text
stringlengths
1
93.6k
predictions = [id2label[p] for p in predictions]
p, r, f1 = scorer.score(batch.gold(), predictions, verbose=True)
# save probability scores
if len(args.out) > 0:
helper.ensure_dir(os.path.dirname(args.out))
with open(args.out, 'wb') as outfile:
pickle.dump(all_probs, outfile)
print("Prediction scores saved to {}.".format(args.out))
print("Evaluation ended.")
# <FILESEP>
import torch
import torch.nn as nn
from torch.autograd import Variable
import skimage
from skimage import io
import numpy as np
import argparse
from logger import Logger
from train_loader import get_loader
from modelGeoNet import GeoNet, EPELoss
parser = argparse.ArgumentParser(description='GeoNet')
parser.add_argument('--epochs', type=int, default=6, metavar='N')
parser.add_argument('--lr', type=float, default=0.0001, metavar='LR')
parser.add_argument('--batch_size', type=int, default=32, metavar='N')
parser.add_argument("--dataset_dir", type=str, default='/home/xliea/dataset_patch', help='dataset path')
parser.add_argument("--savemodel_dir", type=str, default='/home/xliea/model.pkl', help='save model path')
args = parser.parse_args()
use_GPU = torch.cuda.is_available()
train_loader = get_loader(patch_dir = '%s%s' % (args.dataset_dir, '/train/patch'),
flow_dir = '%s%s' % (args.dataset_dir, '/train/patch_flow'),
global_dir = '%s%s' % (args.dataset_dir, '/train/patch_4x'),
batch_size = args.batch_size)
val_loader = get_loader(patch_dir = '%s%s' % (args.dataset_dir, '/test/patch'),
flow_dir = '%s%s' % (args.dataset_dir, '/test/patch_flow'),
global_dir = '%s%s' % (args.dataset_dir, '/test/patch_4x'),
batch_size = args.batch_size)
model = GeoNet([1, 1, 1, 1, 1])
criterion = EPELoss()
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
model = nn.DataParallel(model)
if torch.cuda.is_available():
model = model.cuda()
criterion = criterion.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
step = 0
logger = Logger('./logs')
model.train()
for epoch in range(args.epochs):
for i, (local_img, flow_truth, global_img) in enumerate(train_loader):
if use_GPU:
local_img = local_img.cuda()
flow_truth = flow_truth.cuda()
global_img = global_img.cuda()
local_img = Variable(local_img)
flow_truth = Variable(flow_truth)
global_img = Variable(global_img)
# Forward + Backward + Optimize
optimizer.zero_grad()
flow_output = model(local_img, global_img)
epe_loss = criterion(flow_output, flow_truth)
loss = epe_loss
loss.backward()
optimizer.step()
print("Epoch [%d], Iter [%d], Loss: %.4f" %(epoch + 1, i + 1, loss.data[0]))
#============ TensorBoard logging ============#
step = step + 1
#Log the scalar values
info = {'loss': loss.data[0]}
for tag, value in info.items():
logger.scalar_summary(tag, value, step)
# Decaying Learning Rate
if (epoch + 1) % 2 == 0:
args.lr /= 2
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)