text
stringlengths 1
93.6k
|
|---|
def Price_target_to_Price_Signal(stock_obj):
|
ratings_df = stock_obj.ratings_data
|
ratings_df['DateTime'] = pd.to_datetime(ratings_df['RatingDate'])
|
PT_ts = ratings_df.set_index('DateTime').loc[:, 'NewPT'].resample('D').mean()
|
PT_ts.index = PT_ts.index.map(lambda x: x.date())
|
PT_ts = PT_ts.reindex(stock_obj['PriceClose'].index).ffill()
|
signal_ts = (PT_ts - stock_obj['PriceClose']) / stock_obj['PriceClose']
|
return signal_ts
|
########################### Fama French Factors ###############################
|
def Fama_French_Rolling_Beta(stock_obj, Fama_French_Series_Name, window = 42):
|
stock_daily_returns = stock_obj['PriceClose'].pct_change(1).dropna()
|
F_F_series = get_Fama_French_ts(Fama_French_Series_Name)
|
output_dict = Rolling_Regression( Y_ts=stock_daily_returns,
|
X_ts_arr=[F_F_series],
|
window=window)
|
signal_dict = {dt: v['Beta_hat'][Fama_French_Series_Name] for dt, v in output_dict.items()}
|
signal_ts = pd.Series(signal_dict)
|
signal_ts.name = Fama_French_Series_Name + '_Beta'
|
return signal_ts
|
############################## Momentum Factors ##################################
|
def Momentum_dual_window(stock_obj, window_long, window_short):
|
stock_daily_returns = stock_obj['PriceClose'].pct_change(1).dropna()
|
Momentum_window_long_series = stock_daily_returns.rolling(window = window_long).mean().shift(1)
|
Momentum_window_short_series = stock_daily_returns.rolling(window = window_short).mean().shift(1)
|
return Momentum_window_long_series - Momentum_window_short_series
|
def Momentum_12M_1M(stock_obj):
|
return Momentum_dual_window(stock_obj, window_long = 252, window_short = 21)
|
def Momentum_window(stock_obj, window):
|
stock_daily_returns = stock_obj['PriceClose'].pct_change(1).dropna()
|
Momentum_window_series = stock_daily_returns.rolling(window = window).mean().shift(1)
|
return Momentum_window_series
|
# <FILESEP>
|
import json
|
import logging
|
from pathlib import Path
|
from typing import Optional, Type
|
from langchain import LLMChain, PromptTemplate
|
from langchain.chat_models import ChatOpenAI
|
from langchain.schema import HumanMessage, SystemMessage
|
from pydantic import BaseModel, Field
|
OPEN_AI_MODEL = "gpt-3.5-turbo"
|
OPEN_AI_MODEL = "gpt-4"
|
class DeepResearchWriter(BaseModel):
|
desired_output_format: str = Field(
|
...,
|
description="The desired output format. The only valid value at this time is 'single_file'",
|
)
|
class DeepResearchWriterTool:
|
"""
|
Tool for writing the output of the Deep research tool. If deep research was not done, this tool will fail to run
|
"""
|
name: str = "Deep Research Writer Tool"
|
args_schema: Type[BaseModel] = DeepResearchWriter
|
description: str = "Takes the results of the deep research and writes the output format"
|
def __init__(self):
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.