text
stringlengths 1
93.6k
|
|---|
from Functions.summarize import summarize
|
import pandas as pd
|
from plotly.subplots import make_subplots
|
import plotly.graph_objects as go
|
import numpy as np
|
#-------------------------------------------------Set dataframe to full view
|
pd.set_option('display.expand_frame_repr', False)
|
#-------------------------------------------------User Inputs
|
vintage = '2016-06-29' # vintage dataset to use for estimation
|
country = 'US' # United States macroeconomic data
|
sample_start = dt.strptime("2000-01-01", '%Y-%m-%d').date().toordinal() + 366 # estimation sample
|
#-------------------------------------------------Load model specification and dataset.
|
# Load model specification structure `Spec`
|
Spec = load_spec('Spec_US_example.xls')
|
# Parse `Spec`
|
SeriesID = Spec.SeriesID
|
SeriesName = Spec.SeriesName
|
Units = Spec.Units
|
UnitsTransformed = Spec.UnitsTransformed
|
# Load data
|
datafile = os.path.join('data',country,vintage + '.xls')
|
X,Time,Z = load_data(datafile,Spec,sample_start)
|
# Summarize dataset
|
summarize(X,Time,Spec)
|
#-------------------------------------------------Plot data
|
# Raw vs transformed
|
idxSeries = np.where(Spec.SeriesID == "INDPRO")[0][0]
|
t_obs = ~np.isnan(X[:,idxSeries])
|
fig = make_subplots(rows=2, cols=1,
|
subplot_titles=("Raw Observed Data", "Transformed Data"))
|
fig.append_trace(go.Scatter(
|
x=[dt.fromordinal(i - 366).strftime('%Y-%m-%d') for i in Time[t_obs]],
|
y=Z[t_obs,idxSeries],
|
), row=1, col=1)
|
fig.append_trace(go.Scatter(
|
x=[dt.fromordinal(i - 366).strftime('%Y-%m-%d') for i in Time[t_obs]],
|
y=X[t_obs,idxSeries],
|
), row=2, col=1)
|
fig.update_layout({'plot_bgcolor': 'rgba(0, 0, 0, 0)'} ,
|
title_text="Raw vs Transformed Data",
|
showlegend=False)
|
fig.update_yaxes(title_text=Spec.Units[idxSeries], row=1, col=1)
|
fig.update_yaxes(title_text=Spec.UnitsTransformed[idxSeries], row=2, col=1)
|
fig.show()
|
#-------------------------------------------------Run dynamic factor model (DFM) and save estimation output as 'ResDFM'.
|
threshold = 1e-4 # Set to 1e-5 for more robust estimates
|
Res = dfm(X,Spec,threshold)
|
Res = {"Res": Res,"Spec":Spec}
|
with open('ResDFM.pickle', 'wb') as handle:
|
pickle.dump(Res, handle)
|
# TODO: Res and Spec should be separate, this will be fixed after the unit tests are created
|
#-------------------------------------------------Plot Loglik across number of steps
|
fig = go.Figure()
|
fig.add_trace(go.Scatter(x=np.arange(1,len(Res["Res"]["loglik"][1:])+1),
|
y=Res["Res"]["loglik"][1:],
|
mode='lines',
|
name="LogLik")
|
)
|
fig.update_layout({'plot_bgcolor': 'rgba(0, 0, 0, 0)'} ,
|
title_text="LogLik across number of steps taken",
|
showlegend=False
|
)
|
fig.update_yaxes(title_text="LogLik")
|
fig.update_xaxes(title_text="Number of steps")
|
fig.show()
|
#-------------------------------------------------Plot common factor and standardized data.
|
# select INDPRO data series
|
idxSeries = np.where(Spec.SeriesID == "INDPRO")[0][0]
|
# Create traces
|
fig = go.Figure()
|
for i in range(Res["Res"]["x_sm"].shape[1]):
|
fig.add_trace(go.Scatter(x=[dt.fromordinal(i - 366).strftime('%Y-%m-%d') for i in Time],
|
y=Res["Res"]["x_sm"][:,i],
|
mode='lines',
|
name=Spec.SeriesID[i],
|
line={'width':.9})
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.