code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() lowerCamelCase__ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __magic_name__ (A__ ): def __a ( self , _a ) -> Optional[Any]: os.makedirs(__A , exist_ok=__A ) lowerCAmelCase_ = {"""source""": """What is love ?""", """target""": """life"""} lowerCAmelCase_ = {"""train""": 12, """val""": 2, """test""": 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCAmelCase_ = """\n""".join([contents[field]] * n_lines[split] ) with open(os.path.join(__A , f"{split}.{field}" ) , "w" ) as f: f.write(__A ) def __a ( self , _a , _a = "pytorch" ) -> Optional[Any]: lowerCAmelCase_ = self.get_auto_remove_tmp_dir() lowerCAmelCase_ = os.path.join(__A , "output" ) lowerCAmelCase_ = os.path.join(__A , "data" ) self._create_dummy_data(data_dir=__A ) lowerCAmelCase_ = f"\n --data_dir {data_dir} \\n --output_dir {output_dir} \\n --model_name_or_path facebook/rag-sequence-base \\n --model_type rag_sequence \\n --do_train \\n --do_predict \\n --n_val -1 \\n --val_check_interval 1.0 \\n --train_batch_size 2 \\n --eval_batch_size 1 \\n --max_source_length 25 \\n --max_target_length 25 \\n --val_max_target_length 25 \\n --test_max_target_length 25 \\n --label_smoothing 0.1 \\n --dropout 0.1 \\n --attention_dropout 0.1 \\n --weight_decay 0.001 \\n --adam_epsilon 1e-08 \\n --max_grad_norm 0.1 \\n --lr_scheduler polynomial \\n --learning_rate 3e-04 \\n --num_train_epochs 1 \\n --warmup_steps 4 \\n --gradient_accumulation_steps 1 \\n --distributed-port 8787 \\n --use_dummy_dataset 1 \\n --distributed_retriever {distributed_retriever} \\n ".split() if gpus > 0: testargs.append(f"--gpus={gpus}" ) if is_apex_available(): testargs.append("--fp16" ) else: testargs.append("--gpus=0" ) testargs.append("--distributed_backend=ddp_cpu" ) testargs.append("--num_processes=2" ) lowerCAmelCase_ = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(__A , env=self.get_env() ) lowerCAmelCase_ = os.path.join(__A , "metrics.json" ) with open(__A ) as f: lowerCAmelCase_ = json.load(__A ) return result @require_torch_gpu def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_gpu @require_ray def __a ( self ) -> str: lowerCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 ) @require_torch_multi_gpu @require_ray def __a ( self ) -> List[str]: lowerCAmelCase_ = self._run_finetune(gpus=1 , distributed_retriever="ray" ) self.assertGreaterEqual(result["test"][0]["test_avg_em"] , 0.2 )
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ['''model.decoder.embed_positions.weights'''] def A(__a: Tuple ): if "emb" in name: lowerCAmelCase_ = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: lowerCAmelCase_ = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: lowerCAmelCase_ = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: lowerCAmelCase_ = name.replace("linear1" , "fc1" ) if "linear2" in name: lowerCAmelCase_ = name.replace("linear2" , "fc2" ) if "norm1" in name: lowerCAmelCase_ = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: lowerCAmelCase_ = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: lowerCAmelCase_ = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: lowerCAmelCase_ = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: lowerCAmelCase_ = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: lowerCAmelCase_ = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def A(__a: Optional[Any] , __a: Optional[Any] ): lowerCAmelCase_ = list(state_dict.keys() ) lowerCAmelCase_ = {} for key in keys: lowerCAmelCase_ = state_dict.pop(__UpperCAmelCase ) lowerCAmelCase_ = rename_keys(__UpperCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj lowerCAmelCase_ = val[:hidden_size, :] lowerCAmelCase_ = val[hidden_size : 2 * hidden_size, :] lowerCAmelCase_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: lowerCAmelCase_ = val else: lowerCAmelCase_ = val return state_dict, enc_dec_proj_state_dict def A(__a: str ): if checkpoint == "small": # default config values lowerCAmelCase_ = 1024 lowerCAmelCase_ = 24 lowerCAmelCase_ = 16 elif checkpoint == "medium": lowerCAmelCase_ = 1536 lowerCAmelCase_ = 48 lowerCAmelCase_ = 24 elif checkpoint == "large": lowerCAmelCase_ = 2048 lowerCAmelCase_ = 48 lowerCAmelCase_ = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) lowerCAmelCase_ = MusicgenDecoderConfig( hidden_size=__UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__UpperCAmelCase , num_attention_heads=__UpperCAmelCase , ) return config @torch.no_grad() def A(__a: Optional[int] , __a: Optional[Any]=None , __a: Union[str, Any]=None , __a: int="cpu" ): lowerCAmelCase_ = MusicGen.get_pretrained(__UpperCAmelCase , device=__UpperCAmelCase ) lowerCAmelCase_ = decoder_config_from_checkpoint(__UpperCAmelCase ) lowerCAmelCase_ = fairseq_model.lm.state_dict() lowerCAmelCase_ = rename_state_dict( __UpperCAmelCase , hidden_size=decoder_config.hidden_size ) lowerCAmelCase_ = TaEncoderModel.from_pretrained("t5-base" ) lowerCAmelCase_ = EncodecModel.from_pretrained("facebook/encodec_32khz" ) lowerCAmelCase_ = MusicgenForCausalLM(__UpperCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection lowerCAmelCase_ = decoder.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__UpperCAmelCase ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model lowerCAmelCase_ = MusicgenForConditionalGeneration(text_encoder=__UpperCAmelCase , audio_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__UpperCAmelCase ) # check we can do a forward pass lowerCAmelCase_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) lowerCAmelCase_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): lowerCAmelCase_ = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor lowerCAmelCase_ = AutoTokenizer.from_pretrained("t5-base" ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) lowerCAmelCase_ = MusicgenProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) # set the appropriate bos/pad token ids lowerCAmelCase_ = 2048 lowerCAmelCase_ = 2048 # set other default generation config params lowerCAmelCase_ = int(30 * audio_encoder.config.frame_rate ) lowerCAmelCase_ = True lowerCAmelCase_ = 3.0 if pytorch_dump_folder is not None: Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__UpperCAmelCase ) processor.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" import requests from bsa import BeautifulSoup def A(__a: str , __a: dict ): lowerCAmelCase_ = BeautifulSoup(requests.get(__lowerCAmelCase , params=__lowerCAmelCase ).content , "html.parser" ) lowerCAmelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) lowerCAmelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": lowerCamelCase__ = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 20_18, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
import numpy as np def A(__a: np.ndarray , __a: float ): return np.where(vector > 0 , lowerCamelCase__ , (alpha * (np.exp(lowerCamelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __magic_name__ (lowercase__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = None def __init__( self , _a=None , _a=None , _a=None , _a="<unk>" , _a="<s>" , _a="</s>" , _a="<pad>" , _a=False , _a=False , **_a , ) -> Tuple: super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , pad_token=_a , add_prefix_space=_a , clean_up_tokenization_spaces=_a , **_a , ) lowerCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _a ) != add_prefix_space: lowerCAmelCase_ = getattr(_a , pre_tok_state.pop("type" ) ) lowerCAmelCase_ = add_prefix_space lowerCAmelCase_ = pre_tok_class(**_a ) lowerCAmelCase_ = add_prefix_space def __a ( self , *_a , **_a ) -> Tuple: lowerCAmelCase_ = kwargs.get("is_split_into_words" , _a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def __a ( self , *_a , **_a ) -> int: lowerCAmelCase_ = kwargs.get("is_split_into_words" , _a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def __a ( self , _a , _a = None ) -> List[Any]: lowerCAmelCase_ = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __a ( self , _a ) -> str: lowerCAmelCase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: lowerCAmelCase_ = input_ids[-self.model_max_length :] return input_ids
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __magic_name__ : lowerCamelCase__ = 42 lowerCamelCase__ = None lowerCamelCase__ = None def A(): lowerCAmelCase_ = Node(1 ) lowerCAmelCase_ = Node(2 ) lowerCAmelCase_ = Node(3 ) lowerCAmelCase_ = Node(4 ) lowerCAmelCase_ = Node(5 ) return tree def A(__a: Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A(__a: Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A(__a: Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A(__a: Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def A(__a: Node | None ): lowerCAmelCase_ = [] if root is None: return output lowerCAmelCase_ = deque([root] ) while process_queue: lowerCAmelCase_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A(__a: Node | None , __a: int ): lowerCAmelCase_ = [] def populate_output(__a: Node | None , __a: int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__snake_case , __snake_case ) return output def A(__a: Node | None , __a: int ): lowerCAmelCase_ = [] def populate_output(__a: Node | None , __a: int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__snake_case , __snake_case ) return output def A(__a: Node | None ): if root is None: return [] lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = height(__snake_case ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__snake_case , __snake_case ) ) lowerCAmelCase_ = 1 else: output.append(get_nodes_from_right_to_left(__snake_case , __snake_case ) ) lowerCAmelCase_ = 0 return output def A(): # Main function for testing. lowerCAmelCase_ = make_tree() print(F"In-order Traversal: {inorder(__snake_case )}" ) print(F"Pre-order Traversal: {preorder(__snake_case )}" ) print(F"Post-order Traversal: {postorder(__snake_case )}" , "\n" ) print(F"Height of Tree: {height(__snake_case )}" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(__snake_case ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(__snake_case ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(__snake_case , level=__snake_case ) ) print("\nZigZag order Traversal: " ) print(zigzag(__snake_case ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (enum.Enum ): lowerCamelCase__ = 0 lowerCamelCase__ = 1 @add_end_docstrings(__lowercase ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''generated''' def __init__( self , *_a , **_a ) -> Optional[Any]: super().__init__(*_snake_case , **_snake_case ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __a ( self , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , **_a , ) -> List[str]: lowerCAmelCase_ = {} if truncation is not None: lowerCAmelCase_ = truncation lowerCAmelCase_ = generate_kwargs lowerCAmelCase_ = {} if return_tensors is not None and return_type is None: lowerCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase_ = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase_ = self.tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) if len(_snake_case ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) lowerCAmelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __a ( self , _a , _a , _a ) -> Any: return True def __a ( self , *_a , _a ) -> List[str]: lowerCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , _snake_case ): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" ) lowerCAmelCase_ = ([prefix + arg for arg in args[0]],) lowerCAmelCase_ = True elif isinstance(args[0] , _snake_case ): lowerCAmelCase_ = (prefix + args[0],) lowerCAmelCase_ = False else: raise ValueError( f" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`" ) lowerCAmelCase_ = self.tokenizer(*_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *_a , **_a ) -> Dict: lowerCAmelCase_ = super().__call__(*_snake_case , **_snake_case ) if ( isinstance(args[0] , _snake_case ) and all(isinstance(_snake_case , _snake_case ) for el in args[0] ) and all(len(_snake_case ) == 1 for res in result ) ): return [res[0] for res in result] return result def __a ( self , _a , _a=TruncationStrategy.DO_NOT_TRUNCATE , **_a ) -> Optional[Any]: lowerCAmelCase_ = self._parse_and_tokenize(_snake_case , truncation=_snake_case , **_snake_case ) return inputs def __a ( self , _a , **_a ) -> Union[str, Any]: if self.framework == "pt": lowerCAmelCase_ , lowerCAmelCase_ = model_inputs["input_ids"].shape elif self.framework == "tf": lowerCAmelCase_ , lowerCAmelCase_ = tf.shape(model_inputs["input_ids"] ).numpy() lowerCAmelCase_ = generate_kwargs.get("min_length" , self.model.config.min_length ) lowerCAmelCase_ = generate_kwargs.get("max_length" , self.model.config.max_length ) self.check_inputs(_snake_case , generate_kwargs["min_length"] , generate_kwargs["max_length"] ) lowerCAmelCase_ = self.model.generate(**_snake_case , **_snake_case ) lowerCAmelCase_ = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase_ = output_ids.reshape(_snake_case , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase_ = tf.reshape(_snake_case , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __a ( self , _a , _a=ReturnType.TEXT , _a=False ) -> Any: lowerCAmelCase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase_ = {f"{self.return_name}_token_ids": output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase_ = { f"{self.return_name}_text": self.tokenizer.decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case , ) } records.append(_snake_case ) return records @add_end_docstrings(__lowercase ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''summary''' def __call__( self , *_a , **_a ) -> Tuple: return super().__call__(*_snake_case , **_snake_case ) def __a ( self , _a , _a , _a ) -> Tuple: if max_length < min_length: logger.warning(f"Your min_length={min_length} must be inferior than your max_length={max_length}." ) if input_length < max_length: logger.warning( f"Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is " "a summarization task, where outputs shorter than the input are typically wanted, you might " f"consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})" ) @add_end_docstrings(__lowercase ) class __magic_name__ (__lowercase ): lowerCamelCase__ = '''translation''' def __a ( self , _a , _a , _a ) -> Dict: if input_length > 0.9 * max_length: logger.warning( f"Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider " "increasing your max_length manually, e.g. translator(\'...\', max_length=400)" ) return True def __a ( self , *_a , _a=TruncationStrategy.DO_NOT_TRUNCATE , _a=None , _a=None ) -> int: if getattr(self.tokenizer , "_build_translation_inputs" , _snake_case ): return self.tokenizer._build_translation_inputs( *_snake_case , return_tensors=self.framework , truncation=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case ) else: return super()._parse_and_tokenize(*_snake_case , truncation=_snake_case ) def __a ( self , _a=None , _a=None , **_a ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = super()._sanitize_parameters(**_snake_case ) if src_lang is not None: lowerCAmelCase_ = src_lang if tgt_lang is not None: lowerCAmelCase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase_ = kwargs.get("task" , self.task ) lowerCAmelCase_ = task.split("_" ) if task and len(_snake_case ) == 4: # translation, XX, to YY lowerCAmelCase_ = items[1] lowerCAmelCase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *_a , **_a ) -> Union[str, Any]: return super().__call__(*_snake_case , **_snake_case )
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (lowercase__ ): lowerCamelCase__ = 'encoder-decoder' lowerCamelCase__ = True def __init__( self , **_a ) -> Union[str, Any]: super().__init__(**_UpperCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase_ = kwargs.pop("encoder" ) lowerCAmelCase_ = encoder_config.pop("model_type" ) lowerCAmelCase_ = kwargs.pop("decoder" ) lowerCAmelCase_ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = True @classmethod def __a ( cls , _a , _a , **_a ) -> Optional[Any]: logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowerCAmelCase_ = True lowerCAmelCase_ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCamelCase ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.encoder.to_dict() lowerCAmelCase_ = self.decoder.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = """▁""" lowerCamelCase__ = {"""vocab_file""": """spiece.model"""} lowerCamelCase__ = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } lowerCamelCase__ = { """google/pegasus-xsum""": 5_12, } lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (__A ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , _a , _a="<pad>" , _a="</s>" , _a="<unk>" , _a="<mask_2>" , _a="<mask_1>" , _a=None , _a=103 , _a = None , **_a , ) -> List[Any]: lowerCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(__lowercase , __lowercase ): raise TypeError( f"additional_special_tokens should be of type {type(__lowercase )}, but is" f" {type(__lowercase )}" ) lowerCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(__lowercase ) , self.offset - 1 ) ] if len(set(__lowercase ) ) != len(__lowercase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase_ = additional_special_tokens_extended else: lowerCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase , unk_token=__lowercase , mask_token=__lowercase , pad_token=__lowercase , mask_token_sent=__lowercase , offset=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) lowerCAmelCase_ = mask_token_sent lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) # add special tokens to encoder dict lowerCAmelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} @property def __a ( self ) -> Union[str, Any]: return len(self.sp_model ) + self.offset def __a ( self ) -> List[Any]: lowerCAmelCase_ = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _a ) -> Tuple: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _a ) -> List[Any]: return self.sp_model.encode(__lowercase , out_type=__lowercase ) def __a ( self , _a ) -> Tuple: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase_ = self.sp_model.piece_to_id(__lowercase ) return sp_id + self.offset def __a ( self , _a ) -> List[Any]: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def __a ( self , _a ) -> str: lowerCAmelCase_ = [] lowerCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __a ( self , _a=False ) -> Optional[Any]: return 1 def __a ( self , _a ) -> str: lowerCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __a ( self , _a , _a = None , _a = False ) -> Tuple: if already_has_special_tokens: return self._special_token_mask(__lowercase ) elif token_ids_a is None: return self._special_token_mask(__lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __a ( self , _a , _a=None ) -> Union[str, Any]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __a ( self , _a , _a = None ) -> Any: if not os.path.isdir(__lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( __lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: int ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__lowerCamelCase , __lowerCamelCase ) for pat in pats: lowerCAmelCase_ = key.replace(__lowerCamelCase , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Optional[Any] , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: List[str] , __a: Dict , __a: int=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__lowerCamelCase ) ) lowerCAmelCase_ = flatten_dict(__lowerCamelCase ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__lowerCamelCase ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ = rename_key_and_reshape_tensor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__lowerCamelCase ) return unflatten_dict(__lowerCamelCase )
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class __magic_name__ (__SCREAMING_SNAKE_CASE ): lowerCamelCase__ = 'xlm' lowerCamelCase__ = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self , _a=30145 , _a=2048 , _a=12 , _a=16 , _a=0.1 , _a=0.1 , _a=True , _a=False , _a=False , _a=False , _a=1 , _a=True , _a=512 , _a=2048**-0.5 , _a=1E-12 , _a=0.0_2 , _a=0 , _a=1 , _a=2 , _a=3 , _a=5 , _a=True , _a="first" , _a=True , _a=None , _a=True , _a=0.1 , _a=5 , _a=5 , _a=0 , _a=0 , _a=2 , _a=0 , **_a , ) -> List[Any]: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = emb_dim lowerCAmelCase_ = n_layers lowerCAmelCase_ = n_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = gelu_activation lowerCAmelCase_ = sinusoidal_embeddings lowerCAmelCase_ = causal lowerCAmelCase_ = asm lowerCAmelCase_ = n_langs lowerCAmelCase_ = use_lang_emb lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = bos_index lowerCAmelCase_ = eos_index lowerCAmelCase_ = pad_index lowerCAmelCase_ = unk_index lowerCAmelCase_ = mask_index lowerCAmelCase_ = is_encoder lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = embed_init_std lowerCAmelCase_ = init_std lowerCAmelCase_ = summary_type lowerCAmelCase_ = summary_use_proj lowerCAmelCase_ = summary_activation lowerCAmelCase_ = summary_proj_to_labels lowerCAmelCase_ = summary_first_dropout lowerCAmelCase_ = start_n_top lowerCAmelCase_ = end_n_top lowerCAmelCase_ = mask_token_id lowerCAmelCase_ = lang_id if "n_words" in kwargs: lowerCAmelCase_ = kwargs["n_words"] super().__init__(pad_token_id=_a , bos_token_id=_a , **_a ) class __magic_name__ (__SCREAMING_SNAKE_CASE ): @property def __a ( self ) -> Dict: if self.task == "multiple-choice": lowerCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ (__lowercase ): lowerCamelCase__ = DistilBertTokenizer lowerCamelCase__ = DistilBertTokenizerFast lowerCamelCase__ = True @slow def __a ( self ) -> Tuple: lowerCAmelCase_ = DistilBertTokenizer.from_pretrained("distilbert-base-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = XGLMTokenizer lowerCamelCase__ = XGLMTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def __a ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ = XGLMTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = """<pad>""" lowerCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __a ( self ) -> Tuple: lowerCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(_a ) , 1008 ) def __a ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __a ( self ) -> List[str]: lowerCAmelCase_ = XGLMTokenizer(_a , keep_accents=_a ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __a ( self ) -> Any: return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def __a ( self ) -> Any: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_a , f.name ) lowerCAmelCase_ = XGLMTokenizer(f.name , keep_accents=_a ) lowerCAmelCase_ = pickle.dumps(_a ) pickle.loads(_a ) def __a ( self ) -> str: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = """I was born in 92000, and this is falsé.""" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = """Hello World!""" lowerCAmelCase_ = [2, 31227, 4447, 35] self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __a ( self ) -> Dict: lowerCAmelCase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowerCAmelCase_ = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def __a ( self ) -> Dict: lowerCAmelCase_ = { """input_ids""": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="facebook/xglm-564M" , padding=_a , )
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __magic_name__ (a_ ): lowerCamelCase__ = '''facebook/bart-large-mnli''' lowerCamelCase__ = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) lowerCamelCase__ = '''text_classifier''' lowerCamelCase__ = AutoTokenizer lowerCamelCase__ = AutoModelForSequenceClassification lowerCamelCase__ = ['''text''', ['''text''']] lowerCamelCase__ = ['''text'''] def __a ( self ) -> Optional[int]: super().setup() lowerCAmelCase_ = self.model.config lowerCAmelCase_ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): lowerCAmelCase_ = int(lowercase_ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def __a ( self , _a , _a ) -> int: lowerCAmelCase_ = labels return self.pre_processor( [text] * len(lowercase_ ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def __a ( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
def A(__a: int , __a: int ): return int((input_a, input_a).count(0 ) == 0 ) def A(): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , _a , _a=2 , _a=8 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=16 , _a=5 , _a=2 , _a=36 , _a="gelu" , _a=0.0 , _a=0.0 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , ) -> List[str]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = scope def __a ( self ) -> int: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ) -> List[str]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.get_config() lowerCAmelCase_ = 300 return config def __a ( self ) -> Dict: ( lowerCAmelCase_ ) = self.prepare_config_and_inputs() lowerCAmelCase_ = True lowerCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]: lowerCAmelCase_ = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowerCAmelCase_ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowerCAmelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> str: lowerCAmelCase_ = True lowerCAmelCase_ = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) lowerCAmelCase_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) lowerCAmelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: lowerCAmelCase_ = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> int: lowerCAmelCase_ = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase_ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[str]: lowerCAmelCase_ = self.num_choices lowerCAmelCase_ = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) = config_and_inputs lowerCAmelCase_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ (__SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = () def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = MraModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __a ( self ) -> int: self.config_tester.run_common_tests() def __a ( self ) -> List[str]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __a ( self ) -> str: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __a ( self ) -> Any: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __a ( self ) -> Any: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="MRA does not output attentions" ) def __a ( self ) -> List[Any]: return @require_torch class __magic_name__ (unittest.TestCase ): @slow def __a ( self ) -> Optional[int]: lowerCAmelCase_ = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) lowerCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase_ = model(__UpperCAmelCase )[0] lowerCAmelCase_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase_ = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __a ( self ) -> Dict: lowerCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) lowerCAmelCase_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase_ = model(__UpperCAmelCase )[0] lowerCAmelCase_ = 50265 lowerCAmelCase_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase_ = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 1_1.8_8_1_9], [9.3_8_6_9, -3.2_6_9_3, 1_1.0_9_5_6], [1_1.8_5_2_4, -3.4_9_3_8, 1_3.1_2_1_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) lowerCAmelCase_ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): lowerCAmelCase_ = model(__UpperCAmelCase )[0] lowerCAmelCase_ = 50265 lowerCAmelCase_ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase_ = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
import pytest lowerCamelCase__ = '''__dummy_dataset1__''' lowerCamelCase__ = '''\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n''' @pytest.fixture def A(): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A(): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A(__a: Optional[int] , __a: List[Any] , __a: str ): lowerCAmelCase_ = dataset_loading_script_name lowerCAmelCase_ = tmp_path / "datasets" / script_name script_dir.mkdir(parents=a_ ) lowerCAmelCase_ = script_dir / F"{script_name}.py" with open(a_ , "w" ) as f: f.write(a_ ) return str(a_ )
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.0_2 , _a=3 , _a=None , ) -> Optional[int]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ = (image_size // patch_size) ** 2 lowerCAmelCase_ = num_patches + 1 def __a ( self ) -> int: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def __a ( self , _a , _a , _a ) -> Union[str, Any]: lowerCAmelCase_ = TFViTModel(config=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowerCAmelCase_ = self.image_size // 2 lowerCAmelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCAmelCase_ = model(_SCREAMING_SNAKE_CASE , interpolate_pos_encoding=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __a ( self , _a , _a , _a ) -> str: lowerCAmelCase_ = self.type_sequence_label_size lowerCAmelCase_ = TFViTForImageClassification(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowerCAmelCase_ = self.image_size // 2 lowerCAmelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCAmelCase_ = model(_SCREAMING_SNAKE_CASE , interpolate_pos_encoding=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ = 1 lowerCAmelCase_ = TFViTForImageClassification(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __a ( self ) -> str: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __magic_name__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCamelCase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase__ = ( {'feature-extraction': TFViTModel, 'image-classification': TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> List[Any]: lowerCAmelCase_ = TFViTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __a ( self ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __a ( self ) -> List[str]: pass @unittest.skip(reason="ViT does not use inputs_embeds" ) def __a ( self ) -> Optional[Any]: pass def __a ( self ) -> Optional[int]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def __a ( self ) -> Tuple: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = TFViTModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def A(): lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __magic_name__ (unittest.TestCase ): @cached_property def __a ( self ) -> List[Any]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass lowerCAmelCase_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 )
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = '''▁''' lowerCamelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCamelCase__ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } lowerCamelCase__ = { '''google/pegasus-xsum''': 5_12, } lowerCamelCase__ = logging.get_logger(__name__) class __magic_name__ (a__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['input_ids', 'attention_mask'] def __init__( self , _a , _a="<pad>" , _a="</s>" , _a="<unk>" , _a="<mask_2>" , _a="<mask_1>" , _a=None , _a=103 , _a = None , **_a , ) -> None: lowerCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( f"additional_special_tokens should be of type {type(_lowerCamelCase )}, but is" f" {type(_lowerCamelCase )}" ) lowerCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase_ = additional_special_tokens_extended else: lowerCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) lowerCAmelCase_ = mask_token_sent lowerCAmelCase_ = vocab_file lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict lowerCAmelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} @property def __a ( self ) -> int: return len(self.sp_model ) + self.offset def __a ( self ) -> Dict[str, int]: lowerCAmelCase_ = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None return state def __setstate__( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self , _a ) -> List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __a ( self , _a ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] lowerCAmelCase_ = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __a ( self , _a ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: lowerCAmelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def __a ( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token lowerCAmelCase_ = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __a ( self , _a=False ) -> str: return 1 def __a ( self , _a ) -> int: lowerCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __a ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __a ( self , _a , _a=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __a ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( _lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , "wb" ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCAmelCase (unittest.TestCase ): def __a ( self ) -> Optional[int]: lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } lowerCAmelCase_ = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self , **_a ) -> List[str]: return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , **_a ) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self ) -> Tuple: shutil.rmtree(self.tmpdirname ) def __a ( self ) -> Dict: lowerCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ) -> int: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def __a ( self ) -> Dict: lowerCAmelCase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase_ = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) lowerCAmelCase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(_lowerCAmelCase , return_tensors="np" ) lowerCAmelCase_ = processor(images=_lowerCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowerCAmelCase_ = """lower newer""" lowerCAmelCase_ = processor(text=_lowerCAmelCase ) lowerCAmelCase_ = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowerCAmelCase_ = """lower newer""" lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(_lowerCAmelCase ): processor() def __a ( self ) -> str: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(_lowerCAmelCase ) lowerCAmelCase_ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = VisionTextDualEncoderProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) lowerCAmelCase_ = """lower newer""" lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": 5_12, "facebook/dpr-ctx_encoder-multiset-base": 5_12, } lowerCamelCase__ = { "facebook/dpr-question_encoder-single-nq-base": 5_12, "facebook/dpr-question_encoder-multiset-base": 5_12, } lowerCamelCase__ = { "facebook/dpr-reader-single-nq-base": 5_12, "facebook/dpr-reader-multiset-base": 5_12, } lowerCamelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } lowerCamelCase__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __magic_name__ (_UpperCAmelCase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __magic_name__ (_UpperCAmelCase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowerCamelCase__ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowerCamelCase__ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class __magic_name__ : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> int: if titles is None and texts is None: return super().__call__( lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) elif titles is None or texts is None: lowerCAmelCase_ = titles if texts is None else texts return super().__call__( lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = titles if not isinstance(lowercase_ , lowercase_ ) else [titles] lowerCAmelCase_ = texts if not isinstance(lowercase_ , lowercase_ ) else [texts] lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages if len(lowercase_ ) != len(lowercase_ ): raise ValueError( f"There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts." ) lowerCAmelCase_ = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] lowerCAmelCase_ = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] lowerCAmelCase_ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ ) ] } if return_attention_mask is not False: lowerCAmelCase_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase_ = attention_mask return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ ) def __a ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> str: lowerCAmelCase_ = reader_input["""input_ids"""] lowerCAmelCase_ = reader_output[:3] lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ ) lowerCAmelCase_ = [] for doc_id in sorted_docs: lowerCAmelCase_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase_ = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase_ = len(lowercase_ ) lowerCAmelCase_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __a ( self , _a , _a , _a , _a , ) -> str: lowerCAmelCase_ = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase_ = sorted(lowercase_ , key=lambda _a : x[1] , reverse=lowercase_ ) lowerCAmelCase_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) lowerCAmelCase_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class __magic_name__ (_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ['''input_ids''', '''attention_mask''']
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> str: lowerCAmelCase_ = torch.nn.Linear(10 , 10 ) lowerCAmelCase_ = torch.optim.SGD(model.parameters() , 0.1 ) lowerCAmelCase_ = Accelerator() lowerCAmelCase_ = accelerator.prepare(lowercase_ ) try: pickle.loads(pickle.dumps(lowercase_ ) ) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}" ) AcceleratorState._reset_state()
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """vocab.txt"""} lowerCamelCase__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowerCamelCase__ = { """openbmb/cpm-ant-10b""": 10_24, } def A(__a: str ): lowerCAmelCase_ = collections.OrderedDict() with open(_snake_case , "r" , encoding="utf-8" ) as reader: lowerCAmelCase_ = reader.readlines() for index, token in enumerate(_snake_case ): lowerCAmelCase_ = token.rstrip("\n" ) lowerCAmelCase_ = index return vocab class __magic_name__ (__snake_case ): def __init__( self , _a , _a="<unk>" , _a=200 ) -> Dict: lowerCAmelCase_ = vocab lowerCAmelCase_ = unk_token lowerCAmelCase_ = max_input_chars_per_word def __a ( self , _a ) -> Dict: lowerCAmelCase_ = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase_ = 0 lowerCAmelCase_ = [] while start < len(a_ ): lowerCAmelCase_ = len(a_ ) lowerCAmelCase_ = None while start < end: lowerCAmelCase_ = ''''''.join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase_ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) lowerCAmelCase_ = end return sub_tokens class __magic_name__ (__snake_case ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = False def __init__( self , _a , _a="<d>" , _a="</d>" , _a="<s>" , _a="</s>" , _a="<pad>" , _a="<unk>" , _a="</n>" , _a="</_>" , _a="left" , **_a , ) -> List[Any]: requires_backends(self , ["jieba"] ) super().__init__( bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , ) lowerCAmelCase_ = bod_token lowerCAmelCase_ = eod_token lowerCAmelCase_ = load_vocab(a_ ) lowerCAmelCase_ = self.encoder[space_token] lowerCAmelCase_ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _a : x[1] ) ) lowerCAmelCase_ = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self ) -> Union[str, Any]: return self.encoder[self.bod_token] @property def __a ( self ) -> int: return self.encoder[self.eod_token] @property def __a ( self ) -> str: return self.encoder["\n"] @property def __a ( self ) -> Dict: return len(self.encoder ) def __a ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = [] for x in jieba.cut(a_ , cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def __a ( self , _a , **_a ) -> List[str]: lowerCAmelCase_ = [i for i in token_ids if i >= 0] lowerCAmelCase_ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ , **a_ ) def __a ( self , _a ) -> Union[str, Any]: return token in self.encoder def __a ( self , _a ) -> Dict: return "".join(a_ ) def __a ( self , _a ) -> Dict: return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def __a ( self , _a ) -> Union[str, Any]: return self.decoder.get(a_ , self.unk_token ) def __a ( self , _a , _a = None ) -> int: if os.path.isdir(a_ ): lowerCAmelCase_ = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCAmelCase_ = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCAmelCase_ = 0 if " " in self.encoder: lowerCAmelCase_ = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase_ = self.encoder['''\n'''] del self.encoder["\n"] lowerCAmelCase_ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _a : x[1] ) ) with open(a_ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def __a ( self , _a , _a = None ) -> Dict: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self , _a , _a = None , _a = False ) -> Any: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase__ = 16 lowerCamelCase__ = 32 def A(__a: Dict ): return int(x / 2**20 ) class __magic_name__ : def __enter__( self ) -> Optional[int]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase_ = torch.cuda.memory_allocated() return self def __exit__( self , *_a ) -> int: gc.collect() torch.cuda.empty_cache() lowerCAmelCase_ = torch.cuda.memory_allocated() lowerCAmelCase_ = torch.cuda.max_memory_allocated() lowerCAmelCase_ = bamb(self.end - self.begin ) lowerCAmelCase_ = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A(__a: Accelerator , __a: int = 16 , __a: str = "bert-base-cased" , __a: int = 320 , __a: int = 160 , ): lowerCAmelCase_ = AutoTokenizer.from_pretrained(__a ) lowerCAmelCase_ = load_dataset( "glue" , "mrpc" , split={"train": F"train[:{n_train}]", "validation": F"validation[:{n_val}]"} ) def tokenize_function(__a: int ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ = datasets.map( __a , batched=__a , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__a: str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__a , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=__a , collate_fn=__a , batch_size=__a ) lowerCAmelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def A(__a: Any , __a: str ): # Initialize accelerator lowerCAmelCase_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config["lr"] lowerCAmelCase_ = int(config["num_epochs"] ) lowerCAmelCase_ = int(config["seed"] ) lowerCAmelCase_ = int(config["batch_size"] ) lowerCAmelCase_ = args.model_name_or_path set_seed(__a ) lowerCAmelCase_ , lowerCAmelCase_ = get_dataloaders(__a , __a , __a , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer lowerCAmelCase_ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowerCAmelCase_ = 1 lowerCAmelCase_ = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: lowerCAmelCase_ = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ = 0 # Now we train the model lowerCAmelCase_ = {} for epoch in range(__a , __a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__a ): lowerCAmelCase_ = model(**__a ) lowerCAmelCase_ = outputs.loss lowerCAmelCase_ = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase_ = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f: json.dump(__a , __a ) def A(): lowerCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__a , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__a , ) parser.add_argument( "--output_dir" , type=__a , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--peak_memory_upper_bound" , type=__a , default=__a , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , ) parser.add_argument( "--n_train" , type=__a , default=320 , help="Number of training examples to use." , ) parser.add_argument( "--n_val" , type=__a , default=160 , help="Number of validation examples to use." , ) parser.add_argument( "--num_epochs" , type=__a , default=1 , help="Number of train epochs." , ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__a , __a ) if __name__ == "__main__": main()
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def A(__a: List[str] , __a: str=None ): lowerCAmelCase_ = None if token is not None: lowerCAmelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} lowerCAmelCase_ = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" lowerCAmelCase_ = requests.get(snake_case_ , headers=snake_case_ ).json() lowerCAmelCase_ = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) lowerCAmelCase_ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(snake_case_ ): lowerCAmelCase_ = requests.get(url + F"&page={i + 2}" , headers=snake_case_ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A(__a: Union[str, Any] , __a: List[str]=None ): lowerCAmelCase_ = None if token is not None: lowerCAmelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} lowerCAmelCase_ = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" lowerCAmelCase_ = requests.get(snake_case_ , headers=snake_case_ ).json() lowerCAmelCase_ = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) lowerCAmelCase_ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(snake_case_ ): lowerCAmelCase_ = requests.get(url + F"&page={i + 2}" , headers=snake_case_ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def A(__a: Dict , __a: Dict , __a: Union[str, Any] , __a: Tuple ): lowerCAmelCase_ = None if token is not None: lowerCAmelCase_ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} lowerCAmelCase_ = requests.get(snake_case_ , headers=snake_case_ , allow_redirects=snake_case_ ) lowerCAmelCase_ = result.headers["""Location"""] lowerCAmelCase_ = requests.get(snake_case_ , allow_redirects=snake_case_ ) lowerCAmelCase_ = os.path.join(snake_case_ , F"{artifact_name}.zip" ) with open(snake_case_ , "wb" ) as fp: fp.write(response.content ) def A(__a: Optional[Any] , __a: List[str]=None ): lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: lowerCAmelCase_ = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs lowerCAmelCase_ = line[: line.index(": " )] lowerCAmelCase_ = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed lowerCAmelCase_ = line[len("FAILED " ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": lowerCAmelCase_ = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` " F"and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) lowerCAmelCase_ = None if job_name and job_links: lowerCAmelCase_ = job_links.get(snake_case_ , snake_case_ ) # A list with elements of the form (line of error, error, failed test) lowerCAmelCase_ = [x + [y] + [job_link] for x, y in zip(snake_case_ , snake_case_ )] return result def A(__a: List[str] , __a: Tuple=None ): lowerCAmelCase_ = [] lowerCAmelCase_ = [os.path.join(snake_case_ , snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_ , job_links=snake_case_ ) ) return errors def A(__a: Optional[Any] , __a: Optional[Any]=None ): lowerCAmelCase_ = Counter() counter.update([x[1] for x in logs] ) lowerCAmelCase_ = counter.most_common() lowerCAmelCase_ = {} for error, count in counts: if error_filter is None or error not in error_filter: lowerCAmelCase_ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} lowerCAmelCase_ = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=snake_case_ ) ) return r def A(__a: Dict ): lowerCAmelCase_ = test.split("::" )[0] if test.startswith("tests/models/" ): lowerCAmelCase_ = test.split("/" )[2] else: lowerCAmelCase_ = None return test def A(__a: Tuple , __a: List[str]=None ): lowerCAmelCase_ = [(x[0], x[1], get_model(x[2] )) for x in logs] lowerCAmelCase_ = [x for x in logs if x[2] is not None] lowerCAmelCase_ = {x[2] for x in logs} lowerCAmelCase_ = {} for test in tests: lowerCAmelCase_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) lowerCAmelCase_ = counter.most_common() lowerCAmelCase_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} lowerCAmelCase_ = sum(error_counts.values() ) if n_errors > 0: lowerCAmelCase_ = {"""count""": n_errors, """errors""": error_counts} lowerCAmelCase_ = dict(sorted(r.items() , key=lambda __a : item[1]["count"] , reverse=snake_case_ ) ) return r def A(__a: Union[str, Any] ): lowerCAmelCase_ = """| no. | error | status |""" lowerCAmelCase_ = """|-:|:-|:-|""" lowerCAmelCase_ = [header, sep] for error in reduced_by_error: lowerCAmelCase_ = reduced_by_error[error]["""count"""] lowerCAmelCase_ = F"| {count} | {error[:100]} | |" lines.append(snake_case_ ) return "\n".join(snake_case_ ) def A(__a: Dict ): lowerCAmelCase_ = """| model | no. of errors | major error | count |""" lowerCAmelCase_ = """|-:|-:|-:|-:|""" lowerCAmelCase_ = [header, sep] for model in reduced_by_model: lowerCAmelCase_ = reduced_by_model[model]["""count"""] lowerCAmelCase_ = list(reduced_by_model[model]["errors"].items() )[0] lowerCAmelCase_ = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') lowerCamelCase__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCamelCase__ = get_job_links(args.workflow_run_id, token=args.token) lowerCamelCase__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCamelCase__ = k.find(''' / ''') lowerCamelCase__ = k[index + len(''' / ''') :] lowerCamelCase__ = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCamelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCamelCase__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCamelCase__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCamelCase__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCamelCase__ = reduce_by_error(errors) lowerCamelCase__ = reduce_by_model(errors) lowerCamelCase__ = make_github_table(reduced_by_error) lowerCamelCase__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class __magic_name__ (__UpperCamelCase ): lowerCamelCase__ = """owlvit_text_model""" def __init__( self , _a=49408 , _a=512 , _a=2048 , _a=12 , _a=8 , _a=16 , _a="quick_gelu" , _a=1E-5 , _a=0.0 , _a=0.0_2 , _a=1.0 , _a=0 , _a=49406 , _a=49407 , **_a , ) -> Any: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = initializer_range lowerCAmelCase_ = initializer_factor @classmethod def __a ( cls , _a , **_a ) -> int: cls._set_token_in_kwargs(_a ) lowerCAmelCase_ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": lowerCAmelCase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class __magic_name__ (__UpperCamelCase ): lowerCamelCase__ = """owlvit_vision_model""" def __init__( self , _a=768 , _a=3072 , _a=12 , _a=12 , _a=3 , _a=768 , _a=32 , _a="quick_gelu" , _a=1E-5 , _a=0.0 , _a=0.0_2 , _a=1.0 , **_a , ) -> List[str]: super().__init__(**_a ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = initializer_range lowerCAmelCase_ = initializer_factor @classmethod def __a ( cls , _a , **_a ) -> str: cls._set_token_in_kwargs(_a ) lowerCAmelCase_ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": lowerCAmelCase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) class __magic_name__ (__UpperCamelCase ): lowerCamelCase__ = """owlvit""" lowerCamelCase__ = True def __init__( self , _a=None , _a=None , _a=512 , _a=2.6_5_9_2 , _a=True , **_a , ) -> List[str]: super().__init__(**_a ) if text_config is None: lowerCAmelCase_ = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: lowerCAmelCase_ = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) lowerCAmelCase_ = OwlViTTextConfig(**_a ) lowerCAmelCase_ = OwlViTVisionConfig(**_a ) lowerCAmelCase_ = projection_dim lowerCAmelCase_ = logit_scale_init_value lowerCAmelCase_ = return_dict lowerCAmelCase_ = 1.0 @classmethod def __a ( cls , _a , **_a ) -> Any: cls._set_token_in_kwargs(_a ) lowerCAmelCase_ = cls.get_config_dict(_a , **_a ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_a , **_a ) @classmethod def __a ( cls , _a , _a , **_a ) -> int: lowerCAmelCase_ = {} lowerCAmelCase_ = text_config lowerCAmelCase_ = vision_config return cls.from_dict(_a , **_a ) def __a ( self ) -> Dict: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.text_config.to_dict() lowerCAmelCase_ = self.vision_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output class __magic_name__ (__UpperCamelCase ): @property def __a ( self ) -> List[str]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def __a ( self ) -> int: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def __a ( self ) -> Dict: return 1E-4 def __a ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Dict: lowerCAmelCase_ = super().generate_dummy_inputs( processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a ) lowerCAmelCase_ = super().generate_dummy_inputs( processor.image_processor , batch_size=_a , framework=_a ) return {**text_input_dict, **image_input_dict} @property def __a ( self ) -> Dict: return 14
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
import os from math import logaa def A(__a: str = "base_exp.txt" ): lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(A__ ) , A__ ) ) ): lowerCAmelCase_ , lowerCAmelCase_ = list(map(A__ , line.split("," ) ) ) if x * logaa(A__ ) > largest: lowerCAmelCase_ = x * logaa(A__ ) lowerCAmelCase_ = i + 1 return result if __name__ == "__main__": print(solution())
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
def A(__a: Union[str, Any] ): def merge(__a: Tuple , __a: Optional[Any] ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__a ) <= 1: return collection lowerCAmelCase_ = len(__a ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
from collections import defaultdict def A(__a: int ): lowerCAmelCase_ = 1 lowerCAmelCase_ = True for v in tree[start]: if v not in visited: ret += dfs(_UpperCamelCase ) if ret % 2 == 0: cuts.append(_UpperCamelCase ) return ret def A(): dfs(1 ) if __name__ == "__main__": lowerCamelCase__ = 10, 9 lowerCamelCase__ = defaultdict(list) lowerCamelCase__ = {} lowerCamelCase__ = [] lowerCamelCase__ = 0 lowerCamelCase__ = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" import argparse import struct import unittest class __magic_name__ : def __init__( self , _a ) -> List[str]: lowerCAmelCase_ = data # Initialize hash values lowerCAmelCase_ = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, ] # Initialize round constants lowerCAmelCase_ = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, ] lowerCAmelCase_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def __a ( _a ) -> Union[str, Any]: lowerCAmelCase_ = b"\x80" + (b"\x00" * (63 - (len(__lowerCAmelCase ) + 8) % 64)) lowerCAmelCase_ = struct.pack(">Q" , (len(__lowerCAmelCase ) * 8) ) return data + padding + big_endian_integer def __a ( self ) -> int: lowerCAmelCase_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCAmelCase_ = list(struct.unpack(">16L" , __lowerCAmelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCAmelCase_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCAmelCase_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCAmelCase_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression lowerCAmelCase_ = self.ror(__lowerCAmelCase , 6 ) ^ self.ror(__lowerCAmelCase , 11 ) ^ self.ror(__lowerCAmelCase , 25 ) lowerCAmelCase_ = (e & f) ^ ((~e & 0xffffffff) & g) lowerCAmelCase_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 lowerCAmelCase_ = self.ror(__lowerCAmelCase , 2 ) ^ self.ror(__lowerCAmelCase , 13 ) ^ self.ror(__lowerCAmelCase , 22 ) lowerCAmelCase_ = (a & b) ^ (a & c) ^ (b & c) lowerCAmelCase_ = (sa + maj) % 0x100000000 lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) lowerCAmelCase_ = [a, b, c, d, e, f, g, h] # Modify final values lowerCAmelCase_ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] lowerCAmelCase_ = "".join([hex(__lowerCAmelCase )[2:].zfill(8 ) for value in self.hashes] ) def __a ( self , _a , _a ) -> Any: return 0xffffffff & (value << (32 - rotations)) | (value >> rotations) class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Optional[int]: import hashlib lowerCAmelCase_ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCAmelCase ).hash , hashlib.shaaaa(__lowerCAmelCase ).hexdigest() ) def A(): import doctest doctest.testmod() lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: lowerCAmelCase_ = f.read() else: lowerCAmelCase_ = bytes(lowerCAmelCase__ , "utf-8" ) print(SHAaaa(lowerCAmelCase__ ).hash ) if __name__ == "__main__": main()
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from functools import reduce lowerCamelCase__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def A(__a: Union[str, Any] = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda __a , __a : str(int(a__ ) * int(a__ ) ) , n[i : i + 13] ) ) for i in range(len(a__ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
from numpy import exp, pi, sqrt def A(__a: Tuple , __a: List[str] = 0.0 , __a: Any = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
from ..utils import DummyObject, requires_backends class __magic_name__ (metaclass=__lowercase ): lowerCamelCase__ = ['''keras_nlp'''] def __init__( self , *_a , **_a ) -> Tuple: requires_backends(self , ["keras_nlp"] )
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
def A(__a: List[Any] ): lowerCAmelCase_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCAmelCase_ = 1 for n in range(m + 1 ): for k in range(1 , _UpperCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCamelCase__ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowerCamelCase__ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''CarlCochet/trajectory-transformer-halfcheetah-medium-v2''': ( '''https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json''' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __magic_name__ (lowerCamelCase_ ): lowerCamelCase__ = """trajectory_transformer""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _a=100 , _a=5 , _a=1 , _a=1 , _a=249 , _a=6 , _a=17 , _a=25 , _a=4 , _a=4 , _a=128 , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0_0_0_6 , _a=512 , _a=0.0_2 , _a=1E-12 , _a=1 , _a=True , _a=1 , _a=50256 , _a=50256 , **_a , ) -> Dict: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = action_weight lowerCAmelCase_ = reward_weight lowerCAmelCase_ = value_weight lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = block_size lowerCAmelCase_ = action_dim lowerCAmelCase_ = observation_dim lowerCAmelCase_ = transition_dim lowerCAmelCase_ = learning_rate lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = n_embd lowerCAmelCase_ = embd_pdrop lowerCAmelCase_ = attn_pdrop lowerCAmelCase_ = resid_pdrop lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = kaiming_initializer_range lowerCAmelCase_ = use_cache super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __magic_name__ (UpperCamelCase__ ): def __init__( self , _a , _a = None , _a = None , _a = True , _a = None , _a = False , _a = None , _a = True , _a = "arrow" , **_a , ) -> List[Any]: super().__init__( split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , **__lowerCamelCase , ) lowerCAmelCase_ = load_from_cache_file lowerCAmelCase_ = file_format lowerCAmelCase_ = Spark( df=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , working_dir=__lowerCamelCase , **__lowerCamelCase , ) def __a ( self ) -> Optional[int]: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__lowerCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A(__a: str , __a: Tuple , __a: Tuple , __a: Optional[Any] , __a: Union[str, Any] ): # load base model lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(__lowerCamelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors lowerCAmelCase_ = load_file(__lowerCamelCase ) lowerCAmelCase_ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: lowerCAmelCase_ = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) lowerCAmelCase_ = pipeline.text_encoder else: lowerCAmelCase_ = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) lowerCAmelCase_ = pipeline.unet # find the target layer lowerCAmelCase_ = layer_infos.pop(0 ) while len(__lowerCamelCase ) > -1: try: lowerCAmelCase_ = curr_layer.__getattr__(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase_ = layer_infos.pop(0 ) elif len(__lowerCamelCase ) == 0: break except Exception: if len(__lowerCamelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: lowerCAmelCase_ = layer_infos.pop(0 ) lowerCAmelCase_ = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(__lowerCamelCase ) else: pair_keys.append(__lowerCamelCase ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: lowerCAmelCase_ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCamelCase , __lowerCamelCase ).unsqueeze(2 ).unsqueeze(3 ) else: lowerCAmelCase_ = state_dict[pair_keys[0]].to(torch.floataa ) lowerCAmelCase_ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__lowerCamelCase , __lowerCamelCase ) # update visited list for item in pair_keys: visited.append(__lowerCamelCase ) return pipeline if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.base_model_path lowerCamelCase__ = args.checkpoint_path lowerCamelCase__ = args.dump_path lowerCamelCase__ = args.lora_prefix_unet lowerCamelCase__ = args.lora_prefix_text_encoder lowerCamelCase__ = args.alpha lowerCamelCase__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) lowerCamelCase__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
def A(__a: list , __a: int = 0 ): lowerCAmelCase_ = length or len(_snake_case ) lowerCAmelCase_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowerCAmelCase_ = list_data[i + 1], list_data[i] lowerCAmelCase_ = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def A(__a: int , __a: Optional[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = state_dict.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCAmelCase_ = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) lowerCAmelCase_ = value else: lowerCAmelCase_ = value return new_state_dict def A(__a: List[str] ): lowerCAmelCase_ = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) lowerCAmelCase_ = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[:256, :] lowerCAmelCase_ = in_proj_bias[:256] lowerCAmelCase_ = in_proj_weight[256:512, :] lowerCAmelCase_ = in_proj_bias[256:512] lowerCAmelCase_ = in_proj_weight[-256:, :] lowerCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase_ = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) lowerCAmelCase_ = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[:256, :] lowerCAmelCase_ = in_proj_bias[:256] lowerCAmelCase_ = in_proj_weight[256:512, :] lowerCAmelCase_ = in_proj_bias[256:512] lowerCAmelCase_ = in_proj_weight[-256:, :] lowerCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase_ = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) lowerCAmelCase_ = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase_ = in_proj_weight_cross_attn[:256, :] lowerCAmelCase_ = in_proj_bias_cross_attn[:256] lowerCAmelCase_ = in_proj_weight_cross_attn[256:512, :] lowerCAmelCase_ = in_proj_bias_cross_attn[256:512] lowerCAmelCase_ = in_proj_weight_cross_attn[-256:, :] lowerCAmelCase_ = in_proj_bias_cross_attn[-256:] def A(__a: str , __a: Dict ): lowerCAmelCase_ = image.size lowerCAmelCase_ = max(__a , __a ) lowerCAmelCase_ = 800 if "detection" in checkpoint_url else 1000 lowerCAmelCase_ = target_max_size / current_max_size lowerCAmelCase_ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def A(__a: Dict ): lowerCAmelCase_ = F.to_tensor(__a ) lowerCAmelCase_ = F.normalize(__a , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def A(__a: Optional[int] , __a: Tuple , __a: List[Any] ): logger.info("Converting model..." ) # load original state dict lowerCAmelCase_ = torch.hub.load_state_dict_from_url(__a , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = rename_backbone_keys(__a ) # query, key and value matrices need special treatment read_in_q_k_v(__a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase_ = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowerCAmelCase_ = state_dict.pop(__a ) lowerCAmelCase_ = val # create HuggingFace model and load state dict lowerCAmelCase_ = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowerCAmelCase_ = 15 lowerCAmelCase_ = 2 lowerCAmelCase_ = {0: "table", 1: "table rotated"} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} else: lowerCAmelCase_ = 125 lowerCAmelCase_ = 6 lowerCAmelCase_ = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1000 ) lowerCAmelCase_ = TableTransformerForObjectDetection(__a ) model.load_state_dict(__a ) model.eval() # verify our conversion lowerCAmelCase_ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" lowerCAmelCase_ = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=__a ) lowerCAmelCase_ = Image.open(__a ).convert("RGB" ) lowerCAmelCase_ = normalize(resize(__a , __a ) ).unsqueeze(0 ) lowerCAmelCase_ = model(__a ) if "detection" in checkpoint_url: lowerCAmelCase_ = (1, 15, 3) lowerCAmelCase_ = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) lowerCAmelCase_ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: lowerCAmelCase_ = (1, 125, 7) lowerCAmelCase_ = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) lowerCAmelCase_ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __a , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __a , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) lowerCAmelCase_ = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(__a ) image_processor.push_to_hub(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import re def A(__a: int ): return [char.split() for char in re.split(r"[^ a-z A-Z 0-9 \s]" , str_ )] def A(__a: str ): lowerCAmelCase_ = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def A(__a: Tuple , __a: Optional[int] , __a: Any ): try: lowerCAmelCase_ = split_input(_lowerCAmelCase ) if upper: lowerCAmelCase_ = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: lowerCAmelCase_ = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def A(__a: Optional[Any] ): return to_simple_case(_lowerCAmelCase ) def A(__a: int ): try: lowerCAmelCase_ = to_simple_case(_lowerCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def A(__a: Optional[int] , __a: Tuple ): return to_complex_case(_lowerCAmelCase , _lowerCAmelCase , "_" ) def A(__a: List[str] , __a: str ): return to_complex_case(_lowerCAmelCase , _lowerCAmelCase , "-" ) if __name__ == "__main__": __import__('''doctest''').testmod()
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __magic_name__ (__lowerCamelCase , unittest.TestCase ): lowerCamelCase__ = WavaVecaPhonemeCTCTokenizer lowerCamelCase__ = False def __a ( self ) -> Dict: super().setUp() lowerCAmelCase_ = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(" " ) lowerCAmelCase_ = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) lowerCAmelCase_ = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowercase ) + "\n" ) def __a ( self , _a , _a=False , _a=20 , _a=5 ) -> int: lowerCAmelCase_ = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=__lowercase )) for i in range(len(__lowercase ) )] lowerCAmelCase_ = list(filter(lambda _a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=__lowercase ) , __lowercase ) ) if max_length is not None and len(__lowercase ) > max_length: lowerCAmelCase_ = toks[:max_length] if min_length is not None and len(__lowercase ) < min_length and len(__lowercase ) > 0: while len(__lowercase ) < min_length: lowerCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) if " " not in output_txt and len(__lowercase ) > 1: lowerCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowercase ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowercase ) ) if with_prefix_space: lowerCAmelCase_ = ''' ''' + output_txt lowerCAmelCase_ = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) return output_txt, output_ids def __a ( self , **_a ) -> int: kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) lowerCAmelCase_ = tokenizer("m xxx ɪ" , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) lowerCAmelCase_ = tokenizer("m aaa ɪ ccc" , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase_ = tokenizer("maɪ c" , do_phonemize=__lowercase ).input_ids self.assertEqual(__lowercase , [3, 200] ) # mai should be <unk> (=3) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer.phonemize(__lowercase , phonemizer_lang="en-us" ) self.assertEqual(__lowercase , "h ə l oʊ h aʊ ɑːɹ j uː" ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer.phonemize(__lowercase , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def __a ( self ) -> Any: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer.phonemize(__lowercase , phonemizer_lang="en-us" ) lowerCAmelCase_ = tokenizer.decode(tokenizer(__lowercase ).input_ids ) self.assertEqual(__lowercase , __lowercase ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase_ = tokenizer.decode(sample_ids[0] ) lowerCAmelCase_ = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer.phonemize(__lowercase , phonemizer_lang="en-us" ) self.assertEqual(__lowercase , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer.phonemize(__lowercase , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(__lowercase ).input_ids , tokenizer(__lowercase , do_phonemize=__lowercase ).input_ids ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off lowerCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase_ = tokenizer.decode(sample_ids[0] ) lowerCAmelCase_ = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter lowerCAmelCase_ = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=__lowercase ) lowerCAmelCase_ = tokenizer.batch_decode(__lowercase , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , batch_tokens[0] ) self.assertEqual(__lowercase , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer.phonemize(__lowercase , phonemizer_lang="en-us" ) lowerCAmelCase_ = tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(__lowercase , __lowercase ) def __a ( self ) -> Any: lowerCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer.phonemize(__lowercase , phonemizer_lang="en-us" ) lowerCAmelCase_ = tokenizer.decode(tokenizer(__lowercase ).input_ids , filter_word_delimiter_token=__lowercase ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , __lowercase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=__lowercase ) lowerCAmelCase_ = '''Hello how are you''' lowerCAmelCase_ = tokenizer(__lowercase , phonemizer_lang="en-us" ).input_ids lowerCAmelCase_ = tokenizer(__lowercase , phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(__lowercase , __lowercase ) lowerCAmelCase_ = tokenizer.decode(__lowercase ) lowerCAmelCase_ = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(__lowercase , "ɛ l o h aʊ a ʁ j u" ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase_ = '''Hello how Are you''' lowerCAmelCase_ = '''hello how are you''' lowerCAmelCase_ = tokenizer(__lowercase ).input_ids lowerCAmelCase_ = tokenizer(__lowercase ).input_ids self.assertEqual(__lowercase , __lowercase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off lowerCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCAmelCase_ = tokenizer.batch_decode(__lowercase ) self.assertEqual(__lowercase , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def __a ( _a , _a ) -> Optional[int]: lowerCAmelCase_ = [d[key] for d in offsets] return retrieved_list def __a ( self ) -> Dict: lowerCAmelCase_ = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase_ = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase_ = tokenizer.decode(__lowercase , output_char_offsets=__lowercase , filter_word_delimiter_token=__lowercase ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(__lowercase , __lowercase ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __a ( self ) -> str: lowerCAmelCase_ = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(_a , _a ): self.assertTrue(isinstance(__lowercase , __lowercase ) ) self.assertTrue(isinstance(outputs_list[0] , __lowercase ) ) # transform list to ModelOutput lowerCAmelCase_ = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] ) def recursive_check(_a , _a ): if isinstance(__lowercase , __lowercase ): [recursive_check(__lowercase , __lowercase ) for la, la in zip(__lowercase , __lowercase )] self.assertEqual(__lowercase , __lowercase ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] ) # fmt: off lowerCAmelCase_ = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase_ = tokenizer.batch_decode(__lowercase , output_char_offsets=__lowercase ) lowerCAmelCase_ = [tokenizer.decode(__lowercase , output_char_offsets=__lowercase ) for ids in sample_ids] check_list_tuples_equal(__lowercase , __lowercase ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def __a ( self ) -> str: pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def __a ( self ) -> str: pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def __a ( self ) -> Dict: pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def __a ( self ) -> Union[str, Any]: pass def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase_ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] lowerCAmelCase_ = tokenizer.add_tokens(__lowercase ) lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size + len(__lowercase ) ) lowerCAmelCase_ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase_ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} lowerCAmelCase_ = tokenizer.add_special_tokens(__lowercase ) lowerCAmelCase_ = tokenizer.vocab_size lowerCAmelCase_ = len(__lowercase ) self.assertNotEqual(__lowercase , 0 ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , len(__lowercase ) ) self.assertEqual(__lowercase , all_size_a + len(__lowercase ) ) lowerCAmelCase_ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__lowercase ) self.assertGreaterEqual(len(__lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode." ) def __a ( self ) -> List[str]: pass @unittest.skip("The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode." ) def __a ( self ) -> Optional[int]: pass def __a ( self ) -> Union[str, Any]: # The default common tokenizer tests assumes that the output of `convert_tokens_to_string` is a string which # is not the case for Wav2Vec2PhonemeCTCTokenizer. lowerCAmelCase_ = self.get_tokenizers(fast=__lowercase , do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase_ = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] lowerCAmelCase_ = tokenizer.convert_tokens_to_string(__lowercase ) self.assertIsInstance(output["text"] , __lowercase )
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCamelCase__ = 6_378_137.0 lowerCamelCase__ = 6_356_752.314_245 lowerCamelCase__ = 6_37_81_37 def A(__a: Union[str, Any] , __a: Tuple , __a: Dict , __a: List[Any] ): lowerCAmelCase_ = (AXIS_A - AXIS_B) / AXIS_A lowerCAmelCase_ = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) lowerCAmelCase_ = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) lowerCAmelCase_ = radians(_UpperCAmelCase ) lowerCAmelCase_ = radians(_UpperCAmelCase ) # Equation lowerCAmelCase_ = sin((phi_a - phi_a) / 2 ) lowerCAmelCase_ = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowerCAmelCase_ = sqrt(sin_sq_phi + (cos(_UpperCAmelCase ) * cos(_UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class __magic_name__ : def __init__( self , _a=None , **_a ) -> Any: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) lowerCAmelCase_ = model lowerCAmelCase_ = kwargs.get("model_save_dir" , __SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = kwargs.get("latest_model_name" , __SCREAMING_SNAKE_CASE ) def __call__( self , **_a ) -> Union[str, Any]: lowerCAmelCase_ = {k: np.array(__SCREAMING_SNAKE_CASE ) for k, v in kwargs.items()} return self.model.run(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @staticmethod def __a ( _a , _a=None , _a=None ) -> Dict: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) lowerCAmelCase_ = "CPUExecutionProvider" return ort.InferenceSession(__SCREAMING_SNAKE_CASE , providers=[provider] , sess_options=__SCREAMING_SNAKE_CASE ) def __a ( self , _a , _a = None , **_a ) -> int: lowerCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowerCAmelCase_ = self.model_save_dir.joinpath(self.latest_model_name ) lowerCAmelCase_ = Path(__SCREAMING_SNAKE_CASE ).joinpath(__SCREAMING_SNAKE_CASE ) try: shutil.copyfile(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowerCAmelCase_ = self.model_save_dir.joinpath(__SCREAMING_SNAKE_CASE ) if src_path.exists(): lowerCAmelCase_ = Path(__SCREAMING_SNAKE_CASE ).joinpath(__SCREAMING_SNAKE_CASE ) try: shutil.copyfile(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except shutil.SameFileError: pass def __a ( self , _a , **_a , ) -> int: if os.path.isfile(__SCREAMING_SNAKE_CASE ): logger.error(f"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) # saving model weights/files self._save_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @classmethod def __a ( cls , _a , _a = None , _a = None , _a = False , _a = None , _a = None , _a = None , _a = None , **_a , ) -> Tuple: lowerCAmelCase_ = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(__SCREAMING_SNAKE_CASE ): lowerCAmelCase_ = OnnxRuntimeModel.load_model( os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , provider=__SCREAMING_SNAKE_CASE , sess_options=__SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = Path(__SCREAMING_SNAKE_CASE ) # load model from hub else: # download model lowerCAmelCase_ = hf_hub_download( repo_id=__SCREAMING_SNAKE_CASE , filename=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase_ = Path(__SCREAMING_SNAKE_CASE ).parent lowerCAmelCase_ = Path(__SCREAMING_SNAKE_CASE ).name lowerCAmelCase_ = OnnxRuntimeModel.load_model(__SCREAMING_SNAKE_CASE , provider=__SCREAMING_SNAKE_CASE , sess_options=__SCREAMING_SNAKE_CASE ) return cls(model=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @classmethod def __a ( cls , _a , _a = True , _a = None , _a = None , **_a , ) -> Union[str, Any]: lowerCAmelCase_ = None if len(str(__SCREAMING_SNAKE_CASE ).split("@" ) ) == 2: lowerCAmelCase_ , lowerCAmelCase_ = model_id.split("@" ) return cls._from_pretrained( model_id=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , use_auth_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def A(__a: Any ): lowerCAmelCase_ = model.config lowerCAmelCase_ = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) lowerCAmelCase_ = MBartConfig( is_decoder=lowerCamelCase__ , is_encoder_decoder=lowerCamelCase__ , add_cross_attention=lowerCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowerCamelCase__ , add_final_layer_norm=lowerCamelCase__ , ) return encoder_config, decoder_config def A(__a: int ): if "encoder.model" in name: lowerCAmelCase_ = name.replace("encoder.model" , "encoder" ) if "decoder.model" in name: lowerCAmelCase_ = name.replace("decoder.model" , "decoder" ) if "patch_embed.proj" in name: lowerCAmelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if name.startswith("encoder" ): if "layers" in name: lowerCAmelCase_ = "encoder." + name if "attn.proj" in name: lowerCAmelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "mask" not in name: lowerCAmelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCAmelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase_ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": lowerCAmelCase_ = "encoder.layernorm.weight" if name == "encoder.norm.bias": lowerCAmelCase_ = "encoder.layernorm.bias" return name def A(__a: int , __a: str ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCAmelCase_ = key.split("." ) lowerCAmelCase_ = int(key_split[3] ) lowerCAmelCase_ = int(key_split[5] ) lowerCAmelCase_ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: lowerCAmelCase_ = val return orig_state_dict def A(__a: int , __a: Dict=None , __a: List[str]=False ): # load original model lowerCAmelCase_ = DonutModel.from_pretrained(lowerCamelCase__ ).eval() # load HuggingFace model lowerCAmelCase_ , lowerCAmelCase_ = get_configs(lowerCamelCase__ ) lowerCAmelCase_ = DonutSwinModel(lowerCamelCase__ ) lowerCAmelCase_ = MBartForCausalLM(lowerCamelCase__ ) lowerCAmelCase_ = VisionEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) model.eval() lowerCAmelCase_ = original_model.state_dict() lowerCAmelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify results on scanned document lowerCAmelCase_ = load_dataset("hf-internal-testing/example-documents" ) lowerCAmelCase_ = dataset["test"][0]["image"].convert("RGB" ) lowerCAmelCase_ = XLMRobertaTokenizerFast.from_pretrained(lowerCamelCase__ , from_slow=lowerCamelCase__ ) lowerCAmelCase_ = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) lowerCAmelCase_ = DonutProcessor(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_ = processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": lowerCAmelCase_ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" lowerCAmelCase_ = "When is the coffee break?" lowerCAmelCase_ = task_prompt.replace("{user_input}" , lowerCamelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": lowerCAmelCase_ = "<s_rvlcdip>" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: lowerCAmelCase_ = "<s_cord>" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": lowerCAmelCase_ = "s_cord-v2>" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": lowerCAmelCase_ = "<s_zhtrainticket>" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt lowerCAmelCase_ = "hello world" else: raise ValueError("Model name not supported" ) lowerCAmelCase_ = original_model.decoder.tokenizer(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors="pt" )[ "input_ids" ] lowerCAmelCase_ = original_model.encoder.model.patch_embed(lowerCamelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ = model.encoder.embeddings(lowerCamelCase__ ) assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) # verify encoder hidden states lowerCAmelCase_ = original_model.encoder(lowerCamelCase__ ) lowerCAmelCase_ = model.encoder(lowerCamelCase__ ).last_hidden_state assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-2 ) # verify decoder hidden states lowerCAmelCase_ = original_model(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).logits lowerCAmelCase_ = model(lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase__ ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: model.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) processor.push_to_hub("nielsr/" + model_name.split("/" )[-1] , commit_message="Update model" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) lowerCamelCase__ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" import numpy as np from transformers import Pipeline def A(__a: Any ): lowerCAmelCase_ = np.max(_lowerCAmelCase , axis=-1 , keepdims=_lowerCAmelCase ) lowerCAmelCase_ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class __magic_name__ (__lowercase ): def __a ( self , **_a ) -> Tuple: lowerCAmelCase_ = {} if "second_text" in kwargs: lowerCAmelCase_ = kwargs["second_text"] return preprocess_kwargs, {}, {} def __a ( self , _a , _a=None ) -> Tuple: return self.tokenizer(_lowerCAmelCase , text_pair=_lowerCAmelCase , return_tensors=self.framework ) def __a ( self , _a ) -> Union[str, Any]: return self.model(**_lowerCAmelCase ) def __a ( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = model_outputs.logits[0].numpy() lowerCAmelCase_ = softmax(_lowerCAmelCase ) lowerCAmelCase_ = np.argmax(_lowerCAmelCase ) lowerCAmelCase_ = self.model.config.idalabel[best_class] lowerCAmelCase_ = probabilities[best_class].item() lowerCAmelCase_ = logits.tolist() return {"label": label, "score": score, "logits": logits}
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
from __future__ import annotations def A(__a: float , __a: float , __a: float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __magic_name__ (snake_case_ ): lowerCamelCase__ = '''deformable_detr''' lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _a=True , _a=None , _a=3 , _a=300 , _a=1024 , _a=6 , _a=1024 , _a=8 , _a=6 , _a=1024 , _a=8 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.0_2 , _a=1.0 , _a=True , _a=False , _a="sine" , _a="resnet50" , _a=True , _a=False , _a=4 , _a=4 , _a=4 , _a=False , _a=300 , _a=False , _a=1 , _a=5 , _a=2 , _a=1 , _a=1 , _a=5 , _a=2 , _a=0.1 , _a=0.2_5 , _a=False , **_a , ) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can\'t specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ = CONFIG_MAPPING['resnet'](out_features=["stage4"] ) elif isinstance(_a , _a ): lowerCAmelCase_ = backbone_config.get("model_type" ) lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ = config_class.from_dict(_a ) lowerCAmelCase_ = use_timm_backbone lowerCAmelCase_ = backbone_config lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_queries lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = init_xavier_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = auxiliary_loss lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = backbone lowerCAmelCase_ = use_pretrained_backbone lowerCAmelCase_ = dilation # deformable attributes lowerCAmelCase_ = num_feature_levels lowerCAmelCase_ = encoder_n_points lowerCAmelCase_ = decoder_n_points lowerCAmelCase_ = two_stage lowerCAmelCase_ = two_stage_num_proposals lowerCAmelCase_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = mask_loss_coefficient lowerCAmelCase_ = dice_loss_coefficient lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = eos_coefficient lowerCAmelCase_ = focal_alpha lowerCAmelCase_ = disable_custom_kernels super().__init__(is_encoder_decoder=_a , **_a ) @property def __a ( self ) -> int: return self.encoder_attention_heads @property def __a ( self ) -> int: return self.d_model def __a ( self ) -> Dict: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase_ = self.backbone_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCamelCase__ = "pt" elif is_tf_available(): lowerCamelCase__ = "tf" else: lowerCamelCase__ = "jax" class __magic_name__ (__lowerCAmelCase , unittest.TestCase ): lowerCamelCase__ = ByTaTokenizer lowerCamelCase__ = False def __a ( self ) -> Union[str, Any]: super().setUp() lowerCAmelCase_ = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self ) -> str: return ByTaTokenizer.from_pretrained("google/byt5-small" ) def __a ( self , **_a ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def __a ( self , _a , _a=False , _a=20 , _a=5 ) -> Tuple[str, list]: lowerCAmelCase_ = [] for i in range(len(lowerCamelCase__ ) ): try: lowerCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCAmelCase_ = list(filter(lambda _a : re.match(R"^[ a-zA-Z]+$" , t[1] ) , lowerCamelCase__ ) ) lowerCAmelCase_ = list(filter(lambda _a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCamelCase__ ) , lowerCamelCase__ ) ) if max_length is not None and len(lowerCamelCase__ ) > max_length: lowerCAmelCase_ = toks[:max_length] if min_length is not None and len(lowerCamelCase__ ) < min_length and len(lowerCamelCase__ ) > 0: while len(lowerCamelCase__ ) < min_length: lowerCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase_ = [t[0] for t in toks] # Ensure consistency lowerCAmelCase_ = tokenizer.decode(lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) if " " not in output_txt and len(lowerCamelCase__ ) > 1: lowerCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCamelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCamelCase__ ) ) if with_prefix_space: lowerCAmelCase_ = ''' ''' + output_txt lowerCAmelCase_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) return output_txt, output_ids def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.ta_base_tokenizer lowerCAmelCase_ = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) lowerCAmelCase_ = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def __a ( self ) -> int: lowerCAmelCase_ = self.ta_base_tokenizer lowerCAmelCase_ = '''Unicode €.''' lowerCAmelCase_ = tokenizer(lowerCamelCase__ ) lowerCAmelCase_ = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded["input_ids"] , lowerCamelCase__ ) # decoding lowerCAmelCase_ = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , "Unicode €.</s>" ) lowerCAmelCase_ = tokenizer("e è é ê ë" ) lowerCAmelCase_ = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded["input_ids"] , lowerCamelCase__ ) # decoding lowerCAmelCase_ = tokenizer.decode(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.ta_base_tokenizer lowerCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on lowerCAmelCase_ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) if FRAMEWORK != "jax": lowerCAmelCase_ = list(batch.input_ids.numpy()[0] ) else: lowerCAmelCase_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __a ( self ) -> int: lowerCAmelCase_ = self.ta_base_tokenizer lowerCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase_ = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , lowerCamelCase__ ) self.assertIn("attention_mask" , lowerCamelCase__ ) self.assertNotIn("decoder_input_ids" , lowerCamelCase__ ) self.assertNotIn("decoder_attention_mask" , lowerCamelCase__ ) def __a ( self ) -> str: lowerCAmelCase_ = self.ta_base_tokenizer lowerCAmelCase_ = [ '''Summary of the text.''', '''Another summary.''', ] lowerCAmelCase_ = tokenizer( text_target=lowerCamelCase__ , max_length=32 , padding="max_length" , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.ta_base_tokenizer lowerCAmelCase_ = ['''A long paragraph for summarization. </s>'''] lowerCAmelCase_ = ['''Summary of the text. </s>'''] # fmt: off lowerCAmelCase_ = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] lowerCAmelCase_ = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on lowerCAmelCase_ = tokenizer(lowerCamelCase__ , text_target=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , batch["input_ids"][0] ) self.assertEqual(lowerCamelCase__ , batch["labels"][0] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' lowerCAmelCase_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) lowerCAmelCase_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) lowerCAmelCase_ = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) shutil.rmtree(lowerCamelCase__ ) lowerCAmelCase_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(["bim", "bambam"] ) lowerCAmelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCAmelCase_ = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) lowerCAmelCase_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) lowerCAmelCase_ = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase_ = tokenizer.__class__.from_pretrained(lowerCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase__ ) def __a ( self ) -> List[str]: lowerCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase_ = json.load(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCAmelCase_ = json.load(lowerCamelCase__ ) lowerCAmelCase_ = [f"<extra_id_{i}>" for i in range(125 )] lowerCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCAmelCase_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCamelCase__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase_ = tokenizer_class.from_pretrained( lowerCamelCase__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=lowerCamelCase__ )] lowerCAmelCase_ = tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def __a ( self ) -> List[str]: lowerCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase__ ) lowerCAmelCase_ = tokenizer_class.from_pretrained(lowerCamelCase__ ) self.assertTrue(tokenizer.decode([255] ) == "" ) def __a ( self ) -> Any: pass def __a ( self ) -> Dict: pass def __a ( self ) -> Tuple: pass def __a ( self ) -> Dict: pass def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_tokenizers(fast=lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase_ = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] lowerCAmelCase_ = tokenizer.convert_tokens_to_string(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCAmelCase_ = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCAmelCase_ = 0 lowerCAmelCase_ = tokenizer.convert_ids_to_tokens( lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) for attr in attributes_list: setattr(lowerCamelCase__ , attr + "_id" , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , attr + "_id" ) , lowerCamelCase__ ) setattr(lowerCamelCase__ , attr + "_id" , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , attr + "_id" ) , lowerCamelCase__ ) setattr(lowerCamelCase__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens_ids" ) , [] ) setattr(lowerCamelCase__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCamelCase__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __magic_name__ (lowerCamelCase__ ): def __init__( self , _a , _a ) -> Tuple: lowerCAmelCase_ = params lowerCAmelCase_ = np.array(lowercase__ ) lowerCAmelCase_ = np.array([len(lowercase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , _a ) -> Optional[Any]: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Union[str, Any]: return len(self.lengths ) def __a ( self ) -> Optional[Any]: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.params.max_model_input_size lowerCAmelCase_ = self.lengths > max_len logger.info(f"Splitting {sum(lowercase__ )} too long sequences." ) def divide_chunks(_a , _a ): return [l[i : i + n] for i in range(0 , len(lowercase__ ) , lowercase__ )] lowerCAmelCase_ = [] lowerCAmelCase_ = [] if self.params.mlm: lowerCAmelCase_ , lowerCAmelCase_ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: lowerCAmelCase_ , lowerCAmelCase_ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowerCAmelCase_ = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowerCAmelCase_ = np.insert(lowercase__ , 0 , lowercase__ ) if sub_s[-1] != sep_id: lowerCAmelCase_ = np.insert(lowercase__ , len(lowercase__ ) , lowercase__ ) assert len(lowercase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowercase__ ) new_tok_ids.extend(lowercase__ ) new_lengths.extend([len(lowercase__ ) for l in sub_seqs] ) lowerCAmelCase_ = np.array(lowercase__ ) lowerCAmelCase_ = np.array(lowercase__ ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = len(self ) lowerCAmelCase_ = self.lengths > 11 lowerCAmelCase_ = self.token_ids[indices] lowerCAmelCase_ = self.lengths[indices] lowerCAmelCase_ = len(self ) logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def __a ( self ) -> Optional[int]: if "unk_token" not in self.params.special_tok_ids: return else: lowerCAmelCase_ = self.params.special_tok_ids["unk_token"] lowerCAmelCase_ = len(self ) lowerCAmelCase_ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowerCAmelCase_ = (unk_occs / self.lengths) < 0.5 lowerCAmelCase_ = self.token_ids[indices] lowerCAmelCase_ = self.lengths[indices] lowerCAmelCase_ = len(self ) logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def __a ( self ) -> int: if not self.params.is_master: return logger.info(f"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = [t[0] for t in batch] lowerCAmelCase_ = [t[1] for t in batch] assert len(lowercase__ ) == len(lowercase__ ) # Max for paddings lowerCAmelCase_ = max(lowercase__ ) # Pad token ids if self.params.mlm: lowerCAmelCase_ = self.params.special_tok_ids["pad_token"] else: lowerCAmelCase_ = self.params.special_tok_ids["unk_token"] lowerCAmelCase_ = [list(t.astype(lowercase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowercase__ )) for t in token_ids] assert len(tk_ ) == len(lowercase__ ) assert all(len(lowercase__ ) == max_seq_len_ for t in tk_ ) lowerCAmelCase_ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowerCAmelCase_ = torch.tensor(lowercase__ ) # (bs) return tk_t, lg_t
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __magic_name__ (SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''BlipImageProcessor''' lowerCamelCase__ = '''AutoTokenizer''' def __init__( self , _a , _a , _a ) -> str: super().__init__(_a , _a ) # add QFormer tokenizer lowerCAmelCase_ = qformer_tokenizer def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) lowerCAmelCase_ = BatchFeature() if text is not None: lowerCAmelCase_ = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) encoding.update(_a ) lowerCAmelCase_ = self.qformer_tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) lowerCAmelCase_ = qformer_text_encoding.pop("input_ids" ) lowerCAmelCase_ = qformer_text_encoding.pop("attention_mask" ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a ) encoding.update(_a ) return encoding def __a ( self , *_a , **_a ) -> Optional[Any]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> str: return self.tokenizer.decode(*_a , **_a ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __a ( self ) -> int: lowerCAmelCase_ = self.tokenizer.model_input_names lowerCAmelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __a ( self , _a , **_a ) -> Any: if os.path.isfile(_a ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(_a , exist_ok=_a ) lowerCAmelCase_ = os.path.join(_a , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(_a ) return super().save_pretrained(_a , **_a ) @classmethod def __a ( cls , _a , **_a ) -> Tuple: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , subfolder="qformer_tokenizer" ) lowerCAmelCase_ = cls._get_arguments_from_pretrained(_a , **_a ) args.append(_a ) return cls(*_a )
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" def A(__a: int , __a: int ): while b: lowerCAmelCase_ , lowerCAmelCase_ = b, a % b return a def A(__a: int , __a: int ): return a if b == 0 else euclidean_gcd_recursive(a__ , a % b ) def A(): print(F"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(F"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(F"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(F"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(F"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(F"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(F"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(F"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(F"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ (ctypes.Structure ): # _fields is a specific attr expected by ctypes lowerCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def A(): if os.name == "nt": lowerCAmelCase_ = CursorInfo() lowerCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__a , ctypes.byref(__a ) ) lowerCAmelCase_ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__a , ctypes.byref(__a ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def A(): if os.name == "nt": lowerCAmelCase_ = CursorInfo() lowerCAmelCase_ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__a , ctypes.byref(__a ) ) lowerCAmelCase_ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__a , ctypes.byref(__a ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def A(): try: hide_cursor() yield finally: show_cursor()
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LlamaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["LlamaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["LlamaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "LlamaForCausalLM", "LlamaModel", "LlamaPreTrainedModel", "LlamaForSequenceClassification", ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def A(__a: Union[str, Any] = True , *__a: List[Any] , **__a: List[str] ): if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." ) lowerCAmelCase_ = False if main_process_only: lowerCAmelCase_ = PartialState().local_process_index == 0 return _tqdm(*lowercase__ , **lowercase__ , disable=lowercase__ )
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class __magic_name__ (__SCREAMING_SNAKE_CASE ): lowerCamelCase__ = '''detr''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _a=True , _a=None , _a=3 , _a=100 , _a=6 , _a=2048 , _a=8 , _a=6 , _a=2048 , _a=8 , _a=0.0 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.0_2 , _a=1.0 , _a=False , _a="sine" , _a="resnet50" , _a=True , _a=False , _a=1 , _a=5 , _a=2 , _a=1 , _a=1 , _a=5 , _a=2 , _a=0.1 , **_a , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ = backbone_config.get("model_type" ) lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ = config_class.from_dict(_SCREAMING_SNAKE_CASE ) # set timm attributes to None lowerCAmelCase_ = None, None, None lowerCAmelCase_ = use_timm_backbone lowerCAmelCase_ = backbone_config lowerCAmelCase_ = num_channels lowerCAmelCase_ = num_queries lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = init_xavier_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = auxiliary_loss lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = backbone lowerCAmelCase_ = use_pretrained_backbone lowerCAmelCase_ = dilation # Hungarian matcher lowerCAmelCase_ = class_cost lowerCAmelCase_ = bbox_cost lowerCAmelCase_ = giou_cost # Loss coefficients lowerCAmelCase_ = mask_loss_coefficient lowerCAmelCase_ = dice_loss_coefficient lowerCAmelCase_ = bbox_loss_coefficient lowerCAmelCase_ = giou_loss_coefficient lowerCAmelCase_ = eos_coefficient super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __a ( self ) -> int: return self.encoder_attention_heads @property def __a ( self ) -> int: return self.d_model @classmethod def __a ( cls , _a , **_a ) -> str: return cls(backbone_config=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __a ( self ) -> Dict[str, any]: lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase_ = self.backbone_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output class __magic_name__ (__SCREAMING_SNAKE_CASE ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __a ( self ) -> float: return 1E-5 @property def __a ( self ) -> int: return 12
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def A(__a: List[str] , __a: Tuple , __a: List[str] , __a: List[Any] ): if isinstance(_a , _a ): lowerCAmelCase_ = np.full((len(_a ), sequence_length, 2) , _a ) else: lowerCAmelCase_ = np.full((len(_a ), sequence_length) , _a ) for i, tensor in enumerate(_a ): if padding_side == "right": if isinstance(_a , _a ): lowerCAmelCase_ = tensor[:sequence_length] else: lowerCAmelCase_ = tensor[:sequence_length] else: if isinstance(_a , _a ): lowerCAmelCase_ = tensor[:sequence_length] else: lowerCAmelCase_ = tensor[:sequence_length] return out_tensor.tolist() def A(__a: Any ): lowerCAmelCase_ = ord(_a ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True lowerCAmelCase_ = unicodedata.category(_a ) if cat.startswith("P" ): return True return False @dataclass class __magic_name__ (__snake_case ): lowerCamelCase__ = 42 lowerCamelCase__ = True lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = -100 lowerCamelCase__ = "pt" def __a ( self , _a ) -> str: import torch lowerCAmelCase_ = """label""" if """label""" in features[0].keys() else """labels""" lowerCAmelCase_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCAmelCase_ = self.tokenizer.pad( lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch lowerCAmelCase_ = torch.tensor(batch["entity_ids"] ).shape[1] lowerCAmelCase_ = self.tokenizer.padding_side if padding_side == "right": lowerCAmelCase_ = [ list(lowerCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) for label in labels ] else: lowerCAmelCase_ = [ [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) + list(lowerCamelCase_ ) for label in labels ] lowerCAmelCase_ = [feature["""ner_tags"""] for feature in features] lowerCAmelCase_ = padding_tensor(lowerCamelCase_ , -1 , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase_ = [feature["""original_entity_spans"""] for feature in features] lowerCAmelCase_ = padding_tensor(lowerCamelCase_ , (-1, -1) , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase_ = {k: torch.tensor(lowerCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
class __magic_name__ : def __init__( self , _a ) -> List[str]: lowerCAmelCase_ = val lowerCAmelCase_ = None lowerCAmelCase_ = None def __a ( self , _a ) -> List[str]: if self.val: if val < self.val: if self.left is None: lowerCAmelCase_ = Node(_lowercase ) else: self.left.insert(_lowercase ) elif val > self.val: if self.right is None: lowerCAmelCase_ = Node(_lowercase ) else: self.right.insert(_lowercase ) else: lowerCAmelCase_ = val def A(__a: List[Any] , __a: Optional[int] ): if root: inorder(root.left , SCREAMING_SNAKE_CASE_ ) res.append(root.val ) inorder(root.right , SCREAMING_SNAKE_CASE_ ) def A(__a: Optional[Any] ): if len(SCREAMING_SNAKE_CASE_ ) == 0: return arr lowerCAmelCase_ = Node(arr[0] ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase_ = [] inorder(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def A(__a: Any , __a: Optional[Any] , __a: Optional[int] , __a: Tuple=None , __a: Any=None , __a: Tuple=None , __a: Optional[Any]=None , __a: Tuple=None , ): if attention_mask is None: lowerCAmelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCAmelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCAmelCase_ = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: lowerCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: lowerCAmelCase_ = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __magic_name__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=16 , _a=2 , _a=4 , _a=4 , _a="relu" , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.0 , _a=20 , _a=2 , _a=1 , _a=0 , ) -> str: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = self.eos_token_id # Eos Token lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCAmelCase_ = input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCAmelCase_ = self.get_config() lowerCAmelCase_ = prepare_mam_aaa_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def __a ( self ) -> List[str]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __a ( self ) -> Tuple: lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def __a ( self , _a , _a ) -> int: lowerCAmelCase_ = MaMaaaModel(config=_UpperCAmelCase ).get_decoder().to(_UpperCAmelCase ).eval() lowerCAmelCase_ = inputs_dict["input_ids"] lowerCAmelCase_ = inputs_dict["attention_mask"] lowerCAmelCase_ = inputs_dict["head_mask"] # first forward pass lowerCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase_ = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )["last_hidden_state"] lowerCAmelCase_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[ "last_hidden_state" ] # select random slice lowerCAmelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-2 ) ) def __a ( self , _a , _a ) -> List[Any]: lowerCAmelCase_ = MaMaaaModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() lowerCAmelCase_ = model(**_UpperCAmelCase ) lowerCAmelCase_ = outputs.encoder_last_hidden_state lowerCAmelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = model.get_encoder() encoder.save_pretrained(_UpperCAmelCase ) lowerCAmelCase_ = MaMaaaEncoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) lowerCAmelCase_ = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = model.get_decoder() decoder.save_pretrained(_UpperCAmelCase ) lowerCAmelCase_ = MaMaaaDecoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) lowerCAmelCase_ = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __magic_name__ (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): lowerCamelCase__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowerCamelCase__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowerCamelCase__ = ( { """conversational""": MaMaaaForConditionalGeneration, """feature-extraction""": MaMaaaModel, """summarization""": MaMaaaForConditionalGeneration, """text2text-generation""": MaMaaaForConditionalGeneration, """translation""": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self , _a , _a , _a , _a , _a ) -> List[Any]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = MaMaaaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase ) def __a ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ = model_class.from_pretrained(_UpperCAmelCase , output_loading_info=_UpperCAmelCase ) self.assertEqual(info["missing_keys"] , [] ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_UpperCAmelCase ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): lowerCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowerCAmelCase_ = copy.deepcopy(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) if not self.is_encoder_decoder: lowerCAmelCase_ = inputs["input_ids"] del inputs["input_ids"] else: lowerCAmelCase_ = inputs["input_ids"] lowerCAmelCase_ = inputs.get("decoder_input_ids" , _UpperCAmelCase ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , _UpperCAmelCase ) lowerCAmelCase_ = model.get_input_embeddings() if not self.is_encoder_decoder: lowerCAmelCase_ = wte(_UpperCAmelCase ) else: lowerCAmelCase_ = wte(_UpperCAmelCase ) lowerCAmelCase_ = wte(_UpperCAmelCase ) with torch.no_grad(): model(**_UpperCAmelCase )[0] def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ = input_dict["input_ids"] lowerCAmelCase_ = input_ids.ne(1 ).to(_UpperCAmelCase ) lowerCAmelCase_ = MaMaaaForConditionalGeneration(_UpperCAmelCase ).eval().to(_UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) model.generate(num_beams=4 , do_sample=_UpperCAmelCase , early_stopping=_UpperCAmelCase , num_return_sequences=3 ) def A(__a: Optional[int] ): return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __magic_name__ (unittest.TestCase ): @cached_property def __a ( self ) -> Union[str, Any]: return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(_UpperCAmelCase ) lowerCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) lowerCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) lowerCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ = model(**_UpperCAmelCase )[0] lowerCAmelCase_ = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here lowerCAmelCase_ = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(_UpperCAmelCase ) # change to intended input lowerCAmelCase_ = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]] ) lowerCAmelCase_ = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]] ) lowerCAmelCase_ = prepare_mam_aaa_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ = model(**_UpperCAmelCase )[0] lowerCAmelCase_ = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here lowerCAmelCase_ = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(_UpperCAmelCase ) lowerCAmelCase_ = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) lowerCAmelCase_ = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams lowerCAmelCase_ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors="pt" ) lowerCAmelCase_ = model.generate( input_ids=dct["input_ids"].to(_UpperCAmelCase ) , attention_mask=dct["attention_mask"].to(_UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) lowerCAmelCase_ = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] lowerCAmelCase_ = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) assert generated == expected_en
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
from ..utils import DummyObject, requires_backends class __magic_name__ (metaclass=_a ): lowerCamelCase__ = ["""keras_nlp"""] def __init__( self , *_a , **_a ) -> Union[str, Any]: requires_backends(self , ["keras_nlp"] )
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __magic_name__ (__lowercase ): lowerCamelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] lowerCamelCase__ = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase (__lowercase , __lowercase ): lowerCamelCase__ = '''nat''' lowerCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _a=4 , _a=3 , _a=64 , _a=[3, 4, 6, 5] , _a=[2, 4, 8, 16] , _a=7 , _a=3.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=0.0_2 , _a=1E-5 , _a=0.0 , _a=None , _a=None , **_a , ) -> str: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = patch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = depths lowerCAmelCase_ = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ = num_heads lowerCAmelCase_ = kernel_size lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = qkv_bias lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase_ = int(embed_dim * 2 ** (len(_SCREAMING_SNAKE_CASE ) - 1) ) lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_SCREAMING_SNAKE_CASE ) + 1 )] lowerCAmelCase_ = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
def A(__a: list[list[int | float]] ): lowerCAmelCase_ = len(lowerCamelCase__ ) lowerCAmelCase_ = len(matrix[0] ) lowerCAmelCase_ = min(lowerCamelCase__ , lowerCamelCase__ ) for row in range(lowerCamelCase__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , lowerCamelCase__ ): lowerCAmelCase_ = matrix[col][row] / matrix[row][row] for i in range(lowerCamelCase__ , lowerCamelCase__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowerCAmelCase_ = True for i in range(row + 1 , lowerCamelCase__ ): if matrix[i][row] != 0: lowerCAmelCase_ , lowerCAmelCase_ = matrix[i], matrix[row] lowerCAmelCase_ = False break if reduce: rank -= 1 for i in range(lowerCamelCase__ ): lowerCAmelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.json'''} lowerCamelCase__ = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } lowerCamelCase__ = {'''mgp-str''': 27} class __magic_name__ (__SCREAMING_SNAKE_CASE ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _a , _a="[GO]" , _a="[GO]" , _a="[s]" , _a="[GO]" , **_a ) -> Union[str, Any]: super().__init__( unk_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , pad_token=_snake_case , **_snake_case , ) with open(_snake_case , encoding="utf-8" ) as vocab_handle: lowerCAmelCase_ = json.load(_snake_case ) lowerCAmelCase_ = {v: k for k, v in self.vocab.items()} @property def __a ( self ) -> str: return len(self.vocab ) def __a ( self ) -> Any: return dict(self.vocab , **self.added_tokens_encoder ) def __a ( self , _a ) -> Optional[Any]: lowerCAmelCase_ = [] for s in text: char_tokens.extend(_snake_case ) return char_tokens def __a ( self , _a ) -> int: return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def __a ( self , _a ) -> List[Any]: return self.decoder.get(_snake_case ) def __a ( self , _a , _a = None ) -> Any: if not os.path.isdir(_snake_case ): logger.error("Vocabulary path ({}) should be a directory".format(_snake_case ) ) return lowerCAmelCase_ = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(_snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + "\n" ) return (vocab_file,)
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
def A(): for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def A(__a: Dict ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 while i * i <= n: lowerCAmelCase_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A(): return next(i for i in triangle_number_generator() if count_divisors(UpperCamelCase__ ) > 500 ) if __name__ == "__main__": print(solution())
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class __magic_name__ : def __init__( self , _a ) -> Optional[Any]: lowerCAmelCase_ = data lowerCAmelCase_ = None class __magic_name__ : def __init__( self ) -> Optional[Any]: lowerCAmelCase_ = None lowerCAmelCase_ = None def __iter__( self ) -> List[Any]: lowerCAmelCase_ = self.head while self.head: yield node.data lowerCAmelCase_ = node.next if node == self.head: break def __len__( self ) -> Dict: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join(str(_a ) for item in iter(self ) ) def __a ( self , _a ) -> Optional[Any]: self.insert_nth(len(self ) , _a ) def __a ( self , _a ) -> str: self.insert_nth(0 , _a ) def __a ( self , _a , _a ) -> Optional[int]: if index < 0 or index > len(self ): raise IndexError("list index out of range." ) lowerCAmelCase_ = Node(_a ) if self.head is None: lowerCAmelCase_ = new_node # first node points itself lowerCAmelCase_ = lowerCAmelCase_ = new_node elif index == 0: # insert at head lowerCAmelCase_ = self.head lowerCAmelCase_ = lowerCAmelCase_ = new_node else: lowerCAmelCase_ = self.head for _ in range(index - 1 ): lowerCAmelCase_ = temp.next lowerCAmelCase_ = temp.next lowerCAmelCase_ = new_node if index == len(self ) - 1: # insert at tail lowerCAmelCase_ = new_node def __a ( self ) -> Tuple: return self.delete_nth(0 ) def __a ( self ) -> List[str]: return self.delete_nth(len(self ) - 1 ) def __a ( self , _a = 0 ) -> int: if not 0 <= index < len(self ): raise IndexError("list index out of range." ) lowerCAmelCase_ = self.head if self.head == self.tail: # just one node lowerCAmelCase_ = lowerCAmelCase_ = None elif index == 0: # delete head node lowerCAmelCase_ = self.tail.next.next lowerCAmelCase_ = self.head.next else: lowerCAmelCase_ = self.head for _ in range(index - 1 ): lowerCAmelCase_ = temp.next lowerCAmelCase_ = temp.next lowerCAmelCase_ = temp.next.next if index == len(self ) - 1: # delete at tail lowerCAmelCase_ = temp return delete_node.data def __a ( self ) -> List[str]: return len(self ) == 0 def A(): lowerCAmelCase_ = CircularLinkedList() assert len(UpperCAmelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCAmelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCAmelCase_ ) == i circular_linked_list.insert_nth(UpperCAmelCase_ , i + 1 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCAmelCase_ ) == "->".join(str(UpperCAmelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __magic_name__ (lowerCamelCase__ ): lowerCamelCase__ = '''gpt_neo''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , _a=50257 , _a=2048 , _a=2048 , _a=24 , _a=[[["global", "local"], 12]] , _a=16 , _a=None , _a=256 , _a="gelu_new" , _a=0.0 , _a=0.0 , _a=0.0 , _a=0.1 , _a=1E-5 , _a=0.0_2 , _a=True , _a=50256 , _a=50256 , **_a , ) -> Any: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_layers lowerCAmelCase_ = num_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = window_size lowerCAmelCase_ = activation_function lowerCAmelCase_ = resid_dropout lowerCAmelCase_ = embed_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = classifier_dropout lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = use_cache lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = attention_types lowerCAmelCase_ = self.expand_attention_types_params(_a ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=_a , eos_token_id=_a , **_a ) @staticmethod def __a ( _a ) -> Optional[Any]: lowerCAmelCase_ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def A(__a: List[str] , __a: Tuple , __a: List[str] , __a: Any ): import torch lowerCAmelCase_ = input.size() lowerCAmelCase_ = len(_lowerCAmelCase ) lowerCAmelCase_ = shape[dimension] lowerCAmelCase_ = torch.arange(0 , _lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase_ = torch.div(sizedim - size , _lowerCAmelCase , rounding_mode="floor" ) + 1 lowerCAmelCase_ = torch.arange(_lowerCAmelCase ) + low_indices[:min_length][:, None] lowerCAmelCase_ = [slice(_lowerCAmelCase )] * rank lowerCAmelCase_ = indices lowerCAmelCase_ = input[s] lowerCAmelCase_ = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_lowerCAmelCase ) def A(__a: List[str] , __a: int ): import torch lowerCAmelCase_ = torch.arange(1 , _lowerCAmelCase ) lowerCAmelCase_ = torch.remainder(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase_ = remainders == 0 lowerCAmelCase_ = candidates[divisor_indices] lowerCAmelCase_ = torch.max(_lowerCAmelCase ) return largest_divisor, torch.div(_lowerCAmelCase , _lowerCAmelCase , rounding_mode="floor" ) class __magic_name__ (lowerCamelCase__ ): @property def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_a , direction="inputs" ) lowerCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return common_inputs @property def __a ( self ) -> List[Any]: return self._config.num_heads def __a ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ) -> Dict: lowerCAmelCase_ = super(_a , self ).generate_dummy_inputs( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ = seqlen + 2 lowerCAmelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ = [ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(self.num_layers ) ] lowerCAmelCase_ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_a , _a , dtype=_a )] , dim=1 ) return ordered_inputs @property def __a ( self ) -> str: return 13
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
def A(__a: int = 200_0000 ): lowerCAmelCase_ = [0 for i in range(n + 1 )] lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , __a ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 for i in range(__a ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Dict: lowerCAmelCase_ = tempfile.mkdtemp() # fmt: off lowerCAmelCase_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase_ = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowerCAmelCase_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCAmelCase_ = {"unk_token": "<unk>"} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase_ ) ) lowerCAmelCase_ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCAmelCase_ = os.path.join(self.tmpdirname , lowercase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowercase_ , lowercase_ ) def __a ( self , **_a ) -> str: return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def __a ( self , **_a ) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def __a ( self , **_a ) -> Optional[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase_ ) def __a ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def __a ( self ) -> str: lowerCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase_ = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_ ) lowerCAmelCase_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowercase_ ) self.assertIsInstance(processor_fast.tokenizer , lowercase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowercase_ ) self.assertIsInstance(processor_fast.image_processor , lowercase_ ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase_ = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) lowerCAmelCase_ = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = image_processor(lowercase_ , return_tensors="np" ) lowerCAmelCase_ = processor(images=lowercase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = processor(text=lowercase_ ) lowerCAmelCase_ = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self ) -> int: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ = "lower newer" lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def __a ( self ) -> str: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = self.prepare_image_inputs() lowerCAmelCase_ = processor(images=lowercase_ , visual_prompt=lowercase_ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = CLIPSegProcessor(tokenizer=lowercase_ , image_processor=lowercase_ ) lowerCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ = processor.batch_decode(lowercase_ ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ )
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self ) -> Union[str, Any]: lowerCAmelCase_ = "" lowerCAmelCase_ = "" lowerCAmelCase_ = [] lowerCAmelCase_ = 0 lowerCAmelCase_ = 256 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 lowerCAmelCase_ = 0 def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = cva.imread(lowerCamelCase__ , 0 ) lowerCAmelCase_ = copy.deepcopy(self.img ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) lowerCAmelCase_ = np.sum(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): lowerCAmelCase_ = x[i] / self.k self.sk += prk lowerCAmelCase_ = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase_ = int(last % last ) lowerCAmelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCamelCase__ ) lowerCAmelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase_ = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def __a ( self ) -> Optional[Any]: plt.hist(self.img.ravel() , 256 , [0, 256] ) def __a ( self ) -> Any: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCamelCase__ = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') lowerCamelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCamelCase__ = 25_60_47 lowerCamelCase__ = 25_61_45 @require_sentencepiece @require_tokenizers class __magic_name__ (a_ , unittest.TestCase ): lowerCamelCase__ = NllbTokenizer lowerCamelCase__ = NllbTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = {} def __a ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ = NllbTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = NllbTokenizer(lowercase_ , keep_accents=lowercase_ ) lowerCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase_ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCAmelCase_ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __a ( self ) -> List[str]: lowerCAmelCase_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = tokenizer_r.save_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowerCAmelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way lowerCAmelCase_ = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) lowerCAmelCase_ = tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase_ = tokenizer_r.from_pretrained(lowercase_ ) lowerCAmelCase_ = tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @require_torch def __a ( self ) -> Any: if not self.test_seqaseq: return lowerCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Longer text that will definitely require truncation. lowerCAmelCase_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowerCAmelCase_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowerCAmelCase_ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_ , tgt_texts=lowercase_ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowerCAmelCase_ = tokenizer.prepare_seqaseq_batch( lowercase_ , tgt_texts=lowercase_ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowerCAmelCase_ = tokenizer.prepare_seqaseq_batch( src_texts=lowercase_ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , lowercase_ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def __a ( self ) -> int: pass def __a ( self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = [AddedToken("<special>" , lstrip=lowercase_ )] lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ ) lowerCAmelCase_ = tokenizer_r.encode("Hey this is a <special> token" ) lowerCAmelCase_ = tokenizer_r.encode("<special>" , add_special_tokens=lowercase_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained( lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ ) lowerCAmelCase_ = tokenizer_p.encode("Hey this is a <special> token" ) lowerCAmelCase_ = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ (unittest.TestCase ): lowerCamelCase__ = '''facebook/nllb-200-distilled-600M''' lowerCamelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] lowerCamelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] lowerCamelCase__ = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def __a ( cls ) -> Optional[Any]: lowerCAmelCase_ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) lowerCAmelCase_ = 1 return cls def __a ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 256057 ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) def __a ( self ) -> List[Any]: self.assertIn(lowercase_ , self.tokenizer.all_special_ids ) # fmt: off lowerCAmelCase_ = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on lowerCAmelCase_ = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) self.assertNotIn(self.tokenizer.eos_token , lowercase_ ) def __a ( self ) -> int: lowerCAmelCase_ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowercase_ ) lowerCAmelCase_ = 10 lowerCAmelCase_ = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , lowercase_ ) self.assertEqual(len(lowercase_ ) , lowercase_ ) def __a ( self ) -> Optional[int]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [256203, 3] ) def __a ( self ) -> Any: lowerCAmelCase_ = tempfile.mkdtemp() lowerCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_ ) lowerCAmelCase_ = NllbTokenizer.from_pretrained(lowercase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_ ) @require_torch def __a ( self ) -> str: lowerCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowerCAmelCase_ = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowerCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_ ) self.assertEqual(lowercase_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors="pt" ) lowerCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors="pt" ) lowerCAmelCase_ = targets['''input_ids'''] lowerCAmelCase_ = shift_tokens_right( lowercase_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __a ( self ) -> Dict: lowerCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(lowercase_ ) , { # A, test, EOS, en_XX "input_ids": [[256047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 256057, } , ) @require_torch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) lowerCAmelCase_ = False lowerCAmelCase_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
import math def A(__a: Any ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(__a: Optional[Any] = 1_0001 ): try: lowerCAmelCase_ = int(_lowercase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) lowerCAmelCase_ = [] lowerCAmelCase_ = 2 while len(_lowercase ) < nth: if is_prime(_lowercase ): primes.append(_lowercase ) num += 1 else: num += 1 return primes[len(_lowercase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class __magic_name__ (metaclass=UpperCAmelCase__ ): lowerCamelCase__ = ['speech'] def __init__( self , *_a , **_a ) -> Optional[Any]: requires_backends(self , ["speech"] ) class __magic_name__ (metaclass=UpperCAmelCase__ ): lowerCamelCase__ = ['speech'] def __init__( self , *_a , **_a ) -> int: requires_backends(self , ["speech"] )
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
lowerCamelCase__ = range(2, 20 + 1) lowerCamelCase__ = [10**k for k in range(ks[-1] + 1)] lowerCamelCase__ = {} def A(__a: int , __a: Tuple , __a: Tuple , __a: Optional[int] ): lowerCAmelCase_ = sum(a_i[j] for j in range(_a , len(_a ) ) ) lowerCAmelCase_ = sum(a_i[j] * base[j] for j in range(min(len(_a ) , _a ) ) ) lowerCAmelCase_ , lowerCAmelCase_ = 0, 0 lowerCAmelCase_ = n - i lowerCAmelCase_ = memo.get(_a ) if sub_memo is not None: lowerCAmelCase_ = sub_memo.get(_a ) if jumps is not None and len(_a ) > 0: # find and make the largest jump without going over lowerCAmelCase_ = -1 for _k in range(len(_a ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase_ = _k break if max_jump >= 0: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase_ = diff + c for j in range(min(_a , len(_a ) ) ): lowerCAmelCase_ , lowerCAmelCase_ = divmod(_a , 10 ) if new_c > 0: add(_a , _a , _a ) else: lowerCAmelCase_ = [] else: lowerCAmelCase_ = {c: []} lowerCAmelCase_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase_ , lowerCAmelCase_ = next_term(_a , k - 1 , i + dn , _a ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase_ , lowerCAmelCase_ = compute(_a , _a , i + dn , _a ) diff += _diff dn += terms_jumped lowerCAmelCase_ = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase_ = 0 while j < len(_a ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_a , (diff, dn, k) ) return (diff, dn) def A(__a: int , __a: Dict , __a: str , __a: Tuple ): if i >= n: return 0, i if k > len(_a ): a_i.extend([0 for _ in range(k - len(_a ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase_ = i lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0, 0, 0 for j in range(len(_a ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase_ = ds_c + ds_b diff += addend lowerCAmelCase_ = 0 for j in range(_a ): lowerCAmelCase_ = a_i[j] + addend lowerCAmelCase_ , lowerCAmelCase_ = divmod(_a , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_a , _a , _a ) return diff, i - start_i def A(__a: Union[str, Any] , __a: Optional[int] , __a: Any ): for j in range(_a , len(_a ) ): lowerCAmelCase_ = digits[j] + addend if s >= 10: lowerCAmelCase_ , lowerCAmelCase_ = divmod(_a , 10 ) lowerCAmelCase_ = addend // 10 + quotient else: lowerCAmelCase_ = s lowerCAmelCase_ = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase_ , lowerCAmelCase_ = divmod(_a , 10 ) digits.append(_a ) def A(__a: int = 10**15 ): lowerCAmelCase_ = [1] lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 while True: lowerCAmelCase_ , lowerCAmelCase_ = next_term(_a , 20 , i + dn , _a ) dn += terms_jumped if dn == n - i: break lowerCAmelCase_ = 0 for j in range(len(_a ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
def A(__a: Optional[int] ): lowerCAmelCase_ = abs(__lowerCAmelCase ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: Optional[Any] ): lowerCAmelCase_ = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: str ): return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Optional[Any] , __a: List[Any] ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
import math def A(__a: int = 100 ): lowerCAmelCase_ = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase_ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0
def A(__a: int , __a: int , __a: Tuple=False ): if isinstance(__a , __a ) and isinstance(__a , __a ): lowerCAmelCase_ = len(set_a.intersection(__a ) ) if alternative_union: lowerCAmelCase_ = len(__a ) + len(__a ) else: lowerCAmelCase_ = len(set_a.union(__a ) ) return intersection / union if isinstance(__a , (list, tuple) ) and isinstance(__a , (list, tuple) ): lowerCAmelCase_ = [element for element in set_a if element in set_b] if alternative_union: lowerCAmelCase_ = len(__a ) + len(__a ) return len(__a ) / union else: lowerCAmelCase_ = set_a + [element for element in set_b if element not in set_a] return len(__a ) / len(__a ) return len(__a ) / len(__a ) return None if __name__ == "__main__": lowerCamelCase__ = {"""a""", """b""", """c""", """d""", """e"""} lowerCamelCase__ = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
363
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase__ = logging.get_logger(__name__) def A(__a: Dict ): lowerCAmelCase_ = r"\w+[.]\d+" lowerCAmelCase_ = re.findall(__a , __a ) for pat in pats: lowerCAmelCase_ = key.replace(__a , "_".join(pat.split("." ) ) ) return key def A(__a: str , __a: Tuple , __a: List[Any] ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def A(__a: Dict , __a: Any , __a: List[Any]=42 ): # Step 1: Convert pytorch tensor to numpy lowerCAmelCase_ = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ = flax_model.init_weights(PRNGKey(__a ) ) lowerCAmelCase_ = flatten_dict(__a ) lowerCAmelCase_ = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ = rename_key(__a ) lowerCAmelCase_ = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown lowerCAmelCase_ = jnp.asarray(__a ) return unflatten_dict(__a )
22
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __magic_name__ (__lowerCAmelCase ): lowerCamelCase__ = '''distilbert''' lowerCamelCase__ = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _a=30522 , _a=512 , _a=False , _a=6 , _a=12 , _a=768 , _a=4 * 768 , _a=0.1 , _a=0.1 , _a="gelu" , _a=0.0_2 , _a=0.1 , _a=0.2 , _a=0 , **_a , ) -> Tuple: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = sinusoidal_pos_embds lowerCAmelCase_ = n_layers lowerCAmelCase_ = n_heads lowerCAmelCase_ = dim lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation lowerCAmelCase_ = initializer_range lowerCAmelCase_ = qa_dropout lowerCAmelCase_ = seq_classif_dropout super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ ) class __magic_name__ (__lowerCAmelCase ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
def A(__a: int = 1000 ): lowerCAmelCase_ = -1 lowerCAmelCase_ = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase_ = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase_ = n - a - b if c * c == (a * a + b * b): lowerCAmelCase_ = a * b * c if candidate >= product: lowerCAmelCase_ = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
365
import math def A(__a: int ): return math.sqrt(__a ) * math.sqrt(__a ) == num def A(__a: int ): lowerCAmelCase_ = 0 lowerCAmelCase_ = n while left <= right: lowerCAmelCase_ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase_ = mid - 1 else: lowerCAmelCase_ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
22
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
366
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A(__a: Dict , __a: List[str]=None ): require_version(deps[pkg] , __a )
22
0
import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase__ = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) lowerCamelCase__ = None def A(): lowerCAmelCase_ = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=lowerCamelCase_ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=lowerCamelCase_ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def A(__a: Dict ): lowerCAmelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ = bool(qa["answers"]["text"] ) return qid_to_has_ans def A(__a: List[Any] ): def remove_articles(__a: Tuple ): return ARTICLES_REGEX.sub(" " , lowerCamelCase_ ) def white_space_fix(__a: Dict ): return " ".join(text.split() ) def remove_punc(__a: Optional[int] ): lowerCAmelCase_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a: Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase_ ) ) ) ) def A(__a: List[Any] ): if not s: return [] return normalize_answer(lowerCamelCase_ ).split() def A(__a: str , __a: Dict ): return int(normalize_answer(lowerCamelCase_ ) == normalize_answer(lowerCamelCase_ ) ) def A(__a: Tuple , __a: int ): lowerCAmelCase_ = get_tokens(lowerCamelCase_ ) lowerCAmelCase_ = get_tokens(lowerCamelCase_ ) lowerCAmelCase_ = collections.Counter(lowerCamelCase_ ) & collections.Counter(lowerCamelCase_ ) lowerCAmelCase_ = sum(common.values() ) if len(lowerCamelCase_ ) == 0 or len(lowerCamelCase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCAmelCase_ = 1.0 * num_same / len(lowerCamelCase_ ) lowerCAmelCase_ = 1.0 * num_same / len(lowerCamelCase_ ) lowerCAmelCase_ = (2 * precision * recall) / (precision + recall) return fa def A(__a: Optional[int] , __a: List[Any] ): lowerCAmelCase_ = {} lowerCAmelCase_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase_ = qa['id'] lowerCAmelCase_ = [t for t in qa['answers']['text'] if normalize_answer(lowerCamelCase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase_ = [''] if qid not in preds: print(F"Missing prediction for {qid}" ) continue lowerCAmelCase_ = preds[qid] # Take max over all gold answers lowerCAmelCase_ = max(compute_exact(lowerCamelCase_ , lowerCamelCase_ ) for a in gold_answers ) lowerCAmelCase_ = max(compute_fa(lowerCamelCase_ , lowerCamelCase_ ) for a in gold_answers ) return exact_scores, fa_scores def A(__a: List[str] , __a: Optional[Any] , __a: Any , __a: Tuple ): lowerCAmelCase_ = {} for qid, s in scores.items(): lowerCAmelCase_ = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase_ = float(not qid_to_has_ans[qid] ) else: lowerCAmelCase_ = s return new_scores def A(__a: Optional[Any] , __a: Union[str, Any] , __a: int=None ): if not qid_list: lowerCAmelCase_ = len(lowerCamelCase_ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: lowerCAmelCase_ = len(lowerCamelCase_ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def A(__a: Optional[int] , __a: Any , __a: int ): for k in new_eval: lowerCAmelCase_ = new_eval[k] def A(__a: str , __a: Dict , __a: Union[str, Any] , __a: Union[str, Any] ): plt.step(lowerCamelCase_ , lowerCamelCase_ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(lowerCamelCase_ , lowerCamelCase_ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowerCamelCase_ ) plt.savefig(lowerCamelCase_ ) plt.clf() def A(__a: Dict , __a: int , __a: Optional[int] , __a: str , __a: Dict=None , __a: str=None ): lowerCAmelCase_ = sorted(lowerCamelCase_ , key=lambda __a : na_probs[k] ) lowerCAmelCase_ = 0.0 lowerCAmelCase_ = 1.0 lowerCAmelCase_ = 0.0 lowerCAmelCase_ = [1.0] lowerCAmelCase_ = [0.0] lowerCAmelCase_ = 0.0 for i, qid in enumerate(lowerCamelCase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase_ = true_pos / float(i + 1 ) lowerCAmelCase_ = true_pos / float(lowerCamelCase_ ) if i == len(lowerCamelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCamelCase_ ) recalls.append(lowerCamelCase_ ) if out_image: plot_pr_curve(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return {"ap": 100.0 * avg_prec} def A(__a: Tuple , __a: str , __a: List[str] , __a: Union[str, Any] , __a: Union[str, Any] , __a: List[str] ): if out_image_dir and not os.path.exists(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) lowerCAmelCase_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCAmelCase_ = make_precision_recall_eval( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , out_image=os.path.join(lowerCamelCase_ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase_ = make_precision_recall_eval( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , out_image=os.path.join(lowerCamelCase_ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase_ = {k: float(lowerCamelCase_ ) for k, v in qid_to_has_ans.items()} lowerCAmelCase_ = make_precision_recall_eval( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , out_image=os.path.join(lowerCamelCase_ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(lowerCamelCase_ , lowerCamelCase_ , "pr_exact" ) merge_eval(lowerCamelCase_ , lowerCamelCase_ , "pr_f1" ) merge_eval(lowerCamelCase_ , lowerCamelCase_ , "pr_oracle" ) def A(__a: Any , __a: str , __a: int , __a: Tuple ): if not qid_list: return lowerCAmelCase_ = [na_probs[k] for k in qid_list] lowerCAmelCase_ = np.ones_like(lowerCamelCase_ ) / float(len(lowerCamelCase_ ) ) plt.hist(lowerCamelCase_ , weights=lowerCamelCase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(lowerCamelCase_ , F"na_prob_hist_{name}.png" ) ) plt.clf() def A(__a: Any , __a: Tuple , __a: int , __a: Tuple ): lowerCAmelCase_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCAmelCase_ = num_no_ans lowerCAmelCase_ = cur_score lowerCAmelCase_ = 0.0 lowerCAmelCase_ = sorted(lowerCamelCase_ , key=lambda __a : na_probs[k] ) for i, qid in enumerate(lowerCamelCase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase_ = scores[qid] else: if preds[qid]: lowerCAmelCase_ = -1 else: lowerCAmelCase_ = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase_ = cur_score lowerCAmelCase_ = na_probs[qid] return 100.0 * best_score / len(lowerCamelCase_ ), best_thresh def A(__a: Any , __a: List[str] , __a: Optional[int] , __a: Any , __a: Any , __a: List[Any] ): lowerCAmelCase_ = find_best_thresh(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase_ = find_best_thresh(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase_ = best_exact lowerCAmelCase_ = exact_thresh lowerCAmelCase_ = best_fa lowerCAmelCase_ = fa_thresh def A(): with open(OPTS.data_file ) as f: lowerCAmelCase_ = json.load(lowerCamelCase_ ) lowerCAmelCase_ = dataset_json['data'] with open(OPTS.pred_file ) as f: lowerCAmelCase_ = json.load(lowerCamelCase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCAmelCase_ = json.load(lowerCamelCase_ ) else: lowerCAmelCase_ = {k: 0.0 for k in preds} lowerCAmelCase_ = make_qid_to_has_ans(lowerCamelCase_ ) # maps qid to True/False lowerCAmelCase_ = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase_ = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase_ = get_raw_scores(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase_ = apply_no_ans_threshold(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , OPTS.na_prob_thresh ) lowerCAmelCase_ = apply_no_ans_threshold(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , OPTS.na_prob_thresh ) lowerCAmelCase_ = make_eval_dict(lowerCamelCase_ , lowerCamelCase_ ) if has_ans_qids: lowerCAmelCase_ = make_eval_dict(lowerCamelCase_ , lowerCamelCase_ , qid_list=lowerCamelCase_ ) merge_eval(lowerCamelCase_ , lowerCamelCase_ , "HasAns" ) if no_ans_qids: lowerCAmelCase_ = make_eval_dict(lowerCamelCase_ , lowerCamelCase_ , qid_list=lowerCamelCase_ ) merge_eval(lowerCamelCase_ , lowerCamelCase_ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , OPTS.out_image_dir ) histogram_na_prob(lowerCamelCase_ , lowerCamelCase_ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(lowerCamelCase_ , lowerCamelCase_ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) else: print(json.dumps(lowerCamelCase_ , indent=2 ) ) if __name__ == "__main__": lowerCamelCase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
367
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging lowerCamelCase__ = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] lowerCamelCase__ = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ''' Hello world! cécé herlolip''' lowerCamelCase__ = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def A(__a: Any ): lowerCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(__a , __a ) def A(__a: Optional[int] , __a: List[Any] , __a: Union[str, Any] ): lowerCAmelCase_ = dct.pop(__a ) lowerCAmelCase_ = val def A(__a: Tuple ): lowerCAmelCase_ = torch.load(__a , map_location="cpu" ) lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def A(__a: List[str] ): lowerCAmelCase_ , lowerCAmelCase_ = emb.weight.shape lowerCAmelCase_ = nn.Linear(__a , __a , bias=__a ) lowerCAmelCase_ = emb.weight.data return lin_layer @torch.no_grad() def A(__a: Tuple , __a: Union[str, Any] , __a: str=None ): if not os.path.exists(__a ): lowerCAmelCase_ = torch.hub.load("pytorch/fairseq" , __a ).eval() else: lowerCAmelCase_ = load_xsum_checkpoint(__a ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: lowerCAmelCase_ = checkpoint_path.replace("." , "-" ) lowerCAmelCase_ = BartConfig.from_pretrained(__a ) lowerCAmelCase_ = bart.encode(__a ).unsqueeze(0 ) lowerCAmelCase_ = BartTokenizer.from_pretrained(__a ).encode(__a , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(__a , __a ).all(): raise ValueError( F"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": lowerCAmelCase_ = bart.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(__a , __a , __a ) lowerCAmelCase_ = BartForSequenceClassification(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = bart.predict("mnli" , __a , return_logits=__a ) lowerCAmelCase_ = model(__a )[0] # logits else: # no classification heads to worry about lowerCAmelCase_ = bart.model.state_dict() remove_ignore_keys_(__a ) lowerCAmelCase_ = state_dict["decoder.embed_tokens.weight"] lowerCAmelCase_ = bart.extract_features(__a ) if hf_checkpoint_name == "facebook/bart-large": lowerCAmelCase_ = BartModel(__a ).eval() model.load_state_dict(__a ) lowerCAmelCase_ = model(__a ).model[0] else: lowerCAmelCase_ = BartForConditionalGeneration(__a ).eval() # an existing summarization ckpt model.model.load_state_dict(__a ) if hasattr(__a , "lm_head" ): lowerCAmelCase_ = make_linear_from_emb(model.model.shared ) lowerCAmelCase_ = model.model(__a )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(__a ).mkdir(exist_ok=__a ) model.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) lowerCamelCase__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
22
0
def A(__a: float , __a: float , __a: float , __a: float , __a: float , ): lowerCAmelCase_ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: lowerCAmelCase_ = 1 - (matter_density + radiation_density + dark_energy) lowerCAmelCase_ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCAmelCase_ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCamelCase__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
368
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = '''google/mobilebert-uncased''' def __a ( self ) -> Optional[Any]: super().setUp() lowerCAmelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase_ = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __a ( self , _a ) -> Any: lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = "unwanted, running" return input_text, output_text def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class(self.vocab_file ) lowerCAmelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self ) -> Tuple: if not self.test_rust_tokenizer: return lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing lowerCAmelCase_ = self.get_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = self.get_rust_tokenizer(do_lower_case=_a ) lowerCAmelCase_ = "UNwant\u00E9d,running" lowerCAmelCase_ = tokenizer.tokenize(_a ) lowerCAmelCase_ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = tokenizer.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = self.get_rust_tokenizer() lowerCAmelCase_ = tokenizer.encode(_a ) lowerCAmelCase_ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __a ( self ) -> Dict: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __a ( self ) -> str: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> List[str]: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __a ( self ) -> Any: lowerCAmelCase_ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __a ( self ) -> Any: lowerCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCAmelCase_ = {} for i, token in enumerate(_a ): lowerCAmelCase_ = i lowerCAmelCase_ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __a ( self ) -> Optional[int]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __a ( self ) -> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __a ( self ) -> Dict: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __a ( self ) -> Any: lowerCAmelCase_ = self.get_tokenizer() lowerCAmelCase_ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) lowerCAmelCase_ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a ) lowerCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __a ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCAmelCase_ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) lowerCAmelCase_ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False lowerCAmelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = ["的", "人", "有"] lowerCAmelCase_ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCAmelCase_ = True lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) lowerCAmelCase_ = False lowerCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = self.tokenizer_class.from_pretrained(_a , **_a ) lowerCAmelCase_ = tokenizer_r.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_p.encode(_a , add_special_tokens=_a ) lowerCAmelCase_ = tokenizer_r.convert_ids_to_tokens(_a ) lowerCAmelCase_ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
22
0
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , R'''\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ''' , ) class __magic_name__ (_lowerCAmelCase ): def __a ( self , _a ) -> Optional[Any]: if self.framework == "tf": lowerCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowerCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ) else: raise ValueError("Unsupported framework" ) return masked_index def __a ( self , _a ) -> Any: lowerCAmelCase_ = self.get_masked_index(_lowercase ) lowerCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def __a ( self , _a ) -> Optional[Any]: if isinstance(_lowercase , _lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowercase ) def __a ( self , _a , _a=None , **_a ) -> Optional[int]: if return_tensors is None: lowerCAmelCase_ = self.framework lowerCAmelCase_ = self.tokenizer(_lowercase , return_tensors=_lowercase ) self.ensure_exactly_one_mask_token(_lowercase ) return model_inputs def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = self.model(**_lowercase ) lowerCAmelCase_ = model_inputs["input_ids"] return model_outputs def __a ( self , _a , _a=5 , _a=None ) -> int: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowerCAmelCase_ = target_ids.shape[0] lowerCAmelCase_ = model_outputs["input_ids"][0] lowerCAmelCase_ = model_outputs["logits"] if self.framework == "tf": lowerCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowerCAmelCase_ = outputs.numpy() lowerCAmelCase_ = outputs[0, masked_index, :] lowerCAmelCase_ = stable_softmax(_lowercase , axis=-1 ) if target_ids is not None: lowerCAmelCase_ = tf.gather_nd(tf.squeeze(_lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) lowerCAmelCase_ = tf.expand_dims(_lowercase , 0 ) lowerCAmelCase_ = tf.math.top_k(_lowercase , k=_lowercase ) lowerCAmelCase_ , lowerCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: lowerCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowerCAmelCase_ = outputs[0, masked_index, :] lowerCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: lowerCAmelCase_ = probs[..., target_ids] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(_lowercase ) lowerCAmelCase_ = [] lowerCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowerCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowerCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: lowerCAmelCase_ = target_ids[p].tolist() lowerCAmelCase_ = p # Filter padding out: lowerCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCAmelCase_ = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) lowerCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(_lowercase ) result.append(_lowercase ) if single_mask: return result[0] return result def __a ( self , _a , _a=None ) -> List[Any]: if isinstance(_lowercase , _lowercase ): lowerCAmelCase_ = [targets] try: lowerCAmelCase_ = self.tokenizer.get_vocab() except Exception: lowerCAmelCase_ = {} lowerCAmelCase_ = [] for target in targets: lowerCAmelCase_ = vocab.get(_lowercase , _lowercase ) if id_ is None: lowerCAmelCase_ = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , max_length=1 , truncation=_lowercase , )["input_ids"] if len(_lowercase ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it" ) continue lowerCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowerCAmelCase_ = list(set(_lowercase ) ) if len(_lowercase ) == 0: raise ValueError("At least one target must be provided when passed." ) lowerCAmelCase_ = np.array(_lowercase ) return target_ids def __a ( self , _a=None , _a=None ) -> Optional[int]: lowerCAmelCase_ = {} if targets is not None: lowerCAmelCase_ = self.get_target_ids(_lowercase , _lowercase ) lowerCAmelCase_ = target_ids if top_k is not None: lowerCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: lowerCAmelCase_ = super().__call__(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _UpperCAmelCase (_a ): lowerCamelCase__ = """M-CLIP""" def __init__( self , _a=1024 , _a=768 , **_a ) -> int: lowerCAmelCase_ = transformerDimSize lowerCAmelCase_ = imageDimSize super().__init__(**__lowerCAmelCase ) class _UpperCAmelCase (_a ): lowerCamelCase__ = MCLIPConfig def __init__( self , _a , *_a , **_a ) -> str: super().__init__(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) lowerCAmelCase_ = XLMRobertaModel(__lowerCAmelCase ) lowerCAmelCase_ = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __a ( self , _a , _a ) -> int: lowerCAmelCase_ = self.transformer(input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] lowerCAmelCase_ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__lowerCAmelCase ), embs
370
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''mobilenet_v2''' def __init__( self , _a=3 , _a=224 , _a=1.0 , _a=8 , _a=8 , _a=6 , _a=32 , _a=True , _a=True , _a="relu6" , _a=True , _a=0.8 , _a=0.0_2 , _a=0.0_0_1 , _a=255 , **_a , ) -> Dict: super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCAmelCase_ = num_channels lowerCAmelCase_ = image_size lowerCAmelCase_ = depth_multiplier lowerCAmelCase_ = depth_divisible_by lowerCAmelCase_ = min_depth lowerCAmelCase_ = expand_ratio lowerCAmelCase_ = output_stride lowerCAmelCase_ = first_layer_is_expansion lowerCAmelCase_ = finegrained_output lowerCAmelCase_ = hidden_act lowerCAmelCase_ = tf_padding lowerCAmelCase_ = classifier_dropout_prob lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = semantic_loss_ignore_index class __magic_name__ (__lowercase ): lowerCamelCase__ = version.parse('''1.11''' ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})] ) @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def __a ( self ) -> float: return 1E-4
22
0
def A(__a: Any , __a: Tuple ): return "\n".join( F"{number} * {i} = {number * i}" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A(__a: str , __a: Union[str, Any] , __a: Union[str, Any] , __a: Any=5 ): assert masked_input.count("<mask>" ) == 1 lowerCAmelCase_ = torch.tensor(tokenizer.encode(A__ , add_special_tokens=A__ ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase_ = model(A__ )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase_ = logits[0, masked_index, :] lowerCAmelCase_ = logits.softmax(dim=0 ) lowerCAmelCase_ = prob.topk(k=A__ , dim=0 ) lowerCAmelCase_ = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A__ ) )] ) lowerCAmelCase_ = tokenizer.mask_token lowerCAmelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): lowerCAmelCase_ = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(A__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(A__ ) , A__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A__ , A__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs lowerCamelCase__ = CamembertTokenizer.from_pretrained('''camembert-base''') lowerCamelCase__ = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() lowerCamelCase__ = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
350
def A(__a: Tuple ): lowerCAmelCase_ = len(__a ) while cur > 1: # Find the maximum number in arr lowerCAmelCase_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list lowerCAmelCase_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": lowerCamelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
22
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __magic_name__ : lowerCamelCase__ = None def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase_ = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , snake_case_ ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = os.path.join(snake_case_ , "feat_extract.json" ) feat_extract_first.to_json_file(snake_case_ ) lowerCAmelCase_ = self.feature_extraction_class.from_json_file(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) lowerCAmelCase_ = self.feature_extraction_class.from_pretrained(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.feature_extraction_class() self.assertIsNotNone(snake_case_ )
351
import string from math import logaa def A(__a: str , __a: str ): lowerCAmelCase_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) lowerCAmelCase_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A(__a: str , __a: str ): lowerCAmelCase_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' lowerCAmelCase_ = corpus_without_punctuation.split("\n" ) lowerCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__a )) def A(__a: int , __a: int , __a: List[Any]=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def A(__a: int , __a: int ): return round(tf * idf , 3 )
22
0
import sys lowerCamelCase__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def A(__a: str ): lowerCAmelCase_ = 1 for digit in s: product *= int(__a ) return product def A(__a: str = N ): lowerCAmelCase_ = -sys.maxsize - 1 lowerCAmelCase_ = n[:13] lowerCAmelCase_ = 13 while cur_index < len(__a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): lowerCAmelCase_ = substr[1:] + n[cur_index] cur_index += 1 else: lowerCAmelCase_ = max(__a , str_eval(__a ) ) lowerCAmelCase_ = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
352
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def A(__a: str , __a: List[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) return (preds == labels).mean() def A(__a: Any , __a: Any ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = simple_accuracy(__a , __a ) lowerCAmelCase_ = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def A(__a: List[str] , __a: Optional[int] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) lowerCAmelCase_ = pearsonr(__a , __a )[0] lowerCAmelCase_ = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def A(__a: Union[str, Any] , __a: Any , __a: str ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) assert len(__a ) == len(__a ), F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def A(__a: int , __a: Optional[Any] , __a: Optional[Any] ): warnings.warn(__a , __a ) requires_backends(__a , "sklearn" ) if len(__a ) != len(__a ): raise ValueError(F"Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}" ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
22
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ (__lowercase ): lowerCamelCase__ = ['''image_processor''', '''tokenizer'''] lowerCamelCase__ = '''ViTImageProcessor''' lowerCamelCase__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _a=None , _a=None , **_a ) -> Tuple: lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _a , ) lowerCAmelCase_ = kwargs.pop("feature_extractor" ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_a , _a ) def __call__( self , _a=None , _a=None , _a=None , _a=None , **_a ) -> Dict: if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images." ) if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." ) if text is not None: lowerCAmelCase_ = self.tokenizer(_a , return_tensors=_a , **_a ) if visual_prompt is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if images is not None: lowerCAmelCase_ = self.image_processor(_a , return_tensors=_a , **_a ) if visual_prompt is not None and images is not None: lowerCAmelCase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowerCAmelCase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_a ) , tensor_type=_a ) def __a ( self , *_a , **_a ) -> List[str]: return self.tokenizer.batch_decode(*_a , **_a ) def __a ( self , *_a , **_a ) -> Optional[int]: return self.tokenizer.decode(*_a , **_a ) @property def __a ( self ) -> List[str]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _a , ) return self.image_processor_class @property def __a ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _a , ) return self.image_processor
22
0
def A(__a: Any = 1000 ): return sum(e for e in range(3 , __a ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
354
import datasets lowerCamelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' lowerCamelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' lowerCamelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def A(__a: Dict , __a: Union[str, Any] ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def __a ( self , _a , _a ) -> List[str]: return {"accuracy": simple_accuracy(_a , _a )}
22
0
import random from typing import Any def A(__a: list ): for _ in range(len(lowerCamelCase_ ) ): lowerCAmelCase_ = random.randint(0 , len(lowerCamelCase_ ) - 1 ) lowerCAmelCase_ = random.randint(0 , len(lowerCamelCase_ ) - 1 ) lowerCAmelCase_ = data[b], data[a] return data if __name__ == "__main__": lowerCamelCase__ = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ = ['python', 'says', 'hello', '!'] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
355
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCamelCase__ = '''bert-base-cased''' lowerCamelCase__ = '''google/pegasus-xsum''' lowerCamelCase__ = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCamelCase__ = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCamelCase__ = '''patrickvonplaten/t5-tiny-random''' lowerCamelCase__ = '''sshleifer/bart-tiny-random''' lowerCamelCase__ = '''sshleifer/tiny-mbart''' lowerCamelCase__ = '''sshleifer/tiny-marian-en-de''' def A(__a: Path , __a: list ): lowerCAmelCase_ = "\n".join(__a ) Path(__a ).open("w" ).writelines(__a ) def A(__a: str ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__a , F"{split}.source" ) , __a ) _dump_articles(os.path.join(__a , F"{split}.target" ) , __a ) return tmp_dir class __magic_name__ (__lowercase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _a ) -> Dict: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCAmelCase_ , lowerCAmelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a , _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCAmelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _a ) -> str: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) lowerCAmelCase_ = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) lowerCAmelCase_ = 4 lowerCAmelCase_ = LegacySeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=20 , max_target_length=_a , ) lowerCAmelCase_ = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCAmelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCAmelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a , _a , 128 , _a ) lowerCAmelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCAmelCase_ = {x.name for x in save_dir.iterdir()} lowerCAmelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def __a ( self ) -> Any: if not FAIRSEQ_AVAILABLE: return lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=64 ) lowerCAmelCase_ = 64 lowerCAmelCase_ = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a ) lowerCAmelCase_ = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples lowerCAmelCase_ = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for batch in data_loader: lowerCAmelCase_ = batch["input_ids"].shape lowerCAmelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCAmelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f"too many tokens in {len(_a )} batches" ) def __a ( self ) -> List[str]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset(max_len=512 ) lowerCAmelCase_ = 2 lowerCAmelCase_ = ds.make_sortish_sampler(_a , shuffle=_a ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 ) lowerCAmelCase_ = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a ) lowerCAmelCase_ = tokenizer.pad_token_id def count_pad_tokens(_a , _a="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a , k="labels" ) ) < sum(count_pad_tokens(_a , k="labels" ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __a ( self , _a=1000 , _a=128 ) -> str: if os.getenv("USE_REAL_DATA" , _a ): lowerCAmelCase_ = "examples/seq2seq/wmt_en_ro" lowerCAmelCase_ = max_len * 2 * 64 if not Path(_a ).joinpath("train.len" ).exists(): save_len_file(_a , _a ) else: lowerCAmelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCAmelCase_ = max_len * 4 save_len_file(_a , _a ) lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a ) lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=_a , type_path="train" , max_source_length=_a , max_target_length=_a , n_obs=_a , ) return ds, max_tokens, tokenizer def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self._get_dataset() lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) ) lowerCAmelCase_ = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = AutoTokenizer.from_pretrained(_a , use_fast=_a ) if tok_name == MBART_TINY: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCAmelCase_ = SeqaSeqDataset( _a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCAmelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
22
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self , _a , _a=2 , _a=True , _a=False , _a=10 , _a=3 , _a=32 * 8 , _a=32 * 8 , _a=4 , _a=64 , ) -> Optional[int]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = is_training lowerCAmelCase_ = use_auxiliary_loss lowerCAmelCase_ = num_queries lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_size lowerCAmelCase_ = max_size lowerCAmelCase_ = num_labels lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = hidden_dim def __a ( self ) -> Tuple: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _A ) lowerCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_A ) lowerCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_A ) > 0.5 ).float() lowerCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_A ) > 0.5).long() lowerCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __a ( self ) -> Any: lowerCAmelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase_ = self.num_queries lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = [1, 1, 1, 1] lowerCAmelCase_ = self.num_channels lowerCAmelCase_ = 64 lowerCAmelCase_ = 128 lowerCAmelCase_ = self.hidden_dim lowerCAmelCase_ = self.hidden_dim lowerCAmelCase_ = self.hidden_dim return config def __a ( self ) -> Any: lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __a ( self , _a , _a ) -> Optional[int]: lowerCAmelCase_ = output.encoder_hidden_states lowerCAmelCase_ = output.pixel_decoder_hidden_states lowerCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_A ) , config.decoder_layers ) def __a ( self , _a , _a , _a , _a=False ) -> List[str]: with torch.no_grad(): lowerCAmelCase_ = MaskaFormerModel(config=_A ) model.to(_A ) model.eval() lowerCAmelCase_ = model(pixel_values=_A , pixel_mask=_A ) lowerCAmelCase_ = model(_A , output_hidden_states=_A ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_A , _A ) def __a ( self , _a , _a , _a , _a , _a ) -> List[str]: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation(config=_A ) model.to(_A ) model.eval() def comm_check_on_output(_a ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase_ = model(pixel_values=_A , pixel_mask=_A ) lowerCAmelCase_ = model(_A ) comm_check_on_output(_A ) lowerCAmelCase_ = model( pixel_values=_A , pixel_mask=_A , mask_labels=_A , class_labels=_A ) comm_check_on_output(_A ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase__ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> Optional[int]: lowerCAmelCase_ = MaskaFormerModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_A , has_text_modality=_A ) def __a ( self ) -> Any: self.config_tester.run_common_tests() def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def __a ( self ) -> Any: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_A ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def __a ( self ) -> List[Any]: pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def __a ( self ) -> List[Any]: pass @unittest.skip(reason="Mask2Former is not a generative model" ) def __a ( self ) -> Optional[int]: pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def __a ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" ) def __a ( self ) -> Tuple: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self ) -> List[str]: pass def __a ( self ) -> Any: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_A ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) @slow def __a ( self ) -> Union[str, Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase_ = MaskaFormerModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = (self.model_tester.min_size,) * 2 lowerCAmelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_A ), 'mask_labels': torch.randn((2, 10, *size) , device=_A ), 'class_labels': torch.zeros(2 , 10 , device=_A ).long(), } lowerCAmelCase_ = self.model_tester.get_config() lowerCAmelCase_ = MaskaFormerForUniversalSegmentation(_A ).to(_A ) lowerCAmelCase_ = model(**_A ) self.assertTrue(outputs.loss is not None ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_A , **_A , output_hidden_states=_A ) def __a ( self ) -> Dict: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_A ).to(_A ) lowerCAmelCase_ = model(**_A , output_attentions=_A ) self.assertTrue(outputs.attentions is not None ) def __a ( self ) -> Union[str, Any]: if not self.model_tester.is_training: return lowerCAmelCase_ = self.all_model_classes[1] lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ = model_class(_A ) model.to(_A ) model.train() lowerCAmelCase_ = model(_A , mask_labels=_A , class_labels=_A ).loss loss.backward() def __a ( self ) -> Tuple: lowerCAmelCase_ = self.all_model_classes[1] lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_A ).to(_A ) model.train() lowerCAmelCase_ = model(_A , mask_labels=_A , class_labels=_A ) lowerCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_A ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ = 1e-4 def A(): lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class __magic_name__ (unittest.TestCase ): @cached_property def __a ( self ) -> Any: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __a ( self ) -> Any: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __a ( self ) -> Tuple: lowerCAmelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_A ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(_A , return_tensors="pt" ).to(_A ) lowerCAmelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase_ = model(**_A ) lowerCAmelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_A ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) lowerCAmelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_A ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _A , atol=_A ) ) lowerCAmelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_A ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _A , atol=_A ) ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(_A , return_tensors="pt" ).to(_A ) lowerCAmelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_A , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase_ = model(**_A ) # masks_queries_logits lowerCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] lowerCAmelCase_ = torch.tensor(_A ).to(_A ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _A , atol=_A ) ) # class_queries_logits lowerCAmelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_A ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _A , atol=_A ) ) def __a ( self ) -> int: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_A ).eval() lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase_ = inputs['pixel_values'].to(_A ) lowerCAmelCase_ = [el.to(_A ) for el in inputs['mask_labels']] lowerCAmelCase_ = [el.to(_A ) for el in inputs['class_labels']] with torch.no_grad(): lowerCAmelCase_ = model(**_A ) self.assertTrue(outputs.loss is not None )
356
def A(__a: Optional[Any] ): lowerCAmelCase_ = len(__a ) lowerCAmelCase_ = sum(__a ) lowerCAmelCase_ = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase_ = True for i in range(1 , s + 1 ): lowerCAmelCase_ = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase_ = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase_ = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase_ = s - 2 * j break return diff
22
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ (lowerCamelCase__ , unittest.TestCase ): lowerCamelCase__ = CTRLTokenizer lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] lowerCAmelCase_ = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCAmelCase_ = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] lowerCAmelCase_ = {'unk_token': '<unk>'} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__snake_case ) ) def __a ( self , **_a ) -> Any: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __a ( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = 'adapt react readapt apt' lowerCAmelCase_ = 'adapt react readapt apt' return input_text, output_text def __a ( self ) -> List[str]: lowerCAmelCase_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = 'adapt react readapt apt' lowerCAmelCase_ = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() lowerCAmelCase_ = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case )
357
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def A(__a: Any , __a: Union[str, Any] , __a: List[str] ): lowerCAmelCase_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } lowerCAmelCase_ = F"{src_lang}-{tgt_lang}" lowerCAmelCase_ = F"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(__a , exist_ok=__a ) lowerCAmelCase_ = os.path.join(__a , "README.md" ) print(F"Generating {path}" ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(__a ) # make sure we are under the root of the project lowerCamelCase__ = Path(__file__).resolve().parent.parent.parent lowerCamelCase__ = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = model_name.split('''-''') lowerCamelCase__ = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCamelCase__ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["DPTFeatureExtractor"] lowerCamelCase__ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
import re from filelock import FileLock try: import nltk lowerCamelCase__ = True except (ImportError, ModuleNotFoundError): lowerCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A(__a: str ): re.sub("<n>" , "" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
22
0
"""simple docstring""" import math def A(__a: Optional[Any] , __a: Tuple ): if ( not isinstance(__a , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * power_factor def A(__a: Dict , __a: List[str] ): if ( not isinstance(__a , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError("power_factor must be a valid float value between -1 and 1." ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
359
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCamelCase__ = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
0
from torch import nn def A(__a: Optional[Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"Unsupported activation function: {act_fn}" )
360
import logging from transformers import PretrainedConfig lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bertabs''' def __init__( self , _a=30522 , _a=512 , _a=6 , _a=512 , _a=8 , _a=512 , _a=0.2 , _a=6 , _a=768 , _a=8 , _a=2048 , _a=0.2 , **_a , ) -> List[Any]: super().__init__(**_a ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = max_pos lowerCAmelCase_ = enc_layers lowerCAmelCase_ = enc_hidden_size lowerCAmelCase_ = enc_heads lowerCAmelCase_ = enc_ff_size lowerCAmelCase_ = enc_dropout lowerCAmelCase_ = dec_layers lowerCAmelCase_ = dec_hidden_size lowerCAmelCase_ = dec_heads lowerCAmelCase_ = dec_ff_size lowerCAmelCase_ = dec_dropout
22
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def A(__a: Dict , __a: Any ): lowerCAmelCase_ = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase_ = model_name.find("patch" ) lowerCAmelCase_ = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) lowerCAmelCase_ = XCLIPVisionConfig(patch_size=__snake_case , num_frames=__snake_case ) if "large" in model_name: lowerCAmelCase_ = 768 lowerCAmelCase_ = 3072 lowerCAmelCase_ = 12 lowerCAmelCase_ = 1024 lowerCAmelCase_ = 4096 lowerCAmelCase_ = 16 lowerCAmelCase_ = 24 lowerCAmelCase_ = 768 lowerCAmelCase_ = 3072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = 336 lowerCAmelCase_ = XCLIPConfig.from_text_vision_configs(__snake_case , __snake_case ) if "large" in model_name: lowerCAmelCase_ = 768 return config def A(__a: Any ): if name == "token_embedding.weight": lowerCAmelCase_ = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": lowerCAmelCase_ = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: lowerCAmelCase_ = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase_ = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase_ = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase_ = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): lowerCAmelCase_ = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase_ = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: lowerCAmelCase_ = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase_ = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": lowerCAmelCase_ = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): lowerCAmelCase_ = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: lowerCAmelCase_ = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: lowerCAmelCase_ = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: lowerCAmelCase_ = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: lowerCAmelCase_ = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: lowerCAmelCase_ = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase_ = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: lowerCAmelCase_ = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": lowerCAmelCase_ = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): lowerCAmelCase_ = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): lowerCAmelCase_ = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def A(__a: Dict , __a: Any ): for key in orig_state_dict.copy().keys(): lowerCAmelCase_ = orig_state_dict.pop(__snake_case ) if "attn.in_proj" in key: lowerCAmelCase_ = key.split("." ) if key.startswith("visual" ): lowerCAmelCase_ = key_split[3] lowerCAmelCase_ = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[ :dim ] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[ -dim: ] else: if "weight" in key: lowerCAmelCase_ = val[ :dim, : ] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[ -dim:, : ] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] elif key.startswith("mit" ): lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[dim : dim * 2, :] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[dim : dim * 2] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = key_split[2] lowerCAmelCase_ = config.text_config.hidden_size if "weight" in key: lowerCAmelCase_ = val[:dim, :] lowerCAmelCase_ = val[ dim : dim * 2, : ] lowerCAmelCase_ = val[-dim:, :] else: lowerCAmelCase_ = val[:dim] lowerCAmelCase_ = val[ dim : dim * 2 ] lowerCAmelCase_ = val[-dim:] else: lowerCAmelCase_ = rename_key(__snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase_ = val.T lowerCAmelCase_ = val return orig_state_dict def A(__a: int ): if num_frames == 8: lowerCAmelCase_ = "eating_spaghetti_8_frames.npy" elif num_frames == 16: lowerCAmelCase_ = "eating_spaghetti.npy" elif num_frames == 32: lowerCAmelCase_ = "eating_spaghetti_32_frames.npy" lowerCAmelCase_ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=__snake_case , repo_type="dataset" , ) lowerCAmelCase_ = np.load(__snake_case ) return list(__snake_case ) def A(__a: List[str] , __a: Tuple=None , __a: List[str]=False ): lowerCAmelCase_ = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } lowerCAmelCase_ = model_to_url[model_name] lowerCAmelCase_ = 8 if "16-frames" in model_name: lowerCAmelCase_ = 16 elif "shot" in model_name: lowerCAmelCase_ = 32 lowerCAmelCase_ = get_xclip_config(__snake_case , __snake_case ) lowerCAmelCase_ = XCLIPModel(__snake_case ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase_ = "pytorch_model.bin" gdown.cached_download(__snake_case , __snake_case , quiet=__snake_case ) lowerCAmelCase_ = torch.load(__snake_case , map_location="cpu" )["model"] else: lowerCAmelCase_ = torch.hub.load_state_dict_from_url(__snake_case )["model"] lowerCAmelCase_ = convert_state_dict(__snake_case , __snake_case ) lowerCAmelCase_ = XCLIPModel(__snake_case ) lowerCAmelCase_ , lowerCAmelCase_ = model.load_state_dict(__snake_case , strict=__snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase_ = 336 if model_name == "xclip-large-patch14-16-frames" else 224 lowerCAmelCase_ = VideoMAEImageProcessor(size=__snake_case ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase_ = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase_ = XCLIPProcessor(image_processor=__snake_case , tokenizer=__snake_case ) lowerCAmelCase_ = prepare_video(__snake_case ) lowerCAmelCase_ = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=__snake_case , return_tensors="pt" , padding=__snake_case ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase_ = model(**__snake_case ) # Verify outputs lowerCAmelCase_ = outputs.logits_per_video lowerCAmelCase_ = logits_per_video.softmax(dim=1 ) print("Probs:" , __snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase_ = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase_ = torch.tensor([[7.09_99E-04, 9.98_83E-01, 4.55_80E-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase_ = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase_ = torch.tensor([[7.69_37E-04, 9.97_28E-01, 1.94_73E-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase_ = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase_ = torch.tensor([[3.38_77E-04, 9.99_37E-01, 2.88_88E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase_ = torch.tensor([[3.85_54E-04, 9.99_29E-01, 3.27_54E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase_ = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase_ = torch.tensor([[7.18_90E-06, 9.99_94E-01, 5.65_59E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase_ = torch.tensor([[1.03_20E-05, 9.99_93E-01, 6.24_35E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase_ = torch.tensor([[4.13_77E-06, 9.99_90E-01, 9.83_86E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase_ = torch.tensor([[4.13_47E-05, 9.99_62E-01, 3.34_11E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase_ = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase_ = torch.tensor([[8.58_57E-05, 9.99_28E-01, 6.32_91E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase_ = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase_ = torch.tensor([[9.82_19E-04, 9.95_93E-01, 3.08_63E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase_ = torch.tensor([[3.50_82E-04, 9.97_85E-01, 1.79_66E-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(__snake_case , __snake_case , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__snake_case ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(__snake_case , organization="nielsr" ) processor.push_to_hub(__snake_case , organization="nielsr" ) slow_tokenizer.push_to_hub(__snake_case , organization="nielsr" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
361
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def A(__a: Tuple , __a: Union[str, Any] ): lowerCAmelCase_ = checkpoint lowerCAmelCase_ = {} lowerCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] lowerCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] lowerCAmelCase_ = vae_state_dict["quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["quant_conv.bias"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.weight"] lowerCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"down.{layer_id}" in key] for layer_id in range(__a ) } # Retrieves the keys for the decoder up blocks only lowerCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) lowerCAmelCase_ = { layer_id: [key for key in vae_state_dict if F"up.{layer_id}" in key] for layer_id in range(__a ) } for i in range(__a ): lowerCAmelCase_ = [key for key in down_blocks[i] if F"down.{i}" in key and F"down.{i}.downsample" not in key] if F"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.weight" ) lowerCAmelCase_ = vae_state_dict.pop( F"encoder.down.{i}.downsample.conv.bias" ) lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"down.{i}.block", "new": F"down_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"encoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) for i in range(__a ): lowerCAmelCase_ = num_up_blocks - 1 - i lowerCAmelCase_ = [ key for key in up_blocks[block_id] if F"up.{block_id}" in key and F"up.{block_id}.upsample" not in key ] if F"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.weight" ] lowerCAmelCase_ = vae_state_dict[ F"decoder.up.{block_id}.upsample.conv.bias" ] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"up.{block_id}.block", "new": F"up_blocks.{i}.resnets"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] lowerCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowerCAmelCase_ = [key for key in mid_resnets if F"decoder.mid.block_{i}" in key] lowerCAmelCase_ = renew_vae_resnet_paths(__a ) lowerCAmelCase_ = {"old": F"mid.block_{i}", "new": F"mid_block.resnets.{i - 1}"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) lowerCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] lowerCAmelCase_ = renew_vae_attention_paths(__a ) lowerCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(__a , __a , __a , additional_replacements=[meta_path] , config=__a ) conv_attn_to_linear(__a ) return new_checkpoint def A(__a: str , __a: str , ): # Only support V1 lowerCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) lowerCAmelCase_ = io.BytesIO(r.content ) lowerCAmelCase_ = OmegaConf.load(__a ) lowerCAmelCase_ = 512 lowerCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open lowerCAmelCase_ = {} with safe_open(__a , framework="pt" , device="cpu" ) as f: for key in f.keys(): lowerCAmelCase_ = f.get_tensor(__a ) else: lowerCAmelCase_ = torch.load(__a , map_location=__a )["state_dict"] # Convert the VAE model. lowerCAmelCase_ = create_vae_diffusers_config(__a , image_size=__a ) lowerCAmelCase_ = custom_convert_ldm_vae_checkpoint(__a , __a ) lowerCAmelCase_ = AutoencoderKL(**__a ) vae.load_state_dict(__a ) vae.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') lowerCamelCase__ = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
22
0
from collections import deque from math import floor from random import random from time import time class __magic_name__ : def __init__( self ) -> List[str]: lowerCAmelCase_ = {} def __a ( self , _a , _a , _a=1 ) -> List[Any]: if self.graph.get(UpperCamelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowerCAmelCase_ = [[w, v]] if not self.graph.get(UpperCamelCase__ ): lowerCAmelCase_ = [] def __a ( self ) -> Dict: return list(self.graph ) def __a ( self , _a , _a ) -> Optional[int]: if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) def __a ( self , _a=-2 , _a=-1 ) -> List[Any]: if s == d: return [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) lowerCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: lowerCAmelCase_ = stack[len(UpperCamelCase__ ) - 1] else: lowerCAmelCase_ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def __a ( self , _a=-1 ) -> str: if c == -1: lowerCAmelCase_ = floor(random() * 10000 ) + 10 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase_ = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def __a ( self , _a=-2 ) -> int: lowerCAmelCase_ = deque() lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: lowerCAmelCase_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __a ( self , _a ) -> str: lowerCAmelCase_ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __a ( self , _a ) -> Any: return len(self.graph[u] ) def __a ( self , _a=-2 ) -> Optional[Any]: lowerCAmelCase_ = [] lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) lowerCAmelCase_ = s lowerCAmelCase_ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(UpperCamelCase__ ) != 0: lowerCAmelCase_ = stack[len(UpperCamelCase__ ) - 1] else: lowerCAmelCase_ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return sorted_nodes def __a ( self ) -> List[str]: lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(UpperCamelCase__ ) != 0: lowerCAmelCase_ = stack[len(UpperCamelCase__ ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(UpperCamelCase__ ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(UpperCamelCase__ ) != 0: lowerCAmelCase_ = stack[len(UpperCamelCase__ ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(UpperCamelCase__ ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def __a ( self , _a=-2 , _a=-1 ) -> str: lowerCAmelCase_ = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase_ = time() return end - begin def __a ( self , _a=-2 ) -> int: lowerCAmelCase_ = time() self.bfs(UpperCamelCase__ ) lowerCAmelCase_ = time() return end - begin class __magic_name__ : def __init__( self ) -> str: lowerCAmelCase_ = {} def __a ( self , _a , _a , _a=1 ) -> Tuple: # check if the u exists if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowerCAmelCase_ = [[w, v]] # add the other way if self.graph.get(UpperCamelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowerCAmelCase_ = [[w, u]] def __a ( self , _a , _a ) -> int: if self.graph.get(UpperCamelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(UpperCamelCase__ ) # the other way round if self.graph.get(UpperCamelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(UpperCamelCase__ ) def __a ( self , _a=-2 , _a=-1 ) -> Optional[int]: if s == d: return [] lowerCAmelCase_ = [] lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) lowerCAmelCase_ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(UpperCamelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(UpperCamelCase__ ) != 0: lowerCAmelCase_ = stack[len(UpperCamelCase__ ) - 1] else: lowerCAmelCase_ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return visited def __a ( self , _a=-1 ) -> Optional[Any]: if c == -1: lowerCAmelCase_ = floor(random() * 10000 ) + 10 for i in range(UpperCamelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowerCAmelCase_ = floor(random() * c ) + 1 if n != i: self.add_pair(UpperCamelCase__ , UpperCamelCase__ , 1 ) def __a ( self , _a=-2 ) -> Optional[Any]: lowerCAmelCase_ = deque() lowerCAmelCase_ = [] if s == -2: lowerCAmelCase_ = list(self.graph )[0] d.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) while d: lowerCAmelCase_ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __a ( self , _a ) -> Union[str, Any]: return len(self.graph[u] ) def __a ( self ) -> Dict: lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(UpperCamelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(UpperCamelCase__ ) != 0: lowerCAmelCase_ = stack[len(UpperCamelCase__ ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(UpperCamelCase__ ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return list(UpperCamelCase__ ) def __a ( self ) -> str: lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = list(self.graph )[0] stack.append(UpperCamelCase__ ) visited.append(UpperCamelCase__ ) lowerCAmelCase_ = -2 lowerCAmelCase_ = [] lowerCAmelCase_ = s lowerCAmelCase_ = False lowerCAmelCase_ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowerCAmelCase_ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowerCAmelCase_ = len(UpperCamelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowerCAmelCase_ = node[1] break # check if all the children are visited if s == ss: stack.pop() lowerCAmelCase_ = True if len(UpperCamelCase__ ) != 0: lowerCAmelCase_ = stack[len(UpperCamelCase__ ) - 1] else: lowerCAmelCase_ = False indirect_parents.append(UpperCamelCase__ ) lowerCAmelCase_ = s lowerCAmelCase_ = ss # check if se have reached the starting point if len(UpperCamelCase__ ) == 0: return False def __a ( self ) -> List[Any]: return list(self.graph ) def __a ( self , _a=-2 , _a=-1 ) -> str: lowerCAmelCase_ = time() self.dfs(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase_ = time() return end - begin def __a ( self , _a=-2 ) -> List[Any]: lowerCAmelCase_ = time() self.bfs(UpperCamelCase__ ) lowerCAmelCase_ = time() return end - begin
362
def A(): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowerCamelCase__ = generate_large_matrix() lowerCamelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A(__a: list[list[int]] ): assert all(row == sorted(__a , reverse=__a ) for row in grid ) assert all(list(__a ) == sorted(__a , reverse=__a ) for col in zip(*__a ) ) def A(__a: list[int] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(__a ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ = (left + right) // 2 lowerCAmelCase_ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ = mid + 1 else: lowerCAmelCase_ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__a ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 lowerCAmelCase_ = len(grid[0] ) for i in range(len(__a ) ): lowerCAmelCase_ = find_negative_index(grid[i][:bound] ) total += bound return (len(__a ) * len(grid[0] )) - total def A(__a: list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A(__a: list[list[int]] ): lowerCAmelCase_ = 0 for row in grid: for i, number in enumerate(__a ): if number < 0: total += len(__a ) - i break return total def A(): from timeit import timeit print("Running benchmarks" ) lowerCAmelCase_ = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ = timeit(F"{func}(grid=grid)" , setup=__a , number=500 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
22
0