code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = {} def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' print(self.vertex) for i in self.vertex: print(lowercase_ , ''' -> ''' , ''' -> '''.join([str(lowercase_) for j in self.vertex[i]])) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : int , lowercase_ : int): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowercase_) else: # else make a new vertex SCREAMING_SNAKE_CASE_ : Tuple = [to_vertex] def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [False] * len(self.vertex) # call the recursive helper function for i in range(len(self.vertex)): if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : int , lowercase_ : list): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = True print(lowercase_ , end=''' ''') # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
365
"""simple docstring""" from itertools import permutations def _A (__a ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A (__a = 10 ) -> int: """simple docstring""" return sum( int(''''''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(f'''{solution() = }''')
318
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def _A (__a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _A (__a ): """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def _A (__a , __a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_ : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
366
"""simple docstring""" UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5 def _A (__a , __a , __a = g ) -> float: """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
318
0
"""simple docstring""" from datetime import datetime as dt import os from github import Github UpperCAmelCase_ : Any = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def _A () -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE_ : Optional[int] = g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda __a : i.created_at , reverse=__a ) SCREAMING_SNAKE_CASE_ : Tuple = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
367
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A (__a ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _A (__a ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
318
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
368
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase_ : Any = """examples/""" UpperCAmelCase_ : Optional[int] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ : List[Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ : Optional[int] = """README.md""" def _A (__a , __a , __a ) -> int: """simple docstring""" with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a ) SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a ) with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__a ) def _A (__a ) -> int: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' ) def _A (__a , __a=False ) -> List[str]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a , __a , __a ) if not patch: update_version_in_examples(__a ) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?''' with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__a ) def _A () -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.read() SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _A (__a=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version print(f'Updating version to {version}.' ) global_version_update(__a , patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def _A () -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_version() SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version print(f'Updating version to {version}.' ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
318
0
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)]) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained('''gpt2''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = GenerationConfig.from_model_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig() SCREAMING_SNAKE_CASE_ : Tuple = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } SCREAMING_SNAKE_CASE_ : List[Any] = copy.deepcopy(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'''foo''': '''bar'''}) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = GenerationConfig() SCREAMING_SNAKE_CASE_ : Optional[int] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , '''foo''') # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''test-generation-config''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
369
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _A (__a , __a , __a=1e-12 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T return jnp.matmul(__a , norm_emb_a.T ) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config) SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype) SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,)) def __call__( self : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE_ : Tuple = 0.0 SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01 SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = "clip_input" __UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ): '''simple docstring''' if input_shape is None: SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_) super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng} SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params'''] return random_params def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1)) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
318
0
from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "feature_extractor"] __UpperCamelCase = "TvltImageProcessor" __UpperCamelCase = "TvltFeatureExtractor" def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ): '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''') SCREAMING_SNAKE_CASE_ : Any = None if images is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_) if images_mixed is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_) if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor( lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {} if audio is not None: output_dict.update(lowercase_) if images is not None: output_dict.update(lowercase_) if images_mixed_dict is not None: output_dict.update(lowercase_) return output_dict @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
370
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = data SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None def _A () -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower() SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = q.get() SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node q.put(__a ) SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : int = right_node q.put(__a ) raise def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Tuple = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : str = [] while not q.empty(): SCREAMING_SNAKE_CASE_ : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE_ : Tuple = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE_ : str = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Any = node while n or stack: while n: stack.append(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left SCREAMING_SNAKE_CASE_ : Any = stack.pop() print(n.data , end=''',''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], [] SCREAMING_SNAKE_CASE_ : List[Any] = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _A (__a = "" , __a=50 , __a="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) UpperCAmelCase_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
318
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( *lowercase_ : List[str] , **lowercase_ : str): '''simple docstring''' pass @is_pipeline_test @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) SCREAMING_SNAKE_CASE_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_classifier(lowercase_ , candidate_labels=['''a''', '''b''', '''c''']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowercase_) , [ [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}], [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''c'''}, {'''score''': 0.3_33, '''label''': '''b'''}], ] , ) SCREAMING_SNAKE_CASE_ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2) self.assertEqual( nested_simplify(lowercase_) , [ [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], ] , ) @require_tf def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''') SCREAMING_SNAKE_CASE_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') SCREAMING_SNAKE_CASE_ : int = image_classifier(lowercase_ , candidate_labels=['''a''', '''b''', '''c''']) self.assertEqual( nested_simplify(lowercase_) , [{'''score''': 0.3_33, '''label''': '''a'''}, {'''score''': 0.3_33, '''label''': '''b'''}, {'''score''': 0.3_33, '''label''': '''c'''}] , ) SCREAMING_SNAKE_CASE_ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2) self.assertEqual( nested_simplify(lowercase_) , [ [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], [ {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, {'''score''': 0.3_33, '''label''': ANY(lowercase_)}, ], ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') SCREAMING_SNAKE_CASE_ : int = image_classifier(lowercase_ , candidate_labels=['''cat''', '''plane''', '''remote''']) self.assertEqual( nested_simplify(lowercase_) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2) self.assertEqual( nested_simplify(lowercase_) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''') # This is an image of 2 cats with remotes and no planes SCREAMING_SNAKE_CASE_ : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') SCREAMING_SNAKE_CASE_ : Optional[Any] = image_classifier(lowercase_ , candidate_labels=['''cat''', '''plane''', '''remote''']) self.assertEqual( nested_simplify(lowercase_) , [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ] , ) SCREAMING_SNAKE_CASE_ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2) self.assertEqual( nested_simplify(lowercase_) , [ [ {'''score''': 0.5_11, '''label''': '''remote'''}, {'''score''': 0.4_85, '''label''': '''cat'''}, {'''score''': 0.0_04, '''label''': '''plane'''}, ], ] * 5 , )
371
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
318
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "rwkv" __UpperCamelCase = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every SCREAMING_SNAKE_CASE_ : Dict = use_cache SCREAMING_SNAKE_CASE_ : Dict = bos_token_id SCREAMING_SNAKE_CASE_ : Any = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
350
"""simple docstring""" from scipy.stats import pearsonr import datasets UpperCAmelCase_ : List[Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase_ : Optional[int] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase_ : Tuple = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False): '''simple docstring''' if return_pvalue: SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
318
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "ctrl" __UpperCamelCase = ["past_key_values"] __UpperCamelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : List[Any] , lowercase_ : List[Any]=246534 , lowercase_ : List[str]=256 , lowercase_ : int=1280 , lowercase_ : int=8192 , lowercase_ : Any=48 , lowercase_ : Dict=16 , lowercase_ : Tuple=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Tuple=1e-6 , lowercase_ : Any=0.02 , lowercase_ : Dict=True , **lowercase_ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : str = n_positions SCREAMING_SNAKE_CASE_ : List[Any] = n_embd SCREAMING_SNAKE_CASE_ : Optional[Any] = n_layer SCREAMING_SNAKE_CASE_ : Dict = n_head SCREAMING_SNAKE_CASE_ : Any = dff SCREAMING_SNAKE_CASE_ : Optional[int] = resid_pdrop SCREAMING_SNAKE_CASE_ : Dict = embd_pdrop SCREAMING_SNAKE_CASE_ : Any = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache super().__init__(**lowercase_)
351
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = max_length SCREAMING_SNAKE_CASE_ : Dict = vocab SCREAMING_SNAKE_CASE_ : Dict = merges SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
"""simple docstring""" UpperCAmelCase_ : Optional[int] = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase_ : Any = {value: key for key, value in MORSE_CODE_DICT.items()} def _A (__a ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _A (__a ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def _A () -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Morse code here!''' print(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = encrypt(__a ) print(__a ) SCREAMING_SNAKE_CASE_ : Any = decrypt(__a ) print(__a ) if __name__ == "__main__": main()
352
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) SCREAMING_SNAKE_CASE_ : Dict = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_slow.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_) SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_fast.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase_) self.assertIsInstance(processor_fast.tokenizer , lowercase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase_) self.assertIsInstance(processor_fast.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''') SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
318
0
"""simple docstring""" def _A (__a , __a ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = str(bin(__a ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ : Union[str, Any] = str(bin(__a ) )[2:] SCREAMING_SNAKE_CASE_ : Union[str, Any] = max(len(__a ) , len(__a ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__a ) , b_binary.zfill(__a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "rwkv" __UpperCamelCase = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every SCREAMING_SNAKE_CASE_ : Dict = use_cache SCREAMING_SNAKE_CASE_ : Dict = bos_token_id SCREAMING_SNAKE_CASE_ : Any = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
318
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device UpperCAmelCase_ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''') # remove text_unet pipe.remove_unused_weights() pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE_ : Dict = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = generator.manual_seed(0) SCREAMING_SNAKE_CASE_ : Any = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''').images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Tuple = pipe( prompt=lowercase_ , generator=lowercase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''').images SCREAMING_SNAKE_CASE_ : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
354
"""simple docstring""" UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8 def _A (__a , __a ) -> float: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCAmelCase_ : str = 300 UpperCAmelCase_ : str = 28 UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
318
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = LayoutLMTokenizer __UpperCamelCase = LayoutLMTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE_ : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self : Dict , **lowercase_ : List[str]): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = '''UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE_ : Any = '''unwanted, running''' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class(self.vocab_file) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''') self.assertListEqual(lowercase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , [7, 4, 5, 10, 8, 9]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' pass
355
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip()) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = start_length SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) SCREAMING_SNAKE_CASE_ : Tuple = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(lowercase_) def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1] SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : str = '''false''' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : List[str] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' ) SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' ) SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : int = [] for task in tqdm(range(__a ) ): SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test'''] SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
318
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (EulerDiscreteScheduler,) __UpperCamelCase = 1_0 def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_) return config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02]): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Any = scheduler_class(**lowercase_) scheduler.set_timesteps(self.num_inference_steps) SCREAMING_SNAKE_CASE_ : int = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : str = self.dummy_model() SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : str = sample.to(lowercase_) for i, t in enumerate(scheduler.timesteps): SCREAMING_SNAKE_CASE_ : str = scheduler.scale_model_input(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE_ : Any = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 10.08_07) < 1e-2 assert abs(result_mean.item() - 0.01_31) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(self.num_inference_steps) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Dict = self.dummy_model() SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE_ : Optional[Any] = sample.to(lowercase_) for i, t in enumerate(scheduler.timesteps): SCREAMING_SNAKE_CASE_ : List[str] = scheduler.scale_model_input(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = output.prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Tuple = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 0.00_02) < 1e-2 assert abs(result_mean.item() - 2.2_676e-06) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_) SCREAMING_SNAKE_CASE_ : Any = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Any = self.dummy_model() SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE_ : List[Any] = sample.to(lowercase_) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : Tuple = scheduler.scale_model_input(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE_ : Any = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Dict = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 10.08_07) < 1e-2 assert abs(result_mean.item() - 0.01_31) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class(**lowercase_ , use_karras_sigmas=lowercase_) scheduler.set_timesteps(self.num_inference_steps , device=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE_ : int = sample.to(lowercase_) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE_ : List[str] = scheduler.scale_model_input(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = scheduler.step(lowercase_ , lowercase_ , lowercase_ , generator=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 124.52299499511719) < 1e-2 assert abs(result_mean.item() - 0.1_62_13_93_26_33_39_99_63) < 1e-3
356
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "feature_extractor"] __UpperCamelCase = "TvltImageProcessor" __UpperCamelCase = "TvltFeatureExtractor" def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ): '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''') SCREAMING_SNAKE_CASE_ : Any = None if images is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_) if images_mixed is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_) if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor( lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {} if audio is not None: output_dict.update(lowercase_) if images is not None: output_dict.update(lowercase_) if images_mixed_dict is not None: output_dict.update(lowercase_) return output_dict @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
318
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : int = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "xlm" __UpperCamelCase = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : str , lowercase_ : int=30145 , lowercase_ : List[str]=2048 , lowercase_ : Dict=12 , lowercase_ : int=16 , lowercase_ : List[Any]=0.1 , lowercase_ : Any=0.1 , lowercase_ : List[str]=True , lowercase_ : Optional[int]=False , lowercase_ : Any=False , lowercase_ : List[str]=False , lowercase_ : List[Any]=1 , lowercase_ : Optional[Any]=True , lowercase_ : int=512 , lowercase_ : Dict=2048**-0.5 , lowercase_ : Any=1e-12 , lowercase_ : str=0.02 , lowercase_ : str=0 , lowercase_ : Optional[Any]=1 , lowercase_ : Tuple=2 , lowercase_ : Dict=3 , lowercase_ : List[Any]=5 , lowercase_ : List[str]=True , lowercase_ : Any="first" , lowercase_ : Union[str, Any]=True , lowercase_ : str=None , lowercase_ : Tuple=True , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[Any]=5 , lowercase_ : Optional[int]=5 , lowercase_ : int=0 , lowercase_ : Optional[Any]=0 , lowercase_ : Dict=2 , lowercase_ : Optional[Any]=0 , **lowercase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = emb_dim SCREAMING_SNAKE_CASE_ : Any = n_layers SCREAMING_SNAKE_CASE_ : Optional[int] = n_heads SCREAMING_SNAKE_CASE_ : Any = dropout SCREAMING_SNAKE_CASE_ : Any = attention_dropout SCREAMING_SNAKE_CASE_ : List[str] = gelu_activation SCREAMING_SNAKE_CASE_ : Optional[Any] = sinusoidal_embeddings SCREAMING_SNAKE_CASE_ : str = causal SCREAMING_SNAKE_CASE_ : str = asm SCREAMING_SNAKE_CASE_ : Tuple = n_langs SCREAMING_SNAKE_CASE_ : Any = use_lang_emb SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = bos_index SCREAMING_SNAKE_CASE_ : List[str] = eos_index SCREAMING_SNAKE_CASE_ : List[Any] = pad_index SCREAMING_SNAKE_CASE_ : int = unk_index SCREAMING_SNAKE_CASE_ : int = mask_index SCREAMING_SNAKE_CASE_ : Dict = is_encoder SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[Any] = embed_init_std SCREAMING_SNAKE_CASE_ : Optional[int] = init_std SCREAMING_SNAKE_CASE_ : Dict = summary_type SCREAMING_SNAKE_CASE_ : Tuple = summary_use_proj SCREAMING_SNAKE_CASE_ : int = summary_activation SCREAMING_SNAKE_CASE_ : Optional[Any] = summary_proj_to_labels SCREAMING_SNAKE_CASE_ : Any = summary_first_dropout SCREAMING_SNAKE_CASE_ : str = start_n_top SCREAMING_SNAKE_CASE_ : Optional[Any] = end_n_top SCREAMING_SNAKE_CASE_ : Tuple = mask_token_id SCREAMING_SNAKE_CASE_ : Dict = lang_id if "n_words" in kwargs: SCREAMING_SNAKE_CASE_ : Dict = kwargs['''n_words'''] super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , **lowercase_) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ : List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
357
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "SpeechT5FeatureExtractor" __UpperCamelCase = "SpeechT5Tokenizer" def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(lowercase_ , lowercase_) def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) elif text is not None: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_) else: SCREAMING_SNAKE_CASE_ : Any = None if audio_target is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values'''] elif text_target is not None: SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE_ : int = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''') if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_) SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) elif input_ids is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_) else: SCREAMING_SNAKE_CASE_ : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : str = feature_size_hack SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values'''] else: SCREAMING_SNAKE_CASE_ : List[Any] = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Dict = labels SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''') if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_)
318
0
"""simple docstring""" from itertools import product def _A (__a , __a ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = sides_number SCREAMING_SNAKE_CASE_ : Optional[int] = max_face_number * dice_number SCREAMING_SNAKE_CASE_ : Any = [0] * (max_total + 1) SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : List[str] = range(__a , max_face_number + 1 ) for dice_numbers in product(__a , repeat=__a ): SCREAMING_SNAKE_CASE_ : List[str] = sum(__a ) totals_frequencies[total] += 1 return totals_frequencies def _A () -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = total_frequency_distribution( sides_number=4 , dice_number=9 ) SCREAMING_SNAKE_CASE_ : Any = total_frequency_distribution( sides_number=6 , dice_number=6 ) SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 9 SCREAMING_SNAKE_CASE_ : List[str] = 4 * 9 SCREAMING_SNAKE_CASE_ : Dict = 6 for peter_total in range(__a , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE_ : List[Any] = (4**9) * (6**6) SCREAMING_SNAKE_CASE_ : Tuple = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE_ : int = round(__a , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
358
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.inf def set_batch_size(__a ) -> None: nonlocal batch_size if isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__a , __a ) and feature.dtype == "binary": SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__a , __a ) return None if batch_size is np.inf else batch_size class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory) return dataset class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = dataset SCREAMING_SNAKE_CASE_ : Dict = path_or_buf SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features) SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , '''wb+''') as buffer: SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs) else: SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs) return written def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_) for offset in logging.tqdm( range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): SCREAMING_SNAKE_CASE_ : List[Any] = query_table( table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowercase_) written += batch.nbytes writer.close() return written
318
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = StableDiffusionInpaintPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCamelCase = frozenset([] ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowercase_) torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) SCREAMING_SNAKE_CASE_ : int = CLIPTextModel(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') SCREAMING_SNAKE_CASE_ : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : str=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_)).to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] SCREAMING_SNAKE_CASE_ : Optional[int] = Image.fromarray(np.uinta(lowercase_)).convert('''RGB''').resize((64, 64)) SCREAMING_SNAKE_CASE_ : Dict = Image.fromarray(np.uinta(image + 4)).convert('''RGB''').resize((64, 64)) if str(lowercase_).startswith('''mps'''): SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) else: SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device=lowercase_).manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : List[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableDiffusionInpaintPipeline(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_dummy_inputs(lowercase_) SCREAMING_SNAKE_CASE_ : int = sd_pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') SCREAMING_SNAKE_CASE_ : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') SCREAMING_SNAKE_CASE_ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''stabilityai/stable-diffusion-2-inpainting''' SCREAMING_SNAKE_CASE_ : Dict = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ , safety_checker=lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Optional[int] = '''Face of a yellow cat, high resolution, sitting on a park bench''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 9e-3 def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') SCREAMING_SNAKE_CASE_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') SCREAMING_SNAKE_CASE_ : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''') SCREAMING_SNAKE_CASE_ : int = '''stabilityai/stable-diffusion-2-inpainting''' SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , torch_dtype=torch.floataa , safety_checker=lowercase_ , ) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE_ : Dict = '''Face of a yellow cat, high resolution, sitting on a park bench''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 5e-1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''') SCREAMING_SNAKE_CASE_ : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''') SCREAMING_SNAKE_CASE_ : Dict = '''stabilityai/stable-diffusion-2-inpainting''' SCREAMING_SNAKE_CASE_ : List[Any] = PNDMScheduler.from_pretrained(lowercase_ , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ , safety_checker=lowercase_ , scheduler=lowercase_ , torch_dtype=torch.floataa , ) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE_ : List[Any] = '''Face of a yellow cat, high resolution, sitting on a park bench''' SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , mask_image=lowercase_ , generator=lowercase_ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
359
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = ["""model.decoder.embed_positions.weights"""] def _A (__a ) -> Dict: """simple docstring""" if "emb" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def _A (__a , __a ) -> Tuple[Dict, Dict]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(state_dict.keys() ) SCREAMING_SNAKE_CASE_ : int = {} for key in keys: SCREAMING_SNAKE_CASE_ : int = state_dict.pop(__a ) SCREAMING_SNAKE_CASE_ : int = rename_keys(__a ) if "in_proj_weight" in key: # split fused qkv proj SCREAMING_SNAKE_CASE_ : List[str] = val[:hidden_size, :] SCREAMING_SNAKE_CASE_ : List[str] = val[hidden_size : 2 * hidden_size, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: SCREAMING_SNAKE_CASE_ : int = val else: SCREAMING_SNAKE_CASE_ : Any = val return state_dict, enc_dec_proj_state_dict def _A (__a ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values SCREAMING_SNAKE_CASE_ : Optional[int] = 10_24 SCREAMING_SNAKE_CASE_ : Tuple = 24 SCREAMING_SNAKE_CASE_ : Optional[Any] = 16 elif checkpoint == "medium": SCREAMING_SNAKE_CASE_ : List[str] = 15_36 SCREAMING_SNAKE_CASE_ : Optional[int] = 48 SCREAMING_SNAKE_CASE_ : Optional[int] = 24 elif checkpoint == "large": SCREAMING_SNAKE_CASE_ : Optional[Any] = 20_48 SCREAMING_SNAKE_CASE_ : Optional[int] = 48 SCREAMING_SNAKE_CASE_ : int = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) SCREAMING_SNAKE_CASE_ : List[Any] = MusicgenDecoderConfig( hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , ) return config @torch.no_grad() def _A (__a , __a=None , __a=None , __a="cpu" ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = MusicGen.get_pretrained(__a , device=__a ) SCREAMING_SNAKE_CASE_ : Dict = decoder_config_from_checkpoint(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = fairseq_model.lm.state_dict() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = rename_state_dict( __a , hidden_size=decoder_config.hidden_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' ) SCREAMING_SNAKE_CASE_ : List[str] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) SCREAMING_SNAKE_CASE_ : int = MusicgenForCausalLM(__a ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = decoder.load_state_dict(__a , strict=__a ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__a ) if len(__a ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(__a ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model SCREAMING_SNAKE_CASE_ : str = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__a ) # check we can do a forward pass SCREAMING_SNAKE_CASE_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=__a , decoder_input_ids=__a ).logits if logits.shape != (8, 1, 20_48): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained('''t5-base''' ) SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) SCREAMING_SNAKE_CASE_ : Tuple = MusicgenProcessor(feature_extractor=__a , tokenizer=__a ) # set the appropriate bos/pad token ids SCREAMING_SNAKE_CASE_ : str = 20_48 SCREAMING_SNAKE_CASE_ : List[Any] = 20_48 # set other default generation config params SCREAMING_SNAKE_CASE_ : int = int(30 * audio_encoder.config.frame_rate ) SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = 3.0 if pytorch_dump_folder is not None: Path(__a ).mkdir(exist_ok=__a ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(__a ) processor.push_to_hub(__a ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) UpperCAmelCase_ : Dict = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
318
0
import numpy class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : numpy.ndarray , lowercase_ : numpy.ndarray): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. SCREAMING_SNAKE_CASE_ : Optional[Any] = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. SCREAMING_SNAKE_CASE_ : Union[str, Any] = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. SCREAMING_SNAKE_CASE_ : List[Any] = numpy.random.rand(3 , 1) # Real output values provided. SCREAMING_SNAKE_CASE_ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. SCREAMING_SNAKE_CASE_ : Dict = numpy.zeros(output_array.shape) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. SCREAMING_SNAKE_CASE_ : Optional[int] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. SCREAMING_SNAKE_CASE_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) SCREAMING_SNAKE_CASE_ : Tuple = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) SCREAMING_SNAKE_CASE_ : Optional[int] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : numpy.ndarray , lowercase_ : int , lowercase_ : bool): '''simple docstring''' for iteration in range(1 , iterations + 1): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feedforward() self.back_propagation() if give_loss: SCREAMING_SNAKE_CASE_ : str = numpy.mean(numpy.square(output - self.feedforward())) print(F'Iteration {iteration} Loss: {loss}') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : numpy.ndarray): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = input_arr SCREAMING_SNAKE_CASE_ : Any = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) SCREAMING_SNAKE_CASE_ : Any = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def _A (__a ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def _A (__a ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. SCREAMING_SNAKE_CASE_ : Union[str, Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. SCREAMING_SNAKE_CASE_ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=__a , output_array=__a ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__a , iterations=10 , give_loss=__a ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
360
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def _A (__a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _A (__a ) -> np.ndarray: """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def _A (__a , __a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_ : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
318
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = ["CLIPEncoderLayer"] def __init__( self : str , lowercase_ : CLIPConfig): '''simple docstring''' super().__init__(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = CLIPVisionModelWithProjection(config.vision_config) SCREAMING_SNAKE_CASE_ : str = nn.Linear(config.vision_config.projection_dim , 1) SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.Linear(config.vision_config.projection_dim , 1) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Union[str, Any]=0.5 , lowercase_ : Optional[int]=0.5): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.vision_model(lowercase_)[0] SCREAMING_SNAKE_CASE_ : Any = self.p_head(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = nsfw_detected.flatten() SCREAMING_SNAKE_CASE_ : Union[str, Any] = nsfw_detected > p_threshold SCREAMING_SNAKE_CASE_ : int = nsfw_detected.tolist() if any(lowercase_): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, nsfw_detected_ in enumerate(lowercase_): if nsfw_detected_: SCREAMING_SNAKE_CASE_ : Optional[int] = np.zeros(images[idx].shape) SCREAMING_SNAKE_CASE_ : List[str] = self.w_head(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = watermark_detected.flatten() SCREAMING_SNAKE_CASE_ : str = watermark_detected > w_threshold SCREAMING_SNAKE_CASE_ : Optional[int] = watermark_detected.tolist() if any(lowercase_): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''') for idx, watermark_detected_ in enumerate(lowercase_): if watermark_detected_: SCREAMING_SNAKE_CASE_ : Any = np.zeros(images[idx].shape) return images, nsfw_detected, watermark_detected
361
"""simple docstring""" from collections import defaultdict def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip() SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ : Any = input("""Enter the first string """).strip() UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip() UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
318
0
"""simple docstring""" def _A (__a ) -> list: """simple docstring""" return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__a ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("""doctest""").testmod()
362
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml""" def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE_ : int = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def _A (__a=False ) -> Tuple: """simple docstring""" with open(__a , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE_ : List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections'''] SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section] SCREAMING_SNAKE_CASE_ : Optional[Any] = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE_ : str = True if overwrite: SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE_ : List[Any] = model_doc SCREAMING_SNAKE_CASE_ : int = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ : Tuple = parser.parse_args() check_model_doc(args.fix_and_overwrite)
318
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Tuple = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
318
0
"""simple docstring""" def _A (__a = 50 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
364
"""simple docstring""" from __future__ import annotations UpperCAmelCase_ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _A (__a , __a , __a , __a ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _A (__a ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _A (__a ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = digit if sudoku(__a ) is not None: return grid SCREAMING_SNAKE_CASE_ : Any = 0 return None def _A (__a ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") UpperCAmelCase_ : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
318
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : int , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : List[str] = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(batch_size=2 , length=lowercase_) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ : Tuple = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_ : str = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(lowercase_ , axis=-1) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(lowercase_ , scores.copy() , cur_len=lowercase_) , axis=-1) SCREAMING_SNAKE_CASE_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(lowercase_ , scores.copy() , cur_len=lowercase_) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Optional[int] = 10 SCREAMING_SNAKE_CASE_ : Any = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_ : Optional[int] = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_ : Optional[int] = 5 SCREAMING_SNAKE_CASE_ : str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_ : List[str] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_ : Tuple = top_k_warp_safety_check(lowercase_ , lowercase_ , cur_len=lowercase_) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : int = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ : List[str] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.exp(top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ : List[str] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_ : int = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = 20 SCREAMING_SNAKE_CASE_ : Optional[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ : str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_ : Any = 5 SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''')]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = 15 SCREAMING_SNAKE_CASE_ : Union[str, Any] = min_dist_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertFalse(jnp.isinf(lowercase_).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = 20 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Any = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertFalse(jnp.isinf(lowercase_).any()) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = 20 SCREAMING_SNAKE_CASE_ : str = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[str] = 5 SCREAMING_SNAKE_CASE_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_ : Optional[Any] = 4 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : Any = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertFalse(jnp.isinf(lowercase_).any()) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((batch_size, sequence_length) , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 10 # no processor list SCREAMING_SNAKE_CASE_ : Tuple = temp_dist_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : int = min_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Any = bos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : str = eos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) # with processor list SCREAMING_SNAKE_CASE_ : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_ : Dict = processor(lowercase_ , lowercase_ , cur_len=lowercase_) # scores should be equal self.assertTrue(jnp.allclose(lowercase_ , lowercase_ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = 4 SCREAMING_SNAKE_CASE_ : int = 10 SCREAMING_SNAKE_CASE_ : List[Any] = 15 SCREAMING_SNAKE_CASE_ : str = 2 SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((batch_size, sequence_length) , lowercase_) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : str = 10 # no processor list def run_no_processor_list(lowercase_ : str , lowercase_ : Tuple , lowercase_ : str): SCREAMING_SNAKE_CASE_ : Tuple = temp_dist_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : int = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = min_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = bos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = eos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) return scores # with processor list def run_processor_list(lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Any): SCREAMING_SNAKE_CASE_ : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(lowercase_ , lowercase_ , cur_len=lowercase_) return scores SCREAMING_SNAKE_CASE_ : List[str] = jax.jit(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.jit(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = jitted_run_no_processor_list(lowercase_ , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = jitted_run_processor_list(lowercase_ , lowercase_ , lowercase_) # scores should be equal self.assertTrue(jnp.allclose(lowercase_ , lowercase_ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
365
"""simple docstring""" from itertools import permutations def _A (__a ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A (__a = 10 ) -> int: """simple docstring""" return sum( int(''''''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(f'''{solution() = }''')
318
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "tokenizer"] __UpperCamelCase = "LayoutLMv2ImageProcessor" __UpperCamelCase = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Optional[int] , lowercase_ : Tuple=None , lowercase_ : str=None , **lowercase_ : List[str]): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''feature_extractor''') SCREAMING_SNAKE_CASE_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(lowercase_ , lowercase_) def __call__( self : str , lowercase_ : List[str] , lowercase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowercase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowercase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowercase_ : Optional[Union[List[int], List[List[int]]]] = None , lowercase_ : bool = True , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Union[bool, str, TruncationStrategy] = None , lowercase_ : Optional[int] = None , lowercase_ : int = 0 , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , lowercase_ : Optional[bool] = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : bool = True , lowercase_ : Optional[Union[str, TensorType]] = None , **lowercase_ : str , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''') # first, apply the image processor SCREAMING_SNAKE_CASE_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=lowercase_) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE_ : Any = features['''words'''] SCREAMING_SNAKE_CASE_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , stride=lowercase_ , pad_to_multiple_of=lowercase_ , return_token_type_ids=lowercase_ , return_attention_mask=lowercase_ , return_overflowing_tokens=lowercase_ , return_special_tokens_mask=lowercase_ , return_offsets_mapping=lowercase_ , return_length=lowercase_ , verbose=lowercase_ , return_tensors=lowercase_ , **lowercase_ , ) # add pixel values SCREAMING_SNAKE_CASE_ : Union[str, Any] = features.pop('''pixel_values''') if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE_ : int = self.get_overflowing_images(lowercase_ , encoded_inputs['''overflow_to_sample_mapping''']) SCREAMING_SNAKE_CASE_ : Optional[int] = images return encoded_inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(lowercase_) != len(lowercase_): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F' {len(lowercase_)} and {len(lowercase_)}') return images_with_overflow def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : List[str] , **lowercase_ : List[Any]): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *lowercase_ : List[Any] , **lowercase_ : str): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
366
"""simple docstring""" UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5 def _A (__a , __a , __a = g ) -> float: """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
318
0
"""simple docstring""" import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 1 @register_to_config def __init__( self : Union[str, Any] , lowercase_ : int = 1000 , lowercase_ : Optional[Union[np.ndarray, List[float]]] = None): '''simple docstring''' self.set_timesteps(lowercase_) # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE_ : int = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. SCREAMING_SNAKE_CASE_ : List[str] = 4 # running values SCREAMING_SNAKE_CASE_ : List[str] = [] def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : int , lowercase_ : Union[str, torch.device] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = num_inference_steps SCREAMING_SNAKE_CASE_ : int = torch.linspace(1 , 0 , num_inference_steps + 1)[:-1] SCREAMING_SNAKE_CASE_ : Dict = torch.cat([steps, torch.tensor([0.0])]) if self.config.trained_betas is not None: SCREAMING_SNAKE_CASE_ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa) else: SCREAMING_SNAKE_CASE_ : List[Any] = torch.sin(steps * math.pi / 2) ** 2 SCREAMING_SNAKE_CASE_ : List[str] = (1.0 - self.betas**2) ** 0.5 SCREAMING_SNAKE_CASE_ : Optional[Any] = (torch.atana(self.betas , self.alphas) / math.pi * 2)[:-1] SCREAMING_SNAKE_CASE_ : List[Any] = timesteps.to(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [] def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : torch.FloatTensor , lowercase_ : int , lowercase_ : torch.FloatTensor , lowercase_ : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''') SCREAMING_SNAKE_CASE_ : List[str] = (self.timesteps == timestep).nonzero().item() SCREAMING_SNAKE_CASE_ : Dict = timestep_index + 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowercase_) if len(self.ets) == 1: SCREAMING_SNAKE_CASE_ : List[Any] = self.ets[-1] elif len(self.ets) == 2: SCREAMING_SNAKE_CASE_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: SCREAMING_SNAKE_CASE_ : List[Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) SCREAMING_SNAKE_CASE_ : Any = self._get_prev_sample(lowercase_ , lowercase_ , lowercase_ , lowercase_) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : torch.FloatTensor , *lowercase_ : List[Any] , **lowercase_ : Any): '''simple docstring''' return sample def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.alphas[timestep_index] SCREAMING_SNAKE_CASE_ : Optional[int] = self.betas[timestep_index] SCREAMING_SNAKE_CASE_ : Tuple = self.alphas[prev_timestep_index] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.betas[prev_timestep_index] SCREAMING_SNAKE_CASE_ : Optional[int] = (sample - sigma * ets) / max(lowercase_ , 1e-8) SCREAMING_SNAKE_CASE_ : Dict = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : str): '''simple docstring''' return self.config.num_train_timesteps
367
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A (__a ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _A (__a ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
318
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Optional[Any]=0.01 , lowercase_ : List[str]=1000): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = p_stop SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length def __iter__( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : List[str] = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE_ : Any = random.random() < self.p_stop class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[str]=False , lowercase_ : Tuple=True): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ BatchSamplerShard(lowercase_ , 2 , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) for i in range(2) ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [list(lowercase_) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase_) for shard in batch_sampler_shards] , [len(lowercase_) for e in expected]) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : str = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : int = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE_ : Optional[Any] = [BatchSamplerShard(lowercase_ , 2 , lowercase_ , even_batches=lowercase_) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]) , 3) self.assertEqual(len(batch_sampler_shards[1]) , 2) self.assertListEqual(list(batch_sampler_shards[0]) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]) , [[3, 4], [9, 10, 11]]) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Dict=False , lowercase_ : Dict=2 , lowercase_ : List[Any]=False): '''simple docstring''' random.seed(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = list(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ IterableDatasetShard( lowercase_ , batch_size=lowercase_ , drop_last=lowercase_ , num_processes=lowercase_ , process_index=lowercase_ , split_batches=lowercase_ , ) for i in range(lowercase_) ] SCREAMING_SNAKE_CASE_ : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase_) iterable_dataset_lists.append(list(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE_ : int = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase_) , len(lowercase_)) self.assertTrue(len(lowercase_) % shard_batch_size == 0) SCREAMING_SNAKE_CASE_ : Dict = [] for idx in range(0 , len(lowercase_) , lowercase_): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase_) < len(lowercase_): reference += reference self.assertListEqual(lowercase_ , reference[: len(lowercase_)]) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = 42 SCREAMING_SNAKE_CASE_ : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) # Edge case with a very small dataset SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(16) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = SkipBatchSampler(lowercase_ , 2) self.assertListEqual(list(lowercase_) , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = SkipDataLoader(list(range(16)) , batch_size=4 , skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(list(range(16)) , batch_size=4) SCREAMING_SNAKE_CASE_ : str = skip_first_batches(lowercase_ , num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoaderShard(list(range(16)) , batch_size=4) for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' Accelerator() SCREAMING_SNAKE_CASE_ : Dict = DataLoaderDispatcher(range(16) , batch_size=4) for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3)
368
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase_ : Any = """examples/""" UpperCAmelCase_ : Optional[int] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ : List[Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ : Optional[int] = """README.md""" def _A (__a , __a , __a ) -> int: """simple docstring""" with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a ) SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a ) with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__a ) def _A (__a ) -> int: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' ) def _A (__a , __a=False ) -> List[str]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a , __a , __a ) if not patch: update_version_in_examples(__a ) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?''' with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__a ) def _A () -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.read() SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _A (__a=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version print(f'Updating version to {version}.' ) global_version_update(__a , patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def _A () -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_version() SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version print(f'Updating version to {version}.' ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
318
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Optional[Any] = 13 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 7 SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : str = 99 SCREAMING_SNAKE_CASE_ : Any = 32 SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : List[str] = 37 SCREAMING_SNAKE_CASE_ : Optional[Any] = '''gelu''' SCREAMING_SNAKE_CASE_ : int = 0.1 SCREAMING_SNAKE_CASE_ : List[str] = 0.1 SCREAMING_SNAKE_CASE_ : Any = 512 SCREAMING_SNAKE_CASE_ : Optional[Any] = 16 SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : List[str] = 0.02 SCREAMING_SNAKE_CASE_ : str = 3 SCREAMING_SNAKE_CASE_ : str = 4 SCREAMING_SNAKE_CASE_ : int = None def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : Dict = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = TFDistilBertModel(config=lowercase_) SCREAMING_SNAKE_CASE_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_) SCREAMING_SNAKE_CASE_ : int = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : int = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = TFDistilBertForMaskedLM(config=lowercase_) SCREAMING_SNAKE_CASE_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ : Any = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = TFDistilBertForQuestionAnswering(config=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.num_labels SCREAMING_SNAKE_CASE_ : Tuple = TFDistilBertForSequenceClassification(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.num_choices SCREAMING_SNAKE_CASE_ : str = TFDistilBertForMultipleChoice(lowercase_) SCREAMING_SNAKE_CASE_ : int = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1)) SCREAMING_SNAKE_CASE_ : int = tf.tile(tf.expand_dims(lowercase_ , 1) , (1, self.num_choices, 1)) SCREAMING_SNAKE_CASE_ : Tuple = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } SCREAMING_SNAKE_CASE_ : int = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = TFDistilBertForTokenClassification(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() (SCREAMING_SNAKE_CASE_) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCamelCase = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = TFDistilBertModelTester(self) SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self , config_class=lowercase_ , dim=37) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]): SCREAMING_SNAKE_CASE_ : Optional[Any] = TFDistilBertModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]]) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_)[0] SCREAMING_SNAKE_CASE_ : Tuple = [1, 6, 768] self.assertEqual(output.shape , lowercase_) SCREAMING_SNAKE_CASE_ : str = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ]) tf.debugging.assert_near(output[:, :3, :3] , lowercase_ , atol=1e-4)
369
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _A (__a , __a , __a=1e-12 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T return jnp.matmul(__a , norm_emb_a.T ) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config) SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype) SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,)) def __call__( self : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE_ : Tuple = 0.0 SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01 SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = "clip_input" __UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ): '''simple docstring''' if input_shape is None: SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_) super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng} SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params'''] return random_params def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1)) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
318
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 4_2 class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Union[str, Any] , lowercase_ : int = 65536 , lowercase_ : Optional[int] = None , lowercase_ : int = 2 , lowercase_ : int = 2 , lowercase_ : int = 0 , lowercase_ : str = "fourier" , lowercase_ : bool = True , lowercase_ : bool = False , lowercase_ : float = 0.0 , lowercase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , lowercase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , lowercase_ : Tuple[str] = "UNetMidBlock1D" , lowercase_ : str = None , lowercase_ : Tuple[int] = (32, 32, 64) , lowercase_ : str = None , lowercase_ : int = 8 , lowercase_ : int = 1 , lowercase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : List[str] = sample_size # time if time_embedding_type == "fourier": SCREAMING_SNAKE_CASE_ : str = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=lowercase_ , log=lowercase_ , flip_sin_to_cos=lowercase_) SCREAMING_SNAKE_CASE_ : int = 2 * block_out_channels[0] elif time_embedding_type == "positional": SCREAMING_SNAKE_CASE_ : Union[str, Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=lowercase_ , downscale_freq_shift=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = block_out_channels[0] if use_timestep_embedding: SCREAMING_SNAKE_CASE_ : Dict = block_out_channels[0] * 4 SCREAMING_SNAKE_CASE_ : Dict = TimestepEmbedding( in_channels=lowercase_ , time_embed_dim=lowercase_ , act_fn=lowercase_ , out_dim=block_out_channels[0] , ) SCREAMING_SNAKE_CASE_ : int = nn.ModuleList([]) SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = nn.ModuleList([]) SCREAMING_SNAKE_CASE_ : List[str] = None # down SCREAMING_SNAKE_CASE_ : Tuple = in_channels for i, down_block_type in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_channel SCREAMING_SNAKE_CASE_ : Tuple = block_out_channels[i] if i == 0: input_channel += extra_in_channels SCREAMING_SNAKE_CASE_ : List[str] = i == len(lowercase_) - 1 SCREAMING_SNAKE_CASE_ : Any = get_down_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(lowercase_) # mid SCREAMING_SNAKE_CASE_ : Dict = get_mid_block( lowercase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=lowercase_ , add_downsample=lowercase_ , ) # up SCREAMING_SNAKE_CASE_ : Optional[int] = list(reversed(lowercase_)) SCREAMING_SNAKE_CASE_ : List[Any] = reversed_block_out_channels[0] if out_block_type is None: SCREAMING_SNAKE_CASE_ : Any = out_channels else: SCREAMING_SNAKE_CASE_ : List[str] = block_out_channels[0] for i, up_block_type in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : Tuple = output_channel SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(lowercase_) - 1 else final_upsample_channels ) SCREAMING_SNAKE_CASE_ : Dict = i == len(lowercase_) - 1 SCREAMING_SNAKE_CASE_ : Tuple = get_up_block( lowercase_ , num_layers=lowercase_ , in_channels=lowercase_ , out_channels=lowercase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(lowercase_) SCREAMING_SNAKE_CASE_ : int = output_channel # out SCREAMING_SNAKE_CASE_ : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) SCREAMING_SNAKE_CASE_ : str = get_out_block( out_block_type=lowercase_ , num_groups_out=lowercase_ , embed_dim=block_out_channels[0] , out_channels=lowercase_ , act_fn=lowercase_ , fc_dim=block_out_channels[-1] // 4 , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : torch.FloatTensor , lowercase_ : Union[torch.Tensor, float, int] , lowercase_ : bool = True , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = timestep if not torch.is_tensor(lowercase_): SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(lowercase_) and len(timesteps.shape) == 0: SCREAMING_SNAKE_CASE_ : str = timesteps[None].to(sample.device) SCREAMING_SNAKE_CASE_ : Dict = self.time_proj(lowercase_) if self.config.use_timestep_embedding: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.time_mlp(lowercase_) else: SCREAMING_SNAKE_CASE_ : int = timestep_embed[..., None] SCREAMING_SNAKE_CASE_ : int = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) SCREAMING_SNAKE_CASE_ : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down SCREAMING_SNAKE_CASE_ : Union[str, Any] = () for downsample_block in self.down_blocks: SCREAMING_SNAKE_CASE_ : Tuple = downsample_block(hidden_states=lowercase_ , temb=lowercase_) down_block_res_samples += res_samples # 3. mid if self.mid_block: SCREAMING_SNAKE_CASE_ : Dict = self.mid_block(lowercase_ , lowercase_) # 4. up for i, upsample_block in enumerate(self.up_blocks): SCREAMING_SNAKE_CASE_ : List[str] = down_block_res_samples[-1:] SCREAMING_SNAKE_CASE_ : int = down_block_res_samples[:-1] SCREAMING_SNAKE_CASE_ : Optional[int] = upsample_block(lowercase_ , res_hidden_states_tuple=lowercase_ , temb=lowercase_) # 5. post-process if self.out_block: SCREAMING_SNAKE_CASE_ : str = self.out_block(lowercase_ , lowercase_) if not return_dict: return (sample,) return UNetaDOutput(sample=lowercase_)
370
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = data SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None def _A () -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower() SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = q.get() SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node q.put(__a ) SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : int = right_node q.put(__a ) raise def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Tuple = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : str = [] while not q.empty(): SCREAMING_SNAKE_CASE_ : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE_ : Tuple = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE_ : str = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Any = node while n or stack: while n: stack.append(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left SCREAMING_SNAKE_CASE_ : Any = stack.pop() print(n.data , end=''',''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], [] SCREAMING_SNAKE_CASE_ : List[Any] = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _A (__a = "" , __a=50 , __a="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) UpperCAmelCase_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
318
0
"""simple docstring""" from collections import defaultdict def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip() SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ : Any = input("""Enter the first string """).strip() UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip() UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
371
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
318
0
"""simple docstring""" import random class lowerCAmelCase__ : '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [ord(lowercase_) for i in text] SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] for i in plain: SCREAMING_SNAKE_CASE_ : Tuple = random.randint(1 , 300) SCREAMING_SNAKE_CASE_ : int = (i + k) * k cipher.append(lowercase_) key.append(lowercase_) return cipher, key @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : list[int] , lowercase_ : list[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [] for i in range(len(lowercase_)): SCREAMING_SNAKE_CASE_ : int = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowercase_)) return "".join(lowercase_) if __name__ == "__main__": UpperCAmelCase_ : Tuple = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
350
"""simple docstring""" from scipy.stats import pearsonr import datasets UpperCAmelCase_ : List[Any] = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ UpperCAmelCase_ : Optional[int] = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ UpperCAmelCase_ : Tuple = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=False): '''simple docstring''' if return_pvalue: SCREAMING_SNAKE_CASE_ : int = pearsonr(lowercase_ , lowercase_) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowercase_ , lowercase_)[0])}
318
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): UpperCAmelCase_ : str = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: UpperCAmelCase_ : Any = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Dict = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE_ : str = numpy_to_pil(__a ) return images def _A (__a ) -> List[str]: """simple docstring""" if images.ndim == 3: SCREAMING_SNAKE_CASE_ : Tuple = images[None, ...] SCREAMING_SNAKE_CASE_ : Optional[Any] = (images * 2_55).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE_ : List[Any] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: SCREAMING_SNAKE_CASE_ : str = [Image.fromarray(__a ) for image in images] return pil_images
351
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = max_length SCREAMING_SNAKE_CASE_ : Dict = vocab SCREAMING_SNAKE_CASE_ : Dict = merges SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ : Optional[int] = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } UpperCAmelCase_ : Dict = { """google/rembert""": 256, } UpperCAmelCase_ : Optional[Any] = """▁""" class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = RemBertTokenizer def __init__( self : Tuple , lowercase_ : Any=None , lowercase_ : int=None , lowercase_ : Tuple=True , lowercase_ : int=True , lowercase_ : Dict=False , lowercase_ : List[Any]="[CLS]" , lowercase_ : Dict="[SEP]" , lowercase_ : List[str]="<unk>" , lowercase_ : Union[str, Any]="[SEP]" , lowercase_ : Dict="<pad>" , lowercase_ : Dict="[CLS]" , lowercase_ : int="[MASK]" , **lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_) if isinstance(lowercase_ , lowercase_) else mask_token super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE_ : Dict = remove_space SCREAMING_SNAKE_CASE_ : List[Any] = keep_accents SCREAMING_SNAKE_CASE_ : Any = vocab_file SCREAMING_SNAKE_CASE_ : Optional[int] = False if not self.vocab_file else True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase_)) + [1] + ([0] * len(lowercase_)) + [1] return [1] + ([0] * len(lowercase_)) + [1] def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase_): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowercase_)) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_): copyfile(self.vocab_file , lowercase_) return (out_vocab_file,)
352
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens])) SCREAMING_SNAKE_CASE_ : Dict = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , lowercase_) with open(self.image_processor_file , '''w''' , encoding='''utf-8''') as fp: json.dump(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , **lowercase_ : str): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple , **lowercase_ : List[Any]): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : str): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] SCREAMING_SNAKE_CASE_ : Dict = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_slow.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase_) SCREAMING_SNAKE_CASE_ : Any = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) processor_fast.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , lowercase_) self.assertIsInstance(processor_fast.tokenizer , lowercase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , lowercase_) self.assertIsInstance(processor_fast.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''') SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor(do_normalize=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=lowercase_) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = image_processor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(images=lowercase_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Optional[Any] = processor(text=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : int = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values''']) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Optional[int] = processor.batch_decode(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = ChineseCLIPProcessor(tokenizer=lowercase_ , image_processor=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = '''Alexandra,T-shirt的价格是15便士。''' SCREAMING_SNAKE_CASE_ : Dict = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Dict = processor(text=lowercase_ , images=lowercase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
318
0
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase_ : Any = """examples/""" UpperCAmelCase_ : Optional[int] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ : List[Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ : Optional[int] = """README.md""" def _A (__a , __a , __a ) -> int: """simple docstring""" with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a ) SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a ) with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__a ) def _A (__a ) -> int: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' ) def _A (__a , __a=False ) -> List[str]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a , __a , __a ) if not patch: update_version_in_examples(__a ) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?''' with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__a ) def _A () -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.read() SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _A (__a=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version print(f'Updating version to {version}.' ) global_version_update(__a , patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def _A () -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_version() SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version print(f'Updating version to {version}.' ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
353
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "rwkv" __UpperCamelCase = {"max_position_embeddings": "context_length"} def __init__( self : Union[str, Any] , lowercase_ : Any=50277 , lowercase_ : str=1024 , lowercase_ : List[str]=4096 , lowercase_ : Optional[Any]=32 , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : List[Any]=1e-5 , lowercase_ : Union[str, Any]=0 , lowercase_ : Union[str, Any]=0 , lowercase_ : int=6 , lowercase_ : Tuple=False , lowercase_ : Any=True , **lowercase_ : Any , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : Any = context_length SCREAMING_SNAKE_CASE_ : int = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size SCREAMING_SNAKE_CASE_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size SCREAMING_SNAKE_CASE_ : int = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_every SCREAMING_SNAKE_CASE_ : Dict = use_cache SCREAMING_SNAKE_CASE_ : Dict = bos_token_id SCREAMING_SNAKE_CASE_ : Any = eos_token_id super().__init__( tie_word_embeddings=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_)
318
0
"""simple docstring""" import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase_ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def _A (__a ) -> Tuple: """simple docstring""" for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ : str = k.replace(__a , __a ) return k def _A (__a , __a ) -> PegasusForConditionalGeneration: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = DEFAULTS.copy() cfg_kwargs.update(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = PegasusConfig(**__a ) SCREAMING_SNAKE_CASE_ : Any = PegasusForConditionalGeneration(__a ) SCREAMING_SNAKE_CASE_ : Dict = torch_model.model.state_dict() SCREAMING_SNAKE_CASE_ : List[str] = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE_ : Any = rename_state_dict_key(__a ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE_ : Optional[int] = v.T SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(__a , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE_ : List[Any] = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE_ : List[str] = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE_ : int = mapping['''shared.weight'''] SCREAMING_SNAKE_CASE_ : str = {k: torch.zeros_like(__a ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__a ) SCREAMING_SNAKE_CASE_ : List[str] = torch_model.model.load_state_dict(__a , strict=__a ) SCREAMING_SNAKE_CASE_ : int = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def _A (__a="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = tf.train.list_variables(__a ) SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : str = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(__a , desc='''converting tf checkpoint to dict''' ): SCREAMING_SNAKE_CASE_ : int = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_ : List[Any] = tf.train.load_variable(__a , __a ) SCREAMING_SNAKE_CASE_ : str = array return tf_weights def _A (__a , __a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(__a ).parent.name SCREAMING_SNAKE_CASE_ : int = task_specific_params[f'summarization_{dataset}']['''max_position_embeddings'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=__a ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__a ) # convert model SCREAMING_SNAKE_CASE_ : List[Any] = get_tf_weights_as_numpy(__a ) SCREAMING_SNAKE_CASE_ : int = task_specific_params[f'summarization_{dataset}'] if dataset == "large": SCREAMING_SNAKE_CASE_ : Optional[Any] = task_specific_params SCREAMING_SNAKE_CASE_ : Tuple = convert_pegasus(__a , __a ) torch_model.save_pretrained(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__a , Path(__a ) / '''pytorch_model.bin''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCAmelCase_ = parser.parse_args() if args.save_dir is None: UpperCAmelCase_ = Path(args.tf_ckpt_path).parent.name UpperCAmelCase_ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
354
"""simple docstring""" UpperCAmelCase_ : Optional[int] = 8.3_1_4_4_5_9_8 def _A (__a , __a ) -> float: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCAmelCase_ : str = 300 UpperCAmelCase_ : str = 28 UpperCAmelCase_ : Any = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
318
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _A (__a , __a , __a , __a ) -> Any: """simple docstring""" if isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : List[Any] = np.full((len(__a ), sequence_length, 2) , __a ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = np.full((len(__a ), sequence_length) , __a ) for i, tensor in enumerate(__a ): if padding_side == "right": if isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tensor[:sequence_length] else: if isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : Optional[int] = tensor[:sequence_length] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = tensor[:sequence_length] return out_tensor.tolist() def _A (__a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ord(__a ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True SCREAMING_SNAKE_CASE_ : Union[str, Any] = unicodedata.category(__a ) if cat.startswith('''P''' ): return True return False @dataclass class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 4_2 __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = -1_0_0 __UpperCamelCase = "pt" def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Optional[Any]): '''simple docstring''' import torch SCREAMING_SNAKE_CASE_ : Tuple = '''label''' if '''label''' in features[0].keys() else '''labels''' SCREAMING_SNAKE_CASE_ : Dict = [feature[label_name] for feature in features] if label_name in features[0].keys() else None SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer.pad( lowercase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch SCREAMING_SNAKE_CASE_ : str = torch.tensor(batch['''entity_ids''']).shape[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": SCREAMING_SNAKE_CASE_ : Any = [ list(lowercase_) + [self.label_pad_token_id] * (sequence_length - len(lowercase_)) for label in labels ] else: SCREAMING_SNAKE_CASE_ : Dict = [ [self.label_pad_token_id] * (sequence_length - len(lowercase_)) + list(lowercase_) for label in labels ] SCREAMING_SNAKE_CASE_ : Dict = [feature['''ner_tags'''] for feature in features] SCREAMING_SNAKE_CASE_ : Optional[Any] = padding_tensor(lowercase_ , -1 , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = [feature['''original_entity_spans'''] for feature in features] SCREAMING_SNAKE_CASE_ : Union[str, Any] = padding_tensor(lowercase_ , (-1, -1) , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {k: torch.tensor(lowercase_ , dtype=torch.intaa) for k, v in batch.items()} return batch
355
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip()) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = start_length SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) SCREAMING_SNAKE_CASE_ : Tuple = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(lowercase_) def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1] SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : str = '''false''' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : List[str] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' ) SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' ) SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : int = [] for task in tqdm(range(__a ) ): SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test'''] SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
318
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Tuple = BlipImageProcessor() SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') SCREAMING_SNAKE_CASE_ : str = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') SCREAMING_SNAKE_CASE_ : List[str] = InstructBlipProcessor(lowercase_ , lowercase_ , lowercase_) processor.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Any , **lowercase_ : Optional[Any]): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).tokenizer def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowercase_ : int): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).image_processor def _SCREAMING_SNAKE_CASE ( self : List[Any] , **lowercase_ : Optional[int]): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_).qformer_tokenizer def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' shutil.rmtree(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] SCREAMING_SNAKE_CASE_ : Tuple = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1)) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0) SCREAMING_SNAKE_CASE_ : Union[str, Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowercase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowercase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowercase_) self.assertIsInstance(processor.qformer_tokenizer , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_) SCREAMING_SNAKE_CASE_ : str = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = image_processor(lowercase_ , return_tensors='''np''') SCREAMING_SNAKE_CASE_ : str = processor(images=lowercase_ , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_) SCREAMING_SNAKE_CASE_ : str = '''lower newer''' SCREAMING_SNAKE_CASE_ : Any = processor(text=lowercase_) SCREAMING_SNAKE_CASE_ : Any = tokenizer(lowercase_ , return_token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = qformer_tokenizer(lowercase_ , return_token_type_ids=lowercase_) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Dict = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = '''lower newer''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = processor(text=lowercase_ , images=lowercase_) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(lowercase_): processor() def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Any = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Any = processor.batch_decode(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(lowercase_) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = '''lower newer''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(text=lowercase_ , images=lowercase_) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
356
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["image_processor", "feature_extractor"] __UpperCamelCase = "TvltImageProcessor" __UpperCamelCase = "TvltFeatureExtractor" def __init__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(image_processor=lowercase_ , feature_extractor=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_processor SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_extractor def __call__( self : Any , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=None , lowercase_ : str=None , lowercase_ : int=False , lowercase_ : Union[str, Any]=False , *lowercase_ : List[Any] , **lowercase_ : List[str] , ): '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''') SCREAMING_SNAKE_CASE_ : Any = None if images is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.image_processor(lowercase_ , mask_pixel=lowercase_ , *lowercase_ , **lowercase_) if images_mixed is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor(lowercase_ , is_mixed=lowercase_ , *lowercase_ , **lowercase_) if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor( lowercase_ , *lowercase_ , sampling_rate=lowercase_ , mask_audio=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {} if audio is not None: output_dict.update(lowercase_) if images is not None: output_dict.update(lowercase_) if images_mixed_dict is not None: output_dict.update(lowercase_) return output_dict @property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
318
0
"""simple docstring""" import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCAmelCase_ : Union[str, Any] = float("""nan""") class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = sys.stdout SCREAMING_SNAKE_CASE_ : str = open(lowercase_ , '''a''') def __getattr__( self : Union[str, Any] , lowercase_ : Dict): '''simple docstring''' return getattr(self.stdout , lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple): '''simple docstring''' self.stdout.write(lowercase_) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , lowercase_ , 0 , re.M)) def _A (__a=80 , __a=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] # deal with critical env vars SCREAMING_SNAKE_CASE_ : List[str] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: SCREAMING_SNAKE_CASE_ : int = os.environ.get(__a , __a ) if val is not None: cmd.append(f'{key}={val}' ) # python executable (not always needed if the script is executable) SCREAMING_SNAKE_CASE_ : Any = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(__a ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Tuple = '''''' while len(__a ) > 0: current_line += f'{cmd.pop(0 )} ' if len(__a ) == 0 or len(__a ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__a ) SCREAMING_SNAKE_CASE_ : Dict = '''''' return "\\\n".join(__a ) def _A (__a , __a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own SCREAMING_SNAKE_CASE_ : List[Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += f' --output_dir {output_dir}' # ensure we have --overwrite_output_dir SCREAMING_SNAKE_CASE_ : List[str] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _A (__a , __a , __a , __a , __a , __a , __a ) -> str: """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) SCREAMING_SNAKE_CASE_ : List[Any] = subprocess.run(__a , capture_output=__a , text=__a ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams SCREAMING_SNAKE_CASE_ : Optional[Any] = variation.replace(''' ''' , '''-''' ) with open(Path(__a ) / f'log.{prefix}.stdout.txt' , '''w''' ) as f: f.write(result.stdout ) with open(Path(__a ) / f'log.{prefix}.stderr.txt' , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(f'{output_dir}/all_results.json' , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ : Any = json.load(__a ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _A (__a , __a , __a , __a , __a , __a , __a , __a , __a , __a , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : List[Any] = f'{id}: {variation:<{longest_variation_len}}' SCREAMING_SNAKE_CASE_ : Any = f'{preamble}: ' SCREAMING_SNAKE_CASE_ : str = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__a ) , desc=__a , leave=__a ): SCREAMING_SNAKE_CASE_ : List[Any] = process_run_single( __a , __a , __a , __a , __a , __a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = single_run_metrics[target_metric_key] if not math.isnan(__a ): metrics.append(__a ) results.append(__a ) outcome += "✓" else: outcome += "✘" SCREAMING_SNAKE_CASE_ : List[str] = f'\33[2K\r{outcome}' if len(__a ) > 0: SCREAMING_SNAKE_CASE_ : List[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} SCREAMING_SNAKE_CASE_ : List[str] = round(mean_metrics[target_metric_key] , 2 ) SCREAMING_SNAKE_CASE_ : Tuple = f'{outcome} {mean_target}' if len(__a ) > 1: results_str += f' {tuple(round(__a , 2 ) for x in results )}' print(__a ) SCREAMING_SNAKE_CASE_ : Any = variation return mean_metrics else: print(__a ) return {variation_key: variation, target_metric_key: nan} def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return f'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def _A (__a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = pd.DataFrame(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''variation''' SCREAMING_SNAKE_CASE_ : List[Any] = '''diff_%''' SCREAMING_SNAKE_CASE_ : Optional[Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan SCREAMING_SNAKE_CASE_ : Optional[int] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__a ): # as a fallback, use the minimal value as the sentinel SCREAMING_SNAKE_CASE_ : List[str] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__a ): SCREAMING_SNAKE_CASE_ : Any = df.apply( lambda __a : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns SCREAMING_SNAKE_CASE_ : Dict = [variation_key, target_metric_key, diff_key, *report_metric_keys] SCREAMING_SNAKE_CASE_ : Union[str, Any] = df.reindex(__a , axis='''columns''' ) # reorder cols # capitalize SCREAMING_SNAKE_CASE_ : Union[str, Any] = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible SCREAMING_SNAKE_CASE_ : Optional[Any] = df.rename(lambda __a : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = df.rename(lambda __a : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) SCREAMING_SNAKE_CASE_ : int = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__a , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__a , floatfmt='''.2f''' )] print('''\n\n'''.join(__a ) ) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=__a , type=__a , required=__a , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=__a , type=__a , nargs='''+''' , required=__a , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=__a , type=__a , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=__a , type=__a , required=__a , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=__a , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=__a , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=__a , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=__a , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) SCREAMING_SNAKE_CASE_ : Dict = parser.parse_args() SCREAMING_SNAKE_CASE_ : Tuple = args.output_dir Path(__a ).mkdir(exist_ok=__a ) SCREAMING_SNAKE_CASE_ : int = get_base_command(__a , __a ) # split each dimension into its --foo variations SCREAMING_SNAKE_CASE_ : Dict = [list(map(str.strip , re.split(R'''\|''' , __a ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty SCREAMING_SNAKE_CASE_ : List[str] = list(map(str.strip , map(''' '''.join , itertools.product(*__a ) ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = max(len(__a ) for x in variations ) # split wanted keys SCREAMING_SNAKE_CASE_ : Union[str, Any] = args.report_metric_keys.split() # capture prints into a log file for convenience SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(f'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(f'and this script\'s output is also piped into {report_fn}' ) SCREAMING_SNAKE_CASE_ : int = Tee(__a ) print(f'\n*** Running {len(__a )} benchmarks:' ) print(f'Base command: {" ".join(__a )}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = '''variation''' SCREAMING_SNAKE_CASE_ : str = [] for id, variation in enumerate(tqdm(__a , desc='''Total completion: ''' , leave=__a ) ): SCREAMING_SNAKE_CASE_ : str = base_cmd + variation.split() results.append( process_run( id + 1 , __a , __a , __a , __a , args.target_metric_key , __a , args.repeat_times , __a , args.verbose , ) ) process_results(__a , args.target_metric_key , __a , args.base_variation , __a ) if __name__ == "__main__": main()
357
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "SpeechT5FeatureExtractor" __UpperCamelCase = "SpeechT5Tokenizer" def __init__( self : Any , lowercase_ : Dict , lowercase_ : Optional[Any]): '''simple docstring''' super().__init__(lowercase_ , lowercase_) def __call__( self : List[Any] , *lowercase_ : List[Any] , **lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = kwargs.pop('''text''' , lowercase_) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''text_target''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''audio_target''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''sampling_rate''' , lowercase_) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''') if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''') if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) elif text is not None: SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(lowercase_ , **lowercase_) else: SCREAMING_SNAKE_CASE_ : Any = None if audio_target is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = targets['''input_values'''] elif text_target is not None: SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE_ : int = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = labels SCREAMING_SNAKE_CASE_ : Optional[Any] = targets.get('''attention_mask''') if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : Any = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self : Tuple , *lowercase_ : Tuple , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.pop('''input_values''' , lowercase_) SCREAMING_SNAKE_CASE_ : int = kwargs.pop('''input_ids''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''labels''' , lowercase_) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''') if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''') if input_values is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) elif input_ids is not None: SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.pad(lowercase_ , **lowercase_) else: SCREAMING_SNAKE_CASE_ : List[Any] = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer.pad(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Dict = targets['''input_ids'''] else: SCREAMING_SNAKE_CASE_ : Dict = self.feature_extractor.feature_size SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extractor.num_mel_bins SCREAMING_SNAKE_CASE_ : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : str = feature_size_hack SCREAMING_SNAKE_CASE_ : Dict = targets['''input_values'''] else: SCREAMING_SNAKE_CASE_ : List[Any] = None if inputs is None: return targets if targets is not None: SCREAMING_SNAKE_CASE_ : Dict = labels SCREAMING_SNAKE_CASE_ : List[str] = targets.get('''attention_mask''') if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = decoder_attention_mask return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowercase_ : Optional[int] , **lowercase_ : Tuple): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowercase_ : Dict , **lowercase_ : List[Any]): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_)
318
0
"""simple docstring""" def _A (__a ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [False] * len(__a ) SCREAMING_SNAKE_CASE_ : Any = [-1] * len(__a ) def dfs(__a , __a ): SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = c for u in graph[v]: if not visited[u]: dfs(__a , 1 - c ) for i in range(len(__a ) ): if not visited[i]: dfs(__a , 0 ) for i in range(len(__a ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCAmelCase_ : Optional[int] = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
358
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.inf def set_batch_size(__a ) -> None: nonlocal batch_size if isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__a , __a ) and feature.dtype == "binary": SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__a , __a ) return None if batch_size is np.inf else batch_size class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory) return dataset class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = dataset SCREAMING_SNAKE_CASE_ : Dict = path_or_buf SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features) SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , '''wb+''') as buffer: SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs) else: SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs) return written def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_) for offset in logging.tqdm( range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): SCREAMING_SNAKE_CASE_ : List[Any] = query_table( table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowercase_) written += batch.nbytes writer.close() return written
318
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase__ : '''simple docstring''' __UpperCamelCase = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.feature_extraction_class(**self.feat_extract_dict) SCREAMING_SNAKE_CASE_ : Any = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(lowercase_ , '''feat_extract.json''') feat_extract_first.to_json_file(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extraction_class.from_json_file(lowercase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Optional[int] = feat_extract_first.save_pretrained(lowercase_)[0] check_json_file_has_correct_format(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.feature_extraction_class.from_pretrained(lowercase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extraction_class() self.assertIsNotNone(lowercase_)
359
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = ["""model.decoder.embed_positions.weights"""] def _A (__a ) -> Dict: """simple docstring""" if "emb" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: SCREAMING_SNAKE_CASE_ : Optional[int] = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: SCREAMING_SNAKE_CASE_ : str = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def _A (__a , __a ) -> Tuple[Dict, Dict]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(state_dict.keys() ) SCREAMING_SNAKE_CASE_ : int = {} for key in keys: SCREAMING_SNAKE_CASE_ : int = state_dict.pop(__a ) SCREAMING_SNAKE_CASE_ : int = rename_keys(__a ) if "in_proj_weight" in key: # split fused qkv proj SCREAMING_SNAKE_CASE_ : List[str] = val[:hidden_size, :] SCREAMING_SNAKE_CASE_ : List[str] = val[hidden_size : 2 * hidden_size, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: SCREAMING_SNAKE_CASE_ : int = val else: SCREAMING_SNAKE_CASE_ : Any = val return state_dict, enc_dec_proj_state_dict def _A (__a ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values SCREAMING_SNAKE_CASE_ : Optional[int] = 10_24 SCREAMING_SNAKE_CASE_ : Tuple = 24 SCREAMING_SNAKE_CASE_ : Optional[Any] = 16 elif checkpoint == "medium": SCREAMING_SNAKE_CASE_ : List[str] = 15_36 SCREAMING_SNAKE_CASE_ : Optional[int] = 48 SCREAMING_SNAKE_CASE_ : Optional[int] = 24 elif checkpoint == "large": SCREAMING_SNAKE_CASE_ : Optional[Any] = 20_48 SCREAMING_SNAKE_CASE_ : Optional[int] = 48 SCREAMING_SNAKE_CASE_ : int = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) SCREAMING_SNAKE_CASE_ : List[Any] = MusicgenDecoderConfig( hidden_size=__a , ffn_dim=hidden_size * 4 , num_hidden_layers=__a , num_attention_heads=__a , ) return config @torch.no_grad() def _A (__a , __a=None , __a=None , __a="cpu" ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = MusicGen.get_pretrained(__a , device=__a ) SCREAMING_SNAKE_CASE_ : Dict = decoder_config_from_checkpoint(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = fairseq_model.lm.state_dict() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = rename_state_dict( __a , hidden_size=decoder_config.hidden_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = TaEncoderModel.from_pretrained('''t5-base''' ) SCREAMING_SNAKE_CASE_ : List[str] = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) SCREAMING_SNAKE_CASE_ : int = MusicgenForCausalLM(__a ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = decoder.load_state_dict(__a , strict=__a ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__a ) if len(__a ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(__a ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model SCREAMING_SNAKE_CASE_ : str = MusicgenForConditionalGeneration(text_encoder=__a , audio_encoder=__a , decoder=__a ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__a ) # check we can do a forward pass SCREAMING_SNAKE_CASE_ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(input_ids=__a , decoder_input_ids=__a ).logits if logits.shape != (8, 1, 20_48): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor SCREAMING_SNAKE_CASE_ : str = AutoTokenizer.from_pretrained('''t5-base''' ) SCREAMING_SNAKE_CASE_ : str = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) SCREAMING_SNAKE_CASE_ : Tuple = MusicgenProcessor(feature_extractor=__a , tokenizer=__a ) # set the appropriate bos/pad token ids SCREAMING_SNAKE_CASE_ : str = 20_48 SCREAMING_SNAKE_CASE_ : List[Any] = 20_48 # set other default generation config params SCREAMING_SNAKE_CASE_ : int = int(30 * audio_encoder.config.frame_rate ) SCREAMING_SNAKE_CASE_ : str = True SCREAMING_SNAKE_CASE_ : Optional[Any] = 3.0 if pytorch_dump_folder is not None: Path(__a ).mkdir(exist_ok=__a ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(__a ) processor.save_pretrained(__a ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(__a ) processor.push_to_hub(__a ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) UpperCAmelCase_ : Dict = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
318
0
UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5 def _A (__a , __a , __a = g ) -> float: """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
360
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def _A (__a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def _A (__a ) -> np.ndarray: """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def _A (__a , __a ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.zeros_like(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image SCREAMING_SNAKE_CASE_ : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): SCREAMING_SNAKE_CASE_ : Optional[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() SCREAMING_SNAKE_CASE_ : Any = int(summation > 0 ) return output if __name__ == "__main__": # read original image UpperCAmelCase_ : Dict = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" UpperCAmelCase_ : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied UpperCAmelCase_ : Any = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) UpperCAmelCase_ : Tuple = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image UpperCAmelCase_ : List[str] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
318
0
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _A (__a , __a , __a ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = x SCREAMING_SNAKE_CASE_ : List[Any] = y for step in range(__a ): # noqa: B007 SCREAMING_SNAKE_CASE_ : int = a * a - b * b + x SCREAMING_SNAKE_CASE_ : Any = 2 * a * b + y SCREAMING_SNAKE_CASE_ : str = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _A (__a ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def _A (__a ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__a , 1 , 1 ) ) def _A (__a = 8_00 , __a = 6_00 , __a = -0.6 , __a = 0 , __a = 3.2 , __a = 50 , __a = True , ) -> Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Image.new('''RGB''' , (image_width, image_height) ) SCREAMING_SNAKE_CASE_ : Dict = img.load() # loop through the image-coordinates for image_x in range(__a ): for image_y in range(__a ): # determine the figure-coordinates based on the image-coordinates SCREAMING_SNAKE_CASE_ : Union[str, Any] = figure_width / image_width * image_height SCREAMING_SNAKE_CASE_ : Optional[Any] = figure_center_x + (image_x / image_width - 0.5) * figure_width SCREAMING_SNAKE_CASE_ : Optional[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height SCREAMING_SNAKE_CASE_ : int = get_distance(__a , __a , __a ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: SCREAMING_SNAKE_CASE_ : Dict = get_color_coded_rgb(__a ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = get_black_and_white_rgb(__a ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
361
"""simple docstring""" from collections import defaultdict def _A (__a , __a ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = first_str.lower().strip() SCREAMING_SNAKE_CASE_ : List[Any] = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE_ : Dict = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE_ : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase_ : Any = input("""Enter the first string """).strip() UpperCAmelCase_ : Optional[int] = input("""Enter the second string """).strip() UpperCAmelCase_ : Union[str, Any] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {'' if status else 'not '}anagrams.''')
318
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : int = """▁""" UpperCAmelCase_ : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase_ : Any = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } UpperCAmelCase_ : Optional[int] = { """facebook/xglm-564M""": 2048, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : List[Any]="<s>" , lowercase_ : Union[str, Any]="</s>" , lowercase_ : Dict="</s>" , lowercase_ : Dict="<s>" , lowercase_ : List[Any]="<unk>" , lowercase_ : Tuple="<pad>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE_ : str = 7 SCREAMING_SNAKE_CASE_ : int = [F'<madeupword{i}>' for i in range(self.num_madeup_words)] SCREAMING_SNAKE_CASE_ : List[str] = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : List[str] = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : List[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.sp_model) SCREAMING_SNAKE_CASE_ : str = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): SCREAMING_SNAKE_CASE_ : List[Any] = {} SCREAMING_SNAKE_CASE_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is None: return [1] + ([0] * len(lowercase_)) return [1] + ([0] * len(lowercase_)) + [1, 1] + ([0] * len(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : str): '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Union[str, Any]): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : int = self.sp_model.PieceToId(lowercase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Optional[Any]): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip() return out_string def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , '''wb''') as fi: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
362
"""simple docstring""" import argparse from collections import defaultdict import yaml UpperCAmelCase_ : Optional[Any] = """docs/source/en/_toctree.yml""" def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = defaultdict(__a ) for doc in model_doc: counts[doc["local"]] += 1 SCREAMING_SNAKE_CASE_ : List[Any] = [key for key, value in counts.items() if value > 1] SCREAMING_SNAKE_CASE_ : int = [] for duplicate_key in duplicates: SCREAMING_SNAKE_CASE_ : List[str] = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__a ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__a , key=lambda __a : s["title"].lower() ) def _A (__a=False ) -> Tuple: """simple docstring""" with open(__a , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ : Dict = yaml.safe_load(f.read() ) # Get to the API doc SCREAMING_SNAKE_CASE_ : Any = 0 while content[api_idx]["title"] != "API": api_idx += 1 SCREAMING_SNAKE_CASE_ : str = content[api_idx]['''sections'''] # Then to the model doc SCREAMING_SNAKE_CASE_ : List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = api_doc[model_idx]['''sections'''] SCREAMING_SNAKE_CASE_ : str = [(idx, section) for idx, section in enumerate(__a ) if '''sections''' in section] SCREAMING_SNAKE_CASE_ : Optional[Any] = False for idx, modality_doc in modalities_docs: SCREAMING_SNAKE_CASE_ : List[str] = modality_doc['''sections'''] SCREAMING_SNAKE_CASE_ : Union[str, Any] = clean_model_doc_toc(__a ) if old_modality_doc != new_modality_doc: SCREAMING_SNAKE_CASE_ : str = True if overwrite: SCREAMING_SNAKE_CASE_ : Optional[int] = new_modality_doc if diff: if overwrite: SCREAMING_SNAKE_CASE_ : List[Any] = model_doc SCREAMING_SNAKE_CASE_ : int = api_doc with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCAmelCase_ : Tuple = parser.parse_args() check_model_doc(args.fix_and_overwrite)
318
0
"""simple docstring""" import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase_ : Any = 50000 UpperCAmelCase_ : Optional[Any] = 5000 UpperCAmelCase_ : Union[str, Any] = os.path.split(__file__) UpperCAmelCase_ : List[Any] = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _A (__a , __a ) -> List[Any]: """simple docstring""" for i in range(__a ): SCREAMING_SNAKE_CASE_ : Tuple = dataset[i] @get_duration def _A (__a , __a , __a ) -> Optional[int]: """simple docstring""" for i in range(0 , len(__a ) , __a ): SCREAMING_SNAKE_CASE_ : Optional[int] = dataset[i : i + batch_size] @get_duration def _A (__a , __a , __a ) -> Any: """simple docstring""" with dataset.formatted_as(type=__a ): for i in range(__a ): SCREAMING_SNAKE_CASE_ : Tuple = dataset[i] @get_duration def _A (__a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" with dataset.formatted_as(type=__a ): for i in range(0 , __a , __a ): SCREAMING_SNAKE_CASE_ : Dict = dataset[i : i + batch_size] def _A () -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {'''num examples''': SPEED_TEST_N_EXAMPLES} SCREAMING_SNAKE_CASE_ : Optional[Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_00}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10_00}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10_00}), ] SCREAMING_SNAKE_CASE_ : List[Any] = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_00}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10_00}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10_00}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''' ) SCREAMING_SNAKE_CASE_ : List[Any] = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} ) SCREAMING_SNAKE_CASE_ : List[Any] = generate_example_dataset( os.path.join(__a , '''dataset.arrow''' ) , __a , num_examples=__a , seq_shapes={'''list''': (1_00,)} , ) print('''first set of iterations''' ) for func, kwargs in functions: print(func.__name__ , str(__a ) ) SCREAMING_SNAKE_CASE_ : Tuple = func(__a , **__a ) print('''shuffling dataset''' ) SCREAMING_SNAKE_CASE_ : str = dataset.shuffle() print('''Second set of iterations (after shuffling''' ) for func, kwargs in functions_shuffled: print('''shuffled ''' , func.__name__ , str(__a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = func( __a , **__a ) with open(__a , '''wb''' ) as f: f.write(json.dumps(__a ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
363
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
318
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase_ : Optional[int] = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
"""simple docstring""" from __future__ import annotations UpperCAmelCase_ : List[str] = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _A (__a , __a , __a , __a ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _A (__a ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _A (__a ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__a ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__a , __a , __a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = digit if sudoku(__a ) is not None: return grid SCREAMING_SNAKE_CASE_ : Any = 0 return None def _A (__a ) -> None: """simple docstring""" for row in grid: for cell in row: print(__a , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") UpperCAmelCase_ : str = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
318
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : str = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : Optional[Any] = PegasusTokenizer(lowercase_) tokenizer.save_pretrained(self.tmpdirname) @cached_property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''') def _SCREAMING_SNAKE_CASE ( self : Dict , **lowercase_ : Union[str, Any]): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Dict): '''simple docstring''' return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''</s>''' SCREAMING_SNAKE_CASE_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_) , lowercase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_) , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<pad>''') self.assertEqual(vocab_keys[1] , '''</s>''') self.assertEqual(vocab_keys[-1] , '''v''') self.assertEqual(len(lowercase_) , 1103) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : int = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0] self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE_ : int = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' SCREAMING_SNAKE_CASE_ : Any = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer([raw_input_str] , return_tensors=lowercase_).input_ids[0] self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 SCREAMING_SNAKE_CASE_ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' SCREAMING_SNAKE_CASE_ : Tuple = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer([raw_input_str] , return_tensors=lowercase_).input_ids[0] self.assertListEqual(lowercase_ , lowercase_) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = ['''This is going to be way too long.''' * 150, '''short example'''] SCREAMING_SNAKE_CASE_ : List[Any] = ['''not super long but more than 5 tokens''', '''tiny'''] SCREAMING_SNAKE_CASE_ : Dict = self._large_tokenizer(lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : int = self._large_tokenizer( text_target=lowercase_ , max_length=5 , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''') assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(lowercase_) == 2 # input_ids, attention_mask. @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = PegasusTokenizer __UpperCamelCase = PegasusTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : Optional[int] = PegasusTokenizer(lowercase_ , offset=0 , mask_token_sent=lowercase_ , mask_token='''[MASK]''') tokenizer.save_pretrained(self.tmpdirname) @cached_property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''') def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowercase_ : str): '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Dict): '''simple docstring''' return ("This is a test", "This is a test") def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class.from_pretrained(self.tmpdirname) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) SCREAMING_SNAKE_CASE_ : List[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0] SCREAMING_SNAKE_CASE_ : List[Any] = py_tokenizer([raw_input_str] , return_tensors=lowercase_ , add_special_tokens=lowercase_).input_ids[0] self.assertListEqual(lowercase_ , lowercase_) @require_torch def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = ['''This is going to be way too long.''' * 1000, '''short example'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''not super long but more than 5 tokens''', '''tiny'''] SCREAMING_SNAKE_CASE_ : List[Any] = self._large_tokenizer(lowercase_ , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : Optional[Any] = self._large_tokenizer( text_target=lowercase_ , max_length=5 , padding=lowercase_ , truncation=lowercase_ , return_tensors='''pt''') assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(lowercase_) == 2 # input_ids, attention_mask. def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._large_tokenizer(lowercase_).input_ids self.assertListEqual( lowercase_ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
365
"""simple docstring""" from itertools import permutations def _A (__a ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A (__a = 10 ) -> int: """simple docstring""" return sum( int(''''''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(f'''{solution() = }''')
318
0
"""simple docstring""" from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = RobertaConfig __UpperCamelCase = "roberta" def __init__( self : List[str] , lowercase_ : Tuple): '''simple docstring''' super().__init__(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = RobertaEmbeddings(lowercase_) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , UpperCAmelCase__ , ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = RobertaConfig __UpperCamelCase = "roberta" def __init__( self : Any , lowercase_ : List[str]): '''simple docstring''' super().__init__(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = config.num_labels SCREAMING_SNAKE_CASE_ : List[str] = config.num_hidden_layers SCREAMING_SNAKE_CASE_ : int = DeeRobertaModel(lowercase_) SCREAMING_SNAKE_CASE_ : Any = nn.Dropout(config.hidden_dropout_prob) SCREAMING_SNAKE_CASE_ : Tuple = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=None , lowercase_ : str=None , lowercase_ : Tuple=None , lowercase_ : Dict=None , lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Dict=-1 , lowercase_ : str=False , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.num_layers try: SCREAMING_SNAKE_CASE_ : Dict = self.roberta( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Dict = outputs[1] SCREAMING_SNAKE_CASE_ : List[str] = self.dropout(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.classifier(lowercase_) SCREAMING_SNAKE_CASE_ : int = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE_ : List[Any] = e.message SCREAMING_SNAKE_CASE_ : List[Any] = e.exit_layer SCREAMING_SNAKE_CASE_ : List[str] = outputs[0] if not self.training: SCREAMING_SNAKE_CASE_ : Dict = entropy(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Dict = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE_ : Optional[Any] = MSELoss() SCREAMING_SNAKE_CASE_ : Optional[int] = loss_fct(logits.view(-1) , labels.view(-1)) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits SCREAMING_SNAKE_CASE_ : Tuple = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(lowercase_) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE_ : Optional[Any] = MSELoss() SCREAMING_SNAKE_CASE_ : List[Any] = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: SCREAMING_SNAKE_CASE_ : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE_ : Any = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(lowercase_) if train_highway: SCREAMING_SNAKE_CASE_ : Union[str, Any] = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE_ : Dict = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE_ : Tuple = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE_ : int = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
366
"""simple docstring""" UpperCAmelCase_ : List[Any] = 9.8_0_6_6_5 def _A (__a , __a , __a = g ) -> float: """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
318
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Dict = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
367
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A (__a ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _A (__a ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
318
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def _A (__a , __a = True , __a = math.inf , __a = -math.inf , __a = math.inf , __a = -math.inf , __a = False , __a = 1_00 , __a = 0.01 , __a = 1 , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : int = search_prob SCREAMING_SNAKE_CASE_ : Tuple = start_temperate SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : List[Any] = None while not search_end: SCREAMING_SNAKE_CASE_ : List[Any] = current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE_ : Tuple = current_state scores.append(__a ) iterations += 1 SCREAMING_SNAKE_CASE_ : Any = None SCREAMING_SNAKE_CASE_ : str = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE_ : str = random.randint(0 , len(__a ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE_ : List[str] = neighbors.pop(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE_ : Any = change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE_ : List[Any] = picked_neighbor else: SCREAMING_SNAKE_CASE_ : List[Any] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE_ : Any = picked_neighbor SCREAMING_SNAKE_CASE_ : Optional[int] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE_ : Union[str, Any] = True else: SCREAMING_SNAKE_CASE_ : List[Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(__a ) , __a ) plt.xlabel('''Iterations''' ) plt.ylabel('''Function values''' ) plt.show() return best_state if __name__ == "__main__": def _A (__a , __a ) -> Tuple: """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : Optional[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Dict = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) UpperCAmelCase_ : int = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Any = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def _A (__a , __a ) -> Optional[int]: """simple docstring""" return (3 * x**2) - (6 * y) UpperCAmelCase_ : str = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : List[str] = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'''{local_min.score()}''' ) UpperCAmelCase_ : Optional[int] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) UpperCAmelCase_ : Any = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ f'''{local_min.score()}''' )
368
"""simple docstring""" import argparse import os import re import packaging.version UpperCAmelCase_ : Any = """examples/""" UpperCAmelCase_ : Optional[int] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCAmelCase_ : List[Any] = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCAmelCase_ : Optional[int] = """README.md""" def _A (__a , __a , __a ) -> int: """simple docstring""" with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = f.read() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = REPLACE_PATTERNS[pattern] SCREAMING_SNAKE_CASE_ : Optional[int] = replace.replace('''VERSION''' , __a ) SCREAMING_SNAKE_CASE_ : Tuple = re_pattern.sub(__a , __a ) with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(__a ) def _A (__a ) -> int: """simple docstring""" for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__a , __a ) , __a , pattern='''examples''' ) def _A (__a , __a=False ) -> List[str]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a , __a , __a ) if not patch: update_version_in_examples(__a ) def _A () -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''1. Want to contribute a new model?''' with open(__a , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readlines() # Find the start of the list. SCREAMING_SNAKE_CASE_ : Tuple = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 SCREAMING_SNAKE_CASE_ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): SCREAMING_SNAKE_CASE_ : List[Any] = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(__a , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(__a ) def _A () -> List[str]: """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : Any = f.read() SCREAMING_SNAKE_CASE_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _A (__a=False ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: SCREAMING_SNAKE_CASE_ : List[Any] = default_version.base_version elif patch: SCREAMING_SNAKE_CASE_ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: SCREAMING_SNAKE_CASE_ : Any = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are you releasing? [{default_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[Any] = default_version print(f'Updating version to {version}.' ) global_version_update(__a , patch=__a ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def _A () -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_version() SCREAMING_SNAKE_CASE_ : Any = f'{current_version.major}.{current_version.minor + 1}.0.dev0' SCREAMING_SNAKE_CASE_ : Union[str, Any] = current_version.base_version # Check with the user we got that right. SCREAMING_SNAKE_CASE_ : int = input(f'Which version are we developing now? [{dev_version}]' ) if len(__a ) == 0: SCREAMING_SNAKE_CASE_ : Optional[int] = dev_version print(f'Updating version to {version}.' ) global_version_update(__a ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCAmelCase_ : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
318
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "instructblip_vision_model" def __init__( self : str , lowercase_ : Optional[int]=1408 , lowercase_ : str=6144 , lowercase_ : Optional[Any]=39 , lowercase_ : List[str]=16 , lowercase_ : Any=224 , lowercase_ : int=14 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Optional[int]=1e-6 , lowercase_ : Dict=0.0 , lowercase_ : Optional[Any]=1e-10 , lowercase_ : List[Any]=True , **lowercase_ : Any , ): '''simple docstring''' super().__init__(**lowercase_) SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : List[str] = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : str = num_attention_heads SCREAMING_SNAKE_CASE_ : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : str = attention_dropout SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = qkv_bias @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Union[str, Any]): '''simple docstring''' cls._set_token_in_kwargs(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = cls.get_config_dict(lowercase_ , **lowercase_) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": SCREAMING_SNAKE_CASE_ : List[str] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowercase_ , **lowercase_) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "instructblip_qformer" def __init__( self : List[str] , lowercase_ : Union[str, Any]=30522 , lowercase_ : Union[str, Any]=768 , lowercase_ : int=12 , lowercase_ : Tuple=12 , lowercase_ : int=3072 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Dict=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : str=512 , lowercase_ : List[str]=0.02 , lowercase_ : str=1e-12 , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]="absolute" , lowercase_ : Dict=2 , lowercase_ : List[Any]=1408 , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Any = num_attention_heads SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : List[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : int = layer_norm_eps SCREAMING_SNAKE_CASE_ : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE_ : int = cross_attention_frequency SCREAMING_SNAKE_CASE_ : int = encoder_hidden_size @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Dict): '''simple docstring''' cls._set_token_in_kwargs(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = cls.get_config_dict(lowercase_ , **lowercase_) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''') == "instructblip": SCREAMING_SNAKE_CASE_ : Dict = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(lowercase_ , **lowercase_) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "instructblip" __UpperCamelCase = True def __init__( self : List[Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : Any=None , lowercase_ : int=32 , **lowercase_ : Any): '''simple docstring''' super().__init__(**lowercase_) if vision_config is None: SCREAMING_SNAKE_CASE_ : Dict = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''') if qformer_config is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''') if text_config is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipVisionConfig(**lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = InstructBlipQFormerConfig(**lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' SCREAMING_SNAKE_CASE_ : Optional[int] = CONFIG_MAPPING[text_model_type](**lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.text_config.tie_word_embeddings SCREAMING_SNAKE_CASE_ : Dict = self.text_config.is_encoder_decoder SCREAMING_SNAKE_CASE_ : List[str] = num_query_tokens SCREAMING_SNAKE_CASE_ : Optional[Any] = self.vision_config.hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES SCREAMING_SNAKE_CASE_ : Any = 1.0 SCREAMING_SNAKE_CASE_ : List[Any] = 0.02 @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any , lowercase_ : InstructBlipVisionConfig , lowercase_ : InstructBlipQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : int , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = copy.deepcopy(self.__dict__) SCREAMING_SNAKE_CASE_ : Optional[int] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : Tuple = self.qformer_config.to_dict() SCREAMING_SNAKE_CASE_ : Any = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ : List[str] = self.__class__.model_type return output
369
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _A (__a , __a , __a=1e-12 ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T SCREAMING_SNAKE_CASE_ : List[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__a , axis=1 ) , a_min=__a ) ).T return jnp.matmul(__a , norm_emb_a.T ) class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config) SCREAMING_SNAKE_CASE_ : Tuple = nn.Dense(self.config.projection_dim , use_bias=lowercase_ , dtype=self.dtype) SCREAMING_SNAKE_CASE_ : List[str] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim)) SCREAMING_SNAKE_CASE_ : Dict = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,)) def __call__( self : Optional[Any] , lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.vision_model(lowercase_)[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.visual_projection(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.special_care_embeds) SCREAMING_SNAKE_CASE_ : List[str] = jax_cosine_distance(lowercase_ , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE_ : Tuple = 0.0 SCREAMING_SNAKE_CASE_ : Dict = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE_ : Optional[int] = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowercase_) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE_ : Dict = is_special_care * 0.01 SCREAMING_SNAKE_CASE_ : str = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE_ : Any = jnp.round(lowercase_ , 3) SCREAMING_SNAKE_CASE_ : Dict = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = CLIPConfig __UpperCamelCase = "clip_input" __UpperCamelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , lowercase_ : CLIPConfig , lowercase_ : Optional[Tuple] = None , lowercase_ : int = 0 , lowercase_ : jnp.dtype = jnp.floataa , lowercase_ : bool = True , **lowercase_ : Any , ): '''simple docstring''' if input_shape is None: SCREAMING_SNAKE_CASE_ : List[str] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE_ : List[Any] = self.module_class(config=lowercase_ , dtype=lowercase_ , **lowercase_) super().__init__(lowercase_ , lowercase_ , input_shape=lowercase_ , seed=lowercase_ , dtype=lowercase_ , _do_init=_do_init) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : jax.random.KeyArray , lowercase_ : Tuple , lowercase_ : FrozenDict = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = jax.random.normal(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = jax.random.split(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = {'''params''': params_rng, '''dropout''': dropout_rng} SCREAMING_SNAKE_CASE_ : List[Any] = self.module.init(lowercase_ , lowercase_)['''params'''] return random_params def __call__( self : List[Any] , lowercase_ : List[str] , lowercase_ : dict = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = jnp.transpose(lowercase_ , (0, 2, 3, 1)) return self.module.apply( {'''params''': params or self.params} , jnp.array(lowercase_ , dtype=jnp.floataa) , rngs={} , )
318
0
from __future__ import annotations import os from typing import Any import requests UpperCAmelCase_ : Optional[Any] = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCAmelCase_ : int = BASE_URL + """/user""" # https://github.com/settings/tokens UpperCAmelCase_ : Union[str, Any] = os.environ.get("""USER_TOKEN""", """""") def _A (__a ) -> dict[Any, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = { '''Authorization''': f'token {auth_token}', '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(__a , headers=__a ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
370
"""simple docstring""" from __future__ import annotations import queue class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = data SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None def _A () -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) SCREAMING_SNAKE_CASE_ : List[Any] = input('''Enter the value of the root node: ''' ).strip().lower() SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() SCREAMING_SNAKE_CASE_ : Union[str, Any] = TreeNode(int(__a ) ) q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = q.get() SCREAMING_SNAKE_CASE_ : List[str] = f'Enter the left node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : Optional[int] = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : List[str] = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = left_node q.put(__a ) SCREAMING_SNAKE_CASE_ : str = f'Enter the right node of {node_found.data}: ' SCREAMING_SNAKE_CASE_ : str = input(__a ).strip().lower() or '''n''' if check == "n": return tree_node SCREAMING_SNAKE_CASE_ : Any = TreeNode(int(__a ) ) SCREAMING_SNAKE_CASE_ : int = right_node q.put(__a ) raise def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : Tuple = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : queue.Queue = queue.Queue() q.put(__a ) while not q.empty(): SCREAMING_SNAKE_CASE_ : str = [] while not q.empty(): SCREAMING_SNAKE_CASE_ : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__a ) def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = n.left # end of while means current node doesn't have left child SCREAMING_SNAKE_CASE_ : Tuple = stack.pop() # start to traverse its right child SCREAMING_SNAKE_CASE_ : str = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ : list[TreeNode] = [] SCREAMING_SNAKE_CASE_ : Any = node while n or stack: while n: stack.append(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.left SCREAMING_SNAKE_CASE_ : Any = stack.pop() print(n.data , end=''',''' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = n.right def _A (__a ) -> None: """simple docstring""" if not isinstance(__a , __a ) or not node: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = [], [] SCREAMING_SNAKE_CASE_ : List[Any] = node stacka.append(__a ) while stacka: # to find the reversed order of post order, store it in stack2 SCREAMING_SNAKE_CASE_ : List[str] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__a ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def _A (__a = "" , __a=50 , __a="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(width - len(__a ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) UpperCAmelCase_ : TreeNode = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 50 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
318
0
"""simple docstring""" def _A (__a = 10_00 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = -1 SCREAMING_SNAKE_CASE_ : Any = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c SCREAMING_SNAKE_CASE_ : Dict = (n * n - 2 * a * n) // (2 * n - 2 * a) SCREAMING_SNAKE_CASE_ : Tuple = n - a - b if c * c == (a * a + b * b): SCREAMING_SNAKE_CASE_ : Optional[int] = a * b * c if candidate >= product: SCREAMING_SNAKE_CASE_ : int = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
371
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
318
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = s.rsplit(lowercase , lowercase ) return new.join(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Union[str, Any] = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: SCREAMING_SNAKE_CASE : int = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: SCREAMING_SNAKE_CASE : int = key.replace("res_path." , "res_path.path." ) if key.endswith(".w" ): SCREAMING_SNAKE_CASE : Tuple = rreplace(lowercase , ".w" , ".weight" , 1 ) if key.endswith(".b" ): SCREAMING_SNAKE_CASE : Tuple = rreplace(lowercase , ".b" , ".bias" , 1 ) SCREAMING_SNAKE_CASE : List[str] = value.float() return upgrade @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase=None , lowercase=True ): """simple docstring""" from dall_e import Encoder SCREAMING_SNAKE_CASE : Union[str, Any] = Encoder() if os.path.exists(lowercase ): SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.hub.load_state_dict_from_url(lowercase ) if isinstance(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Dict = ckpt.state_dict() encoder.load_state_dict(lowercase ) if config_path is not None: SCREAMING_SNAKE_CASE : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE : List[Any] = FlavaImageCodebookConfig() SCREAMING_SNAKE_CASE : Optional[int] = FlavaImageCodebook(lowercase ).eval() SCREAMING_SNAKE_CASE : List[Any] = encoder.state_dict() SCREAMING_SNAKE_CASE : List[Any] = upgrade_state_dict(lowercase ) hf_model.load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = hf_model.state_dict() SCREAMING_SNAKE_CASE : Dict = count_parameters(lowercase ) SCREAMING_SNAKE_CASE : int = count_parameters(lowercase ) assert torch.allclose(lowercase , lowercase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(lowercase ) else: return hf_state_dict if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") snake_case = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
319
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
1
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) for i in range(1 , lowercase ): SCREAMING_SNAKE_CASE : List[Any] = collection[i] SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = i - 1 while low <= high: SCREAMING_SNAKE_CASE : List[str] = (low + high) // 2 if val < collection[mid]: SCREAMING_SNAKE_CASE : Dict = mid - 1 else: SCREAMING_SNAKE_CASE : Optional[Any] = mid + 1 for j in range(lowercase , lowercase , -1 ): SCREAMING_SNAKE_CASE : List[Any] = collection[j - 1] SCREAMING_SNAKE_CASE : Optional[int] = val return collection if __name__ == "__main__": snake_case = input("""Enter numbers separated by a comma:\n""").strip() snake_case = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
319
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
def lowerCamelCase__ ( lowercase = 1 , lowercase = 1000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : Any = 0 for divide_by_number in range(lowercase , digit + 1 ): SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = divide_by_number else: has_been_divided.append(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
319
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = '''vit_mae''' def __init__( self : int , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : List[str]=3072 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Any=1E-12 , UpperCAmelCase_ : Optional[Any]=224 , UpperCAmelCase_ : Any=16 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Union[str, Any]=8 , UpperCAmelCase_ : int=2048 , UpperCAmelCase_ : List[Any]=0.75 , UpperCAmelCase_ : Dict=False , **UpperCAmelCase_ : List[str] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Dict = patch_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : List[Any] = qkv_bias SCREAMING_SNAKE_CASE : Optional[Any] = decoder_num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_intermediate_size SCREAMING_SNAKE_CASE : List[str] = mask_ratio SCREAMING_SNAKE_CASE : Tuple = norm_pix_loss
319
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : List[Any] = None def _A ( self : Any ): SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Any = os.path.join(UpperCAmelCase_ , "feat_extract.json" ) feat_extract_first.to_json_file(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class.from_json_file(UpperCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.save_pretrained(UpperCAmelCase_ )[0] check_json_file_has_correct_format(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class.from_pretrained(UpperCAmelCase_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class() self.assertIsNotNone(UpperCAmelCase_ )
319
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase snake_case = logging.get_logger(__name__) snake_case = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''longformer''' def __init__( self : Dict , UpperCAmelCase_ : Union[List[int], int] = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 3_0522 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 12 , UpperCAmelCase_ : int = 3072 , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1E-12 , UpperCAmelCase_ : bool = False , **UpperCAmelCase_ : Dict , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = attention_window SCREAMING_SNAKE_CASE : List[Any] = sep_token_id SCREAMING_SNAKE_CASE : Dict = bos_token_id SCREAMING_SNAKE_CASE : List[str] = eos_token_id SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : str = onnx_export class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : "PretrainedConfig" , UpperCAmelCase_ : str = "default" , UpperCAmelCase_ : "List[PatchingSpec]" = None ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = True @property def _A ( self : List[Any] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : str = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE : Optional[int] = {0: "batch"} return outputs @property def _A ( self : Tuple ): return 1E-4 @property def _A ( self : Any ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _A ( self : str , UpperCAmelCase_ : "PreTrainedTokenizerBase" , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE : Optional[int] = super().generate_dummy_inputs( preprocessor=UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like(inputs["input_ids"] ) # make every second token global SCREAMING_SNAKE_CASE : Dict = 1 return inputs
319
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
1
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] snake_case = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] snake_case = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): snake_case = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel snake_case = False snake_case = True snake_case = False if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") snake_case = parser.parse_args() snake_case = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } snake_case = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } snake_case = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: snake_case = reader.read() snake_case = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): snake_case = UNetaDModel(**config) else: snake_case = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel snake_case = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) snake_case = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: snake_case = config[key] del config[key] snake_case = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] snake_case = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: snake_case = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) snake_case = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue snake_case = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: snake_case = param_value snake_case = True if not has_changed: snake_case = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
319
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
1
from __future__ import annotations import math def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if len(lowercase ) != 2 or len(a[0] ) != 2 or len(lowercase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) SCREAMING_SNAKE_CASE : Optional[Any] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase ) ) ] def lowerCamelCase__ ( lowercase ): """simple docstring""" if len(lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) SCREAMING_SNAKE_CASE : int = len(lowercase ) SCREAMING_SNAKE_CASE : Tuple = matrix_length // 2 SCREAMING_SNAKE_CASE : str = [[a[i][j] for j in range(lowercase , lowercase )] for i in range(lowercase )] SCREAMING_SNAKE_CASE : Optional[int] = [ [a[i][j] for j in range(lowercase , lowercase )] for i in range(lowercase , lowercase ) ] SCREAMING_SNAKE_CASE : List[Any] = [[a[i][j] for j in range(lowercase )] for i in range(lowercase )] SCREAMING_SNAKE_CASE : Tuple = [[a[i][j] for j in range(lowercase )] for i in range(lowercase , lowercase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase__ ( lowercase ): """simple docstring""" return len(lowercase ), len(matrix[0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" print("\n".join(str(lowercase ) for line in matrix ) ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if matrix_dimensions(lowercase ) == (2, 2): return default_matrix_multiplication(lowercase , lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = split_matrix(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = split_matrix(lowercase ) SCREAMING_SNAKE_CASE : List[str] = actual_strassen(lowercase , matrix_subtraction(lowercase , lowercase ) ) SCREAMING_SNAKE_CASE : str = actual_strassen(matrix_addition(lowercase , lowercase ) , lowercase ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(matrix_addition(lowercase , lowercase ) , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(lowercase , matrix_subtraction(lowercase , lowercase ) ) SCREAMING_SNAKE_CASE : List[Any] = actual_strassen(matrix_addition(lowercase , lowercase ) , matrix_addition(lowercase , lowercase ) ) SCREAMING_SNAKE_CASE : int = actual_strassen(matrix_subtraction(lowercase , lowercase ) , matrix_addition(lowercase , lowercase ) ) SCREAMING_SNAKE_CASE : Dict = actual_strassen(matrix_subtraction(lowercase , lowercase ) , matrix_addition(lowercase , lowercase ) ) SCREAMING_SNAKE_CASE : Any = matrix_addition(matrix_subtraction(matrix_addition(lowercase , lowercase ) , lowercase ) , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = matrix_addition(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Tuple = matrix_addition(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = matrix_subtraction(matrix_subtraction(matrix_addition(lowercase , lowercase ) , lowercase ) , lowercase ) # construct the new matrix from our 4 quadrants SCREAMING_SNAKE_CASE : Dict = [] for i in range(len(lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if matrix_dimensions(lowercase )[1] != matrix_dimensions(lowercase )[0]: SCREAMING_SNAKE_CASE : str = ( "Unable to multiply these matrices, please check the dimensions.\n" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(lowercase ) SCREAMING_SNAKE_CASE : Any = matrix_dimensions(lowercase ) SCREAMING_SNAKE_CASE : int = matrix_dimensions(lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] SCREAMING_SNAKE_CASE : Optional[Any] = max(*lowercase , *lowercase ) SCREAMING_SNAKE_CASE : Dict = int(math.pow(2 , math.ceil(math.loga(lowercase ) ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = matrixa SCREAMING_SNAKE_CASE : Optional[int] = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) SCREAMING_SNAKE_CASE : Union[str, Any] = actual_strassen(lowercase , lowercase ) # Removing the additional zeros for i in range(0 , lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": snake_case = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] snake_case = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
1
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed snake_case = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowerCamelCase__ ( lowercase ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": SCREAMING_SNAKE_CASE : Optional[Any] = False elif args.student_type == "gpt2": SCREAMING_SNAKE_CASE : Dict = False def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": SCREAMING_SNAKE_CASE : Tuple = False def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=lowercase , required=lowercase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=lowercase , required=lowercase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=lowercase , choices=["distilbert", "roberta", "gpt2"] , required=lowercase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=lowercase , required=lowercase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=lowercase , type=lowercase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=lowercase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=lowercase , required=lowercase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=lowercase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=lowercase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=lowercase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=lowercase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=lowercase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=lowercase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=lowercase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=lowercase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=lowercase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=lowercase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=lowercase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=lowercase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=lowercase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=lowercase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=lowercase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=lowercase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=lowercase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=lowercase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=lowercase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=lowercase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowercase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=lowercase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=lowercase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=lowercase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=lowercase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=lowercase , default=4000 , help="Checkpoint interval." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_CLASSES[args.student_type] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = MODEL_CLASSES[args.teacher_type] # TOKENIZER # SCREAMING_SNAKE_CASE : Optional[int] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) SCREAMING_SNAKE_CASE : Tuple = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): SCREAMING_SNAKE_CASE : List[str] = tokenizer.all_special_tokens.index(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = special_tok_ids SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , "rb" ) as fp: SCREAMING_SNAKE_CASE : Tuple = pickle.load(lowercase ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , "rb" ) as fp: SCREAMING_SNAKE_CASE : Optional[Any] = pickle.load(lowercase ) SCREAMING_SNAKE_CASE : List[str] = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): SCREAMING_SNAKE_CASE : Any = 0.0 # do not predict special tokens SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(lowercase ) else: SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Dict = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info("Data loader created." ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) SCREAMING_SNAKE_CASE : Any = student_config_class.from_pretrained(args.student_config ) SCREAMING_SNAKE_CASE : str = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) SCREAMING_SNAKE_CASE : str = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: SCREAMING_SNAKE_CASE : Optional[int] = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info("Student loaded." ) # TEACHER # SCREAMING_SNAKE_CASE : Dict = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() SCREAMING_SNAKE_CASE : Union[str, Any] = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
319
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
1
import math def lowerCamelCase__ ( lowercase = 100 ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = sum(i * i for i in range(1 , n + 1 ) ) SCREAMING_SNAKE_CASE : int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
319
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
1
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder snake_case = """base_with_context""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE : List[str] = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : Any = ly_weight["attention"] SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase ) for lyr_num, lyr in enumerate(model.encoders ): SCREAMING_SNAKE_CASE : Any = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE : List[Any] = ly_weight["attention"] SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) ) return model def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter( torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=lowercase ) SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) ) for lyr_num, lyr in enumerate(model.decoders ): SCREAMING_SNAKE_CASE : str = weights[F'''layers_{lyr_num}'''] SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : str = ly_weight["self_attention"] SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Any = ly_weight["MultiHeadDotProductAttention_0"] SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) ) SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) ) return model def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) SCREAMING_SNAKE_CASE : Tuple = jnp.tree_util.tree_map(onp.array , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = [ "from __gin__ import dynamic_registration", "from music_spectrogram_diffusion.models.diffusion import diffusion_utils", "diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0", "diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()", ] SCREAMING_SNAKE_CASE : List[Any] = os.path.join(args.checkpoint_path , ".." , "config.gin" ) SCREAMING_SNAKE_CASE : Optional[Any] = inference.parse_training_gin_file(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = inference.InferenceModel(args.checkpoint_path , lowercase ) SCREAMING_SNAKE_CASE : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" ) SCREAMING_SNAKE_CASE : Tuple = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) SCREAMING_SNAKE_CASE : Optional[int] = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , ) SCREAMING_SNAKE_CASE : Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) SCREAMING_SNAKE_CASE : Tuple = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , lowercase ) SCREAMING_SNAKE_CASE : List[str] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , lowercase ) SCREAMING_SNAKE_CASE : Tuple = load_decoder(ta_checkpoint["target"]["decoder"] , lowercase ) SCREAMING_SNAKE_CASE : List[Any] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" ) SCREAMING_SNAKE_CASE : int = SpectrogramDiffusionPipeline( notes_encoder=lowercase , continuous_encoder=lowercase , decoder=lowercase , scheduler=lowercase , melgan=lowercase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) snake_case = parser.parse_args() main(args)
319
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
1
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) SCREAMING_SNAKE_CASE : List[str] = Vector() def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase_ ) , "(0,0,0,0,0,1)" ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[str] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) def _A ( self : str ): SCREAMING_SNAKE_CASE : List[str] = Vector([1, 2] ) SCREAMING_SNAKE_CASE : int = Vector([1, 2, 3, 4, 5] ) SCREAMING_SNAKE_CASE : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE : List[Any] = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : List[Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : str = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[int] = Vector([2, -1, 4] ) # for test of dot product SCREAMING_SNAKE_CASE : Dict = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , "(3.0,6.0,9.0)" ) self.assertEqual((a * b) , 0 ) def _A ( self : List[Any] ): self.assertEqual(str(zero_vector(10 ) ).count("0" ) , 10 ) def _A ( self : Optional[int] ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , "(0,1,0)" ) def _A ( self : str ): SCREAMING_SNAKE_CASE : Union[str, Any] = Vector([1, 2, 3] ) SCREAMING_SNAKE_CASE : Optional[Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase_ , UpperCAmelCase_ ) ) , "(3,4,7)" ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = Vector([1, 0, 0, 0, 0, 0] ) SCREAMING_SNAKE_CASE : Tuple = x.copy() self.assertEqual(str(UpperCAmelCase_ ) , str(UpperCAmelCase_ ) ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase_ ) , "(0,1,0)" ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(UpperCAmelCase_ ) ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : Optional[int] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : Dict = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) SCREAMING_SNAKE_CASE : str = Vector([1, 2, 3] ) self.assertEqual("(14,32,50)" , str(a * x ) ) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2 ) ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(UpperCAmelCase_ ) ) def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : List[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) SCREAMING_SNAKE_CASE : List[str] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b ) ) def _A ( self : Union[str, Any] ): self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
319
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : Union[str, Any] = set_counts SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * num_sets SCREAMING_SNAKE_CASE : List[str] = list(range(UpperCAmelCase_ ) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[Any] = self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = src_parent SCREAMING_SNAKE_CASE : Optional[int] = self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Optional[Any] = max(self.max_set , UpperCAmelCase_ ) return True def _A ( self : Tuple , UpperCAmelCase_ : int ): if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
319
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = 2 @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 100 , UpperCAmelCase_ : float = 1.007 , UpperCAmelCase_ : float = 80 , UpperCAmelCase_ : float = 0.05 , UpperCAmelCase_ : float = 50 , ): # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE : Optional[int] = sigma_max # setable values SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : np.IntTensor = None SCREAMING_SNAKE_CASE : torch.FloatTensor = None # sigma(t_i) def _A ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[int] = None ): return sample def _A ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, torch.device] = None ): SCREAMING_SNAKE_CASE : Any = num_inference_steps SCREAMING_SNAKE_CASE : int = np.arange(0 , self.num_inference_steps )[::-1].copy() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] SCREAMING_SNAKE_CASE : str = torch.tensor(UpperCAmelCase_ , dtype=torch.floataa , device=UpperCAmelCase_ ) def _A ( self : List[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float , UpperCAmelCase_ : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE : Union[str, Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE : Any = 0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE : int = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase_ ).to(sample.device ) SCREAMING_SNAKE_CASE : Any = sigma + gamma * sigma SCREAMING_SNAKE_CASE : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _A ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE : Optional[Any] = sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE : Tuple = (sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase_ , derivative=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE : str = sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE : Any = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase_ , derivative=UpperCAmelCase_ , pred_original_sample=UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ): raise NotImplementedError()
319
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
1
import heapq import sys import numpy as np snake_case = tuple[int, int] class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] ): SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Optional[int] = set() def _A ( self : Optional[int] ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def _A ( self : List[Any] ): return len(self.elements ) == 0 def _A ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(UpperCAmelCase_ ) else: # update # print("update", item) SCREAMING_SNAKE_CASE : Optional[Any] = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : List[str] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): if item in self.set: self.set.remove(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Tuple = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Union[str, Any] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _A ( self : Dict ): return self.elements[0][1] def _A ( self : List[str] ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Tuple = heapq.heappop(self.elements ) self.set.remove(UpperCAmelCase_ ) return (priority, item) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.array(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = np.array(lowercase ) return np.linalg.norm(a - b ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return consistent_heuristic(lowercase , lowercase ) // t def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = g_function[start] + Wa * heuristics[i](lowercase , lowercase ) return ans def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.chararray((n, n) ) for i in range(lowercase ): for j in range(lowercase ): SCREAMING_SNAKE_CASE : Optional[int] = "*" for i in range(lowercase ): for j in range(lowercase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE : Dict = "#" SCREAMING_SNAKE_CASE : Optional[Any] = "-" SCREAMING_SNAKE_CASE : Optional[int] = back_pointer[goal] while x != start: ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[int] = x # print(x) SCREAMING_SNAKE_CASE : List[str] = "-" SCREAMING_SNAKE_CASE : Tuple = back_pointer[x] SCREAMING_SNAKE_CASE : Optional[int] = "-" for i in range(lowercase ): for j in range(lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) SCREAMING_SNAKE_CASE : List[str] = back_pointer[goal] while x != start: print(lowercase , end=" " ) SCREAMING_SNAKE_CASE : Optional[Any] = back_pointer[x] print(lowercase ) sys.exit() def lowerCamelCase__ ( lowercase ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): """simple docstring""" for itera in range(lowercase ): open_list[itera].remove_element(lowercase ) # print("s", s) # print("j", j) ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : Optional[Any] = s SCREAMING_SNAKE_CASE : str = (x - 1, y) SCREAMING_SNAKE_CASE : Optional[int] = (x + 1, y) SCREAMING_SNAKE_CASE : str = (x, y + 1) SCREAMING_SNAKE_CASE : Optional[Any] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = -1 SCREAMING_SNAKE_CASE : Dict = float("inf" ) if valid(lowercase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE : int = g_function[s] + 1 SCREAMING_SNAKE_CASE : Optional[int] = s if neighbours not in close_list_anchor: open_list[0].put(lowercase , key(lowercase , 0 , lowercase , lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase ): if key(lowercase , lowercase , lowercase , lowercase ) <= Wa * key( lowercase , 0 , lowercase , lowercase ): open_list[j].put( lowercase , key(lowercase , lowercase , lowercase , lowercase ) ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list snake_case = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} snake_case = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] snake_case = make_common_ground() snake_case = blocks_blk # hyper parameters snake_case = 1 snake_case = 1 snake_case = 20 snake_case = 3 # one consistent and two other inconsistent # start and end destination snake_case = (0, 0) snake_case = (n - 1, n - 1) snake_case = 1 def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = {start: 0, goal: float("inf" )} SCREAMING_SNAKE_CASE : str = {start: -1, goal: -1} SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Dict = set() for i in range(lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase , key(lowercase , lowercase , lowercase , lowercase ) ) SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(lowercase , lowercase , lowercase ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = open_list[i].top_show() visited.add(lowercase ) expand_state( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) close_list_inad.append(lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(lowercase , lowercase , lowercase ) else: SCREAMING_SNAKE_CASE : Optional[Any] = open_list[0].top_show() visited.add(lowercase ) expand_state( lowercase , 0 , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) close_list_anchor.append(lowercase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
319
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
319
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''flax'''] def __init__( self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : int , **UpperCAmelCase_ : str ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''flax'''] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''flax'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''flax'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ['''flax'''] def __init__( self : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''flax'''] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int] ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Optional[int] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Optional[int] = ['''flax'''] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = ['''flax'''] def __init__( self : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''flax'''] def __init__( self : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : str ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''flax'''] def __init__( self : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Tuple ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : int , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = ['''flax'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : str ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : int = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): requires_backends(self , ["flax"] ) @classmethod def _A ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ): requires_backends(cls , ["flax"] ) @classmethod def _A ( cls : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int] ): requires_backends(cls , ["flax"] )
319
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
1
from __future__ import annotations def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = set(lowercase ), [start] while stack: SCREAMING_SNAKE_CASE : str = stack.pop() explored.add(lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowercase ) return explored snake_case = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
319
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : CLIPSegForImageSegmentation , UpperCAmelCase_ : CLIPSegProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: SCREAMING_SNAKE_CASE : Any = ( f'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' f''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = dict(scheduler.config ) SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : Optional[int] = FrozenDict(UpperCAmelCase_ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: SCREAMING_SNAKE_CASE : str = ( f'''The configuration file of this scheduler: {scheduler} has not set the configuration''' " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = dict(scheduler.config ) SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : str = FrozenDict(UpperCAmelCase_ ) if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=UpperCAmelCase_ , segmentation_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , ) def _A ( self : Optional[Any] , UpperCAmelCase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_ ) def _A ( self : Tuple ): self.enable_attention_slicing(UpperCAmelCase_ ) def _A ( self : Any ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE : Optional[int] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _A ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : Dict , ): SCREAMING_SNAKE_CASE : Optional[Any] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) SCREAMING_SNAKE_CASE : int = self.segmentation_model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(UpperCAmelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask SCREAMING_SNAKE_CASE : Tuple = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , )
319
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = VideoToVideoSDPipeline UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} UpperCamelCase_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} UpperCamelCase_ : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase_ : Optional[int] = False # No `output_type`. UpperCamelCase_ : Tuple = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _A ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) SCREAMING_SNAKE_CASE : Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) SCREAMING_SNAKE_CASE : List[str] = CLIPTextModel(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _A ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=0 ): # 3 frames SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith("mps" ): SCREAMING_SNAKE_CASE : Any = torch.manual_seed(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : int = VideoToVideoSDPipeline(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = "np" SCREAMING_SNAKE_CASE : Any = sd_pipe(**UpperCAmelCase_ ).frames SCREAMING_SNAKE_CASE : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) SCREAMING_SNAKE_CASE : int = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _A ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _A ( self : str ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _A ( self : Optional[Any] ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def _A ( self : str ): pass def _A ( self : Union[str, Any] ): return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : int = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = torch.randn((1, 10, 3, 1024, 576) , generator=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = video.to("cuda" ) SCREAMING_SNAKE_CASE : str = "Spiderman is surfing" SCREAMING_SNAKE_CASE : Any = pipe(UpperCAmelCase_ , video=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=3 , output_type="pt" ).frames SCREAMING_SNAKE_CASE : Optional[int] = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
319
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCamelCase__ ( lowercase ): """simple docstring""" if "model" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace("model." , "" ) if "norm1" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: SCREAMING_SNAKE_CASE : List[str] = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: SCREAMING_SNAKE_CASE : int = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.split("." )[0].split("_" )[-1] SCREAMING_SNAKE_CASE : List[str] = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: SCREAMING_SNAKE_CASE : Union[str, Any] = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: SCREAMING_SNAKE_CASE : Dict = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: SCREAMING_SNAKE_CASE : Tuple = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: SCREAMING_SNAKE_CASE : List[str] = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: SCREAMING_SNAKE_CASE : str = "yoso." + orig_key return orig_key def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Optional[int] = orig_state_dict.pop(lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: SCREAMING_SNAKE_CASE : Dict = val SCREAMING_SNAKE_CASE : List[str] = orig_state_dict["cls.predictions.decoder.bias"] SCREAMING_SNAKE_CASE : int = torch.arange(lowercase ).expand((1, -1) ) + 2 return orig_state_dict def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.load(lowercase , map_location="cpu" )["model_state_dict"] SCREAMING_SNAKE_CASE : Optional[int] = YosoConfig.from_json_file(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = YosoForMaskedLM(lowercase ) SCREAMING_SNAKE_CASE : List[Any] = convert_checkpoint_helper(config.max_position_embeddings , lowercase ) print(model.load_state_dict(lowercase ) ) model.eval() model.save_pretrained(lowercase ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
319
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
1
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
319
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
1
snake_case = {str(digit): digit**5 for digit in range(10)} def lowerCamelCase__ ( lowercase ): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowercase ) ) def lowerCamelCase__ ( ): """simple docstring""" return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowercase ) ) if __name__ == "__main__": print(solution())
319
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCamelCase_ : Optional[str] = field(default=lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCamelCase_ : Optional[str] = field(default=lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCamelCase_ : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCamelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCamelCase_ : Optional[int] = field( default=lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = {} if self.train_dir is not None: SCREAMING_SNAKE_CASE : List[str] = self.train_dir if self.validation_dir is not None: SCREAMING_SNAKE_CASE : int = self.validation_dir SCREAMING_SNAKE_CASE : Any = data_files if data_files else None @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : str = field( default=lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCamelCase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCamelCase_ : str = field(default=lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCamelCase_ : bool = field( default=lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCamelCase_ : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCamelCase_ : bool = field( default=lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : float = field( default=1e-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = torch.stack([example["pixel_values"] for example in examples] ) return {"pixel_values": pixel_values} def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mae" , lowercase , lowercase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[Any] = training_args.get_process_log_level() logger.setLevel(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset. SCREAMING_SNAKE_CASE : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. SCREAMING_SNAKE_CASE : Optional[Any] = None if "validation" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase ) and data_args.train_val_split > 0.0: SCREAMING_SNAKE_CASE : Dict = ds["train"].train_test_split(data_args.train_val_split ) SCREAMING_SNAKE_CASE : int = split["train"] SCREAMING_SNAKE_CASE : List[str] = split["test"] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : int = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: SCREAMING_SNAKE_CASE : str = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Optional[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase ) else: SCREAMING_SNAKE_CASE : Any = ViTMAEConfig() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { "mask_ratio": model_args.mask_ratio, "norm_pix_loss": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase ) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase ) else: SCREAMING_SNAKE_CASE : int = ViTImageProcessor() # create model if model_args.model_name_or_path: SCREAMING_SNAKE_CASE : Tuple = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("Training new model from scratch" ) SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEForPreTraining(lowercase ) if training_args.do_train: SCREAMING_SNAKE_CASE : Union[str, Any] = ds["train"].column_names else: SCREAMING_SNAKE_CASE : str = ds["validation"].column_names if data_args.image_column_name is not None: SCREAMING_SNAKE_CASE : Tuple = data_args.image_column_name elif "image" in column_names: SCREAMING_SNAKE_CASE : List[Any] = "image" elif "img" in column_names: SCREAMING_SNAKE_CASE : Optional[Any] = "img" else: SCREAMING_SNAKE_CASE : Optional[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: SCREAMING_SNAKE_CASE : Any = image_processor.size["shortest_edge"] else: SCREAMING_SNAKE_CASE : str = (image_processor.size["height"], image_processor.size["width"]) SCREAMING_SNAKE_CASE : Union[str, Any] = Compose( [ Lambda(lambda lowercase : img.convert("RGB" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase ): SCREAMING_SNAKE_CASE : List[Any] = [transforms(lowercase ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Dict = ds["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase ) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : int = ( ds["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase ) # Compute absolute learning rate SCREAMING_SNAKE_CASE : List[str] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: SCREAMING_SNAKE_CASE : Optional[Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer SCREAMING_SNAKE_CASE : Tuple = Trainer( model=lowercase , args=lowercase , train_dataset=ds["train"] if training_args.do_train else None , eval_dataset=ds["validation"] if training_args.do_eval else None , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : Dict = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : int = last_checkpoint SCREAMING_SNAKE_CASE : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate() trainer.log_metrics("eval" , lowercase ) trainer.save_metrics("eval" , lowercase ) # Write model card and (optionally) push to hub SCREAMING_SNAKE_CASE : Optional[Any] = { "tasks": "masked-auto-encoding", "dataset": data_args.dataset_name, "tags": ["masked-auto-encoding"], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" main() if __name__ == "__main__": main()
319
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
1
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = [10, 20, 30, 40, 50, 60] SCREAMING_SNAKE_CASE : List[str] = [2, 4, 6, 8, 10, 12] SCREAMING_SNAKE_CASE : int = 100 self.assertEqual(kp.calc_profit(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , 210 ) def _A ( self : Tuple ): self.assertRaisesRegex(UpperCAmelCase_ , "max_weight must greater than zero." ) def _A ( self : Dict ): self.assertRaisesRegex(UpperCAmelCase_ , "Weight can not be negative." ) def _A ( self : Optional[Any] ): self.assertRaisesRegex(UpperCAmelCase_ , "Profit can not be negative." ) def _A ( self : Any ): self.assertRaisesRegex(UpperCAmelCase_ , "max_weight must greater than zero." ) def _A ( self : str ): self.assertRaisesRegex( UpperCAmelCase_ , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
319
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
def lowerCamelCase__ ( lowercase , lowercase = 0 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = length or len(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE : str = True return list_data if not swapped else bubble_sort(lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
import math import random from typing import Any from .hill_climbing import SearchProblem def lowerCamelCase__ ( lowercase , lowercase = True , lowercase = math.inf , lowercase = -math.inf , lowercase = math.inf , lowercase = -math.inf , lowercase = False , lowercase = 100 , lowercase = 0.01 , lowercase = 1 , ): """simple docstring""" SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[Any] = search_prob SCREAMING_SNAKE_CASE : Dict = start_temperate SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[Any] = None while not search_end: SCREAMING_SNAKE_CASE : Union[str, Any] = current_state.score() if best_state is None or current_score > best_state.score(): SCREAMING_SNAKE_CASE : Dict = current_state scores.append(lowercase ) iterations += 1 SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : Any = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to SCREAMING_SNAKE_CASE : Optional[int] = random.randint(0 , len(lowercase ) - 1 ) # picking a random neighbor SCREAMING_SNAKE_CASE : Tuple = neighbors.pop(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: SCREAMING_SNAKE_CASE : Optional[Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution SCREAMING_SNAKE_CASE : str = picked_neighbor else: SCREAMING_SNAKE_CASE : Any = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability SCREAMING_SNAKE_CASE : Optional[Any] = picked_neighbor SCREAMING_SNAKE_CASE : List[Any] = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor SCREAMING_SNAKE_CASE : Dict = True else: SCREAMING_SNAKE_CASE : Union[str, Any] = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(lowercase ) , lowercase ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) snake_case = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return (3 * x**2) - (6 * y) snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" ) snake_case = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) snake_case = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F"""{local_min.score()}""" )
319
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case = get_logger(__name__) snake_case = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. """ class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : str , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE : '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @add_start_docstrings(UpperCAmelCase_ ) def __call__( self : Optional[int] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ): for processor in self: SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) SCREAMING_SNAKE_CASE : int = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : float ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) SCREAMING_SNAKE_CASE : Optional[int] = temperature def __call__( self : List[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = scores / self.temperature return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : float , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) SCREAMING_SNAKE_CASE : Optional[int] = top_p SCREAMING_SNAKE_CASE : str = filter_value SCREAMING_SNAKE_CASE : List[str] = min_tokens_to_keep def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase_ , scores.shape[-1] ) SCREAMING_SNAKE_CASE : str = jnp.full_like(UpperCAmelCase_ , self.filter_value ) SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.softmax(UpperCAmelCase_ , axis=-1 ).cumsum(axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = cumulative_probs < self.top_p # include the token that is higher than top_p as well SCREAMING_SNAKE_CASE : Optional[int] = jnp.roll(UpperCAmelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase_ ) # min tokens to keep SCREAMING_SNAKE_CASE : Union[str, Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = jnp.where(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jax.lax.sort_key_val(UpperCAmelCase_ , UpperCAmelCase_ )[-1] return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float = -float("Inf" ) , UpperCAmelCase_ : int = 1 ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) SCREAMING_SNAKE_CASE : List[str] = max(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = filter_value def __call__( self : Dict , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = scores.shape SCREAMING_SNAKE_CASE : List[str] = jnp.full(batch_size * vocab_size , self.filter_value ) SCREAMING_SNAKE_CASE : List[str] = min(self.top_k , scores.shape[-1] ) # Safety check SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = lax.top_k(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to((jnp.arange(UpperCAmelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() SCREAMING_SNAKE_CASE : List[str] = topk_scores.flatten() SCREAMING_SNAKE_CASE : List[Any] = topk_indices.flatten() + shift SCREAMING_SNAKE_CASE : Dict = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = next_scores_flat.reshape(UpperCAmelCase_ , UpperCAmelCase_ ) return next_scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = bos_token_id def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Dict = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : List[str] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[str] = jnp.full(scores.shape , -float("inf" ) ) SCREAMING_SNAKE_CASE : str = 1 - jnp.bool_(cur_len - self.max_length + 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) SCREAMING_SNAKE_CASE : List[str] = min_length SCREAMING_SNAKE_CASE : Tuple = eos_token_id def __call__( self : Optional[Any] , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): # create boolean flag to decide if min length penalty should be applied SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.where(UpperCAmelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Optional[Any] = list(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = 1 - jnp.bool_(cur_len - self.begin_index ) SCREAMING_SNAKE_CASE : List[str] = jnp.where(UpperCAmelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase_ ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : List[Any] = list(UpperCAmelCase_ ) def __call__( self : Any , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : Tuple = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : List[Any] = dict(UpperCAmelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. SCREAMING_SNAKE_CASE : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: SCREAMING_SNAKE_CASE : Any = force_token_array.at[index].set(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase_ ) def __call__( self : Tuple , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : jnp.ndarray , UpperCAmelCase_ : int ): def _force_token(UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = scores.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] SCREAMING_SNAKE_CASE : Tuple = jnp.ones_like(UpperCAmelCase_ , dtype=scores.dtype ) * -float("inf" ) SCREAMING_SNAKE_CASE : Dict = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = lax.dynamic_update_slice(UpperCAmelCase_ , UpperCAmelCase_ , (0, current_token) ) return new_scores SCREAMING_SNAKE_CASE : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase_ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = generate_config.eos_token_id SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id SCREAMING_SNAKE_CASE : List[Any] = generate_config.no_timestamps_token_id + 1 SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase_ , "max_initial_timestamp_index" ): SCREAMING_SNAKE_CASE : List[Any] = generate_config.max_initial_timestamp_index else: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size if self.max_initial_timestamp_index is None: SCREAMING_SNAKE_CASE : List[str] = model_config.vocab_size def __call__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): # suppress <|notimestamps|> which is handled by without_timestamps SCREAMING_SNAKE_CASE : int = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase_ , UpperCAmelCase_ , ) return jnp.where( UpperCAmelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(cur_len == self.begin_index , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = self.timestamp_begin + self.max_initial_timestamp_index SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp SCREAMING_SNAKE_CASE : List[Any] = jax.nn.log_softmax(UpperCAmelCase_ , axis=-1 ) def handle_cumulative_probs(UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : List[str] = jax.vmap(UpperCAmelCase_ )(UpperCAmelCase_ , UpperCAmelCase_ ) return scores
319
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCamelCase_ : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCamelCase_ : bool = field(default=lowerCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) UpperCamelCase_ : Optional[str] = field( default=lowerCAmelCase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) UpperCamelCase_ : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCamelCase_ : bool = field( default=lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) SCREAMING_SNAKE_CASE : List[str] = import_module("tasks" ) try: SCREAMING_SNAKE_CASE : Any = getattr(lowercase , model_args.task_type ) SCREAMING_SNAKE_CASE : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowercase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task SCREAMING_SNAKE_CASE : Optional[int] = token_classification_task.get_labels(data_args.labels ) SCREAMING_SNAKE_CASE : Dict[int, str] = dict(enumerate(lowercase ) ) SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , idalabel=lowercase , labelaid={label: i for i, label in enumerate(lowercase )} , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE : Dict = ( TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Optional[int] = ( TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowercase , lowercase ) -> Tuple[List[int], List[int]]: SCREAMING_SNAKE_CASE : Any = np.argmax(lowercase , axis=2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = preds.shape SCREAMING_SNAKE_CASE : Any = [[] for _ in range(lowercase )] SCREAMING_SNAKE_CASE : Optional[int] = [[] for _ in range(lowercase )] for i in range(lowercase ): for j in range(lowercase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowercase ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowercase , lowercase ), "precision": precision_score(lowercase , lowercase ), "recall": recall_score(lowercase , lowercase ), "f1": fa_score(lowercase , lowercase ), } # Data collator SCREAMING_SNAKE_CASE : str = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE : List[Any] = Trainer( model=lowercase , args=lowercase , train_dataset=lowercase , eval_dataset=lowercase , compute_metrics=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE : List[str] = trainer.evaluate() SCREAMING_SNAKE_CASE : int = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(lowercase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowercase , lowercase ) writer.write("%s = %s\n" % (key, value) ) results.update(lowercase ) # Predict if training_args.do_predict: SCREAMING_SNAKE_CASE : Union[str, Any] = TokenClassificationDataset( token_classification_task=lowercase , data_dir=data_args.data_dir , tokenizer=lowercase , labels=lowercase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = trainer.predict(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = align_predictions(lowercase , lowercase ) SCREAMING_SNAKE_CASE : List[str] = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(lowercase , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , lowercase , lowercase ) writer.write("%s = %s\n" % (key, value) ) # Save predictions SCREAMING_SNAKE_CASE : int = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(lowercase , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(lowercase , lowercase , lowercase ) return results def lowerCamelCase__ ( lowercase ): """simple docstring""" main() if __name__ == "__main__": main()
319
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys snake_case = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
319
1
def lowerCamelCase__ ( lowercase = 4000000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = b, a + b return sum(lowercase ) if __name__ == "__main__": print(F"""{solution() = }""")
319
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
319
1
from numpy import exp, pi, sqrt def lowerCamelCase__ ( lowercase , lowercase = 0.0 , lowercase = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
319
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } snake_case = { """b0""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1_280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1_408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1_536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1_792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2_048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2_304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2_560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = EfficientNetConfig() SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["hidden_dim"] SCREAMING_SNAKE_CASE : Tuple = CONFIG_MAP[model_name]["width_coef"] SCREAMING_SNAKE_CASE : Optional[int] = CONFIG_MAP[model_name]["depth_coef"] SCREAMING_SNAKE_CASE : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = CONFIG_MAP[model_name]["dropout_rate"] SCREAMING_SNAKE_CASE : str = CONFIG_MAP[model_name]["dw_padding"] SCREAMING_SNAKE_CASE : str = "huggingface/label-files" SCREAMING_SNAKE_CASE : str = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : str = 1000 SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : Tuple = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : List[Any] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return im def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : int = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase , ) return preprocessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] SCREAMING_SNAKE_CASE : List[str] = sorted(set(lowercase ) ) SCREAMING_SNAKE_CASE : List[str] = len(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = {b: str(lowercase ) for b, i in zip(lowercase , range(lowercase ) )} SCREAMING_SNAKE_CASE : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: SCREAMING_SNAKE_CASE : Tuple = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) SCREAMING_SNAKE_CASE : int = {} for item in rename_keys: if item[0] in original_param_names: SCREAMING_SNAKE_CASE : Any = "efficientnet." + item[1] SCREAMING_SNAKE_CASE : Optional[Any] = "classifier.weight" SCREAMING_SNAKE_CASE : List[str] = "classifier.bias" return key_mapping def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue SCREAMING_SNAKE_CASE : str = key_mapping[key] if "_conv" in key and "kernel" in key: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(np.transpose(lowercase ) ) else: SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = model_classes[model_name]( include_top=lowercase , weights="imagenet" , input_tensor=lowercase , input_shape=lowercase , pooling=lowercase , classes=1000 , classifier_activation="softmax" , ) SCREAMING_SNAKE_CASE : List[Any] = original_model.trainable_variables SCREAMING_SNAKE_CASE : Dict = original_model.non_trainable_variables SCREAMING_SNAKE_CASE : Dict = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: SCREAMING_SNAKE_CASE : Tuple = param.numpy() SCREAMING_SNAKE_CASE : Tuple = list(tf_params.keys() ) # Load HuggingFace model SCREAMING_SNAKE_CASE : Tuple = get_efficientnet_config(lowercase ) SCREAMING_SNAKE_CASE : str = EfficientNetForImageClassification(lowercase ).eval() SCREAMING_SNAKE_CASE : Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) SCREAMING_SNAKE_CASE : Dict = rename_keys(lowercase ) replace_params(lowercase , lowercase , lowercase ) # Initialize preprocessor and preprocess input image SCREAMING_SNAKE_CASE : Optional[int] = convert_image_processor(lowercase ) SCREAMING_SNAKE_CASE : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = hf_model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits.detach().numpy() # Original model inference SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAP[model_name]["image_size"] SCREAMING_SNAKE_CASE : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) SCREAMING_SNAKE_CASE : Tuple = image.img_to_array(lowercase ) SCREAMING_SNAKE_CASE : Tuple = np.expand_dims(lowercase , axis=0 ) SCREAMING_SNAKE_CASE : Any = original_model.predict(lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowercase , lowercase , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowercase ): os.mkdir(lowercase ) # Save converted model and image processor hf_model.save_pretrained(lowercase ) preprocessor.save_pretrained(lowercase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowercase ) hf_model.push_to_hub(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } snake_case = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models SCREAMING_SNAKE_CASE : Union[str, Any] = "lm_head" SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(lowercase , lowercase ) if weight_type is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(lowercase , lowercase ).shape else: SCREAMING_SNAKE_CASE : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE : Tuple = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : List[Any] = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : List[str] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : str = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : int = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : Dict = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE : List[Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : Optional[int] = name.split(lowercase )[0].split("." )[-2] SCREAMING_SNAKE_CASE : Dict = mapped_key.replace("*" , lowercase ) if "weight_g" in name: SCREAMING_SNAKE_CASE : Tuple = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE : Any = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : str = "weight" else: SCREAMING_SNAKE_CASE : Optional[int] = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE : Optional[Any] = name.split("." ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(items[0] ) SCREAMING_SNAKE_CASE : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ): """simple docstring""" if config_path is not None: SCREAMING_SNAKE_CASE : Optional[Any] = UniSpeechConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE : int = Dictionary.load_from_json(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE : str = target_dict.pad_index SCREAMING_SNAKE_CASE : List[str] = target_dict.bos_index SCREAMING_SNAKE_CASE : List[str] = target_dict.eos_index SCREAMING_SNAKE_CASE : Union[str, Any] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(lowercase , "vocab.json" ) if not os.path.isdir(lowercase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) SCREAMING_SNAKE_CASE : int = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE : Optional[Any] = 42 SCREAMING_SNAKE_CASE : str = 43 with open(lowercase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowercase , lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaPhonemeCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowercase , ) SCREAMING_SNAKE_CASE : Optional[int] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) SCREAMING_SNAKE_CASE : int = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) SCREAMING_SNAKE_CASE : Dict = UniSpeechForCTC(lowercase ) else: SCREAMING_SNAKE_CASE : Optional[int] = UniSpeechForPreTraining(lowercase ) if is_finetuned: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) SCREAMING_SNAKE_CASE : Dict = model[0].eval() recursively_load_weights(lowercase , lowercase , lowercase ) hf_unispeech.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) snake_case = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
319
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } snake_case = { """moussaKam/mbarthez""": 1_024, """moussaKam/barthez""": 1_024, """moussaKam/barthez-orangesum-title""": 1_024, } snake_case = """▁""" class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = VOCAB_FILES_NAMES UpperCamelCase_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[str]="<s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="<mask>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : int , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} SCREAMING_SNAKE_CASE : str = len(self.sp_model ) - 1 SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _A ( self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] SCREAMING_SNAKE_CASE : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_ )) + [1] return [1] + ([0] * len(UpperCAmelCase_ )) + [1, 1] + ([0] * len(UpperCAmelCase_ )) + [1] def _A ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _A ( self : Tuple ): return len(self.sp_model ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : Union[str, Any] , UpperCAmelCase_ : str ): return self.sp_model.encode(UpperCAmelCase_ , out_type=UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE : Dict = self.sp_model.PieceToId(UpperCAmelCase_ ) return spm_id if spm_id else self.unk_token_id def _A ( self : Dict , UpperCAmelCase_ : Any ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCAmelCase_ ) def _A ( self : Tuple , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Dict = "" SCREAMING_SNAKE_CASE : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase_ ) + token SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : str = [] else: current_sub_tokens.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = False out_string += self.sp_model.decode(UpperCAmelCase_ ) return out_string.strip() def __getstate__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE : Any = None return state def __setstate__( self : int , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : List[str] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : Dict = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ , "wb" ) as fi: SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,)
319
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case = ["""small""", """medium""", """large"""] snake_case = """lm_head.decoder.weight""" snake_case = """lm_head.weight""" def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = torch.load(lowercase ) SCREAMING_SNAKE_CASE : Any = d.pop(lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) torch.save(lowercase , os.path.join(lowercase , lowercase ) ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") snake_case = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
319
1
from typing import Any def lowerCamelCase__ ( lowercase ): """simple docstring""" if not input_list: return [] SCREAMING_SNAKE_CASE : List[Any] = [input_list.count(lowercase ) for value in input_list] SCREAMING_SNAKE_CASE : Optional[Any] = max(lowercase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
319
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() snake_case = logging.get_logger(__name__) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = WavaVecaForSequenceClassification.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : Dict = downstream_dict["projector.weight"] SCREAMING_SNAKE_CASE : str = downstream_dict["projector.bias"] SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["model.post_net.linear.weight"] SCREAMING_SNAKE_CASE : Any = downstream_dict["model.post_net.linear.bias"] return model def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : List[str] = downstream_dict["model.linear.weight"] SCREAMING_SNAKE_CASE : Union[str, Any] = downstream_dict["model.linear.bias"] return model def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = WavaVecaForXVector.from_pretrained(lowercase , config=lowercase ) SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["connector.weight"] SCREAMING_SNAKE_CASE : List[str] = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): SCREAMING_SNAKE_CASE : Dict = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] SCREAMING_SNAKE_CASE : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] SCREAMING_SNAKE_CASE : Tuple = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] SCREAMING_SNAKE_CASE : Any = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] SCREAMING_SNAKE_CASE : List[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = torch.load(lowercase , map_location="cpu" ) SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint["Downstream"] SCREAMING_SNAKE_CASE : Union[str, Any] = WavaVecaConfig.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE : str = WavaVecaFeatureExtractor.from_pretrained( lowercase , return_attention_mask=lowercase , do_normalize=lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): SCREAMING_SNAKE_CASE : int = convert_classification(lowercase , lowercase , lowercase ) elif arch.endswith("ForAudioFrameClassification" ): SCREAMING_SNAKE_CASE : Union[str, Any] = convert_diarization(lowercase , lowercase , lowercase ) elif arch.endswith("ForXVector" ): SCREAMING_SNAKE_CASE : List[Any] = convert_xvector(lowercase , lowercase , lowercase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: SCREAMING_SNAKE_CASE : Dict = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") snake_case = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
319
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase__ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
319
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : list ): SCREAMING_SNAKE_CASE : Union[str, Any] = set_counts SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [1] * num_sets SCREAMING_SNAKE_CASE : List[str] = list(range(UpperCAmelCase_ ) ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE : List[Any] = self.get_parent(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 SCREAMING_SNAKE_CASE : List[str] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Tuple = src_parent SCREAMING_SNAKE_CASE : Optional[int] = self.set_counts[src_parent] SCREAMING_SNAKE_CASE : Optional[Any] = max(self.max_set , UpperCAmelCase_ ) return True def _A ( self : Tuple , UpperCAmelCase_ : int ): if self.parents[disj_set] == disj_set: return disj_set SCREAMING_SNAKE_CASE : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
319
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = SwinConfig() SCREAMING_SNAKE_CASE : Union[str, Any] = swin_name.split("_" ) SCREAMING_SNAKE_CASE : Tuple = name_split[1] SCREAMING_SNAKE_CASE : Dict = int(name_split[4] ) SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : Optional[Any] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE : List[Any] = 96 SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : str = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE : Optional[int] = 128 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE : str = 192 SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE : Any = 21841 else: SCREAMING_SNAKE_CASE : List[str] = 1000 SCREAMING_SNAKE_CASE : List[Any] = "huggingface/label-files" SCREAMING_SNAKE_CASE : Tuple = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE : int = {int(lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = img_size SCREAMING_SNAKE_CASE : List[str] = num_classes SCREAMING_SNAKE_CASE : int = embed_dim SCREAMING_SNAKE_CASE : str = depths SCREAMING_SNAKE_CASE : Union[str, Any] = num_heads SCREAMING_SNAKE_CASE : str = window_size return config def lowerCamelCase__ ( lowercase ): """simple docstring""" if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: SCREAMING_SNAKE_CASE : Tuple = "encoder." + name if "attn.proj" in name: SCREAMING_SNAKE_CASE : Any = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("attn" , "attention.self" ) if "norm1" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": SCREAMING_SNAKE_CASE : Union[str, Any] = "layernorm.weight" if name == "norm.bias": SCREAMING_SNAKE_CASE : Any = "layernorm.bias" if "head" in name: SCREAMING_SNAKE_CASE : Any = name.replace("head" , "classifier" ) else: SCREAMING_SNAKE_CASE : Tuple = "swin." + name return name def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Any = orig_state_dict.pop(lowercase ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE : Optional[int] = key.split("." ) SCREAMING_SNAKE_CASE : Optional[Any] = int(key_split[1] ) SCREAMING_SNAKE_CASE : Dict = int(key_split[3] ) SCREAMING_SNAKE_CASE : Optional[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Dict = val[:dim, :] SCREAMING_SNAKE_CASE : List[Any] = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Optional[Any] = val[ :dim ] SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : str = val[ -dim: ] else: SCREAMING_SNAKE_CASE : Optional[Any] = val return orig_state_dict def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = timm.create_model(lowercase , pretrained=lowercase ) timm_model.eval() SCREAMING_SNAKE_CASE : int = get_swin_config(lowercase ) SCREAMING_SNAKE_CASE : int = SwinForImageClassification(lowercase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = convert_state_dict(timm_model.state_dict() , lowercase ) model.load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowercase , return_tensors="pt" ) SCREAMING_SNAKE_CASE : Optional[Any] = timm_model(inputs["pixel_values"] ) SCREAMING_SNAKE_CASE : List[str] = model(**lowercase ).logits assert torch.allclose(lowercase , lowercase , atol=1E-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
319
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''timm_backbone''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = backbone SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = features_only SCREAMING_SNAKE_CASE : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[Any] = out_indices if out_indices is not None else (-1,)
319
1
def lowerCamelCase__ ( lowercase , lowercase = False ): """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis SCREAMING_SNAKE_CASE : Optional[Any] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] SCREAMING_SNAKE_CASE : int = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(lowercase , 1 ): if n < _p: # then we have our last prime to check SCREAMING_SNAKE_CASE : Dict = primes[:idx] break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: SCREAMING_SNAKE_CASE : Any = False for r in range(lowercase ): SCREAMING_SNAKE_CASE : Dict = pow(lowercase , d * 2**r , lowercase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): SCREAMING_SNAKE_CASE : int = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase__ ( ): """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
319
from math import sqrt def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 for i in range(1 , int(sqrt(lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase ): total += i + n // i elif i == sqrt(lowercase ): total += i return total - n def lowerCamelCase__ ( lowercase = 10000 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = sum( i for i in range(1 , lowercase ) if sum_of_divisors(sum_of_divisors(lowercase ) ) == i and sum_of_divisors(lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
319
1
def lowerCamelCase__ ( ): """simple docstring""" return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] snake_case = generate_large_matrix() snake_case = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( lowercase ): """simple docstring""" assert all(row == sorted(lowercase , reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase , reverse=lowercase ) for col in zip(*lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: SCREAMING_SNAKE_CASE : List[Any] = (left + right) // 2 SCREAMING_SNAKE_CASE : Optional[int] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: SCREAMING_SNAKE_CASE : List[Any] = mid + 1 else: SCREAMING_SNAKE_CASE : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : List[str] = len(grid[0] ) for i in range(len(lowercase ) ): SCREAMING_SNAKE_CASE : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def lowerCamelCase__ ( lowercase ): """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def lowerCamelCase__ ( ): """simple docstring""" from timeit import timeit print("Running benchmarks" ) SCREAMING_SNAKE_CASE : List[str] = ( "from __main__ import count_negatives_binary_search, " "count_negatives_brute_force, count_negatives_brute_force_with_break, grid" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): SCREAMING_SNAKE_CASE : Union[str, Any] = timeit(F'''{func}(grid=grid)''' , setup=lowercase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
319
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = AlbertConfig.from_json_file(lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) SCREAMING_SNAKE_CASE : int = AlbertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
319
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = """▁""" snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } snake_case = { """google/pegasus-xsum""": 512, } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = PegasusTokenizer UpperCamelCase_ : str = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[int]="<pad>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : str="<mask_2>" , UpperCAmelCase_ : Optional[int]="<mask_1>" , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=103 , **UpperCAmelCase_ : Optional[int] , ): SCREAMING_SNAKE_CASE : Optional[Any] = offset if additional_special_tokens is not None: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError( f'''additional_special_tokens should be of type {type(UpperCAmelCase_ )}, but is''' f''' {type(UpperCAmelCase_ )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(UpperCAmelCase_ ) , self.offset - 1 ) ] if len(set(UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) SCREAMING_SNAKE_CASE : int = additional_special_tokens_extended else: SCREAMING_SNAKE_CASE : Tuple = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , mask_token_sent=UpperCAmelCase_ , offset=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : str = vocab_file SCREAMING_SNAKE_CASE : str = False if not self.vocab_file else True def _A ( self : Optional[Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[int] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _A ( self : int , UpperCAmelCase_ : List , UpperCAmelCase_ : Optional[List] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return self._special_token_mask(UpperCAmelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCAmelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : List[str] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
319
1
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = SwinConfig(image_size=192 ) if "base" in model_name: SCREAMING_SNAKE_CASE : int = 6 SCREAMING_SNAKE_CASE : Optional[int] = 128 SCREAMING_SNAKE_CASE : Union[str, Any] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : Dict = (4, 8, 16, 32) elif "large" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = 12 SCREAMING_SNAKE_CASE : Optional[int] = 192 SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) SCREAMING_SNAKE_CASE : Any = window_size SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : Union[str, Any] = num_heads return config def lowerCamelCase__ ( lowercase ): """simple docstring""" if "encoder.mask_token" in name: SCREAMING_SNAKE_CASE : int = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: SCREAMING_SNAKE_CASE : int = name.replace("attn" , "attention.self" ) if "norm1" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE : Optional[int] = "layernorm.weight" if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE : Union[str, Any] = "layernorm.bias" if "decoder" in name: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = "swin." + name return name def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Optional[int] = orig_state_dict.pop(lowercase ) if "attn_mask" in key: pass elif "qkv" in key: SCREAMING_SNAKE_CASE : List[Any] = key.split("." ) SCREAMING_SNAKE_CASE : List[Any] = int(key_split[2] ) SCREAMING_SNAKE_CASE : Any = int(key_split[4] ) SCREAMING_SNAKE_CASE : Dict = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Tuple = val[:dim, :] SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : List[Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : List[str] = val[ :dim ] SCREAMING_SNAKE_CASE : Optional[Any] = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : Optional[int] = val[ -dim: ] else: SCREAMING_SNAKE_CASE : Union[str, Any] = val return orig_state_dict def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(lowercase , map_location="cpu" )["model"] SCREAMING_SNAKE_CASE : Dict = get_swin_config(lowercase ) SCREAMING_SNAKE_CASE : Any = SwinForMaskedImageModeling(lowercase ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor(size={"height": 192, "width": 192} ) SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE : Dict = image_processor(images=lowercase , return_tensors="pt" ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**lowercase ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
319
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=100 , UpperCAmelCase_ : Optional[Any]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=32 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Any=37 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Any=[0, 1, 2, 3] , ): SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Union[str, Any] = 100 SCREAMING_SNAKE_CASE : Tuple = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : str = use_labels SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Tuple = scope SCREAMING_SNAKE_CASE : int = out_indices SCREAMING_SNAKE_CASE : Optional[int] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Optional[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : List[str] = num_patches + 1 def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _A ( self : str ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _A ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : List[str] = BeitModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : int = BeitForMaskedImageModeling(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _A ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE : List[str] = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[int] = BeitForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : int = BeitForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = BeitForSemanticSegmentation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Dict = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase_ : Optional[int] = ( { '''feature-extraction''': BeitModel, '''image-classification''': BeitForImageClassification, '''image-segmentation''': BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : int = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = BeitModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def _A ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _A ( self : int ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _A ( self : Dict ): pass def _A ( self : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def _A ( self : Any ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ ) def _A ( self : Tuple ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Dict = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCAmelCase_ ), BeitForMaskedImageModeling]: continue SCREAMING_SNAKE_CASE : Dict = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(**UpperCAmelCase_ ).loss loss.backward() def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : int = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCAmelCase_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : str = model_class(UpperCAmelCase_ ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase_ ) model.train() SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(**UpperCAmelCase_ ).loss loss.backward() def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _A ( self : List[Any] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[Any] = BeitModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self : int ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : List[str] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE : str = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).pixel_values.to(UpperCAmelCase_ ) # prepare bool_masked_pos SCREAMING_SNAKE_CASE : int = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(pixel_values=UpperCAmelCase_ , bool_masked_pos=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase_ , atol=1E-2 ) ) @slow def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = self.default_image_processor SCREAMING_SNAKE_CASE : Tuple = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : int = torch.Size((1, 1000) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) SCREAMING_SNAKE_CASE : List[Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase_ ) @slow def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) ) SCREAMING_SNAKE_CASE : str = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase_ ) @slow def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Tuple = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE : str = model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = BeitImageProcessor(do_resize=UpperCAmelCase_ , size=640 , do_center_crop=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE : Tuple = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE : List[Any] = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : Any = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=UpperCAmelCase_ , ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) ) @slow def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[int] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) SCREAMING_SNAKE_CASE : Optional[int] = model.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = BeitImageProcessor(do_resize=UpperCAmelCase_ , size=640 , do_center_crop=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) SCREAMING_SNAKE_CASE : List[Any] = Image.open(ds[0]["file"] ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ , target_sizes=[(500, 300)] ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ )
319
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self : Optional[int] , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 20 , UpperCAmelCase_ : int = 768 , UpperCAmelCase_ : List[Any]=77 , UpperCAmelCase_ : Tuple=4 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : str = "silu" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = "linear" , UpperCAmelCase_ : Optional[str] = "prd" , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , ): super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : str = attention_head_dim SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads * attention_head_dim SCREAMING_SNAKE_CASE : Optional[int] = additional_embeddings SCREAMING_SNAKE_CASE : Optional[int] = time_embed_dim or inner_dim SCREAMING_SNAKE_CASE : Any = embedding_proj_dim or embedding_dim SCREAMING_SNAKE_CASE : Optional[int] = clip_embed_dim or embedding_dim SCREAMING_SNAKE_CASE : Any = Timesteps(UpperCAmelCase_ , UpperCAmelCase_ , 0 ) SCREAMING_SNAKE_CASE : Optional[Any] = TimestepEmbedding(UpperCAmelCase_ , UpperCAmelCase_ , out_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) if embedding_proj_norm_type is None: SCREAMING_SNAKE_CASE : List[str] = None elif embedding_proj_norm_type == "layer": SCREAMING_SNAKE_CASE : Optional[Any] = nn.LayerNorm(UpperCAmelCase_ ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) if encoder_hid_proj_type is None: SCREAMING_SNAKE_CASE : str = None elif encoder_hid_proj_type == "linear": SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCAmelCase_ ) ) if added_emb_type == "prd": SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.zeros(1 , 1 , UpperCAmelCase_ ) ) elif added_emb_type is None: SCREAMING_SNAKE_CASE : Optional[int] = None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) SCREAMING_SNAKE_CASE : List[Any] = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dropout=UpperCAmelCase_ , activation_fn="gelu" , attention_bias=UpperCAmelCase_ , ) for d in range(UpperCAmelCase_ ) ] ) if norm_in_type == "layer": SCREAMING_SNAKE_CASE : str = nn.LayerNorm(UpperCAmelCase_ ) elif norm_in_type is None: SCREAMING_SNAKE_CASE : Optional[int] = None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) SCREAMING_SNAKE_CASE : Tuple = nn.LayerNorm(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) SCREAMING_SNAKE_CASE : List[Any] = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , UpperCAmelCase_ , persistent=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.zeros(1 , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.zeros(1 , UpperCAmelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = {} def fn_recursive_add_processors(UpperCAmelCase_ : str , UpperCAmelCase_ : torch.nn.Module , UpperCAmelCase_ : Dict[str, AttentionProcessor] ): if hasattr(UpperCAmelCase_ , "set_processor" ): SCREAMING_SNAKE_CASE : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , UpperCAmelCase_ , UpperCAmelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return processors def _A ( self : str , UpperCAmelCase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): SCREAMING_SNAKE_CASE : str = len(self.attn_processors.keys() ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(UpperCAmelCase_ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(UpperCAmelCase_ : str , UpperCAmelCase_ : torch.nn.Module , UpperCAmelCase_ : Optional[int] ): if hasattr(UpperCAmelCase_ , "set_processor" ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): module.set_processor(UpperCAmelCase_ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , UpperCAmelCase_ , UpperCAmelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : int ): self.set_attn_processor(AttnProcessor() ) def _A ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.BoolTensor] = None , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states.shape[0] SCREAMING_SNAKE_CASE : Any = timestep if not torch.is_tensor(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : Optional[Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML SCREAMING_SNAKE_CASE : Any = timesteps * torch.ones(UpperCAmelCase_ , dtype=timesteps.dtype , device=timesteps.device ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.time_proj(UpperCAmelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. SCREAMING_SNAKE_CASE : Tuple = timesteps_projected.to(dtype=self.dtype ) SCREAMING_SNAKE_CASE : List[Any] = self.time_embedding(UpperCAmelCase_ ) if self.embedding_proj_norm is not None: SCREAMING_SNAKE_CASE : Any = self.embedding_proj_norm(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.embedding_proj(UpperCAmelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.encoder_hidden_states_proj(UpperCAmelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) SCREAMING_SNAKE_CASE : Dict = self.proj_in(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = self.positional_embedding.to(hidden_states.dtype ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCAmelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: SCREAMING_SNAKE_CASE : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states[:, None, :] SCREAMING_SNAKE_CASE : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: SCREAMING_SNAKE_CASE : List[str] = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCAmelCase_ , -1 , -1 ) additional_embeds.append(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat( UpperCAmelCase_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens SCREAMING_SNAKE_CASE : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: SCREAMING_SNAKE_CASE : Union[str, Any] = F.pad( UpperCAmelCase_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) SCREAMING_SNAKE_CASE : Optional[int] = hidden_states + positional_embeddings if attention_mask is not None: SCREAMING_SNAKE_CASE : Any = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 SCREAMING_SNAKE_CASE : Optional[int] = F.pad(UpperCAmelCase_ , (0, self.additional_embeddings) , value=0.0 ) SCREAMING_SNAKE_CASE : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) SCREAMING_SNAKE_CASE : List[str] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: SCREAMING_SNAKE_CASE : str = self.norm_in(UpperCAmelCase_ ) for block in self.transformer_blocks: SCREAMING_SNAKE_CASE : int = block(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.norm_out(UpperCAmelCase_ ) if self.prd_embedding is not None: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states[:, -1] else: SCREAMING_SNAKE_CASE : Any = hidden_states[:, additional_embeddings_len:] SCREAMING_SNAKE_CASE : Any = self.proj_to_clip_embeddings(UpperCAmelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCAmelCase_ ) def _A ( self : Union[str, Any] , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Optional[int] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
319
import functools def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if not isinstance(lowercase , lowercase ) or not all(isinstance(lowercase , lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(lowercase ) != 3 or not all(isinstance(lowercase , lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(lowercase ) == 0: return 0 if min(lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(lowercase ) >= 366: raise ValueError("All days elements should be less than 366" ) SCREAMING_SNAKE_CASE : Dict = set(lowercase ) @functools.cache def dynamic_programming(lowercase ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self : Any ): SCREAMING_SNAKE_CASE : Optional[Any] = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE : str = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE : str = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3 ) ) @slow def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : int = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase_ )["last_hidden_state"].detach() self.assertEqual(output.shape , UpperCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1E-3 ) )
319
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
319
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore snake_case = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" snake_case = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") snake_case = [file for file in filepaths if """ """ in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") snake_case = [file for file in filepaths if """-""" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") snake_case = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") snake_case = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
319
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Optional[Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Tuple = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : str = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[int] = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : Union[str, Any] = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : Optional[Any] = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Union[str, Any] = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : Any = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Tuple = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Union[str, Any] = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : Union[str, Any] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : Union[str, Any] = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py snake_case = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. snake_case = direct_transformers_import(PATH_TO_TRANSFORMERS) snake_case = transformers.models.auto.configuration_auto.CONFIG_MAPPING snake_case = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): SCREAMING_SNAKE_CASE : List[str] = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowercase , ) is not None ): SCREAMING_SNAKE_CASE : List[str] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: SCREAMING_SNAKE_CASE : List[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files SCREAMING_SNAKE_CASE : int = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] SCREAMING_SNAKE_CASE : List[Any] = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed SCREAMING_SNAKE_CASE : List[Any] = True if not attribute_used: SCREAMING_SNAKE_CASE : str = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: SCREAMING_SNAKE_CASE : List[str] = True elif attribute in ["tie_word_embeddings"] and default_value is False: SCREAMING_SNAKE_CASE : Tuple = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: SCREAMING_SNAKE_CASE : Any = True elif attribute.endswith("_token_id" ): SCREAMING_SNAKE_CASE : int = True # configuration class specific cases if not case_allowed: SCREAMING_SNAKE_CASE : int = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) SCREAMING_SNAKE_CASE : Any = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = dict(inspect.signature(config_class.__init__ ).parameters ) SCREAMING_SNAKE_CASE : Optional[Any] = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] SCREAMING_SNAKE_CASE : str = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass SCREAMING_SNAKE_CASE : str = {} if len(config_class.attribute_map ) > 0: SCREAMING_SNAKE_CASE : List[str] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files SCREAMING_SNAKE_CASE : List[str] = inspect.getsourcefile(lowercase ) SCREAMING_SNAKE_CASE : Any = os.path.dirname(lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. SCREAMING_SNAKE_CASE : Dict = [os.path.join(lowercase , lowercase ) for fn in os.listdir(lowercase ) if fn.startswith("modeling_" )] # Get the source code strings SCREAMING_SNAKE_CASE : Union[str, Any] = [] for path in modeling_paths: if os.path.isfile(lowercase ): with open(lowercase ) as fp: modeling_sources.append(fp.read() ) SCREAMING_SNAKE_CASE : Any = [] for config_param, default_value in zip(lowercase , lowercase ): # `attributes` here is all the variant names for `config_param` SCREAMING_SNAKE_CASE : Dict = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowercase , lowercase , lowercase , lowercase ): unused_attributes.append(attributes[0] ) return sorted(lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) SCREAMING_SNAKE_CASE : Tuple = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowercase : inspect.isclass(lowercase ) and issubclass(lowercase , lowercase ) and inspect.getmodule(lowercase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: SCREAMING_SNAKE_CASE : Any = check_config_attributes_being_used(lowercase ) if len(lowercase ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = unused_attributes if len(lowercase ) > 0: SCREAMING_SNAKE_CASE : Optional[Any] = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(lowercase ) if __name__ == "__main__": check_config_attributes()
319
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''ClapFeatureExtractor''' UpperCamelCase_ : Any = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) def __call__( self : Optional[Any] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[str]=None , **UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("sampling_rate" , UpperCAmelCase_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if audios is not None: SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor( UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) if text is not None and audios is not None: SCREAMING_SNAKE_CASE : Optional[Any] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ ) def _A ( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _A ( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property def _A ( self : str ): SCREAMING_SNAKE_CASE : Any = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
319
1