text
stringlengths 0
93.6k
|
|---|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
if m.bias is not None:
|
m.bias.data.zero_()
|
def forward_features(self, x):
|
B = x.shape[0]
|
outs = []
|
# stage 1
|
x, H, W = self.patch_embed1(x)
|
for i, blk in enumerate(self.block1):
|
x = blk(x, H, W)
|
x = self.norm1(x)
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
outs.append(x)
|
# stage 2
|
x, H, W = self.patch_embed2(x)
|
for i, blk in enumerate(self.block2):
|
x = blk(x, H, W)
|
x = self.norm2(x)
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
outs.append(x)
|
# stage 3
|
x, H, W = self.patch_embed3(x)
|
for i, blk in enumerate(self.block3):
|
x = blk(x, H, W)
|
x = self.norm3(x)
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
outs.append(x)
|
# stage 4
|
x, H, W = self.patch_embed4(x)
|
for i, blk in enumerate(self.block4):
|
x = blk(x, H, W)
|
x = self.norm4(x)
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
outs.append(x)
|
return x,outs[1:]
|
def forward(self, x):
|
x,outs = self.forward_features(x)
|
return x,outs
|
class DWConv(nn.Module):
|
def __init__(self, dim=768):
|
super(DWConv, self).__init__()
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
def forward(self, x, H, W):
|
B, N, C = x.shape
|
x = x.transpose(1, 2).view(B, C, H, W)
|
x = self.dwconv(x)
|
x = x.flatten(2).transpose(1, 2)
|
return x
|
import torch
|
import torch.nn as nn
|
import torch.nn.functional as F
|
class UpsampleConcatConv(nn.Module):
|
def __init__(self):
|
super(UpsampleConcatConv, self).__init__()
|
self.upsamples2 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
|
self.upsamplec3 = nn.Sequential(
|
nn.ConvTranspose2d(384, 192, kernel_size=4, stride=2, padding=1),
|
nn.ConvTranspose2d(192, 96, kernel_size=4, stride=2, padding=1)
|
)
|
self.upsamples3 = nn.Sequential(
|
nn.ConvTranspose2d(320, 128, kernel_size=4, stride=2, padding=1),
|
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
|
)
|
self.upsamples4 = nn.Sequential(
|
nn.ConvTranspose2d(512, 320, kernel_size=4, stride=2, padding=1),
|
nn.ConvTranspose2d(320, 128, kernel_size=4, stride=2, padding=1),
|
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
|
)
|
def forward(self, inputs):
|
# 上采样
|
c1,c3,s2,s3,s4 = inputs
|
# c2 = self.upsamplec2(c2)
|
c3 = self.upsamplec3(c3)
|
# c4 = self.upsamplec4(c4)
|
s2 = self.upsamples2(s2)
|
s3 = self.upsamples3(s3)
|
s4 = self.upsamples4(s4)
|
# 拼接四个tensor
|
x = torch.cat([c1,c3,s2,s3,s4], dim=1)
|
features = [c1,c3,s2,s3,s4 ]
|
# shortcut = x
|
# x = x.permute(0, 2, 3, 1)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.