text
stringlengths 0
93.6k
|
|---|
datatypes = {
|
'createEvent':createEvent,
|
'selectEvent':selectEvent,
|
'addDomain':addDomain,
|
'addIP':addIP,
|
'addEmail':addEmail,
|
'addHash':addHash,
|
'addBIC':addBIC,
|
'addFullName':addFullName
|
}
|
if request in datatypes:
|
method = datatypes.get(request)
|
method(value)
|
else:
|
dataError(request)
|
if __name__ == '__main__':
|
main()
|
# <FILESEP>
|
from typing import List, Tuple
|
import argparse
|
from pathlib import Path
|
import torch
|
from torch.utils.data import TensorDataset
|
from tqdm import tqdm, trange
|
from module import Tokenizer
|
import logging
|
logging.basicConfig(level=logging.INFO,
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
logger = logging.getLogger(__name__)
|
class CoupletExample(object):
|
def __init__(self, seq: List[str], tag: List[str]):
|
assert len(seq) == len(tag)
|
self.seq = seq
|
self.tag = tag
|
class CoupletFeatures(object):
|
def __init__(self, input_ids: List[int], target_ids: List[int]):
|
self.input_ids = input_ids
|
self.target_ids = target_ids
|
def read_examples(fdir: Path):
|
seqs = []
|
tags = []
|
with open(fdir / "in.txt", 'r', encoding='utf-8') as f:
|
for line in f.readlines():
|
seqs.append(line.split())
|
with open(fdir / "out.txt", 'r', encoding='utf-8') as f:
|
for line in f.readlines():
|
tags.append(line.split())
|
examples = [CoupletExample(seq, tag) for seq, tag in zip(seqs, tags)]
|
return examples
|
def convert_examples_to_features(examples: List[CoupletExample], tokenizer: Tokenizer):
|
features = []
|
for example in tqdm(examples, desc="creating features"):
|
seq_ids = tokenizer.convert_tokens_to_ids(example.seq)
|
tag_ids = tokenizer.convert_tokens_to_ids(example.tag)
|
features.append(CoupletFeatures(seq_ids, tag_ids))
|
return features
|
def convert_features_to_tensors(features: List[CoupletFeatures], tokenizer: Tokenizer, max_seq_len: int):
|
total = len(features)
|
input_ids = torch.full((total, max_seq_len),
|
tokenizer.pad_id, dtype=torch.long)
|
target_ids = torch.full((total, max_seq_len),
|
tokenizer.pad_id, dtype=torch.long)
|
masks = torch.ones(total, max_seq_len, dtype=torch.bool)
|
lens = torch.zeros(total, dtype=torch.long)
|
for i, f in enumerate(tqdm(features, desc="creating tensors")):
|
real_len = min(len(f.input_ids), max_seq_len)
|
input_ids[i, :real_len] = torch.tensor(f.input_ids[:real_len])
|
target_ids[i, :real_len] = torch.tensor(f.target_ids[:real_len])
|
masks[i, :real_len] = 0
|
lens[i] = real_len
|
return input_ids, masks, lens, target_ids
|
def create_dataset(fdir: Path, tokenizer: Tokenizer, max_seq_len: int):
|
examples = read_examples(fdir)
|
features = convert_examples_to_features(examples, tokenizer)
|
tensors = convert_features_to_tensors(features, tokenizer, max_seq_len)
|
dataset = TensorDataset(*tensors)
|
return dataset
|
if __name__ == '__main__':
|
parser = argparse.ArgumentParser()
|
parser.add_argument("--input", default='couplet', type=str)
|
parser.add_argument("--output", default='dataset', type=str)
|
parser.add_argument("--max_seq_len", default=32, type=int)
|
args = parser.parse_args()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.