text
stringlengths 1
93.6k
|
|---|
analyze_and_predict_stock(
|
symbol,
|
start_date,
|
end_date,
|
future_days,
|
suppress_warnings=suppress_warnings_flag,
|
quick_test=quick_test_flag,
|
)
|
# <FILESEP>
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
# All rights reserved.
|
# This source code is licensed under the license found in the
|
# LICENSE file in the root directory of this source tree.
|
# --------------------------------------------------------
|
# References:
|
# DeiT: https://github.com/facebookresearch/deit
|
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
|
# --------------------------------------------------------
|
import argparse
|
import datetime
|
import json
|
import numpy as np
|
import os
|
import time
|
from pathlib import Path
|
import torch
|
import torch.backends.cudnn as cudnn
|
from torch.utils.tensorboard import SummaryWriter
|
import timm
|
from timm.models.layers import trunc_normal_
|
from timm.data.mixup import Mixup
|
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
|
import util.lr_decay as lrd
|
import util.misc as misc
|
from util.datasets import build_dataset
|
from util.pos_embed import interpolate_pos_embed
|
from util.misc import NativeScalerWithGradNormCount as NativeScaler
|
import models_vit
|
from engine_finetune import train_one_epoch, evaluate
|
def get_args_parser():
|
parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False)
|
parser.add_argument('--batch_size', default=64, type=int,
|
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
|
parser.add_argument('--epochs', default=50, type=int)
|
parser.add_argument('--accum_iter', default=1, type=int,
|
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
|
# Model parameters
|
parser.add_argument('--model', default='vit_base_patch16', type=str, metavar='MODEL',
|
help='Name of model to train')
|
parser.add_argument('--input_size', default=224, type=int,
|
help='images input size')
|
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
|
help='Drop path rate (default: 0.1)')
|
# Optimizer parameters
|
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
|
help='Clip gradient norm (default: None, no clipping)')
|
parser.add_argument('--weight_decay', type=float, default=0.05,
|
help='weight decay (default: 0.05)')
|
parser.add_argument('--lr', type=float, default=None, metavar='LR',
|
help='learning rate (absolute lr)')
|
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
|
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
|
parser.add_argument('--layer_decay', type=float, default=0.75,
|
help='layer-wise lr decay from ELECTRA/BEiT')
|
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
|
help='lower lr bound for cyclic schedulers that hit 0')
|
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
|
help='epochs to warmup LR')
|
# Augmentation parameters
|
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
|
help='Color jitter factor (enabled only when not using Auto/RandAug)')
|
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
|
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
|
parser.add_argument('--smoothing', type=float, default=0.1,
|
help='Label smoothing (default: 0.1)')
|
# * Random Erase params
|
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
|
help='Random erase prob (default: 0.25)')
|
parser.add_argument('--remode', type=str, default='pixel',
|
help='Random erase mode (default: "pixel")')
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.