text
stringlengths
1
93.6k
log.info(f"Instantiating trainer <{cfg.trainer._target_}>")
trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger)
object_dict = {
"cfg": cfg,
"datamodule": datamodule,
"model": model,
"logger": logger,
"trainer": trainer,
}
if logger:
log.info("Logging hyperparameters!")
utils.log_hyperparameters(object_dict)
log.info("Starting testing!")
if datamodule.hparams.dataset in ["nyu", "sunrgbd"]:
results = {}
if datamodule.hparams.dataset == "nyu":
iter = 10
else:
iter = 1
for i in range(iter):
pl.seed_everything(cfg.seed + i)
trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
metric_dict = trainer.callback_metrics
for k in metric_dict.keys():
if k[5:] in results:
results[k[5:]].append(metric_dict[k].item())
else:
results[k[5:]] = [metric_dict[k].item()]
import csv
import numpy as np
with open(model.val_csv, "a") as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=model.fieldnames)
output = {}
output["epoch"] = "Result"
for k in results.keys():
output[k] = f"{np.mean(results[k]):.4f}±{np.std(results[k]):.4f}"
print(f"{k:5s}: {output[k]}")
writer.writerow(output)
else:
# trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path)
trainer.validate(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path) # for kitti test
metric_dict = trainer.callback_metrics
return metric_dict, object_dict
@hydra.main(version_base="1.3", config_path="configs", config_name="eval.yaml")
def main(cfg: DictConfig) -> None:
evaluate(cfg)
if __name__ == "__main__":
main()
# <FILESEP>
import timm
import torch
import torch
import torch.nn as nn
import timm
import torch.nn.functional as F
import sys
import os
sys.path.append('.')
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from extractor.high_frequency_feature_extraction import HighDctFrequencyExtractor
from extractor.low_frequency_feature_extraction import LowDctFrequencyExtractor
import math
from functools import partial
from IMDLBenCo.registry import MODELS
class ConvNeXt(timm.models.convnext.ConvNeXt):
def __init__(self,conv_pretrain=False):
super(ConvNeXt, self).__init__(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768))
if conv_pretrain:
print("Load Convnext pretrain.")
model = timm.create_model('convnext_tiny', pretrained=True)
self.load_state_dict(model.state_dict())
original_first_layer = self.stem[0]
new_first_layer = nn.Conv2d(6, original_first_layer.out_channels,
kernel_size=original_first_layer.kernel_size, stride=original_first_layer.stride,
padding=original_first_layer.padding, bias=False)
new_first_layer.weight.data[:, :3, :, :] = original_first_layer.weight.data.clone()[:, :3, :, :]
new_first_layer.weight.data[:, 3:, :, :] = torch.nn.init.kaiming_normal_(new_first_layer.weight[:, 3:, :, :])
self.stem[0] = new_first_layer
self.stages = self.stages[:-1]
del self.head
def forward_features(self, x):
x = self.stem(x)
out = []
for stage in self.stages:
x = stage(x)
out.append(x)