obj_as_dict[element]: #print(";;;;;;;;;;;",elt['task_id']) if elt['task_id'] == id: new_status = Status(id, name, str(datetime.datetime.now()), status) elt['conditions'].append(new_status) print("***->",elt) # print("!!!!!!!->",tasks_obj_as_dict['conditions']) tasks = Tasks(tasks_obj_as_dict['conditions']) TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) # #Iterating all the fields of the JSON # for element in tasks_obj_as_dict: # #If Json Field value is a list # if (isinstance(tasks_obj_as_dict[element], list)): # # add new status in the task_conditions list # new_status = Status(id, name, datetime.datetime.now(), status) # check_update_list(tasks_obj_as_dict[element], element, new_status) # print(tasks_obj_as_dict['conditions']) # tasks = Tasks(tasks_obj_as_dict['conditions']) # #TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) @staticmethod def update_task_management(event, name, status, id): tasks_obj_as_dict = TaskManager.get_task_management() if tasks_obj_as_dict is not None: #convert dict into json object called cache_object and add new item in the existing collection cache_data = json.loads(json.dumps(tasks_obj_as_dict)) if cache_data is not None: current_task = TaskManager.__find_task_object(cache_data['conditions'], id) if current_task is not None: # get task status list current_task_conditions = current_task['conditions'] # add new status in the task_conditions list new_status = Status(id, name, datetime.datetime.now(), status) current_task_conditions.append(new_status) # update object update_json_obj = TaskManager.__update_json_object(cache_data['conditions'], current_task) @staticmethod def create_new_task(message_type, task): # check and then create redis server object if TaskManager._redis is None: TaskManager.__redis() _conditions = [] _tasks = [] tasks_obj_as_dict = TaskManager.get_task_management() if tasks_obj_as_dict is None: #first time creating task in the redis if task is not None: new_task = Task(message_type, task['id'], "init", _conditions) _tasks.append(new_task) tasks = Tasks(_tasks) TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) else: new_task = Task(message_type, task['id'], "init", _conditions) # #convert dict into json object called cache_object and add new item in the existing collection cache_data = json.loads(json.dumps(tasks_obj_as_dict)) # # print(cache_data) cache_data['conditions'].append(new_task) #print("---->",type(*cache_data.values())) #print(len(*cache_data.values())) # # prefixed by an asterisk operator to unpack the values in order to create a typename tuple subclass tasks = Tasks(*cache_data.values()) TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) # return tasks_obj_as_dict # new_task = Task(message_type, task['id'], "init", _conditions) # #convert dict into json object called cache_object and add new item in the existing collection # cache_data = json.loads(json.dumps(tasks_obj_as_dict)) # # print(cache_data) # cache_data['conditions'].append(new_task) # # prefixed by an asterisk operator to unpack the values in order to create a typename tuple subclass # tasks = Tasks(*cache_data.values()) # TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) # return tasks_obj_as_dict @staticmethod def testing_create_new_task(task): # check and then create redis server object if TaskManager._redis is None: TaskManager.__redis() tasks_obj_as_dict = TaskManager.get_task_management() if tasks_obj_as_dict is None: TaskManager._redis.set(TaskManager._task_management_key, json.dumps(task)) else: return tasks_obj_as_dict # from task_store.task import Task # from task_store.tasks import Tasks # from task_store.status import Status # import redis # import datetime # from config.setting import Config # import json # from utilities.json_extension import check_update_list # from task_store.converter import datetime_converter # class TaskManager: # _redis = None # _task_management_key = None # def __redis(): # server = Config.get_complete_property('redis','server') # port = Config.get_complete_property('redis','port') # db = Config.get_complete_property('redis','db') # TaskManager._redis = redis.Redis(server, port, db) # TaskManager._task_management_key = Config.get_complete_property('redis','task_management_key') # @staticmethod # def __find_task_object(json_object, name): # for dict in json_object: # x = json.loads(dict) # if x['task_id'] == name: # return x # @staticmethod # def __find_task(json_object, name): # task = [obj for obj in json_object if obj['task_id']==name] # if len(task) > 1 and task is not None: # return task[0] # return None # @staticmethod # def clear_task_tasks_obj_as_dict(): # # check and then create redis server object # if TaskManager._redis is None: # TaskManager.__redis() # TaskManager._redis.delete(TaskManager._task_management_key) # def get_task_management(): # # check and then create redis server object # if TaskManager._redis is None: # TaskManager.__redis() # tasks_data_as_bytes = TaskManager._redis.get(TaskManager._task_management_key) # if tasks_data_as_bytes is not None: # tasks_data_as_str = tasks_data_as_bytes.decode("utf-8") # tasks_obj_as_dict = json.loads(tasks_data_as_str) # return tasks_obj_as_dict # else: # return None # @staticmethod # def __update_json_object(tasks_obj_as_dict, replace_obj): # for task in tasks_obj_as_dict: # if json.loads(task)['task_id'] == replace_obj['task_id']: # task = json.dumps(replace_obj) # break # return tasks_obj_as_dict # @staticmethod # def update_task_management_ext(event, name, status, id): # tasks_obj_as_dict = TaskManager.get_task_management() # if tasks_obj_as_dict is not None: # #Iterating all the fields of the JSON # for element in tasks_obj_as_dict: # #If Json Field value is a list # if (isinstance(tasks_obj_as_dict[element], list)): # # add new status in the task_conditions list # new_status = Status(id, name, datetime.datetime.now(), status) # check_update_list(tasks_obj_as_dict[element], element, new_status) # tasks = Tasks(tasks_obj_as_dict['conditions']) # TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) # @staticmethod # def update_task_management(event, name, status, id): # tasks_obj_as_dict = TaskManager.get_task_management() # if tasks_obj_as_dict is not None: # #convert dict into json object called cache_object and add new item in the existing collection # cache_data = json.loads(json.dumps(tasks_obj_as_dict)) # if cache_data is not None: # current_task = TaskManager.__find_task_object(cache_data['conditions'], id) # if current_task is not None: # # get task status list # current_task_conditions = current_task['conditions'] # # add new status in the task_conditions list # new_status = Status(id, name, datetime.datetime.now(), status) # current_task_conditions.append(new_status) # # update object # update_json_obj = TaskManager.__update_json_object(cache_data['conditions'], current_task) # @staticmethod # def create_new_task(message_type, task): # # check and then create redis server object # if TaskManager._redis is None: # TaskManager.__redis() # _conditions = [] # _tasks = [] # tasks_obj_as_dict = TaskManager.get_task_management() # if tasks_obj_as_dict is None: # #first time creating task in the redis # if task is not None: # new_task = Task(message_type, task.id, "init", _conditions) # _tasks.append(new_task) # tasks = Tasks(_tasks) # TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) # else: # new_task = Task(message_type, task.id, "init", _conditions) # #convert dict into json object called cache_object and add new item in the existing collection # cache_data = json.loads(json.dumps(tasks_obj_as_dict)) # # print(cache_data) # cache_data['conditions'].append(new_task) # # prefixed by an asterisk operator to unpack the values in order to create a typename tuple subclass # tasks = Tasks(*cache_data.values()) # TaskManager._redis.set(TaskManager._task_management_key, json.dumps(tasks.to_json())) # return tasks_obj_as_dict # @staticmethod # def testing_create_new_task(task): # # check and then create redis server object # if TaskManager._redis is None: # TaskManager.__redis() # tasks_obj_as_dict = TaskManager.get_task_management() # if tasks_obj_as_dict is None: # TaskManager._redis.set(TaskManager._task_management_key, json.dumps(task)) # else: # return tasks_obj_as_dict
2.578125
3
getNBAStats.py
JasonG7234/NBA-Draft-Model-Hopefully-
0
12775138
from utils import * import pandas as pd import sys import csv GP = [] MPG = [] WS = [] WSP48 = [] BPM = [] VORP = [] PLUSMINUS = [] NBA_STATS = [GP, MPG, WS, WSP48, BPM, VORP, PLUSMINUS] def main(): all = get_csv_file("add NBA stats? ") all = populate_NBA_all_statistics(all) addNBAStatsToMasterList(pd.read_csv('temp_master.csv'), all) def populate_NBA_all_statistics(all): couldNotFindList = [] nba_stats = all[['Season','Name']].copy() base_url = "https://www.basketball-reference.com/players" for index, row in all.iterrows(): if(row['Season'] == get_season_from_year(get_current_year())): print(row['Name'] + " is still in college.") appendValuesToNBALists(["?", "?", "?", "?", "?", "?", "?"]) continue bkrefCorrectPage = True bkrefIdentifier, bkrefIndex, bkrefName = getBKRefIdentifierAndIndex(row['Name']) while True: url = base_url + bkrefIdentifier + "0" + str(bkrefIndex) + ".html" print(url) soup = find_site(url) if (soup): if (soup.find('div', {'class': 'index reading'}) or not soup.find('table')): print("Reached 404 page - assuming there are no stats for " + row['Name']) appendValuesToNBALists(["0", "0", "0", "0", "0", "0", "0"]) break quickBKRefPlayerInfoDiv = get_basketball_reference_player_info(soup) if (quickBKRefPlayerInfoDiv): if (isOnCorrectPlayerPage(bkrefName, row['School'], quickBKRefPlayerInfoDiv)): try: tableID = soup.find('table')['id'] except KeyError: tableID = None if (not tableID or tableID == 'all_college_stats'): print("Could not find an NBA Basketball Reference page for " + row['Name']) bkrefIndex = bkrefIndex + 1 bkrefCorrectPage = False continue else: print("Found NBA player page for " + row['Name']) populateNBAPlayerStatistics(soup) break else: if (bkrefCorrectPage == True): bkrefIndex = bkrefIndex + 1 bkrefCorrectPage = False continue else: print("Could not find a correct NBA player page for " + row['Name']) couldNotFindList.append(index) appendValuesToNBALists(["0", "0", "0", "0", "0", "0", "0"]) bkrefIndex = bkrefIndex + 1 break else: print("Could not find player info div for " + url) else: print("Could not find page for url: " + url) nba_stats['NBA GP'] = GP nba_stats['NBA MPG'] = MPG nba_stats['NBA WS'] = WS nba_stats['NBA WSP48'] = WSP48 nba_stats['NBA BPM'] = BPM nba_stats['NBA VORP'] = VORP nba_stats['NBA PLUSMINUS'] = PLUSMINUS nba_stats.to_csv('all_nba_stats.csv', index=False) return nba_stats def getBKRefIdentifierAndIndex(name): bkrefName = get_basketball_reference_formatted_name(name, NBA_PLAYER_NAME_EXCEPTIONS) firstName, lastName = bkrefName.replace("-", "").split(' ', 1) bkrefIdentifier = ("/" + lastName[0] + "/" + lastName[:5] + firstName[:2]).lower() bkrefIndex = check_value_in_dictionary_of_exceptions(bkrefName, NBA_INDEX_EXCEPTIONS, 1) return bkrefIdentifier, bkrefIndex, bkrefName def isOnCorrectPlayerPage(name, school, playerInfo): school = get_basketball_reference_formatted_school(school, NBA_SCHOOL_NAME_EXCEPTIONS, school) return name.lower() in playerInfo.replace("'", "").lower() and school in playerInfo def populateNBAPlayerStatistics(soup): statValueList = [] statValueList.extend(findGivenStatOnPlayerPage(soup, 'all_per_game', ['g','mp_per_g'])) statValueList.extend(findGivenStatOnPlayerPage(soup, 'all_advanced', ['ws', 'ws_per_48', 'bpm', 'vorp'])) statValueList.extend(findGivenStatOnPlayerPage(soup, 'all_pbp', ['plus_minus_net'])) appendValuesToNBALists(statValueList) # Check the designated table for the designated datastat def findGivenStatOnPlayerPage(soup, table_ID, datastat_IDs): table = soup.find('div', {'id': table_ID}) list = [] if table: career_stats = table('tfoot')[0] #Guarantees first row in the footer (career) for datastat_ID in datastat_IDs: stat = (career_stats.find("td", {"data-stat": datastat_ID})).getText() list.append(stat) else: for datastat_ID in datastat_IDs: print("Did not find a stat for " + datastat_ID + " - adding zero.") list.append("0") return list # For each player, add an entry to the NBA stats lists def appendValuesToNBALists(l): for i in range(0,7): NBA_STATS[i].append(l[i]) # Final step, add NBA stats to master list and export to CSV def addNBAStatsToMasterList(all, nba): all['NBA GP'] = nba['NBA GP'] all['NBA MPG'] = nba['NBA MPG'] all['NBA WS'] = nba ['NBA WS'] all['NBA WSP48'] = nba['NBA WSP48'] all['NBA BPM'] = nba['NBA BPM'] all['NBA VORP'] = nba['NBA VORP'] all['NBA PLUSMINUS'] = nba['NBA PLUSMINUS'] all = reorder_columns(all) all.to_csv("new_master.csv", index=False) if __name__ == "__main__": main()
3.296875
3
app/backend-test/core_datasets/run01_create_dataset_from_config_v2.py
SummaLabs/DLS
32
12775139
<reponame>SummaLabs/DLS #!/usr/bin/python # -*- coding: utf-8 -*- __author__ = 'ar' import os import sys import glob import numpy as np import matplotlib.pyplot as plt import skimage.io as skio import app.backend.core.utils as dlsutils from app.backend.core.datasets.dbbuilder import DBImage2DBuilder ################################################# pathToDirWithJson="../../../data-test" pathDirOutRoot="../../../data/datasets" ################################################# if __name__ == '__main__': lstConfigFn=[os.path.abspath(xx) for xx in glob.glob('%s/dbconfig_*.json' % pathToDirWithJson)] prefixDataset='dbset' for ii,pp in enumerate(lstConfigFn): print ('[%d/%d] : %s' % (ii, len(lstConfigFn), pp)) pathToJson = pp tdirDbId = dlsutils.getUniqueTaskId(prefixDataset) pathDirOut = os.path.abspath(os.path.join(pathDirOutRoot, tdirDbId)) dlsutils.makeDirIfNotExists(pathDirOut) dbBuilder2DImage = DBImage2DBuilder(pathCfgInp=pathToJson, pathDirOut=pathDirOut) dbBuilder2DImage.initializeInfo() print (dbBuilder2DImage) dbBuilder2DImage.buildDataset(parProgressor=None) print ('\n\n')
2.078125
2
w3testrunner/browsers/dummy.py
formido/browsercontrol
0
12775140
import logging import urllib2 from w3testrunner.browsers.browser import Browser log = logging.getLogger(__name__) class DummyBrowser(Browser): """Extension of Browser that does nothing.""" name = "dummy" nopath = True def __init__(self, browser_info): super(DummyBrowser, self).__init__(browser_info) self.alive = False def launch(self): self.alive = True # Simulate a browser fetching the runner url. try: urllib2.urlopen(self.RUNNER_URL).read() except urllib2.URLError, e: log.debug("Error connecting to runner url: %s", e) def is_alive(self): return self.alive def terminate(self): self.alive = False
2.65625
3
trane/core/labeler.py
FeatureLabs/Trane
31
12775141
<gh_stars>10-100 import logging import time import pandas as pd from .prediction_problem_saver import prediction_problems_from_json_file __all__ = ['Labeler'] class Labeler(): """ Object for executing prediction problems on data in order to generate labels for many prediction problems. The execute method performs the labelling operation. """ def __init__(self): pass def execute(self, data, cutoff_df, json_prediction_problems_filename): """ Generate the labels. Parameters ---------- cutoff_df: dataframe. Each row corresponds to an entity. entity_id (indexed) | training_cutoff | test_cutoff json_prediction_problems_filename: filename to read prediction problems from, structured in JSON. Returns ------- dfs: a list of DataFrames. One dataframe for each problem. Each dataframe contains entities, cutoff times and labels. """ (prediction_problems, table_meta, entity_id_column, label_generating_column, time_column) = prediction_problems_from_json_file( json_prediction_problems_filename) dfs = [] columns = [entity_id_column, 'training_labels', 'test_labels', 'training_cutoff_time', 'label_cutoff_time'] for idx, prediction_problem in enumerate(prediction_problems): start = time.time() df_rows = [] logging.debug( "in labeller and beginning exuection of problem: {} \n".format( prediction_problem)) for index, row in cutoff_df.iterrows(): entity_id = index training_cutoff = row[0] label_cutoff = row[1] entity_data = pd.DataFrame(data.loc[entity_id]).T (df_pre_label_cutoff_time_result, df_all_data_result) = prediction_problem.execute( entity_data, time_column, label_cutoff, prediction_problem.filter_column_order_of_types, prediction_problem.label_generating_column_order_of_types) # noqa if len(df_pre_label_cutoff_time_result) == 1: label_precutoff_time = df_pre_label_cutoff_time_result[ label_generating_column].values[0] elif len(df_pre_label_cutoff_time_result) > 1: logging.warning("Received output from prediction problem \ execution on pre-label cutoff data with \ more than one result.") label_precutoff_time = None else: label_precutoff_time = None if len(df_all_data_result) == 1: label_postcutoff_time = df_all_data_result[ label_generating_column].values[0] elif len(df_all_data_result) > 1: logging.warning("Received output from prediction problem execution \ on all data with more than one result.") label_postcutoff_time = None else: label_postcutoff_time = None df_row = [entity_id, label_precutoff_time, label_postcutoff_time, training_cutoff, label_cutoff] df_rows.append(df_row) df = pd.DataFrame(df_rows, columns=columns) end = time.time() logging.info( "Finished labelling problem: {} of {}.Time elapsed: {}".format( idx, len(prediction_problems), end - start)) dfs.append(df) return dfs
2.96875
3
sona/create_sounds.py
jayfry1077/runeterra_audio_discord_bot
0
12775142
<filename>sona/create_sounds.py from boto3 import Session from botocore.exceptions import BotoCoreError, ClientError from contextlib import closing import os import pydub import sys import subprocess from tempfile import gettempdir def text_to_audio(path_to_text=str, OGG_PATH=str, WAV_PATH=str, voice_id='Salli'): ''' path_to_text: Specify the location of your text files. Text files must contain cardCode followed by a space in the name \nOGG_PATH: Specify the location you want to save the audio output. \nvoice_id: Default is Salli. Options are. Salli, Joanna, Ivy, Kendra, Kimberly, Matthew, Justin, Joey \nprofile used for aws is 'default' ''' if not os.path.isdir(OGG_PATH): print('Creating Path {}'.format(OGG_PATH)) os.mkdir(OGG_PATH) if not os.path.isdir(WAV_PATH): print('Creating Path {}'.format(WAV_PATH)) os.mkdir(WAV_PATH) # Create a client using the credentials and region defined in the [adminuser] # section of the AWS credentials file (~/.aws/credentials). session = Session(profile_name="default") polly = session.client("polly") for file in os.listdir(path_to_text): with open((path_to_text + file), 'r') as f: try: # Request speech synthesis response = polly.synthesize_speech(Text=f.read(), OutputFormat="ogg_vorbis", VoiceId="Salli") f = open(OGG_PATH + file[:-4] + ".ogg", "wb") f.write(response['AudioStream'].read()) f.close wav_file_name = file.split(" ")[0] sound = pydub.AudioSegment.from_ogg(OGG_PATH + file[:-4] + ".ogg") sound.export(WAV_PATH + wav_file_name + ".wav", format='wav') print('Wrote {} to disk.'.format(file[7:-4])) except (BotoCoreError, ClientError) as error: # The service returned an error, exit gracefully print(error) sys.exit(-1)
2.8125
3
trainer.py
safdark/AI-VUI-Capstone
0
12775143
from train_utils import train_model from sample_models import custom_rnn_model from keras.layers import SimpleRNN, GRU, LSTM import argparse import sys import os from os.path import join if __name__ == '__main__': from keras.backend.tensorflow_backend import set_session import tensorflow as tf config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=config)) print ("###############################################") print ("# ASR Trainer #") print ("###############################################") parser = argparse.ArgumentParser(description='ASR Driver') parser.add_argument('-o', dest='output', required=True, type=str, help='Path to folder containing model data input/output (.hd5 and .pickle files).') parser.add_argument('-i', dest='id', required=True, type=int, help='Id or name of the model') parser.add_argument('-cf', dest='conv_filters', type=int, help='# of convolution filters') parser.add_argument('-ck', dest='kernel_size', type=int, help='Size of convolution kernel') parser.add_argument('-cs', dest='conv_stride', type=int, help='Convolutional stride') parser.add_argument('-cp', dest='conv_padding', type=str, help="Convolutional padding mode ('same', or 'valid')") parser.add_argument('-cd', dest='conv_dropout', type=float, help='Dropout for convolutional output (between 0.0 and 1.0)') parser.add_argument('-rl', dest='recur_layers', type=int, help='Number of recurrent layers') parser.add_argument('-ru', dest='recur_units', nargs='*', type=int, help="List of 'rl' recurrent unit sizes") parser.add_argument('-rc', dest='recur_cells', nargs='*', type=int, help="List of 'rl' recurrent cell types (0: SimpleRNN, 1: GRU, or 2: LSTM)") parser.add_argument('-rb', dest='recur_bidis', nargs='*', type=int, help="List of 'rl' flags indicating whether the layer is bidirectional ('True', 'False')") parser.add_argument('-rd', dest='recur_dropouts', nargs='*', type=float, help="List of 'rl' dropouts (between 0.0 and 1.0)") parser.add_argument('-dd', dest='dense_dropout', type=float, help="Dropout for fully connected output layer") parser.add_argument('-e', dest='num_epochs', required=False, default=20, type=int, help="Number of epochs to train") args = parser.parse_args() args.recur_cells = map(lambda x: SimpleRNN if x is 0 else GRU if x is 1 else LSTM, list(args.recur_cells)) args.recur_bidis = map(lambda x: False if x is 0 else True, list(args.recur_bidis)) print (args) model_weights_path = "model_{}.h5".format(args.id) #join(os.getcwd(), args.output, "model_{}.h5".format(args.id)) model_hist_path = "model_{}.pickle".format(args.id) #join(os.getcwd(), args.output, "model_{}.pickle".format(args.id)) print("\tModel weights path: {}".format(model_weights_path)) print("\tModel train hist path: {}".format(model_hist_path)) # -------- model_5 = custom_rnn_model(input_dim=13, # change to 13 if you would like to use MFCC features conv_filters=args.conv_filters, conv_kernel_size=args.kernel_size, conv_stride=args.conv_stride, conv_border_mode=args.conv_padding, conv_batch_mode=True, conv_dropout=args.conv_dropout, \ recur_layers=args.recur_layers, recur_units=args.recur_units, recur_cells=args.recur_cells, recur_bidis=args.recur_bidis, recur_batchnorms=[True]*args.recur_layers, recur_dropouts=args.recur_dropouts, \ output_dropout=args.dense_dropout, output_dim=29) train_model(input_to_softmax=model_5, epochs=args.num_epochs, pickle_path=model_hist_path, save_model_path=model_weights_path, spectrogram=False) # change to False if you would like to use MFCC features print ("Training complete!") print ("\tModel weights stored in: {}".format(model_weights_path)) print ("\tModel hist stored in: {}".format(model_hist_path)) print ("# Thank you! #")
2.234375
2
pro.py
CMWENLIU/Fuzzy_text_matching
0
12775144
<reponame>CMWENLIU/Fuzzy_text_matching import os import time import collections import pandas as pd import numpy as np from collections import Counter from google_images_download import google_images_download #importing the library from fuzzywuzzy import fuzz from fuzzywuzzy import process class Drug(object): """__init__() functions as the class constructor""" def __init__(self, name=None, text=None, label=None): self.name = name self.text = text self.label = label def download_images(label, key_words): response = google_images_download.googleimagesdownload() #class instantiation argument = {"keywords": key_words, "limit":5, "image_directory": "images", "prefix": label} paths = response.download(argument) #split line in dm2000, then get finename, textContents and labels def split_fname_texts(line): obj = {} if '.jpg' in line: obj['name'] = line.split('.jpg', 1)[0] + '.jpg' obj['text'] = line.split('.jpg', 1)[1] obj['label'] = line.split('_', 1)[0] return obj def construt(filepath): name_list, string_list = [], [] with open(filepath, 'r') as rf: for line in rf: if '.jpg' in line: splitted = line.split('.jpg', 1) name_list.append(splitted[0][:-1]) string_list.append(splitted[1]) def split_keywords(line): obj = {} if '_' in line: split = line.split('_', 1) obj['label'] = split[0] obj['keywords'] = split[1] return obj def frequency_distribution(druglist): label_list = [] for item in druglist: label_list.append(item.label) counter=collections.Counter(label_list) new_counter = collections.Counter(counter.values()) return new_counter def frequency(druglist, n): print('Drugs containing more than ' + str(n) + ' images are selected') label_list = [] for item in druglist: label_list.append(item.label) counter=collections.Counter(label_list) result = [] count_list = [] for item in counter: if counter[item] > n: result.append(item) count_list.append(counter[item]) df = pd.DataFrame({'count':count_list}) return result def cal_top(df, n, test_str): #samples = df.sample(m) #for index, row in samples.iterrows(): t_label = 'label' obj = test_str list_label, list_score, list_text,list_name = [], [], [], [] for i, r in df.iterrows(): list_label.append(r['label']) list_name.append(r['name']) list_text.append(r['text']) list_score.append((fuzz.partial_ratio(obj, r['text']) + fuzz.ratio(obj, r['text']))/2) #list_score.append(fuzz.partial_ratio(obj, r['text'])) result_df = pd.DataFrame({'result_label': list_label, 'result_score': list_score, 'result_text': list_text, 'result_name': list_name}) result_df = result_df.sort_values(by=['result_score'], ascending=False).head(n) result_df1 = result_df.groupby('result_label')['result_score'].sum().reset_index(name ='total_score') result_df1 = result_df1.sort_values(by=['total_score'], ascending=False) scores = result_df1['total_score'].tolist() norm = [round(float(i)/sum(scores), 2) for i in scores] result_df1['probability'] = norm ''' print ('True label of test drug: ' + t_label + '\n') print ('Following are most similar texts from images:' + '\n') print (result_df) print ('Following are candidates from reference dataset:' + '\n') print (result_df1) ''' return result_df, result_df1 def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) # only difference ''' drug_list=[]#list of drugs to store fileName,Text and lablel information with open('data/ocr.txt', 'r') as rf: for line in rf: split_r = split_fname_texts(line) drug_list.append(Drug(split_r['name'], split_r['text'], split_r['label'])) print len(drug_list) df = pd.DataFrame([vars(f) for f in drug_list]) df.columns = ["label", "name", "text"] #frequency(drug_list, 2) final_list = frequency(drug_list, 4)#get the records with count more than 3 print len(final_list) #print df['label'] df = df[df['label'].isin(final_list)] print len(df) cal_top(df, 15, 2) '''
2.640625
3
livemelee/startup.py
wong-justin/melee-bot
1
12775145
'''Create entry point to init everything and start Dolphin.''' import argparse # import sys from pathlib import Path import melee from .interact import LiveInputsThread def start_game(ports, cmds={}, log=True): '''Main method to fully start game. Command-line first needs dolphin path and iso path, then game starts. Iso path is optional if you have a default iso set to run on Dolphin startup. ``` # main.py ... start_game(...) ``` `python main.py path/to/dolphin path/to/iso` Args: ports: tuple containing 4 bot instances or Nones. eg. `(None, my_bot, None, None)` cmds: optional. - `dict`: of custom commands `'cmd': (func, 'descrip')` or `'cmd': func`. - default: empty dict, no custom commands - `None`: no live thread desired (probably for performance) log: `bool`, write game logs to file with `melee.Logger` if True (default)''' args = _start_command_line() dolphin_folder = str( Path(args.dolphin_path).parent ) console = melee.Console(path=dolphin_folder) # libmelee wants the folder # controllers must be connected before console run/connect... bots = _assign_controllers(ports, console) console.run(iso_path=args.iso_path) # if None, relies on default Dolphin iso on startup console.connect() # ... and then controllers are connected afterward _connect_controllers(bots) logger = melee.Logger() if log else None live_interface = None if cmds is not None: live_interface = LiveInputsThread(commands=cmds) live_interface.onshutdown = _shutdown(console, logger) live_interface.start() while True: gamestate = console.step() if not gamestate: break for bot in bots: bot.act(gamestate) if live_interface: live_interface.update(gamestate) if logger: logger.logframe(gamestate) logger.log('Frame Process Time', console.processingtime) # ms logger.writeframe() def _start_command_line(): # simple CLI to get paths for dolphin and optionally iso parser = argparse.ArgumentParser() parser.add_argument('paths', nargs='+', help='dolphin/path [iso/path]') args = parser.parse_args() args.dolphin_path = args.paths[0] args.iso_path = args.paths[1] if len(args.paths) > 1 else None return args def _assign_controllers(ports, console): # make + give controllers to any bots present in 4-tuple of ports bots = [] for port, bot in enumerate(ports): if bot: controller = melee.Controller(console=console, port=port+1) # controller = melee.Controller(console=console, port=port+1, type=melee.ControllerType.STANDARD) bot.controller = controller bots.append(bot) return bots def _connect_controllers(bots): for bot in bots: bot.controller.connect() def _shutdown(console, logger): # returns callable that closes dolphin and anything else def f(): console.stop() if logger: print() logger.writelog() print('Log file created: ' + logger.filename) print('Shutting down') return f
2.796875
3
APP/SpeechExtraction/speech_blueprint.py
Valuebai/Text-Auto-Summarization
39
12775146
<gh_stars>10-100 #!/usr/bin/env python # -*- coding: UTF-8 -*- '''================================================= @IDE :PyCharm @Author :LuckyHuibo @Date :2019/10/16 22:32 @Desc : ==================================================''' from flask import request, render_template, jsonify, Blueprint # from flask import current_app app_extraction = Blueprint("speech_extraction", __name__, static_folder='static', template_folder='templates') from conf.logConf import logger @app_extraction.route('/') def index(): logger.info('speech_extraction') return 'app_extraction'
2.015625
2
rnaposerplugin/__init__.py
atfrank/RNAPosers
7
12775147
<gh_stars>1-10 from __future__ import absolute_import from __future__ import print_function # Avoid importing "expensive" modules here (e.g. scipy), since this code is # executed on PyMOL's startup. Only import such modules inside functions. def __init_plugin__(app=None): from pymol.plugins import addmenuitemqt addmenuitemqt('RNAPosers Plugin', run_plugin_gui) # global reference to avoid garbage collection of our dialog dialog = None def run_plugin_gui(): global dialog if dialog is None: # create a new (empty) Window dialog = make_dialog() dialog.show() def make_dialog(): import os # entry point to PyMOL's API from pymol import cmd # pymol.Qt provides the PyQt5 interface, but may support PyQt4 # and/or PySide as well from pymol.Qt import QtWidgets from pymol.Qt.utils import loadUi, getSaveFileNameWithExt # from pymol.Qt.QtWidgets.QFileDialog import getOpenFileName, getSaveFileName dialog = QtWidgets.QDialog() # filename of our UI file uifile = os.path.join(os.path.dirname(__file__), 'rnaposers.ui') # load the UI file into our dialog global form form = loadUi(uifile, dialog) print("[RNAPosers Debugging] Dialog created") def eta_converter(eta_input): if eta_input == '2A, 4A and 8A': return '248' elif eta_input == '2A and 4A': return '24' else: return '2' def run(): import os import tempfile # get form data and initialize parameters rmsd = form.rmsd.currentText() eta = eta_converter(form.eta.currentText()) receptor = form.pdb_filename.text() poses = form.dcd_filename.text() start_frame = 1 try: stop_frame = int(form.stop_frame.text()) except: stop_frame = -1 score = form.output_filename.text() complex_name = "complex" # some debugging feedback print('[RNAPosers Debugging] Parameters:', rmsd, eta, receptor, poses, stop_frame, score) # redefine pdb and dcd from .generate_complex_files import generate_complexes with tempfile.TemporaryDirectory() as tmpDir: mol2 = tmpDir + "/lig.mol2" pdb = tmpDir + "/complex.pdb" dcd = tmpDir + "/complexes.dcd" generate_complexes(receptor, poses, dcd, pdb, mol2) cmd.delete(complex_name) cmd.load(pdb, complex_name) cmd.load_traj(dcd, complex_name, state=1, stop=stop_frame) featureFile = tmpDir + "/features" dir_path = os.path.dirname(os.path.realpath(__file__)) rnaposers_cmd = " ".join(["bash", dir_path + "/run.sh", pdb, mol2, dcd, rmsd, eta, featureFile, score, str(stop_frame)]) print('[RNAPosers Debugging]',rnaposers_cmd) os.system(rnaposers_cmd) from .reorder_traj import reorder_traj reorder_traj(complex_name, score) def set_saveas_path(): filename = QtWidgets.QFileDialog.getSaveFileName()[0] if filename: form.output_filename.setText(filename) def make_set_path(form, name): def set_path(): from pymol.Qt import QtWidgets set_command = "".join(["form.", name, "_filename.setText(QtWidgets.QFileDialog.getOpenFileName()[0])"]) eval(set_command) return set_path def set_dcd_path(): form.dcd_path.setText(QtWidgets.QFileDialog.getOpenFileName()[0]) for object in ["pdb", "dcd"]: set_command = "".join(["form.button_", object, ".clicked.connect(make_set_path(form, '", object, "'))"]) eval(set_command) form.button_saveas.clicked.connect(set_saveas_path) form.button_run.clicked.connect(run) form.button_close.clicked.connect(dialog.close) return dialog
2.296875
2
offer_curves.py
ElisNycander/nordic_model
1
12775148
# -*- coding: utf-8 -*- """ Class for storing supply curves and calculating marginal costs Created on Thu Feb 7 15:34:33 2019 @author: elisn """ import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd class SupplyCurve(): """ Has panda dataframe with list of bids One or many generators may be added to the supply curve. The generators must be in the form of a panda data frame, with the columns ['c2','c1','pmax'] The marginal cost of a generator is given by MC = 2*c2*q + c1, where q ranges from 0 to pmax Hence a generator with c2 = 0 has constant marginal cost (Thus note that the coefficients are those for the Total Cost function) It is also possible to add bids, which then must have the columns [cap,mc_min,mc_max] Note that the internal functions use the bid structure. Class methods: price2quantity(price) - calculates the quantity offered for a given price, straightforward calculation quantity2price(quantity) - calculates price required for given quantity not straightforward since constant bids produce discrete jumps in the offered quantity plot() - plots supply curve """ def __init__(self,bids = pd.DataFrame(columns=['cap','mc_min','mc_max']),gens = pd.DataFrame(columns=['c2','c1','pmax']) ): self.bids = bids.append(get_generator_bids(gens),ignore_index=True).sort_values(by=['mc_min','mc_max']) self._calculate_inflection_points_() def add_bids(self,bids): """ Add bids to supply curve, in the form of a data frame """ self.bids = self.bids.append(bids,ignore_index=True).sort_values(by=['mc_min','mc_max']) self._calculate_inflection_points_() def add_gens(self,gens): """ Add generators with c1, c2, pmax coefficients to supply curve """ self.bids = self.bids.append(get_generator_bids(gens),ignore_index=True).sort_values(by=['mc_min','mc_max']) self._calculate_inflection_points_() def price2quantity(self,price): """ Calculate the offered quantity for a given price """ # loop over bids, calculate offer by each quantity = 0 for i in self.bids.index: if price >= self.bids.loc[i,'mc_min']: if self.bids.loc[i,'mc_min'] != self.bids.loc[i,'mc_max']: # variable MC q = (price - self.bids.loc[i,'mc_min'])/(self.bids.loc[i,'mc_max']-self.bids.loc[i,'mc_min'])*self.bids.loc[i,'cap'] if q > self.bids.loc[i,'cap']: q = self.bids.loc[i,'cap'] quantity += q else: # fixed MC quantity += self.bids.loc[i,'cap'] else: # mc_min exceeds price, can exit as bids are sorted by increasing mc_min return quantity return quantity def _calculate_inflection_points_(self): """ Find all inflection points in the supply curve """ ppoints = [] for i in self.bids.index: if self.bids.loc[i,'mc_min'] not in ppoints: ppoints.append(self.bids.loc[i,'mc_min']) if self.bids.loc[i,'mc_max'] not in ppoints: ppoints.append(self.bids.loc[i,'mc_max']) ppoints.sort() # find curresponding quantities qpoints = [] for point in ppoints: qpoints.append(self.price2quantity(point)) self.xprice = ppoints self.xquant = qpoints def quantity2price(self,quantity,plot=False,verbose=False): """ Calculate minimum price needed for given quantity """ idx = 0 while True: if idx == self.xprice.__len__(): # quantity > qmax, not enough capacity if verbose: print("Insufficient capacity: {0} MW available, but quantity = {1:.3}".format(self.xquant[-1],quantity)) #return np.nan p = np.nan break elif self.xquant[idx] < quantity: idx += 1 # go to next price level else: if idx == 0: # quantity <= 0 - return lowest marginal cost #print("Non-positive quantity = {0:.3}, returning lowest available MC".format(quantity)) #return self.xprice[0] p = self.xprice[0] break elif self.xquant[idx] == quantity: # price corresponds exactly to quantity #return self.xprice[idx] p = self.xprice[idx] break else: # check if offer curve is linear by evaluating quantity between prices if self.price2quantity(self.xprice[idx-1]+(self.xprice[idx]-self.xprice[idx-1])/2) > self.xquant[idx-1]: # if offer curve is linear, interpolate to find correct price # Note: Cannot interpolate linearly to next intersection point, as there # the curve may consist of a linear horizontal section to the next point # Thus we must instead find the inverse slope by summing the inverse slopes # of linear bids at this point # use inverse slope at price xprice[idx] for interpolation p = self.xprice[idx-1] + (quantity-self.xquant[idx-1]) / self._find_slope_(self.xprice[idx]) if p > self.xprice[idx]: # cap price increase up to xprice[idx] # if idx == 3: # print(p) # pass p = self.xprice[idx] #return p break else: # else return this price p = self.xprice[idx] #return self.xprice[idx] break if plot: # plot supply curve with determined point self.plot(qpoints=[quantity],ppoints=[p]) return p def _find_slope_(self,price): """ Find the slope of the supply curve, in MW/EUR (quantity/price) for given price """ # loop over all linear bids and see which are active in this price range slope = 0 # slope in MW/EUR for index in self.bids.index: if self.bids.loc[index,'mc_min'] != self.bids.loc[index,'mc_max'] and \ price > self.bids.loc[index,'mc_min'] and price <= self.bids.loc[index,'mc_max']: slope += self.bids.loc[index,'cap']/(self.bids.loc[index,'mc_max']-self.bids.loc[index,'mc_min']) return slope def plot(self,qpoints=[],ppoints=[]): """ Plot supply curve """ x_quantity = np.linspace(0,self.xquant[-1]) y_price = np.array([self.quantity2price(x) for x in x_quantity]) y2_price = np.linspace(self.xprice[0],self.xprice[-1]) x2_quantity = np.array([self.price2quantity(p) for p in y2_price]) # # merge data points into single array # x = np.array([x for x,_ in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) # y = np.array([y for _,y in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) # plt.plot() plt.plot(x_quantity,y_price,'*') plt.plot(x2_quantity,y2_price,'*') #plt.plot(x,y) # add given points to plot if qpoints.__len__() > 0: plt.plot(np.array(qpoints),np.array(ppoints),'r*') plt.grid() plt.xlabel('MW') plt.ylabel('EUR/MWh') plt.title('Supply curve') plt.legend(['quantity2price','price2quantity']) plt.show() def get_curve(self): """ Return x and y vector with points to plot the offer curve """ x_quantity = np.linspace(0,self.xquant[-1]) y_price = np.array([self.quantity2price(x) for x in x_quantity]) y2_price = np.linspace(self.xprice[0],self.xprice[-1]) x2_quantity = np.array([self.price2quantity(p) for p in y2_price]) # merge data points into single array x = np.array([x for x,_ in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) y = np.array([y for _,y in sorted(zip(list(x_quantity)+list(x2_quantity),list(y_price)+list(y2_price)))]) return x,y def get_generator_bids(gens): """ Takes a panda dataframe with generator info, and returns a dataframe with bids with the columns [cap,mc_min,mc_max] cap - total capacity of bid mc_min - minimum marginal cost (=c1) mc_max - maximum marginal cost (=2*c2) """ bids = pd.DataFrame(columns=['cap','mc_min','mc_max']) bids.loc[:,'cap'] = gens.loc[:,'pmax'] bids.loc[:,'mc_min'] = gens.loc[:,'c1'] bids.loc[:,'mc_max'] = gens.loc[:,'pmax'] * gens.loc[:,'c2']*2 + gens.loc[:,'c1'] bids.index = list(range(bids.__len__())) return bids if __name__ == "__main__": with open('Data/generators.pkl','rb') as f: gens = pickle.load(f) # gens = pd.DataFrame(columns=['c1','c2','pmax'],index=[1,2]) # gens.loc[1,:] = [10,0,10000] # gens.loc[2,:] = [20,0,10000] # gens.loc[3,:] = [15,0.0005,10000] s = SupplyCurve(gens=gens) s.plot() s.add_bids(pd.DataFrame(np.array([[10000,10,10],[10000,80,80]]),columns=['cap','mc_min','mc_max'])) s.plot() x,y = s.get_curve() plt.plot(x,y)
3.421875
3
setup.py
jsfehler/pytest-packagetree
0
12775149
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import codecs from setuptools import setup setup( name='pytest-packagetree', version='0.0.1', author='<NAME>', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', license='MIT', url='https://github.com/jsfehler/pytest-packagetree', description='Pytest plugin or package-tree', packages=['pytest_packagetree'], install_requires=['pytest>=3.5.0', 'package-tree'], classifiers=[ 'Development Status :: 4 - Beta', 'Framework :: Pytest', 'Intended Audience :: Developers', 'Topic :: Software Development :: Testing', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Operating System :: OS Independent', 'License :: OSI Approved :: MIT License', ], entry_points={ 'pytest11': [ 'packagetree = pytest_packagetree.plugin', ], }, )
1.101563
1
eufySecurityApi/cli.py
Rihan9/uefiSecurityApi
1
12775150
<gh_stars>1-10 import click, logging, asyncio, time from .api import Api from .const import TWO_FACTOR_AUTH_METHODS import asyncio _logger = logging.getLogger(__name__) logging.basicConfig(format='%(name)-10s %(levelname)-8s %(message)s') uefyApi = None #pylint: disable=no-value-for-parameter try: loop = asyncio.get_running_loop() except: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) class MyContext(click.Context): def __init__(self): self.uefyApi = None @click.group(chain=True) @click.pass_context @click.option('--debug/--no-debug', prompt='activate debug', default=False) def cli(ctx, debug): _logger.debug('cli: %s, %s' %(type(ctx), ctx)) if(ctx.obj is None): ctx.obj = MyContext() _logger.parent.setLevel(logging.DEBUG if debug else logging.INFO) _logger.setLevel(logging.DEBUG if debug else logging.INFO) @cli.command() @click.pass_context @click.option('--username', prompt='eufy security username', default=None) @click.option('--password', prompt='<PASSWORD> password', default=None) @click.option('--tfa', prompt='preferred two factor authentication method (EMAIL, SMS, PUSH)', default='EMAIL') def login(ctx, username, password, tfa): _logger.debug('Username: %s, Password: %s, tfa: %s' % (username, password, tfa)) try: ctx.parent.obj.uefyApi = Api(username=username, password=password, preferred2FAMethod=TWO_FACTOR_AUTH_METHODS[tfa]) response = asyncio.run(ctx.parent.obj.uefyApi.authenticate()) click.echo('Response: %s' % response) if(response == 'OK'): click.echo('Token: %s' % ctx.parent.obj.uefyApi.token) click.echo('Token_expire: %s' % ctx.parent.obj.uefyApi.token_expire_at) click.echo('Domain: %s' % ctx.parent.obj.uefyApi.domain) elif(response == 'send_verify_code'): verificationCode = click.prompt('Enter verification code: %s') response = asyncio.run(ctx.parent.obj.uefyApi.sendVerifyCode(verificationCode)) click.echo('Response: %s' % response) if(response == 'OK'): click.echo('Token: %s' % ctx.parent.obj.uefyApi.token) click.echo('Token_expire: %s' % ctx.parent.obj.uefyApi.token_expire_at) click.echo('Domain: %s' % ctx.parent.obj.uefyApi.domain) except Exception as e: _logger.exception(e) pass pass @cli.command() @click.pass_context @click.option('--token', prompt='eufy token', default=None, required=False) @click.option('--token_expire_at', prompt='eufy token expiratio timestamp', default=None, required=False) @click.option('--domain', prompt='eufy domain', default=None, required=False) def session(ctx, token, domain, token_expire_at): ctx.parent.obj.uefyApi = Api(token=token, domain=domain, token_expire_at=int(token_expire_at)) @cli.command() @click.pass_context def devices(ctx): try: asyncio.run(ctx.parent.obj.uefyApi.update()) for deviceSn, device in ctx.parent.obj.uefyApi.devices.items(): click.echo(device) for stationSn, station in ctx.parent.obj.uefyApi.stations.items(): click.echo(station) # print(ctx.parent.obj.uefyApi.devices.values()) except Exception as e: _logger.exception(e) pass @cli.command() @click.pass_context @click.option('--serial', prompt='eufy device serial id', default=None, required=False) def monitor(ctx, serial): asyncio.run(ctx.parent.obj.uefyApi.update(device_sn=serial)) async def update_print(attributes): for attribute in attributes: # _logger.debug(attribute) click.echo('updated: %s, from \'%s\' to \'%s\'' % attribute) if(serial in ctx.parent.obj.uefyApi.devices): ctx.parent.obj.uefyApi.devices[serial].subscribe([], update_print) try: for i in range(0,60*5): asyncio.run(ctx.parent.obj.uefyApi.update(device_sn=serial)) time.sleep(1) except Exception as e: _logger.exception(e) else: click.echo('unknown serial: %s' % serial) if __name__ == '__main__': cli() loop.run_until_complete() loop.close()
2.3125
2