text
stringlengths 1
93.6k
|
|---|
mel_input = torch.randn(
|
(1, 80, 88)).cuda()
|
else:
|
raise Exception("Mode {} if not supported".format(mode))
|
with torch.no_grad():
|
bias_audio = melgan.inference(mel_input).float() # [B, 1, T]
|
bias_spec, _ = self.stft.transform(bias_audio.squeeze(0))
|
self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None])
|
def forward(self, audio, strength=0.1):
|
audio_spec, audio_angles = self.stft.transform(audio.cuda().float())
|
audio_spec_denoised = audio_spec.cuda() - self.bias_spec * strength
|
audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
|
audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles.cuda())
|
return audio_denoised
|
# <FILESEP>
|
from __future__ import print_function, division
|
import os
|
import torch
|
import pandas as pd
|
#from skimage import io, transform
|
import cv2
|
import numpy as np
|
import random
|
import torch
|
from torch.utils.data import Dataset, DataLoader
|
from torchvision import transforms
|
import pdb
|
import math
|
import os
|
import imgaug.augmenters as iaa
|
#face_scale = 0.9 #default for test, for training , can be set from [0.8 to 1.0]
|
# data augment from 'imgaug' --> Add (value=(-40,40), per_channel=True), GammaContrast (gamma=(0.5,1.5))
|
seq = iaa.Sequential([
|
iaa.Add(value=(-40,40), per_channel=True), # Add color
|
iaa.GammaContrast(gamma=(0.5,1.5)) # GammaContrast with a gamma of 0.5 to 1.5
|
])
|
# Tensor
|
class Cutout(object):
|
def __init__(self, length=30):
|
self.length = length
|
def __call__(self, sample):
|
img, image_x_depth, image_x_ir, spoofing_label, map_x1 = sample['image_x'],sample['image_x_depth'],sample['image_x_ir'],sample['spoofing_label'],sample['map_x1']
|
h, w = img.shape[1], img.shape[2] # Tensor [1][2], nparray [0][1]
|
mask = np.ones((h, w), np.float32)
|
y = np.random.randint(h)
|
x = np.random.randint(w)
|
length_new = np.random.randint(1, self.length)
|
y1 = np.clip(y - length_new // 2, 0, h)
|
y2 = np.clip(y + length_new // 2, 0, h)
|
x1 = np.clip(x - length_new // 2, 0, w)
|
x2 = np.clip(x + length_new // 2, 0, w)
|
mask[y1: y2, x1: x2] = 0.
|
mask = torch.from_numpy(mask)
|
mask = mask.expand_as(img)
|
img *= mask
|
image_x_depth *= mask
|
image_x_ir *= mask
|
return {'image_x': img, 'image_x_depth': image_x_depth, 'image_x_ir': image_x_ir, 'spoofing_label': spoofing_label, 'map_x1': map_x1}
|
class Normaliztion(object):
|
"""
|
same as mxnet, normalize into [-1, 1]
|
image = (image - 127.5)/128
|
"""
|
def __call__(self, sample):
|
image_x, image_x_depth, image_x_ir, spoofing_label, map_x1 = sample['image_x'],sample['image_x_depth'],sample['image_x_ir'],sample['spoofing_label'],sample['map_x1']
|
new_image_x = (image_x - 127.5)/128 # [-1,1]
|
new_image_x_depth = (image_x_depth - 127.5)/128 # [-1,1]
|
new_image_x_ir = (image_x_ir - 127.5)/128 # [-1,1]
|
return {'image_x': new_image_x, 'image_x_depth': new_image_x_depth, 'image_x_ir': new_image_x_ir, 'spoofing_label': spoofing_label, 'map_x1': map_x1}
|
class RandomHorizontalFlip(object):
|
"""Horizontally flip the given Image randomly with a probability of 0.5."""
|
def __call__(self, sample):
|
image_x, image_x_depth, image_x_ir, spoofing_label, map_x1 = sample['image_x'],sample['image_x_depth'],sample['image_x_ir'],sample['spoofing_label'],sample['map_x1']
|
new_image_x = np.zeros((224, 224, 3))
|
new_image_x_depth = np.zeros((224, 224, 3))
|
new_image_x_ir = np.zeros((224, 224, 3))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.