code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( __lowerCamelCase ): '''simple docstring''' UpperCamelCase_ : int = 'autoformer' UpperCamelCase_ : int = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "student_t" , UpperCAmelCase_ : str = "nll" , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 25 , UpperCAmelCase_ : int = 3 , **UpperCAmelCase_ : str , ): # time series specific configuration SCREAMING_SNAKE_CASE : Tuple = prediction_length SCREAMING_SNAKE_CASE : str = context_length if context_length is not None else prediction_length SCREAMING_SNAKE_CASE : Tuple = distribution_output SCREAMING_SNAKE_CASE : List[Any] = loss SCREAMING_SNAKE_CASE : List[Any] = input_size SCREAMING_SNAKE_CASE : Tuple = num_time_features SCREAMING_SNAKE_CASE : List[Any] = lags_sequence SCREAMING_SNAKE_CASE : Union[str, Any] = scaling SCREAMING_SNAKE_CASE : int = num_dynamic_real_features SCREAMING_SNAKE_CASE : str = num_static_real_features SCREAMING_SNAKE_CASE : List[Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) SCREAMING_SNAKE_CASE : Any = cardinality else: SCREAMING_SNAKE_CASE : List[str] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) SCREAMING_SNAKE_CASE : List[Any] = embedding_dimension else: SCREAMING_SNAKE_CASE : List[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE : int = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE : Optional[Any] = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE : List[Any] = d_model SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : int = encoder_layers SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : Union[str, Any] = dropout SCREAMING_SNAKE_CASE : Union[str, Any] = attention_dropout SCREAMING_SNAKE_CASE : List[Any] = activation_dropout SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Dict = decoder_layerdrop SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : int = init_std SCREAMING_SNAKE_CASE : int = use_cache # Autoformer SCREAMING_SNAKE_CASE : Optional[int] = label_length SCREAMING_SNAKE_CASE : str = moving_average SCREAMING_SNAKE_CASE : Tuple = autocorrelation_factor super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def _A ( self : Tuple ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
357
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = [R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 5_0257 , UpperCAmelCase_ : int = 1024 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "gelu_new" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 1E-5 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , ): super().__init__() SCREAMING_SNAKE_CASE : List[str] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Dict = prefix_inner_dim SCREAMING_SNAKE_CASE : Tuple = prefix_hidden_dim SCREAMING_SNAKE_CASE : Dict = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : List[str] = ( nn.Linear(self.prefix_hidden_dim , __lowerCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : List[Any] = GPTaConfig( vocab_size=__lowerCAmelCase , n_positions=__lowerCAmelCase , n_embd=__lowerCAmelCase , n_layer=__lowerCAmelCase , n_head=__lowerCAmelCase , n_inner=__lowerCAmelCase , activation_function=__lowerCAmelCase , resid_pdrop=__lowerCAmelCase , embd_pdrop=__lowerCAmelCase , attn_pdrop=__lowerCAmelCase , layer_norm_epsilon=__lowerCAmelCase , initializer_range=__lowerCAmelCase , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , scale_attn_by_inverse_layer_idx=__lowerCAmelCase , reorder_and_upcast_attn=__lowerCAmelCase , ) SCREAMING_SNAKE_CASE : Optional[Any] = GPTaLMHeadModel(__lowerCAmelCase ) def _A ( self : str , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , ): SCREAMING_SNAKE_CASE : List[str] = self.transformer.transformer.wte(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.encode_prefix(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.decode_prefix(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Any = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.transformer(inputs_embeds=__lowerCAmelCase , labels=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _A ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : torch.device ): return torch.zeros(__lowerCAmelCase , self.prefix_length , dtype=torch.intaa , device=__lowerCAmelCase ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): return self.encode_prefix(__lowerCAmelCase ) @torch.no_grad() def _A ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : List[str] = torch.split(__lowerCAmelCase , 1 , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for feature in features: SCREAMING_SNAKE_CASE : Dict = self.decode_prefix(feature.to(__lowerCAmelCase ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.generate_beam( input_embeds=__lowerCAmelCase , device=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : List[Any] = torch.stack(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(__lowerCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _A ( self : str , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int = 5 , UpperCAmelCase_ : int = 67 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[int] = None , ): SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones(__lowerCAmelCase , device=__lowerCAmelCase , dtype=torch.int ) SCREAMING_SNAKE_CASE : str = torch.zeros(__lowerCAmelCase , device=__lowerCAmelCase , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : List[str] = input_embeds else: SCREAMING_SNAKE_CASE : int = self.transformer.transformer.wte(__lowerCAmelCase ) for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer(inputs_embeds=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : int = outputs.logits SCREAMING_SNAKE_CASE : Dict = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Tuple = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = logits.topk(__lowerCAmelCase , -1 ) SCREAMING_SNAKE_CASE : List[str] = generated.expand(__lowerCAmelCase , *generated.shape[1:] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : Dict = next_tokens else: SCREAMING_SNAKE_CASE : Optional[Any] = tokens.expand(__lowerCAmelCase , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : str = -float(np.inf ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : Dict = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = scores_sum_average.view(-1 ).topk(__lowerCAmelCase , -1 ) SCREAMING_SNAKE_CASE : Tuple = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : List[Any] = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : Any = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : int = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : int = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : str = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[int] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : List[Any] = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = is_stopped + next_tokens.eq(__lowerCAmelCase ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : Dict = scores / seq_lengths SCREAMING_SNAKE_CASE : List[str] = scores.argsort(descending=__lowerCAmelCase ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Optional[Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(__lowerCAmelCase , dim=0 ) SCREAMING_SNAKE_CASE : int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
358
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' UpperCamelCase_ : List[Any] = 'mgp-str' def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple=[32, 128] , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Optional[int]=27 , UpperCAmelCase_ : str=38 , UpperCAmelCase_ : Dict=5_0257 , UpperCAmelCase_ : List[Any]=3_0522 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Optional[Any]=4.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=1E-5 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Tuple=0.02 , **UpperCAmelCase_ : Tuple , ): super().__init__(**a_ ) UpperCamelCase__ : int = image_size UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : int = num_channels UpperCamelCase__ : str = max_token_length UpperCamelCase__ : Optional[int] = num_character_labels UpperCamelCase__ : str = num_bpe_labels UpperCamelCase__ : Optional[int] = num_wordpiece_labels UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : str = num_hidden_layers UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : Optional[int] = mlp_ratio UpperCamelCase__ : Dict = distilled UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Tuple = drop_rate UpperCamelCase__ : str = qkv_bias UpperCamelCase__ : Tuple = attn_drop_rate UpperCamelCase__ : Any = drop_path_rate UpperCamelCase__ : Union[str, Any] = output_aa_attentions UpperCamelCase__ : List[str] = initializer_range
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = 'beit' def __init__( self : Dict , UpperCAmelCase_ : str=8192 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : str=3072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Dict=1E-12 , UpperCAmelCase_ : Tuple=224 , UpperCAmelCase_ : Union[str, Any]=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=[3, 5, 7, 11] , UpperCAmelCase_ : int=[1, 2, 3, 6] , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[Any]=0.4 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : int=255 , **UpperCAmelCase_ : List[Any] , ): super().__init__(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = use_mask_token SCREAMING_SNAKE_CASE : List[str] = use_absolute_position_embeddings SCREAMING_SNAKE_CASE : Any = use_relative_position_bias SCREAMING_SNAKE_CASE : Any = use_shared_relative_position_bias SCREAMING_SNAKE_CASE : Dict = layer_scale_init_value SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) SCREAMING_SNAKE_CASE : Union[str, Any] = out_indices SCREAMING_SNAKE_CASE : List[str] = pool_scales # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE : Optional[Any] = use_auxiliary_head SCREAMING_SNAKE_CASE : int = auxiliary_loss_weight SCREAMING_SNAKE_CASE : Tuple = auxiliary_channels SCREAMING_SNAKE_CASE : Any = auxiliary_num_convs SCREAMING_SNAKE_CASE : str = auxiliary_concat_input SCREAMING_SNAKE_CASE : Optional[Any] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = version.parse('''1.11''' ) @property def _A ( self : str ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self : Union[str, Any] ): return 1E-4
360
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[str] = KandinskyVaaControlnetImgaImgPipeline UpperCamelCase_ : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase_ : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] UpperCamelCase_ : List[str] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : Union[str, Any] = False @property def _A ( self : Any ): return 32 @property def _A ( self : Union[str, Any] ): return 32 @property def _A ( self : List[Any] ): return self.time_input_dim @property def _A ( self : Any ): return self.time_input_dim * 4 @property def _A ( self : Tuple ): return 100 @property def _A ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE : List[str] = UNetaDConditionModel(**_snake_case ) return model @property def _A ( self : Optional[Any] ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _A ( self : int ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = VQModel(**self.dummy_movq_kwargs ) return model def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_unet SCREAMING_SNAKE_CASE : str = self.dummy_movq SCREAMING_SNAKE_CASE : Optional[Any] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } SCREAMING_SNAKE_CASE : str = DDIMScheduler(**_snake_case ) SCREAMING_SNAKE_CASE : str = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _A ( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=0 ): SCREAMING_SNAKE_CASE : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_snake_case ) ).to(_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _snake_case ) # create init_image SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) SCREAMING_SNAKE_CASE : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((256, 256) ) # create hint SCREAMING_SNAKE_CASE : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith("mps" ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(_snake_case ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) SCREAMING_SNAKE_CASE : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = "cpu" SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : str = self.pipeline_class(**_snake_case ) SCREAMING_SNAKE_CASE : int = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs(_snake_case ) ) SCREAMING_SNAKE_CASE : Any = output.images SCREAMING_SNAKE_CASE : int = pipe( **self.get_dummy_inputs(_snake_case ) , return_dict=_snake_case , )[0] SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Dict = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" ) SCREAMING_SNAKE_CASE : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) SCREAMING_SNAKE_CASE : Any = init_image.resize((512, 512) ) SCREAMING_SNAKE_CASE : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png" ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(np.array(_snake_case ) ).float() / 255.0 SCREAMING_SNAKE_CASE : Any = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE : Any = "A robot, 4k photo" SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) SCREAMING_SNAKE_CASE : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = pipe_prior( _snake_case , image=_snake_case , strength=0.85 , generator=_snake_case , negative_prompt="" , ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( image=_snake_case , image_embeds=_snake_case , negative_image_embeds=_snake_case , hint=_snake_case , generator=_snake_case , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , ) SCREAMING_SNAKE_CASE : Any = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
361
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
362
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = emb.weight.shape SCREAMING_SNAKE_CASE : str = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = emb.weight.data return lin_layer def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = torch.load(UpperCamelCase__ , map_location="cpu" ) SCREAMING_SNAKE_CASE : List[Any] = mam_aaa["args"] or mam_aaa["cfg"]["model"] SCREAMING_SNAKE_CASE : Any = mam_aaa["model"] remove_ignore_keys_(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : int = state_dict["encoder.embed_tokens.weight"].shape[0] SCREAMING_SNAKE_CASE : Dict = MaMaaaConfig( vocab_size=UpperCamelCase__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="relu" , ) SCREAMING_SNAKE_CASE : List[Any] = state_dict["decoder.embed_tokens.weight"] SCREAMING_SNAKE_CASE : Any = MaMaaaForConditionalGeneration(UpperCamelCase__ ) model.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() snake_case = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
363
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
0
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. SCREAMING_SNAKE_CASE : Tuple = len(_SCREAMING_SNAKE_CASE ) - 1 def _A ( self : int , UpperCAmelCase_ : str ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , _SCREAMING_SNAKE_CASE ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(_SCREAMING_SNAKE_CASE ) , 5 ) == 1 return output_values def _A ( self : Any , UpperCAmelCase_ : Tuple ): assert 0 <= t <= 1, "Time t must be between 0 and 1." SCREAMING_SNAKE_CASE : Dict = self.basis_function(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _A ( self : Tuple , UpperCAmelCase_ : Any = 0.01 ): from matplotlib import pyplot as plt # type: ignore SCREAMING_SNAKE_CASE : list[float] = [] # x coordinates of points to plot SCREAMING_SNAKE_CASE : list[float] = [] # y coordinates of points to plot SCREAMING_SNAKE_CASE : List[Any] = 0.0 while t <= 1: SCREAMING_SNAKE_CASE : int = self.bezier_curve_function(_SCREAMING_SNAKE_CASE ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size SCREAMING_SNAKE_CASE : Tuple = [i[0] for i in self.list_of_points] SCREAMING_SNAKE_CASE : Any = [i[1] for i in self.list_of_points] plt.plot( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase__ ( lowercase , lowercase , lowercase=None , lowercase=None ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : Union[str, Any] = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[Any] = OPTConfig UpperCamelCase_ : Tuple = {} UpperCamelCase_ : Dict = '''gelu''' def __init__( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=13 , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Optional[Any]=99 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[Any]=20 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Optional[Any]=16 , ): SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = eos_token_id SCREAMING_SNAKE_CASE : Optional[int] = pad_token_id SCREAMING_SNAKE_CASE : Dict = bos_token_id SCREAMING_SNAKE_CASE : int = embed_dim SCREAMING_SNAKE_CASE : Dict = word_embed_proj_dim SCREAMING_SNAKE_CASE : List[str] = False def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : Optional[int] = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCAmelCase_ , **self.config_updates , ) SCREAMING_SNAKE_CASE : Tuple = prepare_opt_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def _A ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Union[str, Any] = TFOPTModel(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE : Any = input_ids[:1, :] SCREAMING_SNAKE_CASE : List[str] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE : Dict = 1 # first forward pass SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : int = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3 ) @require_tf class SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Tuple = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCamelCase_ : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () UpperCamelCase_ : Tuple = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : Dict = False UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = 1_0 def _A ( self : str ): SCREAMING_SNAKE_CASE : List[Any] = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE : str = ConfigTester(self , config_class=UpperCAmelCase_ ) def _A ( self : Dict ): self.config_tester.run_common_tests() def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ): if hasattr(UpperCAmelCase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCAmelCase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE : Optional[Any] = model_class(config=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE : Optional[int] = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) SCREAMING_SNAKE_CASE : int = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCAmelCase_ ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = False self.assertTrue(UpperCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE : Dict = False self.assertTrue(UpperCAmelCase_ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return tf.constant(_UpperCAmelCase , dtype=tf.intaa ) @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Tuple = 9_9 def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = tf.ones((4, 1) , dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE : List[str] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) SCREAMING_SNAKE_CASE : Tuple = input_ids.shape[0] SCREAMING_SNAKE_CASE : Tuple = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[Any] = TFOPTModel.from_pretrained("facebook/opt-350m" ) SCREAMING_SNAKE_CASE : str = _long_tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) SCREAMING_SNAKE_CASE : Dict = tf.not_equal(UpperCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE : List[Any] = model(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).last_hidden_state SCREAMING_SNAKE_CASE : str = (1, 11, 512) self.assertEqual(output.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4E-3 ) ) SCREAMING_SNAKE_CASE : Any = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = xla_generate(UpperCAmelCase_ , UpperCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4E-2 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : int ): super().setUp() SCREAMING_SNAKE_CASE : Any = "facebook/opt-350m" def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE : int = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE : str = tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) SCREAMING_SNAKE_CASE : List[Any] = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-4 ) ) SCREAMING_SNAKE_CASE : int = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-4 ) ) @require_tf @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @property def _A ( self : Optional[int] ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = "facebook/opt-125m" SCREAMING_SNAKE_CASE : List[str] = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE : Any = tokenizer(UpperCAmelCase_ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Dict = model.generate(UpperCAmelCase_ , max_length=10 ) SCREAMING_SNAKE_CASE : Any = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = "facebook/opt-350m" SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = "left" # use different length sentences to test batching SCREAMING_SNAKE_CASE : Optional[Any] = [ "Hello, my dog is a little", "Today, I", ] SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs["input_ids"] SCREAMING_SNAKE_CASE : List[str] = model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs["attention_mask"] ) SCREAMING_SNAKE_CASE : int = tokenizer(sentences[0] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : List[Any] = model.generate(input_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) SCREAMING_SNAKE_CASE : int = tokenizer(sentences[1] , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : Union[str, Any] = model.generate(input_ids=UpperCAmelCase_ , max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence] ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[Any] = "facebook/opt-350m" SCREAMING_SNAKE_CASE : str = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCAmelCase_ , return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE : int = model.generate(UpperCAmelCase_ , max_length=10 ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
365
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase_ : int = ["""pixel_values"""] def __init__( self : Optional[Any] , UpperCAmelCase_ : Dict = True , UpperCAmelCase_ : List[str] = 32 , UpperCAmelCase_ : str=PILImageResampling.BILINEAR , UpperCAmelCase_ : Tuple = True , **UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE : Dict = do_resize SCREAMING_SNAKE_CASE : Dict = do_rescale SCREAMING_SNAKE_CASE : List[str] = size_divisor SCREAMING_SNAKE_CASE : int = resample super().__init__(**lowerCAmelCase__ ) def _A ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple = None , **UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = get_image_size(lowerCAmelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor SCREAMING_SNAKE_CASE : Union[str, Any] = height // size_divisor * size_divisor SCREAMING_SNAKE_CASE : List[Any] = width // size_divisor * size_divisor SCREAMING_SNAKE_CASE : Tuple = resize(lowerCAmelCase__ , (new_h, new_w) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) return image def _A ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int = None , **UpperCAmelCase_ : Any ): return rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : Optional[int] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Tuple = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : int = size_divisor if size_divisor is not None else self.size_divisor SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) SCREAMING_SNAKE_CASE : List[str] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[str] = [to_numpy_array(lowerCAmelCase__ ) for img in images] if do_resize: SCREAMING_SNAKE_CASE : Dict = [self.resize(lowerCAmelCase__ , size_divisor=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.rescale(lowerCAmelCase__ , scale=1 / 255 ) for image in images] SCREAMING_SNAKE_CASE : Tuple = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Tuple = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
366
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : Union[str, Any] = set_counts SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * num_sets SCREAMING_SNAKE_CASE : List[str] = list(range(UpperCAmelCase_ ) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[Any] = self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = src_parent SCREAMING_SNAKE_CASE : Optional[int] = self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Optional[Any] = max(self.max_set , UpperCAmelCase_ ) return True def _A ( self : Tuple , UpperCAmelCase_ : int ): if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
319
0
def lowerCamelCase__ ( lowercase ): SCREAMING_SNAKE_CASE : List[Any] = abs(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 while n > 0: res += n % 10 n //= 10 return res def lowerCamelCase__ ( lowercase ): SCREAMING_SNAKE_CASE : List[str] = abs(UpperCamelCase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowerCamelCase__ ( lowercase ): return sum(int(UpperCamelCase__ ) for c in str(abs(UpperCamelCase__ ) ) ) def lowerCamelCase__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase , lowercase ) -> None: SCREAMING_SNAKE_CASE : str = F'''{func.__name__}({value})''' SCREAMING_SNAKE_CASE : Dict = timeit(F'''__main__.{call}''' , setup="import __main__" ) print(F'''{call:56} = {func(UpperCamelCase__ )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(UpperCamelCase__ , UpperCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
367
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
0
import warnings from ..trainer import Trainer from ..utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( A_ ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , _lowerCamelCase , ) super().__init__(args=_lowerCamelCase , **_lowerCamelCase )
368
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = emb.weight.shape SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = emb.weight.data return lin_layer def lowerCamelCase__ ( lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE : Any = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE : int = key.replace("moe_layer.experts.0" , F'''ffn.experts.expert_{expert_idx}''' ) else: SCREAMING_SNAKE_CASE : str = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: SCREAMING_SNAKE_CASE : int = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE : Any = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE : List[str] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE : List[str] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE : Dict = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE : str = key.replace("final_layer_norm" , "ff_layer_norm" ) SCREAMING_SNAKE_CASE : List[str] = state_dict[old_key] return new_dict def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase = WEIGHTS_NAME ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = 0 os.makedirs(_snake_case , exist_ok=_snake_case ) for expert in range(_snake_case ): SCREAMING_SNAKE_CASE : Dict = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_snake_case ): SCREAMING_SNAKE_CASE : Optional[int] = torch.load(_snake_case )["model"] remove_ignore_keys_(_snake_case ) SCREAMING_SNAKE_CASE : Dict = rename_fairseq_keys(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE : Any = os.path.join( _snake_case , weights_name.replace(".bin" , F'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) torch.save(_snake_case , _snake_case ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_snake_case )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE : int = os.path.join(_snake_case , weights_name.replace(".bin" , F'''-{len(_snake_case )+1:05d}-of-???.bin''' ) ) SCREAMING_SNAKE_CASE : Tuple = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_snake_case ) SCREAMING_SNAKE_CASE : List[Any] = rename_fairseq_keys(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE : Tuple = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_snake_case ) == 1: SCREAMING_SNAKE_CASE : List[Any] = os.path.join(_snake_case , _snake_case ) torch.save(_snake_case , _snake_case ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_snake_case , _snake_case ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE : List[str] = {} for idx, shard in enumerate(_snake_case ): SCREAMING_SNAKE_CASE : Dict = weights_name.replace(".bin" , F'''-{idx+1:05d}-of-{len(_snake_case ):05d}.bin''' ) SCREAMING_SNAKE_CASE : Any = os.path.join(_snake_case , weights_name.replace(".bin" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_snake_case , os.path.join(_snake_case , _snake_case ) ) for key in shard: SCREAMING_SNAKE_CASE : Tuple = shard_file # Add the metadata SCREAMING_SNAKE_CASE : str = {"total_size": total_size} SCREAMING_SNAKE_CASE : str = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_snake_case , _snake_case ) , "w" , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.dumps(_snake_case , indent=2 , sort_keys=_snake_case ) + "\n" f.write(_snake_case ) return metadata, index if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) snake_case = parser.parse_args() snake_case = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) snake_case = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) snake_case = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING snake_case = logging.get_logger(__name__) snake_case = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' UpperCamelCase_ : List[Any] = '''deformable_detr''' UpperCamelCase_ : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[str] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=300 , UpperCAmelCase_ : Any=1024 , UpperCAmelCase_ : int=6 , UpperCAmelCase_ : Dict=1024 , UpperCAmelCase_ : Optional[int]=8 , UpperCAmelCase_ : Any=6 , UpperCAmelCase_ : Optional[Any]=1024 , UpperCAmelCase_ : Tuple=8 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]="relu" , UpperCAmelCase_ : str=256 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Tuple=1.0 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : str="sine" , UpperCAmelCase_ : Optional[int]="resnet50" , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[str]=300 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : str=5 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : List[str]=1 , UpperCAmelCase_ : Any=5 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Any=0.25 , UpperCAmelCase_ : Dict=False , **UpperCAmelCase_ : Dict , ): if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) SCREAMING_SNAKE_CASE : Optional[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_a , _a ): SCREAMING_SNAKE_CASE : Dict = backbone_config.get("model_type" ) SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : int = config_class.from_dict(_a ) SCREAMING_SNAKE_CASE : str = use_timm_backbone SCREAMING_SNAKE_CASE : List[str] = backbone_config SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = num_queries SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = d_model SCREAMING_SNAKE_CASE : str = encoder_ffn_dim SCREAMING_SNAKE_CASE : List[str] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE : List[Any] = decoder_layers SCREAMING_SNAKE_CASE : List[str] = decoder_attention_heads SCREAMING_SNAKE_CASE : Tuple = dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : List[str] = activation_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE : List[str] = init_std SCREAMING_SNAKE_CASE : str = init_xavier_std SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = auxiliary_loss SCREAMING_SNAKE_CASE : Dict = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = backbone SCREAMING_SNAKE_CASE : int = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = dilation # deformable attributes SCREAMING_SNAKE_CASE : Dict = num_feature_levels SCREAMING_SNAKE_CASE : int = encoder_n_points SCREAMING_SNAKE_CASE : Optional[int] = decoder_n_points SCREAMING_SNAKE_CASE : str = two_stage SCREAMING_SNAKE_CASE : Tuple = two_stage_num_proposals SCREAMING_SNAKE_CASE : Optional[Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher SCREAMING_SNAKE_CASE : str = class_cost SCREAMING_SNAKE_CASE : int = bbox_cost SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE : int = mask_loss_coefficient SCREAMING_SNAKE_CASE : Union[str, Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE : List[str] = bbox_loss_coefficient SCREAMING_SNAKE_CASE : Tuple = giou_loss_coefficient SCREAMING_SNAKE_CASE : List[str] = eos_coefficient SCREAMING_SNAKE_CASE : Tuple = focal_alpha SCREAMING_SNAKE_CASE : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_a , **_a ) @property def _A ( self : List[Any] ): return self.encoder_attention_heads @property def _A ( self : Dict ): return self.d_model def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: SCREAMING_SNAKE_CASE : Any = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type return output
370
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
0
import datasets snake_case = """\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n""" snake_case = """\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n""" snake_case = """\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _A ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def _A ( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): return {"accuracy": simple_accuracy(snake_case_ , snake_case_ )}
371
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
350
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore snake_case = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" snake_case = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") snake_case = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") snake_case = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") snake_case = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") snake_case = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
351
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" def lowerCamelCase__ ( lowercase ): """simple docstring""" def merge(lowercase , lowercase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowercase ) <= 1: return collection SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case = input("""Enter numbers separated by a comma:\n""").strip() snake_case = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
352
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
0
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase__ ( lowercase , lowercase=False ): """simple docstring""" try: SCREAMING_SNAKE_CASE : List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE : int = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE : Optional[Any] = strtobool(lowerCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value snake_case = parse_flag_from_env("""RUN_SLOW""", default=False) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skip("Test was skipped" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(_run_slow_tests , "test is slow" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase=None , lowercase=None ): """simple docstring""" if test_case is None: return partial(lowerCamelCase__ , version=lowerCamelCase__ ) return unittest.skipUnless(is_torch_version(">=" , lowerCamelCase__ ) , F'''test requires torch version >= {version}''' )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(lowerCamelCase__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(lowerCamelCase__ ) snake_case = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = True @classmethod def _A ( cls : int ): SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() @classmethod def _A ( cls : int ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _A ( self : Any ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCAmelCase_ ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[str] ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Tuple , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : int = mocks if isinstance(UpperCAmelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = AcceleratorState() SCREAMING_SNAKE_CASE : List[str] = tensor[None].clone().to(state.device ) SCREAMING_SNAKE_CASE : Optional[int] = gather(lowerCamelCase__ ).cpu() SCREAMING_SNAKE_CASE : Tuple = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCamelCase__ ): return False return True class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[str] = returncode SCREAMING_SNAKE_CASE : Dict = stdout SCREAMING_SNAKE_CASE : Union[str, Any] = stderr async def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" while True: SCREAMING_SNAKE_CASE : List[Any] = await stream.readline() if line: callback(lowerCamelCase__ ) else: break async def lowerCamelCase__ ( lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=False , lowercase=False ): """simple docstring""" if echo: print("\nRunning: " , " ".join(lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = [] def tee(lowercase , lowercase , lowercase , lowercase="" ): SCREAMING_SNAKE_CASE : Optional[int] = line.decode("utf-8" ).rstrip() sink.append(lowerCamelCase__ ) if not quiet: print(lowerCamelCase__ , lowerCamelCase__ , file=lowerCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowercase : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowercase : tee(lowerCamelCase__ , lowerCamelCase__ , sys.stderr , label="stderr:" ) ) ), ] , timeout=lowerCamelCase__ , ) return _RunOutput(await p.wait() , lowerCamelCase__ , lowerCamelCase__ ) def lowerCamelCase__ ( lowercase , lowercase=None , lowercase=None , lowercase=180 , lowercase=False , lowercase=True ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = asyncio.get_event_loop() SCREAMING_SNAKE_CASE : Union[str, Any] = loop.run_until_complete( _stream_subprocess(lowerCamelCase__ , env=lowerCamelCase__ , stdin=lowerCamelCase__ , timeout=lowerCamelCase__ , quiet=lowerCamelCase__ , echo=lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE : List[str] = " ".join(lowerCamelCase__ ) if result.returncode > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) return result class SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' pass def lowerCamelCase__ ( lowercase , lowercase=False ): """simple docstring""" try: SCREAMING_SNAKE_CASE : Union[str, Any] = subprocess.check_output(lowerCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCamelCase__ , "decode" ): SCREAMING_SNAKE_CASE : Union[str, Any] = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'''Command `{' '.join(lowerCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
353
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=13 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Any=24 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str=10 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=2 , ): SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Tuple = max_length SCREAMING_SNAKE_CASE : Optional[Any] = num_mel_bins SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = type_sequence_label_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = scope SCREAMING_SNAKE_CASE : int = frequency_stride SCREAMING_SNAKE_CASE : Optional[Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE : int = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE : str = (self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE : Tuple = frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE : Any = num_patches + 2 def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE : str = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_values, labels def _A ( self : List[str] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _A ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Dict = ASTModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : List[str] = {"input_values": input_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCamelCase_ : Union[str, Any] = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Union[str, Any] = False def _A ( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = ASTModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def _A ( self : Union[str, Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _A ( self : Optional[Any] ): pass def _A ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _A ( self : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ["input_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) @slow def _A ( self : Optional[Any] ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = ASTModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = torchaudio.load(_lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Tuple ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : str = self.default_feature_extractor SCREAMING_SNAKE_CASE : str = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE : Dict = self.default_feature_extractor SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = prepare_audio() SCREAMING_SNAKE_CASE : Dict = audio.squeeze().numpy() SCREAMING_SNAKE_CASE : List[str] = feature_extractor(_lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**_lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
354
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
0
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = [10, 20, 30, 40, 50, 60] SCREAMING_SNAKE_CASE : int = [2, 4, 6, 8, 10, 12] SCREAMING_SNAKE_CASE : Any = 100 self.assertEqual(kp.calc_profit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 210 ) def _A ( self : Optional[int] ): self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "max_weight must greater than zero." ) def _A ( self : Any ): self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "Weight can not be negative." ) def _A ( self : Optional[int] ): self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "Profit can not be negative." ) def _A ( self : Union[str, Any] ): self.assertRaisesRegex(_SCREAMING_SNAKE_CASE , "max_weight must greater than zero." ) def _A ( self : List[Any] ): self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
355
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : Dict = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : List[str] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : str = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : Optional[Any] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : List[str] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : Dict = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: SCREAMING_SNAKE_CASE : str = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : int = config['lr'] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Tuple = int(config["batch_size"] ) set_seed(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloaders(lowercase , lowercase ) SCREAMING_SNAKE_CASE : List[str] = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE : Any = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE : Any = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : int = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Optional[Any] = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : List[str] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: SCREAMING_SNAKE_CASE : List[Any] = os.path.split(lowercase )[-1].split("." )[0] accelerator.init_trackers(lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: SCREAMING_SNAKE_CASE : str = 0 for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE : Tuple = model(**lowercase ) SCREAMING_SNAKE_CASE : Any = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() SCREAMING_SNAKE_CASE : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowercase ), "epoch": epoch, } , step=lowercase , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowercase , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) SCREAMING_SNAKE_CASE : str = parser.parse_args() SCREAMING_SNAKE_CASE : List[Any] = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
356
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from __future__ import annotations from math import pi def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
357
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" for attribute in key.split("." ): SCREAMING_SNAKE_CASE : int = getattr(A__ , A__ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Dict = getattr(A__ , A__ ).shape else: SCREAMING_SNAKE_CASE : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[Any] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Any = value else: SCREAMING_SNAKE_CASE : Any = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : List[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : Optional[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE : Union[str, Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Union[str, Any] = name.split(A__ )[0].split("." )[-2] SCREAMING_SNAKE_CASE : List[str] = mapped_key.replace("*" , A__ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : List[str] = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE : Optional[Any] = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: SCREAMING_SNAKE_CASE : Union[str, Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : List[Any] = "weight" else: SCREAMING_SNAKE_CASE : Optional[int] = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE : Optional[Any] = name.split("." ) SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) SCREAMING_SNAKE_CASE : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE : Dict = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A__ ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.load(A__ ) SCREAMING_SNAKE_CASE : List[Any] = WavLMConfigOrig(checkpoint["cfg"] ) SCREAMING_SNAKE_CASE : Optional[Any] = WavLMOrig(A__ ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = WavLMConfig.from_pretrained(A__ ) else: SCREAMING_SNAKE_CASE : Any = WavLMConfig() SCREAMING_SNAKE_CASE : List[Any] = WavLMModel(A__ ) recursively_load_weights(A__ , A__ ) hf_wavlm.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
358
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
0
def lowerCamelCase__ ( lowercase = 10 ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or n < 0: raise ValueError("Invalid input" ) UpperCamelCase__ : List[Any] = 10**n UpperCamelCase__ : int = 28433 * (pow(2 , 7830457 , _UpperCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) SCREAMING_SNAKE_CASE : Any = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) SCREAMING_SNAKE_CASE : Tuple = components[:-1] + [test_fn.replace(".py" , "" )] SCREAMING_SNAKE_CASE : Optional[Any] = ".".join(a__ ) return test_module_path def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = get_module_path(a__ ) SCREAMING_SNAKE_CASE : str = importlib.import_module(a__ ) return test_module def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Optional[Any] = get_test_module(a__ ) for attr in dir(a__ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(a__ , a__ ) ) # sort with class names return sorted(a__ , key=lambda lowercase : x.__name__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : str = get_test_module(a__ ) for attr in dir(a__ ): SCREAMING_SNAKE_CASE : Tuple = getattr(a__ , a__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE : str = getattr(a__ , "all_model_classes" , [] ) if len(a__ ) > 0: test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda lowercase : x.__name__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = get_test_classes(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(a__ , key=lambda lowercase : x.__name__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = test_class() if hasattr(a__ , "setUp" ): test.setUp() SCREAMING_SNAKE_CASE : Optional[Any] = None if hasattr(a__ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE : Tuple = test.model_tester.__class__ return model_tester def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = get_test_classes(a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda lowercase : x.__name__ ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = get_test_classes_for_model(a__ , a__ ) SCREAMING_SNAKE_CASE : Any = [] for test_class in test_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = get_model_tester_from_test_class(a__ ) if tester_class is not None: tester_classes.append(a__ ) # sort with class names return sorted(a__ , key=lambda lowercase : x.__name__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = get_test_classes(a__ ) SCREAMING_SNAKE_CASE : Dict = {test_class: get_model_tester_from_test_class(a__ ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = get_model_classes(a__ ) SCREAMING_SNAKE_CASE : int = { model_class: get_test_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_test_mapping def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = get_model_classes(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = { model_class: get_tester_classes_for_model(a__ , a__ ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(a__ , a__ ): return o elif isinstance(a__ , a__ ): return o.__name__ elif isinstance(a__ , (list, tuple) ): return [to_json(a__ ) for x in o] elif isinstance(a__ , a__ ): return {to_json(a__ ): to_json(a__ ) for k, v in o.items()} else: return o
360
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
0
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = len(lowercase ) SCREAMING_SNAKE_CASE : Tuple = len(lowercase ) SCREAMING_SNAKE_CASE : Any = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] SCREAMING_SNAKE_CASE : Optional[int] = True for i in range(lowercase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: SCREAMING_SNAKE_CASE : Tuple = True if a[i].islower(): SCREAMING_SNAKE_CASE : Tuple = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
361
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter snake_case = logging.get_logger(__name__) snake_case = {} snake_case = {} snake_case = {} def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) SCREAMING_SNAKE_CASE : int = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) SCREAMING_SNAKE_CASE : Tuple = format_type def lowerCamelCase__ ( lowercase , lowercase , lowercase = None ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): SCREAMING_SNAKE_CASE : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: snake_case = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: snake_case = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: snake_case = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def lowerCamelCase__ ( lowercase ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase__ ( lowercase , **lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = get_format_type_from_alias(__lowerCAmelCase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowerCAmelCase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
362
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
0
import os import re import shutil import sys import tempfile import unittest import black snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. snake_case = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer_dir shutil.copy( os.path.join(__SCREAMING_SNAKE_CASE , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Tuple = "src/transformers" shutil.rmtree(self.transformer_dir ) def _A ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE : Union[str, Any] = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE : List[Any] = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE : Dict = black.format_str(__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(self.transformer_dir , "new_code.py" ) with open(__SCREAMING_SNAKE_CASE , "w" , newline="\n" ) as f: f.write(__SCREAMING_SNAKE_CASE ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__SCREAMING_SNAKE_CASE ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , "r" ) as f: self.assertTrue(f.read() , __SCREAMING_SNAKE_CASE ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _A ( self : Union[str, Any] ): # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , __SCREAMING_SNAKE_CASE , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE : List[str] = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub("Bert" , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , __SCREAMING_SNAKE_CASE , overwrite_result=re.sub("Bert" , "TestModel" , __SCREAMING_SNAKE_CASE ) , ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = check_copies.LOCALIZED_READMES["README_zh-hans.md"] SCREAMING_SNAKE_CASE : Optional[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) SCREAMING_SNAKE_CASE : List[Any] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) SCREAMING_SNAKE_CASE : int = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme["format_model_list"] ) self.assertFalse(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) SCREAMING_SNAKE_CASE : Any = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) SCREAMING_SNAKE_CASE : List[str] = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = check_copies.convert_to_localized_md( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
363
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
0
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = size SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size SCREAMING_SNAKE_CASE : List[str] = [0] * size @staticmethod def _A ( UpperCAmelCase_ : int ): return index | (index + 1) @staticmethod def _A ( UpperCAmelCase_ : int ): return (index & (index + 1)) - 1 def _A ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = value while index < self.size: SCREAMING_SNAKE_CASE : str = self.get_prev(_SCREAMING_SNAKE_CASE ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE : List[Any] = value else: SCREAMING_SNAKE_CASE : Union[str, Any] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_next(_SCREAMING_SNAKE_CASE ) def _A ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE : int = 0 while left <= right: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_prev(_SCREAMING_SNAKE_CASE ) if left <= current_left: SCREAMING_SNAKE_CASE : Union[str, Any] = max(_SCREAMING_SNAKE_CASE , self.tree[right] ) SCREAMING_SNAKE_CASE : List[Any] = current_left else: SCREAMING_SNAKE_CASE : Any = max(_SCREAMING_SNAKE_CASE , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case = logging.get_logger(__name__) snake_case = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) snake_case = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) snake_case = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) snake_case = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) snake_case = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) snake_case = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) snake_case = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) snake_case = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) snake_case = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) snake_case = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) snake_case = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) snake_case = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) snake_case = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) snake_case = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Optional[int] = FLAX_MODEL_MAPPING snake_case = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Optional[int] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Optional[int] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Tuple = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : List[str] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' UpperCamelCase_ : Any = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
365
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
0
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase__ ( lowercase ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) SCREAMING_SNAKE_CASE : int = precision SCREAMING_SNAKE_CASE : Dict = ceil(precision / 14 ) SCREAMING_SNAKE_CASE : List[str] = 426880 * Decimal(10005 ).sqrt() SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : List[str] = 13591409 SCREAMING_SNAKE_CASE : Optional[Any] = Decimal(SCREAMING_SNAKE_CASE_ ) for k in range(1 , SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE : Optional[int] = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": snake_case = 50 print(F"""The first {n} digits of pi is: {pi(n)}""")
366
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : Union[str, Any] = set_counts SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * num_sets SCREAMING_SNAKE_CASE : List[str] = list(range(UpperCAmelCase_ ) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[Any] = self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = src_parent SCREAMING_SNAKE_CASE : Optional[int] = self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Optional[Any] = max(self.max_set , UpperCAmelCase_ ) return True def _A ( self : Tuple , UpperCAmelCase_ : int ): if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
319
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """facebook/deit-base-distilled-patch16-224""": ( """https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json""" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase_ : int = """deit""" def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : List[Any]=3072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=1E-12 , UpperCAmelCase_ : List[Any]=224 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=16 , **UpperCAmelCase_ : Any , ): super().__init__(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : Optional[Any] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = qkv_bias SCREAMING_SNAKE_CASE : Optional[int] = encoder_stride class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' UpperCamelCase_ : Dict = version.parse('''1.11''' ) @property def _A ( self : Any ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self : int ): return 1E-4
367
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = StableDiffusionLDMaDPipeline UpperCamelCase_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def _A ( self : List[str] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _A ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=0 ): if str(__lowerCamelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Any = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : str = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = ldmad_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE : int = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE : int = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) SCREAMING_SNAKE_CASE : Dict = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _A ( self : str ): SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE : int = 3 * [inputs["""prompt"""]] # forward SCREAMING_SNAKE_CASE : Dict = ldmad_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = output.rgb, output.depth SCREAMING_SNAKE_CASE : Tuple = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = depth_slice_a[0, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE : int = 3 * [inputs.pop("prompt" )] SCREAMING_SNAKE_CASE : List[Any] = ldmad_pipe.tokenizer( __lowerCamelCase , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__lowerCamelCase , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : List[str] = text_inputs["""input_ids"""].to(__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = ldmad_pipe.text_encoder(__lowerCamelCase )[0] SCREAMING_SNAKE_CASE : Dict = prompt_embeds # forward SCREAMING_SNAKE_CASE : str = ldmad_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.rgb, output.depth SCREAMING_SNAKE_CASE : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : int = """cpu""" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[int] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = StableDiffusionLDMaDPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE : str = """french fries""" SCREAMING_SNAKE_CASE : Optional[int] = ldmad_pipe(**__lowerCamelCase , negative_prompt=__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE : List[Any] = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : str = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE : Dict = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) SCREAMING_SNAKE_CASE : Any = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[str] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple="cpu" , UpperCAmelCase_ : str=torch.floataa , UpperCAmelCase_ : Tuple=0 ): SCREAMING_SNAKE_CASE : str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE : str = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) SCREAMING_SNAKE_CASE : Any = ldmad_pipe.to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = ldmad_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = output.rgb, output.depth SCREAMING_SNAKE_CASE : int = rgb[0, -3:, -3:, -1].flatten() SCREAMING_SNAKE_CASE : Optional[Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict="cpu" , UpperCAmelCase_ : int=torch.floataa , UpperCAmelCase_ : Union[str, Any]=0 ): SCREAMING_SNAKE_CASE : str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase , dtype=__lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _A ( self : str ): SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.get_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = ldmad_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE : Dict = 0.495_586 SCREAMING_SNAKE_CASE : Dict = 0.33_795_515 SCREAMING_SNAKE_CASE : Union[str, Any] = 112.48_518 SCREAMING_SNAKE_CASE : Any = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(__lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = ldmad_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.rgb, output.depth SCREAMING_SNAKE_CASE : Optional[int] = 0.4_194_127 SCREAMING_SNAKE_CASE : str = 0.35_375_586 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.5_638_502 SCREAMING_SNAKE_CASE : Union[str, Any] = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
368
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @require_torch def _A ( self : Any ): SCREAMING_SNAKE_CASE : int = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " SCREAMING_SNAKE_CASE : Union[str, Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " SCREAMING_SNAKE_CASE : Optional[Any] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE : Tuple = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(lowercase_ ) BertModel.from_pretrained(lowercase_ ) BertTokenizer.from_pretrained(lowercase_ ) pipeline(task="fill-mask" , model=lowercase_ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : Union[str, Any] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE : Optional[Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE : Dict = "1" SCREAMING_SNAKE_CASE : Optional[Any] = subprocess.run(lowercase_ , env=lowercase_ , check=lowercase_ , capture_output=lowercase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Tuple = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " SCREAMING_SNAKE_CASE : List[str] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " SCREAMING_SNAKE_CASE : List[str] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache SCREAMING_SNAKE_CASE : str = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(lowercase_ ) BertModel.from_pretrained(lowercase_ ) BertTokenizer.from_pretrained(lowercase_ ) pipeline(task="fill-mask" , model=lowercase_ ) # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : List[Any] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed SCREAMING_SNAKE_CASE : Optional[Any] = self.get_env() SCREAMING_SNAKE_CASE : Dict = subprocess.run(lowercase_ , env=lowercase_ , check=lowercase_ , capture_output=lowercase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " SCREAMING_SNAKE_CASE : List[str] = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " SCREAMING_SNAKE_CASE : Dict = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : Dict = [sys.executable, "-c", "\n".join([load, run] )] # should succeed SCREAMING_SNAKE_CASE : str = self.get_env() SCREAMING_SNAKE_CASE : Optional[Any] = subprocess.run(lowercase_ , env=lowercase_ , check=lowercase_ , capture_output=lowercase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network SCREAMING_SNAKE_CASE : int = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE : List[str] = "1" SCREAMING_SNAKE_CASE : Any = subprocess.run(lowercase_ , env=lowercase_ , check=lowercase_ , capture_output=lowercase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = "\nfrom transformers import pipeline\n " SCREAMING_SNAKE_CASE : List[Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " SCREAMING_SNAKE_CASE : Optional[Any] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " SCREAMING_SNAKE_CASE : int = self.get_env() SCREAMING_SNAKE_CASE : Any = "1" SCREAMING_SNAKE_CASE : Union[str, Any] = [sys.executable, "-c", "\n".join([load, mock, run] )] SCREAMING_SNAKE_CASE : Optional[int] = subprocess.run(lowercase_ , env=lowercase_ , check=lowercase_ , capture_output=lowercase_ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Union[str, Any] = "\nfrom transformers import AutoModel\n " SCREAMING_SNAKE_CASE : int = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network SCREAMING_SNAKE_CASE : str = [sys.executable, "-c", "\n".join([load, run] )] # should succeed SCREAMING_SNAKE_CASE : Dict = self.get_env() SCREAMING_SNAKE_CASE : Optional[int] = subprocess.run(lowercase_ , env=lowercase_ , check=lowercase_ , capture_output=lowercase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files SCREAMING_SNAKE_CASE : Tuple = "1" SCREAMING_SNAKE_CASE : Optional[int] = subprocess.run(lowercase_ , env=lowercase_ , check=lowercase_ , capture_output=lowercase_ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=99 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Dict=None , ): SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Tuple = seq_length SCREAMING_SNAKE_CASE : int = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : str = use_token_type_ids SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_multiple_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : List[str] = weight_tying SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : Any = num_choices SCREAMING_SNAKE_CASE : str = scope def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _A ( self : List[Any] ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Union[str, Any] = True return config, input_ids, input_mask, token_labels def _A ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = GPTNeoXJapaneseModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : int = GPTNeoXJapaneseModel(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : Optional[int] = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Optional[Any] = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_no_past["hidden_states"][0] SCREAMING_SNAKE_CASE : Union[str, Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , )["hidden_states"][0] # select random slice SCREAMING_SNAKE_CASE : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1E-3 ) ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( a__ , a__ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : int = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () UpperCamelCase_ : Union[str, Any] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () UpperCamelCase_ : List[str] = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) UpperCamelCase_ : str = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : str = False def _A ( self : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def _A ( self : Any ): self.config_tester.run_common_tests() def _A ( self : str ): SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : List[str] ): # This regression test was failing with PyTorch < 1.3 SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase_ ) @slow def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Any = "abeja/gpt-neox-japanese-2.7b" SCREAMING_SNAKE_CASE : Dict = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] SCREAMING_SNAKE_CASE : List[Any] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] SCREAMING_SNAKE_CASE : int = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for prompt in prompts: SCREAMING_SNAKE_CASE : List[str] = tokenizer(UpperCAmelCase_ , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE : List[str] = model.generate(UpperCAmelCase_ , max_length=50 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
370
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
0
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack SCREAMING_SNAKE_CASE : set[int] = set() return any( node not in visited and depth_first_search(lowercase , lowercase , lowercase , lowercase ) for node in graph ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase , lowercase , lowercase , lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
371
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : str = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase_ : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE : List[Any] = text_generator("This is a test" , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) SCREAMING_SNAKE_CASE : str = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( _snake_case , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) SCREAMING_SNAKE_CASE : List[str] = text_generator("This is a test" , do_sample=_snake_case , num_return_sequences=2 , return_tensors=_snake_case ) self.assertEqual( _snake_case , [ {"generated_token_ids": ANY(_snake_case )}, {"generated_token_ids": ANY(_snake_case )}, ] , ) SCREAMING_SNAKE_CASE : int = text_generator.model.config.eos_token_id SCREAMING_SNAKE_CASE : str = "<pad>" SCREAMING_SNAKE_CASE : Dict = text_generator( ["This is a test", "This is a second test"] , do_sample=_snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=_snake_case , ) self.assertEqual( _snake_case , [ [ {"generated_token_ids": ANY(_snake_case )}, {"generated_token_ids": ANY(_snake_case )}, ], [ {"generated_token_ids": ANY(_snake_case )}, {"generated_token_ids": ANY(_snake_case )}, ], ] , ) @require_tf def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : List[Any] = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output SCREAMING_SNAKE_CASE : Dict = text_generator("This is a test" , do_sample=_snake_case ) self.assertEqual( _snake_case , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) SCREAMING_SNAKE_CASE : Dict = text_generator(["This is a test", "This is a second test"] , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def _A ( self : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : str = TextGenerationPipeline(model=_snake_case , tokenizer=_snake_case ) return text_generator, ["This is a test", "Another test"] def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Any = "Hello I believe in" SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) SCREAMING_SNAKE_CASE : Any = text_generator(_snake_case ) self.assertEqual( _snake_case , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) SCREAMING_SNAKE_CASE : int = text_generator(_snake_case , stop_sequence=" fe" ) self.assertEqual(_snake_case , [{"generated_text": "Hello I believe in fe"}] ) def _A ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = text_generator.model SCREAMING_SNAKE_CASE : Union[str, Any] = text_generator.tokenizer SCREAMING_SNAKE_CASE : List[str] = text_generator("This is a test" ) self.assertEqual(_snake_case , [{"generated_text": ANY(_snake_case )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) SCREAMING_SNAKE_CASE : List[str] = text_generator("This is a test" , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{"generated_text": ANY(_snake_case )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) SCREAMING_SNAKE_CASE : Any = pipeline(task="text-generation" , model=_snake_case , tokenizer=_snake_case , return_full_text=_snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_generator("This is a test" ) self.assertEqual(_snake_case , [{"generated_text": ANY(_snake_case )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) SCREAMING_SNAKE_CASE : Dict = text_generator("This is a test" , return_full_text=_snake_case ) self.assertEqual(_snake_case , [{"generated_text": ANY(_snake_case )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{"generated_text": ANY(_snake_case )}, {"generated_text": ANY(_snake_case )}], [{"generated_text": ANY(_snake_case )}, {"generated_text": ANY(_snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: SCREAMING_SNAKE_CASE : List[str] = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=_snake_case ) self.assertEqual( _snake_case , [ [{"generated_text": ANY(_snake_case )}, {"generated_text": ANY(_snake_case )}], [{"generated_text": ANY(_snake_case )}, {"generated_text": ANY(_snake_case )}], ] , ) with self.assertRaises(_snake_case ): SCREAMING_SNAKE_CASE : List[str] = text_generator("test" , return_full_text=_snake_case , return_text=_snake_case ) with self.assertRaises(_snake_case ): SCREAMING_SNAKE_CASE : List[Any] = text_generator("test" , return_full_text=_snake_case , return_tensors=_snake_case ) with self.assertRaises(_snake_case ): SCREAMING_SNAKE_CASE : int = text_generator("test" , return_text=_snake_case , return_tensors=_snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): SCREAMING_SNAKE_CASE : Dict = text_generator("" ) self.assertEqual(_snake_case , [{"generated_text": ANY(_snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): SCREAMING_SNAKE_CASE : Optional[Any] = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. SCREAMING_SNAKE_CASE : List[Any] = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) SCREAMING_SNAKE_CASE : List[str] = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_snake_case ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _A ( self : Any ): import torch # Classic `model_kwargs` SCREAMING_SNAKE_CASE : Any = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE : Optional[Any] = pipe("This is a test" ) self.assertEqual( _snake_case , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) SCREAMING_SNAKE_CASE : str = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) SCREAMING_SNAKE_CASE : Any = pipe("This is a test" ) self.assertEqual( _snake_case , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 SCREAMING_SNAKE_CASE : Optional[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe("This is a test" ) self.assertEqual( _snake_case , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def _A ( self : str ): import torch SCREAMING_SNAKE_CASE : Any = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def _A ( self : Any ): import torch SCREAMING_SNAKE_CASE : List[Any] = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=_snake_case , top_p=0.5 ) def _A ( self : int ): SCREAMING_SNAKE_CASE : Tuple = "Hello world" SCREAMING_SNAKE_CASE : str = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": SCREAMING_SNAKE_CASE : Tuple = logging.get_logger("transformers.generation.tf_utils" ) else: SCREAMING_SNAKE_CASE : str = logging.get_logger("transformers.generation.utils" ) SCREAMING_SNAKE_CASE : Dict = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_snake_case ) as cl: SCREAMING_SNAKE_CASE : str = text_generator(_snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(_snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(_snake_case ) as cl: SCREAMING_SNAKE_CASE : Any = text_generator(_snake_case , max_new_tokens=1 ) self.assertNotIn(_snake_case , cl.out ) with CaptureLogger(_snake_case ) as cl: SCREAMING_SNAKE_CASE : List[str] = text_generator(_snake_case , max_length=10 ) self.assertNotIn(_snake_case , cl.out )
351
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE : List[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) SCREAMING_SNAKE_CASE : int = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : int = f'''\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '''.split() SCREAMING_SNAKE_CASE : str = [sys.executable] + distributed_args execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy() )
352
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = "laion/clap-htsat-unfused" SCREAMING_SNAKE_CASE : Any = tempfile.mkdtemp() def _A ( self : Tuple , **UpperCAmelCase_ : List[str] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def _A ( self : List[Any] , **UpperCAmelCase_ : Optional[Any] ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def _A ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Dict = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Optional[Any] = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : Union[str, Any] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE : Tuple = self.get_feature_extractor(do_normalize=UpperCAmelCase_ , padding_value=1.0 ) SCREAMING_SNAKE_CASE : str = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_ ) def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[int] = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = floats_list((3, 1000) ) SCREAMING_SNAKE_CASE : Tuple = feature_extractor(UpperCAmelCase_ , return_tensors="np" ) SCREAMING_SNAKE_CASE : str = processor(audios=UpperCAmelCase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Any = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE : Optional[int] = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = "This is a test string" SCREAMING_SNAKE_CASE : str = processor(text=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : str = self.get_feature_extractor() SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[Any] = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE : List[str] = processor.batch_decode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Any = self.get_feature_extractor() SCREAMING_SNAKE_CASE : int = self.get_tokenizer() SCREAMING_SNAKE_CASE : int = ClapProcessor(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
353
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _A ( *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ): pass @is_pipeline_test @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @require_torch def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Tuple = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) SCREAMING_SNAKE_CASE : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE : List[Any] = image_classifier(UpperCAmelCase_ , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase_ ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) SCREAMING_SNAKE_CASE : str = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], ] , ) @require_tf def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Dict = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) SCREAMING_SNAKE_CASE : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE : Dict = image_classifier(UpperCAmelCase_ , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) SCREAMING_SNAKE_CASE : int = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, {"score": 0.333, "label": ANY(UpperCAmelCase_ )}, ], ] , ) @slow @require_torch def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : str = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_classifier(UpperCAmelCase_ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE : int = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) SCREAMING_SNAKE_CASE : List[Any] = image_classifier(UpperCAmelCase_ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) SCREAMING_SNAKE_CASE : Tuple = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
354
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
0
"""simple docstring""" import qiskit def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = qiskit.Aer.get_backend("aer_simulator" ) SCREAMING_SNAKE_CASE : Dict = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : Optional[Any] = qiskit.execute(lowercase , lowercase , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(lowercase ) if __name__ == "__main__": snake_case = half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
355
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
0
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int(input_a == input_a == 0 ) def lowerCamelCase__ ( ): """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
356
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 0 while b > 0: if b & 1: SCREAMING_SNAKE_CASE : Optional[Any] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
357
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
from math import pow, sqrt def lowerCamelCase__ ( *lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = len(A_ ) > 0 and all(value > 0.0 for value in values ) return result def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A_ , A_ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A_ , A_ , A_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(A_ , A_ , A_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(A_ , A_ , A_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(A_ , A_ , A_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
358
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @require_torch def _A ( self : Dict ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCamelCase__ : List[str] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " UpperCamelCase__ : Union[str, Any] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " UpperCamelCase__ : Any = "\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn\'t access internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache UpperCamelCase__ : str = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task="fill-mask" , model=__A ) # baseline - just load from_pretrained with normal network UpperCamelCase__ : str = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed UpperCamelCase__ : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase__ : Optional[Any] = "1" UpperCamelCase__ : Optional[int] = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _A ( self : Dict ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCamelCase__ : Optional[int] = "\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n " UpperCamelCase__ : Optional[int] = "\nmname = \"hf-internal-testing/tiny-random-bert\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task=\"fill-mask\", model=mname)\nprint(\"success\")\n " UpperCamelCase__ : Optional[int] = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")\nsocket.socket = offline_socket\n " # Force fetching the files so that we can use the cache UpperCamelCase__ : int = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(__A ) BertModel.from_pretrained(__A ) BertTokenizer.from_pretrained(__A ) pipeline(task="fill-mask" , model=__A ) # baseline - just load from_pretrained with normal network UpperCamelCase__ : Optional[int] = [sys.executable, "-c", "\n".join([load, run, mock] )] # should succeed UpperCamelCase__ : List[Any] = self.get_env() UpperCamelCase__ : Union[str, Any] = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _A ( self : Any ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched UpperCamelCase__ : Dict = "\nfrom transformers import BertConfig, BertModel, BertTokenizer\n " UpperCamelCase__ : Union[str, Any] = "\nmname = \"hf-internal-testing/tiny-random-bert-sharded\"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint(\"success\")\n " UpperCamelCase__ : Dict = "\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " # baseline - just load from_pretrained with normal network UpperCamelCase__ : str = [sys.executable, "-c", "\n".join([load, run] )] # should succeed UpperCamelCase__ : int = self.get_env() UpperCamelCase__ : Dict = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # next emulate no network UpperCamelCase__ : str = [sys.executable, "-c", "\n".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase__ : Optional[Any] = "1" UpperCamelCase__ : Union[str, Any] = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) @require_torch def _A ( self : Optional[int] ): UpperCamelCase__ : Optional[Any] = "\nfrom transformers import pipeline\n " UpperCamelCase__ : str = "\nmname = \"hf-internal-testing/tiny-random-bert\"\npipe = pipeline(model=mname)\n " UpperCamelCase__ : str = "\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")\nsocket.socket = offline_socket\n " UpperCamelCase__ : List[str] = self.get_env() UpperCamelCase__ : Union[str, Any] = "1" UpperCamelCase__ : str = [sys.executable, "-c", "\n".join([load, mock, run] )] UpperCamelCase__ : Optional[Any] = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( "You cannot infer task automatically within `pipeline` when using offline mode" , result.stderr.decode().replace("\n" , "" ) , ) @require_torch def _A ( self : Optional[int] ): UpperCamelCase__ : int = "\nfrom transformers import AutoModel\n " UpperCamelCase__ : Tuple = "\nmname = \"hf-internal-testing/test_dynamic_model\"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint(\"success\")\n " # baseline - just load from_pretrained with normal network UpperCamelCase__ : Optional[int] = [sys.executable, "-c", "\n".join([load, run] )] # should succeed UpperCamelCase__ : List[str] = self.get_env() UpperCamelCase__ : Optional[int] = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase__ : int = "1" UpperCamelCase__ : int = subprocess.run(__A , env=__A , check=__A , capture_output=__A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("success" , result.stdout.decode() )
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
0
from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) snake_case = "pytorch_model.bin" snake_case = "pytorch_model.bin.index.json" snake_case = "adapter_config.json" snake_case = "adapter_model.bin" snake_case = "adapter_model.safetensors" snake_case = "tf_model.h5" snake_case = "tf_model.h5.index.json" snake_case = "model.ckpt" snake_case = "flax_model.msgpack" snake_case = "flax_model.msgpack.index.json" snake_case = "model.safetensors" snake_case = "model.safetensors.index.json" snake_case = "config.json" snake_case = "preprocessor_config.json" snake_case = FEATURE_EXTRACTOR_NAME snake_case = "generation_config.json" snake_case = "modelcard.json" snake_case = "▁" snake_case = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility snake_case = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. snake_case = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] snake_case = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowerCamelCase__ ( lowercase ): """simple docstring""" if version.parse(lowercase ) < version.parse(lowercase ): if "dev" in min_version: SCREAMING_SNAKE_CASE : Optional[int] = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: SCREAMING_SNAKE_CASE : Optional[int] = F'''This example requires a minimum version of {min_version},''' error_message += F''' but the version found is {__version__}.\n''' raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
360
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
0
import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = 1 @register_to_config def __init__( self : int , UpperCAmelCase_ : str=2000 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=20 , UpperCAmelCase_ : List[Any]=1E-3 ): SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = None def _A ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] = None ): SCREAMING_SNAKE_CASE : Tuple = torch.linspace(1 , self.config.sampling_eps , lowerCamelCase_ , device=lowerCamelCase_ ) def _A ( self : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=None ): if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score SCREAMING_SNAKE_CASE : str = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) SCREAMING_SNAKE_CASE : Dict = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) SCREAMING_SNAKE_CASE : Dict = std.flatten() while len(std.shape ) < len(score.shape ): SCREAMING_SNAKE_CASE : int = std.unsqueeze(-1 ) SCREAMING_SNAKE_CASE : Optional[Any] = -score / std # compute SCREAMING_SNAKE_CASE : Tuple = -1.0 / len(self.timesteps ) SCREAMING_SNAKE_CASE : Any = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) SCREAMING_SNAKE_CASE : str = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): SCREAMING_SNAKE_CASE : Optional[int] = beta_t.unsqueeze(-1 ) SCREAMING_SNAKE_CASE : Dict = -0.5 * beta_t * x SCREAMING_SNAKE_CASE : Union[str, Any] = torch.sqrt(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = drift - diffusion**2 * score SCREAMING_SNAKE_CASE : Union[str, Any] = x + drift * dt # add noise SCREAMING_SNAKE_CASE : Optional[int] = randn_tensor(x.shape , layout=x.layout , generator=lowerCamelCase_ , device=x.device , dtype=x.dtype ) SCREAMING_SNAKE_CASE : List[str] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Dict ): return self.config.num_train_timesteps
361
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : Union[str, Any] = """CLIPImageProcessor""" UpperCamelCase_ : Any = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Tuple , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) SCREAMING_SNAKE_CASE : int = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : Tuple , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : Union[str, Any] ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if images is not None: SCREAMING_SNAKE_CASE : Tuple = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: SCREAMING_SNAKE_CASE : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def _A ( self : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def _A ( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _A ( self : Dict ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , ) return self.image_processor_class @property def _A ( self : Optional[int] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case__ , ) return self.image_processor
362
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class SCREAMING_SNAKE_CASE ( a__ , unittest.TestCase ): UpperCamelCase_ : Optional[int] = FlaxAutoencoderKL @property def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Dict = 4 SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : Optional[int] = (32, 32) SCREAMING_SNAKE_CASE : int = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : List[str] = jax.random.uniform(lowerCAmelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : str = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } SCREAMING_SNAKE_CASE : int = self.dummy_input return init_dict, inputs_dict
363
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("RGB" ) return image def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dct.pop(lowercase ) SCREAMING_SNAKE_CASE : List[str] = val def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) SCREAMING_SNAKE_CASE : List[Any] = qkv_bias def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 364 if "coco" in model_name else 224 SCREAMING_SNAKE_CASE : str = InstructBlipVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32001 ).to_dict() elif "vicuna-13b" in model_name: SCREAMING_SNAKE_CASE : Tuple = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 SCREAMING_SNAKE_CASE : List[str] = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict() SCREAMING_SNAKE_CASE : Any = InstructBlipConfig(vision_config=lowercase , text_config=lowercase , qformer_config=lowercase ) return config, image_size @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase=None , lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: SCREAMING_SNAKE_CASE : Any = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) SCREAMING_SNAKE_CASE : List[Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_blipa_config(lowercase ) SCREAMING_SNAKE_CASE : List[str] = InstructBlipForConditionalGeneration(lowercase ).eval() SCREAMING_SNAKE_CASE : int = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = model_name_to_original[model_name] # load original model print("Loading original model..." ) SCREAMING_SNAKE_CASE : Optional[int] = "cuda:1" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE : Any = "cuda:2" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print("Done!" ) # update state dict keys SCREAMING_SNAKE_CASE : Optional[int] = original_model.state_dict() SCREAMING_SNAKE_CASE : Tuple = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowercase ) if key.startswith("Qformer.bert" ): SCREAMING_SNAKE_CASE : str = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: SCREAMING_SNAKE_CASE : Any = key.replace("self" , "attention" ) if "llm_proj" in key: SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: SCREAMING_SNAKE_CASE : int = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): SCREAMING_SNAKE_CASE : Optional[Any] = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): SCREAMING_SNAKE_CASE : List[str] = key.replace("t5" , "language" ) SCREAMING_SNAKE_CASE : Dict = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowercase , strict=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = load_demo_image() SCREAMING_SNAKE_CASE : Any = "What is unusual about this image?" # create processor SCREAMING_SNAKE_CASE : List[str] = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=lowercase , image_std=lowercase ) SCREAMING_SNAKE_CASE : List[str] = InstructBlipProcessor( image_processor=lowercase , tokenizer=lowercase , qformer_tokenizer=lowercase , ) SCREAMING_SNAKE_CASE : int = processor(images=lowercase , text=lowercase , return_tensors="pt" ).to(lowercase ) # make sure processor creates exact same pixel values SCREAMING_SNAKE_CASE : Optional[Any] = vis_processors["eval"](lowercase ).unsqueeze(0 ).to(lowercase ) SCREAMING_SNAKE_CASE : int = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "vicuna" in model_name: SCREAMING_SNAKE_CASE : List[Any] = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits SCREAMING_SNAKE_CASE : List[Any] = hf_model(**lowercase ).logits else: SCREAMING_SNAKE_CASE : Tuple = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits SCREAMING_SNAKE_CASE : Any = tokenizer("\n" , return_tensors="pt" ).input_ids.to(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) SCREAMING_SNAKE_CASE : Optional[int] = hf_model(**lowercase , labels=lowercase ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape SCREAMING_SNAKE_CASE : Union[str, Any] = 1E-4 if "vicuna" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , lowercase , atol=lowercase ) print("Looks ok!" ) print("Generating with original model..." ) SCREAMING_SNAKE_CASE : int = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) SCREAMING_SNAKE_CASE : str = hf_model.generate( **lowercase , do_sample=lowercase , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? SCREAMING_SNAKE_CASE : Dict = 2 print("Original generation:" , lowercase ) SCREAMING_SNAKE_CASE : Dict = processor.batch_decode(lowercase , skip_special_tokens=lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print("HF generation:" , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() snake_case = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) snake_case = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import argparse import os import re import packaging.version snake_case = """examples/""" snake_case = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } snake_case = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } snake_case = """README.md""" def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE : Dict = replace.replace("VERSION" , snake_case__ ) SCREAMING_SNAKE_CASE : Optional[Any] = re_pattern.sub(snake_case__ , snake_case__ ) with open(snake_case__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(snake_case__ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" for folder, directories, fnames in os.walk(snake_case__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(snake_case__ , snake_case__ ) , snake_case__ , pattern="examples" ) def lowerCamelCase__ ( lowercase , lowercase=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case__ , snake_case__ , snake_case__ ) if not patch: update_version_in_examples(snake_case__ ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = "🤗 Transformers currently provides the following architectures" SCREAMING_SNAKE_CASE : Dict = "1. Want to contribute a new model?" with open(snake_case__ , "r" , encoding="utf-8" , newline="\n" ) as f: SCREAMING_SNAKE_CASE : int = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): SCREAMING_SNAKE_CASE : Optional[int] = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(snake_case__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(snake_case__ ) def lowerCamelCase__ ( ): """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: SCREAMING_SNAKE_CASE : Any = f.read() SCREAMING_SNAKE_CASE : Dict = REPLACE_PATTERNS["init"][0].search(snake_case__ ).groups()[0] return packaging.version.parse(snake_case__ ) def lowerCamelCase__ ( lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE : int = default_version.base_version elif patch: SCREAMING_SNAKE_CASE : Union[str, Any] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: SCREAMING_SNAKE_CASE : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE : Optional[int] = input(F'''Which version are you releasing? [{default_version}]''' ) if len(snake_case__ ) == 0: SCREAMING_SNAKE_CASE : Tuple = default_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case__ , patch=snake_case__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = get_version() SCREAMING_SNAKE_CASE : Union[str, Any] = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' SCREAMING_SNAKE_CASE : Optional[Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE : Union[str, Any] = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(snake_case__ ) == 0: SCREAMING_SNAKE_CASE : List[Any] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(snake_case__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") snake_case = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
365
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
0
"""simple docstring""" import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = (DPMSolverSDEScheduler,) UpperCamelCase_ : List[str] = 1_0 def _A ( self : List[str] , **UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = { """num_train_timesteps""": 1100, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def _A ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def _A ( self : Optional[Any] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def _A ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def _A ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : Any = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : List[str] = output.prev_sample SCREAMING_SNAKE_CASE : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[Any] = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : int = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : str = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Tuple = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Any = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : str = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : List[str] = output.prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE_ , use_karras_sigmas=SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Dict = sample.to(SCREAMING_SNAKE_CASE_ ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : int = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Tuple = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
366
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : Union[str, Any] = set_counts SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * num_sets SCREAMING_SNAKE_CASE : List[str] = list(range(UpperCAmelCase_ ) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[Any] = self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = src_parent SCREAMING_SNAKE_CASE : Optional[int] = self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Optional[Any] = max(self.max_set , UpperCAmelCase_ ) return True def _A ( self : Tuple , UpperCAmelCase_ : int ): if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
319
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : str = dataset SCREAMING_SNAKE_CASE : Optional[int] = process SCREAMING_SNAKE_CASE : Optional[int] = params def __len__( self : List[Any] ): return len(self.dataset ) def __getitem__( self : int , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Dict = self.dataset[i] SCREAMING_SNAKE_CASE : Dict = self.process(UpperCamelCase__ , **self.params ) return processed class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]=None ): SCREAMING_SNAKE_CASE : Optional[int] = loader SCREAMING_SNAKE_CASE : Optional[Any] = infer SCREAMING_SNAKE_CASE : Optional[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : int = loader_batch_size # Internal bookkeeping SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Optional[int] = None def __len__( self : Any ): return len(self.loader ) def __iter__( self : int ): SCREAMING_SNAKE_CASE : Any = iter(self.loader ) return self def _A ( self : Tuple ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice SCREAMING_SNAKE_CASE : List[Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) SCREAMING_SNAKE_CASE : Dict = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Convert ModelOutput to tuple first SCREAMING_SNAKE_CASE : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE : int = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase__ , UpperCamelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): SCREAMING_SNAKE_CASE : Dict = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around SCREAMING_SNAKE_CASE : Optional[int] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers SCREAMING_SNAKE_CASE : int = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. SCREAMING_SNAKE_CASE : Union[str, Any] = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 SCREAMING_SNAKE_CASE : Any = self._loader_batch_data.__class__(UpperCamelCase__ ) self._loader_batch_index += 1 return result def _A ( self : List[str] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch SCREAMING_SNAKE_CASE : Any = next(self.iterator ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.infer(UpperCamelCase__ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE : Union[str, Any] = processed else: SCREAMING_SNAKE_CASE : Optional[int] = list(processed.keys() )[0] SCREAMING_SNAKE_CASE : int = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : str = len(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Optional[int] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE : Any = observed_batch_size # Setting internal index to unwrap the batch SCREAMING_SNAKE_CASE : Optional[Any] = processed SCREAMING_SNAKE_CASE : Any = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str=None ): super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __iter__( self : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = iter(self.loader ) SCREAMING_SNAKE_CASE : Optional[int] = None return self def _A ( self : List[Any] ): if self.subiterator is None: SCREAMING_SNAKE_CASE : Optional[int] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item SCREAMING_SNAKE_CASE : Union[str, Any] = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators SCREAMING_SNAKE_CASE : List[Any] = self.infer(next(self.iterator ) , **self.params ) SCREAMING_SNAKE_CASE : List[Any] = next(self.subiterator ) return processed class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __iter__( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[Any] = iter(self.loader ) return self def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE : List[str] = self.loader_batch_item() SCREAMING_SNAKE_CASE : Optional[Any] = item.pop("is_last" ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator while not is_last: SCREAMING_SNAKE_CASE : List[str] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase__ , torch.Tensor ): SCREAMING_SNAKE_CASE : Tuple = processed else: SCREAMING_SNAKE_CASE : Tuple = list(processed.keys() )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = processed[key] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Tuple = len(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. SCREAMING_SNAKE_CASE : List[Any] = observed_batch_size SCREAMING_SNAKE_CASE : Optional[Any] = processed SCREAMING_SNAKE_CASE : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: SCREAMING_SNAKE_CASE : str = self.loader_batch_item() SCREAMING_SNAKE_CASE : str = item.pop("is_last" ) accumulator.append(UpperCamelCase__ ) if is_last: return accumulator else: SCREAMING_SNAKE_CASE : int = processed SCREAMING_SNAKE_CASE : int = item.pop("is_last" ) accumulator.append(UpperCamelCase__ ) return accumulator class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : List[Any] = dataset SCREAMING_SNAKE_CASE : Tuple = key def __len__( self : Optional[Any] ): return len(self.dataset ) def __getitem__( self : Optional[int] , UpperCAmelCase_ : Dict ): return self.dataset[i][self.key] class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : str , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : str = dataset SCREAMING_SNAKE_CASE : Dict = keya SCREAMING_SNAKE_CASE : int = keya def __len__( self : Tuple ): return len(self.dataset ) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : Any ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
367
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
0
import operator as op snake_case = "scaler.pt" snake_case = "pytorch_model" snake_case = "random_states" snake_case = "optimizer" snake_case = "scheduler" snake_case = "pytorch_model.bin" snake_case = "pytorch_model.bin.index.json" snake_case = "model.safetensors" snake_case = "model.safetensors.index.json" snake_case = "1.10.2" snake_case = "py38" snake_case = "4.17.0" snake_case = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] snake_case = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] snake_case = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] snake_case = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] snake_case = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] snake_case = "2.0.1" snake_case = ["pdsh", "standard", "openmpi", "mvapich"] snake_case = ["default", "reduce-overhead", "max-autotune"] snake_case = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 snake_case = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] snake_case = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] snake_case = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
368
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ : Dict = '''BridgeTowerImageProcessor''' UpperCamelCase_ : Optional[int] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE : int = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask SCREAMING_SNAKE_CASE : List[Any] = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def _A ( self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _A ( self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from __future__ import annotations class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = order # a_{0} ... a_{k} SCREAMING_SNAKE_CASE : Dict = [1.0] + [0.0] * order # b_{0} ... b_{k} SCREAMING_SNAKE_CASE : Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] SCREAMING_SNAKE_CASE : Optional[Any] = [0.0] * self.order # y[n-1] ... y[n-k] SCREAMING_SNAKE_CASE : str = [0.0] * self.order def _A ( self : List[Any] , UpperCAmelCase_ : list[float] , UpperCAmelCase_ : list[float] ): if len(_lowercase ) < self.order: SCREAMING_SNAKE_CASE : int = [1.0, *a_coeffs] if len(_lowercase ) != self.order + 1: SCREAMING_SNAKE_CASE : Tuple = ( f'''Expected a_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowercase )}''' ) raise ValueError(_lowercase ) if len(_lowercase ) != self.order + 1: SCREAMING_SNAKE_CASE : Optional[Any] = ( f'''Expected b_coeffs to have {self.order + 1} elements ''' f'''for {self.order}-order filter, got {len(_lowercase )}''' ) raise ValueError(_lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = a_coeffs SCREAMING_SNAKE_CASE : int = b_coeffs def _A ( self : Optional[int] , UpperCAmelCase_ : float ): SCREAMING_SNAKE_CASE : int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) SCREAMING_SNAKE_CASE : List[str] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] SCREAMING_SNAKE_CASE : List[str] = self.input_history[:-1] SCREAMING_SNAKE_CASE : int = self.output_history[:-1] SCREAMING_SNAKE_CASE : Optional[Any] = sample SCREAMING_SNAKE_CASE : Optional[int] = result return result
370
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = np.inf def set_batch_size(lowercase ) -> None: nonlocal batch_size if isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[Any] = min(a__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(a__ , a__ ): SCREAMING_SNAKE_CASE : List[str] = min(a__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(a__ , a__ ) and feature.dtype == "binary": SCREAMING_SNAKE_CASE : Optional[Any] = min(a__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(a__ , a__ ) return None if batch_size is np.inf else batch_size class SCREAMING_SNAKE_CASE ( _a ): '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : List[str] = False , UpperCAmelCase_ : int = False , UpperCAmelCase_ : Dict = None , **UpperCAmelCase_ : Tuple , ): super().__init__( __lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) SCREAMING_SNAKE_CASE : Any = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Optional[int] = _PACKAGED_DATASETS_MODULES["parquet"][1] SCREAMING_SNAKE_CASE : Optional[int] = Parquet( cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , hash=__lowerCAmelCase , **__lowerCAmelCase , ) def _A ( self : List[Any] ): # Build iterable dataset if self.streaming: SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : int = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : Any = self.builder.as_dataset( split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str = None , **UpperCAmelCase_ : Union[str, Any] , ): SCREAMING_SNAKE_CASE : Tuple = dataset SCREAMING_SNAKE_CASE : List[str] = path_or_buf SCREAMING_SNAKE_CASE : Optional[Any] = batch_size or get_writer_batch_size(dataset.features ) SCREAMING_SNAKE_CASE : int = parquet_writer_kwargs def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: SCREAMING_SNAKE_CASE : Dict = self._write(file_obj=__lowerCAmelCase , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) else: SCREAMING_SNAKE_CASE : Tuple = self._write(file_obj=self.path_or_buf , batch_size=__lowerCAmelCase , **self.parquet_writer_kwargs ) return written def _A ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : int = parquet_writer_kwargs.pop("path_or_buf" , __lowerCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE : Any = pq.ParquetWriter(__lowerCAmelCase , schema=__lowerCAmelCase , **__lowerCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , __lowerCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): SCREAMING_SNAKE_CASE : Any = query_table( table=self.dataset._data , key=slice(__lowerCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(__lowerCAmelCase ) written += batch.nbytes writer.close() return written
371
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Dict = None @experimental def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __a , __a , __a , __a , __a , __a , __a ) return _map_with_joblib(__a , __a , __a , __a , __a , __a , __a ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = num_proc if num_proc <= len(__a ) else len(__a ) SCREAMING_SNAKE_CASE : Tuple = [] # We organize the splits ourselve (contiguous splits) for index in range(__a ): SCREAMING_SNAKE_CASE : List[str] = len(__a ) // num_proc SCREAMING_SNAKE_CASE : int = len(__a ) % num_proc SCREAMING_SNAKE_CASE : List[str] = div * index + min(__a , __a ) SCREAMING_SNAKE_CASE : str = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__a ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F'''Error dividing inputs iterable among processes. ''' F'''Total number of objects {len(__a )}, ''' F'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( F'''Spawning {num_proc} processes for {len(__a )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) SCREAMING_SNAKE_CASE : Optional[int] = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE : Optional[Any] = (RLock(),), tqdm.set_lock with Pool(__a , initargs=__a , initializer=__a ) as pool: SCREAMING_SNAKE_CASE : Dict = pool.map(__a , __a ) logger.info(F'''Finished {num_proc} processes''' ) SCREAMING_SNAKE_CASE : Any = [obj for proc_res in mapped for obj in proc_res] logger.info(F'''Unpacked {len(__a )} objects''' ) return mapped def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__a ): return joblib.Parallel()( joblib.delayed(__a )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE : Tuple = None
350
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
0
def lowerCamelCase__ ( lowercase = 1000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 1, 1 SCREAMING_SNAKE_CASE : Any = 2 while True: SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = fa + fa SCREAMING_SNAKE_CASE : List[str] = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
351
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets snake_case = """\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n""" snake_case = """\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n""" snake_case = """\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n""" def lowerCamelCase__ ( lowercase ): """simple docstring""" def remove_articles(lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = re.compile(R"\b(a|an|the)\b" , re.UNICODE ) return re.sub(lowerCAmelCase__ , " " , lowerCAmelCase__ ) def white_space_fix(lowercase ): return " ".join(text.split() ) def remove_punc(lowercase ): SCREAMING_SNAKE_CASE : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase__ ) ) ) ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int(normalize_answer(lowerCAmelCase__ ) == normalize_answer(lowerCAmelCase__ ) ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [any(compute_exact(lowerCAmelCase__ , lowerCAmelCase__ ) for ref in refs ) for pred, refs in zip(lowerCAmelCase__ , lowerCAmelCase__ )] return (sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ )) * 100 def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [rgram for rgrams in rgramslist for rgram in rgrams] SCREAMING_SNAKE_CASE : Union[str, Any] = Counter(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = Counter(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = Counter() for sgram, scount in sgramcounter.items(): SCREAMING_SNAKE_CASE : Optional[Any] = scount * numref SCREAMING_SNAKE_CASE : Optional[int] = Counter(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = Counter() for cgram, ccount in cgramcounter.items(): SCREAMING_SNAKE_CASE : int = ccount * numref # KEEP SCREAMING_SNAKE_CASE : Optional[Any] = sgramcounter_rep & cgramcounter_rep SCREAMING_SNAKE_CASE : Dict = keepgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE : Union[str, Any] = sgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : str = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : Optional[Any] = 1 if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE : List[Any] = keeptmpscorea / len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) SCREAMING_SNAKE_CASE : List[str] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) SCREAMING_SNAKE_CASE : Tuple = 0 if keepscore_precision > 0 or keepscore_recall > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION SCREAMING_SNAKE_CASE : Any = sgramcounter_rep - cgramcounter_rep SCREAMING_SNAKE_CASE : Any = delgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE : List[str] = sgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Dict = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE : Any = 1 if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE : List[str] = deltmpscorea / len(lowerCAmelCase__ ) # ADDITION SCREAMING_SNAKE_CASE : Optional[Any] = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = set(lowerCAmelCase__ ) & set(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : List[str] = 1 if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE : Any = addtmpscore / len(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: SCREAMING_SNAKE_CASE : Optional[Any] = addtmpscore / len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: SCREAMING_SNAKE_CASE : Optional[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = ssent.split(" " ) SCREAMING_SNAKE_CASE : Union[str, Any] = csent.split(" " ) SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Tuple = [] for rsent in rsents: SCREAMING_SNAKE_CASE : List[Any] = rsent.split(" " ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Optional[int] = [] ragramslist.append(lowerCAmelCase__ ) for i in range(0 , len(lowerCAmelCase__ ) - 1 ): if i < len(lowerCAmelCase__ ) - 1: SCREAMING_SNAKE_CASE : Dict = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 2: SCREAMING_SNAKE_CASE : Dict = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 3: SCREAMING_SNAKE_CASE : Tuple = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(lowerCAmelCase__ ) ragramslist.append(lowerCAmelCase__ ) ragramslist.append(lowerCAmelCase__ ) ragramslist.append(lowerCAmelCase__ ) for i in range(0 , len(lowerCAmelCase__ ) - 1 ): if i < len(lowerCAmelCase__ ) - 1: SCREAMING_SNAKE_CASE : Union[str, Any] = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 2: SCREAMING_SNAKE_CASE : Optional[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 3: SCREAMING_SNAKE_CASE : Any = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(lowerCAmelCase__ ) for i in range(0 , len(lowerCAmelCase__ ) - 1 ): if i < len(lowerCAmelCase__ ) - 1: SCREAMING_SNAKE_CASE : Union[str, Any] = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 2: SCREAMING_SNAKE_CASE : Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(lowerCAmelCase__ ) if i < len(lowerCAmelCase__ ) - 3: SCREAMING_SNAKE_CASE : Union[str, Any] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(lowerCAmelCase__ ) (SCREAMING_SNAKE_CASE) : str = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) (SCREAMING_SNAKE_CASE) : Tuple = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) (SCREAMING_SNAKE_CASE) : Tuple = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) (SCREAMING_SNAKE_CASE) : List[Any] = SARIngram(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 SCREAMING_SNAKE_CASE : List[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 SCREAMING_SNAKE_CASE : Optional[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 SCREAMING_SNAKE_CASE : Any = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase__ ( lowercase , lowercase = True , lowercase = "13a" , lowercase = True ): """simple docstring""" if lowercase: SCREAMING_SNAKE_CASE : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: SCREAMING_SNAKE_CASE : Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(lowerCAmelCase__ )()(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE : List[str] = sacrebleu.TOKENIZERS[tokenizer]()(lowerCAmelCase__ ) elif tokenizer == "moses": SCREAMING_SNAKE_CASE : Dict = sacremoses.MosesTokenizer().tokenize(lowerCAmelCase__ , return_str=lowerCAmelCase__ , escape=lowerCAmelCase__ ) elif tokenizer == "penn": SCREAMING_SNAKE_CASE : Optional[int] = sacremoses.MosesTokenizer().penn_tokenize(lowerCAmelCase__ , return_str=lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE : Any = sentence if not return_str: SCREAMING_SNAKE_CASE : Optional[int] = normalized_sent.split() return normalized_sent def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if not (len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) == len(lowerCAmelCase__ )): raise ValueError("Sources length must match predictions and references lengths." ) SCREAMING_SNAKE_CASE : Any = 0 for src, pred, refs in zip(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): sari_score += SARIsent(normalize(lowerCAmelCase__ ) , normalize(lowerCAmelCase__ ) , [normalize(lowerCAmelCase__ ) for sent in refs] ) SCREAMING_SNAKE_CASE : int = sari_score / len(lowerCAmelCase__ ) return 100 * sari_score def lowerCamelCase__ ( lowercase , lowercase , lowercase="exp" , lowercase=None , lowercase=False , lowercase=False , lowercase=False , ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) SCREAMING_SNAKE_CASE : Optional[Any] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE : Union[str, Any] = sacrebleu.corpus_bleu( lowerCAmelCase__ , lowerCAmelCase__ , smooth_method=lowerCAmelCase__ , smooth_value=lowerCAmelCase__ , force=lowerCAmelCase__ , lowercase=lowerCAmelCase__ , use_effective_order=lowerCAmelCase__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _A ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def _A ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : int = {} result.update({"sari": compute_sari(sources=snake_case_ , predictions=snake_case_ , references=snake_case_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=snake_case_ , references=snake_case_ )} ) result.update({"exact": compute_em(predictions=snake_case_ , references=snake_case_ )} ) return result
352
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
0
import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def lowerCamelCase__ ( lowercase ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = create_tensor(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = gather(lowercase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [state.process_index] SCREAMING_SNAKE_CASE : Tuple = gather_object(lowercase ) assert len(lowercase ) == state.num_processes, F'''{gathered_obj}, {len(lowercase )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = create_tensor(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = broadcast(lowercase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if state.is_main_process: SCREAMING_SNAKE_CASE : Optional[int] = torch.arange(state.num_processes + 1 ).to(state.device ) else: SCREAMING_SNAKE_CASE : List[str] = torch.arange(state.num_processes ).to(state.device ) SCREAMING_SNAKE_CASE : List[str] = pad_across_processes(lowercase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def lowerCamelCase__ ( lowercase ): """simple docstring""" if state.num_processes != 2: return SCREAMING_SNAKE_CASE : List[Any] = create_tensor(lowercase ) SCREAMING_SNAKE_CASE : int = reduce(lowercase , "sum" ) SCREAMING_SNAKE_CASE : int = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowercase , lowercase ), F'''{reduced_tensor} != {truth_tensor}''' def lowerCamelCase__ ( lowercase ): """simple docstring""" if state.num_processes != 2: return SCREAMING_SNAKE_CASE : Union[str, Any] = create_tensor(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = reduce(lowercase , "mean" ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowercase , lowercase ), F'''{reduced_tensor} != {truth_tensor}''' def lowerCamelCase__ ( lowercase ): """simple docstring""" main() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = PartialState() state.print(F'''State: {state}''' ) state.print("testing gather" ) test_gather(lowercase ) state.print("testing gather_object" ) test_gather_object(lowercase ) state.print("testing broadcast" ) test_broadcast(lowercase ) state.print("testing pad_across_processes" ) test_pad_across_processes(lowercase ) state.print("testing reduce_sum" ) test_reduce_sum(lowercase ) state.print("testing reduce_mean" ) test_reduce_mean(lowercase ) if __name__ == "__main__": main()
353
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer snake_case = "bart" snake_case = True @st.cache(allow_output_mutation=lowercase ) def lowerCamelCase__ ( ): """simple docstring""" if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) SCREAMING_SNAKE_CASE : List[Any] = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) SCREAMING_SNAKE_CASE : int = qar_model.eval() else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = (None, None) if MODEL_TYPE == "bart": SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) SCREAMING_SNAKE_CASE : Dict = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) SCREAMING_SNAKE_CASE : Optional[Any] = sas_model.eval() else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=lowercase ) def lowerCamelCase__ ( ): """simple docstring""" if LOAD_DENSE_INDEX: SCREAMING_SNAKE_CASE : Dict = faiss.StandardGpuResources() SCREAMING_SNAKE_CASE : Optional[Any] = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] SCREAMING_SNAKE_CASE : List[str] = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) SCREAMING_SNAKE_CASE : Tuple = faiss.IndexFlatIP(128 ) SCREAMING_SNAKE_CASE : int = faiss.index_cpu_to_gpu(lowercase , 1 , lowercase ) wikiaab_gpu_index_flat.add(lowercase ) # TODO fix for larger GPU else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = (None, None) SCREAMING_SNAKE_CASE : List[str] = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = datasets.load_dataset("eli5" , name="LFQA_reddit" ) SCREAMING_SNAKE_CASE : Tuple = elia["train_eli5"] SCREAMING_SNAKE_CASE : Tuple = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) SCREAMING_SNAKE_CASE : Any = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(lowercase ) return (elia_train, eli5_train_q_index) snake_case = load_indexes() snake_case = load_models() snake_case = load_train_data() def lowerCamelCase__ ( lowercase , lowercase=10 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = embed_questions_for_retrieval([question] , lowercase , lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = eli5_train_q_index.search(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = [elia_train[int(lowercase )] for i in I[0]] return nn_examples def lowerCamelCase__ ( lowercase , lowercase="wiki40b" , lowercase="dense" , lowercase=10 ): """simple docstring""" if source == "none": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = query_qa_dense_index( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = query_es_index( lowercase , lowercase , index_name="english_wiki40b_snippets_100w" , n_results=lowercase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] SCREAMING_SNAKE_CASE : Union[str, Any] = "question: {} context: {}".format(lowercase , lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase : None), } ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=64 , lowercase=256 , lowercase=False , lowercase=2 , lowercase=0.95 , lowercase=0.8 ): """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = qa_sas_generate( lowercase , lowercase , lowercase , num_answers=1 , num_beams=lowercase , min_len=lowercase , max_len=lowercase , do_sample=lowercase , temp=lowercase , top_p=lowercase , top_k=lowercase , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar snake_case = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" snake_case = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia snake_case = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) snake_case = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] snake_case = st.sidebar.checkbox("""Demo options""") if demo_options: snake_case = st.sidebar.selectbox( """""", action_list, index=3, ) snake_case = action_list.index(action_st) snake_case = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) snake_case = show_type == "Show full text of passages" else: snake_case = 3 snake_case = True snake_case = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: snake_case = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) snake_case = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) snake_case = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: snake_case = "wiki40b" snake_case = "dense" snake_case = "beam" snake_case = 2 snake_case = 64 snake_case = 256 snake_case = None snake_case = None snake_case = st.sidebar.checkbox("""Generation options""") if generate_options: snake_case = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) snake_case = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) snake_case = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) snake_case = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": snake_case = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: snake_case = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) snake_case = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) snake_case = None # start main text snake_case = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] snake_case = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": snake_case = st.text_input("""Enter your question here:""", """""") else: snake_case = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": snake_case = make_support(question, source=wiki_source, method="""dense""", n_results=10) snake_case = make_support(question, source=wiki_source, method="""sparse""", n_results=10) snake_case = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] snake_case = support_list[:10] snake_case = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: snake_case = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: snake_case = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): snake_case = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(""" """, """_""")) snake_case = res[1].strip() if sec_titles == "": snake_case = "[{}]({})".format(res[0], wiki_url) else: snake_case = sec_titles.split(""" & """) snake_case = " & ".join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: snake_case = find_nearest_training(question) snake_case = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) snake_case = [ "{}. {}".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) snake_case = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
354
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
0
"""simple docstring""" import unittest from transformers import DonutProcessor snake_case = """naver-clova-ix/donut-base""" class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = DonutProcessor.from_pretrained(UpperCamelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } SCREAMING_SNAKE_CASE : Dict = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) SCREAMING_SNAKE_CASE : int = self.processor.tokenajson(UpperCamelCase_ ) self.assertDictEqual(UpperCamelCase_ , UpperCamelCase_ )
355
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool snake_case = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): '''simple docstring''' UpperCamelCase_ : Optional[int] = '''facebook/nllb-200-distilled-600M''' UpperCamelCase_ : int = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) UpperCamelCase_ : Union[str, Any] = '''translator''' UpperCamelCase_ : int = AutoTokenizer UpperCamelCase_ : Optional[int] = AutoModelForSeqaSeqLM UpperCamelCase_ : List[Any] = LANGUAGE_CODES UpperCamelCase_ : int = ['''text''', '''text''', '''text'''] UpperCamelCase_ : int = ['''text'''] def _A ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) SCREAMING_SNAKE_CASE : Dict = self.lang_to_code[src_lang] SCREAMING_SNAKE_CASE : List[Any] = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __lowerCamelCase , return_tensors="pt" , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase ) def _A ( self : int , UpperCAmelCase_ : Dict ): return self.model.generate(**__lowerCamelCase ) def _A ( self : int , UpperCAmelCase_ : Any ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowerCamelCase )
356
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import torch from torch import nn class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Union[str, Any]=False ): super().__init__() SCREAMING_SNAKE_CASE : List[str] = n_token SCREAMING_SNAKE_CASE : List[Any] = d_embed SCREAMING_SNAKE_CASE : str = d_proj SCREAMING_SNAKE_CASE : Optional[Any] = cutoffs + [n_token] SCREAMING_SNAKE_CASE : Tuple = [0] + self.cutoffs SCREAMING_SNAKE_CASE : int = div_val SCREAMING_SNAKE_CASE : Any = self.cutoffs[0] SCREAMING_SNAKE_CASE : List[str] = len(self.cutoffs ) - 1 SCREAMING_SNAKE_CASE : Dict = self.shortlist_size + self.n_clusters if self.n_clusters > 0: SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.zeros(self.n_clusters ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.ModuleList() SCREAMING_SNAKE_CASE : str = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_A , _A ) ) ) else: self.out_projs.append(_A ) self.out_layers.append(nn.Linear(_A , _A ) ) else: for i in range(len(self.cutoffs ) ): SCREAMING_SNAKE_CASE : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : List[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_A , _A ) ) ) self.out_layers.append(nn.Linear(_A , r_idx - l_idx ) ) SCREAMING_SNAKE_CASE : int = keep_order def _A ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int ): if proj is None: SCREAMING_SNAKE_CASE : List[str] = nn.functional.linear(_A , _A , bias=_A ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: SCREAMING_SNAKE_CASE : List[str] = nn.functional.linear(_A , proj.t().contiguous() ) SCREAMING_SNAKE_CASE : int = nn.functional.linear(_A , _A , bias=_A ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _A ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Optional[Any]=False ): if labels is not None: # Shift so that tokens < n predict n SCREAMING_SNAKE_CASE : int = hidden[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Tuple = hidden.view(-1 , hidden.size(-1 ) ) SCREAMING_SNAKE_CASE : Optional[int] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: SCREAMING_SNAKE_CASE : Optional[Any] = self._compute_logit(_A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: SCREAMING_SNAKE_CASE : Any = labels != -100 SCREAMING_SNAKE_CASE : Any = torch.zeros_like(_A , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE : str = ( -nn.functional.log_softmax(_A , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.log_softmax(_A , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : str = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE : int = self.out_layers[i].weight SCREAMING_SNAKE_CASE : List[Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_A ) biases.append(_A ) SCREAMING_SNAKE_CASE : Tuple = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE : Optional[int] = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : Tuple = nn.functional.log_softmax(_A , dim=1 ) if labels is None: SCREAMING_SNAKE_CASE : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: SCREAMING_SNAKE_CASE : int = torch.zeros_like(_A , dtype=hidden.dtype , device=hidden.device ) SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = [0] + self.cutoffs for i in range(len(_A ) - 1 ): SCREAMING_SNAKE_CASE : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: SCREAMING_SNAKE_CASE : Tuple = (labels >= l_idx) & (labels < r_idx) SCREAMING_SNAKE_CASE : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue SCREAMING_SNAKE_CASE : List[Any] = labels.index_select(0 , _A ) - l_idx SCREAMING_SNAKE_CASE : Optional[Any] = head_logprob.index_select(0 , _A ) SCREAMING_SNAKE_CASE : int = hidden.index_select(0 , _A ) else: SCREAMING_SNAKE_CASE : List[Any] = hidden if i == 0: if labels is not None: SCREAMING_SNAKE_CASE : Optional[Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE : List[Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE : Dict = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE : Any = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(_A , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: SCREAMING_SNAKE_CASE : Any = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: SCREAMING_SNAKE_CASE : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i SCREAMING_SNAKE_CASE : List[Any] = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , _A , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _A ( self : Optional[Any] , UpperCAmelCase_ : Dict ): if self.n_clusters == 0: SCREAMING_SNAKE_CASE : Dict = self._compute_logit(_A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_A , dim=-1 ) else: # construct weights and biases SCREAMING_SNAKE_CASE : Any = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: SCREAMING_SNAKE_CASE : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] SCREAMING_SNAKE_CASE : str = self.out_layers[0].weight[l_idx:r_idx] SCREAMING_SNAKE_CASE : int = self.out_layers[0].bias[l_idx:r_idx] else: SCREAMING_SNAKE_CASE : Any = self.out_layers[i].weight SCREAMING_SNAKE_CASE : List[Any] = self.out_layers[i].bias if i == 0: SCREAMING_SNAKE_CASE : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_A ) biases.append(_A ) SCREAMING_SNAKE_CASE : Union[str, Any] = weights[0], biases[0], self.out_projs[0] SCREAMING_SNAKE_CASE : Optional[Any] = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) SCREAMING_SNAKE_CASE : int = nn.functional.log_softmax(_A , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = [0] + self.cutoffs for i in range(len(_A ) - 1 ): SCREAMING_SNAKE_CASE : List[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: SCREAMING_SNAKE_CASE : List[Any] = head_logprob[:, : self.cutoffs[0]] else: SCREAMING_SNAKE_CASE : Dict = weights[i], biases[i], self.out_projs[i] SCREAMING_SNAKE_CASE : Optional[int] = self._compute_logit(_A , _A , _A , _A ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.log_softmax(_A , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = head_logprob[:, -i] + tail_logprob_i SCREAMING_SNAKE_CASE : str = logprob_i return out
357
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = (boundary[1] - boundary[0]) / steps SCREAMING_SNAKE_CASE : Dict = boundary[0] SCREAMING_SNAKE_CASE : List[str] = boundary[1] SCREAMING_SNAKE_CASE : int = make_points(_A , _A , _A ) SCREAMING_SNAKE_CASE : Any = 0.0 y += (h / 2.0) * f(_A ) for i in x_i: # print(i) y += h * f(_A ) y += (h / 2.0) * f(_A ) return y def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = a + h while x < (b - h): yield x SCREAMING_SNAKE_CASE : int = x + h def lowerCamelCase__ ( lowercase ): # enter your function here """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = (x - 0) * (x - 0) return y def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 0.0 # Lower bound of integration SCREAMING_SNAKE_CASE : List[str] = 1.0 # Upper bound of integration SCREAMING_SNAKE_CASE : Optional[int] = 10.0 # define number of steps or resolution SCREAMING_SNAKE_CASE : Union[str, Any] = [a, b] # define boundary of integration SCREAMING_SNAKE_CASE : List[str] = method_a(_A , _A ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
358
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): UpperCamelCase__ : Union[str, Any] = [image] UpperCamelCase__ : List[str] = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase__ : str = torch.stack(lowerCAmelCase__ ) return image class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase__ : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A__ , scheduler=A__ ) def _A ( self : str , UpperCAmelCase_ : Union[str, Any] ): if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _A ( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): # get the original timestep using init_timestep UpperCamelCase__ : List[str] = min(int(num_inference_steps * strength ) , A__ ) UpperCamelCase__ : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase__ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _A ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=None ): if not isinstance(A__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(A__ )}''' ) UpperCamelCase__ : Optional[Any] = image.to(device=A__ , dtype=A__ ) if isinstance(A__ , A__ ) and len(A__ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(A__ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase__ : List[Any] = init_latents.shape UpperCamelCase__ : List[str] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) # get latents print("add noise to latents at timestep" , A__ ) UpperCamelCase__ : List[Any] = self.scheduler.add_noise(A__ , A__ , A__ ) UpperCamelCase__ : int = init_latents return latents @torch.no_grad() def __call__( self : Union[str, Any] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : str = 0.8 , UpperCAmelCase_ : List[Any] = 1 , UpperCAmelCase_ : List[Any] = None , UpperCAmelCase_ : Dict = 0.0 , UpperCAmelCase_ : List[Any] = 50 , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : List[str] = "pil" , UpperCAmelCase_ : List[str] = True , ): self.check_inputs(A__ ) # 2. Preprocess image UpperCamelCase__ : str = preprocess(A__ ) # 3. set timesteps self.scheduler.set_timesteps(A__ , device=self.device ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.get_timesteps(A__ , A__ , self.device ) UpperCamelCase__ : Dict = timesteps[:1].repeat(A__ ) # 4. Prepare latent variables UpperCamelCase__ : str = self.prepare_latents(A__ , A__ , A__ , self.unet.dtype , self.device , A__ ) UpperCamelCase__ : Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(A__ ): # 1. predict noise model_output UpperCamelCase__ : Union[str, Any] = self.unet(A__ , A__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase__ : int = self.scheduler.step( A__ , A__ , A__ , eta=A__ , use_clipped_model_output=A__ , generator=A__ , ).prev_sample UpperCamelCase__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ : Dict = self.numpy_to_pil(A__ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=A__ )
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=13 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Any=[10, 20, 30, 40] , UpperCAmelCase_ : Optional[int]=[2, 2, 3, 2] , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[Any]=["stage2", "stage3", "stage4"] , UpperCAmelCase_ : Union[str, Any]=[2, 3, 4] , UpperCAmelCase_ : List[Any]=None , ): SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = num_stages SCREAMING_SNAKE_CASE : str = hidden_sizes SCREAMING_SNAKE_CASE : Any = depths SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = out_features SCREAMING_SNAKE_CASE : str = out_indices SCREAMING_SNAKE_CASE : Optional[Any] = scope def _A ( self : str ): SCREAMING_SNAKE_CASE : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def _A ( self : Tuple ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _A ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = ConvNextModel(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : int = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _A ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = ConvNextForImageClassification(a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : str = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : int = ConvNextBackbone(config=a__ ) model.to(a__ ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _A ( self : int ): SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __a , __a , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCamelCase_ : Union[str, Any] = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : str = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : int = False def _A ( self : int ): SCREAMING_SNAKE_CASE : List[Any] = ConvNextModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _A ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A ( self : str ): return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def _A ( self : Tuple ): pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def _A ( self : Dict ): pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def _A ( self : Union[str, Any] ): pass def _A ( self : Any ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(a__ ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , a__ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*a__ ) def _A ( self : Optional[int] ): def check_hidden_states_output(UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(a__ , a__ ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Dict = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(a__ , a__ , a__ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def _A ( self : Union[str, Any] ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[str] = ConvNextModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : Any ): return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=a__ , return_tensors="pt" ).to(a__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**a__ ) # verify the logits SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , __a ): '''simple docstring''' UpperCamelCase_ : List[Any] = (ConvNextBackbone,) if is_torch_available() else () UpperCamelCase_ : List[str] = ConvNextConfig UpperCamelCase_ : int = False def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Optional[Any] = ConvNextModelTester(self )
360
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
0
import qiskit def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE : Optional[int] = qiskit.QuantumCircuit(lowercase , lowercase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE : Dict = qiskit.execute(lowercase , lowercase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowercase ) if __name__ == "__main__": snake_case = single_qubit_measure(2, 2) print(F"""Total count for various states are: {counts}""")
361
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = StableDiffusionLDMaDPipeline UpperCamelCase_ : Dict = TEXT_TO_IMAGE_PARAMS UpperCamelCase_ : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase_ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS def _A ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE : int = CLIPTextModel(__a ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _A ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=0 ): if str(__a ).startswith("mps" ): SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(__a ) else: SCREAMING_SNAKE_CASE : str = torch.Generator(device=__a ).manual_seed(__a ) SCREAMING_SNAKE_CASE : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Dict = StableDiffusionLDMaDPipeline(**__a ) SCREAMING_SNAKE_CASE : Tuple = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(__a ) SCREAMING_SNAKE_CASE : str = ldmad_pipe(**__a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = output.rgb, output.depth SCREAMING_SNAKE_CASE : Union[str, Any] = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262] ) SCREAMING_SNAKE_CASE : Optional[int] = np.array([103.46_727, 85.812_004, 87.849_236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionLDMaDPipeline(**__a ) SCREAMING_SNAKE_CASE : List[Any] = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(__a ) SCREAMING_SNAKE_CASE : str = 3 * [inputs["prompt"]] # forward SCREAMING_SNAKE_CASE : Optional[int] = ldmad_pipe(**__a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = output.rgb, output.depth SCREAMING_SNAKE_CASE : List[str] = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : int = depth_slice_a[0, -3:, -1] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(__a ) SCREAMING_SNAKE_CASE : List[str] = 3 * [inputs.pop("prompt" )] SCREAMING_SNAKE_CASE : int = ldmad_pipe.tokenizer( __a , padding="max_length" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__a , return_tensors="pt" , ) SCREAMING_SNAKE_CASE : List[Any] = text_inputs["input_ids"].to(__a ) SCREAMING_SNAKE_CASE : Union[str, Any] = ldmad_pipe.text_encoder(__a )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = prompt_embeds # forward SCREAMING_SNAKE_CASE : Dict = ldmad_pipe(**__a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE : int = rgb_slice_a[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : List[str] = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def _A ( self : str ): SCREAMING_SNAKE_CASE : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : str = self.get_dummy_components() SCREAMING_SNAKE_CASE : List[Any] = PNDMScheduler(skip_prk_steps=__a ) SCREAMING_SNAKE_CASE : Tuple = StableDiffusionLDMaDPipeline(**__a ) SCREAMING_SNAKE_CASE : Union[str, Any] = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(__a ) SCREAMING_SNAKE_CASE : Optional[int] = "french fries" SCREAMING_SNAKE_CASE : int = ldmad_pipe(**__a , negative_prompt=__a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE : Tuple = rgb[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217] ) SCREAMING_SNAKE_CASE : List[str] = np.array([107.84_738, 84.62_802, 89.962_135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict="cpu" , UpperCAmelCase_ : List[str]=torch.floataa , UpperCAmelCase_ : Dict=0 ): SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device=__a ).manual_seed(__a ) SCREAMING_SNAKE_CASE : List[Any] = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__a ).to(device=__a , dtype=__a ) SCREAMING_SNAKE_CASE : List[Any] = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : int = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ) SCREAMING_SNAKE_CASE : Any = ldmad_pipe.to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) SCREAMING_SNAKE_CASE : List[Any] = self.get_inputs(__a ) SCREAMING_SNAKE_CASE : Union[str, Any] = ldmad_pipe(**__a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = output.rgb, output.depth SCREAMING_SNAKE_CASE : Optional[Any] = rgb[0, -3:, -3:, -1].flatten() SCREAMING_SNAKE_CASE : int = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) SCREAMING_SNAKE_CASE : str = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706] ) SCREAMING_SNAKE_CASE : Tuple = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]="cpu" , UpperCAmelCase_ : Tuple=torch.floataa , UpperCAmelCase_ : Tuple=0 ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) SCREAMING_SNAKE_CASE : str = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) SCREAMING_SNAKE_CASE : Any = torch.from_numpy(__a ).to(device=__a , dtype=__a ) SCREAMING_SNAKE_CASE : Tuple = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _A ( self : str ): SCREAMING_SNAKE_CASE : Union[str, Any] = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d" ).to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) SCREAMING_SNAKE_CASE : Any = self.get_inputs(__a ) SCREAMING_SNAKE_CASE : Optional[Any] = ldmad_pipe(**__a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = output.rgb, output.depth SCREAMING_SNAKE_CASE : List[Any] = 0.495_586 SCREAMING_SNAKE_CASE : Any = 0.33_795_515 SCREAMING_SNAKE_CASE : str = 112.48_518 SCREAMING_SNAKE_CASE : List[str] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = StableDiffusionLDMaDPipeline.from_pretrained("Intel/ldm3d-4c" ).to(__a ) ldmad_pipe.set_progress_bar_config(disable=__a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_inputs(__a ) SCREAMING_SNAKE_CASE : Optional[int] = ldmad_pipe(**__a ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = output.rgb, output.depth SCREAMING_SNAKE_CASE : str = 0.4_194_127 SCREAMING_SNAKE_CASE : Dict = 0.35_375_586 SCREAMING_SNAKE_CASE : int = 0.5_638_502 SCREAMING_SNAKE_CASE : Optional[int] = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
362
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
0
def lowerCamelCase__ ( lowercase = 1000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = -1 SCREAMING_SNAKE_CASE : List[str] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE : List[str] = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE : Dict = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE : Any = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE : Optional[int] = candidate return product if __name__ == "__main__": print(F"""{solution() = }""")
363
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
0
def lowerCamelCase__ ( lowercase ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) SCREAMING_SNAKE_CASE : Tuple = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE_ ) == len(set(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": snake_case = input("""Enter a string """).strip() snake_case = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging snake_case = logging.get_logger(__name__) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = nn.functional.normalize(snake_case__ ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.normalize(snake_case__ ) return torch.mm(snake_case__ , normalized_text_embeds.t() ) class SCREAMING_SNAKE_CASE ( a__ ): '''simple docstring''' UpperCamelCase_ : Tuple = CLIPConfig UpperCamelCase_ : Optional[Any] = ["CLIPEncoderLayer"] def __init__( self : Optional[Any] , UpperCAmelCase_ : List[str] ): super().__init__(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(config.vision_config ) SCREAMING_SNAKE_CASE : Any = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.ones(17 ) , requires_grad=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.ones(3 ) , requires_grad=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def _A ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] # pooled_output SCREAMING_SNAKE_CASE : int = self.visual_projection(SCREAMING_SNAKE_CASE_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 SCREAMING_SNAKE_CASE : Union[str, Any] = cosine_distance(SCREAMING_SNAKE_CASE_ , self.special_care_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE : List[str] = cosine_distance(SCREAMING_SNAKE_CASE_ , self.concept_embeds ).cpu().float().numpy() SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Dict = image_embeds.shape[0] for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE : Any = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): SCREAMING_SNAKE_CASE : Optional[Any] = special_cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE : int = self.special_care_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE : str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) SCREAMING_SNAKE_CASE : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): SCREAMING_SNAKE_CASE : int = cos_dist[i][concept_idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.concept_embeds_weights[concept_idx].item() SCREAMING_SNAKE_CASE : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(SCREAMING_SNAKE_CASE_ ) result.append(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _A ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] # pooled_output SCREAMING_SNAKE_CASE : str = self.visual_projection(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE : Dict = cosine_distance(SCREAMING_SNAKE_CASE_ , self.special_care_embeds ) SCREAMING_SNAKE_CASE : Union[str, Any] = cosine_distance(SCREAMING_SNAKE_CASE_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images SCREAMING_SNAKE_CASE : Dict = 0.0 SCREAMING_SNAKE_CASE : Optional[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) SCREAMING_SNAKE_CASE : List[str] = torch.any(special_scores > 0 , dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = special_care * 0.01 SCREAMING_SNAKE_CASE : Union[str, Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) SCREAMING_SNAKE_CASE : List[str] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
365
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
0
"""simple docstring""" def lowerCamelCase__ ( lowercase ): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCamelCase__ ( lowercase ): """simple docstring""" if edge <= 0 or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
366
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : Union[str, Any] = set_counts SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * num_sets SCREAMING_SNAKE_CASE : List[str] = list(range(UpperCAmelCase_ ) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[Any] = self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = src_parent SCREAMING_SNAKE_CASE : Optional[int] = self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Optional[Any] = max(self.max_set , UpperCAmelCase_ ) return True def _A ( self : Tuple , UpperCAmelCase_ : int ): if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
319
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : List[str] = """ibert""" def __init__( self : Optional[int] , UpperCAmelCase_ : Dict=3_0522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : str=3072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-12 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : int="absolute" , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Tuple="none" , **UpperCAmelCase_ : Any , ): super().__init__(pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : Optional[int] = quant_mode SCREAMING_SNAKE_CASE : Tuple = force_dequant class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' @property def _A ( self : Tuple ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
367
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal snake_case = logging.get_logger(__name__) snake_case = TypeVar("""DatasetType""", Dataset, IterableDataset) def lowerCamelCase__ ( lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' "is an empty dataset dictionary." ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ , snake_case_ , snake_case_ , info=snake_case_ , split=snake_case_ , stopping_strategy=snake_case_ ) def lowerCamelCase__ ( lowercase , lowercase = None , lowercase = None , lowercase = 0 , ): """simple docstring""" if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ , (Dataset, IterableDataset) ): if isinstance(snake_case_ , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' "is an empty dataset dictionary." ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(snake_case_ )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = ( (Dataset, IterableDataset) if isinstance(snake_case_ , snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ , snake_case_ ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ , info=snake_case_ , split=snake_case_ , axis=snake_case_ )
368
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
0
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : str = len(lowerCAmelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , lowerCAmelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowerCamelCase__ ( lowercase ): """simple docstring""" if len(lowerCAmelCase_ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE : Tuple = len(lowerCAmelCase_ ) // 2 SCREAMING_SNAKE_CASE : Any = arr[0:mid] SCREAMING_SNAKE_CASE : List[Any] = arr[mid:] SCREAMING_SNAKE_CASE : Optional[int] = count_inversions_recursive(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : int = count_inversions_recursive(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = _count_cross_inversions(lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Dict = 0 while i < len(lowerCAmelCase_ ) and j < len(lowerCAmelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(lowerCAmelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(lowerCAmelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE : str = count_inversions_bf(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " , lowerCAmelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE : int = count_inversions_bf(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase_ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : int = count_inversions_bf(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = count_inversions_recursive(lowerCAmelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " , lowerCAmelCase_ ) if __name__ == "__main__": main()
369
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex snake_case = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] ): SCREAMING_SNAKE_CASE : List[Any] = False def _A ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ): if not self.initialized: SCREAMING_SNAKE_CASE : List[Any] = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , index=UpperCamelCase__ , init_retrieval=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Any = True def _A ( self : str ): self.retriever.index.init_index() def _A ( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = self.retriever._main_retrieve(UpperCamelCase__ , UpperCamelCase__ ) return doc_ids, retrieved_doc_embeds class SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict=None ): if index is not None and index.is_initialized() and len(UpperCamelCase__ ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , index=UpperCamelCase__ , init_retrieval=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE : Dict = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for worker in self.retrieval_workers ] ) def _A ( self : Tuple ): logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _A ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. SCREAMING_SNAKE_CASE : Any = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] SCREAMING_SNAKE_CASE : Optional[Any] = ray.get(random_worker.retrieve.remote(UpperCamelCase__ , UpperCamelCase__ ) ) else: SCREAMING_SNAKE_CASE : Optional[int] = self._main_retrieve(UpperCamelCase__ , UpperCamelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase__ ) @classmethod def _A ( cls : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : Union[str, Any] ): return super(UpperCamelCase__ , cls ).get_tokenizers(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def _A ( cls : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("config" , UpperCamelCase__ ) or RagConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = RagTokenizer.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = rag_tokenizer.question_encoder SCREAMING_SNAKE_CASE : List[Any] = rag_tokenizer.generator if indexed_dataset is not None: SCREAMING_SNAKE_CASE : List[Any] = "custom" SCREAMING_SNAKE_CASE : Any = CustomHFIndex(config.retrieval_vector_size , UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : Tuple = cls._build_index(UpperCamelCase__ ) return cls( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , retrieval_workers=UpperCamelCase__ , index=UpperCamelCase__ , )
370
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase=True ): """simple docstring""" model.train() SCREAMING_SNAKE_CASE : Any = model(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : str = F.mse_loss(__lowerCAmelCase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(__lowerCAmelCase ) def lowerCamelCase__ ( lowercase , lowercase=False ): """simple docstring""" set_seed(42 ) SCREAMING_SNAKE_CASE : Union[str, Any] = RegressionModel() SCREAMING_SNAKE_CASE : Union[str, Any] = deepcopy(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : str = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE : str = DataLoader(__lowerCAmelCase , batch_size=16 ) model.to(accelerator.device ) if sched: SCREAMING_SNAKE_CASE : Dict = AdamW(params=model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE : Any = AdamW(params=ddp_model.parameters() , lr=1E-3 ) SCREAMING_SNAKE_CASE : Tuple = LambdaLR(__lowerCAmelCase , lr_lambda=lambda lowercase : epoch**0.65 ) SCREAMING_SNAKE_CASE : str = LambdaLR(__lowerCAmelCase , lr_lambda=lambda lowercase : epoch**0.65 ) # Make a copy of `model` if sched: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = get_training_setup(__lowerCAmelCase ) # Use a single batch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) SCREAMING_SNAKE_CASE : Union[str, Any] = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = get_training_setup(__lowerCAmelCase ) # Use a single batch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(__lowerCAmelCase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: # Sync grads step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) SCREAMING_SNAKE_CASE : List[Any] = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] def lowerCamelCase__ ( lowercase=False , lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = get_training_setup(__lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCAmelCase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) SCREAMING_SNAKE_CASE : Tuple = ddp_input[torch.randperm(len(__lowerCAmelCase ) )] GradientState._reset_state() def lowerCamelCase__ ( lowercase=False , lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Accelerator( split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = get_training_setup(__lowerCAmelCase , __lowerCAmelCase ) for iteration, batch in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = accelerator.gather((ddp_input, ddp_target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCAmelCase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(__lowerCAmelCase ): step_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' SCREAMING_SNAKE_CASE : Dict = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCAmelCase )) if accelerator.num_processes > 1: check_model_parameters(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = Accelerator() SCREAMING_SNAKE_CASE : Dict = RegressionDataset(length=80 ) SCREAMING_SNAKE_CASE : Union[str, Any] = DataLoader(__lowerCAmelCase , batch_size=16 ) SCREAMING_SNAKE_CASE : List[Any] = RegressionDataset(length=96 ) SCREAMING_SNAKE_CASE : Any = DataLoader(__lowerCAmelCase , batch_size=16 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if iteration < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(__lowerCAmelCase ): assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCAmelCase ) if batch_num < len(__lowerCAmelCase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator() SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(__lowerCAmelCase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(__lowerCAmelCase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(__lowerCAmelCase , __lowerCAmelCase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(__lowerCAmelCase , __lowerCAmelCase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" main() if __name__ == "__main__": main()
371
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from copy import deepcopy class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : list[int] | None = None , UpperCAmelCase_ : int | None = None ): if arr is None and size is not None: SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : List[str] = [0] * size elif arr is not None: self.init(UpperCAmelCase_ ) else: raise ValueError("Either arr or size must be specified" ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : list[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = deepcopy(UpperCAmelCase_ ) for i in range(1 , self.size ): SCREAMING_SNAKE_CASE : List[Any] = self.next_(UpperCAmelCase_ ) if j < self.size: self.tree[j] += self.tree[i] def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE : Optional[int] = self.next_(UpperCAmelCase_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _A ( UpperCAmelCase_ : int ): return index + (index & (-index)) @staticmethod def _A ( UpperCAmelCase_ : int ): return index - (index & (-index)) def _A ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value SCREAMING_SNAKE_CASE : Any = self.next_(UpperCAmelCase_ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): self.add(UpperCAmelCase_ , value - self.get(UpperCAmelCase_ ) ) def _A ( self : Dict , UpperCAmelCase_ : int ): if right == 0: return 0 SCREAMING_SNAKE_CASE : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] SCREAMING_SNAKE_CASE : List[str] = self.prev(UpperCAmelCase_ ) return result def _A ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return self.prefix(UpperCAmelCase_ ) - self.prefix(UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : int ): return self.query(UpperCAmelCase_ , index + 1 ) def _A ( self : List[Any] , UpperCAmelCase_ : int ): value -= self.tree[0] if value < 0: return -1 SCREAMING_SNAKE_CASE : int = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 SCREAMING_SNAKE_CASE : List[str] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
350
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
0
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
351
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : int , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) def lowerCamelCase__ ( *lowercase , **lowercase ): """simple docstring""" requires_backends(lowercase , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ['''torch'''] def __init__( self : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = ['''torch'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ['''torch'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''torch'''] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = ['''torch'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''torch'''] def __init__( self : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["torch"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''torch'''] def __init__( self : Any , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(self , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["torch"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["torch"] )
352
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
0
from collections.abc import Iterable from typing import Generic, TypeVar snake_case = TypeVar("""_T""") class SCREAMING_SNAKE_CASE ( Generic[_T] ): '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Iterable[_T] | None = None ): SCREAMING_SNAKE_CASE : list[_T] = list(iterable or [] ) SCREAMING_SNAKE_CASE : list[_T] = [] def __len__( self : Dict ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : str ): return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def _A ( self : List[Any] , UpperCAmelCase_ : _T ): self._stacka.append(UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : str = self._stacka.pop SCREAMING_SNAKE_CASE : Tuple = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
353
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @classmethod def _A ( cls : Optional[Any] ): SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def _A ( cls : Optional[int] ): try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _A ( self : List[Any] ): CustomConfig.register_for_auto_class() SCREAMING_SNAKE_CASE : Union[str, Any] = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : Any = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated SCREAMING_SNAKE_CASE : Optional[int] = c.n_embd + 1 # int SCREAMING_SNAKE_CASE : Any = c.resid_pdrop + 1.0 # float SCREAMING_SNAKE_CASE : Optional[int] = not c.scale_attn_weights # bool SCREAMING_SNAKE_CASE : Union[str, Any] = c.summary_type + "foo" # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type" ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[str] = PretrainedConfig() SCREAMING_SNAKE_CASE : Optional[int] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) SCREAMING_SNAKE_CASE : str = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f''' {', '.join(UpperCAmelCase_ )}.''' ) def _A ( self : str ): with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(UpperCAmelCase_ ) def _A ( self : Optional[int] ): # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE : Tuple = mock.Mock() SCREAMING_SNAKE_CASE : str = 500 SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Dict = HTTPError SCREAMING_SNAKE_CASE : Dict = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _A ( self : Any ): # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : List[Any] = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 SCREAMING_SNAKE_CASE : str = ["config.42.0.0.json"] SCREAMING_SNAKE_CASE : List[str] = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , os.path.join(UpperCAmelCase_ , "config.42.0.0.json" ) ) SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def _A ( self : Dict ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. SCREAMING_SNAKE_CASE : Dict = "hf-internal-testing/test-two-configs" import transformers as new_transformers SCREAMING_SNAKE_CASE : Optional[int] = "v4.0.0" SCREAMING_SNAKE_CASE : Any = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers SCREAMING_SNAKE_CASE : int = "v3.0.0" SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
354
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
355
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser snake_case = logging.getLogger(__name__) torch.set_grad_enabled(False) snake_case = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCamelCase__ ( lowercase , lowercase=100 , lowercase=" " ): """simple docstring""" SCREAMING_SNAKE_CASE : str = text.split(lowercase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(lowercase ) , lowercase )] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(lowercase ): titles.append(title if title is not None else "" ) texts.append(lowercase ) return {"title": titles, "text": texts} def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ctx_tokenizer( documents["title"] , documents["text"] , truncation=lowercase , padding="longest" , return_tensors="pt" )["input_ids"] SCREAMING_SNAKE_CASE : Union[str, Any] = ctx_encoder(input_ids.to(device=lowercase ) , return_dict=lowercase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCamelCase__ ( lowercase , lowercase , lowercase , ): """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way SCREAMING_SNAKE_CASE : int = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words SCREAMING_SNAKE_CASE : Optional[int] = dataset.map(lowercase , batched=lowercase , num_proc=processing_args.num_proc ) # And compute the embeddings SCREAMING_SNAKE_CASE : Dict = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) SCREAMING_SNAKE_CASE : int = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space SCREAMING_SNAKE_CASE : Dict = dataset.map( partial(lowercase , ctx_encoder=lowercase , ctx_tokenizer=lowercase ) , batched=lowercase , batch_size=processing_args.batch_size , features=lowercase , ) # And finally save your dataset SCREAMING_SNAKE_CASE : Tuple = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(lowercase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search SCREAMING_SNAKE_CASE : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=lowercase ) # And save the index SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(lowercase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : str = field( default=str(Path(lowerCAmelCase ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) UpperCamelCase_ : str = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) UpperCamelCase_ : str = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) UpperCamelCase_ : Optional[str] = field( default=str(Path(lowerCAmelCase ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) UpperCamelCase_ : int = field( default=1_6 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : int = field( default=7_6_8 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) UpperCamelCase_ : int = field( default=1_2_8 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) snake_case = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: snake_case = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
356
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
357
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets lowerCAmelCase = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ lowerCAmelCase = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ lowerCAmelCase = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return float((preds == labels).mean() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = simple_accuracy(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = float(fa_score(y_true=lowercase , y_pred=lowercase ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = np.array(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = en_sentvecs.shape[0] # mean centering SCREAMING_SNAKE_CASE : str = en_sentvecs - np.mean(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = in_sentvecs - np.mean(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Dict = cdist(lowercase , lowercase , "cosine" ) SCREAMING_SNAKE_CASE : Tuple = np.array(range(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = sim.argsort(axis=1 )[:, :10] SCREAMING_SNAKE_CASE : Optional[Any] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _A ( self : Tuple ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _A ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase_ , UpperCAmelCase_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
358
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" UpperCamelCase__ : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase__ : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ : str = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ : Optional[Any] = 8 else: UpperCamelCase__ : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase__ : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) UpperCamelCase__ : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": UpperCamelCase__ : int = 2 # New Code # UpperCamelCase__ : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCamelCase__ : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ : Any = config["lr"] UpperCamelCase__ : Optional[Any] = int(config["num_epochs"] ) UpperCamelCase__ : List[Any] = int(config["seed"] ) UpperCamelCase__ : Union[str, Any] = int(config["batch_size"] ) UpperCamelCase__ : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) UpperCamelCase__ : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ : Any = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler UpperCamelCase__ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): UpperCamelCase__ : Any = model(**lowercase ) UpperCamelCase__ : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowercase ) UpperCamelCase__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) UpperCamelCase__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" UpperCamelCase__ : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
359
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case = logging.get_logger(__name__) snake_case = Dict[str, Any] snake_case = List[Prediction] @add_end_docstrings(lowerCAmelCase ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _A ( self : str , **UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Dict = {} if "threshold" in kwargs: SCREAMING_SNAKE_CASE : str = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : int ): return super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : Any , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[str] = load_image(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = torch.IntTensor([[image.height, image.width]] ) SCREAMING_SNAKE_CASE : List[str] = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Union[str, Any] = target_size return inputs def _A ( self : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : str = model_inputs.pop("target_size" ) SCREAMING_SNAKE_CASE : Any = self.model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: SCREAMING_SNAKE_CASE : int = model_inputs["bbox"] return model_outputs def _A ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]=0.9 ): SCREAMING_SNAKE_CASE : Dict = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. SCREAMING_SNAKE_CASE : Any = target_size[0].tolist() def unnormalize(UpperCAmelCase_ : List[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) SCREAMING_SNAKE_CASE : Dict = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) SCREAMING_SNAKE_CASE : Dict = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] SCREAMING_SNAKE_CASE : List[Any] = [unnormalize(UpperCAmelCase_ ) for bbox in model_outputs["bbox"].squeeze(0 )] SCREAMING_SNAKE_CASE : List[Any] = ["score", "label", "box"] SCREAMING_SNAKE_CASE : Union[str, Any] = [dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(scores.tolist() , UpperCAmelCase_ , UpperCAmelCase_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel SCREAMING_SNAKE_CASE : List[Any] = self.image_processor.post_process_object_detection(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = raw_annotations[0] SCREAMING_SNAKE_CASE : List[str] = raw_annotation["scores"] SCREAMING_SNAKE_CASE : Dict = raw_annotation["labels"] SCREAMING_SNAKE_CASE : Dict = raw_annotation["boxes"] SCREAMING_SNAKE_CASE : List[Any] = scores.tolist() SCREAMING_SNAKE_CASE : str = [self.model.config.idalabel[label.item()] for label in labels] SCREAMING_SNAKE_CASE : Dict = [self._get_bounding_box(UpperCAmelCase_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] SCREAMING_SNAKE_CASE : Any = ["score", "label", "box"] SCREAMING_SNAKE_CASE : str = [ dict(zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def _A ( self : Optional[Any] , UpperCAmelCase_ : "torch.Tensor" ): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) SCREAMING_SNAKE_CASE : int = box.int().tolist() SCREAMING_SNAKE_CASE : List[Any] = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
360
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = SwinConfig() SCREAMING_SNAKE_CASE : Union[str, Any] = swin_name.split("_" ) SCREAMING_SNAKE_CASE : Tuple = name_split[1] SCREAMING_SNAKE_CASE : Dict = int(name_split[4] ) SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : Optional[Any] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE : List[Any] = 96 SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : str = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE : Optional[int] = 128 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE : str = 192 SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE : Any = 21841 else: SCREAMING_SNAKE_CASE : List[str] = 1000 SCREAMING_SNAKE_CASE : List[Any] = "huggingface/label-files" SCREAMING_SNAKE_CASE : Tuple = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : int = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = img_size SCREAMING_SNAKE_CASE : List[str] = num_classes SCREAMING_SNAKE_CASE : int = embed_dim SCREAMING_SNAKE_CASE : str = depths SCREAMING_SNAKE_CASE : Union[str, Any] = num_heads SCREAMING_SNAKE_CASE : str = window_size return config def lowerCamelCase__ ( lowercase ): """simple docstring""" if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: SCREAMING_SNAKE_CASE : Tuple = "encoder." + name if "attn.proj" in name: SCREAMING_SNAKE_CASE : Any = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("attn" , "attention.self" ) if "norm1" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": SCREAMING_SNAKE_CASE : Union[str, Any] = "layernorm.weight" if name == "norm.bias": SCREAMING_SNAKE_CASE : Any = "layernorm.bias" if "head" in name: SCREAMING_SNAKE_CASE : Any = name.replace("head" , "classifier" ) else: SCREAMING_SNAKE_CASE : Tuple = "swin." + name return name def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Any = orig_state_dict.pop(lowercase ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE : Optional[int] = key.split("." ) SCREAMING_SNAKE_CASE : Optional[Any] = int(key_split[1] ) SCREAMING_SNAKE_CASE : Dict = int(key_split[3] ) SCREAMING_SNAKE_CASE : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Dict = val[:dim, :] SCREAMING_SNAKE_CASE : List[Any] = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Optional[Any] = val[ :dim ] SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : str = val[ -dim: ] else: SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() SCREAMING_SNAKE_CASE : int = get_swin_config(lowercase ) SCREAMING_SNAKE_CASE : int = SwinForImageClassification(lowercase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = convert_state_dict(timm_model.state_dict() , lowercase ) model.load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowercase , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Optional[Any] = timm_model(inputs["pixel_values"] ) SCREAMING_SNAKE_CASE : List[str] = model(**lowercase ).logits assert torch.allclose(lowercase , lowercase , atol=1E-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
361
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
# Lint as: python3 import itertools import os import re snake_case = re.compile(r"""([A-Z]+)([A-Z][a-z])""") snake_case = re.compile(r"""([a-z\d])([A-Z])""") snake_case = re.compile(r"""(?<!_)_(?!_)""") snake_case = re.compile(r"""(_{2,})""") snake_case = r"""^\w+(\.\w+)*$""" snake_case = r"""<>:/\|?*""" def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = _uppercase_uppercase_re.sub(R"\1_\2" , lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = _lowercase_uppercase_re.sub(R"\1_\2" , lowercase ) return name.lower() def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = _single_underscore_re.split(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [_multiple_underscores_re.split(lowercase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowercase ) if n != "" ) def lowerCamelCase__ ( lowercase ): """simple docstring""" if os.path.basename(lowercase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(lowercase ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.path.basename(lowercase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , lowercase ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(lowercase )}-{split}''' def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = filename_prefix_for_split(lowercase , lowercase ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE : Tuple = os.path.join(lowercase , lowercase ) return F'''{filepath}*''' def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = filename_prefix_for_split(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(lowercase , lowercase ) if shard_lengths: SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase ) SCREAMING_SNAKE_CASE : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(lowercase )] if filetype_suffix: SCREAMING_SNAKE_CASE : List[str] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE : Optional[int] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
362
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def lowerCamelCase__ ( lowercase , lowercase=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowerCamelCase__ ( lowercase , lowercase , lowercase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE : Dict = "" else: SCREAMING_SNAKE_CASE : Tuple = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : List[str] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE : Dict = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE : Dict = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = dct.pop(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = val def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE : List[str] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE : Tuple = 1000 SCREAMING_SNAKE_CASE : Dict = "huggingface/label-files" SCREAMING_SNAKE_CASE : Tuple = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = idalabel SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = int(deit_name[-6:-4] ) SCREAMING_SNAKE_CASE : int = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): SCREAMING_SNAKE_CASE : List[Any] = 192 SCREAMING_SNAKE_CASE : Union[str, Any] = 768 SCREAMING_SNAKE_CASE : Optional[int] = 12 SCREAMING_SNAKE_CASE : Tuple = 3 elif deit_name[9:].startswith("small" ): SCREAMING_SNAKE_CASE : str = 384 SCREAMING_SNAKE_CASE : Optional[Any] = 1536 SCREAMING_SNAKE_CASE : List[str] = 12 SCREAMING_SNAKE_CASE : int = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): SCREAMING_SNAKE_CASE : int = 1024 SCREAMING_SNAKE_CASE : Any = 4096 SCREAMING_SNAKE_CASE : int = 24 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 # load original model from timm SCREAMING_SNAKE_CASE : Tuple = timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE : int = timm_model.state_dict() SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowercase , lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase , lowercase ) # load HuggingFace model SCREAMING_SNAKE_CASE : Union[str, Any] = DeiTForImageClassificationWithTeacher(lowercase ).eval() model.load_state_dict(lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE : Dict = DeiTImageProcessor(size=lowercase , crop_size=config.image_size ) SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) SCREAMING_SNAKE_CASE : int = encoding["pixel_values"] SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase ) SCREAMING_SNAKE_CASE : Dict = timm_model(lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase , outputs.logits , atol=1E-3 ) Path(lowercase ).mkdir(exist_ok=lowercase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
363
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = AlbertConfig.from_json_file(lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE : int = AlbertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
364
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
from bisect import bisect from itertools import accumulate def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = sorted(zip(lowercase , lowercase ) , key=lambda lowercase : x[0] / x[1] , reverse=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = [i[0] for i in r], [i[1] for i in r] SCREAMING_SNAKE_CASE : str = list(accumulate(lowercase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = bisect(lowercase , lowercase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
366
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : Union[str, Any] = set_counts SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * num_sets SCREAMING_SNAKE_CASE : List[str] = list(range(UpperCAmelCase_ ) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[Any] = self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = src_parent SCREAMING_SNAKE_CASE : Optional[int] = self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Optional[Any] = max(self.max_set , UpperCAmelCase_ ) return True def _A ( self : Tuple , UpperCAmelCase_ : int ): if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
319
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : CLIPSegForImageSegmentation , UpperCAmelCase_ : CLIPSegProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE : Any = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = dict(scheduler.config ) SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Optional[int] = FrozenDict(UpperCAmelCase_ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE : str = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = dict(scheduler.config ) SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = FrozenDict(UpperCAmelCase_ ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=UpperCAmelCase_ , segmentation_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , ) def _A ( self : Optional[Any] , UpperCAmelCase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_ ) def _A ( self : Tuple ): self.enable_attention_slicing(UpperCAmelCase_ ) def _A ( self : Any ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE : Optional[int] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _A ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Dict , ): SCREAMING_SNAKE_CASE : Optional[Any] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) SCREAMING_SNAKE_CASE : int = self.segmentation_model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(UpperCAmelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE : Tuple = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , )
367
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
0
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter snake_case = logging.get_logger(__name__) snake_case = {} snake_case = {} snake_case = {} def lowerCamelCase__ ( lowercase , lowercase , lowercase = None , ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) SCREAMING_SNAKE_CASE : List[str] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) SCREAMING_SNAKE_CASE : str = format_type def lowerCamelCase__ ( lowercase , lowercase , lowercase = None ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): SCREAMING_SNAKE_CASE : Dict = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: snake_case = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: snake_case = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: snake_case = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def lowerCamelCase__ ( lowercase ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def lowerCamelCase__ ( lowercase , **lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = get_format_type_from_alias(lowercase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowercase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
368
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
0