text
stringlengths 1
93.6k
|
|---|
# <FILESEP>
|
import numpy as np
|
import pandas as pd
|
import matplotlib.pyplot as plt
|
from sklearn.model_selection import TimeSeriesSplit, cross_val_score, RandomizedSearchCV
|
from sklearn.preprocessing import MinMaxScaler
|
from sklearn.metrics import mean_squared_error, r2_score
|
from tensorflow.keras.models import Sequential, clone_model as keras_clone_model
|
from tensorflow.keras.layers import LSTM, Dense, GRU, Dropout
|
from tensorflow.keras.callbacks import Callback, EarlyStopping
|
from datetime import datetime, timedelta
|
from tqdm.auto import tqdm
|
import yfinance as yf
|
import ta
|
from sklearn.ensemble import RandomForestRegressor
|
from xgboost import XGBRegressor
|
import warnings
|
import os
|
import tensorflow as tf
|
from tabulate import tabulate
|
from scipy.stats import randint, uniform
|
import sklearn.base
|
import argparse
|
from sklearn.feature_selection import SelectKBest, f_regression, RFE
|
from tensorflow.keras.regularizers import l1_l2
|
from matplotlib.dates import num2date
|
# Suppress warnings and TensorFlow logging
|
def suppress_warnings_method():
|
# Filter out warnings
|
warnings.filterwarnings("ignore")
|
# Suppress TensorFlow logging
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
# Suppress TensorFlow verbose logging
|
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
# Fetch historical stock data from Yahoo Finance
|
def fetch_stock_data(symbol, start_date, end_date):
|
"""
|
Fetch stock data from Yahoo Finance.
|
"""
|
data = yf.download(symbol, start=start_date, end=end_date)
|
return data
|
# Add technical indicators to the stock data
|
def add_technical_indicators(data):
|
"""
|
Add technical indicators to the dataset.
|
"""
|
data["SMA_20"] = ta.trend.sma_indicator(data["Close"], window=20)
|
data["SMA_50"] = ta.trend.sma_indicator(data["Close"], window=50)
|
data["RSI"] = ta.momentum.rsi(data["Close"], window=14)
|
data["MACD"] = ta.trend.macd_diff(data["Close"])
|
data["BB_upper"], data["BB_middle"], data["BB_lower"] = (
|
ta.volatility.bollinger_hband_indicator(data["Close"]),
|
ta.volatility.bollinger_mavg(data["Close"]),
|
ta.volatility.bollinger_lband_indicator(data["Close"]),
|
)
|
# Advanced indicators
|
data["EMA_20"] = ta.trend.ema_indicator(data["Close"], window=20)
|
data["ATR"] = ta.volatility.average_true_range(
|
data["High"], data["Low"], data["Close"]
|
)
|
data["ADX"] = ta.trend.adx(data["High"], data["Low"], data["Close"])
|
data["Stoch_K"] = ta.momentum.stoch(data["High"], data["Low"], data["Close"])
|
data["Volatility"] = data["Close"].rolling(window=20).std()
|
data["Price_Change"] = data["Close"].pct_change()
|
data["Volume_Change"] = data["Volume"].pct_change()
|
data["High_Low_Range"] = (data["High"] - data["Low"]) / data["Close"]
|
return data
|
# Prepare data for model training by scaling and creating sequences
|
def prepare_data(data, look_back=60):
|
"""
|
Prepare data for model training.
|
"""
|
scaler = MinMaxScaler(feature_range=(0, 1))
|
scaled_data = scaler.fit_transform(data)
|
X, y = [], []
|
for i in range(look_back, len(scaled_data) - 1): # Note the -1 here
|
X.append(scaled_data[i - look_back : i])
|
y.append(scaled_data[i + 1, 0]) # Predicting the next 'Close' price
|
return np.array(X), np.array(y), scaler
|
# Create an LSTM model for time series prediction
|
def create_lstm_model(input_shape):
|
model = Sequential(
|
[
|
LSTM(
|
units=64,
|
return_sequences=True,
|
input_shape=input_shape,
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.