text
stringlengths 1
93.6k
|
|---|
gnd = HashedReadBAMGenomeArray(inbams, ReadKeyMapFactory(Pdict, read_length_nmis))
|
for (tid, tcoord, tstop) in found_cds[['tid', 'tcoord', 'tstop']].itertuples(False):
|
curr_trans = SegmentChain.from_bed(bedlinedict[tid])
|
tlen = curr_trans.get_length()
|
if tlen >= tstop + stopnt[1]: # need to guarantee that the 3' UTR is sufficiently long
|
curr_hashed_counts = get_hashed_counts(curr_trans, gnd)
|
cdslen = tstop+stopnt[1]-tcoord-startnt[0] # cds length, plus the extra bases...
|
curr_counts = np.zeros((len(rdlens), cdslen))
|
for (i, rdlen) in enumerate(rdlens):
|
for nmis in range(opts.max5mis+1):
|
curr_counts[i, :] += curr_hashed_counts[(rdlen, nmis)][tcoord+startnt[0]:tstop+stopnt[1]]
|
# curr_counts is limited to the CDS plus any extra requested nucleotides on either side
|
if curr_counts.sum() >= opts.mincdsreads:
|
curr_counts /= curr_counts.mean() # normalize by mean of counts across all readlengths and positions within the CDS
|
startprof += curr_counts[:, :startlen]
|
cdsprof += curr_counts[:, startlen:cdslen-stoplen].reshape((len(rdlens), -1, 3)).mean(1)
|
stopprof += curr_counts[:, cdslen-stoplen:cdslen]
|
num_cds_incl += 1
|
for inbam in inbams:
|
inbam.close()
|
return startprof, cdsprof, stopprof, num_cds_incl
|
def _orf_profile(orflen):
|
"""Generate a profile for an ORF based on the metagene profile
|
Parameters
|
----------
|
orflen : int
|
Number of nucleotides in the ORF, including the start and stop codons
|
Returns
|
-------
|
np.ndarray<float>
|
The expected profile for the ORF. Number of rows will match the number of rows in the metagene profile. Number of columns will be
|
orflen + stopnt[1] - startnt[0]
|
"""
|
assert orflen % 3 == 0
|
assert orflen > 0
|
short_stop = 9
|
if orflen >= startnt[1]-stopnt[0]: # long enough to include everything
|
return np.hstack((startprof, np.tile(cdsprof, (orflen-startnt[1]+stopnt[0])/3), stopprof))
|
elif orflen >= startnt[1]+short_stop:
|
return np.hstack((startprof, stopprof[:, startnt[1]-orflen-stopnt[1]:]))
|
elif orflen >= short_stop:
|
return np.hstack((startprof[:, :orflen-short_stop-startnt[0]], stopprof[:, -short_stop-stopnt[1]:]))
|
else: # very short!
|
return np.hstack((startprof[:, :3-startnt[0]], stopprof[:, 3-orflen-stopnt[0]:]))
|
if opts.startonly:
|
failure_return = (pd.DataFrame(), pd.DataFrame())
|
else:
|
failure_return = (pd.DataFrame(), pd.DataFrame(), pd.DataFrame())
|
def _regress_tfam(orf_set, gnd):
|
"""Performs non-negative least squares regression on all of the ORFs in a transcript family, using profiles constructed via _orf_profile()
|
Also calculates Wald statistics for each orf and start codon, and for each stop codon if opts.startonly is False"""
|
tfam = orf_set['tfam'].iat[0]
|
strand = orf_set['strand'].iat[0]
|
chrom = orf_set['chrom'].iat[0]
|
tids = orf_set['tid'].drop_duplicates().tolist()
|
all_tfam_genpos = set()
|
tid_genpos = {}
|
tlens = {}
|
for (i, tid) in enumerate(tids):
|
currtrans = SegmentChain.from_bed(bedlinedict[tid])
|
curr_pos_set = currtrans.get_position_set()
|
tlens[tid] = len(curr_pos_set)
|
tid_genpos[tid] = curr_pos_set
|
all_tfam_genpos.update(curr_pos_set)
|
tfam_segs = SegmentChain(*positionlist_to_segments(chrom, strand, list(all_tfam_genpos)))
|
all_tfam_genpos = np.array(sorted(all_tfam_genpos))
|
if strand == '-':
|
all_tfam_genpos = all_tfam_genpos[::-1]
|
nnt = len(all_tfam_genpos)
|
tid_indices = {tid: np.flatnonzero(np.in1d(all_tfam_genpos, list(curr_tid_genpos), assume_unique=True))
|
for (tid, curr_tid_genpos) in tid_genpos.iteritems()}
|
hashed_counts = get_hashed_counts(tfam_segs, gnd)
|
counts = np.zeros((len(rdlens), nnt), dtype=np.float64) # even though they are integer-valued, will need to do float arithmetic
|
for (i, rdlen) in enumerate(rdlens):
|
for nmis in range(1+opts.max5mis):
|
counts[i, :] += hashed_counts[(rdlen, nmis)]
|
counts = counts.ravel()
|
if opts.startcount:
|
# Only include ORFS for which there is at least some minimum reads within one nucleotide of the start codon
|
offsetmat = np.tile(nnt*np.arange(len(rdlens)), 3) # offsets for each cond, expecting three positions to check for each
|
# try:
|
orf_set = orf_set[[(counts[(start_idxes.repeat(len(rdlens))+offsetmat)].sum() >= opts.startcount) for start_idxes in
|
[tid_indices[tid][tcoord-1:tcoord+2] for (tid, tcoord, tstop) in orf_set[['tid', 'tcoord', 'tstop']].itertuples(False)]]]
|
if orf_set.empty:
|
return failure_return
|
orf_strength_df = orf_set.sort_values('tcoord', ascending=False).drop_duplicates('orfname').reset_index(drop=True)
|
abort_set = orf_set.drop_duplicates('gcoord').copy()
|
abort_set['gstop'] = abort_set['gcoord'] # should maybe be +/-3, but then need to worry about splicing - and this is an easy flag
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.