text
stringlengths
1
93.6k
# obtain a mask for each pred
return loss
# <FILESEP>
import os
import sys
import warnings
import hydra
from omegaconf import OmegaConf
import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(ROOT_DIR)
from model.module import PretrainingModule
from model.network import create_encoder_network
from data_utils.PretrainDataset import create_dataloader
@hydra.main(version_base="1.2", config_path="configs", config_name="pretrain")
def main(cfg):
print("******************************** [Config] ********************************")
print(OmegaConf.to_yaml(cfg))
print("******************************** [Config] ********************************")
pl.seed_everything(cfg.seed)
logger = WandbLogger(
name=cfg.name,
save_dir=cfg.wandb.save_dir,
project=cfg.wandb.project
)
trainer = pl.Trainer(
logger=logger,
accelerator='gpu',
devices=cfg.gpu,
log_every_n_steps=cfg.log_every_n_steps,
max_epochs=cfg.training.max_epochs
)
dataloader = create_dataloader(cfg.dataset)
encoder = create_encoder_network(cfg.model.emb_dim)
model = PretrainingModule(
cfg=cfg.training,
encoder=encoder
)
model.train()
trainer.fit(model, dataloader)
if __name__ == "__main__":
torch.set_float32_matmul_precision("high")
torch.autograd.set_detect_anomaly(True)
torch.cuda.empty_cache()
torch.multiprocessing.set_sharing_strategy("file_system")
warnings.simplefilter(action='ignore', category=FutureWarning)
main()
# <FILESEP>
# -*- coding: utf-8 -*-
from dotenv import load_dotenv
load_dotenv('.env')
import logging
logging.basicConfig(filename='logs/push-2-gee.log', level=logging.INFO)
import ast
import glob
import json
import os
import subprocess
from datetime import datetime
from dbio import *
scale_factor = 10000
output_path = os.getenv('OUTPUT_PATH')
final_output = os.getenv('POST_PROCESS_OUTPUT_PATH')
gdal_path = os.getenv('GDAL_PATH')
manifest_dir = os.getenv('MANIFESTS_PATH')
cloud_path = os.getenv('GCS_PATH')
gee_asset_path = os.getenv('GEE_ASSET_PATH')
calc = '{0}gdal_calc.py -A %s --calc="A*{1}" --outfile={2}%s --type=UInt16'.format(gdal_path, scale_factor, final_output)
_cp_to_gs = 'gsutil cp {0}%s {1}'.format(final_output, cloud_path)
_upload_to_gee = 'earthengine upload image --manifest "{0}%s.json"'.format(manifest_dir)
properties = ['acquisitiontype', 'lastorbitnumber', 'lastrelativeorbitnumber', 'missiondatatakeid', 'orbitdirection',
'orbitnumber', 'platformidentifier', 'polarisationmode', 'producttype', 'relativeorbitnumber',
'sensoroperationalmode', 'swathidentifier']
def get_processed_images(table_name):
query = "SELECT id, title, beginposition, endposition, {} FROM {} WHERE processed={} AND slave={} " \