text
stringlengths 1
93.6k
|
|---|
print('\nSaving backup checkpoint at [{}]\n'.format(base_dir))
|
save_ckpt(X0_eval, X1_eval, net, net_ema, opt_DSM, opt_CTM, avgmeter, best_PSNR, base_dir, avgmeter.idx)
|
# Evaluating Quick FID
|
if avgmeter.idx % FID_iter == 0:
|
curr_PSNR_G, curr_SSIM_G, curr_LPIPS_G = eval_inverse(sampler, t1, t0, net_ema, n_FID, tweedie=False, verbose=True)
|
curr_PSNR_g, curr_SSIM_g, curr_LPIPS_g = eval_inverse(sampler, t1, t1, net_ema, n_FID, tweedie=True, verbose=True)
|
if curr_PSNR_G > best_PSNR:
|
best_PSNR = curr_PSNR_G
|
save_ckpt(X0_eval, X1_eval, net, net_ema, opt_DSM, opt_CTM, avgmeter, best_PSNR, ckpt_dir, avgmeter.idx, best=True)
|
def main():
|
parser = argparse.ArgumentParser()
|
# Basic experiment settings
|
parser.add_argument('--datasets', type=str, nargs='+', default=['cifar10','gaussian'])
|
parser.add_argument('--data_roots', type=str, nargs='+', default=['../data','../data'])
|
parser.add_argument('--base_dir', type=str, default='results/cifar10')
|
parser.add_argument('--ckpt_name', type=str, default=None)
|
# p(X0,X1) settings
|
# inverse tasks = {'sr4x-pool', 'sr4x-bicubic', 'inpaint-center', 'inpaint-random', 'blur-uni', 'blur-gauss'}
|
parser.add_argument('--size', type=int, default=32)
|
parser.add_argument('--X1_eps_std', type=float, default=0.0)
|
parser.add_argument('--vars', type=float, nargs='+', default=[0.25,1.0,0.0])
|
parser.add_argument('--coupling', type=str, default='independent')
|
parser.add_argument('--coupling_bs', type=int, default=64)
|
# ODE settings
|
parser.add_argument('--disc_steps', type=int, default=1024)
|
parser.add_argument('--init_steps', type=int, default=8)
|
parser.add_argument('--double_iter', type=int, default=None)
|
parser.add_argument('--solver', type=str, default='heun')
|
parser.add_argument('--discretization', type=str, default='edm_n2i')
|
parser.add_argument('--smin', type=float, default=0.002)
|
parser.add_argument('--smax', type=float, default=80.0)
|
parser.add_argument('--edm_rho', type=int, default=7)
|
parser.add_argument('--t_sm_dists', type=str, nargs='+', default=[])
|
parser.add_argument('--t_ctm_dists', type=float, nargs='+', default=[1.2,2])
|
parser.add_argument('--param', type=str, default='LIN')
|
parser.add_argument('--ODE_N', type=int, default=1)
|
# Optimization settings
|
parser.add_argument('--bs', type=int, default=64)
|
parser.add_argument('--lr', type=float, default=1e-4)
|
parser.add_argument('--rho', type=float, default=0.01)
|
parser.add_argument('--lmda_CTM', type=float, default=0.1)
|
parser.add_argument('--ctm_distance', type=str, default='l1')
|
parser.add_argument('--ema_decay', type=float, default=0.9)
|
parser.add_argument('--n_grad_accum', type=int, default=1)
|
parser.add_argument('--compare_zero', action='store_true')
|
parser.add_argument('--use_pcgrad', action='store_true')
|
parser.add_argument('--offline', action='store_true')
|
# Model settings
|
parser.add_argument('--nc', type=int, default=3)
|
parser.add_argument('--model_channels', type=int, default=128)
|
parser.add_argument('--num_blocks', type=int, default=4)
|
parser.add_argument('--dropout', type=float, default=0.1)
|
# Evaluation settings
|
parser.add_argument('--v_iter', type=int, default=25)
|
parser.add_argument('--s_iter', type=int, default=250)
|
parser.add_argument('--b_iter', type=int, default=25000)
|
parser.add_argument('--FID_iter', type=int, default=250)
|
parser.add_argument('--n_FID', type=int, default=5000)
|
parser.add_argument('--FID_bs', type=int, default=500)
|
parser.add_argument('--n_viz', type=int, default=100)
|
parser.add_argument('--n_save', type=int, default=2)
|
args = parser.parse_args()
|
def print_args(**kwargs):
|
print('\nTraining with settings :\n')
|
pprint.pprint(kwargs)
|
print_args(**vars(args))
|
train(**vars(args))
|
if __name__ == '__main__':
|
main()
|
# <FILESEP>
|
from common import (
|
Example,
|
Fact,
|
Rule,
|
Theory,
|
TheoryAssertionInstance,
|
TheoryAssertionRepresentation,
|
supported_theorem_provers,
|
)
|
import json
|
import pytest
|
from theory_label_generator import call_theorem_prover
|
def create_example_object():
|
fact1 = Fact(polarity="+", predicate="green", arguments=["'Erin'"])
|
fact2 = Fact(polarity="+", predicate="blue", arguments=["'Fiona'"])
|
fact3 = Fact(polarity="+", predicate="big", arguments=["'Charlie'"])
|
rules = [
|
Rule(
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.