text
stringlengths 1
93.6k
|
|---|
ground_pene_dist_list[recording_name] = np.concatenate(ground_pene_dist_list[recording_name], axis=0)
|
print('\n --------------- evaluation metrics -------------')
|
skating_list['all'] = np.concatenate([skating_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
acc_list['all'] = np.concatenate([acc_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
if args.dataset == 'egobody':
|
acc_error_list['all'] = np.concatenate([acc_error_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
joint_mask_list['all'] = np.concatenate([joint_mask_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
gmpjpe_list['all'] = np.concatenate([gmpjpe_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
mpjpe_list['all'] = np.concatenate([mpjpe_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
mpjpe_list_vis['all'] = np.concatenate([mpjpe_list_vis[recording_name] for recording_name in test_recording_name_list], axis=0)
|
mpjpe_list_occ['all'] = np.concatenate([mpjpe_list_occ[recording_name] for recording_name in test_recording_name_list], axis=0)
|
ground_pene_freq_list['all'] = np.concatenate([ground_pene_freq_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
ground_pene_dist_list['all'] = np.concatenate([ground_pene_dist_list[recording_name] for recording_name in test_recording_name_list], axis=0)
|
print('skating score: {:0.3f}'.format(skating_list['all'].mean()))
|
print('||acc|| (m/s^2): {:0.2f}'.format(acc_list['all'].mean())) if args.dataset == 'prox' else None
|
print('acc errors (m/s^2): {:0.2f}'.format(acc_error_list['all'].mean())) if args.dataset == 'egobody' else None
|
print('ground_pene_freq score (%): {:0.2f}'.format(ground_pene_freq_list['all'].mean()*100))
|
print('ground_pene_dist score (mm): {:0.2f}'.format(-ground_pene_dist_list['all'].mean()*1000))
|
if args.dataset == 'egobody':
|
print('-------------- gmpjpe/mpjpe/mpjpe-vis/mpjpe-occ (mm) --------------')
|
print('{:0.2f} / {:0.2f} / {:0.2f} / {:0.2f}'.
|
format(gmpjpe_list['all'].mean() * 1000, mpjpe_list['all'].mean() * 1000,
|
mpjpe_list_vis['all'].sum() / ((joint_mask_list['all']).sum()) * 1000,
|
mpjpe_list_occ['all'].sum() / ((1 - joint_mask_list['all']).sum()) * 1000))
|
# <FILESEP>
|
import base64
|
import hashlib
|
import json
|
import os
|
import random
|
from collections.abc import Iterable
|
from urllib.parse import quote
|
import piexif
|
import requests
|
from PIL import Image
|
from bs4 import BeautifulSoup
|
from config import APIKEY, BAIDUAPPID, BAIDUAPPKEY
|
proxies = None
|
verify = True
|
def getUuid() -> str:
|
"""
|
生成一个uuid
|
:return: uuid
|
"""
|
return str(random.randint(1, 999999)).zfill(6)
|
def getBaiDuAudio(text: str, filePath: str) -> [str, None]:
|
"""
|
利用百度语音合成将文字合成语音
|
:param text: 合成语音的文字
|
:param filePath: 文件保存路径
|
:return: 文件路径或者None
|
"""
|
# 生成文件名
|
md5 = hashlib.md5()
|
md5.update(text.encode('utf-8'))
|
fileName = md5.hexdigest() + '.mp3'
|
fileName = os.path.join(filePath, fileName)
|
# 文件已经存在的话直接返回
|
if os.path.exists(fileName):
|
return fileName
|
url = 'https://cloud.baidu.com/aidemo'
|
data = 'type=tns&per=4105&spd=8&pit=7&vol=5&aue=6&tex=' + quote(text)
|
headers = {
|
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36',
|
'Content-Type': 'application/x-www-form-urlencoded',
|
'Accept': '*/*',
|
'Accept-Language': 'zh-CN,zh;q=0.9,en-US;q=0.8,en;q=0.7'
|
}
|
res = requests.post(url, data=data, headers=headers, verify=False)
|
if res.status_code != 200:
|
return None
|
res = json.loads(res.text)
|
if res['msg'] != 'success':
|
return None
|
data = res['data'].replace('data:audio/x-mpeg;base64,', '')
|
if ',' in data:
|
data = data[:data.find(',')]
|
data = base64.b64decode(data)
|
with open(fileName, 'wb') as f:
|
f.write(data)
|
return fileName
|
def decodeBaiduImg(objUrl: str) -> str:
|
"""
|
百度图片地址解码函数
|
:param objUrl: 编码的url
|
:return: 解码的url
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.