code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" __UpperCamelCase : Tuple = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' __UpperCamelCase : Tuple = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __UpperCamelCase : Dict = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
369
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a ( a__ ): snake_case__ = (DPMSolverSinglestepScheduler,) snake_case__ = (('''num_inference_steps''', 2_5),) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**_snake_case ) return config def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase ,lowerCAmelCase = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , _snake_case=None , **_snake_case ): """simple docstring""" if scheduler is None: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase = 50 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase = self.full_loop(scheduler=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase = self.full_loop(scheduler=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=_snake_case ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='dpmsolver++' , solver_order=_snake_case , solver_type=_snake_case , ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) lowerCAmelCase = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case ).any(), "Samples have nan numbers" def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case ) self.check_over_configs(lower_order_final=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(variance_type=_snake_case ) self.check_over_configs(variance_type='learned_range' ) def UpperCamelCase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop(use_karras_sigmas=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0 ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample assert sample.dtype == torch.floataa
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ) -> Union[str, Any]: lowerCAmelCase = 384 if "tiny" in model_name: lowerCAmelCase = [3, 3, 9, 3] lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [128, 256, 512, 1024] lowerCAmelCase = 512 if "large" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [192, 384, 768, 1536] lowerCAmelCase = 768 if "xlarge" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [256, 512, 1024, 2048] lowerCAmelCase = 1024 # set label information lowerCAmelCase = 150 lowerCAmelCase = 'huggingface/label-files' lowerCAmelCase = 'ade20k-id2label.json' lowerCAmelCase = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = ConvNextConfig( depths=_UpperCAmelCase , hidden_sizes=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) lowerCAmelCase = UperNetConfig( backbone_config=_UpperCAmelCase , auxiliary_in_channels=_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase , ) return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ) -> Tuple: lowerCAmelCase = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ) -> List[Any]: lowerCAmelCase = dct.pop(_UpperCAmelCase ) lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ) -> Optional[Any]: lowerCAmelCase = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } lowerCAmelCase = model_name_to_url[model_name] lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['state_dict'] lowerCAmelCase = get_upernet_config(_UpperCAmelCase ) lowerCAmelCase = UperNetForSemanticSegmentation(_UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) if "bn" in key: lowerCAmelCase = key.replace('bn' , 'batch_norm' ) lowerCAmelCase = val # rename keys lowerCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # verify on image lowerCAmelCase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SegformerImageProcessor() lowerCAmelCase = processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values with torch.no_grad(): lowerCAmelCase = model(_UpperCAmelCase ) if model_name == "upernet-convnext-tiny": lowerCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCAmelCase = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCAmelCase = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCAmelCase = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCAmelCase = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f'''upernet-convnext-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
371
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=_snake_case , dtype=jnp.bfloataa ) lowerCAmelCase ,lowerCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_snake_case , from_pt=_snake_case , dtype=jnp.bfloataa ) lowerCAmelCase = controlnet_params lowerCAmelCase = 'bird' lowerCAmelCase = jax.device_count() lowerCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCAmelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(_snake_case , jax.device_count() ) lowerCAmelCase = replicate(_snake_case ) lowerCAmelCase = shard(_snake_case ) lowerCAmelCase = shard(_snake_case ) lowerCAmelCase = pipe( prompt_ids=_snake_case , image=_snake_case , params=_snake_case , prng_seed=_snake_case , num_inference_steps=50 , jit=_snake_case , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=_snake_case , dtype=jnp.bfloataa ) lowerCAmelCase ,lowerCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_snake_case , from_pt=_snake_case , dtype=jnp.bfloataa ) lowerCAmelCase = controlnet_params lowerCAmelCase = 'Chef in the kitchen' lowerCAmelCase = jax.device_count() lowerCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCAmelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(_snake_case , jax.device_count() ) lowerCAmelCase = replicate(_snake_case ) lowerCAmelCase = shard(_snake_case ) lowerCAmelCase = shard(_snake_case ) lowerCAmelCase = pipe( prompt_ids=_snake_case , image=_snake_case , params=_snake_case , prng_seed=_snake_case , num_inference_steps=50 , jit=_snake_case , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
350
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
0
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __UpperCamelCase : Optional[int] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) __UpperCamelCase : Dict = [] __UpperCamelCase : Any = [] __UpperCamelCase : str = {'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} __UpperCamelCase : List[str] = [ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': f'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', '''emoji''': True, }, } ] __UpperCamelCase : Dict = 0 for log in Path().glob('''*.log'''): __UpperCamelCase : Dict = 0 with open(log, '''r''') as f: for line in f: __UpperCamelCase : List[str] = json.loads(line) if line.get('''nodeid''', '''''') != "": __UpperCamelCase : str = line['''nodeid'''] if line.get('''duration''', None) is not None: __UpperCamelCase : Any = f'''{line['duration']:.4f}''' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __UpperCamelCase : Any = [] log.unlink() __UpperCamelCase : int = '''''' __UpperCamelCase : Union[str, Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __UpperCamelCase : Union[str, Any] = [] __UpperCamelCase : str = {} for test in failed_tests: __UpperCamelCase : Tuple = test[0].split('''::''') __UpperCamelCase : str = data[0].split('''/''')[-1] if data[0] not in filesafailed: __UpperCamelCase : Optional[Any] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __UpperCamelCase : Union[str, Any] = [test[0] for test in failed_table] __UpperCamelCase : Dict = list(set(files)) # Count number of instances in failed_tests __UpperCamelCase : Tuple = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __UpperCamelCase : str = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __UpperCamelCase : Union[str, Any] = '''Too many failed tests, please see the full report in the Action results.''' __UpperCamelCase : str = len(err) + 10 __UpperCamelCase : Union[str, Any] = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __UpperCamelCase : int = '''No failed tests! 🤗''' print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient __UpperCamelCase : Tuple = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": __UpperCamelCase : Any = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) __UpperCamelCase : int = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': f'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) __UpperCamelCase : Dict = { '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': f'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) __UpperCamelCase : Optional[Any] = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) __UpperCamelCase : str = response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __UpperCamelCase : int = '''''' for i, row in enumerate(test_failures): if row[0] != test_class: __UpperCamelCase : Optional[int] = row[0] else: __UpperCamelCase : List[str] = '''''' __UpperCamelCase : Optional[Any] = { '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
351
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : List[str] = {'''vocab_file''': '''vocab.txt'''} __UpperCamelCase : Tuple = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __UpperCamelCase : Dict = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } __UpperCamelCase : List[str] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ConvBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
352
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
0
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ): try: with open(_UpperCAmelCase , 'rb' ) as flax_state_f: lowerCAmelCase = from_bytes(_UpperCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(_UpperCAmelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCAmelCase , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa , _UpperCAmelCase ) ).values() if any(_UpperCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) lowerCAmelCase = jax.tree_util.tree_map( lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCAmelCase ) lowerCAmelCase = '' lowerCAmelCase = flatten_dict(_UpperCAmelCase , sep='.' ) lowerCAmelCase = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase = [] lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase = flax_key_tuple_array[:-1] + ['weight'] lowerCAmelCase = jnp.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase = flax_key_tuple_array[:-1] + ['weight'] lowerCAmelCase = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(_UpperCAmelCase ): lowerCAmelCase = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) lowerCAmelCase = '.'.join(_UpperCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowerCAmelCase = np.asarray(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , np.ndarray ) else flax_tensor lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ) # remove from missing keys missing_keys.remove(_UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCAmelCase ) pt_model.load_state_dict(_UpperCAmelCase ) # re-transform missing_keys to list lowerCAmelCase = list(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(_UpperCAmelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) return pt_model
353
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
0
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class a ( a__ ): snake_case__ = '''gpt_neox''' def __init__( self , _snake_case=5_04_32 , _snake_case=61_44 , _snake_case=44 , _snake_case=64 , _snake_case=2_45_76 , _snake_case="gelu" , _snake_case=0.25 , _snake_case=1_00_00 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=20_48 , _snake_case=0.02 , _snake_case=1E-5 , _snake_case=True , _snake_case=0 , _snake_case=2 , _snake_case=False , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = rotary_pct lowerCAmelCase = rotary_emb_base lowerCAmelCase = attention_dropout lowerCAmelCase = hidden_dropout lowerCAmelCase = classifier_dropout lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_cache lowerCAmelCase = tie_word_embeddings lowerCAmelCase = use_parallel_residual lowerCAmelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def UpperCamelCase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'got {self.rope_scaling}' ) lowerCAmelCase = self.rope_scaling.get('type' , _snake_case ) lowerCAmelCase = self.rope_scaling.get('factor' , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
355
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
0
"""simple docstring""" __UpperCamelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_58_18, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(_UpperCAmelCase )}' ) raise ValueError(_UpperCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
356
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase : int = ['''small''', '''medium''', '''large'''] __UpperCamelCase : str = '''lm_head.decoder.weight''' __UpperCamelCase : Dict = '''lm_head.weight''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase : Optional[int] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __UpperCamelCase : str = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
309
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) lowerCAmelCase = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above lowerCAmelCase = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above lowerCAmelCase = tf_top_k_top_p_filtering(_snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) lowerCAmelCase = output[output != -float('inf' )] lowerCAmelCase = tf.cast( tf.where(tf.not_equal(_snake_case , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-12 ) tf.debugging.assert_equal(_snake_case , _snake_case ) @require_tf class a ( unittest.TestCase , a__ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): snake_case__ = { '''AutoModelForCausalLM''': TFAutoModelForCausalLM, '''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq, '''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM, '''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq, '''LogitsProcessorList''': TFLogitsProcessorList, '''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor, '''create_tensor_fn''': tf.convert_to_tensor, '''floats_tensor''': floats_tensor, '''return_tensors''': '''tf''', } @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 2 lowerCAmelCase = 2 class a ( tf.Module ): def __init__( self , _snake_case ): """simple docstring""" super(_snake_case , self ).__init__() lowerCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} lowerCAmelCase = [[2, 0], [1_02, 1_03]] lowerCAmelCase = [[1, 0], [1, 1]] lowerCAmelCase = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase = tf.saved_model.load(_snake_case ).signatures['serving_default'] for batch_size in range(1 , len(_snake_case ) + 1 ): lowerCAmelCase = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } lowerCAmelCase = serving_func(**_snake_case )['sequences'] lowerCAmelCase = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 1 lowerCAmelCase = 2 class a ( tf.Module ): def __init__( self , _snake_case ): """simple docstring""" super(_snake_case , self ).__init__() lowerCAmelCase = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=_snake_case , ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.model.generate( input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , ) return {"sequences": outputs["sequences"]} lowerCAmelCase = [[2], [1_02, 1_03]] lowerCAmelCase = [[1], [1, 1]] lowerCAmelCase = DummyModel(model=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_snake_case , _snake_case , signatures={'serving_default': dummy_model.serving} ) lowerCAmelCase = tf.saved_model.load(_snake_case ).signatures['serving_default'] for input_row in range(len(_snake_case ) ): lowerCAmelCase = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } lowerCAmelCase = serving_func(**_snake_case )['sequences'] lowerCAmelCase = test_model.generate(**_snake_case , max_new_tokens=_snake_case ) tf.debugging.assert_equal(_snake_case , _snake_case ) @slow @require_tensorflow_text def UpperCamelCase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=_snake_case ) class a ( tf.keras.layers.Layer ): def __init__( self ): """simple docstring""" super().__init__() lowerCAmelCase = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_snake_case , 'spiece.model' ) , 'rb' ).read() ) lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def UpperCamelCase__ ( self , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = self.tokenizer.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = text.pad_model_inputs( _snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) lowerCAmelCase = self.model.generate(input_ids=_snake_case , attention_mask=_snake_case ) return self.tokenizer.detokenize(_snake_case ) lowerCAmelCase = CompleteSentenceTransformer() lowerCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) lowerCAmelCase = complete_model(_snake_case ) lowerCAmelCase = tf.keras.Model(_snake_case , _snake_case ) keras_model.save(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } lowerCAmelCase = 14 lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 'Hello, my dog is cute and' lowerCAmelCase = tokenizer(_snake_case , return_tensors='tf' ) lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase = 6_38 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) lowerCAmelCase = [6_38, 1_98] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) lowerCAmelCase = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase = 'Hugging Face is a technology company based in New York and Paris.' lowerCAmelCase = bart_tokenizer(_snake_case , return_tensors='tf' ).input_ids lowerCAmelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase = bart_model.generate(_snake_case ).numpy() class a ( a__ ): def UpperCamelCase__ ( self , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" return super().call(_snake_case , **_snake_case ) lowerCAmelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) lowerCAmelCase = bart_model.generate(_snake_case , foo='bar' ).numpy() self.assertTrue(np.array_equal(_snake_case , _snake_case ) ) class a ( bart_model.model.encoder.__class__ ): def UpperCamelCase__ ( self , _snake_case , **_snake_case ): """simple docstring""" return super().call(_snake_case , **_snake_case ) lowerCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared ) lowerCAmelCase = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) lowerCAmelCase = bart_model.generate(_snake_case ).numpy() with self.assertRaises(_snake_case ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_snake_case , foo='bar' )
357
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
0
"""simple docstring""" import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class a ( nn.Module ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" super().__init__() lowerCAmelCase = module lowerCAmelCase = nn.Sequential( nn.Linear(module.in_features , _snake_case , bias=_snake_case ) , nn.Linear(_snake_case , module.out_features , bias=_snake_case ) , ) lowerCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_snake_case ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def UpperCamelCase__ ( self , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" return self.module(_snake_case , *_snake_case , **_snake_case ) + self.adapter(_snake_case ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module snake_case__ = '''bigscience/bloom-1b7''' # Constant values snake_case__ = 2.1_09_65_95_52_69_25_74 snake_case__ = '''Hello my name is''' snake_case__ = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoTokenizer.from_pretrained(self.model_name ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # Models and tokenizer lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) def UpperCamelCase__ ( self ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_abit.config self.assertTrue(hasattr(_snake_case , 'quantization_config' ) ) lowerCAmelCase = config.to_dict() lowerCAmelCase = config.to_diff_dict() lowerCAmelCase = config.to_json_string() def UpperCamelCase__ ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit lowerCAmelCase = self.model_fpaa.get_memory_footprint() lowerCAmelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCAmelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def UpperCamelCase__ ( self ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_snake_case , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) lowerCAmelCase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BitsAndBytesConfig() lowerCAmelCase = True lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) lowerCAmelCase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(_snake_case ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BitsAndBytesConfig() with self.assertRaises(_snake_case ): lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_snake_case , load_in_abit=_snake_case , device_map='auto' , bnb_abit_quant_type='nf4' , ) def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(_snake_case ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_snake_case ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_snake_case ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_snake_case ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_snake_case ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) lowerCAmelCase = self.model_fpaa.to(torch.floataa ) lowerCAmelCase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowerCAmelCase = self.model_fpaa.to('cpu' ) # Check this does not throw an error lowerCAmelCase = self.model_fpaa.half() # Check this does not throw an error lowerCAmelCase = self.model_fpaa.float() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_snake_case , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class a ( unittest.TestCase ): @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" lowerCAmelCase = 't5-small' lowerCAmelCase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense lowerCAmelCase = AutoTokenizer.from_pretrained(cls.model_name ) lowerCAmelCase = 'Translate in German: Hello, my dog is cute' def UpperCamelCase__ ( self ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" from transformers import TaForConditionalGeneration lowerCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules lowerCAmelCase = None # test with `t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) # test with `flan-t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) lowerCAmelCase = modules def UpperCamelCase__ ( self ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) # test with `flan-t5-small` lowerCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_snake_case , device_map='auto' ) lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) lowerCAmelCase = model.generate(**_snake_case ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # model_name lowerCAmelCase = 'bigscience/bloom-560m' lowerCAmelCase = 't5-small' # Different types of model lowerCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) # Sequence classification model lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_snake_case , device_map='auto' ) # CausalLM model lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case , device_map='auto' ) # Seq2seq model lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_snake_case , device_map='auto' ) def UpperCamelCase__ ( self ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() def UpperCamelCase__ ( self ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCAmelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_snake_case , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCAmelCase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch lowerCAmelCase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_snake_case ) , self.EXPECTED_OUTPUTS ) class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'facebook/opt-350m' super().setUp() def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters lowerCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_snake_case ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCAmelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCAmelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_snake_case ) ): lowerCAmelCase = LoRALayer(module.q_proj , rank=16 ) lowerCAmelCase = LoRALayer(module.k_proj , rank=16 ) lowerCAmelCase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowerCAmelCase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCAmelCase = model.forward(**_snake_case ) out.logits.norm().backward() for module in model.modules(): if isinstance(_snake_case , _snake_case ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_snake_case , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class a ( a__ ): snake_case__ = '''gpt2-xl''' snake_case__ = 3.31_91_85_48_54_15_21_87
358
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Dict = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
359
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a ( a__ , a__ , unittest.TestCase ): snake_case__ = StableDiffusionDiffEditPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} snake_case__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case__ = frozenset([] ) def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) lowerCAmelCase = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_zero=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) lowerCAmelCase = CLIPTextModel(_snake_case ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" lowerCAmelCase = floats_tensor((1, 16, 16) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ) if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ) if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_snake_case , _snake_case , _snake_case ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_snake_case ) lowerCAmelCase = self.pipeline_class.from_pretrained(_snake_case ) pipe_loaded.to(_snake_case ) pipe_loaded.set_progress_bar_config(disable=_snake_case ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_snake_case , _snake_case ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe_loaded(**_snake_case )[0] lowerCAmelCase = np.abs(output - output_loaded ).max() self.assertLess(_snake_case , 1E-4 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_mask_inputs(_snake_case ) lowerCAmelCase = pipe.generate_mask(**_snake_case ) lowerCAmelCase = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase = np.array([0] * 9 ) lowerCAmelCase = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inversion_inputs(_snake_case ) lowerCAmelCase = pipe.invert(**_snake_case ).images lowerCAmelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = {'beta_start': 0.00_085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} lowerCAmelCase = DPMSolverMultistepScheduler(**_snake_case ) lowerCAmelCase = DPMSolverMultistepInverseScheduler(**_snake_case ) lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inversion_inputs(_snake_case ) lowerCAmelCase = pipe.invert(**_snake_case ).images lowerCAmelCase = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1E-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) lowerCAmelCase = raw_image.convert('RGB' ).resize((7_68, 7_68) ) lowerCAmelCase = raw_image def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=_snake_case , torch_dtype=torch.floataa ) lowerCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'a bowl of fruit' lowerCAmelCase = 'a bowl of pears' lowerCAmelCase = pipe.generate_mask( image=self.raw_image , source_prompt=_snake_case , target_prompt=_snake_case , generator=_snake_case , ) lowerCAmelCase = pipe.invert( prompt=_snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=_snake_case ).latents lowerCAmelCase = pipe( prompt=_snake_case , mask_image=_snake_case , image_latents=_snake_case , generator=_snake_case , negative_prompt=_snake_case , inpaint_strength=0.7 , output_type='numpy' , ).images[0] lowerCAmelCase = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=_snake_case , torch_dtype=torch.floataa ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'a bowl of fruit' lowerCAmelCase = 'a bowl of pears' lowerCAmelCase = pipe.generate_mask( image=self.raw_image , source_prompt=_snake_case , target_prompt=_snake_case , generator=_snake_case , ) lowerCAmelCase = pipe.invert( prompt=_snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=_snake_case , num_inference_steps=25 , ).latents lowerCAmelCase = pipe( prompt=_snake_case , mask_image=_snake_case , image_latents=_snake_case , generator=_snake_case , negative_prompt=_snake_case , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] lowerCAmelCase = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5E-1
360
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
0
"""simple docstring""" import argparse import os import re __UpperCamelCase : List[str] = '''src/diffusers''' # Pattern that looks at the indentation in a line. __UpperCamelCase : int = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. __UpperCamelCase : str = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __UpperCamelCase : Tuple = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. __UpperCamelCase : int = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __UpperCamelCase : Tuple = re.compile(R'''\[([^\]]+)\]''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): lowerCAmelCase = _re_indent.search(_UpperCAmelCase ) return "" if search is None else search.groups()[0] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]="" , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None ): lowerCAmelCase = 0 lowerCAmelCase = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_UpperCAmelCase ): index += 1 lowerCAmelCase = ['\n'.join(lines[:index] )] else: lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase = [lines[index]] index += 1 while index < len(_UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(_UpperCAmelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_UpperCAmelCase ) ) if index < len(_UpperCAmelCase ) - 1: lowerCAmelCase = [lines[index + 1]] index += 1 else: lowerCAmelCase = [] else: blocks.append('\n'.join(_UpperCAmelCase ) ) lowerCAmelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_UpperCAmelCase ) > 0: blocks.append('\n'.join(_UpperCAmelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_UpperCAmelCase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): def _inner(_UpperCAmelCase : Dict ): return key(_UpperCAmelCase ).lower().replace('_' , '' ) return _inner def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]=None ): # If no key is provided, we use a noop. def noop(_UpperCAmelCase : List[str] ): return x if key is None: lowerCAmelCase = noop # Constants are all uppercase, they go first. lowerCAmelCase = [obj for obj in objects if key(_UpperCAmelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase = [obj for obj in objects if key(_UpperCAmelCase )[0].isupper() and not key(_UpperCAmelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase = [obj for obj in objects if not key(_UpperCAmelCase )[0].isupper()] lowerCAmelCase = ignore_underscore(_UpperCAmelCase ) return sorted(_UpperCAmelCase , key=_UpperCAmelCase ) + sorted(_UpperCAmelCase , key=_UpperCAmelCase ) + sorted(_UpperCAmelCase , key=_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): # This inner function sort imports between [ ]. def _replace(_UpperCAmelCase : List[str] ): lowerCAmelCase = match.groups()[0] if "," not in imports: return F'[{imports}]' lowerCAmelCase = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(_UpperCAmelCase )] ) + "]" lowerCAmelCase = import_statement.split('\n' ) if len(_UpperCAmelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase = 2 if lines[1].strip() == '[' else 1 lowerCAmelCase = [(i, _re_strip_line.search(_UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase = sort_objects(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] ) lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_UpperCAmelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase = keys[:-1] lowerCAmelCase = get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(_UpperCAmelCase )] ) return "\n".join(_UpperCAmelCase ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase = _re_bracket_content.sub(_replace , _UpperCAmelCase ) return import_statement def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=True ): with open(_UpperCAmelCase , 'r' ) as f: lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase = split_code_in_indented_blocks( _UpperCAmelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_UpperCAmelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase = main_blocks[block_idx] lowerCAmelCase = block.split('\n' ) # Get to the start of the imports. lowerCAmelCase = 0 while line_idx < len(_UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase = len(_UpperCAmelCase ) else: line_idx += 1 if line_idx >= len(_UpperCAmelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase = '\n'.join(block_lines[line_idx:-1] ) lowerCAmelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase = split_code_in_indented_blocks(_UpperCAmelCase , indent_level=_UpperCAmelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase = [(pattern.search(_UpperCAmelCase ).groups()[0] if pattern.search(_UpperCAmelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase = [(i, key) for i, key in enumerate(_UpperCAmelCase ) if key is not None] lowerCAmelCase = [x[0] for x in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase = 0 lowerCAmelCase = [] for i in range(len(_UpperCAmelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_UpperCAmelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_UpperCAmelCase ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(_UpperCAmelCase , 'w' ) as f: f.write('\n'.join(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict=True ): lowerCAmelCase = [] for root, _, files in os.walk(_UpperCAmelCase ): if "__init__.py" in files: lowerCAmelCase = sort_imports(os.path.join(_UpperCAmelCase , '__init__.py' ) , check_only=_UpperCAmelCase ) if result: lowerCAmelCase = [os.path.join(_UpperCAmelCase , '__init__.py' )] if len(_UpperCAmelCase ) > 0: raise ValueError(F'Would overwrite {len(_UpperCAmelCase )} files, run `make style`.' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __UpperCamelCase : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import numpy class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. lowerCAmelCase = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. lowerCAmelCase = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. lowerCAmelCase = numpy.random.rand(3 , 1 ) # Real output values provided. lowerCAmelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. lowerCAmelCase = numpy.zeros(output_array.shape ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) lowerCAmelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) lowerCAmelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" for iteration in range(1 , iterations + 1 ): lowerCAmelCase = self.feedforward() self.back_propagation() if give_loss: lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'Iteration {iteration} Loss: {loss}' ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = input_arr lowerCAmelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) lowerCAmelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : numpy.ndarray ): return 1 / (1 + numpy.exp(-value )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : numpy.ndarray ): return (value) * (1 - (value)) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. lowerCAmelCase = TwoHiddenLayerNeuralNetwork( input_array=_UpperCAmelCase , output_array=_UpperCAmelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_UpperCAmelCase , iterations=10 , give_loss=_UpperCAmelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
362
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
0
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ): # Initialise PyTorch model lowerCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) lowerCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
363
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
365
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ): lowerCAmelCase = (n * (n + 1) // 2) ** 2 lowerCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'''{solution() = }''')
366
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
309
0
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): lowerCAmelCase = {} lowerCAmelCase = job['started_at'] lowerCAmelCase = job['completed_at'] lowerCAmelCase = date_parser.parse(_UpperCAmelCase ) lowerCAmelCase = date_parser.parse(_UpperCAmelCase ) lowerCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) lowerCAmelCase = start lowerCAmelCase = end lowerCAmelCase = duration_in_min return job_info def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase = None if token is not None: lowerCAmelCase = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} lowerCAmelCase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' lowerCAmelCase = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() lowerCAmelCase = {} try: job_time.update({job['name']: extract_time_from_single_job(_UpperCAmelCase ) for job in result['jobs']} ) lowerCAmelCase = math.ceil((result['total_count'] - 100) / 100 ) for i in range(_UpperCAmelCase ): lowerCAmelCase = requests.get(url + F'&page={i + 2}' , headers=_UpperCAmelCase ).json() job_time.update({job['name']: extract_time_from_single_job(_UpperCAmelCase ) for job in result['jobs']} ) return job_time except Exception: print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : Any = get_job_time(args.workflow_run_id) __UpperCamelCase : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v['duration']}''')
367
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
368
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
0
"""simple docstring""" __UpperCamelCase : int = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __UpperCamelCase : Dict = concatenate_datasets __UpperCamelCase : Optional[int] = DownloadConfig __UpperCamelCase : List[Any] = DownloadManager __UpperCamelCase : List[str] = DownloadMode __UpperCamelCase : Optional[Any] = DownloadConfig __UpperCamelCase : Any = DownloadMode __UpperCamelCase : Optional[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
369
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
0
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class a ( a__ ): # to overwrite at feature extractactor specific tests snake_case__ = None snake_case__ = None @property def UpperCamelCase__ ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , 'feature_size' ) ) self.assertTrue(hasattr(_snake_case , 'sampling_rate' ) ) self.assertTrue(hasattr(_snake_case , 'padding_value' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='tf' ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCamelCase__ ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1E-3 ): return False return True lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = self.feat_extract_tester.seq_length_diff lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff lowerCAmelCase = self.feat_extract_tester.min_seq_length lowerCAmelCase = self.feat_extract_tester.batch_size lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowerCAmelCase = feat_extract.pad(_snake_case , padding=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='max_length' , max_length=len(speech_inputs[-1] ) ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' ) lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='max_length' )[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=_snake_case , return_tensors='np' ) lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase = feat_extract.pad(_snake_case , pad_to_multiple_of=10 ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , pad_to_multiple_of=10 ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=_snake_case , return_tensors='np' , ) lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(_snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def UpperCamelCase__ ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1E-3 ): return False return True lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) ) lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to smallest with np lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=_snake_case , ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' ) lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to middle lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_snake_case , return_tensors='np' , ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_snake_case ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' ) lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='longest' , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='longest' , truncation=_snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding='max_length' , truncation=_snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowerCAmelCase = 12 lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) lowerCAmelCase = input_a[input_name] lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , ) lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )[input_name] lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='tf' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**_snake_case ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**_snake_case ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = min(_snake_case ) lowerCAmelCase = feat_extract.pad( _snake_case , padding='max_length' , max_length=_snake_case , truncation=_snake_case , return_tensors='np' ) self.assertIn('attention_mask' , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCamelCase : List[str] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __UpperCamelCase : Tuple = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __UpperCamelCase : Dict = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __UpperCamelCase : Union[str, Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __UpperCamelCase : List[str] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __UpperCamelCase : List[Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __UpperCamelCase : Union[str, Any] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: lowerCAmelCase ,lowerCAmelCase = randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) lowerCAmelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowerCAmelCase ,lowerCAmelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ) -> Any: return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> Dict: assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ) -> Optional[Any]: assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> Optional[int]: assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ) -> Optional[Any]: assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: lowerCAmelCase = [PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase = poker_hands.copy() shuffle(_UpperCAmelCase ) lowerCAmelCase = chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE () -> List[Any]: # Test that five high straights are compared correctly. lowerCAmelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE () -> Dict: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowerCAmelCase = PokerHand('2C 4S AS 3D 5C' ) lowerCAmelCase = True lowerCAmelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE () -> Dict: # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowerCAmelCase = 0 lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'poker_hands.txt' ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase = line[:14].strip() lowerCAmelCase = line[15:].strip() lowerCAmelCase ,lowerCAmelCase = PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) lowerCAmelCase = player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
371
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : int = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
350
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
0
"""simple docstring""" import numpy as np def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : np.array ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
0
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=[1, 1, 2] , _snake_case=1 , _snake_case=32 , _snake_case=4 , _snake_case=8 , _snake_case=37 , _snake_case="gelu_new" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=5_12 , _snake_case=3 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=False , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = block_sizes lowerCAmelCase = num_decoder_layers lowerCAmelCase = d_model lowerCAmelCase = n_head lowerCAmelCase = d_head lowerCAmelCase = d_inner lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = 2 lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = initializer_std # Used in the tests to check the size of the first attention layer lowerCAmelCase = n_head # Used in the tests to check the size of the first hidden state lowerCAmelCase = self.d_model # Used in the tests to check the number of output hidden states/attentions lowerCAmelCase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowerCAmelCase = self.num_hidden_layers + 2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = TFFunnelModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase = False lowerCAmelCase = TFFunnelModel(config=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) lowerCAmelCase = False lowerCAmelCase = TFFunnelModel(config=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = TFFunnelBaseModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) lowerCAmelCase = False lowerCAmelCase = TFFunnelBaseModel(config=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) lowerCAmelCase = False lowerCAmelCase = TFFunnelBaseModel(config=_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = TFFunnelForPreTraining(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = TFFunnelForMaskedLM(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFFunnelForSequenceClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = self.num_choices lowerCAmelCase = TFFunnelForMultipleChoice(config=_snake_case ) lowerCAmelCase = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFFunnelForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = TFFunnelForQuestionAnswering(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFFunnelModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @require_tf class a ( a__ , unittest.TestCase ): snake_case__ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFFunnelModelTester(self , base=_snake_case ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_snake_case )
352
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] ): lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCAmelCase = min(_UpperCAmelCase , _UpperCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
353
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) lowerCAmelCase = DetaConfig( backbone_config=_UpperCAmelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_UpperCAmelCase , with_box_refine=_UpperCAmelCase , two_stage=_UpperCAmelCase , ) # set labels lowerCAmelCase = 'huggingface/label-files' if "o365" in model_name: lowerCAmelCase = 366 lowerCAmelCase = 'object365-id2label.json' else: lowerCAmelCase = 91 lowerCAmelCase = 'coco-detection-id2label.json' lowerCAmelCase = num_labels lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ): lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str ): lowerCAmelCase = dct.pop(_UpperCAmelCase ) lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ): lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) lowerCAmelCase = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[:dim, :] lowerCAmelCase = in_proj_bias[: dim] lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase = in_proj_weight[ -dim :, : ] lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Any ): # transformer decoder self-attention layers lowerCAmelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[:hidden_size, :] lowerCAmelCase = in_proj_bias[:hidden_size] lowerCAmelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase = in_proj_weight[-hidden_size:, :] lowerCAmelCase = in_proj_bias[-hidden_size:] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Any ): lowerCAmelCase = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": lowerCAmelCase = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": lowerCAmelCase = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'Model name {model_name} not supported' ) lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase , param.shape ) # rename keys lowerCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val if "input_proj" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val # finally, create HuggingFace model and load state dict lowerCAmelCase = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_UpperCAmelCase ) # load image processor lowerCAmelCase = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image lowerCAmelCase = prepare_img() lowerCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase = encoding['pixel_values'] lowerCAmelCase = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCAmelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) lowerCAmelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": lowerCAmelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) lowerCAmelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCAmelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Dict = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase : str = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __UpperCamelCase : List[str] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __UpperCamelCase : Optional[Any] = '''▁''' class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _snake_case , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case="[CLS]" , _snake_case="[SEP]" , _snake_case="<unk>" , _snake_case="[SEP]" , _snake_case="<pad>" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = ( AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case , normalized=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token ) lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , remove_space=_snake_case , keep_accents=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if self.remove_space: lowerCAmelCase = ' '.join(inputs.strip().split() ) else: lowerCAmelCase = inputs lowerCAmelCase = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: lowerCAmelCase = unicodedata.normalize('NFKD' , _snake_case ) lowerCAmelCase = ''.join([c for c in outputs if not unicodedata.combining(_snake_case )] ) if self.do_lower_case: lowerCAmelCase = outputs.lower() return outputs def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.preprocess_text(_snake_case ) lowerCAmelCase = self.sp_model.encode(_snake_case , out_type=_snake_case ) lowerCAmelCase = [] for piece in pieces: if len(_snake_case ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_snake_case , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase = cur_pieces[1:] else: lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_snake_case ) else: new_pieces.append(_snake_case ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.PieceToId(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.IdToPiece(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(_snake_case ) lowerCAmelCase = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
355
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __UpperCamelCase : Optional[List[str]] = None __UpperCamelCase : Any = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __UpperCamelCase : Optional[int] = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class a : snake_case__ = True snake_case__ = None # Automatically constructed snake_case__ = '''PIL.Image.Image''' snake_case__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) snake_case__ = field(default='''Image''' , init=a__ , repr=a__ ) def __call__( self ): """simple docstring""" return self.pa_type def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_snake_case , _snake_case ): lowerCAmelCase = np.array(_snake_case ) if isinstance(_snake_case , _snake_case ): return {"path": value, "bytes": None} elif isinstance(_snake_case , _snake_case ): return {"path": None, "bytes": value} elif isinstance(_snake_case , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_snake_case ) elif isinstance(_snake_case , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_snake_case ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: lowerCAmelCase = {} lowerCAmelCase ,lowerCAmelCase = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(_snake_case ): lowerCAmelCase = PIL.Image.open(_snake_case ) else: lowerCAmelCase = path.split('::' )[-1] try: lowerCAmelCase = string_to_dict(_snake_case , config.HUB_DATASETS_URL )['repo_id'] lowerCAmelCase = token_per_repo_id.get(_snake_case ) except ValueError: lowerCAmelCase = None with xopen(_snake_case , 'rb' , use_auth_token=_snake_case ) as f: lowerCAmelCase = BytesIO(f.read() ) lowerCAmelCase = PIL.Image.open(bytes_ ) else: lowerCAmelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if pa.types.is_string(storage.type ): lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.binary() ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCAmelCase = storage.field('bytes' ) else: lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCAmelCase = storage.field('path' ) else: lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCAmelCase = pa.array( [encode_np_array(np.array(_snake_case ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_snake_case , self.pa_type ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_snake_case ): with xopen(_snake_case , 'rb' ) as f: lowerCAmelCase = f.read() return bytes_ lowerCAmelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase = pa.array( [os.path.basename(_snake_case ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_snake_case , self.pa_type ) def _SCREAMING_SNAKE_CASE (): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : "PIL.Image.Image" ): lowerCAmelCase = BytesIO() if image.format in list_image_compression_formats(): lowerCAmelCase = image.format else: lowerCAmelCase = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_UpperCAmelCase , format=_UpperCAmelCase ) return buffer.getvalue() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : "PIL.Image.Image" ): if hasattr(_UpperCAmelCase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase )} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : np.ndarray ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) lowerCAmelCase = array.dtype lowerCAmelCase = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER lowerCAmelCase = dtype.kind lowerCAmelCase = dtype.itemsize lowerCAmelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCAmelCase = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCAmelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCAmelCase = dtype_byteorder + dtype_kind + str(_UpperCAmelCase ) lowerCAmelCase = np.dtype(_UpperCAmelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) lowerCAmelCase = PIL.Image.fromarray(array.astype(_UpperCAmelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase )} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: lowerCAmelCase ,lowerCAmelCase = first_non_null_value(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCAmelCase , np.ndarray ): lowerCAmelCase = no_op_if_value_is_null(_UpperCAmelCase ) return [obj_to_image_dict_func(_UpperCAmelCase ) for obj in objs] elif isinstance(_UpperCAmelCase , PIL.Image.Image ): lowerCAmelCase = no_op_if_value_is_null(_UpperCAmelCase ) return [obj_to_image_dict_func(_UpperCAmelCase ) for obj in objs] else: return objs else: return objs
356
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase : int = ['''small''', '''medium''', '''large'''] __UpperCamelCase : str = '''lm_head.decoder.weight''' __UpperCamelCase : Dict = '''lm_head.weight''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase : Optional[int] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __UpperCamelCase : str = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
309
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class a ( a__ ): snake_case__ = '''fnet''' def __init__( self , _snake_case=3_20_00 , _snake_case=7_68 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu_new" , _snake_case=0.1 , _snake_case=5_12 , _snake_case=4 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=False , _snake_case=5_12 , _snake_case=3 , _snake_case=1 , _snake_case=2 , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_tpu_fourier_optimizations lowerCAmelCase = tpu_short_seq_length
357
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 1000 ): lowerCAmelCase = -1 lowerCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase = n - a - b if c * c == (a * a + b * b): lowerCAmelCase = a * b * c if candidate >= product: lowerCAmelCase = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
358
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
0
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = 8 # DPR tok lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCAmelCase = os.path.join(_snake_case , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase = {'unk_token': '<unk>'} lowerCAmelCase = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCAmelCase = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) def UpperCamelCase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_dataset() lowerCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowerCAmelCase = dataset lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.get_dummy_dataset() lowerCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: lowerCAmelCase = os.path.join(self.tmpdirname , 'dataset' ) lowerCAmelCase = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _snake_case ) , ) return retriever def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) lowerCAmelCase = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) lowerCAmelCase = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(_snake_case , open(_snake_case , 'wb' ) ) lowerCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowerCAmelCase = self.get_dummy_dataset() retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_legacy_index_retriever() lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self ): """simple docstring""" import torch lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase = [[5, 7], [10, 11]] lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , np.ndarray ) lowerCAmelCase = retriever( _snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case , return_tensors='pt' , ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dpr_ctx_encoder_tokenizer() lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) retriever.set_ctx_encoder_tokenizer(_snake_case ) lowerCAmelCase = [[5, 7], [10, 11]] lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) self.assertEqual( len(_snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , _snake_case ) # check for doc token related keys in dictionary.
359
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any]=None ): if subparsers is not None: lowerCAmelCase = subparsers.add_parser('env' ) else: lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): lowerCAmelCase = torch.__version__ lowerCAmelCase = torch.cuda.is_available() lowerCAmelCase = is_xpu_available() lowerCAmelCase = is_npu_available() lowerCAmelCase = 'Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_UpperCAmelCase ): lowerCAmelCase = load_config_from_file(args.config_file ).to_dict() lowerCAmelCase = { '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'PyTorch XPU available': str(_UpperCAmelCase ), 'PyTorch NPU available': str(_UpperCAmelCase ), 'System RAM': F'{psutil.virtual_memory().total / 1024 ** 3:.2f} GB', } if pt_cuda_available: lowerCAmelCase = torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) lowerCAmelCase = ( '\n'.join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else F'\t{accelerate_config}' ) print(_UpperCAmelCase ) lowerCAmelCase = accelerate_config return info def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = env_command_parser() lowerCAmelCase = parser.parse_args() env_command(_UpperCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
360
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = inspect.getfile(accelerate.test_utils ) lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices.' ) lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(F'Command: {cmd}' ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_snake_case , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' ) lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(_snake_case , env=os.environ.copy() ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = Accelerator() __UpperCamelCase : Optional[int] = (accelerator.state.process_index + 2, 10) __UpperCamelCase : Union[str, Any] = torch.randint(0, 10, shape).to(accelerator.device) __UpperCamelCase : List[Any] = '''''' __UpperCamelCase : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __UpperCamelCase : Optional[int] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __UpperCamelCase : List[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : int ): if isinstance(_UpperCAmelCase , torch.Tensor ): return image elif isinstance(_UpperCAmelCase , PIL.Image.Image ): lowerCAmelCase = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowerCAmelCase = np.concatenate(_UpperCAmelCase , axis=0 ) lowerCAmelCase = np.array(_UpperCAmelCase ).astype(np.floataa ) / 255.0 lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase = 2.0 * image - 1.0 lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase = torch.cat(_UpperCAmelCase , dim=0 ) return image def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=0.9995 ): if not isinstance(_UpperCAmelCase , np.ndarray ): lowerCAmelCase = True lowerCAmelCase = va.device lowerCAmelCase = va.cpu().numpy() lowerCAmelCase = va.cpu().numpy() lowerCAmelCase = np.sum(va * va / (np.linalg.norm(_UpperCAmelCase ) * np.linalg.norm(_UpperCAmelCase )) ) if np.abs(_UpperCAmelCase ) > DOT_THRESHOLD: lowerCAmelCase = (1 - t) * va + t * va else: lowerCAmelCase = np.arccos(_UpperCAmelCase ) lowerCAmelCase = np.sin(_UpperCAmelCase ) lowerCAmelCase = theta_a * t lowerCAmelCase = np.sin(_UpperCAmelCase ) lowerCAmelCase = np.sin(theta_a - theta_t ) / sin_theta_a lowerCAmelCase = sin_theta_t / sin_theta_a lowerCAmelCase = sa * va + sa * va if inputs_are_torch: lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) return va def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ): lowerCAmelCase = F.normalize(_UpperCAmelCase , dim=-1 ) lowerCAmelCase = F.normalize(_UpperCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ): for param in model.parameters(): lowerCAmelCase = value class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , ): """simple docstring""" super().__init__() self.register_modules( vae=_snake_case , text_encoder=_snake_case , clip_model=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , feature_extractor=_snake_case , coca_model=_snake_case , coca_tokenizer=_snake_case , coca_transform=_snake_case , ) lowerCAmelCase = ( feature_extractor.size if isinstance(feature_extractor.size , _snake_case ) else feature_extractor.size['shortest_edge'] ) lowerCAmelCase = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _snake_case ) set_requires_grad(self.clip_model , _snake_case ) def UpperCamelCase__ ( self , _snake_case = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.enable_attention_slicing(_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.vae , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.vae , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.unet , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" set_requires_grad(self.unet , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = min(int(num_inference_steps * strength ) , _snake_case ) lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None ): """simple docstring""" if not isinstance(_snake_case , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(_snake_case )}' ) lowerCAmelCase = image.to(device=_snake_case , dtype=_snake_case ) if isinstance(_snake_case , _snake_case ): lowerCAmelCase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_snake_case ) ] lowerCAmelCase = torch.cat(_snake_case , dim=0 ) else: lowerCAmelCase = self.vae.encode(_snake_case ).latent_dist.sample(_snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCAmelCase = 0.18_215 * init_latents lowerCAmelCase = init_latents.repeat_interleave(_snake_case , dim=0 ) lowerCAmelCase = randn_tensor(init_latents.shape , generator=_snake_case , device=_snake_case , dtype=_snake_case ) # get latents lowerCAmelCase = self.scheduler.add_noise(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = init_latents return latents def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.coca_transform(_snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowerCAmelCase = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowerCAmelCase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.feature_extractor.preprocess(_snake_case ) lowerCAmelCase = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowerCAmelCase = self.clip_model.get_image_features(_snake_case ) lowerCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_snake_case ) lowerCAmelCase = image_embeddings_clip.repeat_interleave(_snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = latents.detach().requires_grad_() lowerCAmelCase = self.scheduler.scale_model_input(_snake_case , _snake_case ) # predict the noise residual lowerCAmelCase = self.unet(_snake_case , _snake_case , encoder_hidden_states=_snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowerCAmelCase = self.scheduler.alphas_cumprod[timestep] lowerCAmelCase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowerCAmelCase = torch.sqrt(_snake_case ) lowerCAmelCase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _snake_case ): lowerCAmelCase = self.scheduler.sigmas[index] lowerCAmelCase = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCAmelCase = 1 / 0.18_215 * sample lowerCAmelCase = self.vae.decode(_snake_case ).sample lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase = transforms.Resize(self.feature_extractor_size )(_snake_case ) lowerCAmelCase = self.normalize(_snake_case ).to(latents.dtype ) lowerCAmelCase = self.clip_model.get_image_features(_snake_case ) lowerCAmelCase = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_snake_case ) lowerCAmelCase = spherical_dist_loss(_snake_case , _snake_case ).mean() * clip_guidance_scale lowerCAmelCase = -torch.autograd.grad(_snake_case , _snake_case )[0] if isinstance(self.scheduler , _snake_case ): lowerCAmelCase = latents.detach() + grads * (sigma**2) lowerCAmelCase = noise_pred_original else: lowerCAmelCase = noise_pred_original - torch.sqrt(_snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = None , _snake_case = 5_12 , _snake_case = 5_12 , _snake_case = 0.6 , _snake_case = 50 , _snake_case = 7.5 , _snake_case = 1 , _snake_case = 0.0 , _snake_case = 1_00 , _snake_case = None , _snake_case = "pil" , _snake_case = True , _snake_case = 0.8 , _snake_case = 0.1 , _snake_case = 0.1 , ): """simple docstring""" if isinstance(_snake_case , _snake_case ) and len(_snake_case ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(_snake_case )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(_snake_case , torch.Generator ) and batch_size > 1: lowerCAmelCase = [generator] + [None] * (batch_size - 1) lowerCAmelCase = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] lowerCAmelCase = [x[0] for x in coca_is_none if x[1]] lowerCAmelCase = ', '.join(_snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_snake_case ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowerCAmelCase = self.get_image_description(_snake_case ) if style_prompt is None: if len(_snake_case ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) lowerCAmelCase = self.get_image_description(_snake_case ) # get prompt text embeddings for content and style lowerCAmelCase = self.tokenizer( _snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_snake_case , return_tensors='pt' , ) lowerCAmelCase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowerCAmelCase = self.tokenizer( _snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_snake_case , return_tensors='pt' , ) lowerCAmelCase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowerCAmelCase = slerp(_snake_case , _snake_case , _snake_case ) # duplicate text embeddings for each generation per prompt lowerCAmelCase = text_embeddings.repeat_interleave(_snake_case , dim=0 ) # set timesteps lowerCAmelCase = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowerCAmelCase = {} if accepts_offset: lowerCAmelCase = 1 self.scheduler.set_timesteps(_snake_case , **_snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowerCAmelCase ,lowerCAmelCase = self.get_timesteps(_snake_case , _snake_case , self.device ) lowerCAmelCase = timesteps[:1].repeat(_snake_case ) # Preprocess image lowerCAmelCase = preprocess(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = self.prepare_latents( _snake_case , _snake_case , _snake_case , text_embeddings.dtype , self.device , _snake_case ) lowerCAmelCase = preprocess(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = self.prepare_latents( _snake_case , _snake_case , _snake_case , text_embeddings.dtype , self.device , _snake_case ) lowerCAmelCase = slerp(_snake_case , _snake_case , _snake_case ) if clip_guidance_scale > 0: lowerCAmelCase = self.get_clip_image_embeddings(_snake_case , _snake_case ) lowerCAmelCase = self.get_clip_image_embeddings(_snake_case , _snake_case ) lowerCAmelCase = slerp( _snake_case , _snake_case , _snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase = content_text_input.input_ids.shape[-1] lowerCAmelCase = self.tokenizer([''] , padding='max_length' , max_length=_snake_case , return_tensors='pt' ) lowerCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowerCAmelCase = uncond_embeddings.repeat_interleave(_snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowerCAmelCase = torch.randn(_snake_case , generator=_snake_case , device='cpu' , dtype=_snake_case ).to( self.device ) else: lowerCAmelCase = torch.randn(_snake_case , generator=_snake_case , device=self.device , dtype=_snake_case ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase = {} if accepts_eta: lowerCAmelCase = eta # check if the scheduler accepts generator lowerCAmelCase = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowerCAmelCase = generator with self.progress_bar(total=_snake_case ): for i, t in enumerate(_snake_case ): # expand the latents if we are doing classifier free guidance lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase = self.scheduler.scale_model_input(_snake_case , _snake_case ) # predict the noise residual lowerCAmelCase = self.unet(_snake_case , _snake_case , encoder_hidden_states=_snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: lowerCAmelCase ,lowerCAmelCase = noise_pred.chunk(2 ) lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowerCAmelCase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowerCAmelCase ,lowerCAmelCase = self.cond_fn( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowerCAmelCase = 1 / 0.18_215 * latents lowerCAmelCase = self.vae.decode(_snake_case ).sample lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(_snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_snake_case , nsfw_content_detected=_snake_case )
362
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a ( a__ ): snake_case__ = (DEISMultistepScheduler,) snake_case__ = (('''num_inference_steps''', 2_5),) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**_snake_case ) return config def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase ,lowerCAmelCase = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , _snake_case=None , **_snake_case ): """simple docstring""" if scheduler is None: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , 'set_timesteps' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , 'set_timesteps' ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase = scheduler.timesteps[5] lowerCAmelCase = scheduler.timesteps[6] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase = self.full_loop(scheduler=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = self.full_loop(scheduler=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=_snake_case ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='deis' , solver_order=_snake_case , solver_type=_snake_case , ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) lowerCAmelCase = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case ).any(), "Samples have nan numbers" def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case ) self.check_over_configs(lower_order_final=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0 ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample assert sample.dtype == torch.floataa
363
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
0
"""simple docstring""" import pprint import requests __UpperCamelCase : Any = '''https://zenquotes.io/api''' def _SCREAMING_SNAKE_CASE (): return requests.get(API_ENDPOINT_URL + '/today' ).json() def _SCREAMING_SNAKE_CASE (): return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": __UpperCamelCase : Any = random_quotes() pprint.pprint(response)
364
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
365
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union __UpperCamelCase : Any = TypeVar('''T''') __UpperCamelCase : Dict = Union[List[T], Tuple[T, ...]] __UpperCamelCase : str = Union[T, List[T], Dict[str, T]] __UpperCamelCase : Optional[Any] = Union[str, bytes, os.PathLike]
366
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
309
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( a__ ): snake_case__ = (IPNDMScheduler,) snake_case__ = (('''num_inference_steps''', 5_0),) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = {'num_train_timesteps': 10_00} config.update(**_snake_case ) return config def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] if time_step is None: lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] if time_step is None: lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , 'set_timesteps' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , 'set_timesteps' ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.timesteps[5] lowerCAmelCase = scheduler.timesteps[6] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_snake_case , time_step=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_snake_case , time_step=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
367
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
0
import collections import importlib.util import os import re from pathlib import Path __UpperCamelCase : int = '''src/transformers''' # Matches is_xxx_available() __UpperCamelCase : str = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __UpperCamelCase : Tuple = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __UpperCamelCase : Optional[Any] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __UpperCamelCase : int = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __UpperCamelCase : Optional[Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __UpperCamelCase : Dict = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __UpperCamelCase : Optional[Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], __UpperCamelCase : Optional[int] = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __UpperCamelCase : Dict = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __UpperCamelCase : Any = re.compile(R'''^\s*try:''') # Catches a line with else: __UpperCamelCase : Union[str, Any] = re.compile(R'''^\s*else:''') def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): if _re_test_backend.search(_UpperCAmelCase ) is None: return None lowerCAmelCase = [b[0] for b in _re_backend.findall(_UpperCAmelCase )] backends.sort() return "_and_".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() lowerCAmelCase = 0 while line_index < len(_UpperCAmelCase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_UpperCAmelCase ): lowerCAmelCase = _re_one_line_import_struct.search(_UpperCAmelCase ).groups()[0] lowerCAmelCase = re.findall('\[([^\]]+)\]' , _UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue lowerCAmelCase = _re_import_struct_key_value.search(_UpperCAmelCase ) if single_line_import_search is not None: lowerCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): lowerCAmelCase = lines[line_index] if _re_import_struct_add_one.search(_UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_UpperCAmelCase ) is not None: lowerCAmelCase = _re_import_struct_add_many.search(_UpperCAmelCase ).groups()[0].split(', ' ) lowerCAmelCase = [obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif _re_between_brackets.search(_UpperCAmelCase ) is not None: lowerCAmelCase = _re_between_brackets.search(_UpperCAmelCase ).groups()[0].split(', ' ) lowerCAmelCase = [obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0] objects.extend(_UpperCAmelCase ) elif _re_quote_object.search(_UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(_UpperCAmelCase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase = [] while ( line_index < len(_UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): lowerCAmelCase = lines[line_index] lowerCAmelCase = _re_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(_UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): lowerCAmelCase = lines[line_index] lowerCAmelCase = _re_import.search(_UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ): def find_duplicates(_UpperCAmelCase : Any ): return [k for k, v in collections.Counter(_UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase = [] for key in import_dict_objects.keys(): lowerCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) lowerCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase = 'base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [] for root, _, files in os.walk(_UpperCAmelCase ): if "__init__.py" in files: lowerCAmelCase = os.path.join(_UpperCAmelCase , '__init__.py' ) lowerCAmelCase = parse_init(_UpperCAmelCase ) if objects is not None: lowerCAmelCase = analyze_results(*_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: lowerCAmelCase = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > 0: raise ValueError('\n\n'.join(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [] for path, directories, files in os.walk(_UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(_UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_UpperCAmelCase ) / folder).glob('*.py' ) ) ) == 0: continue lowerCAmelCase = str((Path(_UpperCAmelCase ) / folder).relative_to(_UpperCAmelCase ) ) lowerCAmelCase = short_path.replace(os.path.sep , '.' ) submodules.append(_UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase = str((Path(_UpperCAmelCase ) / fname).relative_to(_UpperCAmelCase ) ) lowerCAmelCase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(_UpperCAmelCase ) return submodules __UpperCamelCase : Union[str, Any] = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def _SCREAMING_SNAKE_CASE (): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(_UpperCAmelCase , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase = spec.loader.load_module() lowerCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_UpperCAmelCase ) > 0: lowerCAmelCase = '\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
368
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __UpperCamelCase : List[Any] = logging.getLogger(__name__) @dataclass class a ( a__ ): snake_case__ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) snake_case__ = field(default=a__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) snake_case__ = field(default=a__ , metadata={'''help''': '''whether to use adafactor'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) snake_case__ = field(default=a__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) snake_case__ = field( default='''linear''' , metadata={'''help''': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
369
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
0
"""simple docstring""" import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False lowerCAmelCase = range(3 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : List[str]=1 , **_UpperCAmelCase : Tuple ): lowerCAmelCase = factor * value lowerCAmelCase = value while not is_prime(_UpperCAmelCase ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_UpperCAmelCase ) return value
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=4 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a ( a__ , unittest.TestCase ): snake_case__ = True snake_case__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxBertModelTester(self ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxBertModel.from_pretrained('bert-base-cased' ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
371
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
0
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Optional[Any] = '''scheduler_config.json''' class a ( a__ ): snake_case__ = 1 snake_case__ = 2 snake_case__ = 3 snake_case__ = 4 snake_case__ = 5 @dataclass class a ( a__ ): snake_case__ = 4_2 class a : snake_case__ = SCHEDULER_CONFIG_NAME snake_case__ = ['''dtype'''] snake_case__ = [] snake_case__ = True @classmethod def UpperCamelCase__ ( cls , _snake_case = None , _snake_case = None , _snake_case=False , **_snake_case , ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = cls.load_config( pretrained_model_name_or_path=_snake_case , subfolder=_snake_case , return_unused_kwargs=_snake_case , **_snake_case , ) lowerCAmelCase ,lowerCAmelCase = cls.from_config(_snake_case , return_unused_kwargs=_snake_case , **_snake_case ) if hasattr(_snake_case , 'create_state' ) and getattr(_snake_case , 'has_state' , _snake_case ): lowerCAmelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCamelCase__ ( self , _snake_case , _snake_case = False , **_snake_case ): """simple docstring""" self.save_config(save_directory=_snake_case , push_to_hub=_snake_case , **_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" lowerCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase = importlib.import_module(__name__.split('.' )[0] ) lowerCAmelCase = [ getattr(_snake_case , _snake_case ) for c in compatible_classes_str if hasattr(_snake_case , _snake_case ) ] return compatible_classes def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Tuple[int] ): assert len(_UpperCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCAmelCase ) - x.ndim) ) , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any]=0.999 , _UpperCAmelCase : Union[str, Any]=jnp.floataa ): def alpha_bar(_UpperCAmelCase : Optional[Any] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase = [] for i in range(_UpperCAmelCase ): lowerCAmelCase = i / num_diffusion_timesteps lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCAmelCase ) / alpha_bar(_UpperCAmelCase ) , _UpperCAmelCase ) ) return jnp.array(_UpperCAmelCase , dtype=_UpperCAmelCase ) @flax.struct.dataclass class a : snake_case__ = 4_2 snake_case__ = 4_2 snake_case__ = 4_2 @classmethod def UpperCamelCase__ ( cls , _snake_case ): """simple docstring""" lowerCAmelCase = scheduler.config if config.trained_betas is not None: lowerCAmelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase = 1.0 - betas lowerCAmelCase = jnp.cumprod(_snake_case , axis=0 ) return cls( alphas=_snake_case , betas=_snake_case , alphas_cumprod=_snake_case , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ): lowerCAmelCase = state.alphas_cumprod lowerCAmelCase = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase = sqrt_alpha_prod.flatten() lowerCAmelCase = broadcast_to_shape_from_left(_UpperCAmelCase , original_samples.shape ) lowerCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase = broadcast_to_shape_from_left(_UpperCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ): lowerCAmelCase ,lowerCAmelCase = get_sqrt_alpha_prod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ): lowerCAmelCase ,lowerCAmelCase = get_sqrt_alpha_prod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
350
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
0
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class a ( a__ ): snake_case__ = '''MCTCTFeatureExtractor''' snake_case__ = '''AutoTokenizer''' def __init__( self , _snake_case , _snake_case ): """simple docstring""" super().__init__(_snake_case , _snake_case ) lowerCAmelCase = self.feature_extractor lowerCAmelCase = False def __call__( self , *_snake_case , **_snake_case ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_snake_case , **_snake_case ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCAmelCase = kwargs.pop('raw_speech' ) else: lowerCAmelCase = kwargs.pop('audio' , _snake_case ) lowerCAmelCase = kwargs.pop('sampling_rate' , _snake_case ) lowerCAmelCase = kwargs.pop('text' , _snake_case ) if len(_snake_case ) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCAmelCase = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case ) if text is not None: lowerCAmelCase = self.tokenizer(_snake_case , **_snake_case ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase = encodings['input_ids'] return inputs def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_snake_case , **_snake_case ) lowerCAmelCase = kwargs.pop('input_features' , _snake_case ) lowerCAmelCase = kwargs.pop('labels' , _snake_case ) if len(_snake_case ) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if input_features is not None: lowerCAmelCase = self.feature_extractor.pad(_snake_case , *_snake_case , **_snake_case ) if labels is not None: lowerCAmelCase = self.tokenizer.pad(_snake_case , **_snake_case ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase = labels['input_ids'] return input_features def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.decode(*_snake_case , **_snake_case ) @contextmanager def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCAmelCase = True lowerCAmelCase = self.tokenizer yield lowerCAmelCase = self.feature_extractor lowerCAmelCase = False
351
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
0
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ): if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(_UpperCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
352
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
353
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __UpperCamelCase : int = random.Random() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple=1.0 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=None ): if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=4_00 , _snake_case=20_00 , _snake_case=1 , _snake_case=0.0 , _snake_case=1_60_00 , _snake_case=True , _snake_case=True , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = return_attention_mask lowerCAmelCase = do_normalize def UpperCamelCase__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self , _snake_case=False , _snake_case=False ): """simple docstring""" def _flatten(_snake_case ): return list(itertools.chain(*_snake_case ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs class a ( a__ , unittest.TestCase ): snake_case__ = WavaVecaFeatureExtractor def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = WavaVecaFeatureExtractionTester(self ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.assertTrue(np.all(np.mean(_snake_case , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case , axis=0 ) - 1 ) < 1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase = np.asarray(_snake_case ) lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values lowerCAmelCase = feat_extract(_snake_case , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 16_00, None] for max_length, padding in zip(_snake_case , _snake_case ): lowerCAmelCase = feat_extract(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = range(8_00 , 14_00 , 2_00 ) lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase = ['longest', 'max_length', 'do_not_pad'] lowerCAmelCase = [None, 16_00, None] for max_length, padding in zip(_snake_case , _snake_case ): lowerCAmelCase = feat_extract(_snake_case , max_length=_snake_case , padding=_snake_case ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = feat_extract( _snake_case , truncation=_snake_case , max_length=10_00 , padding='max_length' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = feat_extract( _snake_case , truncation=_snake_case , max_length=10_00 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase = feat_extract( _snake_case , truncation=_snake_case , max_length=20_00 , padding='longest' , return_tensors='np' ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) @require_torch def UpperCamelCase__ ( self ): """simple docstring""" import torch lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def UpperCamelCase__ ( self ): """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase = WavaVecaConfig.from_pretrained(_snake_case ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(_snake_case ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule __UpperCamelCase : Union[str, Any] = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
355
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
0
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = StableDiffusionControlNetImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(_snake_case ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = 2 lowerCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class a ( a__ , a__ , unittest.TestCase ): snake_case__ = StableDiffusionControlNetImgaImgPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_snake_case ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowerCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(_snake_case ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] ) lowerCAmelCase = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = 2 lowerCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) lowerCAmelCase = 10.0 lowerCAmelCase = 4 lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = steps lowerCAmelCase = scale lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = 'evil space-punk bird' lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_12, 5_12) ) lowerCAmelCase = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_12, 5_12) ) lowerCAmelCase = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='np' , num_inference_steps=50 , strength=0.6 , ) lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
356
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase : int = ['''small''', '''medium''', '''large'''] __UpperCamelCase : str = '''lm_head.decoder.weight''' __UpperCamelCase : Dict = '''lm_head.weight''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase : Optional[int] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __UpperCamelCase : str = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
309
0
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE_ : int = '''#''' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = {} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self._trie for char in text: if char not in trie: lowerCAmelCase = {} lowerCAmelCase = trie[char] lowerCAmelCase = True def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self._trie for char in prefix: if char in trie: lowerCAmelCase = trie[char] else: return [] return self._elements(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for c, v in d.items(): lowerCAmelCase = [' '] if c == END else [(c + s) for s in self._elements(_snake_case )] result.extend(_snake_case ) return tuple(_snake_case ) SCREAMING_SNAKE_CASE_ : Dict = Trie() SCREAMING_SNAKE_CASE_ : List[str] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = trie.find_word(_UpperCAmelCase ) return tuple(string + word for word in suffixes ) def _SCREAMING_SNAKE_CASE (): print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
357
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : str = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
358
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'''vocab_file''': '''spiece.model'''} __UpperCamelCase : Union[str, Any] = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } __UpperCamelCase : Tuple = {'''bert_for_seq_generation''': 512} class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = [] snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<::::>" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , sep_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.piece_to_id(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.sp_model.IdToPiece(_snake_case ) return token def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token lowerCAmelCase = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
359
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
0
import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = [] lowerCAmelCase = 2 lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) # Size of every segment lowerCAmelCase = [True] * (end + 1) lowerCAmelCase = [] while start <= end: if temp[start] is True: in_prime.append(_UpperCAmelCase ) for i in range(start * start , end + 1 , _UpperCAmelCase ): lowerCAmelCase = False start += 1 prime += in_prime lowerCAmelCase = end + 1 lowerCAmelCase = min(2 * end , _UpperCAmelCase ) while low <= n: lowerCAmelCase = [True] * (high - low + 1) for each in in_prime: lowerCAmelCase = math.floor(low / each ) * each if t < low: t += each for j in range(_UpperCAmelCase , high + 1 , _UpperCAmelCase ): lowerCAmelCase = False for j in range(len(_UpperCAmelCase ) ): if temp[j] is True: prime.append(j + low ) lowerCAmelCase = high + 1 lowerCAmelCase = min(high + end , _UpperCAmelCase ) return prime print(sieve(10**6))
360
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = [] lowerCAmelCase = fairseq_model.state_dict() lowerCAmelCase = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(_UpperCAmelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , _UpperCAmelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight" in name: lowerCAmelCase = 'weight' elif "bias" in name: lowerCAmelCase = 'bias' else: lowerCAmelCase = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ): lowerCAmelCase = full_name.split('conv_layers.' )[-1] lowerCAmelCase = name.split('.' ) lowerCAmelCase = int(items[0] ) lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=True ): if config_path is not None: lowerCAmelCase = HubertConfig.from_pretrained(_UpperCAmelCase ) else: lowerCAmelCase = HubertConfig() if is_finetuned: if dict_path: lowerCAmelCase = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase = target_dict.pad_index lowerCAmelCase = target_dict.bos_index lowerCAmelCase = target_dict.eos_index lowerCAmelCase = len(target_dict.symbols ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _UpperCAmelCase ) lowerCAmelCase = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCAmelCase , ) lowerCAmelCase = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) lowerCAmelCase = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) lowerCAmelCase = HubertForCTC(_UpperCAmelCase ) else: lowerCAmelCase = HubertModel(_UpperCAmelCase ) if is_finetuned: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCamelCase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase = {'unk_token': '<unk>'} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) lowerCAmelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_snake_case , _snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) lowerCAmelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(_snake_case , return_tensors='np' ) lowerCAmelCase = processor(images=_snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = 'lower newer' lowerCAmelCase = processor(text=_snake_case ) lowerCAmelCase = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = 'lower newer' lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(images=_snake_case , visual_prompt=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(_snake_case ) lowerCAmelCase = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case )
362
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
0
"""simple docstring""" from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCamelCase : Dict = 0 __UpperCamelCase : Optional[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCamelCase : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCamelCase : Any = tuple[int, int] class a : def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = pos_x lowerCAmelCase = pos_y lowerCAmelCase = (pos_y, pos_x) lowerCAmelCase = goal_x lowerCAmelCase = goal_y lowerCAmelCase = g_cost lowerCAmelCase = parent lowerCAmelCase = self.calculate_heuristic() lowerCAmelCase = self.g_cost + self.h_cost def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.pos_x - self.goal_x lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_snake_case ) + abs(_snake_case ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , _snake_case ): """simple docstring""" return self.f_cost < other.f_cost class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case ) lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _snake_case ) lowerCAmelCase = [self.start] lowerCAmelCase = [] lowerCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_snake_case ) self.closed_nodes.append(_snake_case ) lowerCAmelCase = self.get_successors(_snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_snake_case ) else: # retrieve the best current path lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(_snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_snake_case ) else: self.open_nodes.append(_snake_case ) return [self.start.pos] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for action in delta: lowerCAmelCase = parent.pos_x + action[1] lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , ) ) return successors def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = node lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase = current_node.parent path.reverse() return path class a : def __init__( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = AStar(_snake_case , _snake_case ) lowerCAmelCase = AStar(_snake_case , _snake_case ) lowerCAmelCase = False def UpperCamelCase__ ( self ): """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _snake_case , _snake_case ) self.fwd_astar.closed_nodes.append(_snake_case ) self.bwd_astar.closed_nodes.append(_snake_case ) lowerCAmelCase = current_bwd_node lowerCAmelCase = current_fwd_node lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(_snake_case ), self.bwd_astar: self.bwd_astar.get_successors(_snake_case ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_snake_case ) else: # retrieve the best current path lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(_snake_case ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_snake_case ) else: astar.open_nodes.append(_snake_case ) return [self.fwd_astar.start.pos] def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.fwd_astar.retrace_path(_snake_case ) lowerCAmelCase = self.bwd_astar.retrace_path(_snake_case ) bwd_path.pop() bwd_path.reverse() lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCamelCase : int = (0, 0) __UpperCamelCase : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCamelCase : List[str] = time.time() __UpperCamelCase : Optional[int] = AStar(init, goal) __UpperCamelCase : int = a_star.search() __UpperCamelCase : Any = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __UpperCamelCase : List[str] = time.time() __UpperCamelCase : Dict = BidirectionalAStar(init, goal) __UpperCamelCase : List[str] = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
363
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCamelCase : Tuple = trt.Logger(trt.Logger.WARNING) __UpperCamelCase : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCamelCase : Any = logging.getLogger(__name__) __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __UpperCamelCase : Optional[int] = parser.parse_args() if args.tokenizer_name: __UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __UpperCamelCase : Optional[Any] = args.per_device_eval_batch_size __UpperCamelCase : Union[str, Any] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCamelCase : List[str] = True __UpperCamelCase : int = '''temp_engine/bert-fp32.engine''' if args.fpaa: __UpperCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: __UpperCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __UpperCamelCase : Tuple = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCamelCase : Optional[int] = [network.get_input(i) for i in range(network.num_inputs)] __UpperCamelCase : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCamelCase : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCamelCase : Tuple = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = np.asarray(inputs['input_ids'] , dtype=np.intaa ) lowerCAmelCase = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) lowerCAmelCase = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _UpperCAmelCase ) # start time lowerCAmelCase = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase = time.time() lowerCAmelCase = end_time - start_time lowerCAmelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCamelCase : Optional[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCamelCase : List[str] = raw_datasets['''validation'''].column_names __UpperCamelCase : Any = '''question''' if '''question''' in column_names else column_names[0] __UpperCamelCase : Optional[int] = '''context''' if '''context''' in column_names else column_names[1] __UpperCamelCase : Optional[int] = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCamelCase : List[Any] = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __UpperCamelCase : Optional[int] = min(args.max_seq_length, tokenizer.model_max_length) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowerCAmelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=_UpperCAmelCase , stride=args.doc_stride , return_overflowing_tokens=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __UpperCamelCase : Any = raw_datasets['''validation'''] # Validation Feature Creation __UpperCamelCase : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __UpperCamelCase : Any = default_data_collator __UpperCamelCase : Tuple = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __UpperCamelCase : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. lowerCAmelCase = postprocess_qa_predictions( examples=_UpperCAmelCase , features=_UpperCAmelCase , predictions=_UpperCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_UpperCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase , label_ids=_UpperCAmelCase ) __UpperCamelCase : int = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __UpperCamelCase : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCamelCase : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCamelCase : List[str] = cuda.mem_alloc(h_outputa.nbytes) __UpperCamelCase : int = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCamelCase : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __UpperCamelCase : Tuple = 0.0 __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : Tuple = timeit.default_timer() __UpperCamelCase : Tuple = None for step, batch in enumerate(eval_dataloader): __UpperCamelCase : List[str] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCamelCase : str = outputs __UpperCamelCase : List[Any] = torch.tensor(start_logits) __UpperCamelCase : Optional[int] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCamelCase : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCamelCase : Any = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCamelCase : Optional[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCamelCase : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCamelCase : List[Any] = nested_truncate(all_preds, len(eval_dataset)) __UpperCamelCase : List[str] = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __UpperCamelCase : List[str] = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCamelCase : Union[str, Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
364
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
365
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
0
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( a__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? snake_case__ = '''ssube/stable-diffusion-x4-upscaler-onnx''' def UpperCamelCase__ ( self , _snake_case=0 ): """simple docstring""" lowerCAmelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_snake_case ) ) lowerCAmelCase = torch.manual_seed(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_snake_case ).images lowerCAmelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_snake_case ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_snake_case ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_snake_case ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs() lowerCAmelCase = pipe(**_snake_case ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): @property def UpperCamelCase__ ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ort.SessionOptions() lowerCAmelCase = False return options def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCAmelCase = init_image.resize((1_28, 1_28) ) # using the PNDM scheduler by default lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'A fantasy landscape, trending on artstation' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=_snake_case , image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='np' , ) lowerCAmelCase = output.images lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCAmelCase = init_image.resize((1_28, 1_28) ) lowerCAmelCase = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' ) lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'A fantasy landscape, trending on artstation' lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe( prompt=_snake_case , image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='np' , ) lowerCAmelCase = output.images lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
366
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
309
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) return image def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ): lowerCAmelCase = dct.pop(_UpperCAmelCase ) lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) lowerCAmelCase = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict lowerCAmelCase = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) ) lowerCAmelCase = qkv_bias def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : str ): lowerCAmelCase = 364 if 'coco' in model_name else 224 lowerCAmelCase = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowerCAmelCase = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase ) return config, image_size @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=False ): lowerCAmelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowerCAmelCase = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0] lowerCAmelCase ,lowerCAmelCase = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) lowerCAmelCase = BlipaForConditionalGeneration(_UpperCAmelCase ).eval() lowerCAmelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowerCAmelCase ,lowerCAmelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = load_model_and_preprocess( name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase ) original_model.eval() print('Done!' ) # update state dict keys lowerCAmelCase = original_model.state_dict() lowerCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) if key.startswith('Qformer.bert' ): lowerCAmelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowerCAmelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: lowerCAmelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowerCAmelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowerCAmelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowerCAmelCase = key.replace('t5' , 'language' ) lowerCAmelCase = val # read in qv biases read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) assert len(_UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase = load_demo_image() lowerCAmelCase = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) lowerCAmelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) # create processor lowerCAmelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase ) lowerCAmelCase = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) lowerCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) original_model.to(_UpperCAmelCase ) hf_model.to(_UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowerCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits else: lowerCAmelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowerCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_UpperCAmelCase ) else: # cast to same type lowerCAmelCase = logits.dtype assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowerCAmelCase = '' lowerCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) lowerCAmelCase = original_model.generate({'image': original_pixel_values} ) lowerCAmelCase = hf_model.generate( _UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _UpperCAmelCase ) lowerCAmelCase = input_ids.shape[1] lowerCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase ) lowerCAmelCase = [text.strip() for text in output_text] print('HF generation:' , _UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() __UpperCamelCase : Dict = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) __UpperCamelCase : List[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
367
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=32 , _snake_case=2 , _snake_case=3 , _snake_case=16 , _snake_case=[1, 2, 1] , _snake_case=[2, 2, 4] , _snake_case=2 , _snake_case=2.0 , _snake_case=True , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case="gelu" , _snake_case=False , _snake_case=True , _snake_case=0.02 , _snake_case=1E-5 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=10 , _snake_case=8 , _snake_case=["stage1", "stage2", "stage3"] , _snake_case=[1, 2, 3] , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = embed_dim lowerCAmelCase = depths lowerCAmelCase = num_heads lowerCAmelCase = window_size lowerCAmelCase = mlp_ratio lowerCAmelCase = qkv_bias lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = drop_path_rate lowerCAmelCase = hidden_act lowerCAmelCase = use_absolute_embeddings lowerCAmelCase = patch_norm lowerCAmelCase = layer_norm_eps lowerCAmelCase = initializer_range lowerCAmelCase = is_training lowerCAmelCase = scope lowerCAmelCase = use_labels lowerCAmelCase = type_sequence_label_size lowerCAmelCase = encoder_stride lowerCAmelCase = out_features lowerCAmelCase = out_indices def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = MaskFormerSwinModel(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case ) lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = MaskFormerSwinBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(_snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_snake_case ): lowerCAmelCase = ['stem'] lowerCAmelCase = MaskFormerSwinBackbone(config=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) snake_case__ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MaskFormerSwinModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" return def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_snake_case ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_snake_case ) , _snake_case ) # Swin has a different seq_length lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_snake_case ): lowerCAmelCase = 0 return t def check_equivalence(_snake_case , _snake_case , _snake_case , _snake_case={} ): with torch.no_grad(): lowerCAmelCase = model(**_snake_case , return_dict=_snake_case , **_snake_case ) lowerCAmelCase = model(**_snake_case , return_dict=_snake_case , **_snake_case ).to_tuple() def recursive_check(_snake_case , _snake_case ): if isinstance(_snake_case , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_snake_case , _snake_case ): recursive_check(_snake_case , _snake_case ) elif isinstance(_snake_case , _snake_case ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_snake_case , _snake_case ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_snake_case ) , set_nan_tensor_to_zero(_snake_case ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' F' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' F' {torch.isnan(_snake_case ).any()} and `inf`: {torch.isinf(_snake_case )}. Dict has' F' `nan`: {torch.isnan(_snake_case ).any()} and `inf`: {torch.isinf(_snake_case )}.' ) , ) recursive_check(_snake_case , _snake_case ) for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case ) check_equivalence(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) check_equivalence(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case ) check_equivalence(_snake_case , _snake_case , _snake_case , {'output_hidden_states': True} ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case ) check_equivalence(_snake_case , _snake_case , _snake_case , {'output_hidden_states': True} ) @require_torch class a ( unittest.TestCase , a__ ): snake_case__ = (MaskFormerSwinBackbone,) if is_torch_available() else () snake_case__ = MaskFormerSwinConfig def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MaskFormerSwinModelTester(self ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: lowerCAmelCase = backbone_class(_snake_case ) backbone.to(_snake_case ) backbone.eval() lowerCAmelCase = backbone(**_snake_case ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _snake_case ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True lowerCAmelCase = backbone(**_snake_case , output_hidden_states=_snake_case ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: lowerCAmelCase = backbone(**_snake_case , output_attentions=_snake_case ) self.assertIsNotNone(outputs.attentions )
368
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __UpperCamelCase : List[str] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
369
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __UpperCamelCase : List[Any] = False class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): """simple docstring""" return 12 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = 12 lowerCAmelCase = 12 lowerCAmelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } lowerCAmelCase = TransformeraDModel(**_snake_case ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' lowerCAmelCase = self.dummy_vqvae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_transformer lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=_snake_case ) lowerCAmelCase = VQDiffusionPipeline( vqvae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , transformer=_snake_case , scheduler=_snake_case , learned_classifier_free_sampling_embeddings=_snake_case , ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'teddy bear playing in the pool' lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe([prompt] , generator=_snake_case , num_inference_steps=2 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe( [prompt] , generator=_snake_case , output_type='np' , return_dict=_snake_case , num_inference_steps=2 )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCAmelCase = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' lowerCAmelCase = self.dummy_vqvae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_transformer lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=_snake_case , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowerCAmelCase = VQDiffusionPipeline( vqvae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , transformer=_snake_case , scheduler=_snake_case , learned_classifier_free_sampling_embeddings=_snake_case , ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'teddy bear playing in the pool' lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe([prompt] , generator=_snake_case , num_inference_steps=2 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe( [prompt] , generator=_snake_case , output_type='np' , return_dict=_snake_case , num_inference_steps=2 )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCAmelCase = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) lowerCAmelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) lowerCAmelCase = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=_snake_case , output_type='np' , ) lowerCAmelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
371
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
0
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCamelCase : Any = '''src/transformers''' __UpperCamelCase : Tuple = '''docs/source/en/tasks''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start prompt. lowerCAmelCase = 0 while not lines[start_index].startswith(_UpperCAmelCase ): start_index += 1 start_index += 1 lowerCAmelCase = start_index while not lines[end_index].startswith(_UpperCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase : Tuple = direct_transformers_import(TRANSFORMERS_PATH) __UpperCamelCase : Any = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCamelCase : str = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_UpperCAmelCase , set() ) lowerCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False ): lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = _find_text_in_file( filename=os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) lowerCAmelCase = get_model_list_for_task(_UpperCAmelCase ) if current_list != new_list: if overwrite: with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCamelCase : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
351
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
0
from timeit import timeit __UpperCamelCase : Optional[Any] = { '''MALAYALAM''': True, '''String''': False, '''rotor''': True, '''level''': True, '''A''': True, '''BB''': True, '''ABC''': False, '''amanaplanacanalpanama''': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = 0 lowerCAmelCase = len(_UpperCAmelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = len(_UpperCAmelCase ) // 2 lowerCAmelCase = len(_UpperCAmelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_UpperCAmelCase ) ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(_UpperCAmelCase ) <= 2: return True if s[0] == s[len(_UpperCAmelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): return s == s[::-1] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = F'all({name}(key) is value for key, value in test_data.items())' lowerCAmelCase = F'from __main__ import test_data, {name}' lowerCAmelCase = 50_0000 lowerCAmelCase = timeit(stmt=_UpperCAmelCase , setup=_UpperCAmelCase , number=_UpperCAmelCase ) print(F'{name:<35} finished {number:,} runs in {result:.5f} seconds' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print('''a man a plan a canal panama''') # finished 500,000 runs in 0.46793 seconds benchmark_function('''is_palindrome_slice''') # finished 500,000 runs in 0.85234 seconds benchmark_function('''is_palindrome''') # finished 500,000 runs in 1.32028 seconds benchmark_function('''is_palindrome_recursive''') # finished 500,000 runs in 2.08679 seconds benchmark_function('''is_palindrome_traversal''')
352
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
0
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : str = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
353
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
0
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ): # Initialise PyTorch model lowerCAmelCase = BertConfig.from_json_file(_UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) lowerCAmelCase = BertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example __UpperCamelCase : Union[str, Any] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __UpperCamelCase : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ): lowerCAmelCase = [] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_UpperCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_UpperCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(_UpperCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_UpperCAmelCase ) return next_generation def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] , _UpperCAmelCase : int ): lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): # Create output image lowerCAmelCase = Image.new('RGB' , (len(cells[0] ), len(_UpperCAmelCase )) ) lowerCAmelCase = img.load() # Save cells to image for x in range(len(_UpperCAmelCase ) ): for y in range(len(cells[0] ) ): lowerCAmelCase = 255 - cells[y][x] * 255 lowerCAmelCase = (colour, colour, colour) # Save image images.append(_UpperCAmelCase ) lowerCAmelCase = new_generation(_UpperCAmelCase ) return images if __name__ == "__main__": __UpperCamelCase : List[Any] = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
355
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Dict = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase : int = ['''small''', '''medium''', '''large'''] __UpperCamelCase : str = '''lm_head.decoder.weight''' __UpperCamelCase : Dict = '''lm_head.weight''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase : Optional[int] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __UpperCamelCase : str = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
309
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_ : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''pixel_values'''] def __init__( self , _snake_case = True , _snake_case = None , _snake_case = PIL.Image.BICUBIC , _snake_case = True , _snake_case = None , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = True , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = size if size is not None else {'height': 2_56, 'width': 2_56} lowerCAmelCase = get_size_dict(_snake_case ) lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} lowerCAmelCase = get_size_dict(_snake_case , param_name='crop_size' ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = PIL.Image.BICUBIC , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( _snake_case , size=(size['height'], size['width']) , resample=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = get_size_dict(_snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_snake_case , size=(size['height'], size['width']) , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ): """simple docstring""" return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case=None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ): """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(_snake_case ) lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(_snake_case , param_name='crop_size' ) lowerCAmelCase = make_list_of_images(_snake_case ) if not valid_images(_snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , resample=_snake_case ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=_snake_case , size=_snake_case ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images] lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images] lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=_snake_case , tensor_type=_snake_case )
357
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
0
"""simple docstring""" from __future__ import annotations from fractions import Fraction def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = [] lowerCAmelCase = 11 lowerCAmelCase = int('1' + '0' * digit_len ) for num in range(_UpperCAmelCase , _UpperCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_UpperCAmelCase , _UpperCAmelCase ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 lowerCAmelCase = 10 return solutions def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 2 ): lowerCAmelCase = 1.0 for fraction in fraction_list(_UpperCAmelCase ): lowerCAmelCase = Fraction(_UpperCAmelCase ) result *= frac.denominator / frac.numerator return int(_UpperCAmelCase ) if __name__ == "__main__": print(solution())
358
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( a__ , unittest.TestCase ): snake_case__ = MgpstrTokenizer snake_case__ = False snake_case__ = {} snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() # fmt: off lowerCAmelCase = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on lowerCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = 'tester' lowerCAmelCase = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers(do_lower_case=_snake_case ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) lowerCAmelCase = tokenizer.encode([special_token] , add_special_tokens=_snake_case ) self.assertEqual(len(_snake_case ) , 1 ) lowerCAmelCase = tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) self.assertTrue(special_token not in decoded ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): lowerCAmelCase ,lowerCAmelCase = self.get_input_output_texts(_snake_case ) lowerCAmelCase = tokenizer.tokenize(_snake_case ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(_snake_case ) lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertNotEqual(len(_snake_case ) , 0 ) lowerCAmelCase = tokenizer.decode(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual(text_a.replace(' ' , '' ) , _snake_case ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def UpperCamelCase__ ( self ): """simple docstring""" pass
359
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
0
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): return int((input_a, input_a).count(0 ) != 0 ) def _SCREAMING_SNAKE_CASE (): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
360
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
0
"""simple docstring""" from numpy import exp, pi, sqrt def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : Any = { '''configuration_chinese_clip''': [ '''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ChineseCLIPConfig''', '''ChineseCLIPOnnxConfig''', '''ChineseCLIPTextConfig''', '''ChineseCLIPVisionConfig''', ], '''processing_chinese_clip''': ['''ChineseCLIPProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''ChineseCLIPFeatureExtractor'''] __UpperCamelCase : List[str] = ['''ChineseCLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ChineseCLIPModel''', '''ChineseCLIPPreTrainedModel''', '''ChineseCLIPTextModel''', '''ChineseCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
362
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class a ( a__ , unittest.TestCase ): snake_case__ = CpmAntTokenizer snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) lowerCAmelCase = '今天天气真好!' lowerCAmelCase = ['今天', '天气', '真', '好', '!'] lowerCAmelCase = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = '今天天气真好!' lowerCAmelCase = [tokenizer.bos_token] + tokens lowerCAmelCase = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) lowerCAmelCase = tokenizer.decode(_snake_case ) self.assertEqual(_snake_case , _snake_case )
363
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) lowerCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b" lowerCAmelCase = str(bin(_UpperCAmelCase ) )[2:] lowerCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCamelCase : List[str] = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCamelCase : Optional[int] = json.load(f) @require_torch class a ( unittest.TestCase ): def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return FSMTTokenizer.from_pretrained(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = FSMTForConditionalGeneration.from_pretrained(_snake_case ).to(_snake_case ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = F'facebook/wmt19-{pair}' lowerCAmelCase = self.get_tokenizer(_snake_case ) lowerCAmelCase = self.get_model(_snake_case ) lowerCAmelCase = bleu_data[pair]['src'] lowerCAmelCase = bleu_data[pair]['tgt'] lowerCAmelCase = tokenizer(_snake_case , return_tensors='pt' , truncation=_snake_case , padding='longest' ).to(_snake_case ) lowerCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase = tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) lowerCAmelCase = calculate_bleu(_snake_case , _snake_case ) print(_snake_case ) self.assertGreaterEqual(scores['bleu'] , _snake_case )
365
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
0
"""simple docstring""" __UpperCamelCase : List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCamelCase : Dict = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCamelCase : Union[str, Any] = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ): assert len(str(_UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCAmelCase = year // 100 lowerCAmelCase = (5 * (century % 4) + 2) % 7 lowerCAmelCase = year % 100 lowerCAmelCase = centurian % 12 lowerCAmelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
309
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __UpperCamelCase : Union[str, Any] = logging.get_logger('''transformers.models.encodec''') __UpperCamelCase : str = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } __UpperCamelCase : Union[str, Any] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } __UpperCamelCase : Dict = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } __UpperCamelCase : Any = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } __UpperCamelCase : Tuple = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } __UpperCamelCase : Tuple = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __UpperCamelCase : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __UpperCamelCase : Dict = [] __UpperCamelCase : Tuple = [] def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: lowerCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value elif weight_type == "running_mean": lowerCAmelCase = value elif weight_type == "running_var": lowerCAmelCase = value elif weight_type == "num_batches_tracked": lowerCAmelCase = value elif weight_type == "weight_ih_l0": lowerCAmelCase = value elif weight_type == "weight_hh_l0": lowerCAmelCase = value elif weight_type == "bias_ih_l0": lowerCAmelCase = value elif weight_type == "bias_hh_l0": lowerCAmelCase = value elif weight_type == "weight_ih_l1": lowerCAmelCase = value elif weight_type == "weight_hh_l1": lowerCAmelCase = value elif weight_type == "bias_ih_l1": lowerCAmelCase = value elif weight_type == "bias_hh_l1": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : int ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCAmelCase ,lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ): lowerCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": lowerCAmelCase = MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(_UpperCAmelCase , _UpperCAmelCase ): logger.info(F'{name} was ignored' ) continue lowerCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCAmelCase ,lowerCAmelCase = key.split('.*.' ) if prefix in name and suffix in name: lowerCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(_UpperCAmelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , _UpperCAmelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight_ih_l0" in name: lowerCAmelCase = 'weight_ih_l0' elif "weight_hh_l0" in name: lowerCAmelCase = 'weight_hh_l0' elif "bias_ih_l0" in name: lowerCAmelCase = 'bias_ih_l0' elif "bias_hh_l0" in name: lowerCAmelCase = 'bias_hh_l0' elif "weight_ih_l1" in name: lowerCAmelCase = 'weight_ih_l1' elif "weight_hh_l1" in name: lowerCAmelCase = 'weight_hh_l1' elif "bias_ih_l1" in name: lowerCAmelCase = 'bias_ih_l1' elif "bias_hh_l1" in name: lowerCAmelCase = 'bias_hh_l1' elif "bias" in name: lowerCAmelCase = 'bias' elif "weight" in name: lowerCAmelCase = 'weight' elif "running_mean" in name: lowerCAmelCase = 'running_mean' elif "running_var" in name: lowerCAmelCase = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase = 'num_batches_tracked' else: lowerCAmelCase = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Any=None , ): if config_path is not None: lowerCAmelCase = EncodecConfig.from_pretrained(_UpperCAmelCase ) else: lowerCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCAmelCase = [8, 5, 4, 4] lowerCAmelCase = [2.2] lowerCAmelCase = 64 lowerCAmelCase = 3_2000 lowerCAmelCase = 2048 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False elif model_name == "encodec_48khz": lowerCAmelCase = [8, 5, 4, 2] lowerCAmelCase = [3.0, 6.0, 12.0, 24.0] lowerCAmelCase = 4_8000 lowerCAmelCase = 2 lowerCAmelCase = False lowerCAmelCase = 'time_group_norm' lowerCAmelCase = True lowerCAmelCase = 1.0 lowerCAmelCase = 0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) lowerCAmelCase = EncodecModel(_UpperCAmelCase ) lowerCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_UpperCAmelCase ) lowerCAmelCase = torch.load(_UpperCAmelCase ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCAmelCase = original_checkpoint['best_state'] recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(_UpperCAmelCase ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
367
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a ( a__ ): snake_case__ = 4_2 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 6_55_36 , _snake_case = None , _snake_case = 2 , _snake_case = 2 , _snake_case = 0 , _snake_case = "fourier" , _snake_case = True , _snake_case = False , _snake_case = 0.0 , _snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case = "UNetMidBlock1D" , _snake_case = None , _snake_case = (32, 32, 64) , _snake_case = None , _snake_case = 8 , _snake_case = 1 , _snake_case = False , ): """simple docstring""" super().__init__() lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case ) lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case ) lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: lowerCAmelCase = block_out_channels[0] * 4 lowerCAmelCase = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) lowerCAmelCase = nn.ModuleList([] ) lowerCAmelCase = None lowerCAmelCase = nn.ModuleList([] ) lowerCAmelCase = None # down lowerCAmelCase = in_channels for i, down_block_type in enumerate(_snake_case ): lowerCAmelCase = output_channel lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCAmelCase = i == len(_snake_case ) - 1 lowerCAmelCase = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case ) # mid lowerCAmelCase = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up lowerCAmelCase = list(reversed(_snake_case ) ) lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: lowerCAmelCase = out_channels else: lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(_snake_case ): lowerCAmelCase = output_channel lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(_snake_case ) - 1 else final_upsample_channels ) lowerCAmelCase = i == len(_snake_case ) - 1 lowerCAmelCase = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case ) lowerCAmelCase = output_channel # out lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCAmelCase = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = True , ): """simple docstring""" lowerCAmelCase = timestep if not torch.is_tensor(_snake_case ): lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_snake_case ) and len(timesteps.shape ) == 0: lowerCAmelCase = timesteps[None].to(sample.device ) lowerCAmelCase = self.time_proj(_snake_case ) if self.config.use_timestep_embedding: lowerCAmelCase = self.time_mlp(_snake_case ) else: lowerCAmelCase = timestep_embed[..., None] lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCAmelCase = () for downsample_block in self.down_blocks: lowerCAmelCase ,lowerCAmelCase = downsample_block(hidden_states=_snake_case , temb=_snake_case ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCAmelCase = self.mid_block(_snake_case , _snake_case ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCAmelCase = down_block_res_samples[-1:] lowerCAmelCase = down_block_res_samples[:-1] lowerCAmelCase = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case ) # 5. post-process if self.out_block: lowerCAmelCase = self.out_block(_snake_case , _snake_case ) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case )
368
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class a ( a__ , unittest.TestCase ): snake_case__ = MobileBertTokenizer snake_case__ = MobileBertTokenizerFast snake_case__ = True snake_case__ = True snake_case__ = filter_non_english snake_case__ = '''google/mobilebert-uncased''' def UpperCamelCase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCAmelCase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = 'UNwant\u00E9d,running' lowerCAmelCase = 'unwanted, running' return input_text, output_text def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer_class(self.vocab_file ) lowerCAmelCase = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = 'UNwant\u00E9d,running' lowerCAmelCase = tokenizer.tokenize(_snake_case ) lowerCAmelCase = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) lowerCAmelCase = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(_snake_case ) lowerCAmelCase = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) # With lower casing lowerCAmelCase = self.get_tokenizer(do_lower_case=_snake_case ) lowerCAmelCase = self.get_rust_tokenizer(do_lower_case=_snake_case ) lowerCAmelCase = 'UNwant\u00E9d,running' lowerCAmelCase = tokenizer.tokenize(_snake_case ) lowerCAmelCase = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) lowerCAmelCase = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = tokenizer.encode(_snake_case ) lowerCAmelCase = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , strip_accents=_snake_case ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = BasicTokenizer(do_lower_case=_snake_case , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCAmelCase = {} for i, token in enumerate(_snake_case ): lowerCAmelCase = i lowerCAmelCase = WordpieceTokenizer(vocab=_snake_case , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCamelCase__ ( self ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_snake_case ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(_snake_case ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer_class.from_pretrained('google/mobilebert-uncased' ) lowerCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=_snake_case ) lowerCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=_snake_case ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(_snake_case , _snake_case ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase = F'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowerCAmelCase = tokenizer_r.encode_plus( _snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , return_offsets_mapping=_snake_case , add_special_tokens=_snake_case , ) lowerCAmelCase = tokenizer_r.do_lower_case if hasattr(_snake_case , 'do_lower_case' ) else False lowerCAmelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ['的', '人', '有'] lowerCAmelCase = ''.join(_snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase = True lowerCAmelCase = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase = tokenizer_p.encode(_snake_case , add_special_tokens=_snake_case ) lowerCAmelCase = tokenizer_r.encode(_snake_case , add_special_tokens=_snake_case ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , _snake_case ) lowerCAmelCase = False lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) lowerCAmelCase = tokenizer_r.encode(_snake_case , add_special_tokens=_snake_case ) lowerCAmelCase = tokenizer_p.encode(_snake_case , add_special_tokens=_snake_case ) lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(_snake_case ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase = [ F'##{token}' if idx != 0 else token for idx, token in enumerate(_snake_case ) ] self.assertListEqual(_snake_case , _snake_case ) self.assertListEqual(_snake_case , _snake_case )
369
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
0
"""simple docstring""" import fcntl import os import socket import torch import torch.distributed as dist def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : Tuple ): with open(_UpperCAmelCase , 'r' ) as fh: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_EX ) try: print(*_UpperCAmelCase ) finally: fcntl.flock(_UpperCAmelCase , fcntl.LOCK_UN ) __UpperCamelCase : Tuple = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) __UpperCamelCase : Dict = torch.device('''cuda''', local_rank) __UpperCamelCase : List[str] = socket.gethostname() __UpperCamelCase : Optional[Any] = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank __UpperCamelCase : Any = dist.get_rank() __UpperCamelCase : List[Any] = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
370
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
0
"""simple docstring""" import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup lowerCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , **__a : Any ) -> Any: requires_backends(self , ["bs4"] ) super().__init__(**__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase : int = [] _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Any = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCamelCase : Any = parent.find_all(child.name , recursive=__a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__a ) else next(i for i, s in enumerate(__a , 1 ) if s is child ) ) _UpperCamelCase : List[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] ) -> List[Any]: _UpperCamelCase : Any = BeautifulSoup(__a , "html.parser" ) _UpperCamelCase : Dict = [] _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[str] = [] for element in html_code.descendants: if type(__a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _UpperCamelCase : List[str] = html.unescape(__a ).strip() if not text_in_this_tag: continue all_doc_strings.append(__a ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.xpath_soup(__a ) stringaxtag_seq.append(__a ) stringaxsubs_seq.append(__a ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(__a ) != len(__a ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Tuple , __a : int ) -> List[Any]: _UpperCamelCase : int = "" for tagname, subs in zip(__a , __a ): xpath += F'''/{tagname}''' if subs != 0: xpath += F'''[{subs}]''' return xpath def __call__( self : List[str] , __a : str ) -> BatchFeature: _UpperCamelCase : str = False # Check that strings has a valid type if isinstance(__a , __a ): _UpperCamelCase : int = True elif isinstance(__a , (list, tuple) ): if len(__a ) == 0 or isinstance(html_strings[0] , __a ): _UpperCamelCase : List[str] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " F'''but is of type {type(__a )}.''' ) _UpperCamelCase : Optional[Any] = bool(isinstance(__a , (list, tuple) ) and (isinstance(html_strings[0] , __a )) ) if not is_batched: _UpperCamelCase : str = [html_strings] # Get nodes + xpaths _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Any = [] for html_string in html_strings: _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : str = self.get_three_from_single(__a ) nodes.append(__a ) _UpperCamelCase : Any = [] for node, tag_list, sub_list in zip(__a , __a , __a ): _UpperCamelCase : Dict = self.construct_xpath(__a , __a ) xpath_strings.append(__a ) xpaths.append(__a ) # return as Dict _UpperCamelCase : Optional[Any] = {"nodes": nodes, "xpaths": xpaths} _UpperCamelCase : Any = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
310
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : List[Any] , __a : str=13 , __a : Any=30 , __a : List[str]=2 , __a : Dict=3 , __a : Union[str, Any]=True , __a : Dict=True , __a : List[str]=32 , __a : Tuple=5 , __a : str=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : str=0.1 , __a : Optional[int]=0.1 , __a : Union[str, Any]=10 , __a : Optional[Any]=0.02 , __a : List[Any]=None , __a : str=2 , ) -> int: _UpperCamelCase : Tuple = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Tuple = image_size _UpperCamelCase : List[str] = patch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : int = hidden_size _UpperCamelCase : List[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Dict = hidden_dropout_prob _UpperCamelCase : Dict = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = type_sequence_label_size _UpperCamelCase : int = initializer_range _UpperCamelCase : Optional[int] = scope _UpperCamelCase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Optional[int] = (image_size // patch_size) ** 2 _UpperCamelCase : Optional[int] = num_patches + 1 def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Union[str, Any] = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[int] , __a : Union[str, Any] , __a : Tuple ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = ViTModel(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Tuple = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : str , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : Tuple = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() _UpperCamelCase : Any = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : Union[str, Any] = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() _UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : Dict = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : int , __a : Dict ) -> int: _UpperCamelCase : Any = self.type_sequence_label_size _UpperCamelCase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : int = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase : Tuple = 1 _UpperCamelCase : Union[str, Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() _UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: _UpperCamelCase : Dict = self.prepare_config_and_inputs() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : Union[str, Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ :Any = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :int = False def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Dict = ViTModelTester(self ) _UpperCamelCase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : List[Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase, _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__a ) _UpperCamelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> int: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : List[str] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: _UpperCamelCase : List[Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(__a ) _UpperCamelCase : str = self.default_image_processor _UpperCamelCase : List[Any] = prepare_img() _UpperCamelCase : Any = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : Dict = model(**__a ) # verify the logits _UpperCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) _UpperCamelCase : str = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : List[str] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(__a ) _UpperCamelCase : Union[str, Any] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : int = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): _UpperCamelCase : str = model(__a , interpolate_pos_encoding=__a ) # verify the logits _UpperCamelCase : int = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) _UpperCamelCase : int = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Tuple = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCamelCase : int = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__a , return_tensors="pt" ) _UpperCamelCase : Any = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : int = model(__a )
310
1
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ,lowercase_ ) -> str: """simple docstring""" print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(lowercase_ ): print(F'''{i}\t\t{d}''' ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Any: """simple docstring""" for j in range(lowercase_ ): _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Tuple = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> list[float]: """simple docstring""" _UpperCamelCase : List[Any] = [float("inf" )] * vertex_count _UpperCamelCase : Any = 0.0 for _ in range(vertex_count - 1 ): for j in range(lowercase_ ): _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: _UpperCamelCase : List[str] = distance[u] + w _UpperCamelCase : Any = check_negative_cycle(lowercase_ ,lowercase_ ,lowercase_ ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = int(input("Enter number of vertices: ").strip()) lowerCamelCase__ = int(input("Enter number of edges: ").strip()) lowerCamelCase__ = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) lowerCamelCase__ = {"src": src, "dst": dest, "weight": weight} lowerCamelCase__ = int(input("\nEnter shortest path source:").strip()) lowerCamelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
310
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: _UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[int] = -1 _UpperCamelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Any = TextStreamer(__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Optional[int] = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Tuple = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Dict = -1 _UpperCamelCase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : List[str] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : Optional[int] = tokenizer.decode(greedy_ids[0] ) _UpperCamelCase : Tuple = TextIteratorStreamer(__a ) _UpperCamelCase : Union[str, Any] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : Optional[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() _UpperCamelCase : Tuple = "" for new_text in streamer: streamer_text += new_text self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : int = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Union[str, Any] = -1 _UpperCamelCase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Union[str, Any] = model.generate(__a , max_new_tokens=10 , do_sample=__a ) _UpperCamelCase : str = greedy_ids[:, input_ids.shape[1] :] _UpperCamelCase : Dict = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _UpperCamelCase : Optional[int] = TextStreamer(__a , skip_prompt=__a ) model.generate(__a , max_new_tokens=10 , do_sample=__a , streamer=__a ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _UpperCamelCase : Tuple = cs.out[:-1] self.assertEqual(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _UpperCamelCase : Dict = AutoTokenizer.from_pretrained("distilgpt2" ) _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__a ) _UpperCamelCase : int = -1 _UpperCamelCase : Any = torch.ones((1, 5) , device=__a ).long() * model.config.bos_token_id with CaptureStdout() as cs: _UpperCamelCase : List[str] = TextStreamer(__a , skip_special_tokens=__a ) model.generate(__a , max_new_tokens=1 , do_sample=__a , streamer=__a ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _UpperCamelCase : int = cs.out[:-1] # Remove the final "\n" _UpperCamelCase : int = tokenizer(__a , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) _UpperCamelCase : Union[str, Any] = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__a ) _UpperCamelCase : Optional[Any] = -1 _UpperCamelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__a ) _UpperCamelCase : Any = TextIteratorStreamer(__a , timeout=0.0_01 ) _UpperCamelCase : Optional[int] = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} _UpperCamelCase : List[Any] = Thread(target=model.generate , kwargs=__a ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__a ): _UpperCamelCase : List[str] = "" for new_text in streamer: streamer_text += new_text
310
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowerCamelCase__ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __a : str , __a : List[Any]=16 , __a : Optional[Any]=13 , __a : Union[str, Any]=7 , __a : Optional[int]=14 , __a : int=10 , __a : Optional[int]=19 , __a : str=5 , __a : Dict=4 , __a : str=True , __a : List[str]=16 , __a : List[Any]=2 , __a : Dict=4 , __a : Optional[int]=4 , __a : Tuple="gelu" , __a : Any=0.1 , __a : Tuple=0.1 , __a : List[Any]=[1, 2, 3, 4, 5] , __a : int=25 , __a : List[Any]=5 , ) -> Any: _UpperCamelCase : str = d_model _UpperCamelCase : Dict = parent _UpperCamelCase : str = batch_size _UpperCamelCase : Optional[int] = prediction_length _UpperCamelCase : Any = context_length _UpperCamelCase : Any = cardinality _UpperCamelCase : List[Any] = num_time_features _UpperCamelCase : List[str] = lags_sequence _UpperCamelCase : Union[str, Any] = embedding_dimension _UpperCamelCase : Tuple = is_training _UpperCamelCase : Dict = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : int = num_attention_heads _UpperCamelCase : Tuple = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : Tuple = attention_probs_dropout_prob _UpperCamelCase : Optional[int] = context_length _UpperCamelCase : Any = prediction_length + label_length _UpperCamelCase : Tuple = label_length _UpperCamelCase : Any = moving_average _UpperCamelCase : Union[str, Any] = autocorrelation_factor def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict ) -> Tuple: _UpperCamelCase : Any = config.context_length + max(config.lags_sequence ) _UpperCamelCase : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCamelCase : Any = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCamelCase : Any = floats_tensor([self.batch_size, _past_length] ) _UpperCamelCase : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCamelCase : int = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCamelCase : str = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase : List[str] = self.get_config() _UpperCamelCase : int = self.prepare_autoformer_inputs_dict(__a ) return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: _UpperCamelCase, _UpperCamelCase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict , __a : Dict ) -> Optional[Any]: _UpperCamelCase : Any = AutoformerModel(config=__a ).to(__a ).eval() _UpperCamelCase : List[Any] = model(**__a ) _UpperCamelCase : Tuple = outputs.encoder_last_hidden_state _UpperCamelCase : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : Union[str, Any] = model.get_encoder() encoder.save_pretrained(__a ) _UpperCamelCase : int = AutoformerEncoder.from_pretrained(__a ).to(__a ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : int = model.create_network_inputs(**__a ) _UpperCamelCase, _UpperCamelCase : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCamelCase : List[str] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCamelCase : Tuple = encoder(inputs_embeds=__a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _UpperCamelCase : Optional[int] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCamelCase : Dict = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCamelCase : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCamelCase : List[str] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : Optional[Any] = model.get_decoder() decoder.save_pretrained(__a ) _UpperCamelCase : str = AutoformerDecoder.from_pretrained(__a ).to(__a ) _UpperCamelCase : Tuple = decoder( trend=__a , inputs_embeds=__a , encoder_hidden_states=__a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ :str = {"feature-extraction": AutoformerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :int = False SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :List[str] = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: _UpperCamelCase : Optional[Any] = AutoformerModelTester(self ) _UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: _UpperCamelCase, _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCamelCase : List[str] = model_class(__a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) _UpperCamelCase, _UpperCamelCase : int = model_class.from_pretrained(__a , output_loading_info=__a ) self.assertEqual(info["missing_keys"] , [] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__a ) @unittest.skip(reason="Model has no tokens embeddings" ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: pass def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: _UpperCamelCase : Any = inspect.signature(getattr(__a , "forward" ) ) # The main input is the name of the argument after `self` _UpperCamelCase : List[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase, _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[Any] = model_class(__a ) _UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : Any = [*signature.parameters.keys()] _UpperCamelCase : int = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__a )] , __a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: _UpperCamelCase, _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[Any] = getattr(self.model_tester , "seq_length" , __a ) _UpperCamelCase : List[str] = getattr(self.model_tester , "decoder_seq_length" , __a ) _UpperCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , __a ) _UpperCamelCase : str = getattr(self.model_tester , "d_model" , __a ) _UpperCamelCase : List[str] = getattr(self.model_tester , "num_attention_heads" , __a ) _UpperCamelCase : Any = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = True _UpperCamelCase : List[Any] = False _UpperCamelCase : Any = True _UpperCamelCase : Dict = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : List[Any] = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCamelCase : Dict = True _UpperCamelCase : Any = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : Tuple = model(**self._prepare_for_class(__a , __a ) ) _UpperCamelCase : List[Any] = outputs.encoder_attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCamelCase : Optional[Any] = len(__a ) _UpperCamelCase : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__a , __a ) # decoder attentions _UpperCamelCase : str = outputs.decoder_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCamelCase : Any = outputs.cross_attentions self.assertIsInstance(__a , (list, tuple) ) self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCamelCase : List[Any] = True _UpperCamelCase : Any = True _UpperCamelCase : Union[str, Any] = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(__a , __a ) ) self.assertEqual(out_len + 2 , len(__a ) ) _UpperCamelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: super().test_retain_grad_hidden_states_attentions() def lowercase__ ( lowercase_="train-batch.pt" ) -> str: """simple docstring""" _UpperCamelCase : Any = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" ,filename=lowercase_ ,repo_type="dataset" ) _UpperCamelCase : Tuple = torch.load(lowercase_ ,map_location=lowercase_ ) return batch @require_torch @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: _UpperCamelCase : Optional[int] = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) _UpperCamelCase : List[str] = prepare_batch() with torch.no_grad(): _UpperCamelCase : Union[str, Any] = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] _UpperCamelCase : Optional[int] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : List[str] = torch.tensor( [[0.35_93, -1.33_98, 0.63_30], [0.22_79, 1.53_96, -0.17_92], [0.04_50, 1.32_25, -0.23_35]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: _UpperCamelCase : int = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) _UpperCamelCase : int = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCamelCase : Tuple = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state _UpperCamelCase : Optional[Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __a ) _UpperCamelCase : Union[str, Any] = torch.tensor( [[-0.07_34, -0.90_36, 0.83_58], [4.71_86, 2.41_13, 1.95_81], [1.79_53, 2.35_58, 1.29_70]] , device=__a ) self.assertTrue(torch.allclose(output[0, :3, :3] , __a , atol=__a ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: _UpperCamelCase : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__a ) _UpperCamelCase : Tuple = prepare_batch("val-batch.pt" ) with torch.no_grad(): _UpperCamelCase : List[Any] = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) _UpperCamelCase : List[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __a ) _UpperCamelCase : Optional[Any] = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] , device=__a ) _UpperCamelCase : Tuple = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __a , rtol=1e-1 ) )
310
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" with open(lowercase_ ) as metadata_file: _UpperCamelCase : Dict = json.load(lowercase_ ) _UpperCamelCase : str = LukeConfig(use_entity_aware_attention=lowercase_ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path _UpperCamelCase : str = torch.load(lowercase_ ,map_location="cpu" )["module"] # Load the entity vocab file _UpperCamelCase : Dict = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] _UpperCamelCase : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _UpperCamelCase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks _UpperCamelCase : Dict = AddedToken("<ent>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) _UpperCamelCase : Union[str, Any] = AddedToken("<ent2>" ,lstrip=lowercase_ ,rstrip=lowercase_ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"r" ) as f: _UpperCamelCase : Tuple = json.load(lowercase_ ) _UpperCamelCase : Optional[int] = "MLukeTokenizer" with open(os.path.join(lowercase_ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) with open(os.path.join(lowercase_ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) _UpperCamelCase : int = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens _UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(["@"] )[0] _UpperCamelCase : str = tokenizer.convert_tokens_to_ids(["#"] )[0] _UpperCamelCase : Union[str, Any] = state_dict["embeddings.word_embeddings.weight"] _UpperCamelCase : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) _UpperCamelCase : List[str] = word_emb[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _UpperCamelCase : Optional[Any] = state_dict[bias_name] _UpperCamelCase : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) _UpperCamelCase : Tuple = decoder_bias[enta_init_index].unsqueeze(0 ) _UpperCamelCase : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _UpperCamelCase : Tuple = F'''encoder.layer.{layer_index}.attention.self.''' _UpperCamelCase : List[Any] = state_dict[prefix + matrix_name] _UpperCamelCase : str = state_dict[prefix + matrix_name] _UpperCamelCase : Any = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _UpperCamelCase : Any = state_dict["entity_embeddings.entity_embeddings.weight"] _UpperCamelCase : Tuple = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : int = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _UpperCamelCase : int = state_dict["entity_predictions.bias"] _UpperCamelCase : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) _UpperCamelCase : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) _UpperCamelCase : str = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) _UpperCamelCase : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): _UpperCamelCase : Union[str, Any] = state_dict[key] else: _UpperCamelCase : Dict = state_dict[key] _UpperCamelCase, _UpperCamelCase : Optional[Any] = model.load_state_dict(lowercase_ ,strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ,task="entity_classification" ) _UpperCamelCase : Dict = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." _UpperCamelCase : Optional[Any] = (0, 9) _UpperCamelCase : int = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : List[str] = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 33, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _UpperCamelCase : Tuple = torch.Size((1, 1, 768) ) _UpperCamelCase : List[Any] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase_ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction _UpperCamelCase : List[Any] = MLukeTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : int = "Tokyo is the capital of <mask>." _UpperCamelCase : List[Any] = (24, 30) _UpperCamelCase : Any = tokenizer(lowercase_ ,entity_spans=[span] ,return_tensors="pt" ) _UpperCamelCase : Optional[Any] = model(**lowercase_ ) _UpperCamelCase : int = encoding["input_ids"][0].tolist() _UpperCamelCase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) _UpperCamelCase : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) _UpperCamelCase : Union[str, Any] = outputs.entity_logits[0][0].argmax().item() _UpperCamelCase : Tuple = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : List[str] = ["[MASK]", "[PAD]", "[UNK]"] _UpperCamelCase : Tuple = [json.loads(lowercase_ ) for line in open(lowercase_ )] _UpperCamelCase : List[str] = {} for entry in data: _UpperCamelCase : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _UpperCamelCase : Dict = entity_id break _UpperCamelCase : Dict = F'''{language}:{entity_name}''' _UpperCamelCase : str = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
310
1
"""simple docstring""" import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase__ = 16 lowerCamelCase__ = 32 def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" return int(x / 2**20 ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __enter__( self : Dict ) -> Optional[int]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _UpperCamelCase : List[str] = torch.cuda.memory_allocated() return self def __exit__( self : Tuple , *__a : List[str] ) -> Dict: gc.collect() torch.cuda.empty_cache() _UpperCamelCase : List[str] = torch.cuda.memory_allocated() _UpperCamelCase : int = torch.cuda.max_memory_allocated() _UpperCamelCase : Optional[Any] = bamb(self.end - self.begin ) _UpperCamelCase : List[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def lowercase__ ( lowercase_ ,lowercase_ = 16 ,lowercase_ = "bert-base-cased" ,lowercase_ = 320 ,lowercase_ = 160 ,) -> List[Any]: """simple docstring""" _UpperCamelCase : int = AutoTokenizer.from_pretrained(lowercase_ ) _UpperCamelCase : Optional[Any] = load_dataset( "glue" ,"mrpc" ,split={"train": F'''train[:{n_train}]''', "validation": F'''validation[:{n_val}]'''} ) def tokenize_function(lowercase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCamelCase : Optional[Any] = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=lowercase_ ,max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCamelCase : Tuple = datasets.map( lowercase_ ,batched=lowercase_ ,remove_columns=["idx", "sentence1", "sentence2"] ,load_from_cache_file=lowercase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCamelCase : Union[str, Any] = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(lowercase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase_ ,padding="max_length" ,max_length=128 ,return_tensors="pt" ) return tokenizer.pad(lowercase_ ,padding="longest" ,return_tensors="pt" ) # Instantiate dataloaders. _UpperCamelCase : List[Any] = DataLoader( tokenized_datasets["train"] ,shuffle=lowercase_ ,collate_fn=lowercase_ ,batch_size=lowercase_ ) _UpperCamelCase : Any = DataLoader( tokenized_datasets["validation"] ,shuffle=lowercase_ ,collate_fn=lowercase_ ,batch_size=lowercase_ ) return train_dataloader, eval_dataloader def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCamelCase : Dict = config["lr"] _UpperCamelCase : List[Any] = int(config["num_epochs"] ) _UpperCamelCase : int = int(config["seed"] ) _UpperCamelCase : List[str] = int(config["batch_size"] ) _UpperCamelCase : Optional[int] = args.model_name_or_path set_seed(lowercase_ ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = get_dataloaders(lowercase_ ,lowercase_ ,lowercase_ ,args.n_train ,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCamelCase : str = AutoModelForSequenceClassification.from_pretrained(lowercase_ ,return_dict=lowercase_ ) # Instantiate optimizer _UpperCamelCase : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCamelCase : Optional[Any] = optimizer_cls(params=model.parameters() ,lr=lowercase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCamelCase : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: _UpperCamelCase : str = 1 _UpperCamelCase : Dict = (len(lowercase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCamelCase : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase_ ,num_warmup_steps=0 ,num_training_steps=lowercase_ ,) else: _UpperCamelCase : Any = DummyScheduler(lowercase_ ,total_num_steps=lowercase_ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Tuple = accelerator.prepare( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) # We need to keep track of how many total steps we have iterated over _UpperCamelCase : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCamelCase : Any = 0 # Now we train the model _UpperCamelCase : Tuple = {} for epoch in range(lowercase_ ,lowercase_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase_ ): _UpperCamelCase : List[Any] = model(**lowercase_ ) _UpperCamelCase : List[str] = outputs.loss _UpperCamelCase : Dict = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) ) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) ) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) ) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _UpperCamelCase : Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"peak_memory_utilization.json" ) ,"w" ) as f: json.dump(lowercase_ ,lowercase_ ) def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" ,type=lowercase_ ,default="bert-base-cased" ,help="Path to pretrained model or model identifier from huggingface.co/models." ,required=lowercase_ ,) parser.add_argument( "--output_dir" ,type=lowercase_ ,default="." ,help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." ,) parser.add_argument( "--peak_memory_upper_bound" ,type=lowercase_ ,default=lowercase_ ,help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." ,) parser.add_argument( "--n_train" ,type=lowercase_ ,default=320 ,help="Number of training examples to use." ,) parser.add_argument( "--n_val" ,type=lowercase_ ,default=160 ,help="Number of validation examples to use." ,) parser.add_argument( "--num_epochs" ,type=lowercase_ ,default=1 ,help="Number of train epochs." ,) _UpperCamelCase : int = parser.parse_args() _UpperCamelCase : Optional[Any] = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(lowercase_ ,lowercase_ ) if __name__ == "__main__": main()
310
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCamelCase__ = logging.getLogger() def lowercase__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCamelCase : Dict = parser.parse_args() return args.f class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> None: _UpperCamelCase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Optional[Any] ) -> Tuple: _UpperCamelCase : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(__a , "argv" , __a ): _UpperCamelCase : str = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__a , 0.6_66 ) @slow @require_torch_non_multi_gpu def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: _UpperCamelCase : int = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(__a ) _UpperCamelCase : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__a ) _UpperCamelCase : List[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(__a )
310
"""simple docstring""" from __future__ import annotations from math import pi def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
310
1
"""simple docstring""" def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> int: """simple docstring""" if index == number_of_items: return 0 _UpperCamelCase : List[str] = 0 _UpperCamelCase : Tuple = 0 _UpperCamelCase : str = knapsack(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,index + 1 ) if weights[index] <= max_weight: _UpperCamelCase : str = values[index] + knapsack( lowercase_ ,lowercase_ ,lowercase_ ,max_weight - weights[index] ,index + 1 ) return max(lowercase_ ,lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
310
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
1
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "summarization" SCREAMING_SNAKE_CASE__ :str = ["loss"] SCREAMING_SNAKE_CASE__ :Any = ROUGE_KEYS SCREAMING_SNAKE_CASE__ :List[str] = "rouge2" def __init__( self : Any , __a : Optional[int] , **__a : int ) -> Tuple: if hparams.sortish_sampler and hparams.gpus > 1: _UpperCamelCase : Tuple = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training" ) if hparams.sortish_sampler: raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously" ) super().__init__(__a , num_labels=__a , mode=self.mode , **__a ) use_task_specific_params(self.model , "summarization" ) save_git_info(self.hparams.output_dir ) _UpperCamelCase : Optional[int] = Path(self.output_dir ) / "metrics.json" _UpperCamelCase : Tuple = Path(self.output_dir ) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path ) _UpperCamelCase : Any = 0 _UpperCamelCase : Optional[int] = defaultdict(__a ) _UpperCamelCase : Optional[Any] = self.config.model_type _UpperCamelCase : int = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size _UpperCamelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _UpperCamelCase : Any = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } _UpperCamelCase : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _UpperCamelCase : Dict = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _UpperCamelCase : Any = get_git_info()["repo_sha"] _UpperCamelCase : Dict = hparams.num_workers _UpperCamelCase : Optional[Any] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __a ): _UpperCamelCase : Optional[Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _UpperCamelCase : Dict = self.decoder_start_token_id _UpperCamelCase : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , "prepare_seq2seq_batch" ) else LegacySeqaSeqDataset ) _UpperCamelCase : Tuple = False _UpperCamelCase : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _UpperCamelCase : List[Any] = self.hparams.eval_max_gen_length else: _UpperCamelCase : List[str] = self.model.config.max_length _UpperCamelCase : List[str] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Dict[str, torch.Tensor] ) -> Dict[str, List[str]]: _UpperCamelCase : Tuple = { k: self.tokenizer.batch_decode(v.tolist() ) if "mask" not in k else v.shape for k, v in batch.items() } save_json(__a , Path(self.output_dir ) / "text_batch.json" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / "tok_batch.json" ) _UpperCamelCase : Optional[Any] = True return readable_batch def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Dict , **__a : List[Any] ) -> Any: return self.model(__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[int] ) -> Union[str, Any]: _UpperCamelCase : Optional[Any] = self.tokenizer.batch_decode( __a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) return lmap(str.strip , __a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : dict ) -> Tuple: _UpperCamelCase : Optional[int] = self.tokenizer.pad_token_id _UpperCamelCase, _UpperCamelCase : Dict = batch["input_ids"], batch["attention_mask"] _UpperCamelCase : Any = batch["labels"] if isinstance(self.model , __a ): _UpperCamelCase : Tuple = self.model._shift_right(__a ) else: _UpperCamelCase : Optional[int] = shift_tokens_right(__a , __a ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _UpperCamelCase : Dict = decoder_input_ids self.save_readable_batch(__a ) _UpperCamelCase : str = self(__a , attention_mask=__a , decoder_input_ids=__a , use_cache=__a ) _UpperCamelCase : List[Any] = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _UpperCamelCase : List[Any] = nn.CrossEntropyLoss(ignore_index=__a ) assert lm_logits.shape[-1] == self.vocab_size _UpperCamelCase : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _UpperCamelCase : Dict = nn.functional.log_softmax(__a , dim=-1 ) _UpperCamelCase, _UpperCamelCase : Union[str, Any] = label_smoothed_nll_loss( __a , __a , self.hparams.label_smoothing , ignore_index=__a ) return (loss,) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.tokenizer.pad_token_id def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[int] , __a : Optional[int] ) -> Dict: _UpperCamelCase : str = self._step(__a ) _UpperCamelCase : Dict = dict(zip(self.loss_names , __a ) ) # tokens per batch _UpperCamelCase : Tuple = batch["input_ids"].ne(self.pad ).sum() + batch["labels"].ne(self.pad ).sum() _UpperCamelCase : List[str] = batch["input_ids"].shape[0] _UpperCamelCase : str = batch["input_ids"].eq(self.pad ).sum() _UpperCamelCase : int = batch["input_ids"].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Any , __a : Optional[int] ) -> Dict: return self._generative_step(__a ) def __SCREAMING_SNAKE_CASE ( self : int , __a : Union[str, Any] , __a : int="val" ) -> Dict: self.step_count += 1 _UpperCamelCase : str = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _UpperCamelCase : str = losses["loss"] _UpperCamelCase : Dict = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["gen_time", "gen_len"] } _UpperCamelCase : Any = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _UpperCamelCase : torch.FloatTensor = torch.tensor(__a ).type_as(__a ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__a ) _UpperCamelCase : List[str] = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} _UpperCamelCase : List[str] = self.step_count self.metrics[prefix].append(__a ) # callback writes this to self.metrics_save_path _UpperCamelCase : Union[str, Any] = flatten_list([x["preds"] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def __SCREAMING_SNAKE_CASE ( self : Any , __a : Dict , __a : Optional[int] ) -> Dict: return calculate_rouge(__a , __a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : dict ) -> dict: _UpperCamelCase : Any = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _UpperCamelCase : Union[str, Any] = self.model.generate( batch["input_ids"] , attention_mask=batch["attention_mask"] , use_cache=__a , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _UpperCamelCase : Optional[Any] = (time.time() - ta) / batch["input_ids"].shape[0] _UpperCamelCase : List[str] = self.ids_to_clean_text(__a ) _UpperCamelCase : List[str] = self.ids_to_clean_text(batch["labels"] ) _UpperCamelCase : Union[str, Any] = self._step(__a ) _UpperCamelCase : Tuple = dict(zip(self.loss_names , __a ) ) _UpperCamelCase : Dict = self.calc_generative_metrics(__a , __a ) _UpperCamelCase : Union[str, Any] = np.mean(lmap(__a , __a ) ) base_metrics.update(gen_time=__a , gen_len=__a , preds=__a , target=__a , **__a ) return base_metrics def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Union[str, Any] , __a : int ) -> Dict: return self._generative_step(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : int ) -> Tuple: return self.validation_epoch_end(__a , prefix="test" ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, Any] ) -> SeqaSeqDataset: _UpperCamelCase : Any = self.n_obs[type_path] _UpperCamelCase : int = self.target_lens[type_path] _UpperCamelCase : int = self.dataset_class( self.tokenizer , type_path=__a , n_obs=__a , max_target_length=__a , **self.dataset_kwargs , ) return dataset def __SCREAMING_SNAKE_CASE ( self : str , __a : str , __a : int , __a : bool = False ) -> DataLoader: _UpperCamelCase : Optional[int] = self.get_dataset(__a ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _UpperCamelCase : Optional[Any] = dataset.make_sortish_sampler(__a , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _UpperCamelCase : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_sampler=__a , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> DataLoader: _UpperCamelCase : Tuple = self.get_dataloader("train" , batch_size=self.hparams.train_batch_size , shuffle=__a ) return dataloader def __SCREAMING_SNAKE_CASE ( self : Any ) -> DataLoader: return self.get_dataloader("val" , batch_size=self.hparams.eval_batch_size ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> DataLoader: return self.get_dataloader("test" , batch_size=self.hparams.eval_batch_size ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Optional[int] , __a : List[str] ) -> List[str]: BaseTransformer.add_model_specific_args(__a , __a ) add_generic_args(__a , __a ) parser.add_argument( "--max_source_length" , default=1024 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--max_target_length" , default=56 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--val_max_target_length" , default=142 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--test_max_target_length" , default=142 , type=__a , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument("--freeze_encoder" , action="store_true" ) parser.add_argument("--freeze_embeds" , action="store_true" ) parser.add_argument("--sortish_sampler" , action="store_true" , default=__a ) parser.add_argument("--overwrite_output_dir" , action="store_true" , default=__a ) parser.add_argument("--max_tokens_per_batch" , type=__a , default=__a ) parser.add_argument("--logger_name" , type=__a , choices=["default", "wandb", "wandb_shared"] , default="default" ) parser.add_argument("--n_train" , type=__a , default=-1 , required=__a , help="# examples. -1 means use all." ) parser.add_argument("--n_val" , type=__a , default=500 , required=__a , help="# examples. -1 means use all." ) parser.add_argument("--n_test" , type=__a , default=-1 , required=__a , help="# examples. -1 means use all." ) parser.add_argument( "--task" , type=__a , default="summarization" , required=__a , help="# examples. -1 means use all." ) parser.add_argument("--label_smoothing" , type=__a , default=0.0 , required=__a ) parser.add_argument("--src_lang" , type=__a , default="" , required=__a ) parser.add_argument("--tgt_lang" , type=__a , default="" , required=__a ) parser.add_argument("--eval_beams" , type=__a , default=__a , required=__a ) parser.add_argument( "--val_metric" , type=__a , default=__a , required=__a , choices=["bleu", "rouge2", "loss", None] ) parser.add_argument("--eval_max_gen_length" , type=__a , default=__a , help="never generate more than n tokens" ) parser.add_argument("--save_top_k" , type=__a , default=1 , required=__a , help="How many checkpoints to save" ) parser.add_argument( "--early_stopping_patience" , type=__a , default=-1 , required=__a , help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ) , ) return parser class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = "translation" SCREAMING_SNAKE_CASE__ :Optional[Any] = ["loss"] SCREAMING_SNAKE_CASE__ :List[str] = ["bleu"] SCREAMING_SNAKE_CASE__ :List[Any] = "bleu" def __init__( self : Union[str, Any] , __a : int , **__a : List[Any] ) -> Optional[Any]: super().__init__(__a , **__a ) _UpperCamelCase : Optional[Any] = hparams.src_lang _UpperCamelCase : Optional[int] = hparams.tgt_lang def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[int] , __a : Dict ) -> dict: return calculate_bleu(__a , __a ) def lowercase__ ( lowercase_ ,lowercase_=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=lowercase_ ) check_output_dir(lowercase_ ,expected_items=3 ) if model is None: if "summarization" in args.task: _UpperCamelCase : SummarizationModule = SummarizationModule(lowercase_ ) else: _UpperCamelCase : SummarizationModule = TranslationModule(lowercase_ ) _UpperCamelCase : int = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("/tmp" ) or str(args.output_dir ).startswith("/var" ) ): _UpperCamelCase : Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase : str = os.environ.get("WANDB_PROJECT" ,lowercase_ ) _UpperCamelCase : List[Any] = WandbLogger(name=model.output_dir.name ,project=lowercase_ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _UpperCamelCase : Optional[Any] = WandbLogger(name=model.output_dir.name ,project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: _UpperCamelCase : Any = get_early_stopping_callback(model.val_metric ,args.early_stopping_patience ) else: _UpperCamelCase : int = False _UpperCamelCase : Dict = args.val_metric == "loss" _UpperCamelCase : pl.Trainer = generic_train( lowercase_ ,lowercase_ ,logging_callback=SeqaSeqLoggingCallback() ,checkpoint_callback=get_checkpoint_callback( args.output_dir ,model.val_metric ,args.save_top_k ,lowercase_ ) ,early_stopping_callback=lowercase_ ,logger=lowercase_ ,) pickle_save(model.hparams ,model.output_dir / "hparams.pkl" ) if not args.do_predict: return model _UpperCamelCase : Tuple = "" _UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir ,"*.ckpt" ) ,recursive=lowercase_ ) ) if checkpoints: _UpperCamelCase : Dict = checkpoints[-1] _UpperCamelCase : Optional[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() lowerCamelCase__ = pl.Trainer.add_argparse_args(parser) lowerCamelCase__ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCamelCase__ = parser.parse_args() main(args)
310
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
310
1
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {"UserAgent": UserAgent().random} def lowercase__ ( lowercase_ ) -> dict: """simple docstring""" _UpperCamelCase : str = script.contents[0] _UpperCamelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict , __a : str ) -> Tuple: _UpperCamelCase : List[str] = F'''https://www.instagram.com/{username}/''' _UpperCamelCase : Optional[Any] = self.get_json() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> dict: _UpperCamelCase : int = requests.get(self.url , headers=__a ).text _UpperCamelCase : Union[str, Any] = BeautifulSoup(__a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : List[Any] ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self : str ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: return self.user_data["username"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["full_name"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return self.user_data["biography"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.user_data["business_email"] @property def __SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self.user_data["external_url"] @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.user_data["edge_follow"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Dict ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: return self.user_data["profile_pic_url_hd"] @property def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> bool: return self.user_data["is_verified"] @property def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> bool: return self.user_data["is_private"] def lowercase__ ( lowercase_ = "github" ) -> None: """simple docstring""" import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCamelCase : Union[str, Any] = InstagramUser(lowercase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,lowercase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
310
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCamelCase__ = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") lowerCamelCase__ = f"""https://www.google.com/search?q={query}&num=100""" lowerCamelCase__ = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: lowerCamelCase__ = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: lowerCamelCase__ = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
310
1
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase__ ( ) -> str: """simple docstring""" _UpperCamelCase : Dict = torch.nn.Linear(2 ,4 ) _UpperCamelCase : Tuple = torch.optim.AdamW(model.parameters() ,lr=1.0 ) _UpperCamelCase : Optional[int] = torch.optim.lr_scheduler.OneCycleLR(lowercase_ ,max_lr=0.01 ,steps_per_epoch=2 ,epochs=1 ) _UpperCamelCase : Optional[int] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _UpperCamelCase : Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : int = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(lowercase_ ) class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @require_cuda def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: _UpperCamelCase : Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__a ): _UpperCamelCase : List[str] = Accelerator(cpu=__a ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: _UpperCamelCase : Optional[int] = Accelerator() _UpperCamelCase : Any = GradientState() assert state.num_steps == 1 _UpperCamelCase : List[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _UpperCamelCase : List[str] = False assert state.sync_gradients is False GradientState._reset_state() def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Any: _UpperCamelCase : Optional[Any] = Accelerator() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = create_components() ( ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ( _UpperCamelCase ), ) : List[Any] = accelerator.prepare(__a , __a , __a , __a , __a ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = Accelerator() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[str] = create_components() accelerator.prepare(__a , __a , __a , __a , __a ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__a : Union[str, Any] , **__a : int ): pass with patch("torch.cuda.set_device" , __a ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): _UpperCamelCase : Optional[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = Accelerator() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[int] = create_components() accelerator.prepare(__a , __a , __a , __a , __a ) _UpperCamelCase : str = get_signature(__a ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__a ) # make sure random weights don't match load_random_weights(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) < 1e-3 ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: _UpperCamelCase : List[str] = Accelerator() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Union[str, Any] = create_components() accelerator.prepare(__a , __a , __a , __a , __a ) _UpperCamelCase : str = get_signature(__a ) # saving hook def save_config(__a : Optional[Any] , __a : str , __a : Optional[int] ): _UpperCamelCase : Optional[int] = {"class_name": models[0].__class__.__name__} with open(os.path.join(__a , "data.json" ) , "w" ) as f: json.dump(__a , __a ) # loading hook def load_config(__a : str , __a : Union[str, Any] ): with open(os.path.join(__a , "data.json" ) , "r" ) as f: _UpperCamelCase : int = json.load(__a ) _UpperCamelCase : Tuple = config["class_name"] _UpperCamelCase : Tuple = accelerator.register_save_state_pre_hook(__a ) _UpperCamelCase : List[str] = accelerator.register_load_state_pre_hook(__a ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__a ) # make sure random weights don't match with hooks load_random_weights(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) > 1e-3 ) # random class name to verify correct one is loaded _UpperCamelCase : Dict = "random" # make sure loaded weights match with hooks accelerator.load_state(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__a ) # make sure random weights don't match with hooks removed load_random_weights(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) > 1e-3 ) # random class name to verify correct one is loaded _UpperCamelCase : Any = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__a ) self.assertTrue(abs(model_signature - get_signature(__a ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: _UpperCamelCase : Union[str, Any] = Accelerator() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Union[str, Any] = create_components() _UpperCamelCase : Optional[Any] = None # This should work _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = accelerator.prepare( __a , __a , __a , __a , __a , __a ) self.assertTrue(dummy_obj is None ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Optional[int] = Accelerator() _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = create_components() _UpperCamelCase : Union[str, Any] = [1, 2, 3] # This should work _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[str] = accelerator.prepare( __a , __a , __a , __a , __a , __a ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__a , "_is_accelerate_prepared" , __a ) , __a , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[Any]: from transformers import AutoModelForCausalLM _UpperCamelCase : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__a , device_map={"": 0} , ) _UpperCamelCase : str = Accelerator() # This should work _UpperCamelCase : Optional[int] = accelerator.prepare(__a ) @slow @require_bnb def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: from transformers import AutoModelForCausalLM _UpperCamelCase : Dict = Accelerator() with init_empty_weights(): _UpperCamelCase : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _UpperCamelCase : str = infer_auto_device_map(__a ) _UpperCamelCase : int = "cpu" _UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=__a , load_in_abit=__a , llm_inta_enable_fpaa_cpu_offload=__a ) # This should not work and get value error with self.assertRaises(__a ): _UpperCamelCase : List[Any] = accelerator.prepare(__a ) @slow @require_bnb @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: from transformers import AutoModelForCausalLM _UpperCamelCase : int = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): _UpperCamelCase : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() _UpperCamelCase : Union[str, Any] = infer_auto_device_map(__a ) _UpperCamelCase : List[str] = 1 _UpperCamelCase : Any = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__a , device_map=__a , ) _UpperCamelCase : Tuple = Accelerator() # This should not work and get value error with self.assertRaises(__a ): _UpperCamelCase : Dict = accelerator.prepare(__a ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: from transformers import AutoModelForCausalLM with init_empty_weights(): _UpperCamelCase : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) _UpperCamelCase : int = infer_auto_device_map(__a ) _UpperCamelCase : List[Any] = 1 _UpperCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__a , device_map=__a , ) _UpperCamelCase : Any = Accelerator() # This should work _UpperCamelCase : List[str] = accelerator.prepare(__a ) @require_cuda def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[str] = torch.nn.Linear(10 , 10 ) _UpperCamelCase : Tuple = torch.optim.SGD(model.parameters() , lr=0.01 ) _UpperCamelCase : Any = Accelerator(cpu=__a ) _UpperCamelCase : str = accelerator.prepare(__a )
310
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl" def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _UpperCamelCase : Any = vocab_size _UpperCamelCase : Optional[int] = hidden_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : Optional[int] = num_attention_heads _UpperCamelCase : List[str] = hidden_act _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : str = hidden_dropout_prob _UpperCamelCase : str = attention_probs_dropout_prob _UpperCamelCase : Dict = max_position_embeddings _UpperCamelCase : Optional[Any] = type_vocab_size _UpperCamelCase : str = initializer_range _UpperCamelCase : Any = layer_norm_eps _UpperCamelCase : Any = position_embedding_type _UpperCamelCase : Union[str, Any] = use_cache _UpperCamelCase : Optional[Any] = classifier_dropout class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"} else: _UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
310
1