text
stringlengths 1
93.6k
|
|---|
if quick_test:
|
print("Quick test mode: Performing simplified XGBoost tuning...")
|
param_dist = {"n_estimators": randint(10, 50), "max_depth": randint(3, 6)}
|
n_iter = 5
|
else:
|
print("Full analysis mode: Performing comprehensive XGBoost tuning...")
|
param_dist = {
|
"n_estimators": randint(100, 500),
|
"max_depth": randint(3, 10),
|
"learning_rate": uniform(0.01, 0.3),
|
"subsample": uniform(0.6, 1.0),
|
"colsample_bytree": uniform(0.6, 1.0),
|
"gamma": uniform(0, 5),
|
}
|
n_iter = 20
|
# Initialize XGBoost model
|
xgb = XGBRegressor(random_state=42)
|
# Perform randomized search for best parameters
|
tscv = TimeSeriesSplit(n_splits=3 if quick_test else 5)
|
xgb_random = RandomizedSearchCV(
|
estimator=xgb,
|
param_distributions=param_dist,
|
n_iter=n_iter,
|
cv=tscv,
|
scoring="neg_mean_squared_error", # Change to MSE
|
verbose=2,
|
random_state=42,
|
n_jobs=-1,
|
)
|
xgb_random.fit(X.reshape(X.shape[0], -1), y)
|
print(f"Best XGBoost parameters: {xgb_random.best_params_}")
|
return xgb_random.best_estimator_
|
def implement_trading_strategy(actual_prices, predicted_prices, threshold=0.01):
|
returns = []
|
position = 0 # -1: short, 0: neutral, 1: long
|
for i in range(1, len(actual_prices)):
|
predicted_return = (predicted_prices[i] - actual_prices[i - 1]) / actual_prices[
|
i - 1
|
]
|
if predicted_return > threshold and position <= 0:
|
position = 1 # Buy
|
elif predicted_return < -threshold and position >= 0:
|
position = -1 # Sell
|
actual_return = (actual_prices[i] - actual_prices[i - 1]) / actual_prices[i - 1]
|
returns.append(position * actual_return)
|
return np.array(returns)
|
def select_features_rfe(X, y, n_features_to_select=10):
|
if isinstance(X, np.ndarray) and len(X.shape) == 3:
|
X_2d = X.reshape(X.shape[0], -1)
|
else:
|
X_2d = X
|
rfe = RFE(
|
estimator=RandomForestRegressor(random_state=42),
|
n_features_to_select=n_features_to_select,
|
)
|
X_selected = rfe.fit_transform(X_2d, y)
|
selected_features = rfe.support_
|
return X_selected, selected_features
|
def calculate_ensemble_weights(models, X, y):
|
weights = []
|
for name, model in models:
|
_, _, score, _ = train_and_evaluate_model(
|
model, X, y, n_splits=5, model_name=name
|
)
|
weights.append(max(score, 0)) # Ensure non-negative weights
|
if sum(weights) == 0:
|
# If all weights are zero, use equal weights
|
return [1 / len(weights)] * len(weights)
|
else:
|
return [w / sum(weights) for w in weights] # Normalize weights
|
def augment_data(X, y, noise_level=0.01):
|
X_aug = X.copy()
|
y_aug = y.copy()
|
noise = np.random.normal(0, noise_level, X.shape)
|
X_aug += noise
|
return X_aug, y_aug
|
# Main function to analyze stock data and make predictions
|
def analyze_and_predict_stock(
|
symbol,
|
start_date,
|
end_date,
|
future_days=30,
|
suppress_warnings=False,
|
quick_test=False,
|
models_to_run=["LSTM", "GRU", "Random Forest", "XGBoost"],
|
):
|
# Suppress warnings if flag is set
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.