text
stringlengths 1
93.6k
|
|---|
class CutMix(torch.nn.Module):
|
r"""CutMix image transformation.
|
Please see the full paper for more details:
|
ERROR: type should be string, got " https://arxiv.org/pdf/1905.04899.pdf\n"
|
"""
|
def __init__(self, alpha: float = 1.0, p: float = 1.0, *args, **kwargs) -> None:
|
"""Initialize CutMix transformation.
|
Args:
|
alpha: The alpha parameter to the Beta for producing a mixing lambda.
|
"""
|
super().__init__(*args, **kwargs)
|
assert alpha >= 0
|
assert p >= 0 and p <= 1.0
|
self.alpha = alpha
|
self.p = p
|
@staticmethod
|
def rand_bbox(size: torch.Size, lam: float) -> Tuple[int, int, int, int]:
|
"""Return a random bbox coordinates.
|
Args:
|
size: model input tensor shape in this format: (...,H,W)
|
lam: lambda sampling parameter in CutMix method. See equation 1
|
in the original paper: https://arxiv.org/pdf/1905.04899.pdf
|
Returns:
|
The output bbox format is a tuple: (x1, y1, x2, y2), where (x1,
|
y1) and (x2,y2) are the coordinates of the top-left and bottom-right
|
corners of the bbox in the pixel-space.
|
"""
|
assert lam >= 0 and lam <= 1.0
|
h = size[-2]
|
w = size[-1]
|
cut_rat = np.sqrt(1.0 - lam)
|
cut_h = int(h * cut_rat)
|
cut_w = int(w * cut_rat)
|
# uniform
|
cx = np.random.randint(h)
|
cy = np.random.randint(w)
|
bbx1 = np.clip(cx - cut_h // 2, 0, h)
|
bby1 = np.clip(cy - cut_w // 2, 0, w)
|
bbx2 = np.clip(cx + cut_h // 2, 0, h)
|
bby2 = np.clip(cy + cut_w // 2, 0, w)
|
return (bbx1, bby1, bbx2, bby2)
|
def get_params(
|
self, size: torch.Size, alpha: float
|
) -> Tuple[float, Tuple[int, int, int, int]]:
|
"""Return CutMix random parameters."""
|
# Skip mixing by probability 1-self.p
|
if alpha == 0 or torch.rand(1) > self.p:
|
return None
|
lam = np.random.beta(alpha, alpha)
|
# Compute mask
|
bbx1, bby1, bbx2, bby2 = self.rand_bbox(size, lam)
|
return lam, (bbx1, bby1, bbx2, bby2)
|
def forward(
|
self,
|
x: Tensor,
|
x2: Optional[Tensor] = None,
|
y: Optional[Tensor] = None,
|
y2: Optional[Tensor] = None,
|
) -> Tuple[Tensor, Tensor]:
|
"""Mix images by replacing random patches from one to the other.
|
Args:
|
x: A tensor with a batch of samples. Shape: [batch_size, ...].
|
x2: A tensor with exactly one matching sample for any input in `x`. Shape:
|
[batch_size, ...].
|
y: A tensor of target labels. Shape: [batch_size, ...].
|
y2: A tensor of target labels for paired samples. Shape: [batch_size, ...].
|
params: Dictionary of {'lam': lam_val} to reproduce a mixing.
|
"""
|
alpha = self.alpha
|
# Randomly sample lambda and bbox coordinates if not provided
|
params = self.get_params(x.shape, alpha)
|
if params is None:
|
return x, y
|
lam, (bbx1, bby1, bbx2, bby2) = params
|
# Randomly sample second input from the same mini-batch if not provided
|
if x2 is None:
|
batch_size = int(x.size()[0])
|
index = torch.randperm(batch_size, device=x.device)
|
x2 = x[index, :]
|
y2 = y[index, :] if y is not None else None
|
# Mix inputs and labels
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.