text
stringlengths 1
93.6k
|
|---|
# log to syslog
|
import logging
|
from logging.handlers import SysLogHandler
|
syslog_handler = SysLogHandler()
|
syslog_handler.setLevel(logging.WARNING)
|
app.logger.addHandler(syslog_handler)
|
config = {
|
'development': DevelopmentConfig,
|
'testing': TestingConfig,
|
'production': ProductionConfig,
|
'heroku': HerokuConfig,
|
'unix': UnixConfig,
|
'default': DevelopmentConfig
|
}
|
# <FILESEP>
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
# All rights reserved.
|
# This source code is licensed under the license found in the
|
# LICENSE file in the root directory of this source tree.
|
from ast import arg
|
import logging
|
import os
|
from collections import deque
|
from typing import List
|
import time
|
import copy
|
import numpy as np
|
import torch
|
import wandb
|
from baselines import logger
|
from torch import nn
|
from level_replay.algo.dqn import init_
|
from level_replay import utils
|
from level_replay.algo.buffer import make_buffer, RolloutStorage
|
from level_replay.algo.policy import DQNAgent, ATCAgent
|
from level_replay.dqn_args import parser
|
from level_replay.envs import make_dqn_lr_venv
|
from level_replay.utils import ppo_normalise_reward, min_max_normalise_reward
|
from scipy.stats import skew, kurtosis
|
# os.environ["OMP_NUM_THREADS"] = "1"
|
# os.environ["WANDB_API_KEY"] = "anon"
|
# os.environ["WANDB_BASE_URL"] = "https://api.fairwandb.ai"
|
# os.environ["WANDB_API_KEY"] = "092a14187f6f01d8d2df67e8145ed4b16ba8bc9d"
|
def train(args, seeds):
|
args.cuda = not args.no_cuda and torch.cuda.is_available()
|
args.device = torch.device("cuda:0" if args.cuda else "cpu")
|
if "cuda" in args.device.type:
|
print("Using CUDA\n")
|
args.optimizer_parameters = {"lr": args.learning_rate, "eps": args.adam_eps}
|
args.seeds = seeds
|
args.sge_job_id = int(os.environ.get("JOB_ID", -1))
|
args.sge_task_id = int(os.environ.get("SGE_TASK_ID", -1))
|
args.PLR = False
|
for k, v in vars(args).items():
|
print(' ' * 26 + k + ': ' + str(v))
|
torch.set_num_threads(1)
|
utils.seed(args.seed)
|
name = (
|
f"dqn-{args.env_name}-{args.num_train_seeds}levels"
|
+ f"{'-PER' if args.PER else ''}"
|
+ f"{'-dueling' if args.dueling else ''}"
|
+ f"{'-qrdqn' if args.qrdqn else ''}"
|
+ f"{'-c51' if args.c51 else ''}"
|
+ f"{'-drq' if args.drq else ''}"
|
+ f"{'-autodrq' if args.autodrq else ''}"
|
+ f"{'-atc' if args.atc else ''}"
|
+ f"{'-seed' if args.seed else ''}"
|
+ '-' + args.exp_name
|
)
|
if not args.wandb:
|
os.environ["WANDB_MODE"] = "offline"
|
wandb.init(
|
# settings=wandb.Settings(start_method="fork"),
|
project="dqn_procgen",
|
entity="ydj",
|
name=name,
|
config=args,
|
# tags=["ddqn", "procgen"] + (args.wandb_tags.split(",") if args.wandb_tags else []),
|
group=None,
|
)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.