text
stringlengths 1
93.6k
|
|---|
embedding_dim = 64 # 词向量维度
|
seq_length = 20 # 序列长度
|
num_classes = 4 # 类别数
|
num_filters = 256 # 卷积核数目
|
kernel_size = 5 # 卷积核尺寸
|
vocab_size = 1075 # 词汇表达小
|
hidden_dim = 128 # 全连接层神经元
|
dropout_keep_prob = 0.5 # dropout保留比例
|
learning_rate = 1e-3 # 学习率
|
batch_size = 64 # 每批训练大小
|
num_epochs = 10 # 总迭代轮次
|
print_per_batch = 100 # 每多少轮输出一次结果
|
save_per_batch = 10 # 每多少轮存入tensorboard
|
class TextCNN(object):
|
"""文本分类,CNN模型"""
|
def __init__(self, config):
|
self.config = config
|
# 三个待输入的数据
|
self.input_x = tf.placeholder(tf.int32, [None, self.config.seq_length], name='input_x')
|
self.input_y = tf.placeholder(tf.float32, [None, self.config.num_classes], name='input_y')
|
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
|
self.cnn()
|
def cnn(self):
|
"""CNN模型"""
|
# 词向量映射
|
with tf.device('/cpu:0'):
|
embedding = tf.get_variable('embedding', [self.config.vocab_size, self.config.embedding_dim])
|
embedding_inputs = tf.nn.embedding_lookup(embedding, self.input_x)
|
with tf.name_scope("cnn"):
|
# CNN layer
|
conv = tf.layers.conv1d(embedding_inputs, self.config.num_filters, self.config.kernel_size, name='conv')
|
# global max pooling layer
|
gmp = tf.reduce_max(conv, reduction_indices=[1], name='gmp')
|
with tf.name_scope("score"):
|
# 全连接层,后面接dropout以及relu激活
|
fc = tf.layers.dense(gmp, self.config.hidden_dim, name='fc1')
|
fc = tf.contrib.layers.dropout(fc, self.keep_prob)
|
fc = tf.nn.relu(fc)
|
# 分类器
|
self.logits = tf.layers.dense(fc, self.config.num_classes, name='fc2')
|
self.y_pred_cls = tf.argmax(tf.nn.softmax(self.logits), 1) # 预测类别
|
with tf.name_scope("optimize"):
|
# 损失函数,交叉熵
|
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.logits, labels=self.input_y)
|
self.loss = tf.reduce_mean(cross_entropy)
|
# 优化器
|
self.optim = tf.train.AdamOptimizer(learning_rate=self.config.learning_rate).minimize(self.loss)
|
with tf.name_scope("accuracy"):
|
# 准确率
|
correct_pred = tf.equal(tf.argmax(self.input_y, 1), self.y_pred_cls)
|
self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
|
# <FILESEP>
|
class MinerException(Exception):
|
"""
|
Base exception class for this application.
|
"""
|
def __init__(self, *args: object):
|
if args:
|
super().__init__(*args)
|
else:
|
super().__init__("Unknown miner error")
|
class ExitRequest(MinerException):
|
"""
|
Raised when the application is requested to exit from outside of the main loop.
|
Intended for internal use only.
|
"""
|
def __init__(self):
|
super().__init__("Application was requested to exit")
|
class ReloadRequest(MinerException):
|
"""
|
Raised when the application is requested to reload entirely, without closing the GUI.
|
Intended for internal use only.
|
"""
|
def __init__(self):
|
super().__init__("Application was requested to reload entirely")
|
class RequestException(MinerException):
|
"""
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.