text
stringlengths 1
93.6k
|
|---|
for batch_idx, sample in enumerate(TrainImgLoader):
|
image, depth = sample[0], sample[1]#(b,c,d,w,h)
|
depth = depth.cuda()
|
image = image.cuda()
|
image = torch.autograd.Variable(image)
|
depth = torch.autograd.Variable(depth)
|
optimizer.zero_grad()
|
global_step = len(TrainImgLoader) * epoch + batch_idx
|
gt_depth = depth
|
pred_depth = model(image)#(b, c, d, h, w)
|
# Calculate the total loss
|
spatial_losses=[]
|
for seq_idx in range(image.size(2)):
|
spatial_loss = cal_spatial_loss(pred_depth[:,:,seq_idx,:,:], gt_depth[:,:,seq_idx,:,:])
|
spatial_losses.append(spatial_loss)
|
spatial_loss = sum(spatial_losses)
|
pred_cls = disc(pred_depth)
|
gt_cls = disc(gt_depth)
|
temporal_loss = cal_temporal_loss(pred_cls, gt_cls)
|
loss = spatial_loss + 0.1 * temporal_loss
|
losses.update(loss.item(), image.size(0))
|
loss.backward()
|
optimizer.step()
|
batch_time.update(time.time() - end)
|
end = time.time()
|
batchSize = depth.size(0)
|
print(('Epoch: [{0}][{1}/{2}]\t'
|
'Time {batch_time.val:.3f} ({batch_time.sum:.3f})\t'
|
'Loss {loss.val:.4f} ({loss.avg:.4f})'
|
.format(epoch, batch_idx, len(TrainImgLoader), batch_time=batch_time, loss=losses)))
|
if (epoch+1)%1 == 0:
|
save_checkpoint(model.state_dict(), filename=args.checkpoint_dir + "ResNet18_checkpoints_small_" + str(epoch + 1) + ".pth.tar")
|
if __name__ == '__main__':
|
train()
|
# <FILESEP>
|
import pkg_resources
|
import archinfo
|
filecache = {}
|
type_sizes = {"UChar": 1, "UShort": 2, "UInt": 4, "ULong": 8, "ULONG": 8, "U128": 16, "U256": 32}
|
arch_data = {}
|
defines = {"VEX_GUEST_PPC32_REDIR_STACK_SIZE": 16 * 2, "VEX_GUEST_PPC64_REDIR_STACK_SIZE": 16 * 2}
|
def to_int(ival):
|
if ival in defines:
|
return defines[ival]
|
return int(ival, 0)
|
def load_arch(archh):
|
if archh not in arch_data:
|
arch_data[archh] = {}
|
if archh not in filecache:
|
filecache[archh] = open(pkg_resources.resource_filename("pyvex", "include/libvex_guest_%s.h" % archh)).read()
|
return filecache[archh]
|
a = open(pkg_resources.resource_filename("pyvex", "include/libvex_guest_offsets.h")).read().splitlines()
|
for line in a:
|
_, defname, offstr = line.split()
|
offset = int(offstr, 0)
|
_, archname, fieldname = defname.split("_", 2)
|
fieldname = fieldname.lower()
|
arch_defs = load_arch(archname)
|
arraylen = None
|
typename = None
|
lst = arch_defs.split()
|
for i, k in enumerate(lst):
|
if k.lower().split("[")[0].strip(";") == "guest_%s" % fieldname:
|
typename = lst[i - 1].strip("/*")
|
if typename not in type_sizes:
|
continue
|
if "[" in k:
|
arraylen = to_int(k.split("[")[1].split("]")[0])
|
break
|
else:
|
raise Exception(f"Could not find field in arch {archname} for {fieldname}")
|
fieldsize = type_sizes[typename] * (1 if arraylen is None else arraylen)
|
arch_data[archname][fieldname] = (offset, fieldsize)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.