code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(a__ ) - pat_len + 1 ): SCREAMING_SNAKE_CASE : Dict = True for j in range(a__ ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE : Any = False break if match_found: position.append(a__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
19
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
1
from functools import lru_cache @lru_cache def UpperCAmelCase_( a__ ): """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
19
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : List[Any] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 'luke' def __init__( self , _lowerCamelCase=5_0267 , _lowerCamelCase=50_0000 , _lowerCamelCase=768 , _lowerCamelCase=256 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , ) ->Tuple: super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Tuple = entity_vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Tuple = entity_emb_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = use_entity_aware_attention SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout
19
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ : int = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BartphoTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = True def __lowerCAmelCase ( self ) ->Optional[int]: super().setUp() SCREAMING_SNAKE_CASE : Dict = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : Dict = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) SCREAMING_SNAKE_CASE : Any = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = '''This is a là test''' SCREAMING_SNAKE_CASE : Tuple = '''This is a<unk><unk> test''' return input_text, output_text def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : int = BartphoTokenizer(_lowerCamelCase , self.monolingual_vocab_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : int = '''This is a là test''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
19
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : List[Any] = logging.get_logger(__name__) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: SCREAMING_SNAKE_CASE : str = 192 SCREAMING_SNAKE_CASE : Any = 768 SCREAMING_SNAKE_CASE : str = 12 SCREAMING_SNAKE_CASE : Any = 3 SCREAMING_SNAKE_CASE : Any = [800, 1_333] SCREAMING_SNAKE_CASE : Optional[int] = False elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE : Tuple = 330 SCREAMING_SNAKE_CASE : int = 14 SCREAMING_SNAKE_CASE : Tuple = 6 SCREAMING_SNAKE_CASE : str = 1_320 elif "yolos_s" in yolos_name: SCREAMING_SNAKE_CASE : int = 384 SCREAMING_SNAKE_CASE : Union[str, Any] = 1_536 SCREAMING_SNAKE_CASE : str = 12 SCREAMING_SNAKE_CASE : Union[str, Any] = 6 elif "yolos_b" in yolos_name: SCREAMING_SNAKE_CASE : List[str] = [800, 1_344] SCREAMING_SNAKE_CASE : List[Any] = 91 SCREAMING_SNAKE_CASE : str = '''huggingface/label-files''' SCREAMING_SNAKE_CASE : Dict = '''coco-detection-id2label.json''' SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(a__ , a__ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[str] = {int(a__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : List[Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase_( a__ , a__ , a__ = False ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) SCREAMING_SNAKE_CASE : str = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[-config.hidden_size :, :] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[-config.hidden_size :] def UpperCAmelCase_( a__ ): """simple docstring""" if "backbone" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: SCREAMING_SNAKE_CASE : str = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: SCREAMING_SNAKE_CASE : int = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: SCREAMING_SNAKE_CASE : int = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def UpperCAmelCase_( a__ , a__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : List[Any] = orig_state_dict.pop(a__ ) if "qkv" in key: SCREAMING_SNAKE_CASE : Dict = key.split('''.''' ) SCREAMING_SNAKE_CASE : str = int(key_split[2] ) SCREAMING_SNAKE_CASE : Any = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : List[str] = val[:dim, :] SCREAMING_SNAKE_CASE : Union[str, Any] = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Tuple = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Optional[int] = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : List[str] = val[-dim:] else: SCREAMING_SNAKE_CASE : Dict = val return orig_state_dict def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def UpperCAmelCase_( a__ , a__ , a__ , a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = get_yolos_config(a__ ) # load original state_dict SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(a__ , map_location='''cpu''' )['''model'''] # load 🤗 model SCREAMING_SNAKE_CASE : List[Any] = YolosForObjectDetection(a__ ) model.eval() SCREAMING_SNAKE_CASE : int = convert_state_dict(a__ , a__ ) model.load_state_dict(a__ ) # Check outputs on an image, prepared by YolosImageProcessor SCREAMING_SNAKE_CASE : Optional[int] = 800 if yolos_name != '''yolos_ti''' else 512 SCREAMING_SNAKE_CASE : int = YolosImageProcessor(format='''coco_detection''' , size=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : int = model(**a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits, outputs.pred_boxes SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = None, None if yolos_name == "yolos_ti": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) SCREAMING_SNAKE_CASE : Any = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) SCREAMING_SNAKE_CASE : int = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , a__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , a__ , atol=1e-4 ) Path(a__ ).mkdir(exist_ok=a__ ) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a__ ) if push_to_hub: SCREAMING_SNAKE_CASE : Optional[Any] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) SCREAMING_SNAKE_CASE : Dict = model_mapping[yolos_name] image_processor.push_to_hub(a__ , organization='''hustvl''' ) model.push_to_hub(a__ , organization='''hustvl''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a__ : Dict = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_MASKED_LM_MAPPING __SCREAMING_SNAKE_CASE : str = TF_MODEL_FOR_MASKED_LM_MAPPING def __lowerCAmelCase ( self ) ->Tuple: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) SCREAMING_SNAKE_CASE : Optional[Any] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1e-05, '''token''': 3_8015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1e-05, '''token''': 2_5506, '''token_str''': ''' accuser'''}, ] , ) SCREAMING_SNAKE_CASE : str = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1e-05, '''token''': 3_8015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1e-05, '''token''': 2_5506, '''token_str''': ''' accuser''', }, ] , ) SCREAMING_SNAKE_CASE : List[str] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9e-05, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) SCREAMING_SNAKE_CASE : List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) SCREAMING_SNAKE_CASE : str = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS'''}, ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1e-05, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2e-05, '''token''': 2941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2e-05, '''token''': 1_3606, '''token_str''': ''' Clara'''}, ] , ) SCREAMING_SNAKE_CASE : Tuple = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=6 ) , [ [ { '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2e-05, '''token''': 3_5676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2e-05, '''token''': 1_6416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() SCREAMING_SNAKE_CASE : str = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) @slow @require_torch def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowerCamelCase ) @slow @require_tf def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[Any] = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_0_8, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_0_7, '''token''': 1573, '''token_str''': ''' Chris'''}, ] , ) SCREAMING_SNAKE_CASE : Any = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_5_1, '''token''': 2201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_1_4, '''token''': 1_2790, '''token_str''': ''' Lyon''', }, ] , ) SCREAMING_SNAKE_CASE : Optional[int] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_0_5, '''token''': 3499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_0_0, '''token''': 1_3606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_0_0, '''token''': 2941, '''token_str''': ''' Te'''}, ] , ) @require_torch def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Tuple = None self.run_pipeline_test(_lowerCamelCase , [] ) @require_tf def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[int] = None self.run_pipeline_test(_lowerCamelCase , [] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Tuple: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) SCREAMING_SNAKE_CASE : List[str] = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = [ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : str = fill_masker.tokenizer SCREAMING_SNAKE_CASE : str = fill_masker.model SCREAMING_SNAKE_CASE : Optional[int] = fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) SCREAMING_SNAKE_CASE : Any = fill_masker([F"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) SCREAMING_SNAKE_CASE : Tuple = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , ) with self.assertRaises(_lowerCamelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowerCamelCase ): fill_masker('''This is''' ) self.run_test_top_k(_lowerCamelCase , _lowerCamelCase ) self.run_test_targets(_lowerCamelCase , _lowerCamelCase ) self.run_test_top_k_targets(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowerCamelCase , _lowerCamelCase ) self.fill_mask_with_multiple_masks(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab() SCREAMING_SNAKE_CASE : int = sorted(vocab.keys() )[:2] # Pipeline argument SCREAMING_SNAKE_CASE : List[Any] = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , targets=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) SCREAMING_SNAKE_CASE : List[str] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Call argument SCREAMING_SNAKE_CASE : Tuple = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) SCREAMING_SNAKE_CASE : str = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowerCamelCase ) ) # Score equivalence SCREAMING_SNAKE_CASE : Dict = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [top_mask['''token_str'''] for top_mask in outputs] SCREAMING_SNAKE_CASE : Tuple = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ) == set(_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) # Raises with invalid with self.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''''''] ) with self.assertRaises(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='''''' ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Dict = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase , top_k=2 ) SCREAMING_SNAKE_CASE : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _lowerCamelCase , [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ] , ) self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Any = tokenizer.get_vocab() SCREAMING_SNAKE_CASE : List[str] = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) # top_k=2, ntargets=3 SCREAMING_SNAKE_CASE : Dict = sorted(vocab.keys() )[:3] SCREAMING_SNAKE_CASE : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=_lowerCamelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results SCREAMING_SNAKE_CASE : Optional[Any] = [el['''token_str'''] for el in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x["score"] , reverse=_lowerCamelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowerCamelCase ).issubset(_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=_lowerCamelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowerCamelCase ) , nested_simplify(_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = tokenizer.get_vocab() # String duplicates + id duplicates SCREAMING_SNAKE_CASE : List[str] = sorted(vocab.keys() )[:3] SCREAMING_SNAKE_CASE : Union[str, Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] SCREAMING_SNAKE_CASE : Optional[Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=_lowerCamelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowerCamelCase ) , 3 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[Any] = FillMaskPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( _lowerCamelCase , [ [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], [ {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, {'''sequence''': ANY(_lowerCamelCase ), '''score''': ANY(_lowerCamelCase ), '''token''': ANY(_lowerCamelCase ), '''token_str''': ANY(_lowerCamelCase )}, ], ] , )
19
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() a__ : Union[str, Any] = logging.get_logger(__name__) a__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def UpperCAmelCase_( a__ ): """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE : str = k.replace(a__ , a__ ) if k.startswith('''encoder''' ): SCREAMING_SNAKE_CASE : int = k.replace('''.attn''' , '''.self_attn''' ) SCREAMING_SNAKE_CASE : List[Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE : int = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): SCREAMING_SNAKE_CASE : Optional[Any] = k.replace('''norm1''' , '''self_attn_layer_norm''' ) SCREAMING_SNAKE_CASE : Dict = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) SCREAMING_SNAKE_CASE : Tuple = k.replace('''norm3''' , '''final_layer_norm''' ) return k def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: SCREAMING_SNAKE_CASE : Dict = sd.pop(a__ ) SCREAMING_SNAKE_CASE : int = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd SCREAMING_SNAKE_CASE : Union[str, Any] = v a__ : int = ['''START'''] @torch.no_grad() def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = torch.load(a__ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : int = model['''model'''] SCREAMING_SNAKE_CASE : Optional[Any] = BlenderbotConfig.from_json_file(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BlenderbotForConditionalGeneration(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = m.model.state_dict().keys() SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue SCREAMING_SNAKE_CASE : Optional[int] = rename_state_dict_key(a__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: SCREAMING_SNAKE_CASE : List[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(a__ ) m.model.load_state_dict(a__ , strict=a__ ) m.half() m.save_pretrained(a__ ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) a__ : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
19
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available a__ : Tuple = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
1
def UpperCAmelCase_( a__ , a__ , a__ = 0 , a__ = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = right or len(a__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a__ , a__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
19
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
1
import os def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) SCREAMING_SNAKE_CASE : Dict = len(a__ ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Optional[int] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(a__ ): for j in range(n_rows - 3 ): SCREAMING_SNAKE_CASE : str = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] SCREAMING_SNAKE_CASE : str = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: SCREAMING_SNAKE_CASE : Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: SCREAMING_SNAKE_CASE : Optional[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) SCREAMING_SNAKE_CASE : Optional[Any] = max( a__ , a__ , a__ , a__ ) if max_product > largest: SCREAMING_SNAKE_CASE : Optional[Any] = max_product return largest def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] with open(os.path.dirname(a__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) SCREAMING_SNAKE_CASE : List[Any] = [[int(a__ ) for i in grid[j]] for j in range(len(a__ ) )] return largest_product(a__ ) if __name__ == "__main__": print(solution())
19
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a__ : int = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[Any] = [] for rt in rc.restypes: SCREAMING_SNAKE_CASE : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) SCREAMING_SNAKE_CASE : Any = {name: i for i, name in enumerate(a__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( a__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor( a__ , dtype=torch.intaa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( a__ , dtype=torch.floataa , device=protein['''aatype'''].device , ) SCREAMING_SNAKE_CASE : Optional[Any] = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein SCREAMING_SNAKE_CASE : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : Dict = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : List[Any] = residx_atomaa_mask SCREAMING_SNAKE_CASE : Dict = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back SCREAMING_SNAKE_CASE : Dict = restype_atomaa_to_atomaa[protein_aatype] SCREAMING_SNAKE_CASE : str = residx_atomaa_to_atomaa.long() # create the corresponding mask SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): SCREAMING_SNAKE_CASE : Tuple = rc.restype_atoa[restype_letter] SCREAMING_SNAKE_CASE : Union[str, Any] = rc.residue_atoms[restype_name] for atom_name in atom_names: SCREAMING_SNAKE_CASE : Tuple = rc.atom_order[atom_name] SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Tuple = restype_atomaa_mask[protein_aatype] SCREAMING_SNAKE_CASE : Dict = residx_atomaa_mask return protein def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tree_map(lambda a__ : torch.tensor(a__ , device=batch['''aatype'''].device ) , a__ , np.ndarray ) SCREAMING_SNAKE_CASE : int = tensor_tree_map(lambda a__ : np.array(a__ ) , make_atomaa_masks(a__ ) ) return out
19
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
1
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
1
from typing import Dict from .base import GenericTensor, Pipeline class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: if tokenize_kwargs is None: SCREAMING_SNAKE_CASE : Optional[Any] = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) SCREAMING_SNAKE_CASE : Optional[Any] = truncation SCREAMING_SNAKE_CASE : List[Any] = tokenize_kwargs SCREAMING_SNAKE_CASE : Optional[int] = {} if return_tensors is not None: SCREAMING_SNAKE_CASE : int = return_tensors return preprocess_params, {}, postprocess_params def __lowerCAmelCase ( self , _lowerCamelCase , **_lowerCamelCase ) ->Dict[str, GenericTensor]: SCREAMING_SNAKE_CASE : List[str] = self.framework SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) return model_inputs def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = self.model(**_lowerCamelCase ) return model_outputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) ->Any: return super().__call__(*_lowerCamelCase , **_lowerCamelCase )
19
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
1
a__ : Optional[int] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
19
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a__ : int = get_tests_dir('''fixtures''') class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Any: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : Dict = mock.Mock() SCREAMING_SNAKE_CASE : List[str] = 500 SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : int = HTTPError SCREAMING_SNAKE_CASE : Union[str, Any] = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ) ->Tuple: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" @classmethod def __lowerCAmelCase ( cls ) ->Tuple: SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls ) ->Optional[Any]: try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='''test-feature-extractor''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = WavaVecaFeatureExtractor.from_pretrained(F"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def __lowerCAmelCase ( self ) ->Optional[Any]: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE : Any = CustomFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( F"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
19
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ : List[Any] = logging.get_logger(__name__) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = r'''\w+[.]\d+''' SCREAMING_SNAKE_CASE : Tuple = re.findall(a__ , a__ ) for pat in pats: SCREAMING_SNAKE_CASE : Tuple = key.replace(a__ , '''_'''.join(pat.split('''.''' ) ) ) return key def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): SCREAMING_SNAKE_CASE : List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: SCREAMING_SNAKE_CASE : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer SCREAMING_SNAKE_CASE : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: SCREAMING_SNAKE_CASE : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer SCREAMING_SNAKE_CASE : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": SCREAMING_SNAKE_CASE : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight SCREAMING_SNAKE_CASE : Optional[Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias SCREAMING_SNAKE_CASE : Tuple = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase_( a__ , a__ , a__=42 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params SCREAMING_SNAKE_CASE : List[Any] = flax_model.init_weights(PRNGKey(a__ ) ) SCREAMING_SNAKE_CASE : List[str] = flatten_dict(a__ ) SCREAMING_SNAKE_CASE : Any = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): SCREAMING_SNAKE_CASE : List[str] = rename_key(a__ ) SCREAMING_SNAKE_CASE : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = rename_key_and_reshape_tensor(a__ , a__ , a__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown SCREAMING_SNAKE_CASE : str = jnp.asarray(a__ ) return unflatten_dict(a__ )
19
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
1
def UpperCAmelCase_( a__ ): """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) SCREAMING_SNAKE_CASE : List[Any] = '''''' while len(a__ ) % 3 != 0: SCREAMING_SNAKE_CASE : Optional[int] = '''0''' + bin_string SCREAMING_SNAKE_CASE : Dict = [ bin_string[index : index + 3] for index in range(len(a__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: SCREAMING_SNAKE_CASE : Optional[Any] = 0 for index, val in enumerate(a__ ): oct_val += int(2 ** (2 - index) * int(a__ ) ) oct_string += str(a__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
19
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a__ : int = logging.get_logger(__name__) @add_end_docstrings(a__ ) class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def __lowerCAmelCase ( self , _lowerCamelCase=None ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if top_k is not None: SCREAMING_SNAKE_CASE : str = top_k return {}, {}, postprocess_params def __call__( self , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework ) return model_inputs def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = self.model(**_lowerCamelCase ) return model_outputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=5 ) ->Optional[int]: if top_k > self.model.config.num_labels: SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.num_labels if self.framework == "pt": SCREAMING_SNAKE_CASE : List[str] = model_outputs.logits.softmax(-1 )[0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = probs.topk(_lowerCamelCase ) elif self.framework == "tf": SCREAMING_SNAKE_CASE : str = stable_softmax(model_outputs.logits , axis=-1 )[0] SCREAMING_SNAKE_CASE : Tuple = tf.math.top_k(_lowerCamelCase , k=_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) SCREAMING_SNAKE_CASE : Dict = scores.tolist() SCREAMING_SNAKE_CASE : List[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
19
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex a__ : Dict = logging.getLogger(__name__) class a_ : """simple docstring""" def __init__( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = False def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: if not self.initialized: SCREAMING_SNAKE_CASE : Any = RagRetriever( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : int = True def __lowerCAmelCase ( self ) ->str: self.retriever.index.init_index() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.retriever._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return doc_ids, retrieved_doc_embeds class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->Optional[int]: if index is not None and index.is_initialized() and len(_lowerCamelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. SCREAMING_SNAKE_CASE : Union[str, Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = ray.get(random_worker.retrieve.remote(_lowerCamelCase , _lowerCamelCase ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ) ->Optional[Any]: return super(_lowerCamelCase , cls ).get_tokenizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : int = kwargs.pop('''config''' , _lowerCamelCase ) or RagConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = RagTokenizer.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = rag_tokenizer.question_encoder SCREAMING_SNAKE_CASE : Tuple = rag_tokenizer.generator if indexed_dataset is not None: SCREAMING_SNAKE_CASE : Tuple = '''custom''' SCREAMING_SNAKE_CASE : Optional[Any] = CustomHFIndex(config.retrieval_vector_size , _lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = cls._build_index(_lowerCamelCase ) return cls( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , retrieval_workers=_lowerCamelCase , index=_lowerCamelCase , )
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a__ : Any = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } a__ : str = {'''facebook/blenderbot-3B''': 128} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Union[str, Any] = BlenderbotTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Any: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Dict = add_prefix_space SCREAMING_SNAKE_CASE : Optional[int] = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = '''post_processor''' SCREAMING_SNAKE_CASE : Tuple = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : List[str] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : List[str] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Union[str, Any] = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : int = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : str = trim_offsets SCREAMING_SNAKE_CASE : int = True if changes_to_apply: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : str = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : Tuple = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : int = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Optional[Any]: return token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[int]: SCREAMING_SNAKE_CASE : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = ''' '''.join(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.encode(_lowerCamelCase ) if len(_lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE : Tuple = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
1
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
19
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a__ : Tuple = logging.get_logger(__name__) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(a__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. SCREAMING_SNAKE_CASE : Any = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". SCREAMING_SNAKE_CASE : Any = json.loads(a__ ) if not mpi_options.get('''sagemaker_mpi_enabled''' , a__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , _lowerCamelCase , ) @cached_property def __lowerCAmelCase ( self ) ->"torch.device": logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: SCREAMING_SNAKE_CASE : Optional[Any] = torch.device('''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = 0 elif is_sagemaker_model_parallel_available(): SCREAMING_SNAKE_CASE : Dict = smp.local_rank() SCREAMING_SNAKE_CASE : str = torch.device('''cuda''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE : Optional[int] = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.device('''cuda''' , self.local_rank ) SCREAMING_SNAKE_CASE : int = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 SCREAMING_SNAKE_CASE : str = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. SCREAMING_SNAKE_CASE : Tuple = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) SCREAMING_SNAKE_CASE : Any = torch.device('''cuda''' , self.local_rank ) SCREAMING_SNAKE_CASE : Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def __lowerCAmelCase ( self ) ->List[str]: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __lowerCAmelCase ( self ) ->Optional[int]: return not is_sagemaker_model_parallel_available() @property def __lowerCAmelCase ( self ) ->List[Any]: return False
19
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Optional[Any] = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'distilbert' __SCREAMING_SNAKE_CASE : Dict = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=512 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=12 , _lowerCamelCase=768 , _lowerCamelCase=4 * 768 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = sinusoidal_pos_embds SCREAMING_SNAKE_CASE : str = n_layers SCREAMING_SNAKE_CASE : Tuple = n_heads SCREAMING_SNAKE_CASE : Union[str, Any] = dim SCREAMING_SNAKE_CASE : Optional[int] = hidden_dim SCREAMING_SNAKE_CASE : Dict = dropout SCREAMING_SNAKE_CASE : int = attention_dropout SCREAMING_SNAKE_CASE : int = activation SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : str = qa_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class a_ ( a__ ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
19
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'encodec' def __init__( self , _lowerCamelCase=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , _lowerCamelCase=2_4000 , _lowerCamelCase=1 , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=128 , _lowerCamelCase=32 , _lowerCamelCase=1 , _lowerCamelCase=[8, 5, 4, 2] , _lowerCamelCase="weight_norm" , _lowerCamelCase=7 , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=True , _lowerCamelCase="reflect" , _lowerCamelCase=2 , _lowerCamelCase=2 , _lowerCamelCase=1.0 , _lowerCamelCase=1024 , _lowerCamelCase=None , _lowerCamelCase=True , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = target_bandwidths SCREAMING_SNAKE_CASE : List[str] = sampling_rate SCREAMING_SNAKE_CASE : List[Any] = audio_channels SCREAMING_SNAKE_CASE : Optional[int] = normalize SCREAMING_SNAKE_CASE : int = chunk_length_s SCREAMING_SNAKE_CASE : Optional[int] = overlap SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_filters SCREAMING_SNAKE_CASE : Any = num_residual_layers SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Any = norm_type SCREAMING_SNAKE_CASE : Any = kernel_size SCREAMING_SNAKE_CASE : int = last_kernel_size SCREAMING_SNAKE_CASE : int = residual_kernel_size SCREAMING_SNAKE_CASE : Union[str, Any] = dilation_growth_rate SCREAMING_SNAKE_CASE : Optional[int] = use_causal_conv SCREAMING_SNAKE_CASE : List[Any] = pad_mode SCREAMING_SNAKE_CASE : Tuple = compress SCREAMING_SNAKE_CASE : int = num_lstm_layers SCREAMING_SNAKE_CASE : str = trim_right_ratio SCREAMING_SNAKE_CASE : Tuple = codebook_size SCREAMING_SNAKE_CASE : List[str] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : int = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCAmelCase ( self ) ->Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __lowerCAmelCase ( self ) ->int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
19
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_( a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = FunnelConfig.from_json_file(a__ ) print(F"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE : Dict = FunnelBaseModel(a__ ) if base_model else FunnelModel(a__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(a__ , a__ , a__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) a__ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
19
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
1
def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Tuple = [[0] * n for i in range(a__ )] for i in range(a__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = y_points[i] for i in range(2 , a__ ): for j in range(a__ , a__ ): SCREAMING_SNAKE_CASE : Optional[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
19
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
1
a__ : Optional[int] = '''Tobias Carryer''' from time import time class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=int(time() ) ) ->List[Any]: # noqa: B008 SCREAMING_SNAKE_CASE : List[Any] = multiplier SCREAMING_SNAKE_CASE : Optional[Any] = increment SCREAMING_SNAKE_CASE : str = modulo SCREAMING_SNAKE_CASE : int = seed def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. a__ : Dict = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
19
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
1
from __future__ import annotations from collections import Counter from random import random class a_ : """simple docstring""" def __init__( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = {} def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Dict = {} def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: if nodea not in self.connections: self.add_node(_lowerCamelCase ) if nodea not in self.connections: self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = probability def __lowerCAmelCase ( self ) ->list[str]: return list(self.connections ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(a__ , a__ , a__ ) SCREAMING_SNAKE_CASE : Optional[int] = Counter(graph.get_nodes() ) SCREAMING_SNAKE_CASE : int = start for _ in range(a__ ): SCREAMING_SNAKE_CASE : Dict = graph.transition(a__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
19
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
1
import copy import random from transformers import CLIPTokenizer class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[Any]: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = {} def __lowerCAmelCase ( self , _lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = super().add_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''' ) def __lowerCAmelCase ( self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=1 , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = placeholder_token + F"""_{i}""" self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) output.append(_lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) SCREAMING_SNAKE_CASE : int = output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 ) ->Any: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(len(_lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: SCREAMING_SNAKE_CASE : str = self.token_map[placeholder_token] SCREAMING_SNAKE_CASE : int = tokens[: 1 + int(len(_lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: SCREAMING_SNAKE_CASE : Tuple = copy.copy(_lowerCamelCase ) random.shuffle(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = text.replace(_lowerCamelCase , ''' '''.join(_lowerCamelCase ) ) return text def __call__( self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ) ->Optional[int]: return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , ) def __lowerCAmelCase ( self , _lowerCamelCase , *_lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=1.0 , **_lowerCamelCase ) ->List[Any]: return super().encode( self.replace_placeholder_tokens_in_text( _lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
19
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[Any] = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
1
from functools import reduce a__ : List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_( a__ = N ): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda a__ , a__ : str(int(a__ ) * int(a__ ) ) , n[i : i + 13] ) ) for i in range(len(a__ ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
19
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
1
from __future__ import annotations import time import numpy as np a__ : Union[str, Any] = [8, 5, 9, 7] a__ : Union[str, Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] a__ : Optional[int] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : List[Any] = claim_vector SCREAMING_SNAKE_CASE : Dict = allocated_resources_table SCREAMING_SNAKE_CASE : Optional[Any] = maximum_claim_table def __lowerCAmelCase ( self ) ->list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowerCAmelCase ( self ) ->list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowerCAmelCase ( self ) ->list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowerCAmelCase ( self ) ->dict[int, list[int]]: return {self.__need().index(_lowerCamelCase ): i for i in self.__need()} def __lowerCAmelCase ( self , **_lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.__need() SCREAMING_SNAKE_CASE : List[str] = self.__allocated_resources_table SCREAMING_SNAKE_CASE : List[Any] = self.__available_resources() SCREAMING_SNAKE_CASE : List[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('''_''' * 50 + '''\n''' ) while need_list: SCREAMING_SNAKE_CASE : Optional[Any] = False for each_need in need_list: SCREAMING_SNAKE_CASE : List[str] = True for index, need in enumerate(_lowerCamelCase ): if need > available_resources[index]: SCREAMING_SNAKE_CASE : Tuple = False break if execution: SCREAMING_SNAKE_CASE : Optional[int] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: SCREAMING_SNAKE_CASE : str = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(_lowerCamelCase ) # update available/freed resources stack SCREAMING_SNAKE_CASE : Any = np.array(_lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( '''Updated available resource stack for processes: ''' + ''' '''.join([str(_lowerCamelCase ) for x in available_resources] ) ) break if safe: print('''The process is in a safe state.\n''' ) else: print('''System in unsafe state. Aborting...\n''' ) break def __lowerCAmelCase ( self ) ->Any: print(''' ''' * 9 + '''Allocated Resource Table''' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_lowerCamelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print(''' ''' * 9 + '''System Resource Table''' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_lowerCamelCase ) + 1}""" + ''' '''.join(F"""{it:>8}""" for it in item ) + '''\n''' ) print( '''Current Usage by Active Processes: ''' + ''' '''.join(str(_lowerCamelCase ) for x in self.__claim_vector ) ) print( '''Initial Available Resources: ''' + ''' '''.join(str(_lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
19
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCAmelCase_( a__ ): # picklable for multiprocessing """simple docstring""" return x.sum() def UpperCAmelCase_( a__ ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : int __SCREAMING_SNAKE_CASE : str class a_ ( a__ ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Dict = [1, 2] SCREAMING_SNAKE_CASE : List[str] = {'''a''': 1, '''b''': 2} SCREAMING_SNAKE_CASE : List[Any] = {'''a''': [1, 2], '''b''': [3, 4]} SCREAMING_SNAKE_CASE : Tuple = {'''a''': {'''1''': 1}, '''b''': 2} SCREAMING_SNAKE_CASE : Dict = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Any = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = [2, 3] SCREAMING_SNAKE_CASE : List[str] = {'''a''': 2, '''b''': 3} SCREAMING_SNAKE_CASE : Tuple = {'''a''': [2, 3], '''b''': [4, 5]} SCREAMING_SNAKE_CASE : int = {'''a''': {'''1''': 2}, '''b''': 3} SCREAMING_SNAKE_CASE : Union[str, Any] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = 2 self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )} SCREAMING_SNAKE_CASE : Optional[Any] = {'''a''': 2, '''b''': 0, '''c''': 2} SCREAMING_SNAKE_CASE : List[Any] = { '''a''': np.eye(2 ).astype(_lowerCamelCase ), '''b''': np.zeros(3 ).astype(_lowerCamelCase ), '''c''': np.ones(2 ).astype(_lowerCamelCase ), } self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCamelCase ): # can't pickle a local lambda map_nested(lambda _lowerCamelCase : x + 1 , _lowerCamelCase , num_proc=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = {'''a''': 1, '''b''': 2} SCREAMING_SNAKE_CASE : Any = {'''a''': 3, '''b''': 4} SCREAMING_SNAKE_CASE : Dict = {'''a''': 5, '''b''': 6} SCREAMING_SNAKE_CASE : Dict = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = 'bar' SCREAMING_SNAKE_CASE : Any = Foo() self.assertEqual(foo.my_attr , '''bar''' ) with temporary_assignment(_lowerCamelCase , '''my_attr''' , '''BAR''' ): self.assertEqual(foo.my_attr , '''BAR''' ) self.assertEqual(foo.my_attr , '''bar''' ) @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: SCREAMING_SNAKE_CASE : Optional[int] = {F"""{i}""": i for i in range(a__ )} SCREAMING_SNAKE_CASE : Any = map_nested(lambda a__ : x + 10 , a__ , num_proc=a__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class a_ ( a__ ): """simple docstring""" @require_tf def __lowerCAmelCase ( self ) ->Union[str, Any]: import tensorflow as tf from tensorflow.keras import layers SCREAMING_SNAKE_CASE : Optional[Any] = layers.Dense(2 ) def gen_random_output(): SCREAMING_SNAKE_CASE : Tuple = tf.random.uniform((1, 3) ) return model(_lowerCamelCase ).numpy() with temp_seed(42 , set_tensorflow=_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = gen_random_output() with temp_seed(42 , set_tensorflow=_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = gen_random_output() SCREAMING_SNAKE_CASE : Tuple = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __lowerCAmelCase ( self ) ->str: import torch def gen_random_output(): SCREAMING_SNAKE_CASE : Optional[Any] = torch.nn.Linear(3 , 2 ) SCREAMING_SNAKE_CASE : Dict = torch.rand(1 , 3 ) return model(_lowerCamelCase ).detach().numpy() with temp_seed(42 , set_pytorch=_lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = gen_random_output() with temp_seed(42 , set_pytorch=_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = gen_random_output() SCREAMING_SNAKE_CASE : str = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): SCREAMING_SNAKE_CASE : Optional[Any] = gen_random_output() with temp_seed(42 ): SCREAMING_SNAKE_CASE : Optional[Any] = gen_random_output() SCREAMING_SNAKE_CASE : Tuple = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('''input_data''' , [{}] ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = NestedDataStructure(a__ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = NestedDataStructure(a__ ).flatten() assert output == expected_output def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = A(x=1 , y='''foobar''' ) SCREAMING_SNAKE_CASE : Tuple = {'''x''': 1, '''y''': '''foobar'''} assert asdict(a__ ) == expected_output SCREAMING_SNAKE_CASE : Optional[Any] = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} SCREAMING_SNAKE_CASE : Union[str, Any] = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(a__ ) == expected_output with pytest.raises(a__ ): asdict([1, A(x=10 , y='''foo''' )] ) def UpperCAmelCase_( a__ ): """simple docstring""" return text.split() def UpperCAmelCase_( a__ ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCAmelCase_( ): """simple docstring""" with Pool(2 ) as pool: SCREAMING_SNAKE_CASE : str = list(iflatmap_unordered(a__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(a__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: SCREAMING_SNAKE_CASE : Union[str, Any] = list(iflatmap_unordered(a__ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(a__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: SCREAMING_SNAKE_CASE : str = [] for yield_time, content in iflatmap_unordered( a__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(a__ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(a__ ) == 4
19
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right a__ : Any = 256_047 a__ : Optional[Any] = 256_145 @require_sentencepiece @require_tokenizers class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = NllbTokenizer __SCREAMING_SNAKE_CASE : Tuple = NllbTokenizerFast __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : Any = {} def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : List[Any] = NllbTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = NllbTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Any = tokenizer_r.save_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : int = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowerCamelCase , _lowerCamelCase ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.save_pretrained(_lowerCamelCase , legacy_format=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCamelCase , _lowerCamelCase ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(_lowerCamelCase , legacy_format=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.save_pretrained(_lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Any = tokenizer_r.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(_lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) ) shutil.rmtree(_lowerCamelCase ) @require_torch def __lowerCAmelCase ( self ) ->Optional[int]: if not self.test_seqaseq: return SCREAMING_SNAKE_CASE : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. SCREAMING_SNAKE_CASE : Dict = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] SCREAMING_SNAKE_CASE : Optional[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCamelCase , tgt_texts=_lowerCamelCase , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified SCREAMING_SNAKE_CASE : List[str] = tokenizer.prepare_seqaseq_batch( _lowerCamelCase , tgt_texts=_lowerCamelCase , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=_lowerCamelCase , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , _lowerCamelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def __lowerCAmelCase ( self ) ->int: pass def __lowerCAmelCase ( self ) ->str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : List[Any] = [AddedToken('''<special>''' , lstrip=_lowerCamelCase )] SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = tokenizer_r.encode('''Hey this is a <special> token''' ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode('''<special>''' , add_special_tokens=_lowerCamelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained( _lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_p.encode('''Hey this is a <special> token''' ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 'facebook/nllb-200-distilled-600M' __SCREAMING_SNAKE_CASE : List[str] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __SCREAMING_SNAKE_CASE : int = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __SCREAMING_SNAKE_CASE : Dict = [ 25_6047, 1_6297, 13_4408, 8165, 24_8066, 1_4734, 950, 1135, 10_5721, 3573, 83, 2_7352, 108, 4_9486, 2, ] @classmethod def __lowerCAmelCase ( cls ) ->Any: SCREAMING_SNAKE_CASE : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) SCREAMING_SNAKE_CASE : str = 1 return cls def __lowerCAmelCase ( self ) ->Optional[int]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_6057 ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: self.assertIn(_lowerCamelCase , self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Any = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = 10 SCREAMING_SNAKE_CASE : Any = self.tokenizer(_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , _lowerCamelCase ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_6203, 3] ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = NllbTokenizer.from_pretrained(_lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCamelCase ) @require_torch def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCamelCase ) self.assertEqual(_lowerCamelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : int = self.tokenizer( text_target=self.tgt_text , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Union[str, Any] = shift_tokens_right( _lowerCamelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : int = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(_lowerCamelCase ) , { # A, test, EOS, en_XX '''input_ids''': [[25_6047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_6057, } , ) @require_torch def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
19
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_lowerCamelCase , ) assert hasattr(self , '''env''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}""" # distributed data settings SCREAMING_SNAKE_CASE : Union[str, Any] = {'''smdistributed''': {'''dataparallel''': {'''enabled''': True}}} if self.script != '''run_ddp.py''' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_lowerCamelCase , instance_count=_lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=_lowerCamelCase , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_lowerCamelCase , py_version='''py36''' , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: TrainingJobAnalytics(_lowerCamelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: # create estimator SCREAMING_SNAKE_CASE : Any = self.create_estimator(_lowerCamelCase ) # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : Dict = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : int = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) SCREAMING_SNAKE_CASE : Any = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _lowerCamelCase )
19
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class a_ ( a__ , a__ ): """simple docstring""" @register_to_config def __init__( self , _lowerCamelCase = 128 , _lowerCamelCase = 256 , _lowerCamelCase = 2_0_0_0.0 , _lowerCamelCase = 768 , _lowerCamelCase = 12 , _lowerCamelCase = 12 , _lowerCamelCase = 64 , _lowerCamelCase = 2048 , _lowerCamelCase = 0.1 , ) ->int: super().__init__() SCREAMING_SNAKE_CASE : str = nn.Sequential( nn.Linear(_lowerCamelCase , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowerCamelCase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE : List[Any] = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(p=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList() for lyr_num in range(_lowerCamelCase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE : Tuple = DecoderLayer(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) self.decoders.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = TaLayerNorm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(p=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE : List[str] = self.conditioning_emb(_lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE : Any = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE : List[str] = torch.broadcast_to( torch.arange(_lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE : Dict = self.position_encoding(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.continuous_inputs_projection(_lowerCamelCase ) inputs += position_encodings SCREAMING_SNAKE_CASE : int = self.dropout(_lowerCamelCase ) # decoder: No padding present. SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE : Optional[int] = [(x, self.encoder_decoder_mask(_lowerCamelCase , _lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE : str = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE : List[str] = lyr( _lowerCamelCase , conditioning_emb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , )[0] SCREAMING_SNAKE_CASE : List[str] = self.decoder_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.post_dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.spec_out(_lowerCamelCase ) return spec_out class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=1e-6 ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowerCamelCase , d_kv=_lowerCamelCase , num_heads=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , layer_norm_epsilon=_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.layer[0]( _lowerCamelCase , conditioning_emb=_lowerCamelCase , attention_mask=_lowerCamelCase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE : List[str] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE : Optional[int] = self.layer[1]( _lowerCamelCase , key_value_states=_lowerCamelCase , attention_mask=_lowerCamelCase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE : int = self.layer[-1](_lowerCamelCase , _lowerCamelCase ) return (hidden_states,) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : List[Any] = TaLayerNorm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ) ->List[str]: # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE : Union[str, Any] = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.FiLMLayer(_lowerCamelCase , _lowerCamelCase ) # Self-attention block SCREAMING_SNAKE_CASE : str = self.attention(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=_lowerCamelCase , heads=_lowerCamelCase , dim_head=_lowerCamelCase , out_bias=_lowerCamelCase , scale_qk=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.attention( _lowerCamelCase , encoder_hidden_states=_lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(_lowerCamelCase ) return layer_output class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: super().__init__() SCREAMING_SNAKE_CASE : Dict = TaDenseGatedActDense(d_model=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = TaLayerNorm(_lowerCamelCase , eps=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Optional[int]: SCREAMING_SNAKE_CASE : Any = self.layer_norm(_lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.film(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.DenseReluDense(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->int: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = nn.Dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = NewGELUActivation() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = self.wi_a(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE : int = self.dropout(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.wo(_lowerCamelCase ) return hidden_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1e-6 ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.ones(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = eps def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE : Dict = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class a_ ( nn.Module ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_lowerCamelCase , 3.0 )) )) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Linear(_lowerCamelCase , out_features * 2 , bias=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = self.scale_bias(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = torch.chunk(_lowerCamelCase , 2 , -1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = x * (1 + scale) + shift return x
19
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=6 , _lowerCamelCase=17 , _lowerCamelCase=23 , _lowerCamelCase=11 , _lowerCamelCase=True , ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : List[str] = act_dim SCREAMING_SNAKE_CASE : Tuple = state_dim SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Dict = max_length SCREAMING_SNAKE_CASE : List[str] = is_training def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) SCREAMING_SNAKE_CASE : int = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) SCREAMING_SNAKE_CASE : List[str] = random_attention_mask((self.batch_size, self.seq_length) ) SCREAMING_SNAKE_CASE : Any = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __lowerCAmelCase ( self ) ->Any: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = DecisionTransformerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = (DecisionTransformerModel,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Tuple = () __SCREAMING_SNAKE_CASE : str = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __SCREAMING_SNAKE_CASE : List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = DecisionTransformerModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->List[Any]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->Optional[Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = DecisionTransformerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(_lowerCamelCase )] , _lowerCamelCase ) @require_torch class a_ ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = 2 # number of steps of autoregressive prediction we will perform SCREAMING_SNAKE_CASE : List[Any] = 10 # defined by the RL environment, may be normalized SCREAMING_SNAKE_CASE : int = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) SCREAMING_SNAKE_CASE : List[Any] = model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model.config torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCamelCase , dtype=torch.floataa ) # env.reset() SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_lowerCamelCase , device=_lowerCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) SCREAMING_SNAKE_CASE : List[str] = state SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros(1 , 0 , config.act_dim , device=_lowerCamelCase , dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(1 , 0 , device=_lowerCamelCase , dtype=torch.floataa ) SCREAMING_SNAKE_CASE : str = torch.tensor(0 , device=_lowerCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(_lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=_lowerCamelCase )] , dim=1 ) SCREAMING_SNAKE_CASE : str = torch.cat([rewards, torch.zeros(1 , 1 , device=_lowerCamelCase )] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = model( states=_lowerCamelCase , actions=_lowerCamelCase , rewards=_lowerCamelCase , returns_to_go=_lowerCamelCase , timesteps=_lowerCamelCase , attention_mask=_lowerCamelCase , return_dict=_lowerCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=_lowerCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) SCREAMING_SNAKE_CASE : Dict = action_pred[0, -1] SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([states, state] , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = returns_to_go[0, -1] - reward SCREAMING_SNAKE_CASE : Any = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat( [timesteps, torch.ones((1, 1) , device=_lowerCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
19
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Optional[int] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = 'rwkv' __SCREAMING_SNAKE_CASE : List[str] = {'max_position_embeddings': 'context_length'} def __init__( self , _lowerCamelCase=5_0277 , _lowerCamelCase=1024 , _lowerCamelCase=4096 , _lowerCamelCase=32 , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=1e-5 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=6 , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = context_length SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE : int = layer_norm_epsilon SCREAMING_SNAKE_CASE : Dict = rescale_every SCREAMING_SNAKE_CASE : Optional[int] = use_cache SCREAMING_SNAKE_CASE : str = bos_token_id SCREAMING_SNAKE_CASE : Any = eos_token_id super().__init__( tie_word_embeddings=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase )
19
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
1
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCAmelCase_( a__ ): """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue SCREAMING_SNAKE_CASE : List[Any] = key.replace('''heads.cmd.mim_head.cls.predictions''' , '''mmm_image_head''' ) SCREAMING_SNAKE_CASE : List[str] = key.replace('''heads.cmd.mlm_head.cls.predictions''' , '''mmm_text_head''' ) SCREAMING_SNAKE_CASE : List[Any] = key.replace('''heads.cmd.itm_head.cls''' , '''itm_head''' ) SCREAMING_SNAKE_CASE : Dict = key.replace('''heads.cmd.itm_head.pooler''' , '''itm_head.pooler''' ) SCREAMING_SNAKE_CASE : List[Any] = key.replace('''heads.cmd.clip_head.logit_scale''' , '''flava.logit_scale''' ) SCREAMING_SNAKE_CASE : List[str] = key.replace('''heads.fairseq_mlm.cls.predictions''' , '''mlm_head''' ) SCREAMING_SNAKE_CASE : str = key.replace('''heads.imagenet.mim_head.cls.predictions''' , '''mim_head''' ) SCREAMING_SNAKE_CASE : Tuple = key.replace('''mm_text_projection''' , '''flava.text_to_mm_projection''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''mm_image_projection''' , '''flava.image_to_mm_projection''' ) SCREAMING_SNAKE_CASE : List[str] = key.replace('''image_encoder.module''' , '''flava.image_model''' ) SCREAMING_SNAKE_CASE : Any = key.replace('''text_encoder.module''' , '''flava.text_model''' ) SCREAMING_SNAKE_CASE : List[str] = key.replace('''mm_encoder.module.encoder.cls_token''' , '''flava.multimodal_model.cls_token''' ) SCREAMING_SNAKE_CASE : Dict = key.replace('''mm_encoder.module''' , '''flava.multimodal_model''' ) SCREAMING_SNAKE_CASE : List[Any] = key.replace('''text_projection''' , '''flava.text_projection''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''image_projection''' , '''flava.image_projection''' ) SCREAMING_SNAKE_CASE : int = value.float() for key, value in codebook_state_dict.items(): SCREAMING_SNAKE_CASE : Dict = value return upgrade @torch.no_grad() def UpperCAmelCase_( a__ , a__ , a__ , a__=None ): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : Optional[Any] = FlavaConfig.from_pretrained(a__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = FlavaConfig() SCREAMING_SNAKE_CASE : Tuple = FlavaForPreTraining(a__ ).eval() SCREAMING_SNAKE_CASE : Tuple = convert_dalle_checkpoint(a__ , a__ , save_checkpoint=a__ ) if os.path.exists(a__ ): SCREAMING_SNAKE_CASE : Any = torch.load(a__ , map_location='''cpu''' ) else: SCREAMING_SNAKE_CASE : Tuple = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Optional[int] = upgrade_state_dict(a__ , a__ ) hf_model.load_state_dict(a__ ) SCREAMING_SNAKE_CASE : List[str] = hf_model.state_dict() SCREAMING_SNAKE_CASE : Optional[int] = count_parameters(a__ ) SCREAMING_SNAKE_CASE : int = count_parameters(a__ ) + count_parameters(a__ ) assert torch.allclose(a__ , a__ , atol=1e-3 ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') a__ : Tuple = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
19
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
1
import math def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(a__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. a__ : List[Any] = '''Enter the base and the power separated by a comma: ''' a__ , a__ : Dict = map(int, input(prompt).split(''',''')) a__ , a__ : Union[str, Any] = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. a__ : Tuple = res(xa, ya) a__ : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
19
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Dict = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Optional[int] = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
1
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class a_ : """simple docstring""" __SCREAMING_SNAKE_CASE : str = field( metadata={'help': 'The output directory where the model will be written.'} , ) __SCREAMING_SNAKE_CASE : str = field( metadata={ 'help': ( 'The encoder model checkpoint for weights initialization.' 'Don\'t set if you want to train an encoder model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : str = field( metadata={ 'help': ( 'The decoder model checkpoint for weights initialization.' 'Don\'t set if you want to train a decoder model from scratch.' ) } , ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Pretrained encoder config name or path if not the same as encoder_model_name'} ) __SCREAMING_SNAKE_CASE : Optional[str] = field( default=a__ , metadata={'help': 'Pretrained decoder config name or path if not the same as decoder_model_name'} ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser((ModelArguments,) ) ((SCREAMING_SNAKE_CASE) , ) : List[str] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=a__ , decoder_config=a__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens SCREAMING_SNAKE_CASE : str = decoder_config.decoder_start_token_id SCREAMING_SNAKE_CASE : Any = decoder_config.pad_token_id if decoder_start_token_id is None: SCREAMING_SNAKE_CASE : Any = decoder_config.bos_token_id if pad_token_id is None: SCREAMING_SNAKE_CASE : str = decoder_config.eos_token_id # This is necessary to make Flax's generate() work SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_config.eos_token_id SCREAMING_SNAKE_CASE : Any = decoder_start_token_id SCREAMING_SNAKE_CASE : int = pad_token_id SCREAMING_SNAKE_CASE : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
19
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
1
from __future__ import annotations def UpperCAmelCase_( a__ , a__ = None ): """simple docstring""" SCREAMING_SNAKE_CASE : int = word_bank or [] # create a table SCREAMING_SNAKE_CASE : int = len(a__ ) + 1 SCREAMING_SNAKE_CASE : list[list[list[str]]] = [] for _ in range(a__ ): table.append([] ) # seed value SCREAMING_SNAKE_CASE : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(a__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a__ )] == word: SCREAMING_SNAKE_CASE : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a__ )]: combination.reverse() return table[len(a__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
19
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer a__ : List[str] = logging.get_logger(__name__) a__ : int = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } a__ : Optional[int] = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } a__ : Dict = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } a__ : str = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } a__ : int = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } a__ : List[Any] = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } a__ : List[Any] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } a__ : Optional[int] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } a__ : Dict = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : List[str] = DPRContextEncoderTokenizer class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[int] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[str] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : int = DPRQuestionEncoderTokenizer a__ : Optional[Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) a__ : str = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) a__ : Dict = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a__ ) class a_ : """simple docstring""" def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) ->BatchEncoding: if titles is None and texts is None: return super().__call__( _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : str = titles if texts is None else texts return super().__call__( _lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Tuple = titles if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE : List[str] = texts if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = questions if not isinstance(_lowerCamelCase , _lowerCamelCase ) else [questions] * n_passages assert len(_lowerCamelCase ) == len( _lowerCamelCase ), F"""There should be as many titles than texts but got {len(_lowerCamelCase )} titles and {len(_lowerCamelCase )} texts.""" SCREAMING_SNAKE_CASE : List[str] = super().__call__(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] SCREAMING_SNAKE_CASE : List[str] = super().__call__(_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase )['''input_ids'''] SCREAMING_SNAKE_CASE : List[str] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowerCamelCase , _lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : List[Any] = attention_mask return self.pad(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = 4 , ) ->List[DPRSpanPrediction]: SCREAMING_SNAKE_CASE : List[Any] = reader_input['''input_ids'''] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = reader_output[:3] SCREAMING_SNAKE_CASE : Tuple = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sorted(range(_lowerCamelCase ) , reverse=_lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : Dict = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : List[Any] = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : List[Any] = len(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowerCamelCase , top_spans=_lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowerCamelCase , start_index=_lowerCamelCase , end_index=_lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->List[DPRSpanPrediction]: SCREAMING_SNAKE_CASE : Optional[int] = [] for start_index, start_score in enumerate(_lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : Optional[int] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" SCREAMING_SNAKE_CASE : Tuple = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class a_ ( a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Dict = READER_PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Union[str, Any] = DPRReaderTokenizer
19
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin a__ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') a__ : Optional[Any] = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} a__ : Union[str, Any] = '''>>zh<<''' a__ : Tuple = '''Helsinki-NLP/''' if is_torch_available(): a__ : List[str] = '''pt''' elif is_tf_available(): a__ : List[str] = '''tf''' else: a__ : Union[str, Any] = '''jax''' @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = MarianTokenizer __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Optional[Any]: super().setUp() SCREAMING_SNAKE_CASE : List[str] = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] SCREAMING_SNAKE_CASE : Any = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Path(self.tmpdirname ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_lowerCamelCase , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) SCREAMING_SNAKE_CASE : Tuple = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = '''</s>''' SCREAMING_SNAKE_CASE : Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_lowerCamelCase ) , 9 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) SCREAMING_SNAKE_CASE : str = en_de_tokenizer(['''I am a small frog'''] , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(_lowerCamelCase , batch.input_ids[0] ) SCREAMING_SNAKE_CASE : Dict = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [x.name for x in Path(_lowerCamelCase ).glob('''*''' )] self.assertIn('''source.spm''' , _lowerCamelCase ) MarianTokenizer.from_pretrained(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_lowerCamelCase , return_tensors=_lowerCamelCase ) self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __lowerCAmelCase ( self ) ->List[str]: # fmt: off SCREAMING_SNAKE_CASE : Union[str, Any] = {'''input_ids''': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''Tämä on testi''' SCREAMING_SNAKE_CASE : Tuple = '''This is a test''' SCREAMING_SNAKE_CASE : Union[str, Any] = [76, 7, 2047, 2] SCREAMING_SNAKE_CASE : str = [69, 12, 11, 940, 2] SCREAMING_SNAKE_CASE : Tuple = tokenizer(_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(text_target=_lowerCamelCase ).input_ids self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
19
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = '' __SCREAMING_SNAKE_CASE : Optional[Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) ->Optional[Any]: super().__init__(self , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = repo_info SCREAMING_SNAKE_CASE : Union[str, Any] = token SCREAMING_SNAKE_CASE : Optional[int] = None def __lowerCAmelCase ( self ) ->Optional[int]: if self.dir_cache is None: SCREAMING_SNAKE_CASE : Tuple = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE : Union[str, Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ) ->Any: if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) SCREAMING_SNAKE_CASE : List[Any] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def __lowerCAmelCase ( self , _lowerCamelCase , **_lowerCamelCase ) ->Tuple: self._get_dirs() SCREAMING_SNAKE_CASE : Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ) ->List[str]: self._get_dirs() SCREAMING_SNAKE_CASE : int = PurePosixPath(path.strip('''/''' ) ) SCREAMING_SNAKE_CASE : Dict = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE : List[Any] = PurePosixPath(p.strip('''/''' ) ) SCREAMING_SNAKE_CASE : Any = p.parent if root == path: SCREAMING_SNAKE_CASE : Any = f SCREAMING_SNAKE_CASE : Optional[int] = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
19
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : Optional[int] = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = 'transfo-xl' __SCREAMING_SNAKE_CASE : List[Any] = ['mems'] __SCREAMING_SNAKE_CASE : str = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowerCamelCase=26_7735 , _lowerCamelCase=[2_0000, 4_0000, 20_0000] , _lowerCamelCase=1024 , _lowerCamelCase=1024 , _lowerCamelCase=16 , _lowerCamelCase=64 , _lowerCamelCase=4096 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=18 , _lowerCamelCase=1600 , _lowerCamelCase=1000 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=-1 , _lowerCamelCase=True , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="normal" , _lowerCamelCase=0.0_1 , _lowerCamelCase=0.0_1 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-5 , _lowerCamelCase=0 , **_lowerCamelCase , ) ->int: SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : str = [] self.cutoffs.extend(_lowerCamelCase ) if proj_share_all_but_first: SCREAMING_SNAKE_CASE : Optional[Any] = [False] + [True] * len(self.cutoffs ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = [False] + [False] * len(self.cutoffs ) SCREAMING_SNAKE_CASE : List[str] = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed SCREAMING_SNAKE_CASE : Tuple = d_head SCREAMING_SNAKE_CASE : Any = d_inner SCREAMING_SNAKE_CASE : Tuple = div_val SCREAMING_SNAKE_CASE : Union[str, Any] = pre_lnorm SCREAMING_SNAKE_CASE : Any = n_layer SCREAMING_SNAKE_CASE : Any = n_head SCREAMING_SNAKE_CASE : Any = mem_len SCREAMING_SNAKE_CASE : Optional[int] = same_length SCREAMING_SNAKE_CASE : Any = attn_type SCREAMING_SNAKE_CASE : Dict = clamp_len SCREAMING_SNAKE_CASE : Any = sample_softmax SCREAMING_SNAKE_CASE : Optional[int] = adaptive SCREAMING_SNAKE_CASE : str = dropout SCREAMING_SNAKE_CASE : int = dropatt SCREAMING_SNAKE_CASE : int = untie_r SCREAMING_SNAKE_CASE : List[str] = init SCREAMING_SNAKE_CASE : Tuple = init_range SCREAMING_SNAKE_CASE : Tuple = proj_init_std SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon super().__init__(eos_token_id=_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Dict: # Message copied from Transformer-XL documentation logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: # Message copied from Transformer-XL documentation raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
19
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
1
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def UpperCAmelCase_( ): """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
19
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
1
class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = name SCREAMING_SNAKE_CASE : str = value SCREAMING_SNAKE_CASE : Union[str, Any] = weight def __repr__( self ) ->Dict: return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def __lowerCAmelCase ( self ) ->Dict: return self.value def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.name def __lowerCAmelCase ( self ) ->Optional[int]: return self.weight def __lowerCAmelCase ( self ) ->Tuple: return self.value / self.weight def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(len(a__ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(a__ , key=a__ , reverse=a__ ) SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCAmelCase_( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
19
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : Any = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[PIL.Image.Image, np.ndarray] class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Dict: super().__init__() self.register_modules( prior=_lowerCamelCase , image_encoder=_lowerCamelCase , image_processor=_lowerCamelCase , scheduler=_lowerCamelCase , renderer=_lowerCamelCase , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: if latents is None: SCREAMING_SNAKE_CASE : Union[str, Any] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) SCREAMING_SNAKE_CASE : Any = latents.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self , _lowerCamelCase=0 ) ->Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) SCREAMING_SNAKE_CASE : Optional[int] = torch.device(F"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE : Optional[int] = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Optional[Any]: if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) ->Tuple: if isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : str = torch.cat(_lowerCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCamelCase , axis=0 ) if not isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : int = self.image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) SCREAMING_SNAKE_CASE : str = image.to(dtype=self.image_encoder.dtype , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.image_encoder(_lowerCamelCase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : str = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 SCREAMING_SNAKE_CASE : List[Any] = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[str] = torch.zeros_like(_lowerCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 25 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 4.0 , _lowerCamelCase = 64 , _lowerCamelCase = "pil" , _lowerCamelCase = True , ) ->Optional[int]: if isinstance(_lowerCamelCase , PIL.Image.Image ): SCREAMING_SNAKE_CASE : List[Any] = 1 elif isinstance(_lowerCamelCase , torch.Tensor ): SCREAMING_SNAKE_CASE : List[Any] = image.shape[0] elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): SCREAMING_SNAKE_CASE : List[str] = len(_lowerCamelCase ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : Tuple = self._execution_device SCREAMING_SNAKE_CASE : Optional[Any] = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE : Union[str, Any] = guidance_scale > 1.0 SCREAMING_SNAKE_CASE : List[Any] = self._encode_image(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # prior self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.scheduler.timesteps SCREAMING_SNAKE_CASE : str = self.prior.config.num_embeddings SCREAMING_SNAKE_CASE : List[str] = self.prior.config.embedding_dim SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim SCREAMING_SNAKE_CASE : List[Any] = latents.reshape(latents.shape[0] , _lowerCamelCase , _lowerCamelCase ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Dict = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = self.prior( _lowerCamelCase , timestep=_lowerCamelCase , proj_embedding=_lowerCamelCase , ).predicted_image_embedding # remove the variance SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) SCREAMING_SNAKE_CASE : List[str] = self.scheduler.step( _lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [] for i, latent in enumerate(_lowerCamelCase ): print() SCREAMING_SNAKE_CASE : Union[str, Any] = self.renderer.decode( latent[None, :] , _lowerCamelCase , size=_lowerCamelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(_lowerCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) SCREAMING_SNAKE_CASE : Any = images.cpu().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Dict = [self.numpy_to_pil(_lowerCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCamelCase )
19
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig a__ : Optional[Any] = logging.get_logger(__name__) class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[Any] = question_encoder SCREAMING_SNAKE_CASE : str = generator SCREAMING_SNAKE_CASE : Any = self.question_encoder def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: if os.path.isfile(_lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(_lowerCamelCase , '''question_encoder_tokenizer''' ) SCREAMING_SNAKE_CASE : Dict = os.path.join(_lowerCamelCase , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(_lowerCamelCase ) self.generator.save_pretrained(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , **_lowerCamelCase ) ->Dict: # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop('''config''' , _lowerCamelCase ) if config is None: SCREAMING_SNAKE_CASE : Union[str, Any] = RagConfig.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained( _lowerCamelCase , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=_lowerCamelCase , generator=_lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[Any]: return self.current_tokenizer(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Union[str, Any]: return self.generator.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->int: return self.generator.decode(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = self.question_encoder def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[Any] = self.generator def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = "longest" , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ) ->BatchEncoding: warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , _lowerCamelCase , ) if max_length is None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE : Dict = self( _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: SCREAMING_SNAKE_CASE : Any = self.current_tokenizer.model_max_length SCREAMING_SNAKE_CASE : Dict = self( text_target=_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = labels['''input_ids'''] return model_inputs
19
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
19
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
1
def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [0] * len(a__ ) for i in range(1 , len(a__ ) ): # use last results for better performance - dynamic programming SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: SCREAMING_SNAKE_CASE : Optional[int] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 SCREAMING_SNAKE_CASE : int = j return prefix_result def UpperCAmelCase_( a__ ): """simple docstring""" return max(prefix_function(a__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
19
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : Tuple = 500 SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Union[str, Any] = HTTPError SCREAMING_SNAKE_CASE : List[Any] = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE : Optional[int] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowerCAmelCase ( self ) ->int: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : str = mock.Mock() SCREAMING_SNAKE_CASE : Tuple = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : int = HTTPError SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : List[str] = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_lowerCamelCase ) as mock_head: SCREAMING_SNAKE_CASE : Dict = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def __lowerCAmelCase ( self ) ->Optional[Any]: # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE : Dict = tempfile.mktemp() with open(_lowerCamelCase , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def __lowerCAmelCase ( self ) ->Any: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE : str = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __lowerCAmelCase ( cls ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls ) ->int: try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def __lowerCAmelCase ( self ) ->Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Tuple = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : str = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id='''test-tokenizer''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[Any] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __lowerCAmelCase ( self ) ->List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Dict = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __lowerCAmelCase ( self ) ->int: CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Tuple = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Optional[Any] = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(_lowerCamelCase , '''vocab.txt''' ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE : Dict = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[Any] = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Tuple = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : str = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def __lowerCAmelCase ( self ) ->Any: # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE : int = Trie() SCREAMING_SNAKE_CASE : Optional[int] = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ['''AB''', '''C'''] )
19
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = model.config SCREAMING_SNAKE_CASE : str = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) SCREAMING_SNAKE_CASE : str = MBartConfig( is_decoder=a__ , is_encoder_decoder=a__ , add_cross_attention=a__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=a__ , add_final_layer_norm=a__ , ) return encoder_config, decoder_config def UpperCAmelCase_( a__ ): """simple docstring""" if "encoder.model" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: SCREAMING_SNAKE_CASE : Dict = '''encoder.''' + name if "attn.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE : Optional[Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE : Tuple = '''encoder.layernorm.bias''' return name def UpperCAmelCase_( a__ , a__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(a__ ) if "qkv" in key: SCREAMING_SNAKE_CASE : List[str] = key.split('''.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_split[3] ) SCREAMING_SNAKE_CASE : Dict = int(key_split[5] ) SCREAMING_SNAKE_CASE : str = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim, :] SCREAMING_SNAKE_CASE : str = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : List[Any] = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Any = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def UpperCAmelCase_( a__ , a__=None , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = DonutModel.from_pretrained(a__ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = get_configs(a__ ) SCREAMING_SNAKE_CASE : List[Any] = DonutSwinModel(a__ ) SCREAMING_SNAKE_CASE : List[Any] = MBartForCausalLM(a__ ) SCREAMING_SNAKE_CASE : List[Any] = VisionEncoderDecoderModel(encoder=a__ , decoder=a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = original_model.state_dict() SCREAMING_SNAKE_CASE : str = convert_state_dict(a__ , a__ ) model.load_state_dict(a__ ) # verify results on scanned document SCREAMING_SNAKE_CASE : Dict = load_dataset('''hf-internal-testing/example-documents''' ) SCREAMING_SNAKE_CASE : Optional[Any] = dataset['''test'''][0]['''image'''].convert('''RGB''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = XLMRobertaTokenizerFast.from_pretrained(a__ , from_slow=a__ ) SCREAMING_SNAKE_CASE : List[str] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE : int = DonutProcessor(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = processor(a__ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE : Optional[int] = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''When is the coffee break?''' SCREAMING_SNAKE_CASE : Any = task_prompt.replace('''{user_input}''' , a__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE : Union[str, Any] = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE : int = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE : str = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE : Optional[int] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE : List[str] = '''hello world''' else: raise ValueError('''Model name not supported''' ) SCREAMING_SNAKE_CASE : Any = original_model.decoder.tokenizer(a__ , add_special_tokens=a__ , return_tensors='''pt''' )[ '''input_ids''' ] SCREAMING_SNAKE_CASE : Optional[Any] = original_model.encoder.model.patch_embed(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = model.encoder.embeddings(a__ ) assert torch.allclose(a__ , a__ , atol=1e-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE : Dict = original_model.encoder(a__ ) SCREAMING_SNAKE_CASE : int = model.encoder(a__ ).last_hidden_state assert torch.allclose(a__ , a__ , atol=1e-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE : Optional[Any] = original_model(a__ , a__ , a__ ).logits SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ , decoder_input_ids=a__ ).logits assert torch.allclose(a__ , a__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) a__ : Tuple = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
19
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig a__ : Optional[Any] = logging.get_logger(__name__) # General docstring a__ : List[Any] = '''ResNetConfig''' # Base docstring a__ : Dict = '''microsoft/resnet-50''' a__ : Any = [1, 2_048, 7, 7] # Image classification docstring a__ : str = '''microsoft/resnet-50''' a__ : int = '''tiger cat''' a__ : Tuple = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 3 , _lowerCamelCase = 1 , _lowerCamelCase = "relu" ) ->str: super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( _lowerCamelCase , _lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=kernel_size // 2 , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : int = self.convolution(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.normalization(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Optional[int]: super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) SCREAMING_SNAKE_CASE : Any = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) SCREAMING_SNAKE_CASE : str = config.num_channels def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : Any = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) SCREAMING_SNAKE_CASE : List[str] = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.pooler(_lowerCamelCase ) return embedding class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 ) ->Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , stride=_lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.BatchNormad(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : Optional[Any] = self.convolution(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = self.normalization(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "relu" ) ->Dict: super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : str = ( ResNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : int = nn.Sequential( ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , activation=_lowerCamelCase ) , ) SCREAMING_SNAKE_CASE : Optional[Any] = ACTaFN[activation] def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : List[str] = hidden_state SCREAMING_SNAKE_CASE : int = self.layer(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = self.shortcut(_lowerCamelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : Optional[Any] = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "relu" , _lowerCamelCase = 4 ) ->Dict: super().__init__() SCREAMING_SNAKE_CASE : int = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : Optional[int] = out_channels // reduction SCREAMING_SNAKE_CASE : List[str] = ( ResNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : List[Any] = nn.Sequential( ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) SCREAMING_SNAKE_CASE : Optional[int] = ACTaFN[activation] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = hidden_state SCREAMING_SNAKE_CASE : int = self.layer(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.shortcut(_lowerCamelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : List[str] = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 , _lowerCamelCase = 2 , ) ->str: super().__init__() SCREAMING_SNAKE_CASE : str = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer SCREAMING_SNAKE_CASE : Dict = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , activation=config.hidden_act ) , *[layer(_lowerCamelCase , _lowerCamelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : Tuple = input for layer in self.layers: SCREAMING_SNAKE_CASE : Optional[int] = layer(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[Any]: super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) SCREAMING_SNAKE_CASE : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCamelCase , config.depths[1:] ): self.stages.append(ResNetStage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , depth=_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True ) ->BaseModelOutputWithNoAttention: SCREAMING_SNAKE_CASE : Optional[int] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE : Dict = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE : List[Any] = stage_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCamelCase , hidden_states=_lowerCamelCase , ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ResNetConfig __SCREAMING_SNAKE_CASE : int = 'resnet' __SCREAMING_SNAKE_CASE : Dict = 'pixel_values' __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: if isinstance(_lowerCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->List[str]: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : int = value a__ : Optional[Any] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Optional[int] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = config SCREAMING_SNAKE_CASE : List[Any] = ResNetEmbeddings(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = ResNetEncoder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->BaseModelOutputWithPoolingAndNoAttention: SCREAMING_SNAKE_CASE : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : str = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.encoder( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = encoder_outputs[0] SCREAMING_SNAKE_CASE : str = self.pooler(_lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Tuple: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = config.num_labels SCREAMING_SNAKE_CASE : Tuple = ResNetModel(_lowerCamelCase ) # classification head SCREAMING_SNAKE_CASE : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->ImageClassifierOutputWithNoAttention: SCREAMING_SNAKE_CASE : str = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Optional[int] = self.resnet(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : List[str] = self.classifier(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Optional[int] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Tuple = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Dict = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : Dict = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : int = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : Tuple = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : int = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : str = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , a__ , ) class a_ ( a__ , a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Union[str, Any]: super().__init__(_lowerCamelCase ) super()._init_backbone(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [config.embedding_size] + config.hidden_sizes SCREAMING_SNAKE_CASE : Union[str, Any] = ResNetEmbeddings(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = ResNetEncoder(_lowerCamelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @replace_return_docstrings(output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->BackboneOutput: SCREAMING_SNAKE_CASE : Any = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : Tuple = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.encoder(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_lowerCamelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_lowerCamelCase , )
19
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a__ : str = False try: a__ : List[str] = _is_package_available('''google.colab''') except ModuleNotFoundError: pass @input.register class a_ : """simple docstring""" def __init__( self , _lowerCamelCase = None , _lowerCamelCase = [] ) ->Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[Any] = choices SCREAMING_SNAKE_CASE : Union[str, Any] = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE : Any = '''*''' else: SCREAMING_SNAKE_CASE : Optional[Any] = '''➔ ''' def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "" ) ->Optional[Any]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowerCamelCase ) else: forceWrite(self.choices[index] , _lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(_lowerCamelCase ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = 1 ) ->List[str]: SCREAMING_SNAKE_CASE : int = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowerCamelCase ) move_cursor(_lowerCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def __lowerCAmelCase ( self ) ->int: self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def __lowerCAmelCase ( self ) ->List[str]: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def __lowerCAmelCase ( self ) ->Any: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def __lowerCAmelCase ( self ) ->Optional[Any]: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowerCamelCase )] for number in range(10 )] ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowerCamelCase ) else: return else: return def __lowerCAmelCase ( self , _lowerCamelCase = 0 ) ->Dict: if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) SCREAMING_SNAKE_CASE : int = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowerCamelCase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE : Optional[Any] = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE : List[Any] = default_choice else: SCREAMING_SNAKE_CASE : Dict = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(_lowerCamelCase , '''\n''' ) return choice
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
1
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Tuple = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } a__ : Optional[int] = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : int = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase , _lowerCamelCase="<unk>" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[MASK]" , _lowerCamelCase="[CLS]" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE : List[Any] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Any = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , sep_token=_lowerCamelCase , mask_token=_lowerCamelCase , cls_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.sp_model.get_piece_size() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Dict: SCREAMING_SNAKE_CASE : int = self.__dict__.copy() SCREAMING_SNAKE_CASE : List[Any] = None return state def __setstate__( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: return self.sp_model.piece_to_id(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[Any] = '''''' SCREAMING_SNAKE_CASE : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Dict = [] else: current_sub_tokens.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = False out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = True , **_lowerCamelCase , ) ->str: SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''use_source_tokenizer''' , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.convert_ids_to_tokens(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = [] sub_texts.append(_lowerCamelCase ) else: current_sub_text.append(_lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: SCREAMING_SNAKE_CASE : List[str] = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_lowerCamelCase ) ) else: SCREAMING_SNAKE_CASE : Any = ''''''.join(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE : Union[str, Any] = self.clean_up_tokenization(_lowerCamelCase ) return clean_text else: return text def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
19
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer a__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Any = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } a__ : List[Any] = { '''unc-nlp/lxmert-base-uncased''': 512, } a__ : List[str] = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Tuple = LxmertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->int: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : List[Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : str = strip_accents SCREAMING_SNAKE_CASE : Tuple = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[Any] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ) ->str: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Tuple = batch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : Any = min_resolution SCREAMING_SNAKE_CASE : str = max_resolution SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : List[Any] = size SCREAMING_SNAKE_CASE : List[str] = do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean SCREAMING_SNAKE_CASE : Tuple = image_std SCREAMING_SNAKE_CASE : Optional[int] = do_rescale SCREAMING_SNAKE_CASE : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_pad def __lowerCAmelCase ( self ) ->Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->List[Any]: if not batched: SCREAMING_SNAKE_CASE : Union[str, Any] = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : str = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE : Optional[Any] = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE : List[Any] = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE : Union[str, Any] = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE : Dict = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE : Optional[Any] = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE : List[Any] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Optional[int] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] SCREAMING_SNAKE_CASE : List[str] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = DeformableDetrImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Dict = DeformableDetrImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) ->Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_rescale''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_pad''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[int]: pass def __lowerCAmelCase ( self ) ->Optional[int]: # Initialize image_processing SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ) ->Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ) ->Dict: # Initialize image_processing SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched SCREAMING_SNAKE_CASE : List[Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCAmelCase ( self ) ->Union[str, Any]: # prepare image and target SCREAMING_SNAKE_CASE : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE : Dict = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Tuple = {'''image_id''': 3_9769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE : Union[str, Any] = DeformableDetrImageProcessor() SCREAMING_SNAKE_CASE : List[str] = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : Dict = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Tuple = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->Tuple: # prepare image, target and masks_path SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: SCREAMING_SNAKE_CASE : Tuple = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Tuple = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} SCREAMING_SNAKE_CASE : List[str] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE : Optional[int] = DeformableDetrImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : str = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes SCREAMING_SNAKE_CASE : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Dict = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd SCREAMING_SNAKE_CASE : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels SCREAMING_SNAKE_CASE : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify masks SCREAMING_SNAKE_CASE : int = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowerCamelCase ) # verify orig_size SCREAMING_SNAKE_CASE : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size SCREAMING_SNAKE_CASE : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) )
19
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): """simple docstring""" @property def __lowerCAmelCase ( self ) ->Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : str = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : List[Any] = PNDMScheduler() SCREAMING_SNAKE_CASE : str = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=_lowerCamelCase )[0] SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : str = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = PNDMScheduler() SCREAMING_SNAKE_CASE : Optional[Any] = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pndm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = 'dandelin/vilt-b32-finetuned-vqa' __SCREAMING_SNAKE_CASE : Optional[Any] = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) __SCREAMING_SNAKE_CASE : int = 'image_qa' __SCREAMING_SNAKE_CASE : Any = AutoProcessor __SCREAMING_SNAKE_CASE : List[str] = AutoModelForVisualQuestionAnswering __SCREAMING_SNAKE_CASE : Union[str, Any] = ['image', 'text'] __SCREAMING_SNAKE_CASE : Any = ['text'] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) ->str: requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->str: return self.pre_processor(_lowerCamelCase , _lowerCamelCase , return_tensors='''pt''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: with torch.no_grad(): return self.model(**_lowerCamelCase ).logits def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
19
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) a__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } a__ : Optional[Any] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ , a__ ): """simple docstring""" for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE : List[str] = '''lm_head''' SCREAMING_SNAKE_CASE : str = getattr(a__ , a__ ) if weight_type is not None: SCREAMING_SNAKE_CASE : str = getattr(a__ , a__ ).shape else: SCREAMING_SNAKE_CASE : str = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : int = value else: SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Optional[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : Any = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : str = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: SCREAMING_SNAKE_CASE : Any = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Optional[Any] = name.split(a__ )[0].split('''.''' )[-2] SCREAMING_SNAKE_CASE : List[Any] = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[Any] = '''weight_g''' elif "weight_v" in name: SCREAMING_SNAKE_CASE : Any = '''weight_v''' elif "bias" in name: SCREAMING_SNAKE_CASE : str = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Dict = '''weight''' else: SCREAMING_SNAKE_CASE : int = None set_recursively(a__ , a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = full_name.split('''conv_layers.''' )[-1] SCREAMING_SNAKE_CASE : Dict = name.split('''.''' ) SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) SCREAMING_SNAKE_CASE : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def UpperCAmelCase_( a__ , a__ , a__=None , a__=None , a__=True ): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : Optional[Any] = UniSpeechConfig.from_pretrained(a__ ) else: SCREAMING_SNAKE_CASE : List[Any] = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : Tuple = Dictionary.load_from_json(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : List[str] = target_dict.pad_index SCREAMING_SNAKE_CASE : Optional[int] = target_dict.bos_index SCREAMING_SNAKE_CASE : List[str] = target_dict.eos_index SCREAMING_SNAKE_CASE : Tuple = len(target_dict.symbols ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a__ , '''vocab.json''' ) if not os.path.isdir(a__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) SCREAMING_SNAKE_CASE : str = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE : Tuple = 42 SCREAMING_SNAKE_CASE : List[Any] = 43 with open(a__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = WavaVecaPhonemeCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=a__ , ) SCREAMING_SNAKE_CASE : int = True if config.feat_extract_norm == '''layer''' else False SCREAMING_SNAKE_CASE : List[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) SCREAMING_SNAKE_CASE : str = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) SCREAMING_SNAKE_CASE : List[str] = UniSpeechForCTC(a__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = UniSpeechForPreTraining(a__ ) if is_finetuned: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE : Optional[Any] = model[0].eval() recursively_load_weights(a__ , a__ , a__ ) hf_unispeech.save_pretrained(a__ ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) a__ : Dict = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
19
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a__ : List[Any] = r''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(a__ ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 'rag' __SCREAMING_SNAKE_CASE : List[str] = True def __init__( self , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=" / " , _lowerCamelCase=" // " , _lowerCamelCase=5 , _lowerCamelCase=300 , _lowerCamelCase=768 , _lowerCamelCase=8 , _lowerCamelCase="wiki_dpr" , _lowerCamelCase="train" , _lowerCamelCase="compressed" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->str: super().__init__( bos_token_id=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , prefix=_lowerCamelCase , vocab_size=_lowerCamelCase , **_lowerCamelCase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''question_encoder''' ) SCREAMING_SNAKE_CASE : Optional[Any] = question_encoder_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''generator''' ) SCREAMING_SNAKE_CASE : List[str] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE : Dict = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = AutoConfig.for_model(_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = reduce_loss SCREAMING_SNAKE_CASE : int = label_smoothing SCREAMING_SNAKE_CASE : Optional[Any] = exclude_bos_score SCREAMING_SNAKE_CASE : Dict = do_marginalize SCREAMING_SNAKE_CASE : str = title_sep SCREAMING_SNAKE_CASE : str = doc_sep SCREAMING_SNAKE_CASE : str = n_docs SCREAMING_SNAKE_CASE : List[Any] = max_combined_length SCREAMING_SNAKE_CASE : str = dataset SCREAMING_SNAKE_CASE : int = dataset_split SCREAMING_SNAKE_CASE : Optional[int] = index_name SCREAMING_SNAKE_CASE : Any = retrieval_vector_size SCREAMING_SNAKE_CASE : Union[str, Any] = retrieval_batch_size SCREAMING_SNAKE_CASE : Tuple = passages_path SCREAMING_SNAKE_CASE : str = index_path SCREAMING_SNAKE_CASE : Tuple = use_dummy_dataset SCREAMING_SNAKE_CASE : int = output_retrieved SCREAMING_SNAKE_CASE : Any = do_deduplication SCREAMING_SNAKE_CASE : Tuple = use_cache if self.forced_eos_token_id is None: SCREAMING_SNAKE_CASE : Dict = getattr(self.generator , '''forced_eos_token_id''' , _lowerCamelCase ) @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.question_encoder.to_dict() SCREAMING_SNAKE_CASE : Any = self.generator.to_dict() SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output
19
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a__ : Union[str, Any] = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a__ : Any = concatenate_datasets a__ : List[str] = DownloadConfig a__ : int = DownloadManager a__ : List[str] = DownloadMode a__ : Union[str, Any] = DownloadConfig a__ : Any = DownloadMode a__ : Dict = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
19
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE : Any = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_lowerCamelCase , cache_dir=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [t[-1] for t in os.walk(os.path.join(_lowerCamelCase , os.listdir(_lowerCamelCase )[0] , '''snapshots''' ) )] SCREAMING_SNAKE_CASE : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) SCREAMING_SNAKE_CASE : List[str] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : List[str] = 4 SCREAMING_SNAKE_CASE : Dict = jax.device_count() SCREAMING_SNAKE_CASE : Optional[Any] = num_samples * [prompt] SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.prepare_inputs(_lowerCamelCase ) # shard inputs and rng SCREAMING_SNAKE_CASE : List[str] = replicate(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = jax.random.split(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = shard(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowerCamelCase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowerCamelCase ) == num_samples def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) SCREAMING_SNAKE_CASE : List[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : List[Any] = 50 SCREAMING_SNAKE_CASE : Any = jax.device_count() SCREAMING_SNAKE_CASE : Dict = num_samples * [prompt] SCREAMING_SNAKE_CASE : int = pipeline.prepare_inputs(_lowerCamelCase ) # shard inputs and rng SCREAMING_SNAKE_CASE : Dict = replicate(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = jax.random.split(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = shard(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Tuple = 50 SCREAMING_SNAKE_CASE : Dict = jax.device_count() SCREAMING_SNAKE_CASE : Optional[Any] = num_samples * [prompt] SCREAMING_SNAKE_CASE : Optional[int] = pipeline.prepare_inputs(_lowerCamelCase ) # shard inputs and rng SCREAMING_SNAKE_CASE : Optional[int] = replicate(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = shard(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = 50 SCREAMING_SNAKE_CASE : Union[str, Any] = jax.device_count() SCREAMING_SNAKE_CASE : Union[str, Any] = num_samples * [prompt] SCREAMING_SNAKE_CASE : int = pipeline.prepare_inputs(_lowerCamelCase ) # shard inputs and rng SCREAMING_SNAKE_CASE : Any = replicate(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : int = shard(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Dict = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = scheduler.create_state() SCREAMING_SNAKE_CASE : Tuple = scheduler_state SCREAMING_SNAKE_CASE : Tuple = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) SCREAMING_SNAKE_CASE : Any = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Optional[int] = 50 SCREAMING_SNAKE_CASE : List[str] = jax.device_count() SCREAMING_SNAKE_CASE : List[str] = num_samples * [prompt] SCREAMING_SNAKE_CASE : Dict = pipeline.prepare_inputs(_lowerCamelCase ) # shard inputs and rng SCREAMING_SNAKE_CASE : List[str] = replicate(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = jax.random.split(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = shard(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowerCamelCase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) SCREAMING_SNAKE_CASE : Optional[int] = jax.device_count() SCREAMING_SNAKE_CASE : Any = num_samples * [prompt] SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(jax.random.PRNGKey(0 ) , _lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = replicate(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = pipeline.prepare_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = shard(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[str] = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=_lowerCamelCase , use_memory_efficient_attention=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = replicate(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = pipeline.prepare_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = shard(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = pipeline(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , jit=_lowerCamelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[str] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
19
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
1
from torch import nn class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE : List[Any] = class_size SCREAMING_SNAKE_CASE : Optional[Any] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) SCREAMING_SNAKE_CASE : str = self.mlp(_lowerCamelCase ) return logits
19
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class a_ ( unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE : List[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : int = TextaTextGenerationPipeline(model=_lowerCamelCase , tokenizer=_lowerCamelCase ) return generator, ["Something to write", "Something else"] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = generator('''Something there''' ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ANY(_lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] , ) SCREAMING_SNAKE_CASE : str = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ] , ) with self.assertRaises(_lowerCamelCase ): generator(4 ) @require_torch def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE : Union[str, Any] = generator('''Something there''' , do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ''''''}] ) SCREAMING_SNAKE_CASE : Optional[Any] = 3 SCREAMING_SNAKE_CASE : str = generator( '''Something there''' , num_return_sequences=_lowerCamelCase , num_beams=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = generator('''This is a test''' , do_sample=_lowerCamelCase , num_return_sequences=2 , return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE : List[Any] = '''<pad>''' SCREAMING_SNAKE_CASE : str = generator( ['''This is a test''', '''This is a second test'''] , do_sample=_lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowerCamelCase , ) self.assertEqual( _lowerCamelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE : Any = generator('''Something there''' , do_sample=_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [{'''generated_text''': ''''''}] )
19
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
1
import math def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( a__ = 0.1 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 3 SCREAMING_SNAKE_CASE : int = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(a__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
19
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
1
def UpperCAmelCase_( a__ ): """simple docstring""" if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence SCREAMING_SNAKE_CASE : Optional[Any] = gray_code_sequence_string(_UpperCAmelCase ) # # convert them to integers for i in range(len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE : Optional[Any] = int(sequence[i] , 2 ) return sequence def UpperCAmelCase_( a__ ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] SCREAMING_SNAKE_CASE : Dict = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits SCREAMING_SNAKE_CASE : Dict = gray_code_sequence_string(bit_count - 1 ) SCREAMING_SNAKE_CASE : Any = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): SCREAMING_SNAKE_CASE : str = '0' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): SCREAMING_SNAKE_CASE : Any = '1' + smaller_sequence[i] sequence.append(_UpperCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
350
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Tuple = '''▁''' a__ : List[Any] = {'''vocab_file''': '''spiece.model'''} a__ : Optional[Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } a__ : str = { '''google/pegasus-xsum''': 512, } a__ : str = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase , _lowerCamelCase="<pad>" , _lowerCamelCase="</s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<mask_2>" , _lowerCamelCase="<mask_1>" , _lowerCamelCase=None , _lowerCamelCase=103 , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : Dict = offset if additional_special_tokens is not None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError( F"""additional_special_tokens should be of type {type(_lowerCamelCase )}, but is""" F""" {type(_lowerCamelCase )}""" ) SCREAMING_SNAKE_CASE : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_lowerCamelCase ) , self.offset - 1 ) ] if len(set(_lowerCamelCase ) ) != len(_lowerCamelCase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) SCREAMING_SNAKE_CASE : Dict = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , mask_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token_sent=_lowerCamelCase , offset=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : List[str] = mask_token_sent SCREAMING_SNAKE_CASE : Optional[int] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) # add special tokens to encoder dict SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __lowerCAmelCase ( self ) ->int: return len(self.sp_model ) + self.offset def __lowerCAmelCase ( self ) ->Dict[str, int]: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE : str = None return state def __setstate__( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] SCREAMING_SNAKE_CASE : List[str] = self.sp_model.piece_to_id(_lowerCamelCase ) return sp_id + self.offset def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: SCREAMING_SNAKE_CASE : Dict = self.sp_model.IdToPiece(index - self.offset ) return token def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token SCREAMING_SNAKE_CASE : Optional[Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def __lowerCAmelCase ( self , _lowerCamelCase=False ) ->str: return 1 def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return self._special_token_mask(_lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(_lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
19
0
from __future__ import annotations from math import pi, sqrt def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
351
def UpperCAmelCase_( a__ ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Tuple = 1 while repunit: SCREAMING_SNAKE_CASE : Dict = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_( a__ = 1_000_000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
0
import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class a_ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = TransfoXLTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : str = False def __lowerCAmelCase ( self ) ->Union[str, Any]: super().setUp() SCREAMING_SNAKE_CASE : int = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Tuple = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = '''<unk> UNwanted , running''' SCREAMING_SNAKE_CASE : Optional[Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(_UpperCAmelCase , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [0, 4, 8, 7] ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Optional[int] = TransfoXLTokenizer(lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : str = TransfoXLTokenizer(lower_case=_UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = TransfoXLTokenizer(lower_case=_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' SCREAMING_SNAKE_CASE : Optional[Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(tokenizer.convert_tokens_to_string(_UpperCAmelCase ) , _UpperCAmelCase ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = len(_UpperCAmelCase ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_UpperCAmelCase ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
352
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[10, 20, 30, 40] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ) ->Dict: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Tuple = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : int = scope SCREAMING_SNAKE_CASE : Optional[Any] = num_stages def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def __lowerCAmelCase ( self ) ->Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(_lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = (UperNetForSemanticSegmentation,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = UperNetModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->str: return def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->int: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def __lowerCAmelCase ( self ) ->str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->int: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : str = _config_zero_init(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(config=_lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Any = UperNetForSemanticSegmentation.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) SCREAMING_SNAKE_CASE : Any = Image.open(a__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) SCREAMING_SNAKE_CASE : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) SCREAMING_SNAKE_CASE : str = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = prepare_img() SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _lowerCamelCase , atol=1e-4 ) )
19
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) a__ : Tuple = logging.getLogger() def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = '''\n'''.join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open('''w''' ).writelines(__lowerCAmelCase ) a__ : List[str] = '''patrickvonplaten/t5-tiny-random''' a__ : Dict = '''sshleifer/bart-tiny-random''' a__ : Dict = '''sshleifer/tiny-mbart''' a__ : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class a_ ( A__ ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Dict = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' SCREAMING_SNAKE_CASE : Optional[Any] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() SCREAMING_SNAKE_CASE : Union[str, Any] = [''' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'''] _dump_articles(__snake_case , __snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / '''scores.json''' ) SCREAMING_SNAKE_CASE : Dict = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' SCREAMING_SNAKE_CASE : List[str] = F""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(__snake_case , '''argv''' , __snake_case ): run_generate() assert Path(__snake_case ).exists() # os.remove(Path(output_file_name)) def __lowerCAmelCase ( self ) ->Union[str, Any]: self.run_eval_tester(__snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: self.run_eval_tester(__snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def __lowerCAmelCase ( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : List[str] = Path(self.get_auto_remove_tmp_dir() ) / '''utest_input.source''' SCREAMING_SNAKE_CASE : Optional[Any] = input_file_name.parent / '''utest_output.txt''' assert not output_file_name.exists() SCREAMING_SNAKE_CASE : int = { '''en''': ['''Machine learning is great, isn\'t it?''', '''I like to eat bananas''', '''Tomorrow is another great day!'''], '''de''': [ '''Maschinelles Lernen ist großartig, oder?''', '''Ich esse gerne Bananen''', '''Morgen ist wieder ein toller Tag!''', ], } SCREAMING_SNAKE_CASE : Any = Path(self.get_auto_remove_tmp_dir() ) SCREAMING_SNAKE_CASE : Tuple = str(tmp_dir / '''scores.json''' ) SCREAMING_SNAKE_CASE : int = str(tmp_dir / '''val.target''' ) _dump_articles(__snake_case , text['''en'''] ) _dump_articles(__snake_case , text['''de'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = '''translation_en_to_de''' if model == T5_TINY else '''summarization''' SCREAMING_SNAKE_CASE : Tuple = F""" run_eval_search.py {model} {str(__snake_case )} {str(__snake_case )} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(['''--search''', '''num_beams=1:2 length_penalty=0.9:1.0'''] ) with patch.object(__snake_case , '''argv''' , __snake_case ): with CaptureStdout() as cs: run_search() SCREAMING_SNAKE_CASE : Any = [''' num_beams | length_penalty''', model, '''Best score args'''] SCREAMING_SNAKE_CASE : Tuple = ['''Info'''] if "translation" in task: expected_strings.append('''bleu''' ) else: expected_strings.extend(__snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__snake_case ).exists() os.remove(Path(__snake_case ) )
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin a__ : Dict = random.Random() def UpperCAmelCase_( a__ , a__=1.0 , a__=None , a__=None ): """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE : Tuple = global_rng SCREAMING_SNAKE_CASE : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=400 , _lowerCamelCase=2000 , _lowerCamelCase=1 , _lowerCamelCase=0.0 , _lowerCamelCase=1_6000 , _lowerCamelCase=True , _lowerCamelCase=True , ) ->Optional[int]: SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : List[str] = min_seq_length SCREAMING_SNAKE_CASE : Optional[int] = max_seq_length SCREAMING_SNAKE_CASE : Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : int = feature_size SCREAMING_SNAKE_CASE : List[Any] = padding_value SCREAMING_SNAKE_CASE : Tuple = sampling_rate SCREAMING_SNAKE_CASE : Optional[int] = return_attention_mask SCREAMING_SNAKE_CASE : List[str] = do_normalize def __lowerCAmelCase ( self ) ->Tuple: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __lowerCAmelCase ( self , _lowerCamelCase=False , _lowerCamelCase=False ) ->Tuple: def _flatten(_lowerCamelCase ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: SCREAMING_SNAKE_CASE : Dict = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Dict = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = WavaVecaFeatureExtractor def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = WavaVecaFeatureExtractionTester(self ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: self.assertTrue(np.all(np.mean(_lowerCamelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCamelCase , axis=0 ) - 1 ) < 1e-3 ) ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values SCREAMING_SNAKE_CASE : int = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE : Dict = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values SCREAMING_SNAKE_CASE : Dict = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE : List[str] = np.asarray(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values SCREAMING_SNAKE_CASE : Optional[int] = feat_extract(_lowerCamelCase , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Dict = ['''longest''', '''max_length''', '''do_not_pad'''] SCREAMING_SNAKE_CASE : Dict = [None, 1600, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Dict = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : Optional[int] = range(800 , 1400 , 200 ) SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE : int = ['''longest''', '''max_length''', '''do_not_pad'''] SCREAMING_SNAKE_CASE : Dict = [None, 1600, None] for max_length, padding in zip(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = feat_extract(_lowerCamelCase , max_length=_lowerCamelCase , padding=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : Dict = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) SCREAMING_SNAKE_CASE : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : List[str] = feat_extract( _lowerCamelCase , truncation=_lowerCamelCase , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) SCREAMING_SNAKE_CASE : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def __lowerCAmelCase ( self ) ->Tuple: import torch SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE : List[str] = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE : Dict = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE : List[str] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __lowerCAmelCase ( self ) ->Optional[Any]: for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaConfig.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="resnet50" , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else [4] SCREAMING_SNAKE_CASE : Union[str, Any] = stage_names SCREAMING_SNAKE_CASE : Union[str, Any] = out_features SCREAMING_SNAKE_CASE : List[str] = backbone SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = use_pretrained_backbone SCREAMING_SNAKE_CASE : Dict = is_training def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values def __lowerCAmelCase ( self ) ->str: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[Any] = TimmBackbone(config=_a ) model.to(_a ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(_a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Any = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class a_ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = (TimmBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Optional[Any] = False def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = TimmBackboneModelTester(self ) SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __lowerCAmelCase ( self ) ->Optional[int]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = 'resnet18' SCREAMING_SNAKE_CASE : Dict = 'microsoft/resnet-18' SCREAMING_SNAKE_CASE : Optional[int] = AutoBackbone.from_pretrained(_a , use_timm_backbone=_a ) SCREAMING_SNAKE_CASE : Optional[int] = AutoBackbone.from_pretrained(_a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) SCREAMING_SNAKE_CASE : Tuple = AutoBackbone.from_pretrained(_a , use_timm_backbone=_a , out_indices=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[Any] = AutoBackbone.from_pretrained(_a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def __lowerCAmelCase ( self ) ->str: pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def __lowerCAmelCase ( self ) ->Dict: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def __lowerCAmelCase ( self ) ->List[str]: pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def __lowerCAmelCase ( self ) ->Any: pass @unittest.skip('''Safetensors is not supported by timm.''' ) def __lowerCAmelCase ( self ) ->List[Any]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __lowerCAmelCase ( self ) ->Optional[int]: pass def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_a ) SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _a ) def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality SCREAMING_SNAKE_CASE : Any = self.all_model_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(_a ) model.to(_a ) SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(_a , _a ) SCREAMING_SNAKE_CASE : Any = model(**_a ) SCREAMING_SNAKE_CASE : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models SCREAMING_SNAKE_CASE : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: SCREAMING_SNAKE_CASE : Tuple = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(**_a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(_a ) SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : List[Any] = model_class(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(**_a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights SCREAMING_SNAKE_CASE : Union[str, Any] = copy.deepcopy(_a ) SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : int = model_class(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE : str = model(**_a )
355
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) SCREAMING_SNAKE_CASE : int = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a__ : Tuple = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : str = logging.get_logger(__name__) a__ : Optional[Any] = {'''vocab_file''': '''vocab.json'''} a__ : str = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } a__ : Tuple = {'''mgp-str''': 27} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) ->Dict: super().__init__( unk_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , pad_token=_lowerCamelCase , **_lowerCamelCase , ) with open(_lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : List[Any] = json.load(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self ) ->List[Any]: return len(self.vocab ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(_lowerCamelCase ) return char_tokens def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: return self.decoder.get(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(_lowerCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(_lowerCamelCase ) ) return SCREAMING_SNAKE_CASE : str = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_lowerCamelCase , ensure_ascii=_lowerCamelCase ) + '''\n''' ) return (vocab_file,)
19
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCAmelCase_( a__ , a__ , a__ , a__=None , a__=None , a__=None , a__=None , a__=None , ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : str = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE : int = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__A ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__A ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE : List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__A ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=99 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase="relu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=20 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ) ->Any: SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = eos_token_id SCREAMING_SNAKE_CASE : Dict = pad_token_id SCREAMING_SNAKE_CASE : int = bos_token_id def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE : int = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() SCREAMING_SNAKE_CASE : Optional[int] = prepare_mam_aaa_inputs_dict(_snake_case , _snake_case , _snake_case ) return config, inputs_dict def __lowerCAmelCase ( self ) ->Optional[int]: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = MaMaaaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval() SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE : List[Any] = inputs_dict['''attention_mask'''] SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['''head_mask'''] # first forward pass SCREAMING_SNAKE_CASE : Optional[Any] = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : int = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : int = model(_snake_case , attention_mask=_snake_case )['''last_hidden_state'''] SCREAMING_SNAKE_CASE : List[str] = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-2 ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : int = MaMaaaModel(config=_snake_case ).to(_snake_case ).eval() SCREAMING_SNAKE_CASE : List[Any] = model(**_snake_case ) SCREAMING_SNAKE_CASE : List[Any] = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE : List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Dict = model.get_encoder() encoder.save_pretrained(_snake_case ) SCREAMING_SNAKE_CASE : Tuple = MaMaaaEncoder.from_pretrained(_snake_case ).to(_snake_case ) SCREAMING_SNAKE_CASE : Any = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[int] = model.get_decoder() decoder.save_pretrained(_snake_case ) SCREAMING_SNAKE_CASE : int = MaMaaaDecoder.from_pretrained(_snake_case ).to(_snake_case ) SCREAMING_SNAKE_CASE : List[str] = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=_snake_case , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Union[str, Any] = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Optional[int] = False def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Tuple = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_snake_case ) def __lowerCAmelCase ( self ) ->List[str]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(_snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = model_class.from_pretrained(_snake_case , output_loading_info=_snake_case ) self.assertEqual(info['''missing_keys'''] , [] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_snake_case ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_snake_case ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE : str = model_class(_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE : List[str] = copy.deepcopy(self._prepare_for_class(_snake_case , _snake_case ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE : str = inputs['''input_ids'''] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE : Optional[Any] = inputs['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = inputs.get('''decoder_input_ids''' , _snake_case ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , _snake_case ) SCREAMING_SNAKE_CASE : int = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Union[str, Any] = wte(_snake_case ) else: SCREAMING_SNAKE_CASE : Tuple = wte(_snake_case ) SCREAMING_SNAKE_CASE : List[Any] = wte(_snake_case ) with torch.no_grad(): model(**_snake_case )[0] def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(1 ).to(_snake_case ) SCREAMING_SNAKE_CASE : List[Any] = MaMaaaForConditionalGeneration(_snake_case ).eval().to(_snake_case ) if torch_device == "cuda": model.half() model.generate(_snake_case , attention_mask=_snake_case ) model.generate(num_beams=4 , do_sample=_snake_case , early_stopping=_snake_case , num_return_sequences=3 ) def UpperCAmelCase_( a__ ): """simple docstring""" return torch.tensor(__A , dtype=torch.long , device=__A ) a__ : Tuple = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->int: return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : int = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(_snake_case ) SCREAMING_SNAKE_CASE : Tuple = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) SCREAMING_SNAKE_CASE : Union[str, Any] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) SCREAMING_SNAKE_CASE : Dict = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**_snake_case )[0] SCREAMING_SNAKE_CASE : Any = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , _snake_case ) # change to expected output here SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-0.7_7_8_0, -0.1_6_7_6, 0.1_0_3_8], [-6.7_5_5_6, -1.3_9_9_2, 0.0_5_6_7], [-7.5_3_8_3, -0.5_9_2_0, -0.2_7_7_9]] , device=_snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case ) ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : int = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_snake_case ) # change to intended input SCREAMING_SNAKE_CASE : Union[str, Any] = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) SCREAMING_SNAKE_CASE : Dict = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) SCREAMING_SNAKE_CASE : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**_snake_case )[0] SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _snake_case ) # change to expected output here SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor( [[-1.0_4_4_8, -1.0_4_1_1, 3.7_9_9_2], [-3.2_1_9_1, -3.2_3_8_6, -1.3_4_5_1], [-3.6_2_1_0, -3.5_9_9_3, 0.4_9_2_5]] , device=_snake_case ) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case ) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Any = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_snake_case ) SCREAMING_SNAKE_CASE : int = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) SCREAMING_SNAKE_CASE : List[str] = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE : Tuple = tokenizer(_snake_case , padding=_snake_case , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate( input_ids=dct['''input_ids'''].to(_snake_case ) , attention_mask=dct['''attention_mask'''].to(_snake_case ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) SCREAMING_SNAKE_CASE : List[Any] = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_snake_case , skip_special_tokens=_snake_case ) assert generated == expected_en
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : Tuple = logging.get_logger(__name__) a__ : Optional[Any] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class a_ ( lowercase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = 'efficientnet' def __init__( self , _lowerCamelCase = 3 , _lowerCamelCase = 600 , _lowerCamelCase = 2.0 , _lowerCamelCase = 3.1 , _lowerCamelCase = 8 , _lowerCamelCase = [3, 3, 5, 3, 5, 5, 3] , _lowerCamelCase = [32, 16, 24, 40, 80, 112, 192] , _lowerCamelCase = [16, 24, 40, 80, 112, 192, 320] , _lowerCamelCase = [] , _lowerCamelCase = [1, 2, 2, 2, 1, 2, 1] , _lowerCamelCase = [1, 2, 2, 3, 3, 4, 1] , _lowerCamelCase = [1, 6, 6, 6, 6, 6, 6] , _lowerCamelCase = 0.2_5 , _lowerCamelCase = "swish" , _lowerCamelCase = 2560 , _lowerCamelCase = "mean" , _lowerCamelCase = 0.0_2 , _lowerCamelCase = 0.0_0_1 , _lowerCamelCase = 0.9_9 , _lowerCamelCase = 0.5 , _lowerCamelCase = 0.2 , **_lowerCamelCase , ) ->str: super().__init__(**_UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : int = width_coefficient SCREAMING_SNAKE_CASE : List[str] = depth_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = depth_divisor SCREAMING_SNAKE_CASE : str = kernel_sizes SCREAMING_SNAKE_CASE : Tuple = in_channels SCREAMING_SNAKE_CASE : int = out_channels SCREAMING_SNAKE_CASE : Any = depthwise_padding SCREAMING_SNAKE_CASE : Optional[int] = strides SCREAMING_SNAKE_CASE : List[str] = num_block_repeats SCREAMING_SNAKE_CASE : Optional[Any] = expand_ratios SCREAMING_SNAKE_CASE : List[str] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dim SCREAMING_SNAKE_CASE : List[str] = pooling_type SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : str = batch_norm_eps SCREAMING_SNAKE_CASE : Dict = batch_norm_momentum SCREAMING_SNAKE_CASE : Any = dropout_rate SCREAMING_SNAKE_CASE : List[Any] = drop_connect_rate SCREAMING_SNAKE_CASE : str = sum(_UpperCamelCase ) * 4 class a_ ( lowercase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = version.parse('1.11' ) @property def __lowerCAmelCase ( self ) ->str: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self ) ->List[Any]: return 1e-5
358
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
359
import math from collections.abc import Iterator from itertools import takewhile def UpperCAmelCase_( a__ ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 2 while True: if is_prime(a__ ): yield num num += 1 def UpperCAmelCase_( a__ = 2_000_000 ): """simple docstring""" return sum(takewhile(lambda a__ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
19
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging a__ : List[Any] = logging.get_logger(__name__) class a_ ( A_ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = ["pixel_values"] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = 8 , **_lowerCamelCase , ) ->None: super().__init__(**snake_case__ ) SCREAMING_SNAKE_CASE : int = do_rescale SCREAMING_SNAKE_CASE : List[str] = rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_pad SCREAMING_SNAKE_CASE : Dict = pad_size def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase ) ->np.ndarray: return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = get_image_size(snake_case__ ) SCREAMING_SNAKE_CASE : str = (old_height // size + 1) * size - old_height SCREAMING_SNAKE_CASE : List[str] = (old_width // size + 1) * size - old_width return pad(snake_case__ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=snake_case__ ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ) ->Tuple: SCREAMING_SNAKE_CASE : str = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_pad if do_pad is not None else self.do_pad SCREAMING_SNAKE_CASE : Dict = pad_size if pad_size is not None else self.pad_size SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : str = [to_numpy_array(snake_case__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_pad: SCREAMING_SNAKE_CASE : List[Any] = [self.pad(snake_case__ , size=snake_case__ ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] SCREAMING_SNAKE_CASE : Optional[Any] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
360
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->int: super().__init__(*_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = eval_examples SCREAMING_SNAKE_CASE : Optional[int] = post_process_function def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ) ->Dict[str, float]: SCREAMING_SNAKE_CASE : Any = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) SCREAMING_SNAKE_CASE : Dict = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) SCREAMING_SNAKE_CASE : Any = gen_kwargs SCREAMING_SNAKE_CASE : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset SCREAMING_SNAKE_CASE : str = self.get_eval_dataloader(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Optional[Any] = self.compute_metrics SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = time.time() SCREAMING_SNAKE_CASE : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Tuple = eval_loop( _lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Dict = compute_metrics SCREAMING_SNAKE_CASE : Tuple = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : Optional[int] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: SCREAMING_SNAKE_CASE : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) SCREAMING_SNAKE_CASE : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : str = gen_kwargs.copy() SCREAMING_SNAKE_CASE : str = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. SCREAMING_SNAKE_CASE : Dict = self.compute_metrics SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : List[str] = time.time() SCREAMING_SNAKE_CASE : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: SCREAMING_SNAKE_CASE : Any = eval_loop( _lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: SCREAMING_SNAKE_CASE : Optional[int] = compute_metrics SCREAMING_SNAKE_CASE : List[Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output SCREAMING_SNAKE_CASE : Tuple = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , '''predict''' ) SCREAMING_SNAKE_CASE : Dict = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): SCREAMING_SNAKE_CASE : List[Any] = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
19
0
import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = False ) ->int: SCREAMING_SNAKE_CASE : Dict = scheduler SCREAMING_SNAKE_CASE : str = optimizers if isinstance(_a , (list, tuple) ) else [optimizers] SCREAMING_SNAKE_CASE : Dict = split_batches SCREAMING_SNAKE_CASE : List[str] = step_with_optimizer SCREAMING_SNAKE_CASE : Optional[Any] = GradientState() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->List[Any]: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_a , **_a ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_a , **_a ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step SCREAMING_SNAKE_CASE : Union[str, Any] = AcceleratorState().num_processes for _ in range(_a ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_a , **_a ) else: self.scheduler.step(*_a , **_a ) def __lowerCAmelCase ( self ) ->Union[str, Any]: return self.scheduler.get_last_lr() def __lowerCAmelCase ( self ) ->Tuple: return self.scheduler.state_dict() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: self.scheduler.load_state_dict(_a ) def __lowerCAmelCase ( self ) ->List[Any]: return self.scheduler.get_lr() def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->Optional[int]: return self.scheduler.print_lr(*_a , **_a )
361
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = ['image_processor', 'tokenizer'] __SCREAMING_SNAKE_CASE : Dict = 'CLIPImageProcessor' __SCREAMING_SNAKE_CASE : List[Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowerCamelCase , ) SCREAMING_SNAKE_CASE : int = kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ) ->Any: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: SCREAMING_SNAKE_CASE : Any = self.tokenizer(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) if text is not None and images is not None: SCREAMING_SNAKE_CASE : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCamelCase ) , tensor_type=_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->int: return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->int: return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowerCAmelCase ( self ) ->Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowerCamelCase , ) return self.image_processor_class @property def __lowerCAmelCase ( self ) ->Optional[int]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowerCamelCase , ) return self.image_processor
362
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = XLMProphetNetTokenizer __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self ) ->Dict: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[str] = '''[PAD]''' SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowerCamelCase ) , 1012 ) def __lowerCAmelCase ( self ) ->List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = XLMProphetNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __lowerCAmelCase ( self ) ->List[str]: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello World!''' SCREAMING_SNAKE_CASE : int = [3_5389, 6672, 49, 2] self.assertListEqual(_lowerCamelCase , self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def __lowerCAmelCase ( self ) ->int: # fmt: off SCREAMING_SNAKE_CASE : str = {'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
19
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : Optional[int] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json''', }, } a__ : Any = { '''facebook/bart-base''': 1_024, '''facebook/bart-large''': 1_024, '''facebook/bart-large-mnli''': 1_024, '''facebook/bart-large-cnn''': 1_024, '''facebook/bart-large-xsum''': 1_024, '''yjernite/bart_eli5''': 1_024, } class a_ ( __lowercase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = ['''input_ids''', '''attention_mask'''] __SCREAMING_SNAKE_CASE : List[str] = BartTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->List[str]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : str = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : Any = """post_processor""" SCREAMING_SNAKE_CASE : Any = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Tuple = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : int = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Optional[int] = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[Any] = add_prefix_space SCREAMING_SNAKE_CASE : List[str] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : Optional[int] = trim_offsets SCREAMING_SNAKE_CASE : Any = True if changes_to_apply: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : Union[str, Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : List[str] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
363
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = StableDiffusionSAGPipeline __SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : int = False def __lowerCAmelCase ( self ) ->Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->str: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) SCREAMING_SNAKE_CASE : Tuple = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = '''.''' SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : int = output.images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : int = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = '''.''' SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : str = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : int = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) SCREAMING_SNAKE_CASE : Optional[int] = sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = '''.''' SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
19
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a__ : int = 16 a__ : Union[str, Any] = 32 def UpperCAmelCase_( a__ ): """simple docstring""" return int(x / 2**20 ) class a_ : """simple docstring""" def __enter__( self ) ->Optional[int]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero SCREAMING_SNAKE_CASE : List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *_lowerCamelCase ) ->Union[str, Any]: gc.collect() torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : int = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE : List[Any] = torch.cuda.max_memory_allocated() SCREAMING_SNAKE_CASE : str = bamb(self.end - self.begin ) SCREAMING_SNAKE_CASE : Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCAmelCase_( a__ , a__ = 16 , a__ = "bert-base-cased" , a__ = 320 , a__ = 160 , ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : Dict = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F"""train[:{n_train}]""", '''validation''': F"""validation[:{n_val}]"""} ) def tokenize_function(a__ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset SCREAMING_SNAKE_CASE : Optional[Any] = datasets.map( a_ , batched=a_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(a__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(a_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : int = config['''lr'''] SCREAMING_SNAKE_CASE : Optional[Any] = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE : Dict = int(config['''seed'''] ) SCREAMING_SNAKE_CASE : Any = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE : Optional[Any] = args.model_name_or_path set_seed(a_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = get_dataloaders(a_ , a_ , a_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_ ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) SCREAMING_SNAKE_CASE : int = optimizer_cls(params=model.parameters() , lr=a_ ) if accelerator.state.deepspeed_plugin is not None: SCREAMING_SNAKE_CASE : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : int = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): SCREAMING_SNAKE_CASE : Optional[Any] = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , ) else: SCREAMING_SNAKE_CASE : Tuple = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # We need to keep track of how many total steps we have iterated over SCREAMING_SNAKE_CASE : Dict = 0 # We also need to keep track of the stating epoch so files are named properly SCREAMING_SNAKE_CASE : int = 0 # Now we train the model SCREAMING_SNAKE_CASE : int = {} for epoch in range(a_ , a_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(a_ ): SCREAMING_SNAKE_CASE : Tuple = model(**a_ ) SCREAMING_SNAKE_CASE : Tuple = outputs.loss SCREAMING_SNAKE_CASE : int = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) SCREAMING_SNAKE_CASE : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=a_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=a_ , ) parser.add_argument( '''--output_dir''' , type=a_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=a_ , default=a_ , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=a_ , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=a_ , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=a_ , default=1 , help='''Number of train epochs.''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE : Any = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(a_ , a_ ) if __name__ == "__main__": main()
364
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Tuple = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } a__ : Optional[Any] = {'''mobilebert-uncased''': 512} a__ : List[Any] = {} class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->Optional[int]: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : Optional[int] = strip_accents SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[str] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin a__ : int = logging.get_logger(__name__) enable_full_determinism() class a_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = UNetaDModel __SCREAMING_SNAKE_CASE : Optional[Any] = "sample" @property def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Dict = 4 SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : List[Any] = (32, 32) SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(_a ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([10] ).to(_a ) return {"sample": noise, "timestep": time_step} @property def __lowerCAmelCase ( self ) ->Any: return (3, 32, 32) @property def __lowerCAmelCase ( self ) ->Union[str, Any]: return (3, 32, 32) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_input return init_dict, inputs_dict class a_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = UNetaDModel __SCREAMING_SNAKE_CASE : Any = "sample" @property def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Tuple = 4 SCREAMING_SNAKE_CASE : str = 4 SCREAMING_SNAKE_CASE : Dict = (32, 32) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((batch_size, num_channels) + sizes ).to(_a ) SCREAMING_SNAKE_CASE : int = torch.tensor([10] ).to(_a ) return {"sample": noise, "timestep": time_step} @property def __lowerCAmelCase ( self ) ->List[str]: return (4, 32, 32) @property def __lowerCAmelCase ( self ) ->Optional[int]: return (4, 32, 32) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Any = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Any = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_a ) SCREAMING_SNAKE_CASE : List[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_a ) model.to(_a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def __lowerCAmelCase ( self ) ->Optional[Any]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` SCREAMING_SNAKE_CASE : str = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=_a ) model_accelerate.to(_a ) model_accelerate.eval() SCREAMING_SNAKE_CASE : List[str] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE : Optional[Any] = noise.to(_a ) SCREAMING_SNAKE_CASE : str = torch.tensor([10] * noise.shape[0] ).to(_a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_accelerate(_a , _a )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() SCREAMING_SNAKE_CASE : Any = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=_a , low_cpu_mem_usage=_a ) model_normal_load.to(_a ) model_normal_load.eval() SCREAMING_SNAKE_CASE : str = model_normal_load(_a , _a )['''sample'''] assert torch_all_close(_a , _a , rtol=1e-3 ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(_a ) SCREAMING_SNAKE_CASE : List[Any] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE : Dict = noise.to(_a ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([10] * noise.shape[0] ).to(_a ) with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(_a , _a ).sample SCREAMING_SNAKE_CASE : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(_a , _a , rtol=1e-3 ) ) class a_ ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = UNetaDModel __SCREAMING_SNAKE_CASE : int = "sample" @property def __lowerCAmelCase ( self , _lowerCamelCase=(32, 32) ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : int = floats_tensor((batch_size, num_channels) + sizes ).to(_a ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=_a ) return {"sample": noise, "timestep": time_step} @property def __lowerCAmelCase ( self ) ->Any: return (3, 32, 32) @property def __lowerCAmelCase ( self ) ->List[str]: return (3, 32, 32) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } SCREAMING_SNAKE_CASE : int = self.dummy_input return init_dict, inputs_dict @slow def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_a ) SCREAMING_SNAKE_CASE : str = self.dummy_input SCREAMING_SNAKE_CASE : Any = floats_tensor((4, 3) + (256, 256) ).to(_a ) SCREAMING_SNAKE_CASE : List[Any] = noise SCREAMING_SNAKE_CASE : str = model(**_a ) assert image is not None, "Make sure output is not None" @slow def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Any = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(_a ) SCREAMING_SNAKE_CASE : str = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : Dict = (256, 256) SCREAMING_SNAKE_CASE : Optional[int] = torch.ones((batch_size, num_channels) + sizes ).to(_a ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(_a ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(_a , _a ).sample SCREAMING_SNAKE_CASE : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE : str = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0980.7129, -2_0028.8535, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] ) # fmt: on self.assertTrue(torch_all_close(_a , _a , rtol=1e-2 ) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(_a ) SCREAMING_SNAKE_CASE : str = 4 SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : Any = (32, 32) SCREAMING_SNAKE_CASE : Dict = torch.ones((batch_size, num_channels) + sizes ).to(_a ) SCREAMING_SNAKE_CASE : int = torch.tensor(batch_size * [1e-4] ).to(_a ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(_a , _a ).sample SCREAMING_SNAKE_CASE : str = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off SCREAMING_SNAKE_CASE : Any = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(_a , _a , rtol=1e-2 ) ) def __lowerCAmelCase ( self ) ->Dict: # not required for this model pass
365
import math a__ : List[str] = 10 a__ : Optional[int] = 7 a__ : int = BALLS_PER_COLOUR * NUM_COLOURS def UpperCAmelCase_( a__ = 20 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = math.comb(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a__ ) SCREAMING_SNAKE_CASE : Any = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
19
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : List[Any] = '''▁''' a__ : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} a__ : Any = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } a__ : int = { '''facebook/xglm-564M''': 2_048, } class a_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[int] = ["input_ids", "attention_mask"] def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase = None , **_lowerCamelCase , ) ->None: SCREAMING_SNAKE_CASE : str = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE : str = 7 SCREAMING_SNAKE_CASE : List[Any] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] SCREAMING_SNAKE_CASE : Any = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE : List[str] = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} SCREAMING_SNAKE_CASE : List[Any] = len(self.sp_model ) SCREAMING_SNAKE_CASE : Optional[Any] = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) ->List[Any]: SCREAMING_SNAKE_CASE : List[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCamelCase ) ->Any: SCREAMING_SNAKE_CASE : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : int = {} SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __lowerCAmelCase ( self ) ->Any: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = """""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : int = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Dict = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
366
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig a__ : List[str] = logging.get_logger(__name__) # General docstring a__ : Tuple = '''MobileNetV1Config''' # Base docstring a__ : Optional[Any] = '''google/mobilenet_v1_1.0_224''' a__ : Tuple = [1, 1_024, 7, 7] # Image classification docstring a__ : Optional[int] = '''google/mobilenet_v1_1.0_224''' a__ : int = '''tabby, tabby cat''' a__ : List[Any] = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCAmelCase_( a__ , a__ , a__=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = model.mobilenet_va else: SCREAMING_SNAKE_CASE : Union[str, Any] = model SCREAMING_SNAKE_CASE : Optional[int] = '''MobilenetV1/Conv2d_0/''' SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.convolution.weight SCREAMING_SNAKE_CASE : Tuple = backbone.conv_stem.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = backbone.conv_stem.normalization.weight SCREAMING_SNAKE_CASE : Union[str, Any] = backbone.conv_stem.normalization.running_mean SCREAMING_SNAKE_CASE : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): SCREAMING_SNAKE_CASE : Dict = i + 1 SCREAMING_SNAKE_CASE : Union[str, Any] = i * 2 SCREAMING_SNAKE_CASE : Any = backbone.layer[pt_index] SCREAMING_SNAKE_CASE : Optional[Any] = F"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" SCREAMING_SNAKE_CASE : Any = pointer.convolution.weight SCREAMING_SNAKE_CASE : Tuple = pointer.normalization.bias SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : List[Any] = pointer.normalization.running_var SCREAMING_SNAKE_CASE : List[Any] = backbone.layer[pt_index + 1] SCREAMING_SNAKE_CASE : Any = F"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" SCREAMING_SNAKE_CASE : Dict = pointer.convolution.weight SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.bias SCREAMING_SNAKE_CASE : Optional[Any] = pointer.normalization.weight SCREAMING_SNAKE_CASE : int = pointer.normalization.running_mean SCREAMING_SNAKE_CASE : str = pointer.normalization.running_var if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' SCREAMING_SNAKE_CASE : List[str] = model.classifier.weight SCREAMING_SNAKE_CASE : List[str] = model.classifier.bias return tf_to_pt_map def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( '''Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ''' '''https://www.tensorflow.org/install/ for installation instructions.''' ) raise # Load weights from TF model SCREAMING_SNAKE_CASE : Optional[Any] = tf.train.list_variables(a__ ) SCREAMING_SNAKE_CASE : List[Any] = {} for name, shape in init_vars: logger.info(F"""Loading TF weight {name} with shape {shape}""" ) SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(a__ , a__ ) SCREAMING_SNAKE_CASE : Dict = array # Build TF to PyTorch weights loading map SCREAMING_SNAKE_CASE : int = _build_tf_to_pytorch_map(a__ , a__ , a__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F"""Importing {name}""" ) if name not in tf_weights: logger.info(F"""{name} not in tf pre-trained weights, skipping""" ) continue SCREAMING_SNAKE_CASE : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('''Transposing depthwise''' ) SCREAMING_SNAKE_CASE : Tuple = np.transpose(a__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('''Transposing''' ) if len(pointer.shape ) == 2: # copying into linear layer SCREAMING_SNAKE_CASE : Union[str, Any] = array.squeeze().transpose() else: SCREAMING_SNAKE_CASE : Optional[int] = np.transpose(a__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(F"""Initialize PyTorch weight {name} {array.shape}""" ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(a__ ) tf_weights.pop(a__ , a__ ) tf_weights.pop(name + '''/RMSProp''' , a__ ) tf_weights.pop(name + '''/RMSProp_1''' , a__ ) tf_weights.pop(name + '''/ExponentialMovingAverage''' , a__ ) logger.info(F"""Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}""" ) return model def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = features.shape[-2:] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = conv_layer.stride SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = conv_layer.kernel_size if in_height % stride_height == 0: SCREAMING_SNAKE_CASE : List[str] = max(kernel_height - stride_height , 0 ) else: SCREAMING_SNAKE_CASE : str = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: SCREAMING_SNAKE_CASE : int = max(kernel_width - stride_width , 0 ) else: SCREAMING_SNAKE_CASE : Tuple = max(kernel_width - (in_width % stride_width) , 0 ) SCREAMING_SNAKE_CASE : List[str] = pad_along_width // 2 SCREAMING_SNAKE_CASE : Any = pad_along_width - pad_left SCREAMING_SNAKE_CASE : str = pad_along_height // 2 SCREAMING_SNAKE_CASE : Optional[int] = pad_along_height - pad_top SCREAMING_SNAKE_CASE : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(a__ , a__ , '''constant''' , 0.0 ) class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = True , ) ->None: super().__init__() SCREAMING_SNAKE_CASE : Any = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) SCREAMING_SNAKE_CASE : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) SCREAMING_SNAKE_CASE : List[str] = nn.Convad( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=_lowerCamelCase , groups=_lowerCamelCase , bias=_lowerCamelCase , padding_mode='''zeros''' , ) if use_normalization: SCREAMING_SNAKE_CASE : List[Any] = nn.BatchNormad( num_features=_lowerCamelCase , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_lowerCamelCase , track_running_stats=_lowerCamelCase , ) else: SCREAMING_SNAKE_CASE : Dict = None if use_activation: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = ACTaFN[config.hidden_act] else: SCREAMING_SNAKE_CASE : List[Any] = config.hidden_act else: SCREAMING_SNAKE_CASE : Optional[Any] = None def __lowerCAmelCase ( self , _lowerCamelCase ) ->torch.Tensor: if self.config.tf_padding: SCREAMING_SNAKE_CASE : List[Any] = apply_tf_padding(_lowerCamelCase , self.convolution ) SCREAMING_SNAKE_CASE : Dict = self.convolution(_lowerCamelCase ) if self.normalization is not None: SCREAMING_SNAKE_CASE : int = self.normalization(_lowerCamelCase ) if self.activation is not None: SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return features class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = MobileNetVaConfig __SCREAMING_SNAKE_CASE : List[Any] = load_tf_weights_in_mobilenet_va __SCREAMING_SNAKE_CASE : int = 'mobilenet_v1' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if isinstance(_lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) a__ : str = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Union[str, Any] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = True ) ->Dict: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = config SCREAMING_SNAKE_CASE : Dict = 32 SCREAMING_SNAKE_CASE : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) SCREAMING_SNAKE_CASE : str = MobileNetVaConvLayer( _lowerCamelCase , in_channels=config.num_channels , out_channels=_lowerCamelCase , kernel_size=3 , stride=2 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] SCREAMING_SNAKE_CASE : Any = nn.ModuleList() for i in range(13 ): SCREAMING_SNAKE_CASE : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 SCREAMING_SNAKE_CASE : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=_lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( _lowerCamelCase , in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , kernel_size=1 , ) ) SCREAMING_SNAKE_CASE : int = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: raise NotImplementedError @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('''You have to specify pixel_values''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_stem(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): SCREAMING_SNAKE_CASE : Optional[int] = layer_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE : List[str] = hidden_states if self.pooler is not None: SCREAMING_SNAKE_CASE : Tuple = torch.flatten(self.pooler(_lowerCamelCase ) , start_dim=1 ) else: SCREAMING_SNAKE_CASE : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=_lowerCamelCase , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->None: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config.num_labels SCREAMING_SNAKE_CASE : str = MobileNetVaModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head SCREAMING_SNAKE_CASE : Optional[int] = nn.Dropout(config.classifier_dropout_prob , inplace=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = nn.Linear(_lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Union[tuple, ImageClassifierOutputWithNoAttention]: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Dict = self.mobilenet_va(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(self.dropout(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Any = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Optional[int] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Dict = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : List[Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states , )
19
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Tuple = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
import math def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def UpperCAmelCase_( a__ = 1 / 12_345 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : int = 3 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): SCREAMING_SNAKE_CASE : List[str] = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
19
0
from math import isqrt def UpperCAmelCase_( a__ ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_UpperCamelCase ) + 1 ) ) def UpperCAmelCase_( a__ = 10**6 ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : str = 7 while prime_candidate < max_prime: primes_count += is_prime(_UpperCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"{solution() = }")
368
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : Any = TypeVar('''T''') def UpperCAmelCase_( a__ ): """simple docstring""" return (position - 1) // 2 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 1 def UpperCAmelCase_( a__ ): """simple docstring""" return (2 * position) + 2 class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : list[tuple[T, int]] = [] SCREAMING_SNAKE_CASE : dict[T, int] = {} SCREAMING_SNAKE_CASE : int = 0 def __len__( self ) ->int: return self.elements def __repr__( self ) ->str: return str(self.heap ) def __lowerCAmelCase ( self ) ->bool: # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) SCREAMING_SNAKE_CASE : Tuple = self.elements self.elements += 1 self._bubble_up(_lowerCamelCase ) def __lowerCAmelCase ( self ) ->T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[0] self._bubble_down(_lowerCamelCase ) return elem def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Update the weight of the given key SCREAMING_SNAKE_CASE : List[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE : Any = (elem, weight) if position > 0: SCREAMING_SNAKE_CASE : List[Any] = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) else: self._bubble_down(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (upward movement) [to be used internally # only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None SCREAMING_SNAKE_CASE : str = get_parent_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.heap[curr_pos] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_up(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Place a node at the proper position (downward movement) [to be used # internally only] SCREAMING_SNAKE_CASE : Optional[Any] = self.position_map[elem] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[curr_pos] SCREAMING_SNAKE_CASE : List[str] = get_child_left_position(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = get_child_right_position(_lowerCamelCase ) if child_left_position < self.elements and child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.heap[child_left_position] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) if child_left_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) else: return None if child_right_position < self.elements: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowerCamelCase , _lowerCamelCase ) return self._bubble_down(_lowerCamelCase ) return None def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->None: # Swap the nodes at the given positions SCREAMING_SNAKE_CASE : Optional[int] = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE : Any = self.heap[nodea_pos][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) SCREAMING_SNAKE_CASE : Optional[int] = nodea_pos SCREAMING_SNAKE_CASE : List[str] = nodea_pos class a_ ( Generic[T] ): """simple docstring""" def __init__( self ) ->None: SCREAMING_SNAKE_CASE : dict[T, dict[T, int]] = {} SCREAMING_SNAKE_CASE : int = 0 def __repr__( self ) ->str: return str(self.connections ) def __len__( self ) ->int: return self.nodes def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: # Add a node in the graph if it is not in the graph if node not in self.connections: SCREAMING_SNAKE_CASE : Any = {} self.nodes += 1 def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->None: # Add an edge between 2 nodes in the graph self.add_node(_lowerCamelCase ) self.add_node(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = weight SCREAMING_SNAKE_CASE : str = weight def UpperCAmelCase_( a__ , ): """simple docstring""" SCREAMING_SNAKE_CASE : dict[T, int] = {node: maxsize for node in graph.connections} SCREAMING_SNAKE_CASE : dict[T, T | None] = {node: None for node in graph.connections} SCREAMING_SNAKE_CASE : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization SCREAMING_SNAKE_CASE : List[Any] = priority_queue.extract_min() SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node # running prim's algorithm while not priority_queue.is_empty(): SCREAMING_SNAKE_CASE : List[str] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: SCREAMING_SNAKE_CASE : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) SCREAMING_SNAKE_CASE : str = node return dist, parent
19
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def UpperCAmelCase_( a__ , a__ , a__=1e-12 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__SCREAMING_SNAKE_CASE , axis=1 ) , a_min=__SCREAMING_SNAKE_CASE ) ).T return jnp.matmul(__SCREAMING_SNAKE_CASE , norm_emb_a.T ) class a_ ( nn.Module ): """simple docstring""" __SCREAMING_SNAKE_CASE : CLIPConfig __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : List[Any] = FlaxCLIPVisionModule(self.config.vision_config ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dense(self.config.projection_dim , use_bias=_lowerCAmelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) SCREAMING_SNAKE_CASE : Optional[int] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) SCREAMING_SNAKE_CASE : List[str] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Tuple = self.vision_model(_lowerCAmelCase )[1] SCREAMING_SNAKE_CASE : int = self.visual_projection(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = jax_cosine_distance(_lowerCAmelCase , self.special_care_embeds ) SCREAMING_SNAKE_CASE : Optional[int] = jax_cosine_distance(_lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE : List[str] = 0.0 SCREAMING_SNAKE_CASE : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE : Tuple = jnp.round(_lowerCAmelCase , 3 ) SCREAMING_SNAKE_CASE : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=_lowerCAmelCase ) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE : str = is_special_care * 0.0_1 SCREAMING_SNAKE_CASE : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE : Any = jnp.round(_lowerCAmelCase , 3 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class a_ ( __UpperCamelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPConfig __SCREAMING_SNAKE_CASE : List[str] = "clip_input" __SCREAMING_SNAKE_CASE : str = FlaxStableDiffusionSafetyCheckerModule def __init__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = jnp.floataa , _lowerCamelCase = True , **_lowerCamelCase , ) ->Optional[Any]: if input_shape is None: SCREAMING_SNAKE_CASE : List[str] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE : Dict = self.module_class(config=_lowerCAmelCase , dtype=_lowerCAmelCase , **_lowerCAmelCase ) super().__init__(_lowerCAmelCase , _lowerCAmelCase , input_shape=_lowerCAmelCase , seed=_lowerCAmelCase , dtype=_lowerCAmelCase , _do_init=_do_init ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None ) ->str: # init input tensor SCREAMING_SNAKE_CASE : int = jax.random.normal(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : Dict = jax.random.split(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : Dict = {"""params""": params_rng, """dropout""": dropout_rng} SCREAMING_SNAKE_CASE : Union[str, Any] = self.module.init(_lowerCAmelCase , _lowerCAmelCase )["""params"""] return random_params def __call__( self , _lowerCamelCase , _lowerCamelCase = None , ) ->Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , rngs={} , )
369
from math import pi, sqrt, tan def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def UpperCAmelCase_( a__ ): """simple docstring""" if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE : int = (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase_( a__ ): """simple docstring""" if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F"Rectangle: {area_rectangle(10, 20) = }") print(F"Square: {area_square(10) = }") print(F"Triangle: {area_triangle(10, 10) = }") print(F"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(F"Parallelogram: {area_parallelogram(10, 20) = }") print(F"Rhombus: {area_rhombus(10, 20) = }") print(F"Trapezium: {area_trapezium(10, 20, 30) = }") print(F"Circle: {area_circle(20) = }") print(F"Ellipse: {area_ellipse(10, 20) = }") print('''\nSurface Areas of various geometric shapes: \n''') print(F"Cube: {surface_area_cube(20) = }") print(F"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(F"Sphere: {surface_area_sphere(20) = }") print(F"Hemisphere: {surface_area_hemisphere(20) = }") print(F"Cone: {surface_area_cone(10, 20) = }") print(F"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(F"Cylinder: {surface_area_cylinder(10, 20) = }") print(F"Torus: {surface_area_torus(20, 10) = }") print(F"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(F"Square: {area_reg_polygon(4, 10) = }") print(F"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
19
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: a__ : List[str] = None a__ : int = logging.get_logger(__name__) a__ : List[str] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} a__ : Dict = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } a__ : Optional[Any] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } a__ : Tuple = "▁" class a_ ( _UpperCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = AlbertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="[CLS]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<unk>" , _lowerCamelCase="[SEP]" , _lowerCamelCase="<pad>" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , **_lowerCamelCase , ) ->Tuple: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE : Optional[int] = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case SCREAMING_SNAKE_CASE : List[str] = remove_space SCREAMING_SNAKE_CASE : str = keep_accents SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : int = False if not self.vocab_file else True def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->int: SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->int: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : Any = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
370
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: a__ : List[str] = None a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Dict = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } a__ : str = { '''facebook/mbart-large-en-ro''': 1_024, '''facebook/mbart-large-cc25''': 1_024, } # fmt: off a__ : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Tuple = MBartTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase , ) ->List[Any]: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : List[str] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( vocab_file=_lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , src_lang=_lowerCamelCase , tgt_lang=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : List[Any] = False if not self.vocab_file else True SCREAMING_SNAKE_CASE : Any = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) SCREAMING_SNAKE_CASE : int = { lang_code: self.convert_tokens_to_ids(_lowerCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } SCREAMING_SNAKE_CASE : List[str] = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(self._src_lang ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCAmelCase ( self ) ->str: return self._src_lang @src_lang.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) ->Optional[Any]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = src_lang SCREAMING_SNAKE_CASE : List[str] = self(_lowerCamelCase , add_special_tokens=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = tgt_lang_id return inputs def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = "en_XX" , _lowerCamelCase = None , _lowerCamelCase = "ro_RO" , **_lowerCamelCase , ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[str] = src_lang SCREAMING_SNAKE_CASE : List[str] = tgt_lang return super().prepare_seqaseq_batch(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCAmelCase ( self ) ->List[Any]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : Optional[Any] = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : str = self.convert_tokens_to_ids(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [self.eos_token_id, self.cur_lang_code] SCREAMING_SNAKE_CASE : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) SCREAMING_SNAKE_CASE : Any = self.convert_ids_to_tokens(self.suffix_tokens ) SCREAMING_SNAKE_CASE : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ): copyfile(self.vocab_file , _lowerCamelCase ) return (out_vocab_file,)
19
0