text
stringlengths
1
93.6k
# Init Blynk instance
if blynk_enabled:
print("Blynk upload is enabled")
blynk = blynklib.Blynk(read_config.blynk_token,
server=read_config.blynk_server.strip(),
heartbeat=read_config.blynk_heartbeat)
@blynk.handle_event("connect")
def connect_handler():
global is_connected
if not is_connected:
is_connected = True
print("Connected to cloud server")
syslog.syslog(syslog.LOG_NOTICE, "Connected to cloud server")
@blynk.handle_event("disconnect")
def disconnect_handler():
global is_connected
if is_connected:
is_connected = False
print("Disconnected from cloud server")
syslog.syslog(syslog.LOG_NOTICE, "Disconnected from cloud server")
# Init Nighscout instance (if requested)
if nightscout_enabled:
print("Nightscout upload is enabled")
nightscout = nightscoutlib.nightscout_uploader(server = read_config.nightscout_server,
secret = read_config.nightscout_api_secret)
##########################################################
# Initialization
##########################################################
syslog.syslog(syslog.LOG_NOTICE, "Starting DD-Guard daemon, version "+VERSION)
# Init signal handler
signal.signal(signal.SIGINT, on_sigterm)
signal.signal(signal.SIGTERM, on_sigterm)
upload_live_data.active = False
# Perform first upload immediately
# Subsequent uploads will be scheduled according to received data timestamp
t = threading.Thread(target=upload_live_data, args=())
t.start()
##########################################################
# Main loop
##########################################################
while True:
if blynk_enabled:
blynk.run()
else:
time.sleep(0.1)
# <FILESEP>
import os
import json
import argparse
import time
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
from sklearn.utils.class_weight import compute_class_weight
from tensorboardX import SummaryWriter
from fastprogress import master_bar, progress_bar
# Remove warning
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
from scipy.sparse import SparseEfficiencyWarning
warnings.simplefilter('ignore', SparseEfficiencyWarning)
from config import *
from problems.tsp.tsp_reader import TSPReader
from problems.tsptw.tsptw_reader import TSPTWReader
from models.gcn_model import ResidualGatedGCNModel
from models.sparse_wrapper import wrap_sparse
from models.prep_wrapper import PrepWrapResidualGatedGCNModel
parser = argparse.ArgumentParser(description='gcn_tsp_parser')
parser.add_argument('-c','--config', type=str, default="configs/default.json")
args = parser.parse_args()
config_path = args.config
config = get_config(config_path)
print("Loaded {}:\n{}".format(config_path, config))
is_tsptw = config.get('problem', 'tsp') == 'tsptw'
DataReader = TSPTWReader if is_tsptw else TSPReader
if torch.cuda.is_available():