text
stringlengths 1
93.6k
|
|---|
s.close()
|
# Run
|
main()
|
# <FILESEP>
|
import numpy as np
|
import os
|
import argparse
|
import pickle
|
import torch
|
import copy
|
import cc3d
|
import cv2
|
from skimage.morphology import skeletonize, remove_small_holes
|
def read_pickle(pkl_path):
|
with open(pkl_path, 'rb') as f:
|
return pickle.load(f)
|
# borrowed from SAM3D
|
def num_to_natural(group_ids):
|
'''
|
Change the group number to natural number arrangement
|
'''
|
if np.all(group_ids == -1):
|
return group_ids
|
array = copy.deepcopy(group_ids)
|
unique_values = np.unique(array[array != -1])
|
mapping = np.full(np.max(unique_values) + 2, -1)
|
mapping[unique_values + 1] = np.arange(len(unique_values))
|
array = mapping[array + 1]
|
return array
|
def remove_small_group(group_ids, th):
|
fg_areas = np.sum(group_ids > -1)
|
unique_elements, counts = np.unique(group_ids, return_counts=True)
|
result = group_ids.copy()
|
for i, count in enumerate(counts):
|
# if count <= th:
|
if count / fg_areas <= th:
|
result[group_ids == unique_elements[i]] = -1
|
return result
|
def get_3d_points(K_, pose, pixs, deps):
|
# partly borrowed from Syncdreamer
|
# 1,h*w,3 @ 1,3,3 => 1,h*w,3
|
points = pixs @ torch.inverse(K_).permute(0, 2, 1)
|
# 1,h*w,3 @ 1,hw,1 => 1,h*w,3
|
points = points * deps
|
hw = points.shape[1]
|
points = torch.cat([points, torch.ones(1, hw, 1, dtype=torch.float32)], 2) # 1,h*w,4
|
# 1,h*w,4 @ 1,4,4 => 1,h*w,4
|
pose_ = pose.unsqueeze(0).permute(0, 2, 1)
|
points = points @ pose_
|
return points[...,:3]
|
def get_2d_pixels(K_, pose, pts):
|
# 1,h*w,4 @ 1,4,4 => 1,h*w,4
|
pose_ = torch.inverse(pose).unsqueeze(0).permute(0, 2, 1)
|
hw = pts.shape[1]
|
pts_ = torch.cat([pts, torch.ones(1, hw, 1, dtype=torch.float32)], 2)
|
points = pts_ @ pose_
|
# 1,h*w,3 @ 1,3,3 => 1,h*w,3
|
pixs = points[...,:3] @ K_.permute(0, 2, 1)
|
depth_ = pixs[0, :, 2]
|
pixs[..., :2] = pixs[..., :2] / pixs[..., 2:]
|
return pixs[..., :2], depth_ # 1,h*w,2, h*w,
|
def sam_mask_preprocess(sam_, alpha_map, th):
|
sam_ = num_to_natural(sam_) # remove index with no exact pixels, caused by sam mask overlapping
|
# detect disconnected parts to remove noisy small pixel groups
|
labs_connected = cc3d.connected_components(sam_ + 1)
|
sam_new = -1 * np.ones_like(sam_)
|
extra_ind = np.max(sam_)+1
|
for idp in range(np.min(sam_), np.max(sam_)+1):
|
cur_map = labs_connected[sam_==idp]
|
unique_values = np.unique(cur_map)
|
unique_nums = np.bincount(cur_map)
|
if len(unique_values) == 1:
|
sam_new[sam_==idp] = idp
|
elif len(unique_values) > 1 and np.max(unique_nums) > 19:
|
for ide in range(len(unique_values)):
|
if unique_nums[unique_values[ide]] > 19:
|
sam_new[labs_connected==unique_values[ide]] = extra_ind
|
extra_ind += 1
|
bg_maskid = np.unique(sam_new[alpha_map < 0.95])
|
for idm in range(bg_maskid.shape[0]):
|
if 0.9*np.sum(sam_new==bg_maskid[idm]) < np.sum(sam_new[alpha_map < 0.95]==bg_maskid[idm]):
|
sam_new[sam_new==bg_maskid[idm]] = -1
|
sam_new[alpha_map < 0.95] = -1 # set background as invalid mask
|
sam_new = remove_small_group(sam_new, th)
|
sam_new = num_to_natural(sam_new)
|
return sam_new
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.