max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
stograde/specs/file_options.py
StoDevX/stograde
7
12774551
<gh_stars>1-10 from dataclasses import dataclass @dataclass class FileOptions: """Represents options available for files in specs""" compile_optional: bool = False hide_contents: bool = False optional: bool = False timeout: int = 4 truncate_contents: int = 10000 truncate_output: int = 10000 web_file: bool = False def update(self, options: dict): self.compile_optional = options.get('optional_compile', self.compile_optional) self.hide_contents = options.get('hide_contents', self.hide_contents) self.optional = options.get('optional', self.optional) self.timeout = options.get('timeout', self.timeout) self.truncate_contents = options.get('truncate_contents', self.truncate_contents) self.truncate_output = options.get('truncate_output', self.truncate_output) self.web_file = options.get('web', self.web_file) return self
2.484375
2
tflitehub/manual_test.py
rsuderman/iree-samples
12
12774552
import absl.flags import absl.testing import test_util absl.flags.DEFINE_string('model', None, 'model path to execute') class ManualTest(test_util.TFLiteModelTest): def __init__(self, *args, **kwargs): super(ManualTest, self).__init__(absl.flags.FLAGS.model, *args, **kwargs) def compare_results(self, iree_results, tflite_results, details): super(ManualTest, self).compare_results(iree_results, tflite_results, details) def test_compile_tflite(self): if self.model_path is not None: self.compile_and_execute() if __name__ == '__main__': absl.testing.absltest.main()
2.296875
2
app1/app/api/v1/hello/hello.py
hzjsea/fastapi-admin
0
12774553
<gh_stars>0 #!/usr/bin/env python3 # encoding: utf-8 """ @author: hzjsea @file: hello.py @time: 2021/11/19 10:34 上午 """ from fastapi import APIRouter from app1.app.utils.xhr import response_ok, response_error router = APIRouter() @router.get("/hello", summary="hello get请求格式") async def hello(): data = { "hahaha": "hello word!" } return response_ok(data) @router.post("/hello", summary="hello post请求格式") async def hello(): data = "hello word!" return response_ok(data) @router.put("/hello", summary="hello put请求格式") async def hello(): data = "hello word!" return response_ok(data) @router.delete("/hello", summary="hello delete请求格式") async def hello(): data = "hello word!" return response_ok(data)
2.578125
3
Profile/migrations/0002_rename_name_profile.py
higornobrega/Cadastrar-formulario-sem-refrash
0
12774554
<gh_stars>0 # Generated by Django 3.2.4 on 2021-07-16 19:53 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Profile', '0001_initial'), ] operations = [ migrations.RenameModel( old_name='Name', new_name='Profile', ), ]
1.6875
2
tests/google_analytics/test_google_analytics.py
T-FitAndFat/toucan-connectors
0
12774555
import json import pytest from toucan_connectors.google_analytics.google_analytics_connector import ( GoogleAnalyticsConnector, GoogleAnalyticsDataSource) def test_google_analytics(mocker): gac = GoogleAnalyticsConnector( type="GoogleAnalytics", name="Test", credentials={ "type": "test", "project_id": "test", "private_key_id": "test", "private_key": "test", "client_email": "test", "client_id": "test", "auth_uri": "test", "token_uri": "test", "auth_provider_x509_cert_url": "test", "client_x509_cert_url": "test" } ) gads = GoogleAnalyticsDataSource( name="Test", domain="test", report_request={ "viewId": "0123456789", "dateRanges": [ {"startDate": "2018-06-01", "endDate": "2018-07-01"} ] }) fixture = json.load(open('tests/google_analytics/fixtures/reports.json')) module = 'toucan_connectors.google_analytics.google_analytics_connector' mocker.patch(f'{module}.ServiceAccountCredentials.from_json_keyfile_dict') mocker.patch(f'{module}.build') mocker.patch(f'{module}.get_query_results').return_value = fixture['reports'][0] df = gac.get_df(gads) assert df.shape == (3, 11) @pytest.mark.skip(reason="This uses a live instance") def test_live_instance(): gac = GoogleAnalyticsConnector( type="GoogleAnalytics", name="Test", credentials={ "type": "", "project_id": "", "private_key_id": "", "private_key": "", "client_email": "", "client_id": "", "auth_uri": "", "token_uri": "", "auth_provider_x509_cert_url": "", "client_x509_cert_url": "" } ) gads = GoogleAnalyticsDataSource( name="Test", domain="test", report_request={ "viewId": "119151898", "pageSize": 100, "orderBys": [ { "fieldName": "ga:date", "orderType": "VALUE", "sortOrder": "%(sortOrder)s" } ], "dimensions": [ {"name": "ga:hostname"}, {"name": "ga:date"}, {"name": "ga:dimension1"}, {"name": "ga:deviceCategory"}, {"name": "ga:eventLabel"} ], "dateRanges": [ {"startDate": "2018-06-01", "endDate": "2018-07-01"} ], "metrics": [ {"expression": "ga:sessions"}, {"expression": "ga:sessionDuration"} ] }, parameters={'sortOrder': 'DESCENDING'} ) df = gac.get_df(gads) assert df.shape == (230, 11)
2.09375
2
python_ne/core/ga/matplotlib_logger.py
MatheusZickuhr/python-neat
1
12774556
<gh_stars>1-10 from python_ne.utils.observer import Observer import matplotlib.pyplot as plt import numpy as np import os class MatplotlibLogger(Observer): def __init__(self): self.logged_data = [] def notify(self, *args, **kwargs): data = { 'generation': kwargs['current_generation'], 'best_element_fitness': kwargs['best_element_fitness'], 'time_to_run_generation': kwargs['generation_time'], 'population_fitness_std': kwargs['population_fitness_std'] } self.logged_data.append(data) def save_fitness_chart(self, file_path='', fitness_label='fitness', generation_label='generation', chart_title='generation - fitness'): x = [data['generation'] for data in self.logged_data] y = [data['best_element_fitness'] for data in self.logged_data] fig, ax = plt.subplots() ax.plot(x, y) ax.set(xlabel=generation_label, ylabel=fitness_label, title=chart_title) ax.grid() fig.savefig(file_path) def save_time_chart(self, file_path, time_label='time (s)', generation_label='generation', chart_title='generation - time'): x = [data['generation'] for data in self.logged_data] y = [data['time_to_run_generation'] for data in self.logged_data] fig, ax = plt.subplots() ax.plot(x, y) ax.set(xlabel=generation_label, ylabel=time_label, title=chart_title) ax.grid() fig.savefig(file_path) def save_std_chart(self, file_path, std_label='std', generation_label='generation', chart_title='generation - std'): x = [data['generation'] for data in self.logged_data] y = [data['population_fitness_std'] for data in self.logged_data] fig, ax = plt.subplots() ax.plot(x, y) ax.set(xlabel=generation_label, ylabel=std_label, title=chart_title) ax.grid() fig.savefig(file_path)
2.625
3
hardware-check.py
thysia-zosa/hardware-check
0
12774557
#! /usr/bin/env python3 # # Authors: <NAME>, <NAME>, <NAME> # (c) 2021 from pathlib import Path from datetime import datetime import os.path import requests import yaml import json from pyspectator.processor import Cpu from crontab import CronTab import sys # constants CONFIG_FILE = 'config.yaml' MAX_CPU_TEMP = 'maxCpuTemp' CHECK_INTERVAL = 'checkInterval' TELEGRAM_CHAT = 'telegramChatID' TELEGRAM_API = 'telegramApiUrl' TELEGRAM_TOKEN = 'telegramToken' # initialize main variables maxCpuTemp = None checkInterval = None telegramChatID = None telegramToken = None time = str(datetime.now()) log = {} warnings = [] warningMessage = '' codePath = str(Path(__file__).parent.absolute()) + '/' if os.path.isfile(codePath + CONFIG_FILE): # read config file try: with open(codePath + CONFIG_FILE, 'r') as yamlFile: config = yaml.load(yamlFile, Loader=yaml.CLoader) if MAX_CPU_TEMP in config: maxCpuTemp = config[MAX_CPU_TEMP] if CHECK_INTERVAL in config: checkInterval = config[CHECK_INTERVAL] if TELEGRAM_CHAT in config: telegramChatID = config[TELEGRAM_CHAT] if TELEGRAM_TOKEN in config: telegramToken = config[TELEGRAM_TOKEN] except BaseException as err: print('Error:', err) else: sys.exit('config file missing') # In case something went wrong, assign default values if maxCpuTemp == None or isinstance(maxCpuTemp, float) != True: maxCpuTemp = 80.0 if checkInterval == None or isinstance(checkInterval, int) != True: checkInterval = 10 # In case something telegrammy is missing, abort: Programm is not runnable if telegramChatID == None or isinstance(telegramChatID, str) != True or \ telegramToken == None or isinstance(telegramToken, str) != True: sys.exit('telegram config missing') # update cronjob, if the user has changed interval time myCron = CronTab(user=True) intTime = '*/' + str(checkInterval) for job in myCron: if job.comment == 'hardwareCheck' and str(job.minute) != intTime: job.minute.every(checkInterval) myCron.write() # read cpu-temperature cpu = Cpu(monitoring_latency=1) temperature = cpu.temperature log['cpu-temp'] = temperature # check if cpu-temperature exceeds max if temperature > maxCpuTemp: warnings.append('Temperature is too high: ' + \ str(temperature) + ' (max: ' + str(maxCpuTemp) + ')') # save data to logfile try: with open(codePath + 'log.json', 'r+') as logFile: data = json.load(logFile) data.update({time: log}) logFile.seek(0) json.dump(data, logFile, indent=2, ensure_ascii=False) except BaseException as err: print('Error:', err) # write telegram message if len(warnings) > 0: warnings.insert(0, 'Your Computer has occurred a problem:') warningMessage = '\n'.join(warnings) send_text = 'https://api.telegram.org/' + telegramToken + \ '/sendMessage?chat_id=' + telegramChatID + \ '&parse_mode=Markdown&text=' + warningMessage try: response = requests.get(send_text) except requests.exceptions as err: print('Error:', err)
2.25
2
src/slippinj/cli/scripts/basic_script.py
scm-spain/slippin-jimmy
7
12774558
class BasicScript(object): def __init__(self, parser): """ Initialize the class :param parser: ArgumentParser """ super(BasicScript, self).__init__() self._parser = parser def get_arguments(self): """ Get the arguments to configure current script, should be implementd in children classes :return: list """ raise StandardError('Implement get_arguments method') def run(self, args, injector): raise StandardError('Implement run method') def configure(self): """ Configure the component before running it :rtype: Class instance """ self.__set_arguments() return self def __set_arguments(self): parser = self._parser.add_parser(self.__class__.__name__.lower(), help=self.__class__.__doc__, conflict_handler='resolve') arguments = self.get_arguments() for argument in arguments: short = argument['short'] long = argument['long'] del argument['short'] del argument['long'] parser.add_argument(short, long, **argument) def get_wf_configuration(self, args, injector): object_configuration = injector.get('object_configuration') if 1 >= len(object_configuration): configuration_file = args.configuration_file if 'configuration_file' in args and None != args.configuration_file else injector.get( 'interactive_configuration_file').get(args.wf_dir) configuration = injector.get('wf_configuration').get_workflow_configuration(configuration_file) configuration['config_paths'] = configuration_file for key in configuration: object_configuration[key] = configuration[key] return object_configuration
3.0625
3
lib/kube_objs/volumes.py
olx-global/rubiks
60
12774559
<filename>lib/kube_objs/volumes.py # (c) Copyright 2017-2018 OLX from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import OrderedDict from kube_obj import KubeSubObj, KubeObj from kube_types import * import_relative('selectors', 'BaseSelector') import_relative('pod', 'Memory') class AWSVolID(String): validation_text = 'Expected amazon volume id' def do_check(self, value, path): if not String().do_check(self, value, path): return False if value.startswith('aws://'): value = value.split('/')[-1] if not value.startswith('vol-'): return False if len(value) == 4: return False if len(value[4:].rstrip('0123456789abcdef')) != 0: return False return True class AWSElasticBlockStore(KubeSubObj): _defaults = { 'volumeID': None, 'fsType': 'ext4', } _types = { 'volumeID': AWSVolID, 'fsType': Enum('ext4'), } def render(self): return self.renderer(order=('volumeID', 'fsType')) class PersistentVolumeRef(KubeSubObj): _defaults = { 'apiVersion': None, 'kind': 'PersistentVolumeClaim', 'name': '', 'ns': '', } _types = { 'apiVersion': Nullable(String), 'name': Nullable(Identifier), 'kind': Nullable(CaseIdentifier), 'ns': Nullable(Identifier), } _parse = { 'ns': ('namespace',), } _exclude = { '.resourceVersion': True, '.uid': True, } def render(self): ret = self.renderer(order=('apiVersion', 'name', 'kind', 'ns')) if 'ns' in ret: ret['namespace'] = ret['ns'] del ret['ns'] return ret class PersistentVolume(KubeObj): apiVersion = 'v1' kind = 'PersistentVolume' kubectltype = 'persistentvolume' _uses_namespace = False _output_order = 35 _defaults = { 'accessModes': ['ReadWriteOnce'], 'capacity': None, 'awsElasticBlockStore': None, 'persistentVolumeReclaimPolicy': None, 'claimRef': None, } _types = { 'accessModes': List(Enum('ReadWriteOnce', 'ReadOnlyMany', 'ReadWriteMany')), 'capacity': Memory, 'awsElasticBlockStore': Nullable(AWSElasticBlockStore), 'persistentVolumeReclaimPolicy': Nullable(Enum('Retain', 'Recycle', 'Delete')), 'claimRef': Nullable(PersistentVolumeRef), } _parse_default_base = ('spec',) _parse = { 'capacity': ('spec', 'capacity', 'storage'), } _exclude = { '.status': True, } def do_validate(self): if len(filter(lambda x: self._data[x] is not None, ('awsElasticBlockStore',))) != 1: raise KubeObjValidationError(self, "awsElasticBlockStore must be specified") return True def render(self): ret = self.renderer(order=('accessModes', 'capacity')) del ret['name'] ret['capacity'] = {'storage': ret['capacity']} return {'metadata': {'name': self._data['name']}, 'spec': ret} class PersistentVolumeClaim(KubeObj): apiVersion = 'v1' kind = 'PersistentVolumeClaim' kubectltype = 'persistentvolumeclaim' _output_order = 40 _defaults = { 'accessModes': ['ReadWriteOnce'], 'request': None, 'selector': None, 'volumeName': None, } _types = { 'accessModes': List(Enum('ReadWriteOnce', 'ReadOnlyMany', 'ReadWriteMany')), 'request': Memory, 'selector': Nullable(BaseSelector), 'volumeName': Nullable(Identifier), } _parse_default_base = ('spec',) _parse = { 'request': ('spec', 'resources', 'requests', 'storage'), } _exclude = { '.status': True, } def xf_volumeName(self, v): if isinstance(v, PersistentVolume): return v.name return v def render(self): ret = self.renderer(return_none=True) spec = OrderedDict() if 'accessModes' in ret: spec['accessModes'] = ret['accessModes'] if 'request' in ret: spec['resources'] = OrderedDict(requests=OrderedDict(storage=ret['request'])) if 'selector' in ret: spec['selector'] = ret['selector'] if 'volumeName' in ret: spec['volumeName'] = ret['volumeName'] return {'metadata': {'name': ret['name']}, 'spec': spec}
2.03125
2
services/exchangeservice.py
kimi0230/gogopowerkimibot
4
12774560
from bs4 import BeautifulSoup # fix: InsecureRequestWarning: Unverified HTTPS request is being made to host import requests.packages.urllib3 # 測試table # import prettytable as pt url = "https://rate.bot.com.tw/xrt?Lang=zh-TW" herders = { 'User-Agent': 'Mozilla/5.0 (Macintosh Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.101 Safari/537.36' } defaultCurrency = ["美金 (USD)", "日圓 (JPY)", "英鎊 (GBP)", "人民幣 (CNY)", "歐元 (EUR)"] allCurrency = [ "美金 (USD)", "港幣 (HKD)", "英鎊 (GBP)", "澳幣 (AUD)", "加拿大幣 (CAD)", "新加坡幣 (SGD)", "瑞士法郎 (CHF)", "日圓 (JPY)", "南非幣 (ZAR)", "瑞典幣 (SEK)", "紐元 (NZD)", "泰幣 (THB)", "菲國比索 (PHP)", "印尼幣 (IDR)", "歐元 (EUR)", "韓元 (KRW)", "越南盾 (VND)", "馬來幣 (MYR)", "人民幣 (CNY)", ] def getBoTExchange(msg=""): try: if msg != "": msg = msg.upper() for a in allCurrency: if msg in a: msg = a found = True break if not found: return None # fix: InsecureRequestWarning: Unverified HTTPS request is being made to host requests.packages.urllib3.disable_warnings() res = requests.get(url, headers=herders, verify=False) res.encoding = 'UTF-8' soup = BeautifulSoup(res.text, "lxml") time = soup.find( "span", class_="time").text.strip() table = [s for s in soup.select("table.table tbody tr")] queryResult = {} for t in table: currency = t.select("td div.visible-phone")[0].text.strip() cashRateBuy = t.select("td")[1].text.strip() cashRateSell = t.select("td")[2].text.strip() spotRateBuy = t.select("td")[3].text.strip() spotRateSell = t.select("td")[4].text.strip() queryResult[currency] = [cashRateBuy, cashRateSell, spotRateBuy, spotRateSell] result = {} if msg == "": # 只抓預設值 result = {d: queryResult[d] for d in defaultCurrency} else: result = {msg: queryResult[msg]} if len(result) > 0: return result return None except: return None def toMsg(source=None): try: if source != None: resMsg = "|幣別\t\t|即期買\t|即期賣\t|\n" for r in source: resMsg += "|%s | %s | %s |\n" % ( r, source[r][2], source[r][3]) resMsg += "https://rate.bot.com.tw/xrt?Lang=zh-TW" return resMsg else: return None except: return None if __name__ == "__main__": print(toMsg(getBoTExchange()))
2.8125
3
applications/CoSimulationApplication/mpi_extension/MPIExtension.py
clazaro/Kratos
778
12774561
import KratosMultiphysics.mpi # importing the MPI-Core, since the MPIExtension directly links to it from KratosCoSimulationMPIExtension import *
1.039063
1
cadise-blender/core/__init__.py
xh5a5n6k6/cadise-blender
1
12774562
<gh_stars>1-10 from . import ( exporter, renderer ) import bpy class CadiseAddonPreferences(bpy.types.AddonPreferences): # Reference to T.C. Chang's work, this must match add-on's name # https://github.com/TzuChieh/Photon-v2/blob/develop/BlenderAddon/PhotonBlend/bmodule/__init__.py bl_idname = __package__.split('.')[0] install_path: bpy.props.StringProperty ( name = "Installation Path", description = "Installation path to Cadise renderer (binary)", subtype = "DIR_PATH", default = "" ) def draw(self, context): layout = self.layout layout.prop(self, "install_path") def include_submodule(moduleManager): moduleManager.add_class(CadiseAddonPreferences) exporter.include_submodule(moduleManager) renderer.include_submodule(moduleManager)
1.640625
2
summary/__init__.py
svven/summary
12
12774563
<filename>summary/__init__.py """ Summary class improves extraction.Extracted by providing incremental load mechanism, and especially image validation. But the main difference is that it performs the requests. Extraction is performed gradually by parsing the HTML <head> tag first, applying specific head extraction techniques, and goes on to the <body> only if Summary data is not complete. """ import logging import config, request, extraction, filters from urlparse import urlparse from url import canonicalize_url from urlnorm import norm from contextlib import closing # try: # import lxml # parser = 'lxml' # except: # parser = None # from bs4 import BeautifulSoup, Comment site = lambda url: urlparse(url).netloc decode = lambda mystr, encoding: \ isinstance(mystr, str) and mystr.decode(encoding, 'ignore') or mystr class URLError(Exception): pass class HTMLParseError(Exception): pass class Summary(object): "Provides incremental load mechanism and validation." def __init__(self, source_url=None): """ Unlike Extracted ctor, this one just sets the source_url. Extracted data is loaded later gradually by calling extract. """ self._html = "" self.titles = [] self.descriptions = [] self.images = [] self.urls = [] self.source_url = source_url self.clean_url = self.source_url # Non-plural properties @property def title(self): "Return the best title, if any." if self.titles: return self.titles[0] else: return None @property def description(self): "Return the best description, if any." if self.descriptions: return self.descriptions[0] else: return None @property def image(self): "Return the best image, if any." if self.images: return self.images[0] else: return None @property def url(self): "Return the best canonical url, or the cleaned source url." if self.urls: return self.urls[0] else: return self.clean_url def _is_clear(self): return not (self.titles or self.descriptions or self.images or self.urls) def _is_complete(self): return self.titles and self.descriptions and self.images and self.urls and True def _clear(self): self.titles = [] self.descriptions = [] self.images = [] self.urls = [] def _load(self, titles=[], descriptions=[], images=[], urls=[], **kwargs): """ Loads extracted data into Summary. Performs validation and filtering on-the-fly, and sets the non-plural fields to the best specific item so far. If GET_ALL_DATA is False, it gets only the first valid item. """ enough = lambda items: items # len(items) >= MAX_ITEMS if config.GET_ALL_DATA or not enough(self.titles): titles = filter(None, map(self._clean_text, titles)) self.titles.extend(titles) if config.GET_ALL_DATA or not enough(self.descriptions): descriptions = filter(None, map(self._clean_text, descriptions)) self.descriptions.extend(descriptions) ## Never mind the urls, they can be bad not worth it # if config.GET_ALL_DATA or not enough(self.urls): # # urls = [self._clean_url(u) for u in urls] # urls = filter(None, map(self._clean_url, urls)) # self.urls.extend(urls) if config.GET_ALL_DATA: # images = [i for i in [self._filter_image(i) for i in images] if i] images = filter(None, map(self._filter_image, images)) self.images.extend(images) elif not enough(self.images): for i in images: image = self._filter_image(i) if image: self.images.append(image) if enough(self.images): break # Picking the best item by sorting # self.titles = sorted(self.titles, key=len) # self.descriptions = sorted(self.descriptions, key=len, reverse=True) # self.images = sorted(self.images, key=lambda i: sum(i.size), reverse=True) def _clean_text(self, text): """ Checks for bad text like "{{ metatags.title }}" and such """ if text.startswith('{{') and text.endswith('}}'): return None return text def _clean_url(self, url): """ Canonicalizes the url, as it is done in Scrapy. And keeps only USEFUL_QUERY_KEYS. It also strips the trailing slash to help identifying dupes. """ # TODO: Turn this into regex if not url.startswith('http') or url.endswith('}}') or 'nojs_router' in url: return None if site(norm(url).lower()) in config.NONCANONIC_SITES: clean_url = canonicalize_url(url, keep_params=True) else: clean_url = canonicalize_url(url) return clean_url def _filter_image(self, url): "The param is the image URL, which is returned if it passes all the filters." return reduce(lambda f, g: f and g(f), [ filters.AdblockURLFilter()(url), filters.NoImageFilter(), filters.SizeImageFilter(), filters.MonoImageFilter(), filters.FormatImageFilter(), ]) def _get_tag(self, response, tag_name="html", encoding="utf-8"): """ Iterates response content and returns the tag if found. If not found, the response content is fully consumed so self._html equals response.content, and it returns None. """ def find_tag(tag_name): tag_start = tag_end = None found = lambda: \ tag_start is not None and tag_end is not None html = self._html.lower() start = html.find("<%s" % tag_name) if start >= 0: tag_start = start else: return None # no tag end = html.find("</%s>" % tag_name) if end > tag_start: tag_end = end+len(tag_name)+3 elif consumed: tag_end = -1 # till the end if found(): return self._html[tag_start:tag_end] return None consumed = getattr(response, 'consumed', False) if not consumed: stream = getattr(response, 'stream', None) if stream is None: stream = response.iter_content(config.CHUNK_SIZE) # , decode_unicode=True response.stream = stream while True: try: chunk = next(stream) self._html += chunk tag = find_tag(tag_name) if tag: return tag if len(self._html) > config.HTML_MAX_BYTESIZE: raise HTMLParseError('Maximum response size reached.') except StopIteration: response.consumed = True tag = find_tag(tag_name) return decode(tag, encoding) # decode here def _extract(self, html, url, techniques): extractor = extraction.SvvenExtractor(techniques=techniques) extracted = extractor.extract(html, source_url=url) self._load(**extracted) def extract(self, check_url=None, http_equiv_refresh=True): """ Downloads HTML <head> tag first, extracts data from it using specific head techniques, loads it and checks if is complete. Otherwise downloads the HTML <body> tag as well and loads data extracted by using appropriate semantic techniques. Eagerly calls check_url(url) if any, before parsing the HTML. Provided function should raise an exception to break extraction. E.g.: URL has been summarized before; URL points to off limits websites like foursquare.com, facebook.com, bitly.com and so on. """ # assert self._is_clear() logger = logging.getLogger(__name__) logger.info("Extract: %s", self.clean_url) with closing(request.get(self.clean_url, stream=True)) as response: response.raise_for_status() mime = response.headers.get('content-type') if mime and not ('html' in mime.lower()): raise HTMLParseError('Invalid Content-Type: %s' % mime) self.clean_url = self._clean_url(response.url) if self.clean_url is None: raise URLError('Bad url: %s' % response.url) if check_url is not None: check_url(url=self.clean_url) encoding = config.ENCODING or response.encoding self._html = "" if config.PHANTOMJS_BIN and \ site(self.clean_url) in config.PHANTOMJS_SITES: self._html = request.phantomjs_get(self.clean_url) response.consumed = True head = self._get_tag(response, tag_name="head", encoding=encoding) if http_equiv_refresh: # Check meta http-equiv refresh tag html = head or decode(self._html, encoding) self._extract(html, self.clean_url, [ "summary.techniques.HTTPEquivRefreshTags", ]) new_url = self.urls and self.urls[0] if new_url and new_url != self.clean_url: logger.warning("Refresh: %s", new_url) self._clear() self.clean_url = new_url return self.extract(check_url=check_url, http_equiv_refresh=False) if head: logger.debug("Got head: %s", len(head)) self._extract(head, self.clean_url, [ "extraction.techniques.FacebookOpengraphTags", "extraction.techniques.TwitterSummaryCardTags", "extraction.techniques.HeadTags" ]) else: logger.debug("No head: %s", self.clean_url) if config.GET_ALL_DATA or not self._is_complete(): body = self._get_tag(response, tag_name="body", encoding=encoding) if body: logger.debug("Got body: %s", len(body)) self._extract(body, self.clean_url, [ "extraction.techniques.HTML5SemanticTags", "extraction.techniques.SemanticTags" ]) else: logger.debug("No body: %s", self.clean_url) if not head and not body: raise HTMLParseError('No head nor body tags found.') del self._html # no longer needed # that's it
3.140625
3
Fluid/io/fluid-cloudnative/module/data_load_spec.py
Rui-Tang/fluid-client-python
1
12774564
# coding: utf-8 """ fluid client for fluid # noqa: E501 OpenAPI spec version: v0.1 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from Fluid.io.fluid-cloudnative.module.target_dataset import TargetDataset # noqa: F401,E501 from Fluid.io.fluid-cloudnative.module.target_path import TargetPath # noqa: F401,E501 class DataLoadSpec(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'dataset': 'TargetDataset', 'load_metadata': 'bool', 'target': 'list[TargetPath]' } attribute_map = { 'dataset': 'dataset', 'load_metadata': 'loadMetadata', 'target': 'target' } def __init__(self, dataset=None, load_metadata=None, target=None): # noqa: E501 """DataLoadSpec - a model defined in Swagger""" # noqa: E501 self._dataset = None self._load_metadata = None self._target = None self.discriminator = None if dataset is not None: self.dataset = dataset if load_metadata is not None: self.load_metadata = load_metadata if target is not None: self.target = target @property def dataset(self): """Gets the dataset of this DataLoadSpec. # noqa: E501 Dataset defines the target dataset of the DataLoad # noqa: E501 :return: The dataset of this DataLoadSpec. # noqa: E501 :rtype: TargetDataset """ return self._dataset @dataset.setter def dataset(self, dataset): """Sets the dataset of this DataLoadSpec. Dataset defines the target dataset of the DataLoad # noqa: E501 :param dataset: The dataset of this DataLoadSpec. # noqa: E501 :type: TargetDataset """ self._dataset = dataset @property def load_metadata(self): """Gets the load_metadata of this DataLoadSpec. # noqa: E501 LoadMetadata specifies if the dataload job should load metadata # noqa: E501 :return: The load_metadata of this DataLoadSpec. # noqa: E501 :rtype: bool """ return self._load_metadata @load_metadata.setter def load_metadata(self, load_metadata): """Sets the load_metadata of this DataLoadSpec. LoadMetadata specifies if the dataload job should load metadata # noqa: E501 :param load_metadata: The load_metadata of this DataLoadSpec. # noqa: E501 :type: bool """ self._load_metadata = load_metadata @property def target(self): """Gets the target of this DataLoadSpec. # noqa: E501 Target defines target paths that needs to be loaded # noqa: E501 :return: The target of this DataLoadSpec. # noqa: E501 :rtype: list[TargetPath] """ return self._target @target.setter def target(self, target): """Sets the target of this DataLoadSpec. Target defines target paths that needs to be loaded # noqa: E501 :param target: The target of this DataLoadSpec. # noqa: E501 :type: list[TargetPath] """ self._target = target def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DataLoadSpec, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DataLoadSpec): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
1.984375
2
run.py
mrprogrammer2938/Translate
0
12774565
<reponame>mrprogrammer2938/Translate #!/usr/bin/python3 # This Programm write by Mr.nope # Version 1.3.0 from os import system as command import sys try: from deep_translator import GoogleTranslator except ImportError: os.system("pip3 install deep_translator") from platform import uname try: from colorama import Fore,init init() except ImportError: os.system("pip3 install colorama") End = '\033[0m' opt = "\nEnter Word: " system = uname()[0] banner = Fore.BLUE + """ d888888P dP dP 88 88 88 88 88d888b. .d8888b. 88d888b. .d8888b. 88 .d8888b. d8888P .d8888b. 88 88' `88 88' `88 88' `88 Y8ooooo. 88 88' `88 88 88ooood8 88 88 88. .88 88 88 88 88 88. .88 88 88. ... dP dP `88888P8 dP dP `88888P' dP `88888P8 dP `88888P' """ + End def cls(): if system == 'Linux': command("clear") elif system == 'Windows': command("cls") else: print("\nPlease, Run This Programm on Linux, Windows and MacOS!\n") sys.exit() def main(): command("printf '\033]2;Translate\a'") cls() print(banner) print("\nUsage: " + Fore.GREEN + "Ctrl + D " + End + "To Exit...!\n") word = input(opt) if word == '': try1() else: run(word) def try1(): try_to_menu = input("\nDo you want to try again? [y/n] ") if try_to_menu == 'y': main() elif try_to_menu == 'n': ext() else: try1() def ext(): cls() print("\nExiting...") sys.exit() def run(var): print("\nExample(fa/en/es)\n") len = input("\nEnter Source Language: ") len_2 = input("\nEnter target language: ") run_translate = GoogleTranslator(source=len,target=len_2).translate(var) print("\n-----------------------------\n") print(run_translate) try1() if __name__ == '__main__': try: try: main() except KeyboardInterrupt: print("\nCtrl + C") try2() except EOFError: print("\nCtrl + D") print("\nExiting...") sys.exit()
2.546875
3
examples/using_steem_offline.py
creativechain/crea-python-lib
0
12774566
from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys from datetime import datetime, timedelta import time import io import logging from crea.blockchain import Blockchain from crea.block import Block from crea.account import Account from crea.amount import Amount from crea.witness import Witness from creabase import operations from crea.transactionbuilder import TransactionBuilder from creagraphenebase.account import PasswordKey, PrivateKey, PublicKey from crea.crea import Crea from crea.utils import parse_time, formatTimedelta from creaapi.exceptions import NumRetriesReached from crea.nodelist import NodeList from creabase.transactions import getBlockParams log = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) # example wif wif = "<KEY>" if __name__ == "__main__": stm_online = Crea() ref_block_num, ref_block_prefix = getBlockParams(stm_online) print("ref_block_num %d - ref_block_prefix %d" % (ref_block_num, ref_block_prefix)) stm = Crea(offline=True) op = operations.Transfer({'from': 'creabot', 'to': 'holger80', 'amount': "0.001 CBD", 'memo': ""}) tb = TransactionBuilder(crea_instance=stm) tb.appendOps([op]) tb.appendWif(wif) tb.constructTx(ref_block_num=ref_block_num, ref_block_prefix=ref_block_prefix) tx = tb.sign(reconstruct_tx=False) print(tx.json())
1.890625
2
python/pyclaw/evolve/__init__.py
geoflows/geoclaw-4.x
2
12774567
<filename>python/pyclaw/evolve/__init__.py #!/usr/bin/env python # encoding: utf-8 """ __init__.py Created by <NAME> on 2008-08-21. Copyright (c) 2008 University of Washington. All rights reserved. """ # This __init__ script only imports common utilities, most of the import # should be done depending on the solver needed __all__ = ['ClawSolver1D','rp'] from clawpack import ClawSolver1D from rp import *
1.46875
1
process.py
nrc/rustc-timing-scripts
2
12774568
<reponame>nrc/rustc-timing-scripts<gh_stars>1-10 import json import os import re import sys VERBOSE = False LL_RATIO = False re_commit = re.compile("commit (.*)") re_date = re.compile("Date: (.*)") re_rustc = re.compile("rustc: .*/([\w\-_\.]*)") re_time_and_mem = re.compile("( *)time: ([0-9\.]*); rss: ([0-9]*)MB\s*(.*)") re_time = re.compile("( *)time: ([0-9\.]*)\s*(.*)") re_incremental_reuse = re.compile(" *incremental: re-using (\d+) out of (\d+) modules") re_incremental_dirty = re.compile(" *module .* is dirty because .* changed or was removed") re_loc = re.compile("Lines of code: ([0-9]*)") re_pre_nc = re.compile("Pre\-expansion node count: ([0-9]*)") re_post_nc = re.compile("Post\-expansion node count: ([0-9]*)") def process(label, arg, n): in_files = [] for i in range(0, n): in_name = os.path.join('raw', '%s--%s--%s.log'%(label, arg, i)) in_files.append(open(in_name)) out_name = os.path.join('processed', '%s--%s.json'%(label, arg)) if VERBOSE: print "input:", in_files print "output:", out_name with open(out_name, 'w') as out_file: process_files(in_files, out_file) for f in in_files: f.close() def process_files(in_files, out_file): data = {} data['header'] = mk_header(in_files[0]) times = map(lambda f: mk_times(f), in_files) data['times'] = map(post_process_times, merge_times(times)) json.dump(data, out_file, indent=4) def mk_header(in_file): commit_line = in_file.readline() # skip merge and author lines author_line = in_file.readline() if author_line.startswith('Merge'): in_file.readline() date_line = in_file.readline() header = {} header['commit'] = re_commit.match(commit_line).group(1) header['date'] = re_date.match(date_line).group(1) return header def mk_times(in_file): all_times = [] # The last mentioned crate being compiled. last_file = None cur_times = None loc = None pre_nc = None post_nc = None for line in in_file: time_and_mem_match = re_time_and_mem.match(line) if time_and_mem_match: assert(last_file) if not cur_times: cur_times = {} cur_times['crate'] = last_file cur_times['times'] = [] cur_times['rss'] = [] indent = time_and_mem_match.group(1) # TODO do something with 'sub-times' if not indent: time = time_and_mem_match.group(2) mem = time_and_mem_match.group(3) label = time_and_mem_match.group(4) cur_times['times'].append((label, float(time))) cur_times['rss'].append((label, int(mem))) else: time_match = re_time.match(line) if time_match: assert(last_file) if not cur_times: cur_times = {} cur_times['crate'] = last_file cur_times['times'] = [] cur_times['rss'] = [] indent = time_match.group(1) # TODO do something with 'sub-times' if not indent: time = time_match.group(2) label = time_match.group(3) cur_times['times'].append((label, float(time))) cur_times['rss'].append((label, int(0))) else: incremental_reuse_match = re_incremental_reuse.match(line) incremental_dirty_match = re_incremental_dirty.match(line) if incremental_reuse_match or incremental_dirty_match: # FIXME -- might be useful to plot the reuse data somewhere pass else: loc_match = re_loc.match(line) pre_nc_match = re_pre_nc.match(line) post_nc_match = re_post_nc.match(line) if loc_match: loc = loc_match.group(1) elif pre_nc_match: pre_nc = pre_nc_match.group(1) elif post_nc_match: post_nc = post_nc_match.group(1) elif cur_times: if loc: cur_times['loc'] = int(loc) cur_times['pre_nc'] = int(pre_nc) cur_times['post_nc'] = int(post_nc) all_times.append(cur_times) cur_times = None last_file = None loc = None pre_nc = None post_nc = None rustc_match = re_rustc.match(line) if rustc_match: last_file = rustc_match.group(1) return all_times # Takes an array of times and returns a single object of times, def merge_times(times): for t in times: t.sort(key=lambda t: t['crate']) if len(t) != len(times[0]): print "Inconsistent data: len(t)=%s len(times[0])=%s" % ( len(t), len(times[0])) return crates = [] for ci in range(len(times[0])): c = times[0][ci] cur = {} cur['crate'] = c['crate'] if 'loc' in c: cur['loc'] = c['loc'] cur['pre_nc'] = c['pre_nc'] cur['post_nc'] = c['post_nc'] else: cur['loc'] = 0 cur['pre_nc'] = 0 cur['post_nc'] = 0 cur['times'] = [] for i in range(len(c['times'])): cur['times'].append((c['times'][i][0], average(times, lambda t: t[ci]['times'][i][1]))) cur['rss'] = [] for i in range(len(c['rss'])): cur['rss'].append((c['rss'][i][0], average(times, lambda t: t[ci]['rss'][i][1]))) crates.append(cur) return crates def average(times, f): if len(times) <= 4: total = sum(map(f, times)) return total/len(times) # Exclude the highest and lowest values. times = map(f, times) times.sort() return sum(times[1:-1])/(len(times)-2) def post_process_times(times): total = 0 llvm = 0 for (l, t) in times['times']: total += t if LL_RATIO and l in ['translation', 'LLVM passes', 'linking']: llvm += t new_times = {} for (l, t) in times['times']: time = { 'time': t, 'percent': (t/total)*100 } if LL_RATIO: time['ratio_llvm'] = (t/llvm) new_times[l] = time new_mem = {} for (l, m) in times['rss']: new_mem[l] = m times['times'] = new_times times['rss'] = new_mem times['total'] = total return times if len(sys.argv) <= 3: print "Requires label, filename of log, and number of logs as arguments" exit(1) process(sys.argv[1], sys.argv[2], int(sys.argv[3]))
2.1875
2
setup.py
pjdelport/django-timezone-utils
1
12774569
<filename>setup.py # coding: utf-8 from setuptools import setup import os version = __import__('timezone_utils').VERSION setup( name='django-timezone-utils', version=version, description='Time Zone Utilities for Django Models', long_description=open( os.path.join( os.path.dirname(__file__), "README.rst" ) ).read(), author="<NAME>", author_email="<EMAIL>", license="MIT", packages=['timezone_utils'], install_requires=[ 'pytz', 'django>=1.8' ], zip_safe=False, platforms='any', include_package_data=True, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Database', 'Topic :: Software Development :: Libraries', ], url='http://github.com/michaeljohnbarr/django-timezone-utils/', )
1.3125
1
hbaselines/base_policies/actor_critic.py
jesbu1/h-baselines
0
12774570
"""Script containing the abstract policy class.""" import numpy as np import tensorflow as tf from hbaselines.utils.tf_util import get_trainable_vars from hbaselines.utils.tf_util import get_target_updates class ActorCriticPolicy(object): """Base Actor Critic Policy. Attributes ---------- sess : tf.compat.v1.Session the current TensorFlow session ob_space : gym.spaces.* the observation space of the environment ac_space : gym.spaces.* the action space of the environment co_space : gym.spaces.* the context space of the environment buffer_size : int the max number of transitions to store batch_size : int SGD batch size actor_lr : float actor learning rate critic_lr : float critic learning rate verbose : int the verbosity level: 0 none, 1 training information, 2 tensorflow debug tau : float target update rate gamma : float discount factor layer_norm : bool enable layer normalisation layers : list of int or None the size of the Neural network for the policy act_fun : tf.nn.* the activation function to use in the neural network use_huber : bool specifies whether to use the huber distance function as the loss for the critic. If set to False, the mean-squared error metric is used instead """ def __init__(self, sess, ob_space, ac_space, co_space, buffer_size, batch_size, actor_lr, critic_lr, verbose, tau, gamma, layer_norm, layers, act_fun, use_huber): """Instantiate the base policy object. Parameters ---------- sess : tf.compat.v1.Session the current TensorFlow session ob_space : gym.spaces.* the observation space of the environment ac_space : gym.spaces.* the action space of the environment co_space : gym.spaces.* the context space of the environment buffer_size : int the max number of transitions to store batch_size : int SGD batch size actor_lr : float actor learning rate critic_lr : float critic learning rate verbose : int the verbosity level: 0 none, 1 training information, 2 tensorflow debug tau : float target update rate gamma : float discount factor layer_norm : bool enable layer normalisation layers : list of int or None the size of the Neural network for the policy act_fun : tf.nn.* the activation function to use in the neural network use_huber : bool specifies whether to use the huber distance function as the loss for the critic. If set to False, the mean-squared error metric is used instead """ self.sess = sess self.ob_space = ob_space self.ac_space = ac_space self.co_space = co_space self.buffer_size = buffer_size self.batch_size = batch_size self.actor_lr = actor_lr self.critic_lr = critic_lr self.verbose = verbose self.layers = layers self.tau = tau self.gamma = gamma self.layer_norm = layer_norm self.act_fun = act_fun self.use_huber = use_huber print(locals()) def initialize(self): """Initialize the policy. This is used at the beginning of training by the algorithm, after the model parameters have been initialized. """ raise NotImplementedError def update(self, update_actor=True, **kwargs): """Perform a gradient update step. Parameters ---------- update_actor : bool specifies whether to update the actor policy. The critic policy is still updated if this value is set to False. Returns ------- float critic loss float actor loss """ raise NotImplementedError def get_action(self, obs, context, apply_noise, random_actions, env_num=0): """Call the actor methods to compute policy actions. Parameters ---------- obs : array_like the observation context : array_like or None the contextual term. Set to None if no context is provided by the environment. apply_noise : bool whether to add Gaussian noise to the output of the actor. Defaults to False random_actions : bool if set to True, actions are sampled randomly from the action space instead of being computed by the policy. This is used for exploration purposes. env_num : int the environment number. Used to handle situations when multiple parallel environments are being used. Returns ------- array_like computed action by the policy """ raise NotImplementedError def store_transition(self, obs0, context0, action, reward, obs1, context1, done, is_final_step, env_num=0, evaluate=False): """Store a transition in the replay buffer. Parameters ---------- obs0 : array_like the last observation context0 : array_like or None the last contextual term. Set to None if no context is provided by the environment. action : array_like the action reward : float the reward obs1 : array_like the current observation context1 : array_like or None the current contextual term. Set to None if no context is provided by the environment. done : float is the episode done is_final_step : bool whether the time horizon was met in the step corresponding to the current sample. This is used by the TD3 algorithm to augment the done mask. env_num : int the environment number. Used to handle situations when multiple parallel environments are being used. evaluate : bool whether the sample is being provided by the evaluation environment. If so, the data is not stored in the replay buffer. """ raise NotImplementedError def get_td_map(self): """Return dict map for the summary (to be run in the algorithm).""" raise NotImplementedError @staticmethod def _get_obs(obs, context, axis=0): """Return the processed observation. If the contextual term is not None, this will look as follows: ----------------- processed_obs = | obs | context | ----------------- Otherwise, this method simply returns the observation. Parameters ---------- obs : array_like the original observation context : array_like or None the contextual term. Set to None if no context is provided by the environment. axis : int the axis to concatenate the observations and contextual terms by Returns ------- array_like the processed observation """ if context is not None and context[0] is not None: context = context.flatten() if axis == 0 else context obs = np.concatenate((obs, context), axis=axis) return obs @staticmethod def _get_ob_dim(ob_space, co_space): """Return the processed observation dimension. If the context space is not None, it is included in the computation of this term. Parameters ---------- ob_space : gym.spaces.* the observation space of the environment co_space : gym.spaces.* the context space of the environment Returns ------- tuple the true observation dimension """ ob_dim = ob_space.shape if co_space is not None: ob_dim = tuple(map(sum, zip(ob_dim, co_space.shape))) return ob_dim @staticmethod def _setup_target_updates(model_scope, target_scope, scope, tau, verbose): """Create the soft and initial target updates. The initial model parameters are assumed to be stored under the scope name "model", while the target policy parameters are assumed to be under the scope name "target". If an additional outer scope was provided when creating the policies, they can be passed under the `scope` parameter. Parameters ---------- model_scope : str the scope of the model parameters target_scope : str the scope of the target parameters scope : str or None the outer scope, set to None if not available tau : float target update rate verbose : int the verbosity level: 0 none, 1 training information, 2 tensorflow debug Returns ------- tf.Operation initial target updates, to match the target with the model tf.Operation soft target update operations """ if scope is not None: model_scope = scope + '/' + model_scope target_scope = scope + '/' + target_scope return get_target_updates( get_trainable_vars(model_scope), get_trainable_vars(target_scope), tau, verbose) @staticmethod def _remove_fingerprint(val, ob_dim, fingerprint_dim, additional_dim): """Remove the fingerprint from the input. This is a hacky procedure to remove the fingerprint elements from the computation. The fingerprint elements are the last few elements of the observation dimension, before any additional concatenated observations (e.g. contexts or actions). Parameters ---------- val : tf.Variable the original input ob_dim : int number of environmental observation elements fingerprint_dim : int number of fingerprint elements additional_dim : int number of additional elements that were added to the input variable Returns ------- tf.Variable the input with the fingerprints zeroed out """ return val * tf.constant([1.0] * (ob_dim - fingerprint_dim) + [0.0] * fingerprint_dim + [1.0] * additional_dim)
2.609375
3
demo4.py
SysOptLab/Problems
0
12774571
import numpy as np import opt_prob import scipy.optimize # -- problem setup name = '2.4 GOLDPR' problem = opt_prob.Cons(name) def cns(x): g = -1.0*np.array(problem.cns(x)) return g.tolist() # -- start optimization x0 = ((np.array(problem.lb) + np.array(problem.ub)) / 2.0).tolist() bounds = [] for lb_i, ub_i in zip(problem.lb, problem.ub): bounds.append((lb_i, ub_i)) ineq_cons = {'type':'ineq', 'fun': cns} method = 'SLSQP' options = {'disp': True} res = scipy.optimize.minimize(problem.obj, x0, method=method, bounds=bounds, constraints=ineq_cons, options=options) print(res)
2.796875
3
create_number_text.py
sp1007/ViTacotron2
0
12774572
from tacotron2.text.vi_number_and_units import normalize_vi from random import randrange print("Start generate vietnamese number strings") with open("training_data/vietnamese_number.txt", 'w', encoding='utf-8') as f: for i in range(20000): n = randrange(1000000000, 2000000000) f.write(normalize_vi(str(n)) + '\n') print("done!")
2.796875
3
hello_world.py
albertonietos/git-project
0
12774573
print("Hello world!") print("Hello darkness my old friend") print("I've come to talk with you again")
2.328125
2
ozpcenter/api/subscription/views.py
emosher/ozp-backend
1
12774574
<filename>ozpcenter/api/subscription/views.py """ Subscription Views """ import logging from django.shortcuts import get_object_or_404 from rest_framework import filters from rest_framework import status from rest_framework import viewsets from rest_framework.response import Response from ozpcenter import errors from ozpcenter import permissions import ozpcenter.api.subscription.model_access as model_access import ozpcenter.api.subscription.serializers as serializers logger = logging.getLogger('ozp-center.' + str(__name__)) class SubscriptionViewSet(viewsets.ModelViewSet): """ ModelViewSet for getting all Subscription entries for all users URIs ====== GET /api/subscription/ Summary: Get a list of all system-wide Subscription entries Response: 200 - Successful operation - [SubscriptionSerializer] POST /api/subscription/ Summary: Add a Subscription Request: data: SubscriptionSerializer Schema Response: 200 - Successful operation - SubscriptionSerializer DELETE /api/subscription/{pk} Summary: Delete a Subscription Entry by ID """ serializer_class = serializers.SubscriptionSerializer permission_classes = (permissions.IsUser,) def get_queryset(self): queryset = model_access.get_all_subscriptions() # listing_id = self.request.query_params.get('listing', None) # if listing_id is not None: # queryset = queryset.filter(subscription_type='listing', entity_id=listing_id) # Maybe filter by entity_type return queryset def create(self, request): serializer = serializers.SubscriptionSerializer(data=request.data, context={'request': request}, partial=True) if not serializer.is_valid(): logger.error('{0!s}'.format(serializer.errors)) raise errors.ValidationException('{0!s}'.format(serializer.errors)) serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) # def update(self, request, pk=None): # """ # Update is used only change the expiration date of the message # """ # instance = self.get_queryset().get(pk=pk) # serializer = serializers.SubscriptionSerializer(instance, # data=request.data, context={'request': request}, partial=True) # # if not serializer.is_valid(): # logger.error('{0!s}'.format(serializer.errors)) # return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) # serializer.save() # # return Response(serializer.data, status=status.HTTP_200_OK) def destroy(self, request, pk=None): current_request_profile = model_access.get_self(request.user.username) if not current_request_profile.is_steward(): raise errors.PermissionDenied('Only Stewards can delete subscriptions') queryset = self.get_queryset() subscription_instance = get_object_or_404(queryset, pk=pk) subscription_instance.delete() return Response(status=status.HTTP_204_NO_CONTENT) class UserSubscriptionViewSet(viewsets.ModelViewSet): """ ModelViewSet for getting all UserSubscription entries for all users URIs ====== GET /api/self/subscription/ Summary: Get a list of all user Subscription entries Response: 200 - Successful operation - [SubscriptionSerializer] DELETE /api/self/subscription/{pk} Summary: Delete a user Subscription Entry by ID """ permission_classes = (permissions.IsUser,) serializer_class = serializers.SubscriptionSerializer filter_backends = (filters.OrderingFilter,) def get_queryset(self): """ Get current user's subscriptions """ return model_access.get_self_subscriptions(self.request.user.username) def destroy(self, request, pk=None): """ Dismiss subscription """ queryset = self.get_queryset() subscription = get_object_or_404(queryset, pk=pk) model_access.delete_self_subscription(subscription, self.request.user.username) return Response(status=status.HTTP_204_NO_CONTENT)
2.109375
2
src/ling_409/tests/test_join.py
seanbethard/corpuswork
0
12774575
<reponame>seanbethard/corpuswork import nltk grammar = nltk.data.load('file:agree_join.fcfg',cache=False) parser = nltk.parse.FeatureChartParser(grammar) agreement_test_sentences = ['Mary sang and danced', 'Mary and John danced', 'Mary and John', 'Mary and John saw Kim', 'Mary saw John and Kim', '<NAME> and John danced', 'Mary baked a soft and tasty cake', 'Mary baked a tasty quiche and a soft cake'] for sent in agreement_test_sentences: print sent + '\n' trees = parser.nbest_parse(sent.split()) if len(trees) == 0: print '--> ungrammatical\n' else: for tree in trees: print tree print '\n'
2.84375
3
sanitise/sanitise.py
wapdat/ppi-sanistise
4
12774576
import re import nltk debug = False list = '' def tokenise(doc): tokenized_doc = nltk.word_tokenize(doc) tagged_sentences = nltk.pos_tag(tokenized_doc) ne_chunked_sents = nltk.ne_chunk(tagged_sentences) named_entities = [] for tagged_tree in ne_chunked_sents: if hasattr(tagged_tree, 'label'): entity_name = ' '.join(c[0] for c in tagged_tree.leaves()) # entity_type = tagged_tree.label() # get NE category named_entities.append((entity_name, entity_type)) doc = doc.replace(entity_name, entity_type) if (debug) : print(named_entities) if (debug) : print('%-20s "%s"' % ('NER', doc)) return doc def regexReplace( str, token, desc, regex): global list list = list + ', ' + desc r = re.compile(regex) cleanStr = re.sub( r, token, str, re.I) if (debug) : if (str != cleanStr): print('%-20s "%s"' % (desc, cleanStr)) return cleanStr def replacePPI(str): str = regexReplace(str, '<EMAIL>', 'email address', '[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+') str = regexReplace(str, 'UKPOSTCODE', 'uk postcode', '(gir ?0aa|GIR ?0AA|[a-pr-uwyzA-PR-UWYZ]([0-9]{1,2}|([a-hk-yA-HK-Y][0-9]([0-9abehmnprv-yABEHMNPRV-Y])?)|[0-9][a-hjkps-uwA-HJKPS-UW]) ?[0-9][abd-hjlnp-uw-zABD-HJLNP-UW-Z]{2})') # Amex numbers look like US phone numbers str = regexReplace(str, 'CARDNUM', 'Amex', '3[47][0-9]{13}') str = regexReplace(str, 'CARDNUM', 'BCGlobal', '(6541|6556)[0-9]{12}') str = regexReplace(str, 'CARDNUM', 'Carte Blanche Card', '389[0-9]{11}') str = regexReplace(str, 'CARDNUM', 'Diners Club Card', '3(?:0[0-5]|[68][0-9])[0-9]{11}') str = regexReplace(str, 'CARDNUM', 'Discover Card', '65[4-9][0-9]{13}|64[4-9][0-9]{13}|6011[0-9]{12}|(622(?:12[6-9]|1[3-9][0-9]|[2-8][0-9][0-9]|9[01][0-9]|92[0-5])[0-9]{10})') str = regexReplace(str, 'CARDNUM', 'Insta Payment Card', '63[7-9][0-9]{13}') str = regexReplace(str, 'CARDNUM', 'JCB Card', '(?:2131|1800|35\d{3})\d{11}$') str = regexReplace(str, 'CARDNUM', 'KoreanLocalCard', '9[0-9]{15}') str = regexReplace(str, 'CARDNUM', 'Laser Card', '(6304|6706|6709|6771)[0-9]{12,15}') str = regexReplace(str, 'CARDNUM', 'Maestro Card', '(5018|5020|5038|6304|6759|6761|6763)[0-9]{8,15}') str = regexReplace(str, 'CARDNUM', 'Mastercard', '5[1-5][0-9]{14}') str = regexReplace(str, 'CARDNUM', 'Solo Card', '(6334|6767)[0-9]{12}|(6334|6767)[0-9]{14}|(6334|6767)[0-9]{15}') str = regexReplace(str, 'CARDNUM', 'Switch Card', '(4903|4905|4911|4936|6333|6759)[0-9]{12}|(4903|4905|4911|4936|6333|6759)[0-9]{14}|(4903|4905|4911|4936|6333|6759)[0-9]{15}|564182[0-9]{10}|564182[0-9]{12}|564182[0-9]{13}|633110[0-9]{10}|633110[0-9]{12}|633110[0-9]{13}') str = regexReplace(str, 'CARDNUM', 'Union Pay Card', '(62[0-9]{14,17})') str = regexReplace(str, 'CARDNUM', 'Visa Card', '4[0-9]{12}(?:[0-9]{3})?') str = regexReplace(str, 'CARDNUM', 'Visa Master Card', '(?:4[0-9]{12}(?:[0-9]{3})?|5[1-5][0-9]{14})') str = regexReplace(str, 'ZIPCODEUS' , 'zip code', '[0-9]{5}(-[0-9]{4})?') str = regexReplace(str, 'POSTCODECA', 'Canada postcode', '[abceghj-nprstvxyABCEGHJ-NPRSTVXY]{1}[0-9]{1}[abceghj-nprstv-zABCEGHJ-NPRSTV-Z]{1}[ ]?[0-9]{1}[abceghj-nprstv-zABCEGHJ-NPRSTV-Z]{1}[0-9]{1}') ### after all the more specific matches # Problem with chomping leading and training space str = regexReplace(str, ' USPHONE ', 'US phone', '(1?\W*([2-9][0-8][0-9])\W*([2-9][0-9]{2})\W*([0-9]{4})(\se?x?t?(\d*))?)') str = regexReplace(str, 'USPHONE', 'US phone', '(\s|^)(?:(?:\+?1\s*(?:[.-]\s*)?)?(?:\(\s*([2-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-9])\s*\)|([2-9]1[02-9]|[2-9][02-8]1|[2-9][02-8][02-9]))\s*(?:[.-]\s*)?)?([2-9]1[02-9]|[2-9][02-9]1|[2-9][02-9]{2})\s*(?:[.-]\s*)?([0-9]{4})(?:\s*(?:#|x\.?|ext\.?|extension)\s*(\d+))?(\s|$)') str = regexReplace(str, 'SSN', 'ssn', '(?!219-09-9999|078-05-1120)(?!666|000|9\d{2})\d{3}-(?!00)\d{2}-(?!0{4})\d{4}') str = regexReplace(str, 'UKPHONE', 'uk phone', '(?:(?:\(?(?:0(?:0|11)\)?[\s-]?\(?|\+)44\)?[\s-]?(?:\(?0\)?[\s-]?)?)|(?:\(?0))(?:(?:\d{5}\)?[\s-]?\d{4,5})|(?:\d{4}\)?[\s-]?(?:\d{5}|\d{3}[\s-]?\d{3}))|(?:\d{3}\)?[\s-]?\d{3}[\s-]?\d{3,4})|(?:\d{2}\)?[\s-]?\d{4}[\s-]?\d{4}))(?:[\s-]?(?:x|ext\.?|\#)\d{3,4})?') str = regexReplace(str, 'ACCOUNTNO', 'account number', '\d{5-12') return str def getSubstituteText(key, type): return ""
2.75
3
01-intro/bow-simple-pytorch.py
bastings/nn4nlp2017-code-pytorch
82
12774577
<filename>01-intro/bow-simple-pytorch.py # coding: utf-8 """ BOW (simple version) Based on <NAME>'s DyNet code examples: https://github.com/neubig/nn4nlp2017-code http://phontron.com/class/nn4nlp2017/ """ from collections import defaultdict import time import random import torch from torch.autograd import Variable import torch.nn as nn torch.manual_seed(1) # Functions to read in the corpus w2i = defaultdict(lambda: len(w2i)) t2i = defaultdict(lambda: len(t2i)) UNK = w2i["<unk>"] def read_dataset(filename): with open(filename, "r") as f: for line in f: tag, words = line.lower().strip().split(" ||| ") yield ([w2i[x] for x in words.split(" ")], t2i[tag]) # Read in the data train = list(read_dataset("../data/classes/train.txt")) w2i = defaultdict(lambda: UNK, w2i) dev = list(read_dataset("../data/classes/test.txt")) nwords = len(w2i) ntags = len(t2i) # The parameters for our BoW-model dtype = torch.FloatTensor # enable CUDA here if you like w = Variable(torch.randn(nwords, ntags).type(dtype), requires_grad=True) b = Variable(torch.randn(ntags).type(dtype), requires_grad=True) # A function to calculate scores for one sentence def calc_scores(words): lookup_tensor = Variable(torch.LongTensor(words)) embed = w[lookup_tensor] score = torch.sum(embed, 0) + b return score.view((1, -1)) for ITER in range(100): # train random.shuffle(train) train_loss = 0.0 start = time.time() for words, tag in train: # forward pass scores = calc_scores(words) target = Variable(torch.LongTensor([tag])) loss = nn.CrossEntropyLoss() output = loss(scores, target) train_loss += output.data[0] # backward pass (compute gradients) output.backward() # update weights with SGD lr = 0.01 w.data -= lr * w.grad.data b.data -= lr * b.grad.data # clear gradients for next step w.grad.data.zero_() b.grad.data.zero_() print("iter %r: train loss/sent=%.4f, time=%.2fs" % (ITER, train_loss/len(train), time.time()-start)) # evaluate correct = 0.0 for words, tag in dev: scores = calc_scores(words) predict = scores.data.numpy().argmax(axis=1) if predict == tag: correct += 1 print("iter %r: test acc=%.4f" % (ITER, correct/len(dev)))
3.140625
3
docs/usage-reference/parser/parser_omegaconf.py
Mbompr/fromconfig
19
12774578
"""OmegaConfParser example.""" import fromconfig import random def random_hex() -> str: return hex(hash(random.random())) if __name__ == "__main__": config = { "host": "localhost", "port": "8008", "url": "${host}:${port}", "path": "models/${now:}/${random_hex:}", # Use default resolver now + custom resolver "resolvers": {"random_hex": random_hex}, # Register custom resolver } parser = fromconfig.parser.OmegaConfParser() parsed = parser(config) print(parsed) assert parsed["url"] == "localhost:8008"
3.125
3
exercises/chapter01/test_01_07.py
deep-diver/fastai-course
0
12774579
def test(): # Here we can either check objects created in the solution code, or the # string value of the solution, available as __solution__. A helper for # printing formatted messages is available as __msg__. See the testTemplate # in the meta.json for details. # If an assertion fails, the message will be displayed assert "L(range(12))" in __solution__, "range를 이용해 초기 L을 생성하였나요?" assert "t *= 2" in __solution__, "*= 연산자를 사용하였나요?" assert "t[0, 12]" in __solution__, "튜플 방식으로 찾아서 반환하였나요?" assert "t[mask]" in __solution__, "마스킹 방식으로 찾아서 반환하였나요?" __msg__.good("잘 하셨습니다!")
2.265625
2
ship_class.py
BTCallahan/super-ds9
0
12774580
<reponame>BTCallahan/super-ds9<filename>ship_class.py from dataclasses import dataclass from functools import lru_cache from posixpath import split from random import choice import re from string import digits from typing import Dict, Final, Optional, Tuple, List from frozendict import frozendict from energy_weapon import ALL_ENERGY_WEAPONS, EnergyWeapon from global_functions import get_first_group_in_pattern from nation import ALL_NATIONS, Nation from torpedo import ALL_TORPEDO_TYPES, Torpedo VALID_SHIP_TYPES:Final = { "ESCORT", "ATTACK_FIGHTER", "CRUISER", "WARSHIP", "RESUPPLY", "PLATFORM", "STATION", "BIRD_OF_PREY", "WARBIRD" } @lru_cache def get_system_names( *, has_torpedo_launchers:bool=False, has_cloaking_device:bool=False, has_transporters:bool=True, has_warp:bool=True, has_shields:bool, has_polerized_hull:bool, has_impulse:bool=True, beam_weapon_name:str="", cannon_weapon_name:str="" ): names = [ "Warp Core:", "Sensors:", "Scanners:" ] keys = [ "sys_warp_core", "sys_sensors", "sys_scanners" ] """ if has_shields: names.append("Shields:") keys.append("shield") if has_polerized_hull: names.append("Polarization:") keys.append("polarization") """ if has_shields: names.append("Shield Gen.:") keys.append("sys_shield") if has_polerized_hull: names.append("P. Hull:") keys.append("sys_polarize") if has_warp: names.append("Warp Drive:") keys.append("sys_warp_drive") if has_impulse: names.append("I. Engines:") keys.append("sys_impulse") if beam_weapon_name: names.append(f"{beam_weapon_name}:") keys.append("sys_beam_array") if cannon_weapon_name: names.append(f"{cannon_weapon_name}:") keys.append("sys_cannon_weapon") if has_cloaking_device: names.append("Cloak Dev.:") keys.append("sys_cloak") if has_torpedo_launchers: names.append("Torp. Launchers:") keys.append("sys_torpedos") if has_transporters: names.append("Transporters:") keys.append("sys_transporter") return tuple(names), tuple(keys) @dataclass(frozen=True) class ShipClass: ship_type:str name:str symbol:str max_hull:int max_crew:int max_energy:int power_generated_per_turn:int damage_control:float energy_weapon:EnergyWeapon scanner_range:int nation:Nation system_names:Tuple[str] system_keys:Tuple[str] detection_strength:float targeting:float size:float torp_dict:frozendict[Torpedo, int] transporters:int=0 max_shields:int=0 evasion:float=0.0 max_beam_energy:int=0 max_beam_targets:int=1 max_cannon_energy:int=0 max_armor:int=0 polarized_hull:int=0 max_warp:int=0 torp_tubes:int=0 warp_breach_damage:int=0 cloak_strength:float=0.0 cloak_cooldown:int=2 """ def __init__(self, *, ship_type:str, name:str, symbol:str, max_shields:int, max_armor:int=0, max_hull:int, max_torps:int=0, max_crew:int, max_energy:int, damage_control:float, torp_types:Optional[List[str]]=None, torp_tubes:int=0, max_beam_energy:int, warp_breach_damage:int=2, energy_weapon_code:str, nation_code:str, system_names:Tuple[str], system_keys:Tuple[str] ): self.ship_type = ship_type self.symbol = symbol self.name = name self.max_shields = max_shields self.max_armor = max_armor self.max_hull = max_hull self.max_crew = max_crew self.max_energy = max_energy self.damage_control = damage_control self.nation_code = nation_code self.energy_weapon_code = energy_weapon_code if (torp_types is None or len(torp_types) == 0) != (torp_tubes < 1) != (max_torps < 1): raise IndexError( f'''The length of the torp_types list is {len(torp_types)}, but the value of torp_tubes is {torp_tubes}, and the value of maxTorps is {max_torps}. All of these should be less then one, OR greater then or equal to one.''' ) if torp_types: torp_types.sort(key=lambda t: ALL_TORPEDO_TYPES[t].damage, reverse=True) self.torp_types:Tuple[str] = tuple(["NONE"] if not torp_types else torp_types) self.max_torpedos = max_torps self.torp_tubes = torp_tubes self.max_beam_energy = max_beam_energy self.warp_breach_damage = warp_breach_damage """ @classmethod def create_ship_class( cla, *, ship_type:str, name:str, symbol:str, max_shields:int=0, polarized_hull:int=0, max_armor:int=0, max_hull:int, max_crew:int=0, transporters:int=0, max_energy:int, max_warp:int, power_generated_per_turn:int, damage_control:float, scanner_range:int, torp_dict:Optional[Dict[Torpedo,int]]=None, torp_tubes:int=0, max_beam_energy:int=0, max_beam_targets:int=1, max_cannon_energy:int=0, warp_breach_damage:int=2, energy_weapon:EnergyWeapon, nation:Nation, cloak_strength:float=0.0, detection_strength:float, size:float, targeting:float, evasion:float=0.0, cloak_cooldown:int=2 ): try: max_torpedos = sum([t for t in torp_dict.values()]) except AttributeError: max_torpedos = 0 short_beam_name_cap = energy_weapon.short_beam_name_cap if max_beam_energy else "" short_can_name_cap = energy_weapon.short_cannon_name_cap if max_cannon_energy else "" system_names, system_keys = get_system_names( has_torpedo_launchers=max_torpedos > 0 and torp_tubes > 0, has_cloaking_device=cloak_strength > 0.0, has_transporters=max_crew > 0, beam_weapon_name=f"{short_beam_name_cap}s", cannon_weapon_name=f"{short_can_name_cap}", has_impulse=evasion > 0.0, has_warp=max_warp > 0, has_shields=max_shields > 0, has_polerized_hull=polarized_hull > 0 ) fd = frozendict(torp_dict) return cla( ship_type=ship_type, name=name, symbol=symbol, max_shields=max_shields, max_armor=max_armor, max_hull=max_hull, max_crew=max_crew, transporters=transporters, scanner_range=scanner_range, max_energy=max_energy, polarized_hull=polarized_hull, power_generated_per_turn=power_generated_per_turn, damage_control=damage_control, torp_dict=fd, torp_tubes=torp_tubes, max_warp=max_warp, max_beam_energy=max_beam_energy, max_beam_targets=max_beam_targets, max_cannon_energy=max_cannon_energy, warp_breach_damage=warp_breach_damage, energy_weapon=energy_weapon, nation=nation, system_names=system_names, system_keys=system_keys, cloak_strength=cloak_strength, cloak_cooldown=cloak_cooldown, detection_strength=detection_strength, size=size, targeting=targeting, evasion=evasion ) @lru_cache def get_torp_dict(self): return { k:v for k,v in self.torp_dict } def create_name(self): has_proper_name = self.has_proper_name return choice(self.nation.ship_names) if has_proper_name else "".join([choice(digits) for a in range(8)]) @property @lru_cache def has_proper_name(self): """Does this ship/station have a propper name, or just a sequence of numbers? Returns: bool: True if the ship's nation has names AND it has crew, False otherwise """ return self.max_crew > 0 and self.nation.ship_names @property @lru_cache def ship_type_has_shields(self): return self.max_shields > 0 @property @lru_cache def max_torpedos(self): return sum(v for v in self.torp_dict.values()) @property @lru_cache def ship_type_can_fire_torps(self): return self.max_torpedos > 0 @property @lru_cache def get_most_powerful_torpedo_type(self): if not self.ship_type_can_fire_torps: return ALL_TORPEDO_TYPES["NONE"] t = [k for k in self.torp_dict.keys()] t.sort(key=lambda a: a.damage, reverse=True) return t[0] @property @lru_cache def allowed_torpedos_set(self): return frozenset(self.torp_dict.keys()) if self.torp_dict else frozenset([ALL_TORPEDO_TYPES["NONE"]]) @property @lru_cache def allowed_torpedos_tuple(self): return tuple(self.torp_dict.keys()) if self.torp_dict else tuple([ALL_TORPEDO_TYPES["NONE"]]) @property @lru_cache def ship_type_can_fire_beam_arrays(self): return self.max_beam_energy > 0 @property @lru_cache def ship_type_can_fire_cannons(self): return self.max_cannon_energy > 0 @property @lru_cache def is_automated(self): return self.max_crew <= 0 @property @lru_cache def ship_type_can_cloak(self): return self.cloak_strength > 0.0 @property @lru_cache def is_mobile(self): return self.evasion > 0.0 @property @lru_cache def can_be_docked_with(self): return self.max_crew <= 0 and self.evasion == 0.0 @property @lru_cache def get_stragic_values(self): """Determins the stragic value of the ship class for scoring purpousess. Returns: Tuple[int,float]: A tuple ontaining values for the max hull, max shields, max energy, max crew members, max weapon energy, and torpedo effectiveness """ torpedo_value = (self.max_torpedos * self.torp_tubes * ALL_TORPEDO_TYPES[self.get_most_powerful_torpedo_type].damage ) if self.ship_type_can_fire_torps else 0 try: cloaking = self.cloak_strength / self.cloak_cooldown except ZeroDivisionError: cloaking = 0.0 evasion = self.size / (1.0 + self.evasion) return ( self.max_hull * (1 + self.damage_control) * 4, self.max_shields, self.polarized_hull, self.max_energy * 0.25, self.power_generated_per_turn, self.max_warp, self.max_crew, self.max_beam_energy, self.max_cannon_energy, torpedo_value, self.detection_strength, cloaking, evasion, self.targeting, self.scanner_range ) @property @lru_cache def get_added_stragic_values(self): hull, shields, polarized_hull, energy, power_generated_per_turn, max_warp, crew, weapon_energy, cannon_energy, torpedos, detection_strength, cloaking, evasion, targeting, scanner_range = self.get_stragic_values return hull + shields + energy + crew + weapon_energy + cannon_energy + torpedos + detection_strength def create_ship_classes(): shipdata_pattern = re.compile(r"SHIPCLASS:([A-Z\_]+)\n([^#]+)END_SHIPCLASS") symbol_pattern = re.compile(r"SYM:([a-zA-Z])\n") type_pattern = re.compile(r"TYPE:([A-Z_]+)\n") name_pattern = re.compile(r"NAME:([\w\-\ \'\(\)]+)\n") shields_pattern = re.compile(r"SHIELDS:([\d]+)\n") polarized_hull_pattern = re.compile(r"POLARIZED_HULL:([\d]+)\n") hull_pattern = re.compile(r"HULL:([\d]+)\n") scanner_pattern = re.compile(r"SCANNER_RANGE:([\d]+)\n") energy_pattern = re.compile(r"ENERGY:([\d]+)\n") power_generation_pattern = re.compile(r"POWER:([\d]+)\n") energy_weapon_pattern = re.compile(r"ENERGY_WEAPON:([A-Z_]+)\n") crew_pattern = re.compile(r"CREW:([\d]+)\n") transporters_pattern = re.compile(r"TRANSPORTERS:([\d]+)\n") torpedos_pattern = re.compile(r"TORPEDOS:([\w,]+)\n") cloak_strength_pattern = re.compile(r"CLOAK_STRENGTH:([\d.]+)\n") cloak_cooldown_pattern = re.compile(r"CLOAK_COOLDOWN:([\d]+)\n") size_pattern = re.compile(r"SIZE:([\d.]+)\n") targeting_pattern = re.compile(r"TARGETING:([\d.]+)\n") evasion_pattern = re.compile(r"EVASION:([\d.]+)\n") detection_strength_pattern = re.compile(r"DETECTION_STRENGTH:([\d.]+)\n") max_warp_pattern = re.compile(r"MAX_WARP:([\d]+)\n") damage_control_pattern = re.compile(r"DAMAGE_CONTROL:([\d.]+)\n") torpedos_tubes_pattern = re.compile(r"TORPEDO_TUBES:([\d]+)\n") max_beam_energy_pattern = re.compile(r"MAX_BEAM_ENERGY:([\d]+)\n") max_beam_targets_pattern = re.compile(r"MAX_BEAM_TARGETS:([\d])\n") max_cannon_energy_pattern = re.compile(r"MAX_CANNON_ENERGY:([\d]+)\n") warp_core_breach_damage_pattern = re.compile(r"WARP_CORE_BREACH_DAMAGE:([\d]+)\n") nation_types_pattern = re.compile(r"NATION:([A-Z\_]+)\n") with open("library/ships.txt") as shipclass_text: contents = shipclass_text.read() shipclasses = shipdata_pattern.finditer(contents) shipclass_dict:Dict[str,ShipClass] = {} for shipclass in shipclasses: shipclass_code = shipclass.group(1) shipclass_txt = shipclass.group(2) type_ = get_first_group_in_pattern( shipclass_txt, type_pattern, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'TYPE:'" ) assert type_ in VALID_SHIP_TYPES symbol = get_first_group_in_pattern( shipclass_txt, symbol_pattern, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'SYM:'" ) nation_ = get_first_group_in_pattern( shipclass_txt, nation_types_pattern, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'NATION:'" ) if nation_ not in ALL_NATIONS: raise KeyError( f"The nation code {nation_} was not found in the dictionary of nations. Valid code are: {ALL_NATIONS.keys()}") else: nation = ALL_NATIONS[nation_] name = get_first_group_in_pattern( shipclass_txt, name_pattern, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'NAME:'" ) shields = get_first_group_in_pattern( shipclass_txt, shields_pattern, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0, type_to_convert_to=int ) polarized_hull = get_first_group_in_pattern( shipclass_txt, polarized_hull_pattern, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0, type_to_convert_to=int ) hull = get_first_group_in_pattern( shipclass_txt, hull_pattern, type_to_convert_to=int, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'HULL:'" ) crew = get_first_group_in_pattern( shipclass_txt, crew_pattern, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0, type_to_convert_to=int ) scanner_range = get_first_group_in_pattern( shipclass_txt, scanner_pattern, type_to_convert_to=int, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'SCANNER_RANGE:'" ) transporters = get_first_group_in_pattern( shipclass_txt, transporters_pattern, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0, type_to_convert_to=int ) energy = get_first_group_in_pattern( shipclass_txt, energy_pattern, type_to_convert_to=int, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'ENERGY:'" ) torpedos = get_first_group_in_pattern( shipclass_txt, torpedos_pattern, return_aux_if_no_match=True ) if torpedos: tt = torpedos.split(",") t_types = tt[::2] t_numbers = tt[1::2] torp_dict_ = { ALL_TORPEDO_TYPES[k] :int(v) for k,v in zip(t_types, t_numbers) } else: torp_dict_ = {} torp_dict = frozendict(torp_dict_) torpedo_tubes = get_first_group_in_pattern( shipclass_txt, torpedos_tubes_pattern, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0, type_to_convert_to=int ) if (len(torp_dict) == 0) and (torpedo_tubes > 0): raise ValueError( f"In the ship class {shipclass_code} there are {len(torp_dict)} items in the torpedo dictionary, but the ship class has {torpedo_tubes} torpedo tubes." ) power_generation = get_first_group_in_pattern( shipclass_txt, power_generation_pattern, type_to_convert_to=int, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'POWER:'" ) energy_weapon_ = get_first_group_in_pattern( shipclass_txt, energy_weapon_pattern, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'ENERGY_WEAPON:'" ) if energy_weapon_ not in ALL_ENERGY_WEAPONS: raise KeyError( f"The energy weapon code {energy_weapon_} was not found in the dictionary of energy weapons. Valid code are: {ALL_ENERGY_WEAPONS.keys()}") else: energy_weapon = ALL_ENERGY_WEAPONS[energy_weapon_] cloak_strength = get_first_group_in_pattern( shipclass_txt, cloak_strength_pattern, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0.0, type_to_convert_to=float ) cloak_cooldown = get_first_group_in_pattern( shipclass_txt, cloak_cooldown_pattern, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=2, type_to_convert_to=int ) detection_strength = get_first_group_in_pattern( shipclass_txt, detection_strength_pattern, type_to_convert_to=float, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'TYPE:'" ) damage_control = get_first_group_in_pattern( shipclass_txt, damage_control_pattern, type_to_convert_to=float, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'DAMAGE_CONTROL:'" ) size = get_first_group_in_pattern( shipclass_txt, size_pattern, type_to_convert_to=float, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'SIZE:'" ) evasion = get_first_group_in_pattern( shipclass_txt, evasion_pattern, type_to_convert_to=float, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0.0 ) max_warp = get_first_group_in_pattern( shipclass_txt, max_warp_pattern, type_to_convert_to=int, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0 ) targeting = get_first_group_in_pattern( shipclass_txt, targeting_pattern, type_to_convert_to=float, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'TARGETING:'" ) max_beam_energy = get_first_group_in_pattern( shipclass_txt, max_beam_energy_pattern, type_to_convert_to=int, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0 ) max_beam_targets = get_first_group_in_pattern( shipclass_txt, max_beam_targets_pattern, type_to_convert_to=int, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=1 ) max_cannon_energy = get_first_group_in_pattern( shipclass_txt, max_cannon_energy_pattern, type_to_convert_to=int, return_aux_if_no_match=True, aux_valute_to_return_if_no_match=0 ) warp_core_breach_damage = get_first_group_in_pattern( shipclass_txt, warp_core_breach_damage_pattern, type_to_convert_to=int, error_message=f"The entry {shipclass_code} file 'library/ships.txt' did not contain an entry for 'WARP_CORE_BREACH_DAMAGE:'" ) shipclass_dict[shipclass_code] = ShipClass.create_ship_class( ship_type=type_, symbol=symbol, name=name, max_shields=shields, polarized_hull=polarized_hull, max_hull=hull, scanner_range=scanner_range, torp_dict=torp_dict, torp_tubes=torpedo_tubes, damage_control=damage_control, max_beam_energy=max_beam_energy, max_beam_targets=max_beam_targets, max_cannon_energy=max_cannon_energy, max_energy=energy, power_generated_per_turn=power_generation, max_crew=crew, transporters=transporters, cloak_strength=cloak_strength, cloak_cooldown=cloak_cooldown, detection_strength=detection_strength, size=size, targeting=targeting, evasion=evasion, max_warp=max_warp, warp_breach_damage=warp_core_breach_damage, nation=nation, energy_weapon=energy_weapon ) return frozendict(shipclass_dict) ALL_SHIP_CLASSES:Final = create_ship_classes()
2.296875
2
lightning.py
entn-at/Online-Speech-Recognition
0
12774581
<reponame>entn-at/Online-Speech-Recognition<filename>lightning.py<gh_stars>0 import os, sys import jiwer import torch import numpy as np import torch.optim as optim from absl import app from apex import amp from tqdm import trange, tqdm from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from warprnnt_pytorch import RNNTLoss from rnnt.args import FLAGS from rnnt.dataset import seq_collate, MergedDataset, Librispeech, CommonVoice, TEDLIUM, YoutubeCaption from rnnt.models import Transducer from rnnt.tokenizer import HuggingFaceTokenizer, CharTokenizer from rnnt.transforms import build_transform from rnnt.tokenizer import NUL, BOS, PAD import pytorch_lightning as pl from optimizer import SM3, AdamW, Novograd if torch.cuda.is_available(): device = torch.device('cuda:0') else: device = torch.device('cpu') FLAGS(sys.argv) class ParallelTraining(pl.LightningModule): def __init__(self): super(ParallelTraining, self).__init__() _, _, input_size = build_transform( feature_type=FLAGS.feature, feature_size=FLAGS.feature_size, n_fft=FLAGS.n_fft, win_length=FLAGS.win_length, hop_length=FLAGS.hop_length, delta=FLAGS.delta, cmvn=FLAGS.cmvn, downsample=FLAGS.downsample, T_mask=FLAGS.T_mask, T_num_mask=FLAGS.T_num_mask, F_mask=FLAGS.F_mask, F_num_mask=FLAGS.F_num_mask ) self.log_path = None self.loss_fn = RNNTLoss(blank=NUL) if FLAGS.tokenizer == 'char': self.tokenizer = CharTokenizer(cache_dir=self.logdir) else: self.tokenizer = HuggingFaceTokenizer( cache_dir='BPE-2048', vocab_size=FLAGS.bpe_size) self.vocab_size = self.tokenizer.vocab_size print(FLAGS.enc_type) self.model = Transducer( vocab_embed_size=FLAGS.vocab_embed_size, vocab_size=self.vocab_size, input_size=input_size, enc_hidden_size=FLAGS.enc_hidden_size, enc_layers=FLAGS.enc_layers, enc_dropout=FLAGS.enc_dropout, enc_proj_size=FLAGS.enc_proj_size, dec_hidden_size=FLAGS.dec_hidden_size, dec_layers=FLAGS.dec_layers, dec_dropout=FLAGS.dec_dropout, dec_proj_size=FLAGS.dec_proj_size, joint_size=FLAGS.joint_size, module_type=FLAGS.enc_type, output_loss=False, ) self.latest_alignment = None self.steps = 0 self.epoch = 0 self.best_wer = 1000 def warmup_optimizer_step(self, steps): if steps < FLAGS.warmup_step: lr_scale = min(1., float(steps + 1) / FLAGS.warmup_step*1.0) for pg in self.optimizer.param_groups: pg['lr'] = lr_scale * FLAGS.lr def forward(self, batch): xs, ys, xlen, ylen = batch # xs, ys, xlen = xs.cuda(), ys, xlen.cuda() alignment = self.model(xs, ys, xlen, ylen) return alignment def training_step(self, batch, batch_nb): xs, ys, xlen, ylen = batch # xs, ys, xlen = xs.cuda(), ys, xlen.cuda() if xs.shape[1] != xlen.max(): xs = xs[:, :xlen.max()] ys = ys[:, :ylen.max()] alignment = self.model(xs, ys, xlen, ylen) xlen = self.model.scale_length(alignment, xlen) loss = self.loss_fn(alignment, ys.int(), xlen, ylen) if batch_nb % 100 == 0: lr_val = 0 for param_group in self.optimizer.param_groups: lr_val = param_group['lr'] self.logger.experiment.add_scalar('lr', lr_val, self.steps) self.steps += 1 if self.steps < FLAGS.warmup_step: self.warmup_optimizer_step(self.steps) return {'loss': loss, 'log': { 'loss': loss.item() }} def validation_step(self, batch, batch_nb): xs, ys, xlen, ylen = batch y, nll = self.model.greedy_decode(xs, xlen) hypothesis = self.tokenizer.decode_plus(y) ground_truth = self.tokenizer.decode_plus(ys.cpu().numpy()) measures = jiwer.compute_measures(ground_truth, hypothesis) return {'val_loss': nll.mean().item(), 'wer': measures['wer'], 'ground_truth': ground_truth[0], 'hypothesis': hypothesis[0]} def validation_end(self, outputs): # OPTIONAL self.logger.experiment.add_text('test', 'This is test', 0) avg_wer = np.mean([x['wer'] for x in outputs]) ppl = np.mean([x['val_loss'] for x in outputs]) self.logger.experiment.add_scalar('val/WER', avg_wer, self.steps) self.logger.experiment.add_scalar('val/perplexity', ppl, self.steps) hypothesis, ground_truth = '', '' for idx in range(min(5, len(outputs))): hypothesis += outputs[idx]['hypothesis']+'\n\n' ground_truth += outputs[idx]['ground_truth'] + '\n\n' self.logger.experiment.add_text('generated', hypothesis, self.steps) self.logger.experiment.add_text('grouth_truth', ground_truth, self.steps) if self.latest_alignment != None: alignment = self.latest_alignment idx = random.randint(0, alignment.size(0) - 1) alignment = torch.softmax(alignment[idx], dim=-1) alignment[:, :, 0] = 0 # ignore blank token alignment = alignment.mean(dim=-1) self.logger.experiment.add_image( "alignment", plot_alignment_to_numpy(alignment.data.numpy().T), self.steps, dataformats='HWC') self.logger.experiment.flush() if self.best_wer > avg_wer and self.epoch > 0: print('best checkpoint found!') # checkpoint = { # 'model': self.model.state_dict(), # 'optimizer': self.optimizer.state_dict(), # 'epoch': self.epoch # } # if FLAGS.apex: # checkpoint['amp'] = amp.state_dict() # torch.save(checkpoint, os.path.join(self.log_path, str(self.epoch)+'amp_checkpoint.pt')) self.trainer.save_checkpoint(os.path.join(self.log_path, str(self.epoch)+'amp_checkpoint.pt')) self.best_wer = avg_wer self.plateau_scheduler.step(avg_wer) self.epoch += 1 return {'val/WER': torch.tensor(avg_wer), 'wer': torch.tensor(avg_wer), 'val/perplexity': torch.tensor(ppl) } def validation_epoch_end(self, outputs): avg_wer = np.mean([x['wer'] for x in outputs]) ppl = np.mean([x['val_loss'] for x in outputs]) hypothesis, ground_truth = '', '' for idx in range(5): hypothesis += outputs[idx]['hypothesis']+'\n\n' ground_truth += outputs[idx]['ground_truth'] + '\n\n' writer.add_text('generated', hypothesis, self.steps) writer.add_text('grouth_truth', ground_truth, self.steps) if self.latest_alignment != None: alignment = self.latest_alignment idx = random.randint(0, alignment.size(0) - 1) alignment = torch.softmax(alignment[idx], dim=-1) alignment[:, :, 0] = 0 # ignore blank token alignment = alignment.mean(dim=-1) writer.add_image( "alignment", plot_alignment_to_numpy(alignment.data.numpy().T), self.steps, dataformats='HWC') self.logger.experiment.add_scalar('val/WER', avg_wer, self.steps) self.logger.experiment.add_scalar('val/perplexity', ppl, self.steps) self.logger.experiment.flush() self.plateau_scheduler.step(avg_wer) self.epoch += 1 return {'val/WER': torch.tensor(avg_wer), 'val/perplexity': torch.tensor(ppl) } def configure_optimizers(self): if FLAGS.optim == 'adam': self.optimizer = AdamW( self.model.parameters(), lr=FLAGS.lr, weight_decay=1e-5) elif FLAGS.optim == 'sm3': self.optimizer = SM3( self.model.parameters(), lr=FLAGS.lr, momentum=0.0) else: self.optimizer = Novograd( self.model.parameters(), lr=FLAGS.lr, weight_decay=1e-3) scheduler = [] if FLAGS.sched: self.plateau_scheduler = optim.lr_scheduler.ReduceLROnPlateau( self.optimizer, patience=FLAGS.sched_patience, factor=FLAGS.sched_factor, min_lr=FLAGS.sched_min_lr, verbose=1) scheduler= [self.plateau_scheduler] self.warmup_optimizer_step(0) return [self.optimizer] @pl.data_loader def train_dataloader(self): transform_train, _, _ = build_transform( feature_type=FLAGS.feature, feature_size=FLAGS.feature_size, n_fft=FLAGS.n_fft, win_length=FLAGS.win_length, hop_length=FLAGS.hop_length, delta=FLAGS.delta, cmvn=FLAGS.cmvn, downsample=FLAGS.downsample, T_mask=FLAGS.T_mask, T_num_mask=FLAGS.T_num_mask, F_mask=FLAGS.F_mask, F_num_mask=FLAGS.F_num_mask ) dataloader = DataLoader( dataset=MergedDataset([ Librispeech( root=FLAGS.LibriSpeech_train_500, tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length), Librispeech( root=FLAGS.LibriSpeech_train_360, tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length), # Librispeech( # root=FLAGS.LibriSpeech_train_100, # tokenizer=self.tokenizer, # transform=transform_train, # audio_max_length=FLAGS.audio_max_length), TEDLIUM( root=FLAGS.TEDLIUM_train, tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length), CommonVoice( root=FLAGS.CommonVoice, labels='train.tsv', tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length, audio_min_length=1), YoutubeCaption( root='../speech_data/youtube-speech-text/', labels='bloomberg2_meta.csv', tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length, audio_min_length=1), YoutubeCaption( root='../speech_data/youtube-speech-text/', labels='life_meta.csv', tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length, audio_min_length=1), YoutubeCaption( root='../speech_data/youtube-speech-text/', labels='news_meta.csv', tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length, audio_min_length=1), YoutubeCaption( root='../speech_data/youtube-speech-text/', labels='english2_meta.csv', tokenizer=self.tokenizer, transform=transform_train, audio_max_length=FLAGS.audio_max_length, audio_min_length=1), ]), batch_size=FLAGS.sub_batch_size, shuffle=True, num_workers=FLAGS.num_workers, collate_fn=seq_collate, drop_last=True) return dataloader @pl.data_loader def val_dataloader(self): _, transform_test, _ = build_transform( feature_type=FLAGS.feature, feature_size=FLAGS.feature_size, n_fft=FLAGS.n_fft, win_length=FLAGS.win_length, hop_length=FLAGS.hop_length, delta=FLAGS.delta, cmvn=FLAGS.cmvn, downsample=FLAGS.downsample, T_mask=FLAGS.T_mask, T_num_mask=FLAGS.T_num_mask, F_mask=FLAGS.F_mask, F_num_mask=FLAGS.F_num_mask ) val_dataloader = DataLoader( dataset=MergedDataset([ Librispeech( root=FLAGS.LibriSpeech_test, tokenizer=self.tokenizer, transform=transform_test, reverse_sorted_by_length=True)]), batch_size=FLAGS.eval_batch_size, shuffle=False, num_workers=FLAGS.num_workers, collate_fn=seq_collate) return val_dataloader if __name__ == "__main__": from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint import pickle model = ParallelTraining() # with open('test.pt', 'wb') as f: # pickle.dump(model, f) gpus = [0,1, 2, 3] params = { 'gpus': gpus, 'distributed_backend': 'ddp', 'gradient_clip_val': 10, 'val_check_interval': 0.25, 'accumulate_grad_batches': FLAGS.batch_size // (FLAGS.sub_batch_size*len(gpus)) } if FLAGS.apex: print('use apex') params['amp_level'] = FLAGS.opt_level params['precision'] = 16 params['min_loss_scale'] = 1.0 from datetime import datetime cur_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') log_name = '{}-{}'.format('rnnt-m', FLAGS.tokenizer) log_path = 'logs/{}'.format(log_name) os.makedirs(log_path, exist_ok=True) model.log_path = log_path logger = pl.loggers.tensorboard.TensorBoardLogger('logs', name='rnnt-m') params['logger'] = logger checkpoint_callback = ModelCheckpoint( filepath=log_path, save_top_k=True, verbose=True, monitor='val/perplexity', mode='min', prefix='' ) params['checkpoint_callback'] = checkpoint_callback print(params) # params['resume_from_checkpoint'] = '/home/theblackcat/rnn_transducer/logs/rnnt-bpe/8amp_checkpoint.pt' trainer = Trainer(**params) model.trainer = trainer trainer.fit(model)
1.84375
2
exberry_adapter/setup.py
gaborh-da/da-marketplace
0
12774582
<reponame>gaborh-da/da-marketplace<filename>exberry_adapter/setup.py<gh_stars>0 from setuptools import setup setup(name='marketplace-exchange-adapter', version='0.1.18', description='Daml Marketplace Exchange Adapter', author='<NAME>', url='daml.com', license='Apache2', install_requires=['dazl>=7,<8', 'aiohttp'], packages=['bot'], include_package_data=True)
1.335938
1
jwql/instrument_monitors/nirspec_monitors/data_trending/utils/process_data.py
falkben/jwql
1
12774583
"""This module holds functions for miri data trending All functions in this module are tailored for the miri datatrending application. Detailed descriptions are given for every function individually. ------- - <NAME> Use --- Dependencies ------------ MIRI_trend_requestsDRAFT1900201.docx References ---------- Notes ----- """ import jwql.instrument_monitors.nirspec_monitors.data_trending.utils.mnemonics as mn import jwql.instrument_monitors.nirspec_monitors.data_trending.utils.condition as cond import statistics import sqlite3 import warnings import numpy as np from collections import defaultdict def extract_data(condition, mnemonic): '''Function extracts data from given mnemmonic at a given condition Parameters ---------- condition : object conditon object that holds one or more subconditions mnemonic : AstropyTable holds single table with mnemonic data Return ------ temp : list or None holds data that applies to given condition ''' temp = [] #look for all values that fit to the given conditions for element in mnemonic: if condition.state(float(element['time'])): temp.append(float(element['value'])) #return temp is one ore more values fit to the condition #return None if no applicable data was found if len(temp) > 0: return temp else: return None def lamp_distinction(caa_flag, lamp_sel, lamp_curr, lamp_volt): """Distincts over all calibration lamps and returns representative current means each Parameters ---------- """ #initilize empty dict lamp_values = defaultdict(list) for index, flag in enumerate(caa_flag): if flag['value'] == 'ON': #initialize lamp value to default current_lamp = "default" #find current lamp value for lamp in lamp_sel: if lamp['time'] <= flag['time']: current_lamp = lamp['value'] #go to next Value if dummy lamps are activated if (current_lamp == 'NO_LAMP') or (current_lamp == 'DUMMY'): continue #define on_time of current lamp try: start_time = flag['time'] i = 1 if caa_flag[index+i]['value'] == 'OFF': end_time = caa_flag[index+1]['time'] else: i += 1 except IndexError: break #append and evaluate current and voltage values temp_curr = [] temp_volt = [] #append current values to list for curr in lamp_curr: if curr['time'] >= start_time: if curr['time'] < end_time: temp_curr.append(float(curr['value'])) else: break #append voltage values to list for volt in lamp_volt: if volt['time'] >= start_time : if volt['time'] < end_time: temp_volt.append(float(volt['value'])) else: break lamp_data = [] #append current values lamp_data.append(start_time) lamp_data.append(end_time) lamp_data.append(len(temp_curr)) lamp_data.append(statistics.mean(temp_curr)) lamp_data.append(statistics.stdev(temp_curr)) #append voltage values lamp_data.append(len(temp_volt)) lamp_data.append(statistics.mean(temp_volt)) lamp_data.append(statistics.stdev(temp_volt)) lamp_values[current_lamp].append(( lamp_data )) return lamp_values def extract_filterpos(move_stat, wheel_pos, wheel_val): '''Extracts ratio values which correspond to given position values and their proposed nominals Parameters ---------- condition : object conditon object that holds one or more subconditions nominals : dict holds nominal values for all wheel positions ratio_mem : AstropyTable holds ratio values of one specific mnemonic pos_mem : AstropyTable holds pos values of one specific mnemonic Return ------ pos_values : dict holds ratio values and times with corresponding positionlabel as key ''' #initilize empty dict for assigned ratio values pos_values = defaultdict(list) for index, stat in enumerate(move_stat): #raise warning if position is UNKNOWN if stat['value'] == "SUCCESS": #initialize lamp value to default current_pos = "default" pos_val = 0 pos_time = 0 #Evaluate current position for pos in wheel_pos: if pos['time'] <= stat['time']: current_pos = pos['value'] if pos['time'] > stat['time']: break #Evaluate corresponding value for val in wheel_val: if val['time'] <= stat['time']: pos_val = val['value'] pos_time = val['time'] if val['time'] > stat['time']: break print (current_pos, pos_val, pos_time) if current_pos != 'default': pos_values[current_pos].append((pos_time, pos_val)) else: continue return pos_values def once_a_day_routine(mnemonic_data): '''Routine for processing a 15min data file once a day Parameters ---------- mnemonic_data : dict dict holds time and value in a astropy table with correspining identifier as key Return ------ return_data : dict Holds extracted data with applied conditions ''' #abbreviate attribute m = mnemonic_data return_data = dict() ########################################################################### con_set_1 = [ \ cond.unequal(m.mnemonic('INRSD_EXP_STAT'),'STARTED')] #setup condition condition_1 = cond.condition(con_set_1) for identifier in mn.mnemonic_cond_1: data = extract_data(condition_1, m.mnemonic(identifier)) if data != None: return_data.update( {identifier:data} ) else: print("no data for {}".format(identifier)) del condition_1 ########################################################################### con_set_2 = [ \ cond.equal(m.mnemonic('INRSH_LAMP_SEL'), 'NO_LAMP')] #setup condition condition_2 = cond.condition(con_set_2) for identifier in mn.mnemonic_cond_2: data = extract_data(condition_2, m.mnemonic(identifier)) if data != None: return_data.update( {identifier:data} ) else: print("no data for {}".format(identifier)) del condition_2 ########################################################################### con_set_3 = [ \ cond.unequal(m.mnemonic('INRSM_MOVE_STAT'), 'STARTED')] #setup condition condition_3 = cond.condition(con_set_3) for identifier in mn.mnemonic_cond_3: data = extract_data(condition_3, m.mnemonic(identifier)) if data != None: return_data.update( {identifier:data} ) else: print("no data for {}".format(identifier)) del condition_3 return return_data def whole_day_routine(mnemonic_data): '''Proposed routine for processing a 15min data file once a day Parameters ---------- mnemonic_data : dict dict holds time and value in a astropy table with correspining identifier as key Return ------ data_cond_1 : dict holds extracted data with condition 1 applied data_cond_1 : dict holds extracted data with condition 2 applied ''' #abbreviate attribute m = mnemonic_data return_data = dict() ########################################################################### con_set_ft_10 = [ cond.equal(m.mnemonic('ICTM_RT_FILTER'), 10, stringval = False)] #setup condition condition_ft_10 = cond.condition(con_set_ft_10) for identifier in mn.mnemonic_ft10: data = extract_data(condition_ft_10, m.mnemonic(identifier)) if data != None: return_data.update( {identifier:data} ) else: print("no data for {}".format(identifier)) del condition_ft_10 ########################################################################## con_set_caa = [ \ cond.equal(m.mnemonic('INRSH_CAA_PWRF_ST'), 'ON')] #setup condition condition_caa = cond.condition(con_set_caa) for identifier in mn.mnemonic_caa: data = extract_data(condition_caa, m.mnemonic(identifier)) if data != None: return_data.update( {identifier:data} ) else: print("no data for {}".format(identifier)) del condition_caa ########################################################################### data_lamps = lamp_distinction( m.mnemonic('INRSI_CAA_ON_FLAG'), m.mnemonic('INRSH_LAMP_SEL'), m.mnemonic('INRSI_C_CAA_CURRENT'), m.mnemonic('INRSI_C_CAA_VOLTAGE') ) return return_data, data_lamps def wheelpos_routine(mnemonic_data): '''Proposed routine for positionsensors each day Parameters ---------- mnemonic_data : dict dict holds time and value in a astropy table with correspining identifier as key Return ------ FW : dict holds FW ratio values and times with corresponding positionlabel as key GW14 : dict holds GW14 ratio values and times with corresponding positionlabel as key GW23 : dict holds GW23 ratio values and times with corresponding positionlabel as key CCC : dict holds CCC ratio values and times with corresponding positionlabel as key ''' #abbreviate attribute m = mnemonic_data FW = extract_filterpos( m.mnemonic('INRSI_FWA_MOVE_ST'), m.mnemonic('INRSI_FWA_MECH_POS'), m.mnemonic('INRSI_C_FWA_POSITION')) GWX = extract_filterpos(m.mnemonic('INRSI_GWA_MOVE_ST'), m.mnemonic('INRSI_GWA_MECH_POS'), m.mnemonic('INRSI_C_GWA_X_POSITION')) GWY = extract_filterpos(m.mnemonic('INRSI_GWA_MOVE_ST'), m.mnemonic('INRSI_GWA_MECH_POS'), m.mnemonic('INRSI_C_GWA_Y_POSITION')) return FW, GWX, GWY if __name__ =='__main__': pass
2.46875
2
src/database/create_db.py
johnnychiuchiu/Music-Recommender
0
12774584
<reponame>johnnychiuchiu/Music-Recommender<gh_stars>0 from schema import db # from schema.db_models import * if __name__=='__main__': # create a new table scheme as defined in the schema script db.create_all()
1.429688
1
adobe_analytics/exceptions.py
nickolasgryga/adobe_analytics
1
12774585
class ApiError(Exception): """ Exception raised when user does not have appropriate credentials Used for 301 & 401 HTTP Status codes """ def __init__(self, response): if 'error_description' in response: self.message = response['error_description'] else: self.message = response['error']
2.984375
3
tools/ete/ete_gene_cnv.py
anilthanki/tgac-galaxytools
8
12774586
from __future__ import print_function import argparse import collections from ete3 import PhyloTree def printTSV(myDict, colList=None): """ Pretty print a list of dictionaries (myDict) as a dynamically sized table. If column names (colList) aren't specified, they will show in random order. Author: <NAME> - Use it as you want but don't blame me. """ if not colList: colList = list(myDict[0].keys() if myDict else []) myList = [colList] for item in myDict: myList.append([str(item[col] if item[col] is not None else '') for col in colList]) for item in myList: print(*item, sep="\t") def main(): parser = argparse.ArgumentParser(description='Gene Copy Number Finder') parser.add_argument('--genetree', required=True, help='GeneTree in nhx format') parser.add_argument('--speciesorder', required=True, help='Comma-separated species list') args = parser.parse_args() species_list = args.speciesorder.split(",") species_list = [_.strip() for _ in species_list] table = [] with open(args.genetree, "r") as f: # reads multiple gene tree line by line gene tree for line in f: # Remove empty NHX features that can be produced by TreeBest but break ete3 line = line.replace('[&&NHX]', '') # reads single gene tree genetree = PhyloTree(line) leaves = genetree.get_leaf_names() leaves_parts = [_.split("_") for _ in leaves] for i, leaf_parts in enumerate(leaves_parts): if len(leaf_parts) != 2: raise Exception("Leaf node '%s' is not in gene_species format" % leaves[i]) leaves_species = [_[1] for _ in leaves_parts] species_counter = collections.Counter(leaves_species) # Assign to ref_species the first element of species_list which # appears in a leaf node for ref_species in species_list: if ref_species in species_counter: break else: raise Exception("None of the specified species was found in the GeneTree '%s'" % line) # Find the gene of the (first) leaf node for the ref_species for leaf_parts in leaves_parts: if leaf_parts[1] == ref_species: species_counter['gene'] = leaf_parts[0] break table.append(species_counter) colList = ["gene"] + species_list printTSV(table, colList) if __name__ == "__main__": main()
3.296875
3
gtp_monitor.py
decastromonteiro/GTPv1-Monitoring
0
12774587
<reponame>decastromonteiro/GTPv1-Monitoring<gh_stars>0 from scapy.all import * from scapy.contrib import gtp import random import argparse parser = argparse.ArgumentParser() parser.add_argument("-l","--loop", help="Loop the script for x times", type=int) parser.add_argument("-G", "--GGSN", help="Choose which GGSN to monitor", type=str) args = parser.parse_args() def main(loop=1, GGSN='GPHPT02'): for x in xrange(loop): ggsn = {'10.221.48.252': 'GPHPT01', '10.221.58.214': 'GPHPT02'} GGSN_dict = { "GPHPT01": '10.221.48.252', "GPHPT02": '10.221.58.214'} IP_GGSN = GGSN_dict.get(GGSN) fake_TEICI = 0xFFFFF IMSI_Rand_Part = str(random.randint(0000000000,9999999999)).zfill(10) IMSI = '7240{}{}'.format(random.randint(2,4), IMSI_Rand_Part) create_gtp_packet = IP(dst=IP_GGSN) / UDP(dport=2123) / gtp.GTPHeader() / gtp.GTPCreatePDPContextRequest() create_gtp_packet.IE_list = [ gtp.IE_IMSI(imsi=IMSI), gtp.IE_Routing(MCC='724',MNC='02',LAC=53221, RAC=20), gtp.IE_SelectionMode(SelectionMode="MS"), gtp.IE_TEIDI(TEIDI=0), gtp.IE_TEICP(TEICI=fake_TEICI), gtp.IE_NSAPI(NSAPI=5), gtp.IE_ChargingCharacteristics(normal_charging=1), gtp.IE_EndUserAddress(PDPTypeNumber=0x8d), gtp.IE_AccessPointName(length=13, APN='timbrasil.br'), gtp.IE_GSNAddress(address='172.16.17.32'), gtp.IE_GSNAddress(address='192.168.127.12'), gtp.IE_MSInternationalNumber(length=8, digits='55{}{}'.format(random.randint(11,97), random.randint(900000000,999999999))), gtp.IE_QoS(length=15, allocation_retention_prioiry=2), gtp.IE_CommonFlags(length=1, dual_addr_bearer_fl=1), gtp.IE_RATType(RAT_Type=1), gtp.IE_UserLocationInformation(length=8, SAC=0x3ead, LAC=0xcfe5, MCC='724', MNC='02'), gtp.IE_EvolvedAllocationRetentionPriority(length=1, PL=0x06) ] a = sr1(create_gtp_packet,timeout=5,verbose=False) create_gtp_response = a[1] result = validate_response(create_gtp_response) for IE in create_gtp_response.IE_list: if IE.ietype == 17: response_TEIDI = IE.TEICI if result == "Success": delete_gtp_packet = IP(dst=IP_GGSN) / UDP(dport=2123) / gtp.GTPHeader(teid=response_TEIDI) / gtp.GTPDeletePDPContextRequest() delete_gtp_packet.IE_list = [gtp.IE_Teardown(), gtp.IE_NSAPI(NSAPI=5) ] b = sr1(delete_gtp_packet, timeout=5,verbose=False) print('GGSN {} is OK').format(ggsn.get(IP_GGSN)) else: print("Create PDP Context Request Failed - {} is Faulty.").format(ggsn.get(IP_GGSN)) def validate_response(packet): for IE in packet.IE_list: if IE.ietype == 1: cause = IE.CauseValue # Convert CauseValue from Decimal to Bit --> Check the first two Bits --> If first two Bits == '10' it means Success # 3GPP TS29.060 Rel10 if "{0:b}".format(int(cause))[0:2] == "10": return "Success" else: return "Failure" if __name__ == "__main__": if args.loop and args.GGSN: main(args.loop, args.GGSN) elif args.loop: main(loop=args.loop) elif args.GGSN: main(GGSN=args.GGSN) else: main()
2.53125
3
day04/d4.py
basoares/advent-of-code-2018
0
12774588
''' Advent of Code - 2018 --- Day 4: Repose Record --- Released under the MIT License <http://opensource.org/licenses/mit-license.php> ''' import os from collections import defaultdict from datetime import datetime import re def sleep_pattern(events): sleep = defaultdict(lambda: [0 for i in range(60)]) for event in sorted(events): time, action = event[1:].split("] ") date = datetime.strptime(time, '%Y-%m-%d %H:%M') if "Guard" in action: guard = int(re.findall("[\d]+", action)[0]) elif "asleep" in action: start = date.minute elif "wakes" in action: end = date.minute for m in range(start, end): sleep[guard][m] += 1 return sleep def part1(sleep): guard_most_sleep = max(sleep.keys(), key = (lambda g: sum(sleep[g]))) minute_most_asleep = sleep[guard_most_sleep].index(max(sleep[guard_most_sleep])) return guard_most_sleep * minute_most_asleep def part2(sleep): guard_most_sleep_minute = max(sleep.keys(), key=lambda g: max(sleep[g])) minute_most_asleep = sleep[guard_most_sleep_minute].index(max(sleep[guard_most_sleep_minute])) return guard_most_sleep_minute * minute_most_asleep if __name__ == '__main__': with open('../input/d04.txt', mode='r') as f: _input = f.readlines() sleep = sleep_pattern(_input) print('Part One: {}'.format(part1(sleep))) print('Part Two: {}'.format(part2(sleep)))
2.90625
3
trpgcreator/ui/dialogs/function.py
jacobcheatley/trpg-creator
0
12774589
<reponame>jacobcheatley/trpg-creator # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'ui_files/dialogs/function.ui' # # Created by: PyQt5 UI code generator 5.7 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_FunctionDialog(object): def setupUi(self, FunctionDialog): FunctionDialog.setObjectName("FunctionDialog") FunctionDialog.resize(400, 300) self.verticalLayout = QtWidgets.QVBoxLayout(FunctionDialog) self.verticalLayout.setObjectName("verticalLayout") self.plainTextEditFunc = QtWidgets.QPlainTextEdit(FunctionDialog) self.plainTextEditFunc.setAutoFillBackground(False) self.plainTextEditFunc.setStyleSheet("* {\n" " font-family: monospace;\n" "}") self.plainTextEditFunc.setLineWidth(1) self.plainTextEditFunc.setSizeAdjustPolicy(QtWidgets.QAbstractScrollArea.AdjustIgnored) self.plainTextEditFunc.setTabStopWidth(36) self.plainTextEditFunc.setObjectName("plainTextEditFunc") self.verticalLayout.addWidget(self.plainTextEditFunc) self.buttonBox = QtWidgets.QDialogButtonBox(FunctionDialog) self.buttonBox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonBox.setObjectName("buttonBox") self.verticalLayout.addWidget(self.buttonBox) self.retranslateUi(FunctionDialog) QtCore.QMetaObject.connectSlotsByName(FunctionDialog) def retranslateUi(self, FunctionDialog): _translate = QtCore.QCoreApplication.translate FunctionDialog.setWindowTitle(_translate("FunctionDialog", "Edit Function"))
1.71875
2
src/probnum/diffeq/odefiltsmooth/initialize.py
jzenn/probnum
1
12774590
"""Initialisation procedures.""" # pylint: disable=import-outside-toplevel import numpy as np import scipy.integrate as sci import probnum.filtsmooth as pnfs import probnum.statespace as pnss from probnum import randvars # In the initialisation-via-RK function below, this value is added to the marginal stds of the initial derivatives that are known. # If we put in zero, there are linalg errors (because a zero-cov RV is conditioned on a dirac likelihood). # This value is chosen such that its square-root is a really small damping factor). SMALL_VALUE = 1e-28 def initialize_odefilter_with_rk( f, y0, t0, prior, initrv, df=None, h0=1e-2, method="DOP853" ): r"""Initialize an ODE filter by fitting the prior process to a few steps of an approximate ODE solution computed with Scipy's RK. It goes as follows: 1. The ODE integration problem is set up on the interval ``[t0, t0 + (2*order+1)*h0]`` and solved with a call to ``scipy.integrate.solve_ivp``. The solver is uses adaptive steps with ``atol=rtol=1e-12``, but is forced to pass through the events ``(t0, t0+h0, t0 + 2*h0, ..., t0 + (2*order+1)*h0)``. The result is a vector of time points and states, with at least ``(2*order+1)``. Potentially, the adaptive steps selected many more steps, but because of the events, fewer steps cannot have happened. 2. A prescribed prior is fitted to the first ``(2*order+1)`` (t, y) pairs of the solution. ``order`` is the order of the prior. 3. The value of the resulting posterior at time ``t=t0`` is an estimate of the state and all its derivatives. The resulting marginal standard deviations estimate the error. This random variable is returned. Parameters ---------- f ODE vector field. y0 Initial value. t0 Initial time point. prior Prior distribution used for the ODE solver. For instance an integrated Brownian motion prior (``IBM``). initrv Initial random variable. df Jacobian of the ODE vector field. Optional. If specified, more components of the result will be exact. h0 Maximum step-size to use for computing the approximate ODE solution. The smaller, the more accurate, but also, the smaller, the less stable. The best value here depends on the ODE problem, and probably the chosen method. Optional. Default is ``1e-2``. method Which solver to use. This is communicated as a string that is compatible with ``scipy.integrate.solve_ivp(..., method=method)``. Optional. Default is `DOP853`. Returns ------- Normal Estimated (improved) initial random variable. Compatible with the specified prior. Examples -------- >>> from dataclasses import astuple >>> from probnum.randvars import Normal >>> from probnum.statespace import IBM >>> from probnum.problems.zoo.diffeq import vanderpol Compute the initial values of the van-der-Pol problem as follows >>> f, t0, tmax, y0, df, *_ = astuple(vanderpol()) >>> print(y0) [2. 0.] >>> prior = IBM(ordint=3, spatialdim=2) >>> initrv = Normal(mean=np.zeros(prior.dimension), cov=np.eye(prior.dimension)) >>> improved_initrv = initialize_odefilter_with_rk(f, y0, t0, prior=prior, initrv=initrv, df=df) >>> print(prior.proj2coord(0) @ improved_initrv.mean) [2. 0.] >>> print(np.round(improved_initrv.mean, 1)) [ 2. 0. -2. 58.2 0. -2. 60. -1745.7] >>> print(np.round(np.log10(improved_initrv.std), 1)) [-13.8 -11.3 -9. -1.5 -13.8 -11.3 -9. -1.5] """ y0 = np.asarray(y0) ode_dim = y0.shape[0] if y0.ndim > 0 else 1 order = prior.ordint proj_to_y = prior.proj2coord(0) zeros_shift = np.zeros(ode_dim) zeros_cov = np.zeros((ode_dim, ode_dim)) measmod = pnss.DiscreteLTIGaussian( proj_to_y, zeros_shift, zeros_cov, proc_noise_cov_cholesky=zeros_cov, forward_implementation="sqrt", backward_implementation="sqrt", ) # order + 1 would suffice in theory, 2*order + 1 is for good measure # (the "+1" is a safety factor for order=1) num_steps = 2 * order + 1 t_eval = np.arange(t0, t0 + (num_steps + 1) * h0, h0) sol = sci.solve_ivp( f, (t0, t0 + (num_steps + 1) * h0), y0=y0, atol=1e-12, rtol=1e-12, t_eval=t_eval, method=method, ) ts = sol.t[:num_steps] ys = sol.y[:, :num_steps].T initmean = initrv.mean.copy() initmean[0 :: (order + 1)] = y0 initmean[1 :: (order + 1)] = f(t0, y0) initcov_diag = np.diag(initrv.cov).copy() initcov_diag[0 :: (order + 1)] = SMALL_VALUE initcov_diag[1 :: (order + 1)] = SMALL_VALUE if df is not None: if order > 1: initmean[2 :: (order + 1)] = df(t0, y0) @ f(t0, y0) initcov_diag[2 :: (order + 1)] = SMALL_VALUE initcov = np.diag(initcov_diag) initcov_cholesky = np.diag(np.sqrt(initcov_diag)) initrv = randvars.Normal(initmean, initcov, cov_cholesky=initcov_cholesky) kalman = pnfs.Kalman(prior, measmod, initrv) out = kalman.filtsmooth(ys, ts) estimated_initrv = out.state_rvs[0] return estimated_initrv def initialize_odefilter_with_taylormode(f, y0, t0, prior, initrv): """Initialize an ODE filter with Taylor-mode automatic differentiation. This requires JAX. For an explanation of what happens ``under the hood``, see [1]_. References ---------- .. [1] <NAME>. and <NAME>., Stable implementation of probabilistic ODE solvers, *arXiv:2012.10106*, 2020. The implementation is inspired by the implementation in https://github.com/jacobjinkelly/easy-neural-ode/blob/master/latent_ode.py Parameters ---------- f ODE vector field. y0 Initial value. t0 Initial time point. prior Prior distribution used for the ODE solver. For instance an integrated Brownian motion prior (``IBM``). initrv Initial random variable. Returns ------- Normal Estimated initial random variable. Compatible with the specified prior. Examples -------- >>> import sys, pytest >>> if sys.platform.startswith('win'): ... pytest.skip('this doctest does not work on Windows') >>> from dataclasses import astuple >>> from probnum.randvars import Normal >>> from probnum.problems.zoo.diffeq import threebody_jax, vanderpol_jax >>> from probnum.statespace import IBM Compute the initial values of the restricted three-body problem as follows >>> f, t0, tmax, y0, df, *_ = astuple(threebody_jax()) >>> print(y0) [ 0.994 0. 0. -2.00158511] >>> prior = IBM(ordint=3, spatialdim=4) >>> initrv = Normal(mean=np.zeros(prior.dimension), cov=np.eye(prior.dimension)) >>> improved_initrv = initialize_odefilter_with_taylormode(f, y0, t0, prior, initrv) >>> print(prior.proj2coord(0) @ improved_initrv.mean) [ 0.994 0. 0. -2.00158511] >>> print(improved_initrv.mean) [ 9.94000000e-01 0.00000000e+00 -3.15543023e+02 0.00000000e+00 0.00000000e+00 -2.00158511e+00 0.00000000e+00 9.99720945e+04 0.00000000e+00 -3.15543023e+02 0.00000000e+00 6.39028111e+07 -2.00158511e+00 0.00000000e+00 9.99720945e+04 0.00000000e+00] Compute the initial values of the van-der-Pol oscillator as follows >>> f, t0, tmax, y0, df, *_ = astuple(vanderpol_jax()) >>> print(y0) [2. 0.] >>> prior = IBM(ordint=3, spatialdim=2) >>> initrv = Normal(mean=np.zeros(prior.dimension), cov=np.eye(prior.dimension)) >>> improved_initrv = initialize_odefilter_with_taylormode(f, y0, t0, prior, initrv) >>> print(prior.proj2coord(0) @ improved_initrv.mean) [2. 0.] >>> print(improved_initrv.mean) [ 2. 0. -2. 60. 0. -2. 60. -1798.] >>> print(improved_initrv.std) [0. 0. 0. 0. 0. 0. 0. 0.] """ try: import jax.numpy as jnp from jax.config import config from jax.experimental.jet import jet config.update("jax_enable_x64", True) except ImportError as err: raise ImportError( "Cannot perform Taylor-mode initialisation without optional " "dependencies jax and jaxlib. Try installing them via `pip install jax jaxlib`." ) from err order = prior.ordint def total_derivative(z_t): """Total derivative.""" z, t = jnp.reshape(z_t[:-1], z_shape), z_t[-1] dz = jnp.ravel(f(t, z)) dt = jnp.array([1.0]) dz_t = jnp.concatenate((dz, dt)) return dz_t z_shape = y0.shape z_t = jnp.concatenate((jnp.ravel(y0), jnp.array([t0]))) derivs = [] derivs.extend(y0) if order == 0: all_derivs = pnss.Integrator._convert_derivwise_to_coordwise( np.asarray(jnp.array(derivs)), ordint=0, spatialdim=len(y0) ) return randvars.Normal( np.asarray(all_derivs), cov=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), cov_cholesky=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), ) (dy0, [*yns]) = jet(total_derivative, (z_t,), ((jnp.ones_like(z_t),),)) derivs.extend(dy0[:-1]) if order == 1: all_derivs = pnss.Integrator._convert_derivwise_to_coordwise( np.asarray(jnp.array(derivs)), ordint=1, spatialdim=len(y0) ) return randvars.Normal( np.asarray(all_derivs), cov=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), cov_cholesky=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), ) for _ in range(1, order): (dy0, [*yns]) = jet(total_derivative, (z_t,), ((dy0, *yns),)) derivs.extend(yns[-2][:-1]) all_derivs = pnss.Integrator._convert_derivwise_to_coordwise( jnp.array(derivs), ordint=order, spatialdim=len(y0) ) return randvars.Normal( np.asarray(all_derivs), cov=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), cov_cholesky=np.asarray(jnp.diag(jnp.zeros(len(derivs)))), )
3.171875
3
cogs/utils/april_fool.py
HypixelBot/bot
10
12774591
<gh_stars>1-10 from random import random hieroglyphics = {'a': 'ᔑ','b': 'ʖ','c': 'ᓵ','d': '↸','e': 'ᒷ','f': '⎓','g': '⊣','h': '⍑','i': '╎','j': '⋮','k': 'ꖌ','l': 'ꖎ','m': 'ᒲ','n': 'リ','o': '𝙹','p': '!¡','q': 'ᑑ','r': '∷','s': 'ᓭ','t': 'ℸ̣','u': '⚍','v': '⍊', 'w': '∴', 'x': '̇/', 'y': '||', 'z': '⨅'} def magik(text): if random() > 0.7: return ''.join(list(map(lambda x: hieroglyphics[x.lower()] if x.lower() in hieroglyphics else x, text))) return text def prank(emb): emb['embed']['title'] = magik(emb['embed']['title']) emb['footer']['text'] = magik(emb['footer']['text']) for p in emb['pages']: for f in emb['pages'][p]: if f and 'name' in f: f['name'] = magik(f['name']) return emb
2.9375
3
model/__init__.py
KentWangYQ/mongo2es
5
12774592
<gh_stars>1-10 # -*- coding: utf-8 -*- from pymongo import MongoClient from config import settings client = MongoClient(settings.MONGO.get('uri')) models = client.get_database() from .base import BaseModel # Brand brand = models.brands brand.__class__ = BaseModel # car_product car_product = models.carproducts car_product.__class__ = BaseModel # merchant merchant = models.merchants merchant.__class__ = BaseModel # car_offer car_offer = models.caroffers car_offer.__class__ = BaseModel # used_car used_car = models.usedcars used_car.__class__ = BaseModel # used_car_offer used_car_offer = models.usedcaroffers used_car_offer.__class__ = BaseModel # car_change_plan car_change_plan = models.carchangeplans car_change_plan.__class__ = BaseModel # order order = models.orders order.__class__ = BaseModel # wx_order wx_order = models.wxorders wx_order.__class__ = BaseModel # pos_order pos_order = models.posorders pos_order.__class__ = BaseModel # user user = models.users user.__class__ = BaseModel # token token = models.tokens token.__class__ = BaseModel # act_entity act_entity = models.actentities act_entity.__class__ = BaseModel # link_action link_action = models.linkactions link_action.__class__ = BaseModel # act_share_detail act_share_detail = models.actsharedetails act_share_detail.__class__ = BaseModel # car_product_map car_product_map = models.carproductmaps car_product_map.__class__ = BaseModel # car_offer_external car_offer_external = models.carofferexternals car_offer_external.__class__ = BaseModel # car_offer_history car_offer_history = models.carofferhistories car_offer_history.__class__ = BaseModel # impression_track impression_track = models.impressiontracks impression_track.__class__ = BaseModel # intents intent = models.intents intent.__class__ = BaseModel # car_product_estimation car_product_estimation = models.carproductestimations car_product_estimation.__class__ = BaseModel
1.914063
2
pan15_compliant/temp/quick_read.py
ivan-bilan/author-profiling-pan-2016
6
12774593
<reponame>ivan-bilan/author-profiling-pan-2016 import glob import ntpath import re import codecs from nltk.tokenize import word_tokenize, sent_tokenize from unidecode import unidecode import pickle import cPickle from time import sleep from xml.dom import minidom from nltk.stem.porter import * import treetaggerwrapper from bs4 import BeautifulSoup from itertools import tee import HTMLParser # pip install http://pypi.python.org/packages/source/h/htmllaundry/htmllaundry-2.0.tar.gz from htmllaundry import strip_markup from pylab import * def get_a_genre_mod_dev(): main_dictionary = dict() number_of_files = 0 tmp_list = list() author_id = 33 count_same_text_file = 0 filename = "C:/test_small/mini_dutch/12103872.xml" try: xmldoc = minidom.parse(filename) itemlist = xmldoc.getElementsByTagName('document') if len(itemlist) > 0: documents_per_author = 0 bool_tester = 0 for s in itemlist: # print s.childNodes number_of_files += 1 documents_per_author += 1 try: # get CDATA for node in s.childNodes: # print node.nodeType if node.nodeType == 4 or node.nodeType == 3: # print "Getting the CDATA element of each author document" text_inner = node.data.strip() print text_inner try: inner_soup = BeautifulSoup(text_inner, "lxml") # print inner_soup.get_text() # print except Exception as e: print filename print e if (len(inner_soup.get_text()) > 0): if author_id in main_dictionary: pass else: main_dictionary[author_id] = dict() if 'documents' in main_dictionary[author_id]: current_document_sample = inner_soup.get_text() if current_document_sample in main_dictionary[author_id]['documents']: count_same_text_file+=1 ''' print print author_id print main_dictionary[author_id]['documents'] print current_document_sample sleep(100) ''' pass else: main_dictionary[author_id]['documents'].append(current_document_sample) else: main_dictionary[author_id]['documents'] = [inner_soup.get_text()] bool_tester = 1 else: print "Error! The text sample is empty or couldn't read CDATA. Skipping to next one." except Exception as e: print "Error! Failed to read a file." print filename print e pass tmp_list.append(documents_per_author) except Exception as e: print print "Error! Couldn't read current text sample. Skipping to the next one." print "Error message: ", e print "Error occured in file: ", filename print pass try: average_blogs_per_author = float(sum(tmp_list))/len(tmp_list) if len(tmp_list) > 0 else float('nan') except: average_blogs_per_author = 'nan' # print len(current_truth), number_of_files, average_blogs_per_author # print len(main_dictionary) # for key, value in main_dictionary.iteritems(): # print key, value # print "Found duplicates: ", count_same_text_file print main_dictionary print len(main_dictionary[33]['documents']) get_a_genre_mod_dev()
2.4375
2
bin/__init__.py
eurica/splunk_app_pagerduty
2
12774594
<reponame>eurica/splunk_app_pagerduty #!/usr/bin/env python """Splunk App for Pagerduty.""" __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Copyright 2014 OnBeep, Inc.' __license__ = 'Apache License, Version 2.0' from .pagerduty import (PagerDutyException, PagerDuty, extract_events, # NOQA trigger_pagerduty, get_pagerduty_api_key)
1.132813
1
arp_spoof_detector.py
goodoldie/Stalker
0
12774595
<reponame>goodoldie/Stalker import scapy.all as scapy import os import sys import netifaces def become_root(): euid = os.geteuid() if euid != 0: print("Script not started as root. Running sudo..") args = ['sudo', sys.executable] + sys.argv + [os.environ] os.execlpe('sudo', *args) print('Running. Your euid is', + euid) print("---------------------------------------------------------") def get_mac(ip): arp_request = scapy.ARP(pdst=ip) broadcast_frame = scapy.Ether(dst="ff:ff:ff:ff:ff:ff") arp_ether_broadcast = broadcast_frame / arp_request answered_list = scapy.srp(arp_ether_broadcast, timeout=1, verbose=False)[0] # we need only answered list return answered_list[0][1].hwsrc def sniff(interface): scapy.sniff(iface=interface, store=False, prn=processed_sniffed_packet) def processed_sniffed_packet(packet): if packet.haslayer(scapy.ARP) and packet[scapy.ARP].op == 2: try: real_mac = get_mac(packet[scapy.ARP].psrc) response_mac = packet[scapy.ARP].hwsrc if real_mac != response_mac: print("[+] !!!!!!!You are under attack!!!!!") except IndexError: # unable to find the real mac pass def run_spoof_detector(): become_root() interfaces = netifaces.interfaces() print("Availabe Interfaces :") print(interfaces) interface = input("Enter the interface ") if interface not in interfaces: print("Pleas Enter a valid Interface!!") else: print("ARP Spoof Detector ON!!!") sniff(interface)
2.46875
2
list_ec2_publicly_accessible/check-ec2-publicly-exposed.py
trackit/audit-tools
0
12774596
import boto3 import botocore import csv import pprint import argparse import ConfigParser import os import re def get_ec2_name(tags): for tag in tags: if tag['Key'] == 'Name': return tag['Value'] return 'NA' def get_ec2_sg(sgs): res = [] for sg in sgs: res.append(sg['GroupId']) return res def check_if_exposed(sg): for r in sg['IpRanges']: if r['CidrIp'] == '0.0.0.0/0': return True return False def get_port_exposed(client, region, sgs): res = [] response = client.describe_security_groups(GroupIds=sgs) for sg in response['SecurityGroups']: for permission in sg['IpPermissions']: if check_if_exposed(permission): if 'FromPort' in permission and 'ToPort' in permission: protocol = permission['IpProtocol'] if protocol == "-1": protocol = "all" port = "{0}/{1}".format(protocol, str(permission["FromPort"])) if permission['FromPort'] != permission['ToPort']: port = "{0}/{1}-{2}".format(protocol, str(permission['FromPort']), str(permission['ToPort'])) res.append(port) return get_ports_formatted(res) def get_tags_formatted(tags): if tags == "": return "" res = "" for elem in tags: res += "{}={}, ".format(elem["Key"], elem["Value"]) return res[:-2] def get_ports_formatted(ports): res = "" for elem in ports: res += "{}, ".format(elem) if len(res) == 0: return res return res[:-2] def get_sg_list_formatted(sg): res = "" for elem in sg: res += "{}, ".format(elem) if len(res) == 0: return res return res[:-2] def get_ec2_ips(session, regions, account): res = [] for region in regions: client = session.client('ec2', region_name=region) reservations = client.describe_instances() for reservation in reservations['Reservations']: for instance in reservation['Instances']: ip_list = [] add_to_list = False for interface in instance['NetworkInterfaces']: for address in interface['PrivateIpAddresses']: if 'Association' in address: ip_list.append(address['Association']['PublicIp']) add_to_list = True if add_to_list: sg_list = get_ec2_sg(instance['SecurityGroups']) res += [ { 'account': account, 'service': 'ec2', 'region': region, 'name': get_ec2_name(instance['Tags']) if 'Tags' in instance else "", 'tags': get_tags_formatted(instance['Tags']) if 'Tags' in instance else "", 'ip_addresses': ip_list[0], 'sg': get_sg_list_formatted(sg_list), 'port_exposed': get_port_exposed(client, region, sg_list) } ] return res def get_regions(session): client = session.client('ec2') regions = client.describe_regions() return [ region['RegionName'] for region in regions['Regions'] ] def generate_csv(data, args, header_name): filename = "report.csv" if args['o']: filename = args['o'] with open(filename, 'wb') as file: writer = csv.DictWriter(file, header_name) writer.writeheader() for row in data: writer.writerow(row) def init(): config_path = os.environ.get('HOME') + "/.aws/credentials" parser = ConfigParser.ConfigParser() parser.read(config_path) if parser.sections(): return parser.sections() return [] def main(): data = [] parser = argparse.ArgumentParser(description="Analyse reserved instances") parser.add_argument("--profile", nargs="+", help="Specify AWS profile(s) (stored in ~/.aws/credentials) for the program to use") parser.add_argument("-o", nargs="?", help="Specify output csv file") parser.add_argument("--profiles-all", nargs="?", help="Run it on all profile") aws_access_key = os.environ.get('AWS_ACCESS_KEY_ID') aws_secret_key = os.environ.get('AWS_SECRET_ACCESS_KEY') aws_region = os.environ.get('AWS_DEFAULT_REGION') args = vars(parser.parse_args()) if 'profiles-all' in args: keys = init() elif 'profile' in args and args['profile']: keys = args['profile'] else: keys = init() for key in keys: print 'Processing %s...' % key try: if aws_access_key and aws_secret_key and aws_region: session = boto3.Session(aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret_key, region_name=aws_region) else: session = boto3.Session(profile_name=key) regions = get_regions(session) data += get_ec2_ips(session, regions, key) except botocore.exceptions.ClientError, error: print error pprint.pprint(data) generate_csv(data, args, ['account', 'service', 'name', 'region', 'ip_addresses', 'sg', 'port_exposed', 'tags']) if __name__ == '__main__': main()
2.609375
3
scripts.py
guindosaros/tutotravis
0
12774597
import os import platform import subprocess # # Creation de l'environnement virtual Venv et activation version = subprocess.run(["python", "--version"], capture_output=True, text=True) if "python 3" in version.stdout.lower(): python = "python" else: python = "python3" createvenv = os.system(f"{python} -m venv venv") if platform.system() == 'Windows': activatevenv = os.system("source venv/Scripts/activate && pip install django") else: activatevenv = os.system("source venv/bin/activate && pip install django") nomprojet = input('Entrez le nom de votre projet django : ') activatevenv = os.system(f"source venv/bin/activate && django-admin startproject {nomprojet}") creationrequirement = os.system(f"source venv/bin/activate && cd {nomprojet} && pip freeze >> requirements.txt")
2.390625
2
RIT33PYT/Codigo_1/Guide/13_Funciones_genericas_1.py
Sbastdia/Ejercicios-probables-examen
0
12774598
""" Ejercicio: hacer un juego "Guess The number" PARTE 1: Pedir al usuario que introduzca un número entre 0 y 100 PARTE 2: Adivinar el número por parte del usuario Usar una función para capitalizar el código común """ MIN = 0 MAX = 99 def solicitar_introducir_numero(invite): # Completar la entrada: invite += " entre " + str(MIN) + " y " + str(MAX) + " incluídos: " while True: # Entramos en un bucle infinito # Pedimos introducir un número datoIntroducido = input(invite) try: datoIntroducido = int(datoIntroducido) except: pass else: # Hacer la comparación if MIN <= datoIntroducido <= MAX: # Tenemos lo que queremos, salimos del bucle break return datoIntroducido # PARTE 1 numero = solicitar_introducir_numero("Introduzca el número a adivinar") # PARTE 2 while True: # Entramos en un bucle infinito # que permite jugar varios turnos intento = solicitar_introducir_numero("Adivine el número") # Se prueba si el intento es correcto o no if intento < numero: print("Demasiado pequeño") elif intento > numero: print("Demasiado grande") else: print("Victoria!") break
3.953125
4
IOProgram/pickling.py
zhaoyu69/python3-learning
1
12774599
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # 序列化 # import pickle # d = dict(name='Bob', age=20, score=88) # print(pickle.dumps(d)) # f = open('dump.txt', 'wb') # pickle.dump(d, f) # f.close() # f = open('dump.txt', 'rb') # d = pickle.load(f) # f.close() # print(d) # JSON # import json # d = dict(name='Bob', age=20, score=88) # print(json.dumps(d)) # <class 'str'> # # json_str = '{"age": 20, "score": 88, "name": "Bob"}' # print(json.loads(json_str)) # <class 'dict'> # JSON进阶 import json # class Student(object): # def __init__(self, name, age, score): # self.name = name # self.age = age # self.score = score # # s = Student('Bob', 20, 88) # print(json.dumps(s)) # TypeError # class -> {} # def student2dict(std): # return { # 'name': std.name, # 'age': std.age, # 'score': std.score # } # # print(json.dumps(s, default=student2dict)) # class的__dict__就是一个dict,用来存储实例变量 # print(json.dumps(s, default=lambda obj: obj.__dict__)) # loads也需要函数转换 # def dict2student(d): # return Student(d['name'], d['age'], d['score']) # # json_str = '{"age": 20, "score": 88, "name": "Bob"}' # print(json.loads(json_str, object_hook=dict2student)) # 反序列化的Student实例对象 # test import json obj = dict(name='小明', age=20) s = json.dumps(obj, ensure_ascii=False) print(s)
3.84375
4
py/py_0134_prime_pair_connection.py
lcsm29/project-euler
0
12774600
# Solution of; # Project Euler Problem 134: Prime pair connection # https://projecteuler.net/problem=134 # # Consider the consecutive primes p1 = 19 and p2 = 23. It can be verified that # 1219 is the smallest number such that the last digits are formed by p1 # whilst also being divisible by p2. In fact, with the exception of p1 = 3 and # p2 = 5, for every pair of consecutive primes, p2 > p1, there exist values of # n for which the last digits are formed by p1 and n is divisible by p2. Let S # be the smallest of these values of n. Find ∑ S for every pair of consecutive # primes with 5 ≤ p1 ≤ 1000000. # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 134 timed.caller(dummy, n, i, prob_id)
3.171875
3
projects/gmc705/week1/demo_simple_pendulum_multiple_controller_options.py
echoix/pyro
0
12774601
# -*- coding: utf-8 -*- """ Created on Fri Nov 16 12:05:08 2018 @author: Alexandre """ ############################################################################### import numpy as np ############################################################################### from pyro.dynamic import pendulum from pyro.control import nonlinear from pyro.control import robotcontrollers from pyro.planning import plan from pyro.analysis import simulation ############################################################################### sys = pendulum.SinglePendulum() ############################################################################### # Planning traj = plan.load_trajectory('rrt.npy') q_goal = np.array([-3.14]) ############################################################################### # P kp = 5 kd = 0 ki = 0 p_ctl = robotcontrollers.JointPID( 1 , kp , ki, kd) p_ctl.rbar = q_goal # PD kp = 5 kd = 2 ki = 0 pd_ctl = robotcontrollers.JointPID( 1 , kp , ki, kd) pd_ctl.rbar = q_goal # PID kp = 5 kd = 2 ki = 1 pid_ctl = robotcontrollers.JointPID( 1 , kp , ki, kd) pid_ctl.rbar = q_goal # Computed Torque ctc_ctl = nonlinear.ComputedTorqueController( sys ) ctc_ctl.rbar = q_goal ctc_ctl.w0 = 2.0 ctc_ctl.zeta = 0.8 # Sliding Mode sld_ctl = nonlinear.SlidingModeController( sys ) sld_ctl.lam = 1 sld_ctl.gain = 5 sld_ctl.rbar = q_goal # OpenLoop with traj traj_ctl = plan.OpenLoopController( traj ) # Computed Torque with traj traj_ctc_ctl = nonlinear.ComputedTorqueController( sys , traj ) traj_ctc_ctl.rbar = q_goal traj_ctc_ctl.w0 = 2.0 traj_ctc_ctl.zeta = 0.8 # Sliding Mode with traj traj_sld_ctl = nonlinear.SlidingModeController( sys , traj ) traj_sld_ctl.lam = 1 traj_sld_ctl.gain = 5 traj_sld_ctl.rbar = q_goal ############################################################################### # Controller selection #ctl = p_ctl #ctl = pd_ctl #ctl = pid_ctl #ctl = ctc_ctl #ctl = sld_ctl #ctl = traj_ctl #ctl = traj_ctc_ctl ctl = traj_sld_ctl ############################################################################### # New cl-dynamic cl_sys = ctl + sys # Simultation q0 = 0 tf = 10 cl_sys.sim = simulation.CLosedLoopSimulation( cl_sys , tf , tf * 1000 + 1 , 'euler' ) cl_sys.sim.x0 = np.array([q0,0]) cl_sys.sim.compute() cl_sys.sim.plot('xu') cl_sys.animate_simulation() cl_sys.sim.phase_plane_trajectory(0,1)
2.625
3
ofb/datasource.py
openfoodbroker/pynutrition
3
12774602
"""Abstract datasource for recipes""" from os import path import json class Datasource: """foo""" def __init__(self, data): self.name = data["name"] self.text = data["text"] self.url = data["url"] self.local = data["local"] def validate(self): """Prove that data source is valid""" if path.exists(self.local) is False: errmsg_part1 = "missing local data source file %s;" errmsg_part2 = "please download it from %s" err = errmsg_part1 + errmsg_part2 raise Exception(err % (self.local, self.url)) return True def load_local_json(self): """Load json structure from file""" json_object = json.load(open(self.local)) return json_object
3.328125
3
main.py
justinhchae/gis_project
0
12774603
import geoplot as gplt import geopandas as gpd import matplotlib.pyplot as plt import pandas as pd from src import constants # data from cook county open data and us census township_boundaries = gpd.read_file(constants.TOWNSHIP_POLYGONS_GEOJSON) zip_code_data = gpd.read_file(constants.TOWNSHIP_POINTS_GEOJSON) # call geoplot plot on polygons as ax ax = gplt.polyplot(township_boundaries) # plot point data with same axis, ax gplt.pointplot(zip_code_data,s=1, ax=ax) # set title plt.title("Example Plot: IL State-wide Zip Codes and Cook Count Township Boundaries") # display plot plt.show()
3.1875
3
util/utility.py
Isaac-Li-cn/certify_robustness
0
12774604
<reponame>Isaac-Li-cn/certify_robustness import torch import torch.nn as nn import numpy as np def reduced_m_bm(m1, m2): ''' >>> merge a new constant transformation with a batch transformation >>> m1: tensor of shape [dim1, dim2] >>> m2: tensor of shape [batch_size, dim2] or [batch_size, dim2, dim3] ''' assert len(m1.shape) == 2, 'The dim of m1 should be 2.' dim2 = len(m2.shape) if dim2 == 2: mbm = m1.unsqueeze(0) * m2.unsqueeze(1) elif dim2 == 3: mbm = torch.matmul(m1, m2) else: raise ValueError('The dim of m2 should be either 2 or 3.') return mbm def reduced_bm_m(m1, m2): ''' >>> merge a batch transformation with a new constant transformation >>> m1: tensor of shape [batch_size, dim2] or [batch_size, dim1, dim2] >>> m2: tensor of shape [dim2, dim3] ''' assert len(m2.shape) == 2, 'The dim of m2 should be 2.' dim1 = len(m1.shape) if dim1 == 2: bmm = m1.unsqueeze(2) * m2.unsqueeze(0) elif dim1 == 3: bmm = torch.matmul(m1, m2) else: raise ValueError('The dim of m1 should be either 2 or 3.') return bmm def reduced_bm_bm(m1, m2): ''' >>> merge a batch trasformation with a new batch of transformation >>> m1: tensor of shape [batch_size, dim2] or [batch_size, dim1, dim2] >>> m2: tensor of shape [batch_size, dim2] or [batch_size, dim2, dim3] ''' dim1 = len(m1.shape) dim2 = len(m2.shape) if (dim1, dim2) == (2, 2): bmbm = m1 * m2 elif (dim1, dim2) == (2, 3): bmbm = m1.unsqueeze(2) * m2 elif (dim1, dim2) == (3, 2): bmbm = m1 * m2.unsqueeze(1) elif (dim1, dim2) == (3, 3): bmbm = torch.matmul(m1, m2) else: raise ValueError('The dim of m1 and m2 should be either 2 or 3.') return bmbm def reduced_bv_bm(m1, m2): ''' >>> merge a batch of values with a batch of transformation >>> m1: tensor of shape [batch_size, dim1] >>> m2: tensor of shape [batch_size, dim1] or [batch_size, dim1, dim2] ''' assert len(m1.shape) == 2, 'The dim of m1 should be 2.' dim2 = len(m2.shape) if dim2 == 2: bvbm = m1 * m2 elif dim2 == 3: bvbm = torch.matmul(m1.unsqueeze(1), m1).squeeze(1) else: raise ValueError('The dim of m2 should be either 2 or 3.') return bvbm def reduced_bm_bv(m1, m2): ''' >>> merge a batch of transformation with a batch of values >>> m1: tensor of shape [batch_size, dim2] or [batch_size, dim1, dim2] >>> m2: tensor of shape [batch_size, dim2] ''' assert len(m2.shape) == 2, 'The dim of m2 should be 2.' dim1 = len(m1.shape) if dim1 == 2: bmbv = m1 * m2 elif dim1 == 3: bmbv = torch.matmul(m1, m2.unsqueeze(2)).squeeze(2) else: raise ValueError('The dim of m1 should be either 2 or 3.') return bmbv def quad_bound_calc(W_list, m1_list, m2_list, ori_perturb_norm = None, ori_perturb_eps = None): ''' >>> W_list, m1_list, m2_list: The transition matrix, lower bound input and upper bound input. >>> ori_perturb_norm: float, the norm of initial perturbation >>> ori_perturb_eps: tensor of shape [batch_size, in_dim] ''' up_bound = 0. low_bound = 0. if ori_perturb_norm != None: primal_norm = ori_perturb_norm dual_norm = 1. / (1. - 1. / primal_norm) # print(W_list[0].size()) # print(ori_perturb_eps.shape) up_bound = torch.norm(W_list[0] * ori_perturb_eps.unsqueeze(1), dim = 2, p = dual_norm) # of shape [batch_size, out_dim] low_bound = - up_bound for W, m1, m2 in zip(W_list, m1_list, m2_list): W_neg = torch.clamp(W, max = 0.) W_pos = torch.clamp(W, min = 0.) up_bound = up_bound + reduced_bm_bv(W_pos, m2) + reduced_bm_bv(W_neg, m1) low_bound = low_bound + reduced_bm_bv(W_pos, m1) + reduced_bm_bv(W_neg, m2) return low_bound, up_bound
2.9375
3
src/mlflow_turing_scoring_server/scoring_server/wsgi.py
jose-turintech/mlflow-turing-scoring-server
0
12774605
import os from mlflow_turing_scoring_server import scoring_server from mlflow.pyfunc import load_model app = scoring_server.init(load_model(os.environ[scoring_server._SERVER_MODEL_PATH]))
1.492188
1
data_processing/eccv2020-sharp-workshop/setup.py
jchibane/if-net_texture
42
12774606
import setuptools with open("readme.md", "r") as fh: long_description = fh.read() setuptools.setup( name="sharpcvi2", version="1.0.0", author="CVI2: Computer Vision, Imaging and Machine Intelligence Research Group", author_email="<EMAIL>", description="Routines for the SHARP Challenge, ECCV 2020", long_description=long_description, long_description_content_type="text/markdown", url="https://cvi2.uni.lu/sharp2020/", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], python_requires='>=3.6', )
1.367188
1
ImageTracker/ImageTrackerTest.py
Engin-Boot/transfer-images-s1b13
0
12774607
<reponame>Engin-Boot/transfer-images-s1b13<gh_stars>0 import unittest import ImageTracker class TestImageTracker(unittest.TestCase): def test_when_client_calls_with_valid_csv_then_print_CSV_data(self): testsamplefilename = 'temp-samples-test.csv' with open(testsamplefilename, 'w') as samplefile: samplefile.write( """ImageFileName,Status 0.img,Diagnosis Pending 1.img,Diagnosis Complete 2.img,Diagnosis Pending""") x=ImageTracker.showCSVData(testsamplefilename) self.assertEqual(x,"CSV data printed successfully") def test_when_client_updates_Diagnosis_status_Pending_then_DiagnosisPending_is_set(self): testsamplefilename = 'temp-samples-test.csv' with open(testsamplefilename, 'w') as samplefile: samplefile.write( """ImageFileName,Status 0.img,Diagnosis Pending 1.img,Diagnosis Pending 2.img,Diagnosis Pending""") imageName="0.img" updated_status="Pending" # Pending for Diagnosis Pending self.assertTrue(ImageTracker.update_ImageStatus(testsamplefilename,imageName,updated_status)=="Status updated successfully") def test_when_client_updates_Diagnosis_status_Pending_then_DiagnosisCompleted_is_set(self): testsamplefilename = 'temp-samples-test.csv' with open(testsamplefilename, 'w') as samplefile: samplefile.write( """ImageFileName,Status 0.img,Diagnosis Pending 1.img,Diagnosis Pending 2.img,Diagnosis Pending""") imageName="1.img" updated_status="Completed" # Complete for Diagnosis Complete self.assertTrue(ImageTracker.update_ImageStatus(testsamplefilename,imageName,updated_status)=="Status updated successfully") def test_when_new_file_is_updated_then_it_gets_added_to_csv_with_Pending_Status(self): testsamplefilename = 'temp-samples-test.csv' with open(testsamplefilename, 'w') as samplefile: samplefile.write( """ImageFileName,Status 0.img,Diagnosis Pending 1.img,Diagnosis Complete 2.img,Diagnosis Pending""") new_file="3.img" ImageTracker.addNewFileNameToCsv(testsamplefilename,new_file) print("File Added successfully") x=ImageTracker.showCSVData(testsamplefilename) self.assertEqual(x,"CSV data printed successfully") if __name__ == '__main__': unittest.main()
2.625
3
data/data_stage3.py
wswdx/C2F-FWN
39
12774608
<filename>data/data_stage3.py import os.path import torchvision.transforms as transforms import torch from PIL import Image import numpy as np from data.base_dataset import BaseDataset, get_img_params, get_transform, get_transform_fixed, get_video_params, concat_frame from data.image_folder import make_grouped_dataset, check_path_valid from data.keypoint2img import read_keypoints # dataset for the Composition GAN of stage 3 class ComposerDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.dir_tparsing = os.path.join(opt.dataroot, opt.phase + '_parsing/target') self.dir_timg = os.path.join(opt.dataroot, opt.phase + '_img/target') self.dir_spose = os.path.join(opt.dataroot, opt.phase + '_pose/source') self.dir_sparsing = os.path.join(opt.dataroot, opt.phase + '_parsing/source') self.dir_sfg = os.path.join(opt.dataroot, opt.phase + '_fg/source') self.dir_simg = os.path.join(opt.dataroot, opt.phase + '_img/source') self.dir_bg = os.path.join(opt.dataroot, opt.phase + '_bg') self.tparsing_paths = sorted(make_grouped_dataset(self.dir_tparsing)) self.timg_paths = sorted(make_grouped_dataset(self.dir_timg)) self.spose_paths = sorted(make_grouped_dataset(self.dir_spose)) self.sparsing_paths = sorted(make_grouped_dataset(self.dir_sparsing)) self.sfg_paths = sorted(make_grouped_dataset(self.dir_sfg)) self.simg_paths = sorted(make_grouped_dataset(self.dir_simg)) self.init_frame_idx_composer(self.simg_paths) def __getitem__(self, index): TParsing, TFG, SPose, SParsing, SFG, SFG_full, BG, BG_flag, SI, seq_idx = self.update_frame_idx_composer(self.simg_paths, index) simg_paths = self.simg_paths[seq_idx] n_frames_total, start_idx, t_step = get_video_params(self.opt, self.n_frames_total, len(simg_paths), self.frame_idx) simg = Image.open(simg_paths[start_idx]).convert('RGB') size = simg.size BigSizeFlag = True if size[0]/size[1] > 1: BigSizeFlag = True else: BigSizeFlag = False if BigSizeFlag: params = get_img_params(self.opt, (1920,1080)) else: params = get_img_params(self.opt, size) tparsing_path = self.tparsing_paths[seq_idx][0] timg_path = self.timg_paths[seq_idx][0] video_name = timg_path[timg_path.rfind('video'):timg_path.rfind('/timg')] bg_path = self.dir_bg + '/' + video_name + '.jpg' BG_i, BG_flag = self.get_bg_image(bg_path, size, params, BigSizeFlag) TParsing, TFG = self.get_TImage(tparsing_path, timg_path, size, params, BigSizeFlag) TParsing, TFG = self.crop(TParsing), self.crop(TFG) frame_range = list(range(n_frames_total)) if (self.opt.isTrain or self.TPose is None) else [self.opt.n_frames_G-1] for i in frame_range: simg_path = simg_paths[start_idx + i * t_step] sfg_path = self.sfg_paths[seq_idx][start_idx + i * t_step] spose_path = self.spose_paths[seq_idx][start_idx + i * t_step] sparsing_path = self.sparsing_paths[seq_idx][start_idx + i * t_step] SPose_i, SParsing_i, SFG_i, SFG_full_i, SI_i = self.get_SImage(spose_path, sparsing_path, sfg_path, simg_path, size, params, BigSizeFlag) SParsing_i = self.crop(SParsing_i) SFG_i = self.crop(SFG_i) SPose_i, SFG_full_i, SI_i = self.crop(SPose_i), self.crop(SFG_full_i), self.crop(SI_i) SPose = concat_frame(SPose, SPose_i, n_frames_total) SParsing = concat_frame(SParsing, SParsing_i, n_frames_total) SFG = concat_frame(SFG, SFG_i, n_frames_total) SFG_full = concat_frame(SFG_full, SFG_full_i, n_frames_total) SI = concat_frame(SI, SI_i, n_frames_total) BG = concat_frame(BG, BG_i, n_frames_total) if not self.opt.isTrain: self.TParsing, self.TFG, self.SPose, self.SParsing, self.SFG, self.SFG_full, self.BG, self.BG_flag, self.SI = TParsing, TFG, SPose, SParsing, SFG, SFG_full, BG, BG_flag, SI self.frame_idx += 1 change_seq = False if self.opt.isTrain else self.change_seq return_list = {'TParsing': TParsing, 'TFG': TFG, 'SPose': SPose, 'SParsing': SParsing, 'SFG': SFG, 'SFG_full': SFG_full, 'BG': BG, 'BG_flag': BG_flag, 'SI': SI, 'A_path': simg_path, 'change_seq': change_seq} return return_list def get_bg_image(self, bg_path, size, params, BigSizeFlag): if os.path.exists(bg_path): BG = Image.open(bg_path).convert('RGB') if BigSizeFlag: transform_scale = get_transform(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) else: transform_scale = get_transform_fixed(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) BG_scaled = transform_scale(BG) BG_scaled = self.crop(BG_scaled) BG_flag = True else: BG_scaled = -torch.ones(3, 256, 192) BG_flag = False return BG_scaled, BG_flag def get_SImage(self, spose_path, sparsing_path, sfg_path, simg_path, size, params, BigSizeFlag): SI = Image.open(simg_path).convert('RGB') if SI.size != (1920,1080) and BigSizeFlag: SI = SI.resize((1920,1080), Image.BICUBIC) elif not BigSizeFlag: SI = SI.resize((192,256), Image.BICUBIC) SFG_np = np.array(SI) SFG_full_np = np.array(SI) random_drop_prob = self.opt.random_drop_prob if self.opt.isTrain else 0 SPose_array, _ = read_keypoints(spose_path, size, random_drop_prob, self.opt.remove_face_labels, self.opt.basic_point_only) SPose = Image.fromarray(SPose_array) if SPose.size != (1920,1080) and BigSizeFlag: SPose = SPose.resize((1920,1080), Image.NEAREST) elif not BigSizeFlag: SPose = SPose.resize((192,256), Image.NEAREST) SPose_np = np.array(SPose) SParsing = Image.open(sparsing_path) SParsing_size = SParsing.size if SParsing_size != (1920,1080) and SParsing_size != (192,256) and BigSizeFlag: SParsing = SParsing.resize((1920,1080), Image.NEAREST) elif not BigSizeFlag and SParsing_size != (192,256): SParsing = SParsing.resize((192,256), Image.NEAREST) SParsing_np = np.array(SParsing) if SParsing_size == (192,256): SParsing_new_np = SParsing_np else: SParsing_new_np = np.zeros_like(SParsing_np) SParsing_new_np[(SParsing_np == 3) | (SParsing_np == 5) | (SParsing_np == 6) | (SParsing_np == 7) | (SParsing_np == 11)] = 1 SParsing_new_np[(SParsing_np == 8) | (SParsing_np == 9) | (SParsing_np == 12)] = 2 SParsing_new_np[(SParsing_np == 1) | (SParsing_np == 2)] = 3 SParsing_new_np[(SParsing_np == 4) | (SParsing_np == 13)] = 4 SParsing_new_np[(SParsing_np == 14)] = 5 SParsing_new_np[(SParsing_np == 15)] = 6 SParsing_new_np[(SParsing_np == 16)] = 7 SParsing_new_np[(SParsing_np == 17)] = 8 SParsing_new_np[(SParsing_np == 10)] = 9 SParsing_new_np[(SParsing_np == 18)] = 10 SParsing_new_np[(SParsing_np == 19)] = 11 if BigSizeFlag: transform_scale = get_transform(self.opt, params, normalize=True, method=Image.NEAREST, color_aug=False) else: transform_scale = get_transform_fixed(self.opt, params, normalize=True, method=Image.NEAREST, color_aug=False) SPose_scaled = transform_scale(Image.fromarray(SPose_np)) SParsing_new = Image.fromarray(SParsing_new_np) if SParsing_size != (192,256) and BigSizeFlag: transform_scale = get_transform(self.opt, params, normalize=False, method=Image.NEAREST, color_aug=False) else: transform_scale = get_transform_fixed(self.opt, params, normalize=False, method=Image.NEAREST, color_aug=False) SParsing_scaled = transform_scale(SParsing_new)*255.0 if BigSizeFlag: transform_scale = get_transform(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) else: transform_scale = get_transform_fixed(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) SI_scaled = transform_scale(SI) SFG_full_np[(SParsing_new_np == 0)] = 0 SFG_full_scaled = transform_scale(Image.fromarray(SFG_full_np)) if SI.size != (192,256) and BigSizeFlag: transform_scale = get_transform(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) else: transform_scale = get_transform_fixed(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) if SI.size != (192,256): SFG_np[(SParsing_new_np != 1) & (SParsing_new_np != 2) & (SParsing_new_np != 3)] = 0 SFG_scaled = transform_scale(Image.fromarray(SFG_np)) return SPose_scaled, SParsing_scaled, SFG_scaled, SFG_full_scaled, SI_scaled def get_TImage(self, tparsing_path, timg_path, size, params, BigSizeFlag): random_drop_prob = self.opt.random_drop_prob if self.opt.isTrain else 0 TI = Image.open(timg_path).convert('RGB') if TI.size != (1920,1080) and BigSizeFlag: TI = TI.resize((1920,1080), Image.BICUBIC) elif not BigSizeFlag: TI = TI.resize((192,256), Image.BICUBIC) TFG_np = np.array(TI) TParsing = Image.open(tparsing_path) TParsing_size = TParsing.size if TParsing_size != (1920,1080) and TParsing_size != (192,256) and BigSizeFlag: TParsing = TParsing.resize((1920,1080), Image.NEAREST) elif not BigSizeFlag and TParsing_size != (192,256): TParsing = TParsing.resize((192,256), Image.NEAREST) TParsing_np = np.array(TParsing) TParsing_new_np = np.zeros_like(TParsing_np) TParsing_new_np[(TParsing_np == 1) | (TParsing_np == 2)] = 1 TParsing_new_np[(TParsing_np == 4) | (TParsing_np == 13)] = 2 TParsing_new_np[(TParsing_np == 14)] = 3 TParsing_new_np[(TParsing_np == 15)] = 4 TParsing_new_np[(TParsing_np == 16)] = 5 TParsing_new_np[(TParsing_np == 17)] = 6 TParsing_new_np[(TParsing_np == 10)] = 7 TParsing_new_np[(TParsing_np == 18)] = 8 TParsing_new_np[(TParsing_np == 19)] = 9 TParsing_new = Image.fromarray(TParsing_new_np) if TParsing_size != (192,256) and BigSizeFlag: transform_scale = get_transform(self.opt, params, normalize=False, method=Image.NEAREST, color_aug=False) else: transform_scale = get_transform_fixed(self.opt, params, normalize=False, method=Image.NEAREST, color_aug=False) TParsing_scaled = transform_scale(TParsing_new)*255.0 if BigSizeFlag: transform_scale = get_transform(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) else: transform_scale = get_transform_fixed(self.opt, params, normalize=True, method=Image.BICUBIC, color_aug=self.opt.color_aug) TFG_np[:,:,0][(TParsing_new_np == 0)] = 0 TFG_np[:,:,1][(TParsing_new_np == 0)] = 0 TFG_np[:,:,2][(TParsing_new_np == 0)] = 0 TFG_scaled = transform_scale(Image.fromarray(TFG_np)) return TParsing_scaled, TFG_scaled def crop(self, Ai): w = Ai.size()[2] base = 32 x_cen = w // 2 bs = int(w * 0.25) // base * base return Ai[:,:,(x_cen-bs):(x_cen+bs)] def __len__(self): return sum(self.frames_count) def name(self): return 'ComposerDataset'
2.21875
2
ABC/176/a.py
fumiyanll23/AtCoder
0
12774609
<reponame>fumiyanll23/AtCoder<gh_stars>0 N, X, T = map(int, input().split()) time = N // X if(N%X == 0): print(time * T) else: print((time+1) * T)
2.765625
3
PyTorch Exercises/My_CNN_Sample.py
FredAmouzgar/46_Simple_python_Exercise
0
12774610
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import torch from torch import nn import torch.nn.functional as F class ConvNet(nn.Module): def __init__(self, input_shape=(1,3,28,28)): super(ConvNet, self).__init__() self.cnn = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=128, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(2)) cs = self._calculate_cnn_output_shape(input_shape=input_shape) cnn_flattened_size = cs[1] * cs[2] * cs[3] self.dense = nn.Sequential(nn.Linear(cnn_flattened_size, 128), nn.ReLU(), nn.Linear(128, 10)) def forward(self, x): x = self.cnn(x) x = x.view(x.shape[0], -1) return F.log_softmax(self.dense(x), dim=-1) def _calculate_cnn_output_shape(self, input_shape=(10, 3, 28, 28)): data = torch.rand(input_shape) return list(self.cnn(data).size()) if __name__ == "__main__": net = ConvNet() imgs = torch.rand(10, 3, 28, 28) with torch.no_grad(): print(net(imgs))
3.046875
3
viz_one_image.py
AdidasSuperstar/detr
0
12774611
<reponame>AdidasSuperstar/detr import torch import pandas as pd import cv2 ###CREATE DATASET DIR_TRAIN = "C:\\Users\\Eva.Locusteanu\\PycharmProjects\\detr\\models\\train" #3423 images class WheatDataset(Dataset): def __init__(self, image_ids, dataframe, transforms=None): self.image_ids = image_ids self.df = dataframe self.transforms = transforms def __len__(self) -> int: return self.image_ids.shape[0] def __getitem__(self, index): image_id = self.image_ids[index] records = self.df[self.df['image_id'] == image_id] image = cv2.imread(f'{DIR_TRAIN}/{image_id}.jpg', cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) image /= 255.0 # DETR takes in data in coco format boxes = records[['x', 'y', 'w', 'h']].values # Area of bb area = boxes[:, 2] * boxes[:, 3] area = torch.as_tensor(area, dtype=torch.float32) # AS pointed out by PRVI It works better if the main class is labelled as zero labels = np.zeros(len(boxes), dtype=np.int32) if self.transforms: sample = { 'image': image, 'bboxes': boxes, 'labels': labels } sample = self.transforms(**sample) image = sample['image'] boxes = sample['bboxes'] labels = sample['labels'] # Normalizing BBOXES _, h, w = image.shape boxes = A.augmentations.bbox_utils.normalize_bboxes(sample['bboxes'], rows=h, cols=w) target = {} target['boxes'] = torch.as_tensor(boxes, dtype=torch.float32) target['labels'] = torch.as_tensor(labels, dtype=torch.long) target['image_id'] = torch.tensor([index]) target['area'] = area return image, target, image_id def run(fold): df_train = df_folds[df_folds['fold'] != fold] df_valid = df_folds[df_folds['fold'] == fold] train_dataset = WheatDataset( image_ids=df_train.index.values, dataframe=marking, transforms=get_train_transforms() ) valid_dataset = WheatDataset( image_ids=df_valid.index.values, dataframe=marking, transforms=get_valid_transforms() ) train_data_loader = DataLoader( train_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, collate_fn=collate_fn ) valid_data_loader = DataLoader( valid_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4, collate_fn=collate_fn ) device = torch.device('cuda:0') model = DETRModel(num_classes=num_classes, num_queries=num_queries) model = model.to(device) criterion = SetCriterion(num_classes - 1, matcher, weight_dict, eos_coef=null_class_coef, losses=losses) criterion = criterion.to(device) optimizer = torch.optim.AdamW(model.parameters(), lr=LR) best_loss = 10 ** 5 for epoch in range(EPOCHS): train_loss = train_fn(train_data_loader, model, criterion, optimizer, device, scheduler=None, epoch=epoch) valid_loss = eval_fn(valid_data_loader, model, criterion, device) print('|EPOCH {}| TRAIN_LOSS {}| VALID_LOSS {}|'.format(epoch + 1, train_loss.avg, valid_loss.avg)) if valid_loss.avg < best_loss: best_loss = valid_loss.avg print('Best model found for Fold {} in Epoch {}........Saving Model'.format(fold, epoch + 1)) torch.save(model.state_dict(), f'detr_best_{fold}.pth') if __name__ == '__main__': model = run(fold=0) model.cuda()
2.78125
3
storytracker/toolbox.py
pastpages/storytracker
24
12774612
<filename>storytracker/toolbox.py #!/usr/bin/env python from __future__ import print_function import six import re import math import operator from functools import reduce try: import cStringIO as io except: import io class UnicodeMixin(object): """ Mixin class to handle defining the proper __str__/__unicode__ methods in Python 2 or 3. """ # Python 3 if six.PY3: def __str__(self): return self.__unicode__() # Python 2 else: def __str__(self): return self.__unicode__().encode('utf8') def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.__str__()) def indent(rows, hasHeader=False, headerChar='-', delim=' | ', justify='left', separateRows=False, prefix='', postfix='', wrapfunc=lambda x: x): """Indents a table by column. - rows: A sequence of sequences of items, one sequence per row. - hasHeader: True if the first row consists of the columns' names. - headerChar: Character to be used for the row separator line (if hasHeader==True or separateRows==True). - delim: The column delimiter. - justify: Determines how are data justified in their column. Valid values are 'left','right' and 'center'. - separateRows: True if rows are to be separated by a line of 'headerChar's. - prefix: A string prepended to each printed row. - postfix: A string appended to each printed row. - wrapfunc: A function f(text) for wrapping text; each element in the table is first wrapped by this function.""" # closure for breaking logical rows to physical, using wrapfunc def rowWrapper(row): newRows = [wrapfunc(item).split('\n') for item in row] return [ [substr or '' for substr in item] for item in list(map(lambda *a: a, *newRows)) ] # break each logical row into one or more physical ones logicalRows = [rowWrapper(row) for row in rows] # columns of physical rows columns = list(map(lambda *a: a, *reduce(operator.add, logicalRows))) # get the maximum of each column by the string length of its items maxWidths = [ max([len(str(item)) for item in column]) for column in columns ] rowSeparator = headerChar * (len(prefix) + len(postfix) + sum(maxWidths) + len(delim) * (len(maxWidths) - 1)) # select the appropriate justify method justify = { 'center': str.center, 'right': str.rjust, 'left': str.ljust }[justify.lower()] output = io.StringIO() if separateRows: print >> output, rowSeparator for physicalRows in logicalRows: for row in physicalRows: print( prefix + delim.join([ justify(str(item), width) for (item, width) in zip(row, maxWidths) ]) + postfix, file=output ) if separateRows or hasHeader: print(rowSeparator, file=output) hasHeader = False return output.getvalue() def wrap_onspace(text, width): """ A word-wrap function that preserves existing line breaks and most spaces in the text. Expects that existing line breaks are posix newlines (\n). By <NAME> http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/148061 """ return reduce( lambda line, word, width=width: '%s%s%s' % ( line, ' \n' [ ( len(line[line.rfind('\n') + 1:]) + len(word.split('\n', 1)[0]) >= width ) ], word ), text.split(' ') ) def wrap_onspace_strict(text, width): """ Similar to wrap_onspace, but enforces the width constraint: words longer than width are split. """ wordRegex = re.compile(r'\S{' + str(width) + r',}') return wrap_onspace( wordRegex.sub(lambda m: wrap_always(m.group(), width), text), width ) def wrap_always(text, width): """ A simple word-wrap function that wraps text on exactly width characters. It doesn't split the text in words. """ return '\n'.join([ text[width * i:width * (i + 1)] for i in range( int(math.ceil(1.0 * len(text) / width)) ) ])
3.140625
3
angel-ps/python/pyangel/ml/client/angel_client_factory.py
weien8899/angel
1
12774613
<reponame>weien8899/angel # # Tencent is pleased to support the open source community by making Angel available. # # Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed under the License is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions and # from pyangel.context import Configuration class AngelClientFactory(object): """ Angel client factory, it support two types client now: LOCAL and YARN """ @staticmethod def get(map, conf): """ get an instance of AngelClient :param conf: a Java HashMap which contains the entry set to build a Hadoop Configuration instance :return: AngelClient(AngelLocalClient or AngelYarnClient) """ return conf._jvm.com.tencent.angel.client.AngelClientFactory.get(map, conf._jconf)
1.585938
2
src/tn_scraper.py
erik1066/covid-web-scraper
3
12774614
<filename>src/tn_scraper.py import requests, openpyxl, io, csv, datetime, os, pathlib import county_report, state_report STATE_ABBR = 'TN' STATE = 'Tennessee' URL = 'https://www.tn.gov/content/dam/tn/health/documents/cedep/novel-coronavirus/datasets/Public-Dataset-County-New.XLSX' def scraper(): # make an HTTP web request to get the MI XLSX file response = requests.get(URL) if response.status_code == requests.codes.ok: # Success - print to the console that the HTTP request succeeeded print(' ', STATE_ABBR, ': Downloaded succeeded') temppath = 'temp' if not os.path.exists(temppath): os.makedirs(temppath) tempfilename = datetime.datetime.now().strftime("%Y-%m-%d_%H%M%S") + '_temp_' + STATE_ABBR + '.xlsx' tempfilepath = pathlib.Path.cwd().joinpath('temp', tempfilename) with open(tempfilepath, "wb") as file: file.write(response.content) wb = openpyxl.load_workbook(filename=tempfilepath) sheet = wb.worksheets[0] max_rows = sheet.max_row counties = [] countyDictionary = {} i = max_rows while i > 2: rowCount = str(i) county_name = sheet['B' + rowCount].value county = findCounty(county_name, countyDictionary) if county == None: confirmed = int(sheet['E' + rowCount].value) deaths = int(sheet['P' + rowCount].value) county = county_report.CountyReport(STATE, county_name, confirmed, deaths, -1, -1, datetime.datetime.now()) counties.append(county) # append the countyReport to our list of counties countyDictionary[county_name] = county i = i - 1 # since the above algorithm outputs the counties in reverse-ABC order, let's reverse that so they're in ABC order... counties = list(reversed(counties)) # print the number of counties we processed print(' ', STATE_ABBR, ':', len(counties), ' counties processed OK') # build the state-level report object that will include all of the counties stateReport = state_report.StateReport(STATE, STATE_ABBR, counties, datetime.datetime.now()) # return the state-level report return stateReport else: # Fail print(' ', STATE_ABBR, ': ERROR : Web download failed - HTTP status code ', response.status_code) def findCounty(county_name, countyDictionary): if county_name in countyDictionary: return countyDictionary[county_name] else: return None
3.234375
3
lz_assoc_viewer/minimum_solution.py
atomai/lz-viewer
1
12774615
import gzip import Data_reader ##REQUIRES filename is a tabix file, names is the header of the file ##MODIFIES nothing ##EFFECTS finds the position of the minimum pvalue def find_min_pvals(filename, filetype, num_minimums, region_buffer): #create a file reader from the file file_reader = Data_reader.Data_reader.factory(filename, filetype) #skip the header file_reader.skip_header() #create the minimums dictionary minimums = create_baseline_minimums(num_minimums) #find the highest of the minimums highest_min, highest_min_index = find_highest_min(minimums, num_minimums) #loops through the lines in the file line = file_reader.get_line() while line != '#Genomic' or line != '': if line == '' or line.split()[0] == '#Genomic': break #if the pvalue is not available if file_reader.get_pval() == 'NA': line = file_reader.get_line() continue #if the pvalue is equal to the highest minimum, we do not add it to dictionary elif float(file_reader.get_pval()) >= highest_min: line = file_reader.get_line() continue #lastly, we must check other attributes of this pval if we want to add it to the dictionary else: #determine if this pvalue shares a region with another minimum shares_region, shared_index = index_of_shared_region(minimums, num_minimums, long(file_reader.get_pos()), region_buffer) #if it does share a region: if shares_region: #determine which is smaller, and place the smaller minimum in the list if float(file_reader.get_pval()) < minimums['value'][shared_index]: minimums = replace_minimum(minimums, long(file_reader.get_pos()), float(file_reader.get_pval()), int(file_reader.get_chrom()), shared_index) highest_min, highest_min_index = find_highest_min(minimums, num_minimums) else: line = file_reader.get_line() continue #if it does not share a region, place replace the previous highest minimum with the new minimum else: minimums = replace_minimum(minimums, long(file_reader.get_pos()), float(file_reader.get_pval()), int(file_reader.get_chrom()), highest_min_index) highest_min, highest_min_index = find_highest_min(minimums, num_minimums) line = file_reader.get_line() minimums = sort_minimums(minimums, num_minimums) return minimums ##REQUIRES minimums has at least two minimums ##MODIFIES minimums ##EFFECTS sorts (decreasing order) the dictionary of minimums based on pvalue def sort_minimums(minimums, num_minimums): new_minimums = create_baseline_minimums(num_minimums) index = 0 for min in minimums['value']: best = find_min_of_mins(minimums) new_minimums['position'][index] = minimums['position'][best] new_minimums['value'][index] = minimums['value'][best] new_minimums['chromosome'][index] = minimums['chromosome'][best] minimums['value'][best] = 1 index += 1 return new_minimums ##REQUIRES minimums has at least 1 minimum ##MODIFIES minimums ##EFFECTS returns an updated dictionary of minimums def replace_minimum(minimums, position, pvalue, chromosome, index): minimums['position'][index] = position minimums['value'][index] = pvalue minimums['chromosome'][index] = chromosome return minimums ##REQUIRES minimums has at least 1 minimum ##MODIFIES nothing ##EFFECTS returns a bool and a index, denoting that the current position is within a certain buffer region of another minimum def index_of_shared_region(minimums, num_minimums, position, region_buffer): for x in range(0, num_minimums): position_diff = abs( position - minimums['position'][x] ) if position_diff < region_buffer: return True, x return False, -1 ##REQUIRES minimums has a least one 'minimum' in it ##MODIFIES ##EFFECTS returns the highest minimum and the index it is stored at def find_highest_min(minimums, num_minimums): current_max = 0 for x in range(0, num_minimums): if minimums['value'][x] > current_max: current_max = minimums['value'][x] current_position = x return current_max, current_position ##REQUIRES num_minimums is > 0 ##MODIFIES nothing ##EFFECTS creates a minimums dictionary, including position, value and chromosome def create_baseline_minimums(num_minimums): minimums = {'position' : [], 'value' : [], 'chromosome' : [] } for x in range( 0 , num_minimums ): minimums['position'].append(-1000000) minimums['value'].append(1) minimums['chromosome'].append(0) return minimums ##REQUIRES minimums is a dictionary of minimums ##MODIFIES nothing ##EFFECTS finds the index of the minimum of the minimums def find_min_of_mins(minimums): current_min = 1 counter = 0 for min in minimums['value']: if current_min > min: current_min = min current_position = counter counter += 1 return current_position ##REQUIRES: minimums is a dictionary of minimums ##MODIFIES nothing ##EFFECTS creats a top hits list def create_hits(minimums): hits = [] ##create the hits list for flask for x in range(0, 10): chr = minimums['chromosome'][x] chr = str(chr) pos = minimums['position'][x] pos = str(pos) hits.append([chr + ":" + pos, chr + ":" + pos]) return hits ##REQUIRES ##MODIFIES ##EFFECTS def get_basic_region(filename, filetype): #create a file reader from the file file_reader = Data_reader.Data_reader.factory(filename, filetype) #skip the header file_reader.skip_header() #get a line line = file_reader.get_line() chrom = file_reader.get_chrom() position = file_reader.get_pos() return str(chrom) + ":" + str(position) + "-" + str(int(position) + 200000)
3.234375
3
src/amaping.py
Devdevdavid/Amaping
1
12774616
<filename>src/amaping.py #!/usr/bin/python # Author : <NAME> # Desc : See APP_DESC :) # File : Amaping.py # Date : July 4th, 2021 # Version : 1.0.0 import time import signal, os import traceback # For debugging unhandled exceptions import argparse # To parse command line arguments from geopy.geocoders import Nominatim # Get GeoCode from text address import pandas # Read CSV file import pickle # Used to load/save context an speedup developpement from Painter import Painter from MapGenerator import MapGenerator import Logger import Framacarte # To generate umap files from AmapMember import AmapMember # Define a member # Constants APP_NAME = "Amaping" APP_DESC = "Build a map of AMAP members locations" # Globale Variables geoLocator = None # Tell is value is considered as set or not def _isset(value): if (pandas.isna(value)): return False elif (value == ""): return False else: return True class Amaping: # ============= # CONSTANTS # ============= DEFAULT_CSV_FILENAME = './ressources/amap_data.csv' DEFAULT_ODS_FILENAME = './ressources/Cagette_Adh_Brama-2021-09.ods' DEFAULT_CSV_SEPARATOR = ';' DEFAULT_OUTPUT_MAP_NAME = './output/map.png' DEFAULT_MAP_ZOOM_LEVEL = 16 DEFAULT_MAP_SIZE = "4080x4080" AMAP_ADDRESS = "Salle Brama, Avenue Sainte-Marie" AMAP_CITY = "Talence" AMAP_POSTAL_CODE = "33400" # ============= # Variables # ============= config = None # Store the configuration amapMemberArray = [] # Store data of all members # ============= # Members # ============= def handler_sigint(self, signum, frame): self.isAppQuitting = True raise RuntimeError("Stopped by user") def __init__(self): # Init self.isAppQuitting = False # Check arguments parser = argparse.ArgumentParser(description=APP_DESC) parser.add_argument('-v', '--verbose', help='enable verbose logs', default=False, action='store_true') parser.add_argument('-u', '--umap', default=False, dest="umap", help='enable umap file generation', action='store_true') parser.add_argument('-p', '--png', default=False, dest="png", help='enable PNG file generation', action='store_true') parser.add_argument('-c', '--csv', default=self.DEFAULT_CSV_FILENAME, dest="csvFilename", help='specify CSV data file', type=str) parser.add_argument('-d', '--ods', default=self.DEFAULT_ODS_FILENAME, dest="odsFilename", help='specify ODS data file', type=str) parser.add_argument('-s', '--separator', default=self.DEFAULT_CSV_SEPARATOR, dest="csvSeparator", help='specify CSV column speparator', type=str) parser.add_argument('-o', '--output', default=self.DEFAULT_OUTPUT_MAP_NAME, dest="mapFilename", help='specify a map filename', type=str) parser.add_argument('-m', '--mapSize', default=self.DEFAULT_MAP_SIZE, dest="mapSize", help='specify a size in pixel for map generation (Ex: 1920x1080)', type=str) parser.add_argument('-z', '--zoomLevel', default=self.DEFAULT_MAP_ZOOM_LEVEL, dest="zoomLevel", help='specify a zoom level for map generation', type=int) # Use vars() to get python dict from Namespace object self.args = vars(parser.parse_args()) # Handle args if self.args["verbose"]: Logger.setLevelDebug() if not self.args["png"] and not self.args["umap"]: raise RuntimeError("At least one type of file generation is needed, use -u or -p !") # See https://wiki.openstreetmap.org/wiki/Zoom_levels # 20 might not be available everywhere if (self.args["zoomLevel"] < 0) or (self.args["zoomLevel"] > 20): raise RuntimeError("Zoom level must be in range [0; 20]") def save_context(self): f = open('./output/amapMemberArray.obj', 'wb') pickle.dump(self.amapMemberArray, f) Logger.debug("Saving context to file") def load_context(self): try: f = open('./output/amapMemberArray.obj', 'rb') except Exception as e: Logger.info("There is no context to load") return -1 self.amapMemberArray = pickle.load(f) return 0 def open_ods_sheet(self, odsFile, sheetName): Logger.info("ODS - Reading sheet " + sheetName) return pandas.read_excel(odsFile, engine='odf', sheet_name=sheetName) def find_member_by(self, name1, name2): # Find a match in our member list for member in self.amapMemberArray: displayName = member.get_display_name().lower() # Check name 1 if (not name1.lower() in displayName): continue # Check name 2 if (name2 != ""): if (not name2.lower() in displayName): continue # Return found member return member # Member not found msg = "Couldn't find a match in known members for {0}".format(name1) if (name2 != ""): msg += "/" + name2 Logger.warning(msg) return None def find_member_from_row(self, row, index): nom1 = nom2 = "" if (_isset(row['nom'])): nom1 = row['nom'].replace(" ", "") else: Logger.debug("Couldn't find a match for row {0}".format(index)) return None if (_isset(row['nom conjoint'])): nom2 = row['nom conjoint'].replace(" ", "") # Find a match in our member list matchMember = self.find_member_by(nom1, nom2) return matchMember def run(self): # Load CSV file data = pandas.read_csv(self.args["csvFilename"], sep=self.args["csvSeparator"], header=0) # Get AMAP address salleBrama = AmapMember() salleBrama.add_people("Salle", "Brama") salleBrama.set_address(self.AMAP_ADDRESS) salleBrama.set_city(self.AMAP_CITY) salleBrama.set_postal_code(self.AMAP_POSTAL_CODE) if (salleBrama.req_map_position(geoLocator) == None): raise RuntimeError("Unable to find AMAP address: \"{0}\"".format(salleBrama.get_display_address())) # Clear output array self.amapMemberArray = [] self.csvDataRowCount = len(data.index) Logger.debug("Found {0} rows in CSV file \"{1}\"".format(self.csvDataRowCount, self.args["csvFilename"])) if self.load_context() == -1: # Open a report file to log what needs to be modified in DB reportFile = open("./output/report.txt", "w") # For each line in the CSV... for index, rowdata in data.iterrows(): member = AmapMember() # Manage ID if (_isset(rowdata['id'])): member.set_id(rowdata['id']) # Manage names (first name is optionnal) if (_isset(rowdata['Nom'])): if (_isset(rowdata['Prénom'])): prenom = rowdata['Prénom'] else: prenom = "Prénom" member.add_people(rowdata['Nom'], prenom) if (_isset(rowdata['Nom partenaire'])): if (_isset(rowdata['Prénom partenaire'])): prenom = rowdata['Prénom partenaire'] else: prenom = "Prénom" member.add_people(rowdata['Nom partenaire'], prenom) # Manage address if (_isset(rowdata['Adresse 1']) and _isset(rowdata['Adresse 2'])): member.set_address(rowdata['Adresse 1']) # Display warning Logger.warning("2 addresses detected for member {0}, choosing {1}".format( member.get_display_name(), member.get_address())) elif (_isset(rowdata['Adresse 1'])): member.set_address(rowdata['Adresse 1']) elif (_isset(rowdata['Adresse 2'])): member.set_address(rowdata['Adresse 2']) else: Logger.warning("No address detected for member {0}".format(member.get_display_name())) reportFile.write("Pas d'adresse pour {0}\n".format(member.get_display_name())) continue if (_isset(rowdata['Ville'])): member.set_city(rowdata['Ville']) if (_isset(rowdata['Code postal'])): member.set_postal_code(rowdata['Code postal']) # Get Geocode, ignore if it failed if (member.req_map_position(geoLocator) == None): reportFile.write("Le membre {0} a une adresse non reconnue : \"{1}\"\n".format( member.get_display_name(), member.get_display_address() )) continue # Filter out member with far locations isCloseToHome = member.is_close_to(salleBrama.get_map_position()) member.set_close_to_home(isCloseToHome) if (not isCloseToHome): Logger.warning("Member {0} is too far away from {1}".format( member.get_display_name(), salleBrama.get_display_name()) ) reportFile.write("Le membre {0} est trop éloigné de {1} pour être affiché sur la map PNG\n".format( member.get_display_name(), salleBrama.get_display_name() )) if (_isset(rowdata['Téléphone'])): member.set_phone(rowdata['Téléphone']) if (_isset(rowdata['Email'])): member.set_email(rowdata['Email']) # Add member to output array self.amapMemberArray.append(member) # Check remove members self.removeMemberCount = self.csvDataRowCount - len(self.amapMemberArray) if (self.removeMemberCount > 0): Logger.warning("{0} members will not be on the map because of above warnings/errors !".format(self.removeMemberCount)) reportFile.write("{0} membre(s) nécessite(nt) de l'attention\n".format(self.removeMemberCount)) # Close the report file, we don't need it anymore reportFile.close() # Save context to speed up latter execution self.save_context() else: Logger.info("Using cached context file") # ======================== # ODS FILE # ======================== if (self.args["odsFilename"] != ""): Logger.info("ODS - Reading file " + self.args["odsFilename"]) # Analyse 1st sheet odsContent = self.open_ods_sheet(self.args["odsFilename"], "COORDONNEES") # Iterate over each lines of the file for index, row in odsContent.iterrows(): matchMember = self.find_member_from_row(row, index) if (matchMember == None): continue # Add info if (_isset(row['Rôles'])): matchMember.set_role(row['Rôles']) else: matchMember.set_role("Adhérent") if (_isset(row['Framacarte'])): isOnMap = row['Framacarte'].upper() == "OUI" matchMember.set_on_map(isOnMap) # Analyse 1st sheet odsContent = self.open_ods_sheet(self.args["odsFilename"], "ENGAGEMENTS") # Iterate over each lines of the file for index, row in odsContent.iterrows(): matchMember = self.find_member_from_row(row, index) if (matchMember == None): continue # Add info if (row['Légumes'] in ("hebdo", "pair", "impair")): matchMember.set_type_panier(row['Légumes']) # ======================== # COLORS AND SHAPES # ======================== # Define color and shape for each members markerShapes = ["star", "triangle", "sun", "circle", "rectangle", "cross"] for member in self.amapMemberArray: color = "gray" shape = "cross" if (member.get_type_panier() != ""): if (member.get_type_panier() == "hebdo"): color = "green" elif (member.get_type_panier() == "pair"): color = "orange" elif (member.get_type_panier() == "impair"): color = "blue" member.set_marker(color, shape) # Prepend Salle Brama to the member list in order to be drawn as all other members salleBrama.set_marker("red", "home") self.amapMemberArray.insert(0, salleBrama) # ======================== # GEOJSON # ======================== if self.args["umap"]: Logger.info("Generating UMap file...") amapBramaCollection = {} for member in self.amapMemberArray: # Set description description = member.get_display_address() if (member.is_on_map() == False): Logger.info("Member {0} don't want to appear on the map".format(member.get_display_name())) continue # Add info if we got one if (member.get_type_panier() != ""): description += "\nLégumes : " + member.get_type_panier().capitalize() if (member.get_phone() != ""): description += "\nTel. : " + member.get_phone() if (member.get_email() != ""): description += "\nEmail : " + member.get_email() if (member.get_role() != "" and member.get_role() != "Adhérent"): description += "\nRôle : " + member.get_role() if (member.get_type_panier() != ""): collectionName = member.get_type_panier() else: collectionName = "Autre" # Create collection if needed if (not collectionName in amapBramaCollection): amapBramaCollection[collectionName] = Framacarte.Collection(collectionName.capitalize()) curCollection = amapBramaCollection[collectionName] # Add the marker curCollection.add_marker( member.get_display_name(), member.get_map_position(), member.get_color(), member.get_shape(), description ) umapObj = Framacarte.UMap("BRAMA") for curCollection in amapBramaCollection: umapObj.add_collection(amapBramaCollection[curCollection]) umapObj.write_file() # ======================== # PNG # ======================== if self.args["png"]: Logger.info("Generating PNG file...") # Genarate map mapSize = tuple(map(int, self.args["mapSize"].split('x'))) mapGen = MapGenerator( center=salleBrama.get_map_position(), zoomLevel=self.args["zoomLevel"], mapSize=mapSize ) mapGen.render() # Reopend map with painter and sidebar painter = Painter(mapGen=mapGen) sideBarWidth = int(mapSize[0] / 3) painter.add_side_bar(sideBarWidth) # Add title painter.add_legend_title("{0} membres de l'AMAP Pétal :".format(len(self.amapMemberArray))) # Add markers Logger.info("Adding markers...") for member in self.amapMemberArray: # Ignore far members if (not member.is_close_to_home()): continue if (member.is_on_map() == False): continue painter.add_marker( member.get_display_name(), member.get_map_position(), member.get_color(), member.get_shape() ) Logger.info("Openning output file...") painter.save(self.args["mapFilename"]) painter.show() painter.close() # ======================== # DONE # ======================== Logger.info("Work done !") # ======================== # ENTRY POINT # ======================== if __name__ == '__main__': # Logging Logger.init(APP_NAME) # Init global variables geoLocator = Nominatim(user_agent="http") try: # Init app app = Amaping() # Configure signal handler signal.signal(signal.SIGINT, app.handler_sigint); app.run() except Exception as e: Logger.error("Exit with errors: " + str(e)); Logger.debug(traceback.format_exc())
2.359375
2
nbp/tests/tools.py
machism0/non-bonded-periodic
0
12774617
<reponame>machism0/non-bonded-periodic<gh_stars>0 import nbp import numpy as np def make_system(characteristic_length=10, sigma=None, epsilon_lj=None, particle_charges=None, positions=None, particle_count=None, lj=True, ewald=True, use_neighbours=False): if particle_count is None: if particle_charges is not None: particle_count = np.asarray(particle_charges).shape[0] elif positions is not None: particle_count = np.asarray(positions).shape[0] else: particle_count = 50 if not sigma: sigma = np.ones((particle_count, 1)) if not epsilon_lj: epsilon_lj = np.ones((particle_count, 1)) if particle_charges is None: particle_charges = np.random.rand(particle_count, 1) if positions is None: positions = characteristic_length * np.random.rand(particle_count, 3) system = nbp.System(characteristic_length, sigma, epsilon_lj, particle_charges, positions, lj=lj, ewald=ewald, use_neighbours=use_neighbours) return system
2.484375
2
reflex/reflex_runner.py
ankur-gos/RE-Flex
3
12774618
""" Classes for running lm inference """ import os import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from reflex.models.reflex import Reflex from dataclasses import dataclass from reflex.utils import load_file, to_list from reflex.structs import Sample from reflex.models.pmi_filter import WordEmbeddingsPMIFilter from reflex.squad_utils import convert_examples_to_features, read_input_examples, RawResult, get_predictions from reflex.metrics import calculate_relation_metrics from tqdm import tqdm class ReflexRunner: def __init__(self, model_dir, model_name, device, relations_filepath, data_directory, batch_size, must_choose_answer, l, we_model, spacy_model, k, expand, hyperparams=None): self.context_filter = WordEmbeddingsPMIFilter(we_model, spacy_model, l) self.model = Reflex(model_dir, model_name, device, k, self.context_filter.nlp) self.relations_filepath = relations_filepath # path to relations file self.data_directory = data_directory # data directory path self.batch_size = batch_size self.must_choose_answer = must_choose_answer # For datasets where there is always an answer, setting this to true will ensure that QA models that can return "answer doesn't exist" will always return a span in the context self.hyperparams = hyperparams self.expand = expand self.override_expand = False self.e_list = [] self.override_l = False def update_l(self, l): self.context_filter = WordEmbeddingsPMIFilter(self.context_filter.word_emb, self.context_filter.nlp, l) def predict(self): # Load relations file relations = load_file(self.relations_filepath) # Iterate through relations file and predict for each relation aggregate_em = aggregate_f1 = 0 per_relation_metrics = {} for relation in relations: # Check for per relation tuned hyperparams if self.hyperparams is not None: l, expand, _ = self.hyperparams[relation['relation']] if not self.override_l: self.update_l(l) if not self.override_expand: self.expand = expand data_file = os.path.join(self.data_directory, relation['relation']) + '.jsonl' data = load_file(data_file) # Adding to set filters any accidental duplicates samples_set = set() for d in data: samples_set.add(Sample(d['subject'], d['context'], d['object'], None, relation['template'])) samples = list(samples_set) init_len = len(samples) final_len = 1 if self.must_choose_answer: print('Must choose answer is True. Skipping filtering step') else: print('Starting filtering') samples = self.context_filter.filter(samples) final_len = len(samples) print(f'Filtering finished. Filtered {init_len - final_len}.') all_results = [] if final_len != 0: print(f'Loaded relation {relation["relation"]}. There are {len(samples)} test samples') print('Batching samples') batches, samples = self.model.batch(samples, self.batch_size) print('Starting inference') for batch in tqdm(batches): results = self.model.predict(batch, self.expand) all_results.extend(results) else: print('All samples were filtered. Skipping inference.') # Now we need to readd all the filtered samples filtered_samples = [s for s in samples_set if s not in samples] samples = list(samples) samples.extend(filtered_samples) # Predict empty string for every sample filtered_predictions = [''] * len(filtered_samples) all_results.extend(filtered_predictions) relation_em, relation_f1, per_relation_metrics, _, relation_e_list = calculate_relation_metrics(samples, all_results, per_relation_metrics, relation, single_error_list=None, reflex_e_list=True) self.e_list.extend(relation_e_list) aggregate_em += relation_em aggregate_f1 += relation_f1 aggregate_em /= len(relations) aggregate_f1 /= len(relations) return aggregate_em, aggregate_f1, per_relation_metrics
2.390625
2
emmet/css_abbreviation/tokenizer/tokens.py
jingyuexing/py-emmet
29
12774619
class Token: __slots__ = ('start', 'end') def __init__(self, start: int=None, end: int=None): self.start = start self.end = end @property def type(self): "Type of current token" return self.__class__.__name__ def to_json(self): return dict([(k, self.__getattribute__(k)) for k in dir(self) if not k.startswith('__') and k != 'to_json']) class Chars: Hash = '#' Dollar = '$' Dash = '-' Dot = '.' Colon = ':' Comma = ',' Excl = '!' At = '@' Percent = '%' Underscore = '_' RoundBracketOpen = '(' RoundBracketClose = ')' CurlyBracketOpen = '{' CurlyBracketClose = '}' Sibling = '+' SingleQuote = "'" DoubleQuote = '"' Transparent = 't' class OperatorType: Sibling = '+' Important = '!' ArgumentDelimiter = ',' ValueDelimiter = '-' PropertyDelimiter = ':' class Operator(Token): __slots__ = ('operator',) def __init__(self, operator: OperatorType, *args): super(Operator, self).__init__(*args) self.operator = operator class Bracket(Token): __slots__ = ('open',) def __init__(self, is_open: bool, *args): super(Bracket, self).__init__(*args) self.open = is_open class Literal(Token): __slots__ = ('value',) def __init__(self, value: str, *args): super(Literal, self).__init__(*args) self.value = value class NumberValue(Token): __slots__ = ('value', 'raw_value', 'unit') def __init__(self, value: int, raw_value: str, unit='', *args): super(NumberValue, self).__init__(*args) self.value = value self.raw_value = raw_value self.unit = unit class ColorValue(Token): __slots__ = ('r', 'g', 'b', 'a', 'raw') def __init__(self, r=0, g=0, b=0, a=None, raw='', *args): super(ColorValue, self).__init__(*args) self.r = r self.g = g self.b = b self.a = a if a is not None else 1 self.raw = raw class StringValue(Token): __slots__ = ('value', 'quote') def __init__(self, value: str, quote='', *args): super(StringValue, self).__init__(*args) self.value = value self.quote = quote class Field(Token): __slots__ = ('name', 'index') def __init__(self, name: str, index: int=None, *args): super(Field, self).__init__(*args) self.index = index self.name = name class WhiteSpace(Token): pass
2.578125
3
backend/app/models/client_model.py
juniorosorio47/client-order
0
12774620
<filename>backend/app/models/client_model.py from django.contrib.auth import get_user_model from django.db import models User = get_user_model() # Client model class Client(models.Model): name = models.CharField(max_length=120) def _str_(self): return self.name
2.140625
2
apps/Tests/algs/TestAlg.py
erinzm/NEXT-chemistry
155
12774621
<filename>apps/Tests/algs/TestAlg.py from apps.Tests.tests.test_api import set_and_get_alg, get_alg, get_exp class MyAlg: def initExp(self, butler, dummy): get_exp(butler) set_and_get_alg(butler) return "return_init_exp" def getQuery(self, butler): get_alg(butler) return "return_get_query" def processAnswer(self, butler): get_alg(butler) return "return_process_answer" def getModel(self, butler): get_alg(butler) return "return_process_answer"
2.0625
2
pinterest.py
raphaottoni/pinterest-crawler
9
12774622
<reponame>raphaottoni/pinterest-crawler import urllib2 import time import random import socket import MySQLdb from config import * import os,re class Pinterest: #------inicializacao -------# def __init__(self, verbose=0): self.db = MySQLdb.connect(host,user,password,database) self.cursor = self.db.cursor() self. cursor.connection.autocommit(True) def findError(self,html): erro = re.search("HTML-Error-Code: ([0-9]*)\n",html) if (erro): #print "achei o erro-"+erro.group(1) return erro.group(1) else: return 0 def analyzeAnswer(self,html): code = self.findError(html) if (code != 0): if code == "404": return 1 else: print "dormindo - code " + code time.sleep(random.randint(0,2)) return 2 else: return 0 def fetch(self,url): done=0 while(not done): html = os.popen("phantomjs ./pinterest.js "+url).read() answerCode = self.analyzeAnswer(html) if (answerCode == 0): done=1; elif (answerCode == 1): return 1 return html def fetchPins(self,url,qtd): done=0 while(not done): html = os.popen("phantomjs ./pinterestPin.js "+url+ " " +qtd).read() answerCode = self.analyzeAnswer(html) if (answerCode == 0): done=1; elif (answerCode == 1): return 1 return html def fetchSimple(self,url): done=0 while(not done): print "coletando" html = os.popen("phantomjs ./pinterestSimple.js "+url).read() answerCode = self.analyzeAnswer(html) if (answerCode == 0): done=1; elif (answerCode == 1): return 1 return html def snowBall(self): self.cursor.execute("select pinterestID from fatos where statusIDs is null or statusIDs = 0 limit 1") self.db.commit() return self.cursor.fetchone()[0] def getIDtoCrawl(self): self.cursor.execute("select pinterestID from usersToCollect where statusColeta is null or statusColeta = 0 order by rand() limit 1") self.db.commit() return self.cursor.fetchone()[0] def insereID(self,pinterestID): try: self.cursor.execute("insert into fatos (pinterestID) values ('"+pinterestID+"')") self.db.commit() except MySQLdb.IntegrityError, e: log = open("/var/tmp/log","a+") log.write("Erro de integridade do banco: '"+ str(e)+ "' \n") log.close() def statusColetaIDs(self,pinterestID,valor): try: self.cursor.execute("update usersToCollect set statusIDs ='"+valor+"' where pinterestID = '"+pinterestID+"'") self.db.commit() print "update usersToCollect set statusIDs ='"+valor+"' where pinterestID = '"+pinterestID+"'" except Exception, e: log = open("/var/tmp/log","a+") log.write("Erro de integridade do banco: '"+ str(e)+ "' \n") log.close() def statusColeta(self,pinterestID,valor, dominio): try: self.cursor.execute("update usersToCollect set statusColeta ='"+valor+"' , crawler = '"+dominio+"' where pinterestID = '"+pinterestID+"'") self.db.commit() print "update usersToCollect set statusColeta ='"+valor+"' , crawler = '"+dominio+"' where pinterestID = '"+pinterestID+"'" except Exception, e: log = open("/var/tmp/log","a+") log.write("Erro de integridade do banco: '"+ str(e)+ "' \n") log.close() def nPinsUser(self,pinterestID,valor): try: self.cursor.execute("insert into deltaPinUsers (pinterestID,nPins) values ('"+pinterestID+"' , '"+valor+"')") self.db.commit() #print ("insert into deltaPinUsers (pinterestID,nPins) values ('"+pinterestID+"' , '"+valor+"')") except Exception, e: print str(e) log = open("/var/tmp/log","a+") log.write("Erro de integridade do banco: '"+ str(e)+ "' \n") log.close()
2.828125
3
ciphers/zazcipher.py
zdhoward/practice
0
12774623
<reponame>zdhoward/practice literals = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ ,.?/:;{[]}-=_+~!@#$%^&*()" #obfuscated literals = "tJ;EM mKrFzQ_SOT?]B[U@$yqec~fhd{=is&alxPIbnuRkC%Z(jDw#G:/)L,*.V!pov+HNYA^g-}WX" key = 7 def shuffle(plaintext): shuffled = "" # shuffle plaintext for i in range(int(len(plaintext) / 3)): block = plaintext[i*3] + plaintext[i*3 + 1] + plaintext[i*3 + 2] old0 = block[0] old1 = block[1] old2 = block[2] block = old2 + old0 + old1 shuffled += block shuffled += plaintext[len(plaintext) - (len(plaintext) % 3):len(plaintext)] return shuffled def unshuffle(ciphertext): unshuffled = "" # unshuffle plaintext for i in range(int(len(ciphertext) / 3)): block = ciphertext[i*3] + ciphertext[i*3 + 1] + ciphertext[i*3 + 2] old0 = block[0] old1 = block[1] old2 = block[2] block = old1 + old2 + old0 unshuffled += block unshuffled += ciphertext[len(ciphertext) - (len(ciphertext) % 3):len(ciphertext)] return unshuffled def shift(plaintext): shifted = "" # Cipher shift tmp = [] for i in range(len(plaintext)): pos = literals.find(plaintext[i]) if pos >= 0: if pos + key > len(literals): pos = (pos + key) - len(literals) res = literals[pos + key] else: res = plaintext[i] tmp.append(res) # reconstruct ciphertext for i in range(len(tmp)): shifted += tmp[i] return shifted def unshift(ciphertext): unshifted = "" tmp = [] for i in range(len(ciphertext)): pos = literals.find(ciphertext[i]) if pos >= 0: if pos - key < 0: pos = (pos - key) + len(literals) res = literals[pos - key] else: res = ciphertext[i] tmp.append(res) #reconstruct ciphertext for i in range(len(tmp)): unshifted += tmp[i] return unshifted def encrypt(msg): msg = shuffle(msg) msg = shift(msg) return msg def decrypt(msg): #msg = unshuffle(msg) msg = unshift(msg) msg = unshuffle(msg) return msg def test(): test = "This is my plaintext" test = "\nThis is a long paragraph with lots of exciting things\nI could go on and on about all of this stuff.\nLove, Zach!" test = "abcdefghijklmnopqrstuvwxyz-ABCDEFGHIJKLMNOPQRSTUVWXYZ_!@#$%^&*()" print ("Testing: " + test) print ("Shuffle: " + shuffle(test)) print ("Shift: " + shift(shuffle(test))) print ("Unshift: " + unshift(shift(shuffle(test)))) print ("Unshuffle: " + unshuffle(unshift(shift(shuffle(test))))) print ("") print ("Encrypt: " + encrypt(test)) print ("Decrypt: " + decrypt(encrypt(test))) if __name__ == "__main__": test()
3.078125
3
testsqlite.py
UncleEngineer/UncleVocab
0
12774624
# testsqlite.py import sqlite3 conn = sqlite3.connect('vocab.db') c = conn.cursor() c.execute("""CREATE TABLE IF NOT EXISTS vocab ( ID INTEGER PRIMARY KEY AUTOINCREMENT, vocab text, meaning text, score int)""") def insert_vocab(vocab,meaning): ID = None score = 0 with conn: c.execute("""INSERT INTO vocab VALUES (?,?,?,?)""", (ID,vocab,meaning,score)) conn.commit() print('Data was inserted') def view_vocab(): with conn: c.execute("SELECT * FROM vocab") allvocab = c.fetchall() print(allvocab) return allvocab view_vocab() #insert_vocab('Cat','แมว')
3.59375
4
09_binarytree/binary_tree_xrh.py
Xinrihui/Data-Structure-and-Algrithms
1
12774625
from collections import deque class TreeNode(object): def __init__(self,item): self.val=item self.left=None self.right=None # self.height=None # Codec class DFS_Serialize: """ 基于 DFS 的 二叉树 的序列化 和 反序列化 递归实现 ref: https://blog.csdn.net/Shenpibaipao/article/details/108378093 https://zhuanlan.zhihu.com/p/164408048 """ def __serialize_preorder(self, p): """ 将 树 序列化为 前序序列 :param p: :return: """ if p != None: c = p.val self.preorder_list.append(c) self.__serialize_preorder(p.left) self.__serialize_preorder(p.right) else: self.preorder_list.append('#') # 使用 '#' 表示空节点 def serialize(self, root): """ 将 树 序列化为 前序序列 :type preorder: str """ if root is None: return '' self.preorder_list = [] self.__serialize_preorder(root) preorder_list = [str(ele) for ele in self.preorder_list] res = ','.join(preorder_list) return res def __preorder_deSerialize(self, preorder): """ 递归方法 :param preorder: :param prev: 父亲节点 :return: """ c = preorder.popleft() if c != '#': p = TreeNode(c) p.left = self.__preorder_deSerialize(preorder) p.right = self.__preorder_deSerialize(preorder) return p def deserialize(self, str1): """ 由 先序序列 反序列化 出 BST 二叉搜索树 (递归) :param preorder: :return: """ if len(str1) == 0: return None preorder = str1.split(',') preorder = [ele.strip() for ele in preorder] preorder = deque(preorder) root = self.__preorder_deSerialize(preorder) return root # Codec class DFS_Serialize_Stack: """ 基于 DFS 的 二叉树 的序列化 和 反序列化 非递归实现 """ def serialize(self, root): """ 将 二叉树 序列化为 前序序列 """ if root is None: return '' preorder_list = [] p = root stack = [] stack.append(p) while len(stack) > 0: current = stack.pop() if current is not None: # 当前节点不是 空节点 preorder_list.append(current.val) if current.right is not None: stack.append(current.right) else: stack.append(None) # 空节点 入栈 if current.left is not None: stack.append(current.left) else: stack.append(None) else: # 当前节点 是空节点 preorder_list.append('#') # 使用 '#' 表示空节点 preorder_list = [str(ele) for ele in preorder_list] # leetcode 的树 的节点是 int preorder_str = ','.join(preorder_list) return preorder_str def deserialize(self, preorder_str): """ 由 先序序列 反序列化 出 二叉树 ( 非递归 ) ref: https://blog.csdn.net/cyuyanenen/article/details/51589945 :param preorder: :return: """ if len(preorder_str) == 0: return None preorder = preorder_str.split(',') preorder = [ele.strip() for ele in preorder] i = 0 root = TreeNode(preorder[i]) stack = [] stack.append(root) i += 1 flag = 1 """ flag = 1 表示现在需要创建当前节点的左孩子, flag = 2 表示需要创建右孩子, flag = 3 则表示当前节点的左右孩子都已经创建完毕,需要执行出栈操作,直到出栈节点不是当前栈顶节点的右孩子为止。 """ while i < len(preorder): if flag == 1: if preorder[i] == '#': flag = 2 else: child_left = TreeNode(preorder[i]) current = stack[-1] current.left = child_left stack.append(child_left) flag = 1 elif flag == 2: if preorder[i] == '#': flag = 3 else: child_right = TreeNode(preorder[i]) current = stack[-1] current.right = child_right stack.append(child_right) flag = 1 elif flag == 3: top_ele = stack.pop() while len(stack) > 0 and stack[-1].right == top_ele: top_ele = stack.pop() i -= 1 flag = 2 i += 1 return root # Codec class BFS_Serialize: """ 基于 BFS 的 二叉树 的序列化 和 反序列化 """ def serialize(self, root): """ 将 二叉树 序列化为 层次序列 """ if root is None: return '' h_list = [] p = root queue = deque() queue.append(p) while len(queue) > 0: current = queue.popleft() if current is not None: # 当前节点不是 空节点 h_list.append(current.val) if current.left is not None: queue.append(current.left) else: queue.append(None) if current.right is not None: queue.append(current.right) else: queue.append(None) # 空节点 入栈 else: # 当前节点 是空节点 h_list.append('#') # h_list 使用 '#' 表示空节点 h_list = [str(ele) for ele in h_list] # leetcode 的树 的节点是 int h_str = ','.join(h_list) # ',' 作为 分隔符 return h_str def deserialize(self, h_str): """ 由 先序序列 反序列化 出 二叉树 ( 非递归 ) :param preorder: :return: """ if len(h_str) == 0: return None h_list = h_str.split(',') h_list = [ele.strip() for ele in h_list] i = 0 root = TreeNode(h_list[i]) i += 1 queue = deque() queue.append(root) while i < len(h_list) and len(queue) > 0: current = queue.popleft() if h_list[i] != '#': left_child = TreeNode(h_list[i]) current.left = left_child queue.append(left_child) i += 1 if h_list[i] != '#': right_child = TreeNode(h_list[i]) current.right = right_child queue.append(right_child) i += 1 return root class Solution1(object): """ 二叉树的链式存储法 表达二叉树 """ def buildTree(self, preorder,inorder): """ 用树的前序和中序遍历的结果来构建树 :type preorder: ['a','b','c','e','d'] :type inorder: ['c','b','e','a','d'] :rtype: TreeNode """ self.preorder = deque(preorder) self.inorder = deque(inorder) return self._buildTree(0, len(inorder)) def _buildTree(self, start, end): if start<end: root_val=self.preorder.popleft() print("root: ",root_val ) root=TreeNode(root_val) index=self.inorder.index(root_val,start,end) # 在数组的位置范围: [start,end) 中寻找 root_val root.left=self._buildTree(start,index) root.right=self._buildTree(index+1,end) return root def pre_order(self,root): if root is not None: print(root.val) self.pre_order(root.left) self.pre_order(root.right) return def in_order_depreatured(self,root): """ 非递归 实现树的中序遍历 :param root: :return: """ stack=[root] p=root res=[] while len(stack)!=0 : while (p!=None) and (p.left!=None) and (p.val not in res): #访问过的节点不要再入栈 p = p.left stack.append(p) p=stack.pop() res.append(p.val) if p.right!=None: p=p.right stack.append(p) return res def in_order(self, root): """ 非递归 实现树的中序遍历 :param root: :return: """ stack = [] p = root res = [] while p!=None or len(stack)!=0: if p!=None: # p 不为空就入栈 stack.append(p) p=p.left #指向左节点 else: # 如果p 为空就弹出 p=stack.pop() # 访问中间节点 res.append(p.val) p=p.right # 指针指向右子树 return res def _depth_recursion(self,root): if root is None: return 0 left_depth= self._depth_recursion(root.left) right_depth=self._depth_recursion(root.right) return max(left_depth,right_depth)+1 def _depth(self, root): """ 改进层次遍历 ,把树的各个层都切分出来,并能输出树的高度 :type root: TreeNode :rtype: int """ Queue = deque() Queue.append(root) depth = 0 while (len(Queue) != 0): depth += 1 n = len(Queue) for i in range(n): # Stratified according to depth target = Queue.popleft() print(target.val) print('depth: ', depth) if target.left != None: Queue.append(target.left) if target.right != None: Queue.append(target.right) return depth class Solution2(object): """ 基于数组的顺序存储法 表达二叉树 """ def pre_order(self, tree_array): """ 前序遍历 中->左->右 :param tree_array: :return: """ stack=[] i=1 node=[tree_array[i],i] stack.append(node) result=[] while ( len(stack)!=0 ): current=stack.pop() # print(current) result.append(current[0]) i=current[1] if 2*i+1<len(tree_array) and tree_array[2*i+1]!=None: # tree_array 越界 访问检查 : 2*i+1<len(tree_array) node=[tree_array[2*i+1],2*i+1] stack.append(node) if 2*i<len(tree_array) and tree_array[2*i]!=None: node = [tree_array[2 * i ], 2 * i] stack.append(node) return result def post_order(self, tree_array): """ 前序遍历 :中->左->右 前序遍历反过来 :中->右->左 前序遍历反过来再逆序 : 左 -> 右 ->中 (后序遍历) https://www.cnblogs.com/bjwu/p/9284534.html :param tree_array: :return: """ stack=[] i=1 node=[tree_array[i],i] stack.append(node) result=[] while ( len(stack)!=0 ): current=stack.pop() # print(current) result.append(current[0]) i=current[1] if 2*i<len(tree_array) and tree_array[2*i]!=None: node = [tree_array[2 * i ], 2 * i] stack.append(node) if 2*i+1<len(tree_array) and tree_array[2*i+1]!=None: # tree_array 越界 访问检查 : 2*i+1<len(tree_array) node=[tree_array[2*i+1],2*i+1] stack.append(node) return result[::-1] # 逆序输出即为 后序遍历 def in_order_deprecated(self, tree_array): stack=[] i=1 result=[] while ( i < len(tree_array) and tree_array[i] != None) or (len(stack) != 0): # ( i < len(tree_array) and tree_array[i] != None) 等价于 p != None while (i < len(tree_array) and tree_array[i] != None): node = [tree_array[i], i] stack.append(node) i = 2 * i # 左子树全部进栈 if (len(stack) != 0) : current = stack.pop() # # print(current) result.append(current[0]) i = current[1] i= 2*i+1 #尝试去访问右子树 return result def in_order(self, tree_array): """ 好理解 :param tree_array: :return: """ stack=[] i=1 result=[] while ( i < len(tree_array) and tree_array[i] != None) or (len(stack) != 0): if (i < len(tree_array) and tree_array[i] != None): node = [tree_array[i], i] stack.append(node) i = 2 * i # 左子树全部进栈 else: current = stack.pop() # # print(current) result.append(current[0]) i = current[1] i= 2*i+1 #尝试去访问右子树 return result def hierarchy_order(self, tree_array): """ 树的层次遍历 (广度优先遍历) :param tree_array: :return: """ fifo=deque() i=1 node=[tree_array[i],i] fifo.appendleft(node) result=[] while ( len(fifo)!=0 ): current=fifo.pop() # print(current) result.append(current[0]) i=current[1] if 2*i<len(tree_array) and tree_array[2*i]!=None: # 左边 node = [tree_array[2 * i ], 2 * i] fifo.appendleft(node) if 2*i+1<len(tree_array) and tree_array[2*i+1]!=None: # 右边 node=[tree_array[2*i+1],2*i+1] fifo.appendleft(node) return result class Test: def test_DFS(self): sol = DFS_Serialize_Stack() preorder = '1,2,#,#,3,4,#,5,#,#,#' tree = sol.deserialize(preorder) print(sol.serialize(tree)) assert sol.serialize(tree) == preorder preorder = '' tree = sol.deserialize(preorder) assert sol.serialize(tree) == preorder preorder = '9,3,4,#,5,#,#,1,#,#,#' tree = sol.deserialize(preorder) print(sol.serialize(tree)) assert sol.serialize(tree) == preorder def test_BFS(self): sol = BFS_Serialize() preorder = '8,6,10,5,7,9,11,#,#,#,#,#,#,#,#' tree = sol.deserialize(preorder) print(sol.serialize(tree)) assert sol.serialize(tree) == preorder preorder = '' tree = sol.deserialize(preorder) assert sol.serialize(tree) == preorder preorder = '8,6,10,#,#,9,11,#,#,#,#' tree = sol.deserialize(preorder) print(sol.serialize(tree)) assert sol.serialize(tree) == preorder def test_solution1(self): # solution1 preorder=['a','b','c','e','d'] inorder= ['c','b','e','a','d'] preorder=['A','B','D','F','G','C','E','H'] inorder=['F','D','G','B','A','E','H','C'] postorder= ['F','G','D','B','H','E','C','A'] solution=Solution1() root=solution.buildTree(preorder,inorder) solution.pre_order(root) print(solution.in_order(root)) print(solution._depth(root)) print(solution._depth_recursion(root)) def test_solution2(self): tree_array=[None,'A','B','C','D',None,'E',None,'F','G',None,None,None,'H'] solution2 = Solution2() print('preorder: ',solution2.pre_order(tree_array)) print('inorder: ',solution2.in_order(tree_array)) print('postorder: ', solution2.post_order(tree_array)) print('hierarchy_order: ', solution2.hierarchy_order(tree_array)) if __name__ == "__main__": t = Test() t.test_BFS()
3.328125
3
apis_v1/documentation_source/organization_suggestion_tasks_doc.py
ranadeepmitra21/WeVoteServer_Ranadeep
44
12774626
# apis_v1/documentation_source/organization_suggestion_tasks_doc.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- def organization_suggestion_tasks_doc_template_values(url_root): """ Show documentation about organizationSuggestionTask """ required_query_parameter_list = [ { 'name': 'voter_device_id', 'value': 'string', # boolean, integer, long, string 'description': 'An 88 character unique identifier linked to a voter record on the server', }, { 'name': 'api_key', 'value': 'string (from post, cookie, or get (in that order))', # boolean, integer, long, string 'description': 'The unique key provided to any organization using the WeVoteServer APIs', }, { 'name': 'kind_of_suggestion_task', 'value': 'string', # boolean, integer, long, string 'description': 'Default is UPDATE_SUGGESTIONS_FROM_TWITTER_IDS_I_FOLLOW. ' 'Other options include UPDATE_SUGGESTIONS_FROM_WHAT_FRIENDS_FOLLOW, ' 'UPDATE_SUGGESTIONS_FROM_WHAT_FRIENDS_FOLLOW_ON_TWITTER, ' 'UPDATE_SUGGESTIONS_FROM_WHAT_FRIEND_FOLLOWS, ' 'UPDATE_SUGGESTIONS_FROM_WHAT_FRIEND_FOLLOWS_ON_TWITTER or UPDATE_SUGGESTIONS_ALL', }, ] optional_query_parameter_list = [ { 'name': 'kind_of_follow_task', 'value': 'string', # boolean, integer, long, string 'description': 'Default is FOLLOW_SUGGESTIONS_FROM_TWITTER_IDS_I_FOLLOW. ' 'Other options include FOLLOW_SUGGESTIONS_FROM_FRIENDS, ' 'or FOLLOW_SUGGESTIONS_FROM_FRIENDS_ON_TWITTER, ', }, ] potential_status_codes_list = [ { 'code': 'VALID_VOTER_DEVICE_ID_MISSING', 'description': 'Cannot proceed. A valid voter_device_id parameter was not included.', }, { 'code': 'VALID_VOTER_ID_MISSING', 'description': 'Cannot proceed. A valid voter_id was not found.', }, ] try_now_link_variables_dict = { # 'organization_we_vote_id': 'wv85org1', } api_response = '{\n' \ ' "status": string,\n' \ ' "success": boolean,\n' \ ' "voter_device_id": string (88 characters long),\n' \ '}' template_values = { 'api_name': 'organizationSuggestionTasks', 'api_slug': 'organizationSuggestionTasks', 'api_introduction': "This will provide list of suggested endorsers to follow. " "These suggestions are generated from twitter ids i follow, or organization of my friends follow", 'try_now_link': 'apis_v1:organizationSuggestionTasksView', 'try_now_link_variables_dict': try_now_link_variables_dict, 'url_root': url_root, 'get_or_post': 'GET', 'required_query_parameter_list': required_query_parameter_list, 'optional_query_parameter_list': optional_query_parameter_list, 'api_response': api_response, 'api_response_notes': "", 'potential_status_codes_list': potential_status_codes_list, } return template_values
1.664063
2
tests/integration/conftest.py
tonybaloney/django-xss-fuzzer
32
12774627
import pytest @pytest.fixture(scope='session') def session_capabilities(session_capabilities): session_capabilities['loggingPrefs'] = {'browser': 'ALL'} session_capabilities['goog:loggingPrefs'] = {'browser': 'ALL'} return session_capabilities @pytest.fixture def chrome_options(chrome_options): chrome_options.headless = True return chrome_options
1.828125
2
ws-python/ex043.py
DerickSilva/Python
0
12774628
peso = float(input('Qual é seu peso? ')) altura = float(input('Qual é sua altura? ')) imc = peso / (altura * altura) if imc < 18.5: print(f'IMC {imc:.1f} Abaixo do Peso') elif imc < 25: print(f'IMC {imc:.1f} Peso Ideal') elif imc < 30: print(f'IMC {imc:.1f} Sobrepeso') elif imc < 40: print(f'IMC {imc:.1f} Obesidade') else: print(f'IMC {imc:.1f} Obesidade Morbida')
3.71875
4
examples/demo_a2c.py
antoine-moulin/rlberry
0
12774629
from rlberry.agents import A2CAgent from rlberry.envs.classic_control import MountainCar from rlberry.envs.benchmarks.ball_exploration import PBall2D from rlberry.seeding import seeding render = True seeding.set_global_seed(1223) for env, n_episodes, horizon in zip([PBall2D(), MountainCar()], [400, 40000], [256, 512]): print("Running A2C on %s" % env.name) agent = A2CAgent(env, n_episodes=n_episodes, horizon=horizon, gamma=0.99, learning_rate=0.001, k_epochs=4) agent.fit() if render: env.enable_rendering() state = env.reset() for tt in range(200): action = agent.policy(state) next_state, reward, done, _ = env.step(action) state = next_state env.render()
2.28125
2
autogoal/datasets/movie_reviews.py
gmijenes/autogoal
0
12774630
<filename>autogoal/datasets/movie_reviews.py import random from autogoal.datasets import download, datapath def load(max_examples=None): try: download("movie_reviews") except: print( "Error loading data. This may be caused due to bad connection. Please delete badly downloaded data and retry" ) raise sentences = [] classes = [] path = datapath("movie_reviews") ids = list(path.rglob("*.txt")) random.shuffle(ids) for fd in ids: if "neg/" in str(fd): cls = "neg" else: cls = "pos" with fd.open() as fp: sentences.append(fp.read()) classes.append(cls) if max_examples and len(classes) >= max_examples: break return sentences, classes def make_fn(test_size=0.25, examples=None): from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X, y = load(examples) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) def fitness_fn(pipeline): pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) return accuracy_score(y_test, y_pred) return fitness_fn
3.109375
3
h2o-py/tests/testdir_apis/Data_Manipulation/pyunit_h2oH2OFrame_countmatches.py
vishalbelsare/h2o-3
6,098
12774631
<reponame>vishalbelsare/h2o-3<gh_stars>1000+ from __future__ import print_function import sys sys.path.insert(1,"../../../") from tests import pyunit_utils import h2o from h2o.utils.typechecks import assert_is_type from h2o.frame import H2OFrame def h2o_H2OFrame_countmatches(): """ Python API test: h2o.frame.H2OFrame.countmatches(pattern) Copied from pyunit_countmatches.py """ python_lists = [["what","is"], ["going", "on"], ["When", "are"], ["MeetingMeetingon", "gone"]] h2oframe = h2o.H2OFrame(python_obj=python_lists) matches = h2oframe.countmatches(['Wh', 'ing', 'on']) assert_is_type(matches, H2OFrame) assert matches.shape == h2oframe.shape, "h2o.H2OFrame.countmatches() command is not working." assert matches.any_na_rm(), "h2o.H2OFrame.countmatches() command is not working." nomatches = h2oframe.countmatches(['rain','pluck']) assert not(nomatches.any_na_rm()), "h2o.H2OFrame.countmatches() command is not working." pyunit_utils.standalone_test(h2o_H2OFrame_countmatches)
2.40625
2
mechlib/amech_io/parser/mech.py
keceli/mechdriver
0
12774632
""" Parses the `mechanism.dat` input file for MechDriver that contains all of the reactions of mechanism. The format of this file corresponds to some user-specified format. """ import mechanalyzer.parser.pes def pes_dictionary(mech_str, mech_type, spc_dct, printlog=True): """ Calls mechanalyzer to do the dictionary """ return mechanalyzer.parser.pes.pes_dictionary( mech_str, mech_type, spc_dct, printlog=printlog)
3.09375
3
ml_code/GunshotDetection/eval_nolabel.py
ankitshah009/Daisy_Shooter_Localization
18
12774633
<reponame>ankitshah009/Daisy_Shooter_Localization # coding=utf-8 # given downloaded annotation file from videoAnno(rename the filename first), the test file is filename+score+label, then compute the AP and precision and recall # annotation will be transform first based on over-half overlapping of each filename(start and end time provided). from ChunWai import * import os,sys def usage(): print """ -testfile -imgfile # if set, will save the plot to a img """ sys.exit() def getOverlap(s,e,sc,ec): if((sc>e) or (s>ec)): return None elif((s<=ec) and (s>=sc)): if(e>=ec): return (s,ec) else: return (s,e) elif(s<sc): if(e>=ec): return (sc,ec) else: return (sc,e) else: error("wtf2") def getTime(timestr): hour,minutes,sec = timestr.strip().split(":") return float(hour)*60.0*60.0+float(minutes)*60.0+float(sec) if __name__ == "__main__": testfile,imgfile = resolveParam(['-testfile','-imgfile']) if(cp([testfile])): usage() scores = {} count = {} for line in open(testfile,"r").readlines(): videoname,score,label = line.strip().split() label = int(label) stuff = os.path.splitext(videoname)[0].split("_") filename,start,end = "_".join(stuff[:-2]),stuff[-2],stuff[-1] if(not scores.has_key(filename)): scores[filename] = [] scores[filename].append({"score":float(score),"mylabel":label,"start":start,"end":end}) import matplotlib matplotlib.use('agg') import numpy as np import matplotlib.pyplot as plt for filename in scores: scores[filename].sort(key=operator.itemgetter("start"),reverse=False) # assume a timestamp is 1 second timestamps = [0.05,0.1,0.3,0.5,0.7,0.9,1.0] # xticks timestamps = [one*len(scores[filename]) for one in timestamps] plt.xticks(timestamps,[sec2time(one) for one in timestamps],rotation=50) plt.ylim(ymin=-0.05,ymax=1) plt.xlabel("Video Time") plt.ylabel("Prediction Score") plot_handles = [] thisScores = np.array([one['score'] for one in scores[filename]]) thisTimesteps = np.array(range(len(scores[filename]))) a1, = plt.plot(thisTimesteps,thisScores,'b-',label="prediction") plot_handles.extend([a1]) plt.legend(handles=plot_handles,loc='upper right') if(imgfile != ''): plt.savefig(imgfile,bbox_inches="tight") else: plt.show()
2.75
3
September 2020/03-Multidimensional-Lists/Exercises/05-Snake-Moves.py
eclipse-ib/Software-University-Professional-Advanced-Module
0
12774634
from collections import deque rows, cols = [int(_) for _ in input().split()] string = input() matrix = [[0 for j in range(cols)] for i in range(rows)] # matrix = [] # # for i in range(rows): # matrix.append([]) # for j in range(cols): # matrix[i].append(0) key_word = deque(string) count = 0 for i in range(rows): for j in range(cols): if not key_word: key_word = deque(string) matrix[i][j] = key_word.popleft() if count % 2 != 0: matrix[i] = matrix[i][::-1] count += 1 print('\n'.join([''.join(map(str, m)) for m in matrix]))
3.34375
3
setup.py
bao-eng/oscc-check
4
12774635
<gh_stars>1-10 import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand long_description = open('README.md', 'r').read() class PyTest(TestCommand): user_options = [("pytest-args=", "a", "Arguments to pass to pytest")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = "" def run_tests(self): import shlex # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(shlex.split(self.pytest_args)) sys.exit(errno) setup(name='oscc-check', version='0.0.1', url='https://github.com/PolySync/oscc-check', author='<NAME>', author_email='<EMAIL>', maintainer='PolySync Technologies', maintainer_email='<EMAIL>', description='Check that your vehcile and the installed OSCC are in a good state.', long_description=long_description, download_url='https://github.com/PolySync/oscc-check', packages=["oscccan"], license='MIT', install_requires=[ 'colorama', 'docopt', 'python-can', ], scripts=['oscc-check.py'], tests_require=['pytest', 'hypothesis'], test_suite="tests", cmdclass={"test": PyTest}, classifiers=[ 'Environment :: Console', 'License :: MIT License', 'Natural Language :: English', 'Operating System :: Linux', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', ], )
1.796875
2
src/utils/setup_django.py
mrts/foodbank-campaign
1
12774636
import os import sys import django PROJDIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, PROJDIR) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "foodbank.settings") django.setup()
1.546875
2
plenum/test/run_continuously.py
andkononykhin/plenum
148
12774637
import traceback import pytest from plenum.test.testing_utils import setupTestLogging setupTestLogging() def run(test, stopOnFail=True, maxTimes=None): count = 0 passes = 0 fails = 0 while maxTimes is None or count < maxTimes: exitcode = pytest.main(test) count += 1 if exitcode: fails += 1 print("Test failed!") traceback.print_exc() if stopOnFail: break else: passes += 1 print("Test passed.") print("current stats: successes: {} fails: {}".format(passes, fails)) run("monitoring/test_instance_change_with_Delta.py", stopOnFail=False, maxTimes=100)
2.53125
3
bsmetadata/experiments/sample.py
chkla/metadata
13
12774638
from dataclasses import dataclass from datasets import load_dataset from torch.utils.data import DataLoader from transformers import PreTrainedTokenizerBase from bsmetadata.input_pipeline import DataConfig @dataclass class DataCollatorForCLM: tokenizer: PreTrainedTokenizerBase pad_to_multiple_of: int = 16 def __call__(self, batch): batch = self.tokenizer( [x["text"] for x in batch], truncation=True, padding="max_length", max_length=512, # TODO: make this configurable return_tensors="pt", pad_to_multiple_of=self.pad_to_multiple_of, ) labels = batch["input_ids"].clone() # force an error in no pad_token # if self.tokenizer.pad_token_id is not None: labels[labels == self.tokenizer.pad_token_id] = -100 batch["labels"] = labels return batch def get_dataloaders(tokenizer, cfg: DataConfig): datasets = load_dataset("wikitext", "wikitext-2-raw-v1") data_collator = DataCollatorForCLM(tokenizer) train_dataloader = DataLoader( datasets["train"], shuffle=True, collate_fn=data_collator, batch_size=cfg.per_device_train_batch_size, num_workers=1, ) eval_dataloader = DataLoader( datasets["validation"], collate_fn=data_collator, batch_size=cfg.per_device_eval_batch_size, num_workers=1, ) return train_dataloader, {"val": eval_dataloader}
2.46875
2
admin/migrations/0007_auto_20180304_2342.py
rodlukas/UP-admin
4
12774639
<gh_stars>1-10 # Generated by Django 2.0.2 on 2018-03-04 22:42 from django.db import migrations class Migration(migrations.Migration): dependencies = [("admin", "0006_auto_20180304_2334")] operations = [ migrations.RenameField( model_name="attendance", old_name="attendancestate", new_name="attendance_state" ) ]
1.679688
2
methods/smoking-behavior.py
wdempsey/sense2stop-lvm
1
12774640
<gh_stars>1-10 # To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% [markdown] # # Summary # # * ADD LATER # * ADD LATER # * ADD LATER # %% [markdown] # # Estimation # %% import pymc3 as pm import arviz as az import pandas as pd import numpy as np from datetime import datetime import os exec(open('../env_vars.py').read()) dir_data = os.environ['dir_data'] dir_picklejar = os.environ['dir_picklejar'] # %% [markdown] # Only self-report data will be used to estimate time between events for now. # %% data_selfreport = pd.read_csv(os.path.join(os.path.realpath(dir_data), 'work_with_datapoints.csv')) use_this_data = data_selfreport # %% [markdown] # Let's define the distribution of censored data. # %% def exponential_log_complementary_cdf(x, lam): ''' log complementary CDF of exponential distribution ''' return -lam*x # %% [markdown] # Let's pull out variables that will be used in all models. # %% censored = use_this_data['censored'].values.astype(bool) time_to_next_event = use_this_data['time_to_next_event'].values.astype(float) is_post_quit = use_this_data['is_post_quit'].values.astype(float) # %% [markdown] # Let's pull out features we have constructed. # %% # Features applicable to pre- and post-quit periods day_within_period = use_this_data['day_within_period'].values.astype(float) hours_since_previous_sr_within_day = use_this_data['hours_since_previous_sr_within_day'].values.astype(float) hours_since_previous_sr_within_period = use_this_data['hours_since_previous_sr_within_period'].values.astype(float) is_first_sr_within_day = use_this_data['is_first_sr_within_day'].values.astype(float) is_first_sr_within_period = use_this_data['is_first_sr_within_period'].values.astype(float) order_within_day = use_this_data['order_within_day'].values.astype(float) order_within_period = use_this_data['order_within_period'].values.astype(float) hours_since_start_of_study = use_this_data['hours_since_start_of_study'].values.astype(float) hours_since_start_of_period = use_this_data['hours_since_start_of_period'].values.astype(float) hour_of_day = use_this_data['hour_of_day'].values.astype(float) sleep = use_this_data['sleep'].values.astype(float) # 1=if between 1am to 6am, 0=outside of this time # Features applicable only to the post-quit period is_within24hours_quit = use_this_data['is_within24hours_quit'].values.astype(float) is_within48hours_quit = use_this_data['is_within48hours_quit'].values.astype(float) is_within72hours_quit = use_this_data['is_within72hours_quit'].values.astype(float) # %% [markdown] # ## Model 1 # %% with pm.Model() as model: # ------------------------------------------------------------------------- # Priors # ------------------------------------------------------------------------- beta_prequit = pm.Normal('beta_prequit', mu=0, sd=10) beta_postquit = pm.Normal('beta_postquit', mu=0, sd=10) beta_prequit_day = pm.Normal('beta_prequit_day', mu=0, sd=10) beta_postquit_day = pm.Normal('beta_postquit_day', mu=0, sd=10) # ------------------------------------------------------------------------- # Likelihood # ------------------------------------------------------------------------- loglamb_observed = ( beta_prequit*(1-is_post_quit[~censored]) + beta_prequit_day*day_within_period[~censored]*(1-is_post_quit[~censored]) + beta_postquit*is_post_quit[~censored] + beta_postquit_day*day_within_period[~censored]*is_post_quit[~censored] ) lamb_observed = np.exp(loglamb_observed) Y_hat_observed = pm.Exponential('Y_hat_observed', lam = lamb_observed, observed=time_to_next_event[~censored]) loglamb_censored = ( beta_prequit*(1-is_post_quit[censored]) + beta_prequit_day*day_within_period[censored]*(1-is_post_quit[censored]) + beta_postquit*is_post_quit[censored] + beta_postquit_day*day_within_period[censored]*is_post_quit[censored] ) lamb_censored = np.exp(loglamb_censored) Y_hat_censored = pm.Potential('Y_hat_censored', exponential_log_complementary_cdf(x = time_to_next_event[censored], lam = lamb_censored)) # Sample from posterior distribution with model: posterior_samples = pm.sample(draws=1000, tune=1000, cores=1, init='adapt_diag', target_accept=0.90, max_treedepth=50) # %% # Calculate 95% credible interval model_summary_logscale = az.summary(posterior_samples, credible_interval=.95) model_summary_logscale = model_summary_logscale[['mean','hpd_2.5%','hpd_97.5%']] model_summary_logscale # %% summary_expscale = {'mean': [np.mean(np.exp(posterior_samples['beta_prequit_day'])), np.mean(np.exp(posterior_samples['beta_postquit_day']))], 'LB': [np.quantile(np.exp(posterior_samples['beta_prequit_day']), q=.125), np.quantile(np.exp(posterior_samples['beta_postquit_day']), q=.125)], 'UB': [np.quantile(np.exp(posterior_samples['beta_prequit_day']), q=.975), np.quantile(np.exp(posterior_samples['beta_postquit_day']), q=.975)]} summary_expscale = pd.DataFrame(summary_expscale) summary_expscale.index = ['exp_beta_prequit_day','exp_beta_postquit_day'] summary_expscale # %% pm.traceplot(posterior_samples) # %% # Remove variable from workspace del model, posterior_samples, model_summary_logscale # %% [markdown] # ## Model 2 # %% feature1 = hours_since_previous_sr_within_period # %% with pm.Model() as model: # ------------------------------------------------------------------------- # Priors # ------------------------------------------------------------------------- beta_prequit = pm.Normal('beta_prequit', mu=0, sd=10) beta_postquit = pm.Normal('beta_postquit', mu=0, sd=10) beta_prequit_feature1 = pm.Normal('beta_prequit_feature1', mu=0, sd=10) beta_postquit_feature1 = pm.Normal('beta_postquit_feature1', mu=0, sd=10) # ------------------------------------------------------------------------- # Likelihood # ------------------------------------------------------------------------- loglamb_observed = ( beta_prequit*(1-is_post_quit[~censored]) + beta_postquit*is_post_quit[~censored] ) loglamb_observed_features = ( beta_prequit_feature1*feature1[~censored]*(1-is_post_quit[~censored]) + beta_postquit_feature1*feature1[~censored]*is_post_quit[~censored] ) lamb_observed = np.exp(loglamb_observed + loglamb_observed_features) Y_hat_observed = pm.Exponential('Y_hat_observed', lam = lamb_observed, observed=time_to_next_event[~censored]) loglamb_censored = ( beta_prequit*(1-is_post_quit[censored]) + beta_postquit*is_post_quit[censored] ) loglamb_censored_features = ( beta_prequit_feature1*feature1[censored]*(1-is_post_quit[censored]) + beta_postquit_feature1*feature1[censored]*is_post_quit[censored] ) lamb_censored = np.exp(loglamb_censored + loglamb_censored_features) Y_hat_censored = pm.Potential('Y_hat_censored', exponential_log_complementary_cdf(x = time_to_next_event[censored], lam = lamb_censored)) #%% # Sample from posterior distribution with model: posterior_samples = pm.sample(draws=1000, tune=1000, cores=1, init='adapt_diag', target_accept=0.90, max_treedepth=50) # %% model_summary_logscale = az.summary(posterior_samples, credible_interval=.95) model_summary_logscale = model_summary_logscale[['mean','hpd_2.5%','hpd_97.5%']] model_summary_logscale # %% posterior_samples_expscale_prequit_feature1 = np.exp(posterior_samples['beta_prequit_feature1']) posterior_samples_expscale_postquit_feature1 = np.exp(posterior_samples['beta_postquit_feature1']) model_summary_expscale = {'mean': [np.mean(posterior_samples_expscale_prequit_feature1), np.mean(posterior_samples_expscale_postquit_feature1)], 'LB': [np.quantile(posterior_samples_expscale_prequit_feature1, q=.125), np.quantile(posterior_samples_expscale_postquit_feature1, q=.125)], 'UB': [np.quantile(posterior_samples_expscale_prequit_feature1, q=.975), np.quantile(posterior_samples_expscale_postquit_feature1, q=.975)]} model_summary_expscale = pd.DataFrame(model_summary_expscale) model_summary_expscale.index = ['exp_beta_prequit_feature1', 'exp_beta_postquit_feature1'] model_summary_expscale # %% diff_prepost_feature1 = posterior_samples['beta_postquit_feature1'] - posterior_samples['beta_prequit_feature1'] exp_diff_prepost_feature1 = np.exp(diff_prepost_feature1) diff_summary_expscale = {'mean': [np.mean(exp_diff_prepost_feature1)], 'LB': [np.quantile(exp_diff_prepost_feature1, q=.125)], 'UB': [np.quantile(exp_diff_prepost_feature1, q=.975)]} diff_summary_expscale = pd.DataFrame(diff_summary_expscale) diff_summary_expscale.index = ['exp_diff_prepost_feature1'] diff_summary_expscale # %% pm.traceplot(posterior_samples) # %% [markdown] # ## Model 3 # %% feature1 = is_within48hours_quit feature2 = hours_since_previous_sr_within_period # %% with pm.Model() as model: # ------------------------------------------------------------------------- # Priors # ------------------------------------------------------------------------- beta_prequit = pm.Normal('beta_prequit', mu=0, sd=10) beta_postquit = pm.Normal('beta_postquit', mu=0, sd=10) beta_postquit_feature1 = pm.Normal('beta_postquit_feature1', mu=0, sd=10) beta_prequit_feature2 = pm.Normal('beta_prequit_feature2', mu=0, sd=10) beta_postquit_feature2 = pm.Normal('beta_postquit_feature2', mu=0, sd=10) beta_postquit_feature_product = pm.Normal('beta_postquit_feature_product', mu=0, sd=10) # ------------------------------------------------------------------------- # Likelihood # ------------------------------------------------------------------------- loglamb_observed = ( beta_prequit*(1-is_post_quit[~censored]) + beta_postquit*is_post_quit[~censored] ) loglamb_observed_features1 = ( beta_postquit_feature1*feature1[~censored]*is_post_quit[~censored] + beta_prequit_feature2*feature2[~censored]*(1-is_post_quit[~censored]) + beta_postquit_feature2*feature2[~censored]*is_post_quit[~censored] + beta_postquit_feature_product*feature1[~censored]*feature2[~censored]*is_post_quit[~censored] ) lamb_observed = np.exp(loglamb_observed + loglamb_observed_features1) Y_hat_observed = pm.Exponential('Y_hat_observed', lam = lamb_observed, observed=time_to_next_event[~censored]) loglamb_censored = ( beta_prequit*(1-is_post_quit[censored]) + beta_postquit*is_post_quit[censored] ) loglamb_censored_features1 = ( beta_postquit_feature1*feature1[censored]*is_post_quit[censored] + beta_prequit_feature2*feature2[censored]*(1-is_post_quit[censored]) + beta_postquit_feature2*feature2[censored]*is_post_quit[censored] + beta_postquit_feature_product*feature1[censored]*feature2[censored]*is_post_quit[censored] ) lamb_censored = np.exp(loglamb_censored + loglamb_censored_features1) Y_hat_censored = pm.Potential('Y_hat_censored', exponential_log_complementary_cdf(x = time_to_next_event[censored], lam = lamb_censored)) with model: posterior_samples = pm.sample(draws=1000, tune=1000, cores=1, init='adapt_diag', target_accept=0.90, max_treedepth=50) # %% model_summary_logscale = az.summary(posterior_samples, credible_interval=.95) model_summary_logscale = model_summary_logscale[['mean','hpd_2.5%','hpd_97.5%']] model_summary_logscale # %% # Slope of hours since previous self-report within period: # Difference between within first 48 hours in post-quit period vs. after first 48 hours in post-quit period diff_feature_postquitwithin48_postquitafter48 = posterior_samples['beta_postquit_feature_product'] exp_diff_feature_postquitwithin48_postquitafter48 = np.exp(diff_feature_postquitwithin48_postquitafter48) # Difference between within first 48 hours in post-quit period vs. pre-quit diff_feature_postquitwithin48_prequit = posterior_samples['beta_postquit_feature2'] + posterior_samples['beta_postquit_feature_product'] - posterior_samples['beta_prequit_feature2'] exp_diff_feature_postquitwithin48_prequit = np.exp(diff_feature_postquitwithin48_prequit) # Difference between after 48 hours in post-quit period vs. pre-quit diff_feature_postquitafter48_prequit = posterior_samples['beta_postquit_feature2'] - posterior_samples['beta_prequit_feature2'] exp_diff_feature_postquitafter48_prequit = np.exp(diff_feature_postquitafter48_prequit) diff_summary_expscale = {'mean': [np.mean(exp_diff_feature_postquitwithin48_postquitafter48), np.mean(exp_diff_feature_postquitwithin48_prequit), np.mean(exp_diff_feature_postquitafter48_prequit)], 'LB': [np.quantile(exp_diff_feature_postquitwithin48_postquitafter48, q=.125), np.quantile(exp_diff_feature_postquitwithin48_prequit, q=.125), np.quantile(exp_diff_feature_postquitafter48_prequit, q=.125)], 'UB': [np.quantile(exp_diff_feature_postquitwithin48_postquitafter48, q=.975), np.quantile(exp_diff_feature_postquitwithin48_prequit, q=.975), np.quantile(exp_diff_feature_postquitafter48_prequit, q=.975)]} diff_summary_expscale = pd.DataFrame(diff_summary_expscale) diff_summary_expscale.index = ['exp_diff_feature_postquitwithin48_postquitafter48','exp_diff_feature_postquitwithin48_prequit','exp_diff_feature_postquitafter48_prequit'] diff_summary_expscale # %% pm.traceplot(posterior_samples) # %% # Remove variable from workspace del model, posterior_samples, model_summary_logscale # %% [markdown] # ## Model 4 # %% feature1 = order_within_day # %% with pm.Model() as model: # ------------------------------------------------------------------------- # Priors # ------------------------------------------------------------------------- beta_prequit = pm.Normal('beta_prequit', mu=0, sd=10) beta_postquit = pm.Normal('beta_postquit', mu=0, sd=10) beta_prequit_feature1 = pm.Normal('beta_prequit_feature1', mu=0, sd=10) beta_postquit_feature1 = pm.Normal('beta_postquit_feature1', mu=0, sd=10) # ------------------------------------------------------------------------- # Likelihood # ------------------------------------------------------------------------- loglamb_observed = ( beta_prequit*(1-is_post_quit[~censored]) + beta_postquit*is_post_quit[~censored] ) loglamb_observed_features = ( beta_prequit_feature1*feature1[~censored]*(1-is_post_quit[~censored]) + beta_postquit_feature1*feature1[~censored]*is_post_quit[~censored] ) lamb_observed = np.exp(loglamb_observed + loglamb_observed_features) Y_hat_observed = pm.Exponential('Y_hat_observed', lam = lamb_observed, observed=time_to_next_event[~censored]) loglamb_censored = ( beta_prequit*(1-is_post_quit[censored]) + beta_postquit*is_post_quit[censored] ) loglamb_censored_features = ( beta_prequit_feature1*feature1[censored]*(1-is_post_quit[censored]) + beta_postquit_feature1*feature1[censored]*is_post_quit[censored] ) lamb_censored = np.exp(loglamb_censored + loglamb_censored_features) Y_hat_censored = pm.Potential('Y_hat_censored', exponential_log_complementary_cdf(x = time_to_next_event[censored], lam = lamb_censored)) #%% # Sample from posterior distribution with model: posterior_samples = pm.sample(draws=1000, tune=1000, cores=1, init='adapt_diag', target_accept=0.90, max_treedepth=50) # %% model_summary_logscale = az.summary(posterior_samples, credible_interval=.95) model_summary_logscale = model_summary_logscale[['mean','hpd_2.5%','hpd_97.5%']] model_summary_logscale # %% posterior_samples_expscale_prequit_feature1 = np.exp(posterior_samples['beta_prequit_feature1']) posterior_samples_expscale_postquit_feature1 = np.exp(posterior_samples['beta_postquit_feature1']) model_summary_expscale = {'mean': [np.mean(posterior_samples_expscale_prequit_feature1), np.mean(posterior_samples_expscale_postquit_feature1)], 'LB': [np.quantile(posterior_samples_expscale_prequit_feature1, q=.125), np.quantile(posterior_samples_expscale_postquit_feature1, q=.125)], 'UB': [np.quantile(posterior_samples_expscale_prequit_feature1, q=.975), np.quantile(posterior_samples_expscale_postquit_feature1, q=.975)]} model_summary_expscale = pd.DataFrame(model_summary_expscale) model_summary_expscale.index = ['exp_beta_prequit_feature1', 'exp_beta_postquit_feature1'] model_summary_expscale # %% # Difference between pre-quit and post-quit periods: # time to first self-report diff_prepost_feature1 = posterior_samples['beta_postquit_feature1'] - posterior_samples['beta_prequit_feature1'] exp_diff_prepost_feature1 = np.exp(diff_prepost_feature1) diff_summary_expscale = {'mean': [np.mean(exp_diff_prepost_feature1)], 'LB': [np.quantile(exp_diff_prepost_feature1, q=.125)], 'UB': [np.quantile(exp_diff_prepost_feature1, q=.975)]} diff_summary_expscale = pd.DataFrame(diff_summary_expscale) diff_summary_expscale.index = ['exp_diff_prepost_feature1'] diff_summary_expscale # %% pm.traceplot(posterior_samples) # %% [markdown] # ## Model 5 # %% feature1 = is_within48hours_quit feature2 = order_within_day # %% with pm.Model() as model: # ------------------------------------------------------------------------- # Priors # ------------------------------------------------------------------------- beta_prequit = pm.Normal('beta_prequit', mu=0, sd=10) beta_postquit = pm.Normal('beta_postquit', mu=0, sd=10) beta_postquit_feature1 = pm.Normal('beta_postquit_feature1', mu=0, sd=10) beta_prequit_feature2 = pm.Normal('beta_prequit_feature2', mu=0, sd=10) beta_postquit_feature2 = pm.Normal('beta_postquit_feature2', mu=0, sd=10) beta_postquit_feature_product = pm.Normal('beta_postquit_feature_product', mu=0, sd=10) # ------------------------------------------------------------------------- # Likelihood # ------------------------------------------------------------------------- loglamb_observed = ( beta_prequit*(1-is_post_quit[~censored]) + beta_postquit*is_post_quit[~censored] ) loglamb_observed_features1 = ( beta_postquit_feature1*feature1[~censored]*is_post_quit[~censored] + beta_prequit_feature2*feature2[~censored]*(1-is_post_quit[~censored]) + beta_postquit_feature2*feature2[~censored]*is_post_quit[~censored] + beta_postquit_feature_product*feature1[~censored]*feature2[~censored]*is_post_quit[~censored] ) lamb_observed = np.exp(loglamb_observed + loglamb_observed_features1) Y_hat_observed = pm.Exponential('Y_hat_observed', lam = lamb_observed, observed=time_to_next_event[~censored]) loglamb_censored = ( beta_prequit*(1-is_post_quit[censored]) + beta_postquit*is_post_quit[censored] ) loglamb_censored_features1 = ( beta_postquit_feature1*feature1[censored]*is_post_quit[censored] + beta_prequit_feature2*feature2[censored]*(1-is_post_quit[censored]) + beta_postquit_feature2*feature2[censored]*is_post_quit[censored] + beta_postquit_feature_product*feature1[censored]*feature2[censored]*is_post_quit[censored] ) lamb_censored = np.exp(loglamb_censored + loglamb_censored_features1) Y_hat_censored = pm.Potential('Y_hat_censored', exponential_log_complementary_cdf(x = time_to_next_event[censored], lam = lamb_censored)) with model: posterior_samples = pm.sample(draws=1000, tune=1000, cores=1, init='adapt_diag', target_accept=0.90, max_treedepth=50) # %% model_summary_logscale = az.summary(posterior_samples, credible_interval=.95) model_summary_logscale = model_summary_logscale[['mean','hpd_2.5%','hpd_97.5%']] model_summary_logscale # %% posterior_samples_expscale_postquit_feature1 = np.exp(posterior_samples['beta_postquit_feature1']) posterior_samples_expscale_prequit_feature2 = np.exp(posterior_samples['beta_prequit_feature2']) posterior_samples_expscale_postquit_feature2 = np.exp(posterior_samples['beta_postquit_feature2']) posterior_samples_expscale_postquit_feature_product = np.exp(posterior_samples['beta_postquit_feature_product']) model_summary_expscale = {'mean': [np.mean(posterior_samples_expscale_postquit_feature1), np.mean(posterior_samples_expscale_prequit_feature2), np.mean(posterior_samples_expscale_postquit_feature2), np.mean(posterior_samples_expscale_postquit_feature_product)], 'LB': [np.quantile(posterior_samples_expscale_postquit_feature1, q=.125), np.quantile(posterior_samples_expscale_prequit_feature2, q=.125), np.quantile(posterior_samples_expscale_postquit_feature2, q=.125), np.quantile(posterior_samples_expscale_postquit_feature_product, q=.125)], 'UB': [np.quantile(posterior_samples_expscale_postquit_feature1, q=.975), np.quantile(posterior_samples_expscale_prequit_feature2, q=.975), np.quantile(posterior_samples_expscale_postquit_feature2, q=.975), np.quantile(posterior_samples_expscale_postquit_feature_product, q=.975)]} model_summary_expscale = pd.DataFrame(model_summary_expscale) model_summary_expscale.index = ['exp_beta_postquit_feature1','exp_beta_prequit_feature2', 'exp_beta_postquit_feature2','exp_beta_postquit_feature_product'] model_summary_expscale # %% # Time to first self-report within period: # Difference between within first 48 hours in post-quit period vs. after first 48 hours in post-quit period diff_feature_postquitwithin48_postquitafter48 = posterior_samples['beta_postquit_feature_product'] exp_diff_feature_postquitwithin48_postquitafter48 = np.exp(diff_feature_postquitwithin48_postquitafter48) # Difference between within first 48 hours in post-quit period vs. pre-quit diff_feature_postquitwithin48_prequit = posterior_samples['beta_postquit_feature2'] + posterior_samples['beta_postquit_feature_product'] - posterior_samples['beta_prequit_feature2'] exp_diff_feature_postquitwithin48_prequit = np.exp(diff_feature_postquitwithin48_prequit) # Difference between after 48 hours in post-quit period vs. pre-quit diff_feature_postquitafter48_prequit = posterior_samples['beta_postquit_feature2'] - posterior_samples['beta_prequit_feature2'] exp_diff_feature_postquitafter48_prequit = np.exp(diff_feature_postquitafter48_prequit) diff_summary_expscale = {'mean': [np.mean(exp_diff_feature_postquitwithin48_postquitafter48), np.mean(exp_diff_feature_postquitwithin48_prequit), np.mean(exp_diff_feature_postquitafter48_prequit)], 'LB': [np.quantile(exp_diff_feature_postquitwithin48_postquitafter48, q=.125), np.quantile(exp_diff_feature_postquitwithin48_prequit, q=.125), np.quantile(exp_diff_feature_postquitafter48_prequit, q=.125)], 'UB': [np.quantile(exp_diff_feature_postquitwithin48_postquitafter48, q=.975), np.quantile(exp_diff_feature_postquitwithin48_prequit, q=.975), np.quantile(exp_diff_feature_postquitafter48_prequit, q=.975)]} diff_summary_expscale = pd.DataFrame(diff_summary_expscale) diff_summary_expscale.index = ['exp_diff_feature_postquitwithin48_postquitafter48','exp_diff_feature_postquitwithin48_prequit','exp_diff_feature_postquitafter48_prequit'] diff_summary_expscale # %% # Remove variable from workspace del model, posterior_samples, model_summary_logscale # %%
2.28125
2
data_construction/neg_mask_regen/detect_relation_ne_document_summary.py
launchnlp/cliff_summ
14
12774641
import argparse from tqdm import tqdm from spacy.tokens import DocBin import spacy_stanza nlp = spacy_stanza.load_pipeline("en", use_gpu=True) def swap_one(document, summary): try: source_doc = nlp(document) except RecursionError: source_doc = nlp(document[:2000]) summary_doc = nlp(summary) return source_doc, summary_doc def main(): parser = argparse.ArgumentParser() parser.add_argument('document') parser.add_argument('summary') parser.add_argument('out_prefix') args = parser.parse_args() with open(args.document) as f: documents = [line.strip() for line in f] with open(args.summary) as f: summaries = [line.strip() for line in f] source_doc_bin = DocBin(['LEMMA', 'POS', 'DEP', 'ENT_IOB', 'ENT_TYPE', 'IS_STOP', 'HEAD']) summary_doc_bin = DocBin(['LEMMA', 'POS', 'DEP', 'ENT_IOB', 'ENT_TYPE', 'IS_STOP', 'HEAD']) for document, summary in tqdm(zip(documents, summaries)): source_doc, summary_doc = swap_one(document, summary) source_doc_bin.add(source_doc) summary_doc_bin.add(summary_doc) with open(args.out_prefix + '.source', 'wb') as f: f.write(source_doc_bin.to_bytes()) with open(args.out_prefix + '.target', 'wb') as f: f.write(summary_doc_bin.to_bytes()) if __name__ == '__main__': main()
2.609375
3
glue/qt/widgets/histogram_widget.py
aak65/glue
0
12774642
from __future__ import absolute_import, division, print_function from functools import partial from ...external.qt import QtGui from ...external.qt.QtCore import Qt from ...core import message as msg from ...clients.histogram_client import HistogramClient from ..widget_properties import (connect_int_spin, ButtonProperty, FloatLineProperty, ValueProperty) from ..glue_toolbar import GlueToolbar from ..mouse_mode import HRangeMode from .data_viewer import DataViewer from .mpl_widget import MplWidget, defer_draw from ..qtutil import pretty_number, load_ui __all__ = ['HistogramWidget'] WARN_SLOW = 10000000 def _hash(x): return str(id(x)) class HistogramWidget(DataViewer): LABEL = "Histogram" _property_set = DataViewer._property_set + \ 'component xlog ylog normed cumulative autoscale xmin xmax nbins'.split( ) xmin = FloatLineProperty('ui.xmin', 'Minimum value') xmax = FloatLineProperty('ui.xmax', 'Maximum value') normed = ButtonProperty('ui.normalized_box', 'Normalized?') autoscale = ButtonProperty('ui.autoscale_box', 'Autoscale view to histogram?') cumulative = ButtonProperty('ui.cumulative_box', 'Cumulative?') nbins = ValueProperty('ui.binSpinBox', 'Number of bins') xlog = ButtonProperty('ui.xlog_box', 'Log-scale the x axis?') ylog = ButtonProperty('ui.ylog_box', 'Log-scale the y axis?') def __init__(self, session, parent=None): super(HistogramWidget, self).__init__(session, parent) self.central_widget = MplWidget() self.setCentralWidget(self.central_widget) self.option_widget = QtGui.QWidget() self.ui = load_ui('histogramwidget', self.option_widget) self._tweak_geometry() self.client = HistogramClient(self._data, self.central_widget.canvas.fig, artist_container=self._container) self._init_limits() self.make_toolbar() self._connect() # maps _hash(componentID) -> componentID self._component_hashes = {} @staticmethod def _get_default_tools(): return [] def _init_limits(self): validator = QtGui.QDoubleValidator(None) validator.setDecimals(7) self.ui.xmin.setValidator(validator) self.ui.xmax.setValidator(validator) lo, hi = self.client.xlimits self.ui.xmin.setText(str(lo)) self.ui.xmax.setText(str(hi)) def _tweak_geometry(self): self.central_widget.resize(600, 400) self.resize(self.central_widget.size()) def _connect(self): ui = self.ui cl = self.client ui.attributeCombo.currentIndexChanged.connect( self._set_attribute_from_combo) ui.attributeCombo.currentIndexChanged.connect( self._update_minmax_labels) connect_int_spin(cl, 'nbins', ui.binSpinBox) ui.normalized_box.toggled.connect(partial(setattr, cl, 'normed')) ui.autoscale_box.toggled.connect(partial(setattr, cl, 'autoscale')) ui.cumulative_box.toggled.connect(partial(setattr, cl, 'cumulative')) ui.xlog_box.toggled.connect(partial(setattr, cl, 'xlog')) ui.ylog_box.toggled.connect(partial(setattr, cl, 'ylog')) ui.xmin.editingFinished.connect(self._set_limits) ui.xmax.editingFinished.connect(self._set_limits) @defer_draw def _set_limits(self): lo = float(self.ui.xmin.text()) hi = float(self.ui.xmax.text()) self.client.xlimits = lo, hi def _update_minmax_labels(self): lo, hi = pretty_number(self.client.xlimits) self.ui.xmin.setText(lo) self.ui.xmax.setText(hi) def make_toolbar(self): result = GlueToolbar(self.central_widget.canvas, self, name='Histogram') for mode in self._mouse_modes(): result.add_mode(mode) self.addToolBar(result) return result def _mouse_modes(self): axes = self.client.axes def apply_mode(mode): return self.apply_roi(mode.roi()) rect = HRangeMode(axes, roi_callback=apply_mode) return [rect] @defer_draw def _update_attributes(self): """Repopulate the combo box that selects the quantity to plot""" combo = self.ui.attributeCombo component = self.component new = self.client.component or component combo.blockSignals(True) combo.clear() # implementation note: # PySide doesn't robustly store python objects with setData # use _hash(x) instead model = QtGui.QStandardItemModel() data_ids = set(_hash(d) for d in self._data) self._component_hashes = dict((_hash(c), c) for d in self._data for c in d.components) found = False for d in self._data: if d not in self._container: continue item = QtGui.QStandardItem(d.label) item.setData(_hash(d), role=Qt.UserRole) assert item.data(Qt.UserRole) == _hash(d) item.setFlags(item.flags() & ~Qt.ItemIsEnabled) model.appendRow(item) for c in d.visible_components: if not d.get_component(c).numeric: continue if c is new: found = True item = QtGui.QStandardItem(c.label) item.setData(_hash(c), role=Qt.UserRole) model.appendRow(item) combo.setModel(model) # separators below data items for i in range(combo.count()): if combo.itemData(i) in data_ids: combo.insertSeparator(i + 1) combo.blockSignals(False) if found: self.component = new else: combo.setCurrentIndex(2) # skip first data + separator self._set_attribute_from_combo() @property def component(self): combo = self.ui.attributeCombo index = combo.currentIndex() return self._component_hashes.get(combo.itemData(index), None) @component.setter def component(self, component): combo = self.ui.attributeCombo if combo.count() == 0: # cold start problem, when restoring self._update_attributes() # combo.findData doesn't seem to work robustly for i in range(combo.count()): data = combo.itemData(i) if data == _hash(component): combo.setCurrentIndex(i) return raise IndexError("Component not present: %s" % component) @defer_draw def _set_attribute_from_combo(self, *args): self.client.set_component(self.component) self.update_window_title() @defer_draw def add_data(self, data): """ Add data item to combo box. If first addition, also update attributes """ if self.data_present(data): return True if data.size > WARN_SLOW and not self._confirm_large_data(data): return False self.client.add_layer(data) self._update_attributes() self._update_minmax_labels() return True def add_subset(self, subset): pass def _remove_data(self, data): """ Remove data item from the combo box """ pass def data_present(self, data): return data in self._container def register_to_hub(self, hub): super(HistogramWidget, self).register_to_hub(hub) self.client.register_to_hub(hub) hub.subscribe(self, msg.DataCollectionDeleteMessage, handler=lambda x: self._remove_data(x.data)) hub.subscribe(self, msg.DataUpdateMessage, handler=lambda *args: self._update_labels()) hub.subscribe(self, msg.ComponentsChangedMessage, handler=lambda x: self._update_attributes()) def unregister(self, hub): super(HistogramWidget, self).unregister(hub) self.client.unregister(hub) hub.unsubscribe_all(self) @property def window_title(self): c = self.client.component if c is not None: label = str(c.label) else: label = 'Histogram' return label def _update_labels(self): self.update_window_title() self._update_attributes() def __str__(self): return "Histogram Widget" def options_widget(self): return self.option_widget
1.914063
2
worlds_worst_operator/action_sets/text_adventure_actions.py
nigelmathes/worlds-worst-operator
0
12774643
<reponame>nigelmathes/worlds-worst-operator<filename>worlds_worst_operator/action_sets/text_adventure_actions.py import json from dataclasses import asdict from typing import Dict, Tuple, List import boto3 try: from player_data import Player from arns import TEXT_ADVENTURE_ARN from action_sets.common_actions import create_update_fields except ImportError: from ..player_data import Player from ..arns import TEXT_ADVENTURE_ARN from .common_actions import create_update_fields lambda_client = boto3.client("lambda", region_name="us-east-1") dynamodb = boto3.resource("dynamodb", region_name="us-east-1") ActionResponse = Tuple[Player, Player, Dict, Dict, List] def play_game(player: Player, table: dynamodb.Table) -> ActionResponse: """ Plays game defined in player.context using commands stored in player.history. :param player: The original player, before actions were taken :param table: DynamoDB table object (unused) :return: Updated Player dataclass and dict of fields to update, and a message """ # If player wants to quit the game, don't pass the quit action to the text # adventure game, just end here and send the player home quit_with_typos = ["quit", "qit", "qut", "quitt", "quuit", "quiit"] if any(word in player.history[-1] for word in quit_with_typos): updated_player = Player(**asdict(player)) updated_player.context = "home" updated_player.history = [] updated_player.target = "None" message = [f"You turn off {player.target}, returning home."] player_updates = create_update_fields(player, updated_player) return player, player, player_updates, player_updates, message # If not quitting, play the text adventure game data = {"body": {"actions": player.history, "game": player.target}} payload = json.dumps(data) # Invoke the text adventure lambda response = lambda_client.invoke( FunctionName=TEXT_ADVENTURE_ARN, InvocationType="RequestResponse", Payload=payload, ) # response of the form: # { # "statusCode": 200, # "body": text_adventure_result, # "headers": {"Access-Control-Allow-Origin": "*"}, # } response_payload = json.loads(response.get("Payload").read()) message = [json.loads(response_payload["body"])] player_updates = {"history": player.history} return player, player, player_updates, player_updates, message TEXT_ADVENTURE_ACTIONS_MAP = { "default": play_game, }
2.65625
3
common/datetime_helper.py
wuxh123/my_bottle
3
12774644
<gh_stars>1-10 #!/usr/bin/env python # coding=utf-8 import time import datetime def to_date(dt): """将时间格式化为日期字符串""" if isinstance(dt, datetime.datetime): return dt.strftime('%Y-%m-%d') elif isinstance(dt, datetime.date): return dt.strftime('%Y-%m-%d') else: raise Exception("日期类型错误") def to_datetime(dt): """将时间格式化为日期时间字符串""" if isinstance(dt, datetime.datetime): return dt.strftime('%Y-%m-%d %H:%M:%S') elif isinstance(dt, datetime.date): return dt.strftime('%Y-%m-%d') else: raise Exception("日期类型错误") def to_number(format=''): """当前时间转换为年月日时分秒毫秒共10位数的字符串""" if format: return datetime.datetime.now().strftime(format) else: return datetime.datetime.now().strftime('%Y%m%d%H%M%S') def to_timestamp10(): """获取当前时间长度为10位长度的时间戳""" return int(time.time()) def to_timestamp13(): """获取当前时间长度为13位长度的时间戳""" return int(time.time() * 1000) def timedelta(sign, dt, value): """ 对指定时间进行加减运算,几秒、几分、几小时、几日、几周、几月、几年 sign: y = 年, m = 月, w = 周, d = 日, h = 时, n = 分钟, s = 秒 dt: 日期,只能是datetime或datetime.date类型 value: 加减的数值 return: 返回运算后的datetime类型值 """ if not isinstance(dt, datetime.datetime) and not isinstance(dt, datetime.date): raise Exception("日期类型错误") if sign == 'y': year = dt.year + value if isinstance(dt, datetime.date): return datetime.datetime(year, dt.month, dt.day) elif isinstance(dt, datetime.datetime): return datetime.datetime(year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond) else: return None elif sign == 'm': year = dt.year month = dt.month + value ### 如果月份加减后超出范围,则需要计算一下,对年份进行处理 ### # 如果月份加减后等于0时,需要特殊处理一下 if month == 0: year = year - 1 month = 12 else: # 对年月进行处理 year = year + month // 12 month = month % 12 if isinstance(dt, datetime.date): return datetime.datetime(year, month, dt.day) elif isinstance(dt, datetime.datetime): return datetime.datetime(year, month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond) else: return None elif sign == 'w': delta = datetime.timedelta(weeks=value) elif sign == 'd': delta = datetime.timedelta(days=value) elif sign == 'h': delta = datetime.timedelta(hours=value) elif sign == 'n': delta = datetime.timedelta(minutes=value) elif sign == 's': delta = datetime.timedelta(seconds=value) else: return None return dt + delta
3.265625
3
rec_to_nwb/test/processing/test_fileSorter.py
jihyunbak/rec_to_nwb
8
12774645
from unittest import TestCase from rec_to_nwb.processing.tools.file_sorter import FileSorter class TestFilenameSorter(TestCase): def setUp(self): self.strings_to_sort = ['name01', 'name11', 'name10', 'name02', 'name21'] self.correct_order_of_strings = ['name01', 'name02', 'name10', 'name11', 'name21'] self.filenames_to_sort = ['20190718_beans_01_s1.nt0' + str(i) + '.mda' for i in range(1, 10)] self.filenames_to_sort.extend(['20190718_beans_01_s1.nt' + str(i) + '.mda' for i in range(10, 64)]) self.file_sorter = FileSorter() self.sorted_strings = self.file_sorter.sort_filenames(self.strings_to_sort) self.sorted_filenames = self.file_sorter.sort_filenames(self.filenames_to_sort) def test_string_sorting(self): self.assertEqual(self.sorted_strings, self.correct_order_of_strings) def test_filename_sorting(self): self.assertEqual(self.sorted_filenames[1], '20190718_beans_01_s1.nt02.mda') self.assertEqual(self.sorted_filenames[9], '20190718_beans_01_s1.nt10.mda') self.assertEqual(self.sorted_filenames[18], '20190718_beans_01_s1.nt19.mda') self.assertEqual(self.sorted_filenames[19], '20190718_beans_01_s1.nt20.mda')
2.765625
3
t01primeshcflcm_primekth.py
CherryNoddles/y1math
1
12774646
# What is the kth prime number?
1.039063
1
Puzzles/Easy/EquivalentResistanceCircuitBuilding.py
Naheuldark/Codingame
0
12774647
import sys import math # Auto-generated code below aims at helping you parse # the standard input according to the problem statement. n = int(input()) resdict = {} for i in range(n): inputs = input().split() name = inputs[0] r = int(inputs[1]) resdict[name] = r circuit = input().split(' ') print(circuit, file=sys.stderr, flush=True) print(resdict, file=sys.stderr, flush=True) # Write an answer using print # To debug: print("Debug messages...", file=sys.stderr, flush=True) def process(circuit): s = [] i = 0 while i < len(circuit): op = circuit[i] if op == ')': res = 0.0 op2 = s.pop() while op2 != '(': if op2 in resdict: res += float(resdict[op2]) else: res += float(op2) op2 = s.pop() s.append(res) elif op == ']': res = 0.0 op2 = s.pop() while op2 != '[': if op2 in resdict: res += 1.0 / float(resdict[op2]) else: res += 1.0 / float(op2) op2 = s.pop() res = 1.0 / res s.append(res) else: s.append(op) print(s, file=sys.stderr, flush=True) i += 1 return str(round(s[0], 1)) print(process(circuit))
3.4375
3
sqlalchemy/sqlalchemy-0.3.6+codebay/examples/collections/large_collection.py
nakedible/vpnease-l2tp
5
12774648
"""illlustrates techniques for dealing with very large collections""" from sqlalchemy import * meta = BoundMetaData('sqlite://', echo=True) org_table = Table('organizations', meta, Column('org_id', Integer, primary_key=True), Column('org_name', String(50), nullable=False, key='name'), mysql_engine='InnoDB') member_table = Table('members', meta, Column('member_id', Integer, primary_key=True), Column('member_name', String(50), nullable=False, key='name'), Column('org_id', Integer, ForeignKey('organizations.org_id')), mysql_engine='InnoDB') meta.create_all() class Organization(object): def __init__(self, name): self.name = name def find_members(self, criterion): """locate a subset of the members associated with this Organization""" return object_session(self).query(Member).select(and_(member_table.c.name.like(criterion), org_table.c.org_id==self.org_id), from_obj=[org_table.join(member_table)]) class Member(object): def __init__(self, name): self.name = name # note that we can also place "ON DELETE CASCADE" on the tables themselves, # instead of using this extension class DeleteMemberExt(MapperExtension): """will delete child Member objects in one pass when Organizations are deleted""" def before_delete(self, mapper, connection, instance): connection.execute(member_table.delete(member_table.c.org_id==instance.org_id)) mapper(Organization, org_table, extension=DeleteMemberExt(), properties = { # set up the relationship with "lazy=None" so no loading occurs (even lazily), # "cascade='all, delete-orphan'" to declare Member objects as local to their parent Organization, # "passive_deletes=True" so that the "delete, delete-orphan" cascades do not load in the child objects # upon deletion 'members' : relation(Member, lazy=None, passive_deletes=True, cascade="all, delete-orphan") }) mapper(Member, member_table) sess = create_session() # create org with some members org = Organization('org one') org.members.append(Member('member one')) org.members.append(Member('member two')) org.members.append(Member('member three')) sess.save(org) print "-------------------------\nflush one - save org + 3 members" sess.flush() sess.clear() # reload. load the org and some child members print "-------------------------\nload subset of members" org = sess.query(Organization).get(org.org_id) members = org.find_members('%member t%') print members sess.clear() # reload. create some more members and flush, without loading any of the original members org = sess.query(Organization).get(org.org_id) org.members.append(Member('member four')) org.members.append(Member('member five')) org.members.append(Member('member six')) print "-------------------------\nflush two - save 3 more members" sess.flush() sess.clear() org = sess.query(Organization).get(org.org_id) # now delete. note that this will explictily delete members four, five and six because they are in the session, # but will not issue individual deletes for members one, two and three, nor will it load them. sess.delete(org) print "-------------------------\nflush three - delete org, delete members in one statement" sess.flush()
2.9375
3
scripts/artifacts/imoHD_Chat.py
isoft123/iLEAPP
1
12774649
import sqlite3 import io import json import os import shutil import nska_deserialize as nd import scripts.artifacts.artGlobals from packaging import version from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, logdevinfo, timeline, kmlgen, tsv, is_platform_windows, open_sqlite_db_readonly def get_imoHD_Chat(files_found, report_folder, seeker): for file_found in files_found: file_found = str(file_found) if file_found.endswith('.sqlite'): break db = open_sqlite_db_readonly(file_found) cursor = db.cursor() cursor.execute(''' select case ZIMOCHATMSG.ZTS when 0 then '' else datetime(ZTS/1000000000,'unixepoch') end as "Timestamp", ZIMOCONTACT.ZDISPLAY as "Sender Display Name", ZIMOCHATMSG.ZALIAS as "Sender Alias", ZIMOCONTACT.ZDIGIT_PHONE, ZIMOCHATMSG.ZTEXT as "Message", case ZIMOCHATMSG.ZISSENT when 0 then 'Received' when 1 then 'Sent' end as "Message Status", ZIMOCHATMSG.ZIMDATA from ZIMOCHATMSG left join ZIMOCONTACT ON ZIMOCONTACT.ZBUID = ZIMOCHATMSG.ZA_UID ''') all_rows = cursor.fetchall() usageentries = len(all_rows) data_list = [] if usageentries > 0: for row in all_rows: plist = '' timestamp = row[0] senderName = row[1] senderAlias = row[2] senderPhone = row[3] message = row[4] messageStatus = row[5] itemAction = '' attachmentURL = '' thumb = '' plist_file_object = io.BytesIO(row[6]) if row[6] is None: pass else: if row[6].find(b'NSKeyedArchiver') == -1: if sys.version_info >= (3, 9): plist = plistlib.load(plist_file_object) else: plist = biplist.readPlist(plist_file_object) else: try: plist = nd.deserialize_plist(plist_file_object) except (nd.DeserializeError, nd.biplist.NotBinaryPlistException, nd.biplist.InvalidPlistException, nd.plistlib.InvalidFileException, nd.ccl_bplist.BplistError, ValueError, TypeError, OSError, OverflowError) as ex: logfunc(f'Failed to read plist for {row[0]}, error was:' + str(ex)) itemAction = plist['type'] #Check for Attachments if plist.get('objects') is not None: attachmentName = plist['objects'][0]['object_id'] attachmentURL = "https://cdn.imoim.us/s/object/" + attachmentName + "/" for match in files_found: if attachmentName in match: shutil.copy2(match, report_folder) data_file_name = os.path.basename(match) thumb = f'<img src="{report_folder}/{data_file_name}"></img>' else: attachmentURL = '' data_list.append((timestamp, senderName, senderAlias, senderPhone, message, messageStatus, itemAction, attachmentURL, thumb)) description = 'IMO HD Chat - Messages' report = ArtifactHtmlReport('IMO HD Chat - Messages') report.start_artifact_report(report_folder, 'IMO HD Chat - Messages') report.add_script() data_headers = ( 'Timestamp', 'Sender Name', 'Sender Alias', 'Sender Phone', 'Message', 'Message Status', 'Item Action', 'Attachment URL', 'Attachment') # Don't remove the comma, that is required to make this a tuple as there is only 1 element report.write_artifact_data_table(data_headers, data_list, file_found, html_no_escape=['Attachment']) report.end_artifact_report() tsvname = f'IMO HD Chat - Messages' tsv(report_folder, data_headers, data_list, tsvname) tlactivity = f'IMO HD Chat - Messages' timeline(report_folder, tlactivity, data_list, data_headers) else: logfunc('IMO HD Chat - Messages data available') cursor.execute(''' select ZPH_NAME, ZALIAS, ZPHONE, "https://cdn.imoim.us/s/object/" || ZICON_ID || "/" as "Profile Pic", ZBUID from ZIMOCONTACT ''') all_rows = cursor.fetchall() usageentries = len(all_rows) if usageentries > 0: description = 'IMO HD Chat - Contacts' report = ArtifactHtmlReport('IMO HD Chat - Contacts') report.start_artifact_report(report_folder, 'IMO HD Chat - Contacts') report.add_script() data_headers = ('Contact Name','Contact Alias','Contact Phone','Profile Pic URL','User ID') # Don't remove the comma, that is required to make this a tuple as there is only 1 element data_list = [] for row in all_rows: data_list.append((row[0],row[1],row[2],row[3],row[4])) report.write_artifact_data_table(data_headers, data_list, file_found) report.end_artifact_report() tsvname = f'IMO HD Chat - Contacts' tsv(report_folder, data_headers, data_list, tsvname) tlactivity = f'IMO HD Chat - Contacts' timeline(report_folder, tlactivity, data_list, data_headers) else: logfunc('IMO HD Chat - Contacts data available') db.close()
2
2
amurlevel_model/model/model.py
RaevskyDN/aij2020-amur-noflood-public
7
12774650
<gh_stars>1-10 # -*- coding: utf-8 -*- import tensorflow as tf import tensorflow.keras.layers as L import tensorflow.keras.backend as K from .metrics import rmse,mae,mae_inference from ..config_features import NUMERICAL_FEATURES,CATEGORICAL_FEATURES,CAT_MAP from ..config import DAYS_FORECAST,ALL_STATIONS def lstm_layer(hidden_dim, dropout): return L.Bidirectional( L.LSTM(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal')) class Conv1BN(): ''' Архитектура - conv1D->Batchnorm->conv1D->Batchnorm->Droput :param filters: int, число фильтров :param input_shape: tuple, входной shape :param kernel_size: int, размер ядра для 1D свертки :param dilation_rate: int, dilation для 1D свертки ''' def __init__(self,filters,input_shape,kernel_size,dilation_rate): self.conv1 = L.Conv1D(filters=filters,input_shape=input_shape,padding='same', kernel_size=kernel_size,dilation_rate=dilation_rate) self.drop1 = L.Dropout(0.1) self.bn1 = L.BatchNormalization() self.conv2 = L.Conv1D(filters=filters,padding='same', kernel_size=kernel_size,dilation_rate=dilation_rate) self.bn2 = L.BatchNormalization() def __call__(self, x): x = self.conv1(x) x = self.bn1(x) x = self.conv2(x) x = self.bn2(x) x = self.drop1(x) return x def build_model(dropout=0.35, hidden_dim=256, embed_dim=1, numerical=len(NUMERICAL_FEATURES), categorical=len(CATEGORICAL_FEATURES)): ''' Итоговая модель для предсказания уровня :param dropout: float, dropout используемый в модели :param hidden_dim: int, размерность скрытого слоя в LSTM :param embed_dim: int, размерность эмбединга для категориальных признаков :param numerical: int, количество численных признаков :param categorical: int, количество категориальных признаков :return: model ''' K.clear_session() inputs = L.Input(shape=(DAYS_FORECAST, numerical + categorical)) num_inputs = inputs[:, :, :numerical] if categorical > 0: embed_inputs = inputs[:, :, numerical:numerical + categorical] embed = L.Embedding(input_dim=len(CAT_MAP), output_dim=embed_dim)(embed_inputs) conv_embed_inputs = tf.reshape(embed, shape=(-1, embed.shape[1], embed.shape[2] * embed.shape[3])) in1 = L.Dense(1000, activation='relu')(num_inputs) in1 = L.BatchNormalization()(in1) dropped1 = L.Dropout(dropout)(in1) if categorical > 0: reshaped = tf.concat([conv_embed_inputs, dropped1], axis=2) else: reshaped = dropped1 #print(f'reshaped shape {reshaped.shape}') hidden = lstm_layer(hidden_dim, dropout)(reshaped) hidden = lstm_layer(hidden_dim, dropout)(hidden) #print(hidden.shape) hidden = L.BatchNormalization()(hidden) out1 = L.Dense(800, activation='relu')(hidden) out1 = L.BatchNormalization()(out1) dropped = L.Dropout(dropout)(out1) out1 = L.Dense(800, activation='relu')(dropped) out1 = L.BatchNormalization()(out1) dropped2 = L.Dropout(dropout)(num_inputs) convbn = L.Dropout(dropout)(num_inputs) convbn = Conv1BN(filters=1000, kernel_size=3, dilation_rate=1, input_shape=convbn.shape)(convbn) # out1 = tf.concat([out1, dropped2], axis=2) out1 = tf.concat([out1, dropped2, convbn], axis=2) out = L.Dense(len(ALL_STATIONS), activation='linear')(out1) model = tf.keras.Model(inputs=inputs, outputs=out) adam = tf.optimizers.Adam(learning_rate=0.00008) model.compile(optimizer=adam, loss=rmse,metrics=[mae_inference, mae]) return model
2.515625
3