text
stringlengths 1
93.6k
|
|---|
self.model.train()
|
self.temp_output = self.tokenizer.decode(
|
generate_ids[0][input_ids.shape[-1]:], skip_special_tokens=True
|
)
|
print(f'Step : {self.temp_step}/{self.steps}\n'
|
f'Input : {self.temp_input}\n'
|
f'Output: {self.temp_output}')
|
self.input_list.append(self.temp_input)
|
self.output_list.append(self.temp_output)
|
def slice(self):
|
prefix = self.model_config.get('prefix', '')
|
prompt = self.model_config.get('prompt', '')
|
suffix = self.model_config.get('suffix', '')
|
temp_str = prefix+prompt
|
temp_tokens = self.tokenizer(temp_str).input_ids
|
len1 = len(temp_tokens)
|
temp_str += self.route_input
|
temp_tokens = self.tokenizer(temp_str).input_ids
|
self.input_slice = slice(len1, len(temp_tokens))
|
try:
|
assert self.tokenizer.decode(temp_tokens[self.input_slice]) == self.route_input
|
except AssertionError:
|
self.input_slice = slice(self.input_slice.start-1, self.input_slice.stop)
|
try:
|
assert self.tokenizer.decode(temp_tokens[self.input_slice]) == self.route_input
|
except AssertionError:
|
if self.tokenizer.decode(temp_tokens[self.input_slice]).lstrip() != self.route_input:
|
### Todo
|
raise NotImplementedError
|
temp_str += suffix
|
temp_tokens = self.tokenizer(temp_str).input_ids
|
len2 = len(temp_tokens)
|
if suffix.endswith(':'):
|
temp_str += ' '
|
temp_str += self.target
|
temp_tokens = self.tokenizer(temp_str).input_ids
|
self.target_slice = slice(len2, len(temp_tokens))
|
def grad(self):
|
model_embed = extract_model_embedding(self.model)
|
embed_weights = model_embed.weight
|
input_str = complete_input(self.model_config, self.route_input)
|
if input_str.endswith(':'):
|
input_str += ' '
|
input_str += self.target
|
input_ids = self.tokenizer(
|
input_str, truncation=True, return_tensors='pt'
|
).input_ids[0].to(self.device)
|
self.temp_input_ids = input_ids.detach()
|
compute_one_hot = torch.zeros(
|
self.input_slice.stop-self.input_slice.start,
|
embed_weights.shape[0],
|
dtype=embed_weights.dtype, device=self.device
|
)
|
compute_one_hot.scatter_(
|
1, input_ids[self.input_slice].unsqueeze(1),
|
torch.ones(
|
compute_one_hot.shape[0], 1, device=self.device, dtype=embed_weights.dtype
|
)
|
)
|
compute_one_hot.requires_grad_()
|
compute_embeds = (compute_one_hot @ embed_weights).unsqueeze(0)
|
raw_embeds = model_embed(input_ids.unsqueeze(0)).detach()
|
concat_embeds = torch.cat([
|
raw_embeds[:, :self.input_slice.start, :],
|
compute_embeds,
|
raw_embeds[:, self.input_slice.stop: , :]
|
], dim=1)
|
try:
|
logits = self.model(inputs_embeds=concat_embeds).logits[0]
|
except AttributeError:
|
logits = self.model(input_ids=input_ids.unsqueeze(0), inputs_embeds=concat_embeds)[0]
|
if logits.dim()>2:
|
logits = logits.squeeze()
|
try:
|
assert input_ids.shape[0]>=self.target_slice.stop
|
except AssertionError:
|
self.target_slice = slice(self.target_slice.start, input_ids.shape[0])
|
compute_logits = logits[self.target_slice.start-1 : self.target_slice.stop-1]
|
target = input_ids[self.target_slice]
|
loss = cross_entropy(compute_logits, target)
|
loss.backward()
|
self.temp_grad = compute_one_hot.grad.detach()
|
def sample(self):
|
self.temp_sample_list = []
|
values, indices = torch.topk(self.temp_grad, k=self.topk, dim=1)
|
sample_indices = torch.randperm(self.topk * self.temp_grad.shape[0])[:self.batch_size].tolist()
|
for i in range(self.batch_size):
|
pos = sample_indices[i] // self.topk
|
pos_index = indices[pos][sample_indices[i] % self.topk].item()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.