text
stringlengths 1
93.6k
|
|---|
dir_objname = d.lstrip("/")
|
else:
|
dir_objname = "_rootPath"
|
locals()[dir_objname] = PathRepository(d)
|
domain_name = tldextract.extract(u).domain
|
locals()[domain_name] = Query(u, d, locals()[dir_objname])
|
locals()[domain_name].manipulateRequest()
|
argument = Arguments(args.url, args.urllist, args.dir, args.dirlist)
|
program = Program(argument.return_urls(), argument.return_dirs())
|
program.initialise()
|
# <FILESEP>
|
import torch
|
from torch import Tensor
|
import torch.nn as nn
|
import torchvision.models as models
|
from einops import rearrange, reduce, repeat
|
from einops.layers.torch import Rearrange, Reduce
|
import torch.nn.functional as F
|
from torchsummary import summary
|
class CNN3DBlock(nn.Module):
|
'''
|
To obtain 3D representation features, we apply 3D CNN block to the MRI image
|
I ∈ R(L x W x H) where image length L, width W and height H are all the same.
|
X ∈ R(C3dxLxWxH) where X = D3d(I) Eq. (1)
|
Ref: 3.2. 3D Convolutional Neural Network Block
|
'''
|
def __init__(self, in_channels, out_channels):
|
super(CNN3DBlock, self).__init__()
|
# 5 x 5 x 5 3D CNN
|
self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=5,
|
stride=1, padding=2)
|
# Batch Normalization
|
self.bn1 = nn.BatchNorm3d(out_channels)
|
# ReLU
|
self.relu1 = nn.ReLU(inplace=True)
|
# 5 x 5 x 5 3D CNN
|
self.conv2 = nn.Conv3d(out_channels, out_channels, kernel_size=5,
|
stride=1, padding=2)
|
# Batch Normalization
|
self.bn2 = nn.BatchNorm3d(out_channels)
|
# ReLU
|
self.relu2 = nn.ReLU(inplace=True)
|
def forward(self, x):
|
out = self.conv1(x)
|
out = self.bn1(out)
|
out = self.relu1(out)
|
out = self.conv2(out)
|
out = self.bn2(out)
|
out = self.relu2(out)
|
return out
|
class MultiPlane_MultiSlice_Extract_Project(nn.Module):
|
'''
|
The multi-plane and multi-slice image features extraction from the 3D
|
representation features X and applying 2D CNN followed by Non-Linear
|
Projection
|
N = length = width = height based on the mentioned input size in the paper
|
Ref: 3.3. Extraction of Multi-plane, Multi slice images and
|
3.4. 2D Convolutional Neural Network Block
|
'''
|
def __init__(self, out_channels: int):
|
super(MultiPlane_MultiSlice_Extract_Project, self).__init__()
|
# 2D CNN part
|
# Load the pre-trained ResNet-18 model and Extract the global average pooling layer
|
self.CNN_2D = models.resnet50(weights=True)
|
self.CNN_2D.conv1 = nn.Conv2d(out_channels,64,kernel_size=7,stride=2,padding=3,bias=False)
|
self.CNN_2D.fc = nn.Identity()
|
# Non - Linear Projection block
|
self.non_linear_proj = nn.Sequential(
|
nn.Linear(2048, 512),
|
nn.ReLU(),
|
nn.Linear(512, 256)
|
)
|
def forward(self, input_tensor):
|
B, C, D, H, W = input_tensor.shape
|
# Extract coronal features
|
coronal_slices = torch.split(input_tensor, 1, dim=2) # This gives us a tuple of length 128, where each element has shape (batch_size, channels, 1, width, height)
|
Ecor = torch.cat(coronal_slices, dim=2) # lets concatenate along dimension 2 to get the desired output shape for Ecor: R^C3d×N×W×H.
|
saggital_slices = torch.split(input_tensor.clone(), 1, dim = 3) # This gives us a tuple of length 128, where each element has shape (batch_size, channels, length, 1, height)
|
Esag = torch.cat(saggital_slices, dim = 3) # lets concatenate along dimension 3 to get the desired output shape for Ecor: R^C3d×L×N×H.
|
axial_slices = torch.split(input_tensor.clone(), 1, dim = 4) # This gives us a tuple of length 128, where each element has shape (batch_size, channels, length, width, 1)
|
Eax = torch.cat(axial_slices, dim = 4) # lets concatenate along dimension 3 to get the desired output shape for Ecor: R^C3d×L×W×N.
|
# Lets calculate S using E for X
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.