text
stringlengths
1
93.6k
running_pred_tour_len = 0.0
running_gt_tour_len = 0.0
running_nb_data = 0
running_nb_batch = 0
with torch.no_grad():
start_test = time.time()
for batch_num in progress_bar(range(batches_per_epoch), parent=master_bar):
# Generate a batch of TSPs
try:
batch = next(dataset)
except StopIteration:
break
# Convert batch to torch Variables
# x_edges = Variable(torch.LongTensor(batch.edges).type(dtypeLong), requires_grad=False)
# x_edges_values = Variable(torch.FloatTensor(batch.edges_values).type(dtypeFloat), requires_grad=False)
# x_nodes = Variable(torch.LongTensor(batch.nodes).type(dtypeLong), requires_grad=False)
x_nodes_coord = Variable(torch.FloatTensor(batch.nodes_coord).type(dtypeFloat), requires_grad=False)
x_nodes_timew = Variable(torch.FloatTensor(batch.nodes_timew).type(dtypeFloat), requires_grad=False) if is_tsptw else None
# y_edges = Variable(torch.LongTensor(batch.edges_target).type(dtypeLong), requires_grad=False)
# y_nodes = Variable(torch.LongTensor(batch.nodes_target).type(dtypeLong), requires_grad=False)
y_tour = Variable(torch.LongTensor(batch.tour_nodes).type(dtypeLong), requires_grad=False)
# Compute class weights (if uncomputed)
if type(edge_cw) != torch.Tensor:
# edge_labels = y_edges.cpu().numpy().flatten()
# edge_cw = compute_class_weight("balanced", classes=np.unique(edge_labels), y=edge_labels)
# edge_cw = len(y_edges) / (num_edge_classes * edge_label_bincount)
num_nodes = x_nodes_coord.size(1)
num_edges = num_nodes * num_nodes
num_edge_classes = 2
# Don't make tensor since then it will mess up DataParallel, this is a parameter, not input!
edge_label_bincount = np.array([num_edges - 2 * num_nodes, 2 * num_nodes])
edge_cw = num_edges / (num_edge_classes * edge_label_bincount)
# Forward pass
# y_preds, loss = net.forward(x_edges, x_edges_values, x_nodes, x_nodes_coord, y_edges, edge_cw)
y_preds, loss, x_edges_values = net.forward(x_nodes_coord, x_nodes_timew, y_tour, edge_cw)
loss = loss.mean() # Take mean of loss across multiple GPUs
# Compute error metrics
# err_edges, err_tour, err_tsp, tour_err_idx, tsp_err_idx = edge_error(y_preds, y_edges, x_edges)
# Get batch beamsearch tour prediction
# if mode == 'val': # Validation: faster 'vanilla' beamsearch
# bs_nodes = beamsearch_tour_nodes(
# y_preds, beam_size, batch_size, num_nodes, dtypeFloat, dtypeLong, probs_type='logits')
# elif mode == 'test': # Testing: beamsearch with shortest tour heuristic
# bs_nodes = beamsearch_tour_nodes_shortest(
# y_preds, x_edges_values, beam_size, batch_size, num_nodes, dtypeFloat, dtypeLong, probs_type='logits')
#
# Compute mean tour length
# pred_tour_len = mean_tour_len_nodes(x_edges_values, bs_nodes)
gt_tour_len = np.mean(batch.tour_len)
# Update running data
running_nb_data += batch_size
running_loss += batch_size* loss.data.item()
# running_err_edges += batch_size* err_edges
# running_err_tour += batch_size* err_tour
# running_err_tsp += batch_size* err_tsp
# running_pred_tour_len += batch_size* pred_tour_len
running_gt_tour_len += batch_size* gt_tour_len
running_nb_batch += 1
# Log intermediate statistics
# result = ('loss:{loss:.4f} pred_tour_len:{pred_tour_len:.3f} gt_tour_len:{gt_tour_len:.3f}'.format(
result = ('loss:{loss:.4f} gt_tour_len:{gt_tour_len:.3f}'.format(
loss=running_loss/running_nb_data,
# pred_tour_len=running_pred_tour_len/running_nb_data,
gt_tour_len=running_gt_tour_len/running_nb_data))
master_bar.child.comment = result
# Compute statistics for full epoch
loss = running_loss/ running_nb_data
err_edges = 0 # running_err_edges/ running_nb_data
err_tour = 0 # running_err_tour/ running_nb_data
err_tsp = 0 # running_err_tsp/ running_nb_data
pred_tour_len = running_pred_tour_len/ running_nb_data
gt_tour_len = running_gt_tour_len/ running_nb_data
return time.time()-start_test, loss, err_edges, err_tour, err_tsp, pred_tour_len, gt_tour_len
def main(config):
# Instantiate the network
assert config.num_neighbors == -1, "KNN features is deprecated due to PrepWrap"
model = ResidualGatedGCNModel(config, dtypeFloat, dtypeLong)
if 'sparse' in config and config.sparse is not None:
model = wrap_sparse(model, config.sparse)
model = PrepWrapResidualGatedGCNModel(model)
net = nn.DataParallel(model)
if torch.cuda.is_available():
net.cuda()
print(net)
# Compute number of network parameters
nb_param = 0