text
stringlengths 1
93.6k
|
|---|
if args.model == 'ResNeXt29_DuBIN':
|
model_fn = ResNeXt29_DuBIN
|
if args.dataset in ['cifar10', 'cifar100']:
|
num_classes=10 if args.dataset == 'cifar10' else 100
|
init_stride = 1
|
elif args.dataset == 'tin':
|
num_classes, init_stride = 200, 2
|
elif args.dataset == 'IN':
|
num_classes, init_stride = 1000, None
|
if args.dataset == 'IN':
|
model = model_fn().cuda()
|
else:
|
model = model_fn(num_classes=num_classes, init_stride=init_stride).cuda()
|
model = torch.nn.DataParallel(model)
|
# load model:
|
ckpt = torch.load(os.path.join(args.save_root_path, 'AugMax_results', args.ckpt_path, 'best_SA.pth'))
|
model.load_state_dict(ckpt)
|
# log file:
|
fp = open(os.path.join(args.save_root_path, 'AugMax_results', args.ckpt_path, 'test_results.txt'), 'a+')
|
## Test on CIFAR:
|
def val_cifar():
|
'''
|
Evaluate on CIFAR10/100
|
'''
|
_, val_data = cifar_dataloaders(data_dir=args.data_root_path, num_classes=num_classes, train_batch_size=256, test_batch_size=args.test_batch_size, num_workers=args.cpus, AugMax=None)
|
test_loader = DataLoader(val_data, batch_size=args.test_batch_size, shuffle=False, num_workers=args.cpus, pin_memory=True)
|
model.eval()
|
ts = time.time()
|
test_loss_meter, test_acc_meter = AverageMeter(), AverageMeter()
|
with torch.no_grad():
|
for images, targets in test_loader:
|
images, targets = images.cuda(), targets.cuda()
|
logits = model(images)
|
loss = F.cross_entropy(logits, targets)
|
pred = logits.data.max(1)[1]
|
acc = pred.eq(targets.data).float().mean()
|
# append loss:
|
test_loss_meter.append(loss.item())
|
test_acc_meter.append(acc.item())
|
print('clean test time: %.2fs' % (time.time()-ts))
|
# test loss and acc of this epoch:
|
test_loss = test_loss_meter.avg
|
test_acc = test_acc_meter.avg
|
# print:
|
clean_str = 'clean: %.4f' % test_acc
|
print(clean_str)
|
fp.write(clean_str + '\n')
|
fp.flush()
|
def val_cifar_worst_of_k_affine(K):
|
'''
|
Test model robustness against spatial transform attacks using worst-of-k method on CIFAR10/100.
|
'''
|
model.eval()
|
ts = time.time()
|
test_loss_meter, test_acc_meter = AverageMeter(), AverageMeter()
|
with torch.no_grad():
|
K_loss = torch.zeros((K, args.test_batch_size)).cuda()
|
K_logits = torch.zeros((K, args.test_batch_size, num_classes)).cuda()
|
for k in range(K):
|
random.seed(k+1)
|
val_data = cifar_random_affine_test_set(data_dir=args.data_root_path, num_classes=num_classes)
|
test_loader = DataLoader(val_data, batch_size=args.test_batch_size, shuffle=False, num_workers=args.cpus, pin_memory=True)
|
images, targets = next(iter(test_loader))
|
images, targets = images.cuda(), targets.cuda()
|
logits = model(images)
|
loss = F.cross_entropy(logits, targets, reduction='none')
|
# stack all losses:
|
K_loss[k,:] = loss # shape=(K,N)
|
K_logits[k,...] = logits
|
# print('K_loss:', K_loss[:,0:3], K_loss.shape)
|
adv_idx = torch.max(K_loss, dim=0).indices
|
logits_adv = torch.zeros_like(logits).to(logits.device)
|
for n in range(images.shape[0]):
|
logits_adv[n] = K_logits[adv_idx[n],n,:]
|
print('logits_adv:', logits_adv.shape)
|
pred = logits_adv.data.max(1)[1]
|
print('pred:', pred.shape)
|
acc = pred.eq(targets.data).float().mean()
|
# append loss:
|
test_acc_meter.append(acc.item())
|
print('worst of %d test time: %.2fs' % (K, time.time()-ts))
|
# test loss and acc of this epoch:
|
test_acc = test_acc_meter.avg
|
# print:
|
clean_str = 'worst of %d: %.4f' % (K, test_acc)
|
print(clean_str)
|
fp.write(clean_str + '\n')
|
fp.flush()
|
def val_cifar_c():
|
'''
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.